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4 The Riemann-Roch Theorem

Introduction

The classical Riemann-Roch theorem reads as follows. Suppose M is a compact
Riemann surface. Let p be a point in M and m an integer. For a holomorphic
form u in a punctured neighbourhood of p, we write ord (u,p) > —m if the
product (z — p)™u extends to a holomorphic form in a whole neighbourhood
of p. Thus, u is allowed to have a pole of order < m at p, if m > 0, and is
required to have a zero of order > —m at p, if m < 0. Given any point divisor
§=pi" ...p~ on M, denote by L(J, 5) the space of all holomorphic functions
on M \ suppd such that ord (u,p,) > —my, for each v = 1,..., N, and by
L(371,9") the space of all holomorphic forms of bidegree (0,1) on M \ suppd
such that ord (u,p,) > my, for each v = 1,...,N. Then (cf. Springer [Spr57]
and elsewhere),

dime L(6,0) = (1= g) + >_ my, + dime L(671,8'), (0.1)

where g 1s the genus of the Riemann surface M equal to the number of “handles”
of M. The quantity degd =), m, is known as the degree of the divisor 4.

Being a very particular case of the Atiyah-Singer index theorem, this re-
sult 1llustrates rather strikingly how the index theorem applies to proving the
existence of solutions of elliptic equations. Indeed, (0.1) implies the Riemann
inequality dime L(8,9) > (1—g)+deg d, whence it follows that the space L(d, )
is not trivial provided degé > g—1. On the other hand, if degd > 2(¢—1), then
the space L(571, 5’) proves to contain only the zero form, and so the Riemann
inequality in fact becomes the equality determining the dimension of L(4, 5)

The classical Riemann-Roch theorem has been generalized in different ways
to higher-dimensional complex varieties. The best known generalizations are
the Hirzebruch Riemann-Roch theorem and the Grothendieck Riemann-Roch
theorem (cf. Fulton and Lang [FL85] and the references given there). In fact,
the Hirzebruch Riemann-Roch theorem served as a starting point and a source
of technical tools for the Atiyah-Singer theorem.

In the paper [GS93a], Gromov and Shubin suggested a generalization that
was motivated by the classical analysis of solutions with point singularities to
general elliptic equations. Namely, let A € Diff*(V, ‘N/) be an elliptic differential
operator of order a between sections of vector bundles V and V over a smooth
manifold M of dimension n. Pick a point p in M and an integer m. If m < 0,
then, for a solution u of Au = 0 in a punctured neighbourhood of p, we write
ord (u, p) > —m if u extends to a solution on the whole neighbourhood of p and
D%u(p) =0, |o| < —=m—1. If m > 0, we proceed as follows. Let u be a solution
of Au=01in U\ {p}, U being a neighbourhood of p. After shrinking U, we may

assume that U lies within a local chart on M, both V and V are trivial over U
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and A has a fundamental solution ® in I/. Were M, V, V and A real analytic,
the well-known result on the structure of hyperfunctions with a point support, if
applied to Au, would allow us to conclude that u(y) = ", Dy®(y, p)co modulo
solutions on the entire neighbourhood U, the series converging uniformly in y
on compact subsets of U\ {p} (cf. [Tar95, 9.1.11]). In the C'*° case we draw the
same conclusion for those u which are extendable to a distribution on the whole
neighbourhood U. Now, we write ord (u,p) > —m if u extends to a distribution
on U and

uly)= Y. DEd(y,plea, y€U\{p}, (0.2)

lal<m—1

modulo solutions to Au = 0 on U. Since the singularity of ®(y,y’) on the
diagonal of U x U is actually the same as that of the standard fundamental
solution for the (a/2) th power of the Laplace operator in R", we easily deduce
that ord (u,p) > —m if and only if u = u, +u; in U\ {p}, where u, € C22 (U, V)
and us(y) = o(ly—p|*~""™) as y — p. We write ord (u,p) = —m if ord (u, p) >
—m but it is not true that ord (u,p) > —m + 1. Obviously, it is immaterial
which local coordinates on U and local trivialisations of V and V we choose
to define ord (u, p). This definition is compatible with the standard definition
of the order of a pole or a zero for a meromorphic form on a Riemann surface
(this corresponds to the case n = 2, A = 0 and a = 1). By a point divisor on
M is meant any element of the free Abelian group generated by points of this
manifold. We write a point divisor in the multiplicative form § = p** ...py",
with m, € Z \ {0}. Set suppd = {p1,...,pn}. It is customary to write p° =0
that corresponds to the unity of the group. The ‘inverse’ divisor is defined by
57t =p™ . .py"Y, and so suppé~—! = suppd. The degree of a divisor § is
defined to be

N
degd =k signm, (('””':”_1) - ('m”_ff”_l)) . (0.3)

v=1
k being the rank of V| where (j) = ‘ﬁ if j < J and 0 otherwise. Note that
deg d depends also on the order a of A and on the fibre dimension k of V' (or ‘N/,
which is clear from the ellipticity of A). Having disposed of these preliminary
steps, we introduce two spaces

L6, A)={u e C2 (M \suppd,V): Au=0, ord (u,p,) > —my },

loc
L(6~Y AY={g € C.(M \ supp, ‘N/’) :A'g =0, ord (g,p0) > My},

where A’ € Diﬂ’a(f/’, V') is the transpose of A. These are spaces of “meromor-
phic” solutions to the equation Au = 0 and its transpose A’g = 0, respectively,
depending on a given divisor; the solutions are allowed to have some poles (at
points that enter into the corresponding divisor with positive degrees) and are
required to have zeros (at points that enter into the corresponding divisor with
negative degrees).
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Theorem 0.1 (cf. [GS93a]) If M is a compact smooth closed manifold,
then

dime L(d, A) = ind A+ deg § +dime L(671, A). (0.4)

Since the index of the Cauchy-Riemann operator on a compact Riemann
surface i1s equal to 1 — g, g being the genus, the classical Riemann-Roch theorem
(cf. (0.1)) is a very particular case of Theorem 0.1.

Let us mention yet another particular case of Theorem 0.1. If A is a selfad-
joint elliptic operator on a compact smooth closed manifold M, then ind A = 0,
which yields dime L(d, A) = deg§ + dime L(671, A). This result for the scalar
Laplacian on a Riemannian manifold goes back at least as far as Nadirashvili
[Nad88].

It is worth pointing out that the index of the operator A can be evaluated in
each Sobolev space H*(M,V), s € R. The elliptic theory on a compact smooth
closed manifold M shows that the mapping A: H*(M,V) — H*~*(M, ‘N/) is
Fredholm and its index is independent of s. This index can be calculated by
the Atiyah-Singer formula (cf. [AS68]).

Gromov and Shubin [GS93a] gave also a generalization of Theorem 0.1 to
non-compact smooth manifolds with compact boundary. In this case one im-
poses appropriate boundary conditions and conditions at infinity in order to
ensure that the given elliptic operator defines a Fredholm operator in suitable
spaces.

In this paper we derive a generalization of the classical Riemann-Roch the-
orem that is motivated by the analysis of solutions of elliptic equations on
manifolds with conical singularities (cf. Kondrat’ev [Kon67], Melrose and Men-
doza [MA83], Plamenevskii [Pla89], Schulze [Sch91, Sch94, Sch97]). On such a
manifold M live differential operators which are usual over the smooth part of
M and of so-called Fuchs type close to singular points. They act naturally in
weighted Sobolev spaces of distributions on the smooth part of M, the weight
functions being powers of the distance to the set of singular points. The con-
cept of ellipticity relies on two symbolic levels, the first of the two is the usual
principal symbol defined over the smooth part of M up to the singular points,
and the second of these is the conormal symbol defined over the set of singular
points. The conormal symbol at a singular point v € M is a family of usual dif-
ferential operators acting in Sobolev spaces over a cross-section of M close to v.
The parametre z substituting the Fuchs-type derivative along the geodesic at v
varies over a vertical line itz = % —, in the complex plane, v, being the weight
exponent at v. Thus, the ellipticity depends on the weighted Sobolev spaces to
be domains of the operator in question. Elliptic operators are Fredholm and
have parametrices within the so-called cone algebra of pseudodifferential opera-
tors on M (cf. ibid). In this setting we prove equality (0.4) both for divisors §
supported away from the set of singular points and for those meeting this set.

The idea of using the calculus of b-pseudodifferential operators on a manifold
with boundary to deduce the classical Riemann-Roch theorem goes back to the
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book of Melrose [Mel93, 6.3].

1 Manifolds with Singular Points

Let M be a (topological) manifold of dimension n with a singular point v, and
let M have a C'°° structure away from v. We are going to induce a singular C'*°
structure on M at the point v.

To this end, let us fix the type of the singular point v by specifying a model
object in an Euclidean space. Namely, consider the model surface in R™*?
given by Cy = {rS(f(r)x) : r € [0,1),2 € X}, where S is a diffcomorphism
of a star-shaped domain £2 C R"™ onto an open subset of the unit sphere S™
in R"*', X is a compact closed submanifold of dimension n — 1 in €, and f
is a C* function on (0,1) with values in (0, 1], continuous up to » = 0. This
surface is smooth away from the origin 0 € R"%' and the origin is a conical
point of Cy, if f = const, and a cusp of a higher order, if f(0+) = 0. Under the
mapping m(r, z) = rS(f(r)x), the smooth part Cy\ {0} of Cy is identified with
the cylinder (0,1) x X over X, while the origin is blown up to the base {0} x X
of this cylinder. Moreover,

on drS(w)
det = det —
¢ d(r, x) ¢ I(r,w) lo=r(r)e
vanishes only for r = 0 where rankg det 637;) =1.

Since Cj is embedded into R™T! there is a natural way to define a singular
C* structure on this surface. Namely, by a '™ function on Cy we mean
the restriction, to Cy, of some C° function in a neighbourhood of Cjy. Were
Cy smooth at 0, then a familiar result yield that such functions have inner
description in terms of local coordinates on Cj, which serves as an additional
argument in favour of our definition. If w is a C'*° function on Cy, then the
pull-back m*u (v, #) = u(rS(f(r)x)) is a C* function on the cylinder [0,1) x X,
i.e., up to r = 0. The converse is not true as shows any component of 7=1(y),
Yy € CO.

Now, a homeomorphism h of Cy is said to be a diffeomorphism if h(0) = 0 and
there is a diffeomorphism of a neighbourhood of Cyy in R™™! whose restriction
to Cy coincides with h.

Returning to the original manifold M, we call M a manifold with a cusp at v
if there is a neighbourhood U of v and a homeomorphism h: U — Cj such that
h(v) = 0 and the restriction h: U\{v} = Co\ {0} is a diffeomorphism. Any two
such homeomorphisms h; and hy are said to be equivalent if the composition
hzhl_1 is a diffeomorphism of Cy. Then, the C'*° cusp structure on M close to
v is defined by any class of equivalent homeomorphisms U — Cj, as above.

Our next goal is to give an alternative description of the “model object”
which still makes sense for not necessarily embedded manifolds X. Set H =
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Fig. 1: A manifold with a cusp at v.

7~ toh, the composition being regarded as a multivalent mapping U — [0, 1) x X .
This is a diffeomorphism of U \ {v} onto (0,1) x X and the image of v by H
is the base {0} x X of the cylinder. An easy consideration shows that H is
actually a homeomorphism of U onto the topological cone

Co(X) = 0,1) x X

{0} x X
over X. We call any two homeomorphisms H; and Hs of U onto C¢(X) with
these properties equivalent if the restriction of HzHl_1 to (0, 1) x X extends to a
diffeomorphism of a neighbourhood of [0,1) x X in R x X. Classes of equivalent
homeomorphisms H : U — C¢(X) give M various singular C'* structures close
to the point v. Let us elucidate the relevance of the C'™° cusp structures among
them.

Suppose hi, ho are two equivalent homeomorphisms U — (', thus defining
the same C'* cusp structure on M at v. Write 1 = 7~ Loh; and Hs = 7~ ohs
and consider the composition Hs o H1_1 =naY(hyo hl_l)ﬂ'. Since hs o h1_1 Is a
diffeomorphism of Cy, it follows that the restriction of Ho o Hi ! to (0,1) x X
extends to a diffeomorphism of a neighbourhood of [0,1) x X, i.e., Hy, Hq are
equivalent homeomorphisms U — Cy(X). Thus, each C* cusp structure on M
determines in a natural way some singular C'*° structure on M via the “model
object” C¢(X).

As the topological cone C¢(X) has no canonical singular C*° structure, it
is not to be expected that C°° cusp structures on M at v can be specified
by singular C*° structures on M via Cy(X). In other words, different C'*° cusp
structures on M can determine the same singular C*° structure on M via Cy(X)
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because, for a diffeomorphism A of [0,1) x X, the composition 7o Ao m~! need
not be a diffecomorphism of Cy. However, each singular €' structure on M at
v via C¢ (X)) originates with some C'® cusp structure, as every homeomorphism
H:U — Cy(X) factors through Cy, i.e., H = 7~ !h for some homeomorphism
h:U — Cy (cf. Fig. 1).

We deduce that in order to specify a €' cusp structure on M at v within a
singular C'* structure defined by a homeomorphism of U onto Cy(X), one needs
an additional information on the original cusp structure. As such an information
can serve either a Riemannian (cusp) metric on the cylinder (0, 1) x X or a class
of typical vector fields near the base r = 0 of the cylinder.

The concept of a manifold with cusps extends in a natural way to the case
of several singular points.

2 Cusp Algebras

We begin by showing the class of Riemannian metrics on the cylinder (0,1) x X
specifying (' cusp structures on M close to a singular point v.

The diffeomorphism 7 : (0,1) x X — Cp \ {0} pulls back the Riemannian
metric dyi + ...+ dy2,, from the smooth part of Cy to the cylinder (0,1) x X,
thus giving

™ (dyf + ...+ dys )

n+l n . " ; ’
—dr? Z ((rf/) (Z l‘bg%(fl‘)) dr + (rf) Z g%(fx) dwb) (2.1)

=1 =1

followed by restricting the differentials dws, ..., dw, to tangential vectors to X.
Of course, (2.1) degenerates at the base {0} x X of the cylinder.

Example 2.1 Let n = 2 and let Cy be the surface with a cusp at the origin
given in the polar coordinates of R® by

y1 = rcosepsin f(r)o,
y2 = rsingsin f(r)io,
ys = rcos f(r)vo,

where 7 € [0,1), ¢ € [0,2r) and ¢ is a fixed angle in the interval (0, 7). Then,
a trivial verification shows that

T (dyi + dys + dyz) = (1+ (rf'(r)vo))dr? + (rsin f(r)1o) de”,

dp? being the Riemannian metric along the unit circle S*.
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Vector fields along the base X of the cylinder (0,1) x X endowed with
Riemannian metric (2.1) are of the form (rf)~! 27:_11 a,(r,z)9/0x, in local
coordinates of X. The coefficients a, are of class C"™ up to r =0 if sois f. We
are thus lead to typical vector fields on a manifold with a C'*° cusp structure.
These are

n—1 n—1
ap(r,t) %—I— % Zab(r, z) ai = % (ao(r, z) (rf%) + Zab(r, z) aib)

=1 =1
(2.2)

close to the cusp.

If f satisfies the condition sup |rjf(j)(r)| < oo, for all j, then such vector
fields behave properly under composition. Modulo the weight factor (rf)~1,
they are section of a vector bundle over M called the “compressed tangent
bundle.” When restricted to the smooth part of M, this latter is isomorphic to
the usual tangent bundle over M \ {v}. On the other hand, the weight factor
(rf)~! can be managed via suitable weighted Sobolev spaces on M.

The microlocalisation of this Lie algebra of vector fields leads to an algebra
of pseudodifferential operators on M called a “cusp algebra.” For more details
we refer the reader to [ST96] and [RST97].

In particular, if v 18 a conical point of M| i.e., f = 1, then the Riemannian
metric close to v becomes

n n+1

0S; 0S;
2 2 J j
dre+r E ;:1 —3% —awn dw,dw,,

k=1

resulting in the Fuchs-type derivative D = —rd/Jr and in the cone algebra of
Melrose and Mendoza [MA83] and Schulze [Sch91, Sch94, Sch97].

3 The Riemann-Roch Theorem

Let us consider a compact closed manifold M with a finite set of conical points
sing M = {vy,...,vr}. As described above, such a manifold has a C'°° structure
away from the set sing M and a C'™ cone structure close to each point v €
sing M. Alternatively, M can be thought of as a compact smooth manifold with
cylindrical ‘ends’, i.e., close to a point v € sing M, we identify M with a cylinder
Cy = [0, 1) x X, over a compact smooth closed manifold X, of dimension n—1,
each C), being endowed with a cone metric dr? + r?gx, (r) where gx, (r) is a
family of Riemannian metrics on X,, smooth in » € [0,1) up to r = 0.

The cone metric gives rise to the Lie algebra of vector fields on €, spanned
by r0/0r and 0/0x;, where # = (#1,...,2,_1) are local coordinates on X,. It
follows that the typical differential operators on €, are of the so-called Fuchs
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type

a;(r)D?, (3.1)
7=0
where D = —rd/dr and a; € C2([0, 1), Diff*=/(X,,)). The class of Fuchs-type
operators is invariant under local diffeomorphisms of M preserving the C'*® cone

1

ra

A=

structure.
To each operator (3.1) we assign its principal Fourier symbol 0% (A) away
from r = 0 as well as its Mellin symbol at r = 0,

a

opm(A)(v,2) =D a;(0)2. (3.2)

7=0

This latter is regarded as a family of differential operators over X, acting in
Sobolev spaces H* (X, ) — H*~%(X,) and parametrised by the complex variable
z varying along a vertical line I'y = {2 € C: Rz =~}, v € R.

Now, by a differential operator of order ¢ on M, we mean any differential
operator of order a on the smooth part A \ sing M of M which is of Fuchs-type
(3.1) close to singular points. In just the same way we define differential op-
erators A between sections of smooth vector bundles V and V over M. When
“pulled back” to a cylindrical end C),, both V and V are trivial over the bound-
ary {0} x X, which allows us to regard the Mellin symbol at » = 0, o4(A), as
a mapping H*(X,) @V, = H*~%(X,) ® V.. We continue to write Diff*(V, ‘N/)
for the space of all differential operators of order a between sections of V' and
V.

The natural domain of an operator A € Diff*(V, ‘N/) is a weighted Sobolev
space H*Y(M,V) of sections of V over M, where s € R and v = (v1,...,71)
is a tuple of real numbers. This space 1s modeled on the usual Sobolev space
H} (M \sing M,V) away from the singular points and on a weighted Sobolev
space H*7i(C,,, V) close to the singular point v;. The definition of H*7i(C,,, V)
invokes the Mellin transform in » € R, and the Fourier transform in € R" ™,
along with the weight factor #= =% (cf. Schulze [Sch94, 1.1.1]).

Each operator A € Diff*(V, ‘N/) is known to extend to a continuous mapping
(M, V) —» H~ %7 %(M, ‘N/), for all s € R and v € R!, where we set
y—a=(ym—a,...,y1—a).

The weight tuple v enters into the concept of ellipticity on a manifold with
conical singularity in the following way. An operator A € Diff*(V, ‘N/) is said to
be elliptic with respect to a weight tuple v € R if A is elliptic in the usual
sense away from the set sing M and, for each ¢ = 1,..., I, the Mellin symbol of
A at the singular point v; is an isomorphism H*(X,,) ® V,, = = %(Xy,) ®‘7v,a
for any one s € R and all z € 'z _,.

Note that if A 1s elliptic with respect to v € RI, then its transpose A’ €
Diﬂ’a(f/’, V') under the pairing H=*~Y(M, V') x H*7(M,V) — C is elliptic
with respect to the weight tuple a — 7.
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A basic result of the analysis on manifolds with conical singularities is that,
given any v € R’ the mapping A: HY (M, V) = Hs =87 %(M, ‘N/) is Fredholm
for all s € R if and only if A is elliptic with respect to v (cf. ibid, 1.2.2).
Moreover, if A is elliptic, then the kernel and the cokernel of the mapping A are
independent of s (but not of v), and so the index of A can be evaluated in the
space H*V (M, V).

We are now in a position to introduce our first version of the Riemann-Roch
theorem for a manifold M with conical singularities. To this end, given any
point divisor § = p** ...p\™ with suppd Nsing M = §§, we consider two spaces

L(§,A)={ue H V(M \ suppé,V): Au= 0, ord (u,p,) > —m, },

loc

L(6~L AY={g € H (M \ suppé, ‘N/’) :Alg=0,o0rd(g,p0) > my},

loc

ord (u, p) being defined as above.

Theorem 3.1 Suppose A s a differential operator on M, elliptic with re-
spect to a weight tuple ~v € RY, and & is a point divisor on M supported away
from the set of singular points. Then,

dime L(d, A) = ind A+ deg § +dime L(671, A). (3.3)

We emphasize that ind A means the index of the operator A evaluated in
any one Sobolev space H*V(M,V), s € R. The problem of finding an explicit
index formula for Fredholm differential operators on a compact closed manifold
with conical singularities has not been solved in a completely satisfactory way
(however, see the work of Piazza [Pia93] for a partial result). Theorem 3.1 can
be useful anyway, for explicit index formulas are known for particular operators.

The theorem is still true for elliptic differential operators on compact closed
manifolds with cusps (cf. Schulze and Tarkhanov [ST97]). As is observed by
Melrose [Mel96], various problems for cusp and cone pseudodifferential operators
are essentially the same. The index problem for pseudodifferential operators is,
as yet, unsolved for all the fibred cusp algebras except the scattering algebra
(cf. dbid).

If the set of singular points of M is empty, equality (3.3) gives (0.4), and
so Theorem 3.1 contains Theorem 0.1 as a very particular case. However, the
proof of Theorem 3.1 is similar in spirit to that of Gromov and Shubin [GS93a].

We postpone the proof of Theorem 3.1 until Section 5 while showing that
artificial conical points do not affect the index of the operator A if 7 is properly
chosen.

Lemma 3.2 Let v € M \ sing M and let M’ be the manifold obtained from
M by regarding v as new conical point. Suppose v' = (v,v,), where v € R and

Y € (a— %,%) Then the index of A : HSWI(M’,V) — HS_G’VI_G(M’,V) is

equal to the index of A: HSY(M,V) — H* =77 %(M, ‘N/)
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Note that in order to a 7, fulfilling the condition of the lemma exist it is
necessary and sufficient that a < n.

Proof. Pick a neighbourhood U of the point v such that U does not meet
the set sing M. If & —~ < n — a, then each section u € H;)/(U, V) satis-
fying Au = 0 in U \ {v} extends to a solution of this equation on the whole
neighbourhood U. This is a kind of the theorem on removable singularities for
solutions of elliptic equations. For the proof, use expansion (0.2) together with
the observation that the elements of H;) " (U, V) admit extensions to distri-

n

butions on U. Conversely, if 0 < 5 — =, then each solution to Au = 0 in U

belongs to H;;/(U,V). On the other hand, if 0 < % — (¢ —v) < n — a, then
similar arguments apply to solutions of the transposed equation A’g = 0. The
inequalities

0 < 5= < n-—a,

0 < 2-(a-7) < n-a
are easily verified to coincide, thus resulting in a — 2 < vy < 5. Since we still

have ind A = dimker A — dimker A’, the lemma follows.
O

4 A Duality Theorem

Let § = p{"* ...py" be a point divisor with a support away from the set of
singular points of M.
We introduce the positive and negative parts of 4 as divisors

it = pll_...pN]_V,
L pTl ...pﬁN,
where m™ = max(m,0), m~ = min(m, 0). Here all factors of the form p* with
m = 0 have to be omitted.
It is clear that § = 6§~ and
@~ Ht = (67)7
6 = )

We next introduce new spaces which play an important role in the proof of
Theorem 3.1 but on the other hand allow us to formulate a duality theorem
which i1s important by itself.

Namely, L'(d, A) is defined to consist of all sections v € H, > (M\suppd+, V)
such that u vanishes at p, up to order —m, — 1, if p,, € suppd—, and, for each
pv € suppdt, there exist a neighbourhood U of p,, and sections u, € C2.(U, V)
and u, € C72(U \ {p. }, V) with the property that u = u, +u, in U\ {p,} and
Aug = 0in U\ {po}, ord (us,p,) > —my.

Thus, we allow merely singularities that occur as singularities of solutions
to Au = 0. The space L'(d, A) consists of sections with the same zeros and
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singularities as allowed in the definition of L(d, A). However, the definition of
L'(6, A) contains no global restrictions on u, so all possible local singularities
and zeros can be present at each point p, € suppd independently from what
happens at other points.

Now we introduce the reduced divisor

5 =pl" R, (4.1)

where 1, = signm, (|m,| — a)t and the factors p** with m, = 0 have to be
omitted.
Thus, compared with J, the absolute value of every exponent decreases by a

(or becomes 0 if it was initially less than a). Note that (671)~ = (6)~! and

()~ = (¢
= @

hence the designations 61 &% and 6~ will cause no confusion.

We define the space L”(S,A) to consist of all sections f € H*™7~%(M, ‘N/)
such that f vanishes at p, up to order —m, — 1, if p, € supp 5~. Note that
L”(S, A) actually depends on 5~ only, and so L”(S, A) = L”(S_,A).

Lemma 4.1 The differential operator A extends in a natural way to a map-

ping A: L6, A) — L”(S,A).

Proof. Indeed, pick u € L'(4, A). Tt follows from the definition of L' (4, A)
that Au, being defined on M \ suppd™, extends by continuity to a section
fe ="M, ‘N/) Moreover, f € L”(S, A), as is easy to check. Hence, setting
Au = f yields the required extension of A.

(I

We now apply these arguments again, with the operator A with domain
H*Y(M,V) replaced by the transpose A’ with domain H®*~7 (M, ‘N/’), to in-
troduce the spaces L/(§71, A’) and L”(S_l,A’).

In fact, L/(67', A’) consists of all sections ¢ € H, > 7(M \ supp (5‘,‘7’)
such that g vanishes at p, up to order m, — 1, if p, € suppdt, and, for each
Py € suppd~, there exist a neighbourhood U of p, and sections ¢, € C72.(U, ‘N/’)
and g, € CZ(U\{p.}, ‘N/’) with the property that ¢ = g, + g5 in U \ {p, } and
Ags =0in U\ {p,}, ord (g5, pv) > my.

Furthermore, L”(S_l,A’) is generated by sections v € H*~7(M,V’) such
that v vanishes at p, up to order mm, — 1, if p, € suppé™.

Lemma 4.2 The differential operator A’ extends in a natural way to a map-

ping A’ L'~ A — L”(S_l,A’).

Proof. This follows by the same method as in Lemma 4.1.
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Our next objective is to introduce an important duality in the spaces defined
before. To this end, we recall the definition of the dual bundle on a manifold
with conical singularities.

By a density on M we mean any density w over the smooth part of M,
which takes the form w = #"?~!'drdz modulo factors smooth up to r = 0, close to
each conical point v. Obviously, this definition is independent of the particular
splitting of coordinates (r, #) near v. We denote by (M) the bundle of complex
densities on M. For every w € Q(M), the integral wa is well-defined. If V'
is a vector bundle over M, then the bundle V' = Home(V,Q(M)) is called
the dual bundle. There is a natural pairing of bundles V' @ V' — Q(M) which
gives the pairing in sections (-,-): C™°(M, V') x C*°(M,V) — C by means of
(v,u) = [, (v(y),u(y)). Here, (v(y),u(y)) € Qy(M) is obtained by use of the
pairing between V| and V.

In contrast to the case of a compact closed "> manifold M, the transposed
operator A’ does not fulfil the property (g, Au) = (4’¢, u) for all smooth u and
g, but only for those with (supp uNsupp g) Nsing M = (. However, the following
is what we really need.

Lemma 4.3 For each u € H*Y(M,V) and g € H** (M, ‘N/’),
(g, Au)y = (A'g,u). (4.2)

Proof. By a property of weighted Sobolev spaces, we can choose a se-
quence (uy) in C%.. (M \ sing M, V) approximating « in the norm of

v=1,2 ... comp

HY(M,V). Then Au, — Au in the norm of H*Y=9(M, V), whence

(9, Au) = lim (g, Au,)

V=00

= lim (A'g,u,)

V=00

(A'g,u),

as required.
O
We thus deduce that the natural domain of the transpose A’ is the Sobolev
space H** (M, ‘N/’)

Lemma 4.4 For each point divisor § supported away from sing M, the pair-
mgs
He Y (M, VY x H®Y(M,V) — C,
Ho =Y (M, V') x H®7=4(M,V) — C

extend to pairings
L1, A x L', 4 — C, (4.3)
L'(6~HLAYx L"(6,4) — C '
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Proof. We claim that pairings (4.3) are in fact defined by integration over
M \ suppd. We only need to show that the integrals which appear here really
converge.

Indeed, suppose u € L'(6, A) and v € L”(S_l,A’). Then, near a point p,
with m, > 0, we have u(y) = O(|y—p,|*~™~™*T) where € is any number in the
interval (0,1). The case a—m, > 0 does not evoke any problem. In the opposite
case we have v(y) = O(Jly — p, [ ~*). Hence (v(y),u(y)) = O(ly—p.|~""¢) and
the integral fM\supp s{v(y), u(y)) converges near all points p, with m, > 0 which
are the only possible singularities.

The same reasoning applies to the second pairing in (4.3) which completes
the proof.

O

Now let (-,-): H' x H — C be a bilinear pairing of two complex vector
spaces H and H’. Given a vector subspace ¥ of H, we define the annihilator
or orthogonal complement ©:1 of ¥ with respect to the pairing (-, -) to consist of
all v € H' such that (v,u) = 0 for each u € ¥. Thus, ¥1 is a vector subspace
in H'. And vice versa, if ¥ is a vector subspace of H', then Y'* is defined as
a vector subspace in H’.

In the following theorem the annihilator is with respect to the second pairing
in (4.3).

Theorem 4.5 1) For each u € L'(d, A) and g € L'(6=1, A", it follows that
(g9, Au) = (A’g, u). N

2) im A= (kerfl’) cte, feimAifand onlyif f € L”(S,A) and{g,f)=0
for all g € ker A’.

3) dimcoker A = dimker A’

The relevance of Theorem 4.5 to Theorem 3.1 is clear from the fact that
ker A = L(6, A) and ker A= (671, A’). Both the theorems will be proved in
parallel in the next section.

Note that part 2) gives solvability conditions for the equation Au = f in the
class L'(d, A) that consists of sections with prescribed orders of zeros and poles.

5 Proofs

Theorems 3.1 and 4.5 will be proved simultaneously because these proofs inter-
twine (cf. Gromov and Shubin [GS93a]).

In the sequel H=*7(M, V) stands for the union of the spaces H*7Y(M,V)
over all s € R. Obviously,

H=7(M,V) < D'(M\sing M, V),
E'(M\singM,V) — H=7(M,V),

for each v € R.
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Denote by &£ (M, V) the subspace of £'(M \sing M, V') consisting of sections
u such that suppu« C suppé™t and, near suppdt, u can be written as

u(y) = Z Z Cra Daé(i‘/—])u)a (51)

pyEsupp §F |a|<my—1

where §(y) is the Dirac measure and ¢, € V,, . Clearly, E(M, V) = &, (M, V).

Similar spaces will be used for the bundle V and other divisors occurring in
the proof.

For every u € L'(4, A) we can find a “regularisation” @ € H~°>Y(M, V) such
that @ = w on M \ suppd*t and Aua = f, + f; with f, € H>®7"%(M, ‘N/) and
s € E(M, ‘N/) Denote by E’((F, A) the space of all such regularisations. Due
to the elliptic regularity result and the structure of fundamental solutions (cf.
Introduction), the space E’((F, A) can be equivalently described as the set of all
@ € H™°7(M,V) such that @ is of class €™ in a neighbourhood of suppd—,
u vanishes at each point p, € suppd™ up to order —m, — 1, and Au = f, + f;
with f. € H®=%(M, V) and f, € EL(M, V).

Lemma 5.1 The sequence
0 — ELM,V) = I/(6,4) L5 L'(5,4) — 0 (5.2)
1s exact. Here ¢ and r are the natural inclusion and restriction mappings.

Proof. The surjectivity of r means the existence of a regularisation as
mentioned before, the injectivity of ¢ is evident. So we must only prove the
exactness in the middle term which actually means that if u € &' (M \sing M, V)
is supported on supp ™ and Au € (M, ‘N/), then u € Sé(M, V). This is a local
assertion, and so it suffices to consider the case § = p™ with m < 0. But then
the statement easily follows from the ellipticity of A.

O

Lemma 5.2 We have

ml,—l—n—l). (5.3)

o _
dm&f (M, V)y=q Y ( .
pyEsupp dt
Proof. Since &(M, V)= P SZ’)my (M, V), it is sufficient to prove that, for

my, >0
every m, > 0,

. my, +n—1
dlmé']');ny (M, V) = q( n ),

which reduces to a well-known combinatorial exercise.
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Lemma 5.3 As defined in Lemma 4.1, the operator A is Fredholm and its
index satisfies

ind A = ind A + deg 4. (5.4)
Proof. Consider the following commutative diagram

0 — EMV) - (5, 4) Ty L6, A) — 0

4+ |4 |4
0 — E(M, V) — L', A)@EM, V) = L'(3,A) — 0

where the first row is sequence (5.2), the mappings ¢ and 7 in the second row are
natural inclusion and projection, respectively, and A+, A are the restrictions of
A to the corresponding spaces of distributions. Since both rows in the diagram
are exact, we can assert, by the well-known algebraic property of the Euler
characteristic, that
ind A = ind A + ind AT.

On the other hand, At operates in finite-dimensional spaces, and so its index

is equal to the difference of the dimensions of the spaces. Thus,

indA* = dim&(M, V) — dim&H(M, V)
. my,+n—1 m,—a+n—1
-z ()= )
Py Esupp §F
= —degdt,

the second equality being due to (5.3). Hence
ind A = ind A 4 degd*. (5.5)

Now consider the commutative diagram

0 — H=(M,V;8) (8, A) T4 el (M, V) — 0
lA— fo lld
0 —  L"(6,4) s L6, A) B EM, V) T EL(M, V) — 0

where H*7(M,V;d) is defined to consist of all sections u € H*Y(M, V) such
that w vanishes at p, up to order —m, — 1 if p,, € suppd~. The operator A~ is
the restriction of A. Once again, the rows are exact whence

ind A =ind A™. (5.6)
Finally, consider the commutative diagram

0 — H®V(M,V:6) - HeYM,V) L J;(V) — 0

- 4

0 —  L"(3,4) - He (M V) L Ji(V) — 0

%
=
o
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where
H®Y (M, V)
(V) HoN (M, V;8)
- HoN =M,V
(V) = W.7)

Heo=a(M,V;4)

i and ¢ are the natural inclusion and quotient mappings, and J(A) is the natural
quotient mapping. Then we deduce

ind A~ = ind A — ind J(A).
Since J5(V) = @ J,m (V) and, for each m, <0,

m, <0
dim J, (V) = ¢ ( Tt ! )
(cf. (5.3)), we obtain
ind J(A) = dimJ;(V) —dim J;(V)
e (- ()
Py Esupp -
= —degd™.
Hence ind A~ = ind A + degd~, and so applying (5.5) and (5.6) yields
indA = indA+degd™ + degd™
= ind A+ degd,

which completes the proof.
O
Equality (5.4) means that dimker A = ind A + deg § + dimcoker A, and so
Theorem 3.1 will be proved once we prove part 3) in Theorem 4.5. We begin
with the proof of part 1) in Theorem 4.5.

Lemma 5.4 For each u € L'(6, A) and g € L'(07 1, A), we have
(g, Au) = (A1g,w) 6.7)

Proof. Let us first assume that equality (5.7) holds for all uw € L'(4, A) and
g € L'(071, A’) such that supp u Nsupp g does not meet the set sing M. Pick a
function y € C%,,, (M \sing M) with the property that x = 1 in a neigbourhood

comp

of suppd. Then, for each u € L'(§, A) and g € L'(6~%, A’), we obtain

(g9, Au) = (g, A(xw)) + (g, A((1 = X)u))
(A'g, xu) + (g, A((1 = x)u))
= (Ag,xu)+(Ag, (1 - x)u)
(Ag, u)
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the third equality being a consequence of Lemma 4.3. We are thus reduced to
proving (5.7) for u € L'(§, A) and g € L'(d~, A’) supported on the smooth part
of M.

This latter case is actually treated in Lemma 3.4 of Gromov and Shubin
[GS93a]. For the convenience of the reader we repeat the relevant material from
[GS93a].

Let us take a function w € Cg5,,,(R") such that w(y) = 1 if |y| < §, and
w(y) = 01if |y > 1. For each ¢ > 0, set w.(y) = w (%), so that w, is a C'™
function with a support in the ball |y| < e, satisfying w.(y) = 1 if |y| < §, and
| D, (y)] < cqe™!?l for all y € R™.

For each point p, € suppd, we fix local coordinates in a neighbourhood U,
of p,. Using these local coordinates we define

Xa(y) =1- Zwa(y_pu)a

for small € > 0. It follows that y. = 0 in a neighbourhood of suppd, y. = 1
outside a small neighbourhood of suppd, and |D®x. (y)| < cae™!?l, the deriva-
tive being taken in chosen local coordinates. Now using the definition of the
transposed operator and the convergence of the integrals defining both sides in

(5.7) we get
(9, Au) = lim (xeg, Au)
= lim (A (xeg).0)
= lim (xeA'g, u) + lim([4', xc]g, w)
= (g u)+ lim ([A,xelg, ),
where [A’ ve] = A'xc — xc A’ is the commutator of A" and x..
It remains to prove that the last limit vanishes. To do this, we observe that

[47) xc] is a differential operator of order a — 1 with coefficients supported in a
small neighbourhood of suppd. In fact,

[A/aXa] == Z Aoc,a(y)Da

|a<o—1
close to p,, with
suppAae C {y: § <ly—pol <el, (5.8)
[Aac(y)] < cemotlel (5.9)

We now proceed by considering two cases: m, < 0 and m, > 0.
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Let m, < 0. Then in U, we have

u(y) = O(ly—p|™™),
Dg(y) = olly—py|mtmelel),
and so, on supp A, ,
u(y) = O(e7™),
DRgly) = ofesnmilel),

which is due to (5.8). Hence (5.9) gives (4. .D%g(y), u(y)) = o(¢™") and, since
the volume of supp Aq - is O(e"),

/U<[A/aXa]g(y),U(y)> =o(1) as £—0, (5.10)

as required.
Let m, > 0. On the support of A, ., we similarly have

uly) = o(e""T™),
D%(y) = O le)

whence (A« -D%g(y), u(y)) = o(¢="). This clearly forces (5.10), and the proof
is complete.
O
Let {-,-): H' x H — C be a bilinear pairing of two complex spaces H and
H'. We say that this pairing is non-degenerate if both H+ and H'" are trivial,
1.e., consist of zero elements only.

Lemma 5.5 Pairings ({.3) are non-degenerate.

Proof. The statement is evident because all spaces in (4.3) contain smooth
sections of the corresponding bundles supported away from sing M Usupp d and,
on the other hand, the elements of these spaces are uniquely determined by their
(smooth) restrictions to M \ (sing M Usuppd).

O

Now we need the following abstract lemma from [(GS93a] which we reproduce
with the proof for the sake of completeness.

Lemma 5.6 Suppose (-,-): H x H = C is a non-degenerate bilinear pairing
of complexr spaces H and H'. Then, for each vector subspace ¥ of H, we have
Y (EZhH)t and

dim ¥
codim ¥

codim T+, if dimY < oo;

dim ¥t if dim¥t < co. (5-11)

(VA1
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Proof. The inclusion ¥ C (X1)1 is obvious. From this we conclude that
codim ¥ > codim (¥1)L. Thus, the first formula of (5.11) implies the second
one and we have only to prove the first formula.

To do this, we first observe that, since H't = {0}, for each finite linearly
independent system (h;);c; in H there is a system (h{),.; in H' parametrised
with the same family of indices, such that H' = (E (hi)iE[)J' © L (h});c;- Here,
L (hi);c; means the linear span of (h;);c;. It follows that dim% > codim DI
and so it remains to prove the reverse inequality.

Consider the natural mapping ¥ — Hom¢(H'/X+, C) given by h — Fj,
where

Fn (B +35) = (0, h), for K eH.

From H'* = {0} we deduce that the mapping h — F}, is injective. Combining
this with the fact that codim 1 < oo, we derive

codim¥t = dimH'/%t
= dimHom¢(H' /2%, 0)
> dimY,

as required.

Lemma 5.7 Under the second pairing of (4.3), we have
-\ L ~
(im 4)" = ker At

Proof. By definition, ker A’ consists of all sections ¢ € L'(6=1, A"} such that
A'g = 0 in M \ suppd. On the other hand, im A contains all sections of the
form Au, with v € H*7Y(M,V) supported away from suppd. Combining this
with Lemma 5.4, we arrive at the desired conclusion.

O
Proofs of Theorems 3.1 and 4.5. Lemmas 5.6 and 5.7 imply
- N L
imA c (ker A’) , (5.12)
codimimA > dimker A’ (5.13)

and so we are left with the task of showing that both the inclusion and the
inequality are actually equalities.

- L
By (5.11), dimker A’ = codim (ker A’) , hence equality in (5.13) implies

equality in (5.12). Since codim im A = dim coker A, we only need to show that

dim coker A = dimker A’. (5.14)
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For this purpose, we invoke the remark after Lemma 5.3 and (5.13) to see
that

dimker A = ind A+ degd + dimcoker A
> ind A + degd + dimker A’.

We now apply this argument again, with A replaced by A’ and § replaced by
§~1, to obtain

dimker A > ind A’ +degd™' + dimker A

= —ind A — degé + dimker A.
Combining these opposite inequalities yields
ind A + deg § + dimcoker A = ind A + deg d + dimker A’

which is equivalent to (5.14). This completes the proofs of Theorems 3.1 and
4.5.
O

6 Contributions of Singular Points

The case where the support of a divisor ¢ is allowed to meet the set of singular
points of M presents a much more delicate problem. The reason is that a
solution u to Au = 0 in a punctured neighbourhood of a point p € sing M need
not have an expansion like (0.2). Hence the question arises of finding a proper
substitute of solutions with ord (u, p) > —m as well as of specifying the degree
of a divisor § with suppd Nsing M # §.

By private communication M. Gromov informed us that the contributions
of conical points p € suppd can be evaluated by expanding solutions as series
in Bessel functions. But our approach is based on quite different ideas from the
analysis on a manifold with conical points.

We begin with an equivalent description of the order (of “zero”) of a solution
at a point p € M \ sing M in terms of the weighted Sobolev spaces. In order to
get asymptotic results, it is necessary to put some restrictions on the order of
A. Namely, we assume that a < n.

Let u be a solution of Au = 0 in U \ {p}, where U is a coordinate neigh-
bourhood of p on the smooth part of M. If U is sufficiently small, then A has
a fundamental solution ® € ¥~*(V |y, V|y) in U. Since a < n, the kernel of ®
bears the estimates

DYDY ®(y,y) = O(ly—y/|* =117l forall a,p€ 27, (6.1)

uniformly on compact subsets of U x U. Combining this with (0.2) yields the
following assertion.
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Lemma 6.1 Let m € Z. In order that ord (u,p) > —m it is necessary and
sufficient that

u € leoc’_m-l_%_o(U,V), for m <0;
u € H (U, V), for m>0.

00, —m—5+a+1-0
loc

Note that by H;](U,V) we mean the weighted Sobolev spaces as above,
constructed as if p be an artificial conical point of M. The lemma is still true
if we replace the exponent s = co by s = 0, for u 1s a solution of Au = 0 away
from p.
Proof. Indeed, from (0.2) and (6.1) it follows that ord (u,p) > —m if and
only if
ly _p|m_%+0u € leoc(U’ V), for m<0;

ly —p|mte-o=40y e LZ (U, V), for m>0,

loc

the space L2 (U, V) being defined with respect to the volume form dy on U.

Since in the polar coordinates with centre at p we have dy = "~ 'drdz, where
r = |y — p| and dz is the area form on the unit sphere S?~1, the lemma follows.
O
As described in Lemma 6.1, the notion of the order can be extended also
to the singular points of M. The obvious asymmetry in m in the above two
conditions is explained by the fact that, for m > 0, the “weakest” singularity of
u at p is due to the term ®(y, p)co, i.e., O(Jy — p|*~™). While the definition of
ord (u,p) > —m for m < 0 is irrelevant to the concrete differential operator A
and agrees with the heuristic concept of the multiplicity of a zero, the definition
of ord (u,p) > —m for m > 0 invokes A and differs from the heuristic concept
unless @ = n — 1. On the other hand, a solution v € H;)](U,V) to Au = 0
in a punctured neighbourhood U \ {v} of a conical point v is known to bear
asymptotics of the form

Jn

u(r,x) = w(r) Z : =7 (log r)jcuj(x) mod Hlioc’v-l'l(U, V) (6.2)

#=1j5=0

close to v, where w € ngmp(U) is a cut-off function for the point v, z, € C
are non-bijectivity points of the conormal symbol o a(A)(v, ) lying in the strip
57—l <Rz <G —v, withl >0, and ¢,; are functions of finite-dimensional
subspaces X, of C®(X,) ® V, on the base X,. Hence the “orders” of such
solutions can fill in the interval (¢ — n,0), too. For this reason we choose
in favour of the definition of ord (u,p) > —m for m < 0, thus removing the

asymmetry in m € Z.

Definition 6.2 Let p € M and m € R. For a solution u to Au = 0 in
U\ {p}, we write ord (u,p) > m ifu € Hoo’m+5_5(U, V).

loc
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1 . . .
5 in the exponent is chosen by purely aesthetic reasons. What

we do in the case p & sing M is actually that we regard p as an artificial conical
point of M by blowing up M at p.

The point divisors ¢ we have to deal with under this definition of ord (u, p)
are still elements of a free abelian group generated by points of the manifold

The correction

M. These are of the form § = p\"* ... p¢™, now with my, ..., my real numbers.
Under Definition 6.2, the inverse divisor occurring in (0.4) and (3.1) should be
61 = pymtn=liza .pJ_VmN‘i'"_l_a, which prompts us a group operation in the

set of all point divisors. Namely, for §' = pTll .. .p%ﬁv and 0" = pTlll .. .px%, we
set 6’(5”:prlnll-l_mlll_(n_l_a)~~~P%IN+m%_(n_1_G)’
depending on the dimension of the underlying manifold M and the order of the
differential operator A. This agrees with the usual operation in case A is of
order a = n — 1, as 18 the case for the Cauchy-Riemann operator on a Riemann
surface.
A divisor § = pi"* ... pyN is said to be non-characteristic for A if, for each

v, either p, & sing M or p, € sing M and ou1(A)(py, 2) is invertible on the line
[ 1.

We are now in a position to extend Theorem 3.1 to the case of point divisors
meeting the set of singular points. For a point divisor § = pi"* ...py", we
consider two spaces

L3, Ay={ue H )" (M \suppd,V): Au=0, ord (u,p,) > —m, },

loc Z

L(6~L AY={g € H )" (M \ suppé,V'): A’g = 0, ord (g, p,) > m,—n+1+a}.

loc

Theorem 6.3 Let A be a differential operator on M elliptic with respect to
a weight tuple v € RY. Assume that § is a point divisor on M non-characteristic

for A. Then,
dime L(J, A) = ind A 4 deg é + dimg L(371, A'). (6.3)

Just as in (0.3) the degree of § occurring in (6.3) is made up of contributions
of the points p,, i.e., degd = 21]/\7:1 deg pv.

To describe the contributions of the points p, lying on the smooth part of
M, denote by [m] the integral part of m € R, i.e., the largest of the integers
not exceeding m. Then,

Lk (([_mu;%]-i-n) B ([—my—i]—a-i-n))’ if L] > 1

deg pl'v =<0, if a—n<[-m,—3]<—1;
_[—m,—L — —m., —1]—
p((ClEmemslra—1 (= [=me—s] -1 i [em—t]<a—n
n n 2

(cf. (0.3)).
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To evaluate the contributions of points p, € sing M we need more informa-
tions on the conormal symbol o aq(A). Pick a conical point v of M. The spectrum
of o1 (A) at v is said to consist of all points z € C such that o (A)(v, 2) fails to
be an isomorphism H*(X,)®V, = H*~%(X,)® V, for some s € R. Recall that
X, stands for a cross-section of X close to v, being a compact smooth closed
manifold. We denote by spec oaq(A)(v,-) the spectrum of oa(A) at v. From
the invertibility of the (compressed) principal symbol of A over the set of sin-
gular points of M it follows that o1(A)(v, z) is a holomorphic family of elliptic
differential operators over X, parametrised by z € C. Moreover, the restriction
of this family to each vertical line is an elliptic operator on X, with the parame-
tre z. Hence we deduce that the spectrum of oa((A) at v is a discrete set in the
complex plane, whose intersection with each vertical strip of finite width is finite.
Away from the spectrum the inverse o (A)(v, 2)~1 is well known to be a holo-
morphic family of pseudodifferential operators in ¥~ *(X,) ® Homc(f/v, Vo). A
further observation is that o (A)(v, )71 is actually a meromorphic family over
the complex plane, with poles of a finite rank at the points of spec o aq(A)(v, ).
This means that, for each z, € spec o (A4)(v,-), we can write

order z,

om(A) (v, )7 = Z Sug (v) (2 = 2u) ™ + Ru(2), (6.4)

where S,;(v) are smoothing operators of finite rank over X, and R,(z) is holo-
morphic in a neighbourhood of z = z,,. It follows immediately that the singular
range of oaq(A)(v, 2)7! at z,, i.e., the space

order z,

_ (e uj € C(Xy) @ Vi,

= Z; (== ) " om(A)(v, z)u is holomorphic near z,
]:

is finite-dimensional. The dimension of this space is known as the rank of the
pole 2z, and is denoted by rank z, (cf. Melrose [Mel93, 5.2]).
Now, for p, = v; a conical point of M, we have

1
deg p = sign (ml,—|—§— g—l—’yi) Z rank z, (6.5)
z€spec oat(A)(py,)
Rz€(Z—vi,mu+1)
the sum in the right-hand side being 0 if m, + % — 5+ v = 0. Note that the
lines I'z _, and qu+% are, by assumption, free of the points of the spectrum

of om (A) (pl/a )

A particular case of Theorem 6.3 is the Relative Index Theorem of Melrose
and Mendoza [MA83] (cf. also [Sch91, 2.2.3], [Mel93, 6.2]), which corresponds
to the case suppd = sing M.

Proof of Theorem 6.3. We are going to deduce Theorem 6.3 from Theo-
rem 3.1 and the Relative Index Theorem cited above.
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To this end, we denote by A,, for w € R, the operator A regarded as
mapping H*Y (M, V) — H~®¥=%(M, ‘N/), the exponent s being immaterial in
the sequel. If A is elliptic with respect to a weight tuple w, then ind A, =
dimker A,, — dimker A!, where both ker A,, and ker A/, are independent of w.
Here, we abbreviate (A, ) to Al,.

Consider a weight tuple v/ = (y},...,v;) in R defined as follows. Pick
i=1,...,1. If v; € suppd, then v/ = ;. If v; = p, for some v =1,..., N, then
¥l = —my, — % + 5. Since ¢ is non-characteristic for A, we conclude that the
differential operator A is elliptic with respect to v'.

We next reduce the divisor § = pi"* ... py" to its part ¢’ supported away
from the set of singular points. Namely, pick v = 1,...,N. If p, & sing M,
then we allow p, to occur in the new divisor ¢’ with just the same weight m,,.
If p, € sing M, then we assign the weight 0 to p,, thus refusing p, to be a part
of §’. The divisor ¢’ so obtained does not meet the set sing M.

Now, a trivial verification shows that the space L(4, A) referring to the op-
erator A = A, coincides with the space L(d’, A,/), the operator A here being
A, Thus,

L(3, 4) L(3', Ay),
— _ 11— /
L1 A) = L™ AL).

The operator A, and the divisor ¢’ fulfil the condition of Theorem 3.1, hence
(3.3) yields

dime L(5, A) = ind Ay + degd’ + dime L5~ A'). (6.6)

On the other hand, we can assert, by the Relative Index Theorem (cf. ibid),
that

I
ind A, =ind A + Z sign (v —77) Z rank z. (6.7)
i=1 z€spec oa (A)(vi,-)
Re€(5-v0,5-7)

Combining (6.6), (6.7) and Lemma 6.1, we arrive at equality (6.3), as re-
quired.

O

From Theorem 0.1 and Lemma 3.2, one may conjecture that formula (6.5)

is still true for the points p, lying on the smooth part of M, now with ~; any

number in the interval (a -3, 5). We postpone this discussion until Section 8.

7 Rigged Divisors

In this section we extend Theorem 6.3 to point divisors § carrying informations
on asymptotics of solutions at the points occurring in 4. Since asymptotic
expansions like (0.2) near points p lying on the smooth part of M are very
special cases of those at singular points and since each point p € M \ sing M
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can be thought of as an artificial conical point, we will restrict our attention to
the divisors § supported on the set sing M.

As described in Section 6, a solution w € H*Y(M, V) of the equation Au =0
bears asymptotics of the form (6.2) close to a conical point v € M. The sum in
(6.2) is over all points z, of the spectrum of the conormal symbol o a4 (A4)(v, ),
which lie in the strip § —v — 1 < Rz < § —~, while j, + 1 is the order of the
pole z, of the inverse symbol (cf. (6.4)). Thus, the number (j, + 1) dime X, is
in fact equal to the rank of the pole z,.

A divisor § = pi"* ...py" specifies only the strips in the complex plane,
in which asymptotics at p, are allowed. As for the spaces X, at each point
pu, they depend on the particular splitting of coordinates close to p,. Indeed,
the representation of a solution in the form (6.2) depends on the choice of
coordinates. It follows that in order to specify the spaces X, at the points
occurring in the divisor we have to fix cylindrical structures near these points.
When specifying the spaces X, we arrive at what Gromov and Shubin [GS93b]
called the rigged divisors.

Let us recall the concept of an asymptotic type which is relevant to our
theory (cf. Schulze [Sch91, 1.2.1]). Pick a conical point v € M. A weight datum
at v is a pair w = (v, [, 0)) consisting of a number v € R and a finite interval
[—{,0), ] > 0, on the real axis. By an asymptotic type associated with the weight
datum w is meant any collection as = (z,, j,, Eu)uzl,...,M’ where z, are complex
numbers in the strip § — v —1 <z < § — v, j, are non-negative integers, and
¥, are finite-dimensional subspaces of C°(X,) ® V,. For simplicity we ignore
the dependence of ‘as’ on the vector bundle V', e.g. in notation.

Definition 7.1 The rank of an asymptotic type as = (2,4, ju, Eu)uzl YRS
defined to be
M
rank as = Z (ju+1) dime Z,.

n=1

If w is a section of V' in a punctured neighbourhood of the point v, then we
write as(u,v) € as if u = Ziwzl :;'”:0 r~?#(log )l e,u; (2) modulo HZSO’ZH(U, V),
for some c,; € %, and some neighbourhood U of v. To deal with such sections,
one invokes a concept of weighted Sobolev spaces with asymptotics on a manifold
with conical points.

Given an asymptotic type as = (Zu’ju’Eu)u:L...,M’
finite-dimensional space spanned by the functions

we denote by Qs the

((.J(t) res (IOg 7”)‘7 Cuj ($))u:1,...,M )
7=0,1,... 4.

with ¢,; € ¥, and w a cut-off function for the point v. We can certainly assume
that w is supported in a sufficiently small neighbourhood U of v, and so 2,4 can
be identified within the space HZ2>Y (U, V). Obviously, the dimension of 2, is

comp

equal to the rank of the asymptotic type ‘as’.
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Now, we assign a weight datum w; = (y;,[—/;,0)) to every conical point
v;, t=1,..., 1. Let as; be an asymptotic type associated with w; and let as =
(asy,...,asy). Foreveryi=1,..., I, we fix a cut-off function w; close to v;, such

that suppw; Nsuppw;» — @ unless ¢/ = ¢". Then, the sum s = s, B. . . DU,
1s direct because the spaces involved are supported by disjoint sets, the space
Aas, relying on w;. We set

H (M, V) = H (M, V) @ 2y, (7.1)

where | = ({1,...,l5). We endow HZ;Y(M,V) with the topology of the direct
sum of two normed spaces.

This definition of a space with asymptotics is slightly different from that in
the cone theory (cf. Schulze [Sch94, 1.1.2]). However, (7.1) seems to suit better
the purposes of the present paper.

An elliptic differential operator A € Diff*(V, ‘N/) is known to behave properly
in the spaces with asymptotics. Namely, suppose A is elliptic with respect to
a weight tuple v € R and let as = (as1,...,asy) be a tuple of asymptotic
types, as; being associated with a weight datum w; = (5, [—{;,0)). Then, there
exists a unique tuple as = (&881,...,a8y) of asymptotic types associated with
weight data @; = (v; — a,[—;,0)), now for the bundle V, such that the operator
AL HE (M, V) = HE“Y"%(M, V) is Fredholm and, moreover, u € H*" (M, V)
and as(Au,v;) € ds; imply as(u, v;) € as;. For more details we refer the reader
to Schulze [Sch94, 1.2.2].

The point divisors we consider are of the form § = p* ... py", where p, €
sing M and as, is an asymptotic type at p, associated with a weight datum
wy = (i —ly,[=1y,0)), the number ¢ being defined by p, = v;. They are no
longer elements of any natural group generated by points of M.

A divisor ¢ is said to be non-characteristic for A if o a4 (A)(py, 2) is invertible
on the line I'=_(,, _; y, for each v =1,...  N. If such is the case, we define the

degree of & to be
N

degd = Z (rank as, — rank as, ),

v=1

as, being chosen for as, as described above.

As mentioned, asymptotic expansion (6.2) is a good substitute for (0.2) in
the case where p 1s a singular point of M. It is worth pointing out that the
definition of degd in this section agrees with (0.3).

We now proceed as we did before. For a point divisor § = pi™ ... py"~
introduce two spaces

, wWe

L6, A)={ue H )" (M\suppd,V): Au=0, as(u,p,) € as, },

):
L0~ A ={g € Hy,;" " (M\suppd, V') : A’g = 0,01d (g, po) > b—yi— 5 + 5 +a},

loc

‘ord’ being as in Definition 6.2.
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Theorem 7.2 Suppose A s a differential operator on M elliptic with respect
to a weight tuple v € R!. Then, for each point divisor § supported on sing M
and non-characteristic for A, we have

dime L(d, A) = ind A+ deg § +dime L(671, A). (7.2)

The proof of Theorem 7.2 is completely independent of Theorem 3.1; in fact
it 18 even simpler in this generality.

Proof. Let the weight tuple v = (v{,...,7}) be defined as follows. Pick
i=1,..., 1. fv; €suppd,ie,v; =p, forsomev=1,..., N, then v/ =~ —1,.
If v; & suppd, then v/ = ;.

In a similar way we define the tuple as’ = (as], ..., ashy) of asymptotic types.
Namely, if v; = p, for some v = 1,..., N, then as! = as,. Otherwise we put
as] = 0, the corresponding weight interval being empty.

Set )

Hy = H;? (M’ V)’
By = Ha™=(M,7)

and denote by 7' the operator H; — H» induced by A.

Since § is non-characteristic for A, the operator A is elliptic with respect
to the weight tuple 4/. Hence it follows that 7" is a Fredholm operator, and so
ind T = dimker 7" — dim coker T is finite.

It is clear from the definition of the space L(8, A) that L(d, A) = kerT.
Moreover, a simple verification shows that L(§71, A’) coincides with the kernel
of the operator A’: H‘s+a’_71+a(M, ‘N/’) — H_s’_VI(M, V).

We next claim that dimcoker 7' = dim L(6~*, A’). To prove this, it is suffi-
cient to show, by a familiar argument from functional analysis, that a section
J € Hs belongs to the range of 7" if and only if f is “orthogonal” to L(6~1, A%)
under the pairing H‘s+a’_71+a(M, ‘N/’) X HS_G’VI_G(M, ‘N/) — C.

Indeed, let f = Au for some u € H;. Choose a sequence (uy)yzlyzym n
Coomp(M \sing M, V'), such that v, — w in the norm of HSWI(M, V). Then,

(9. f) = (g9,Au)
= Jimfo. )

= lim (A'g,u,)

V=00

= 0

for all g € H‘s+a’_71+a(M, ‘N/’) satisfying A’g = 0. Hence f is “orthogonal” to
L(6=1, A%).

On the other hand, suppose f € H» is “orthogonal” to L(§~1, A’). By the
above, L(§~1 A’) coincides with the annihilator of the range of the operator
A: HSWI(M, V)= HS_G’VI_G(M, ‘N/) Hence we can assert that there is an u €
HSWI(M, V) such that Au = f. However, as(f,v;) € as, implies as(u, v;) € as,
showing u € Hy, as required.
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We have thus proved that dime L(d, A) — dime (671, A’) = ind T. What is
left is to show that ind T'=ind A + deg .
Since
T
degd = Z (rank as; — rank as})

i=1

I I
Z dim A,y — Z dim 24y,
i=1 ' i=1 '

we shall have established the desired equality if we prove the following:

ind7T =ind A 4 (dimAser — dim Azyr) . (7.3)
To this end, write
Hy = HY(M,V)& U,
Hy = Hs_aﬁl_a(M, V)& sy

and let
Ty Tie
T =
( To1 Too )
be the corresponding splitting of the operator T'. Obviously, 737 = A. Moreover,

T51 = 0 since the restriction of 7' to HSWI(M, V') operates to HS_G’VI_G(M, ‘N/)
Were T zero, this allow us to conclude immediately that

ind7T = indT}1 + ind Ths, (74)

which is just (7.3) because the index of Tha: 2asr — gy is equal to the difference
dim gy — dim Ay .

To derive equality (7.4) in the general case, we make use of the fact that
Ti1 = A is an elliptic, and consequently Fredholm, operator. Fix a parametrix
T1_11 for 774, 1.e., the inverse modulo compact operators. Then

1 0 1 1 =T5'Ths _( Tu 0
—To T 1 0 1 0 Tyy—TonTH'Tho

holds modulo compact operators. As the first and the third factors on the left
are isomorphisms, (7.4) follows (cf. Proposition 1.2.32 in Schulze [Sch97]). This
completes the proof.

d

8 Spectrum of the Conormal Symbol at a Reg-
ular Point

When comparing (6.5) and (0.3), one may ask whether the spectrum of the
conormal symbol of A at an artificial conical point is of a particular structure.
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The program be to identify the artificial conical points, via the spectrum of the
conormal symbol, within a larger class of conical points which still bear the same
property of the spectrum. Rather than discuss this in full generality, let us look
at the spectrum of the conormal symbol of geometric differential operators.

Suppose that M is a two-dimensional manifold with conical singularities and
A € Diff{(V, ‘N/) i1s an elliptic differential operator of geometric nature on M.
Let p be a point on the smooth part of M. We will restrict our attention to a
coordinate neighbourhood U of p over which both V and V are trivial. Hence,
we can identify A with a matrix of scalar partial differential operators in U,
namely A = Z|a|<1 Aa(y) D%, where A, are matrices of smooth functions in U.
We blow up M at p by introducing polar coordinates y = n(r, @) with centre at
p, l.e, m(r,¢) = p+r(cosp,sin ), where r € [0,¢), ¢ € [0,27). The pull-back
of the differential operator A under this change of coordinates is

1 o 1 o\ o 1 o\
A — = = & il ; = 4= i
ﬂA_lo;l T T A, (cosgoﬁr rsmgoﬁgp) (smgoﬁr—i—rcosgoa@)
whence
om(A)(p,2) = Z 1A (p) | —cos gz — sin i " —sin vz + cos i -
M 'z = ; e Y4 ¥ SD@QD ¥ SD@QD
lal=1
. 0 .
= ox(4) (p, (—singp, cos p)) 7~ ox(A) (p, (cosp,sinp)) z,
for z € C.

The spectrum of the conormal symbol at the point p is easily seen to consist
of all z € C such that the operator o (A)(p, z): C=(S1)F — C*(S1)* is not
invertible, k being the rank of V. Here, we identify C*°(S!) with the space of
all C*° functions on the real axis, periodic with period 27. Since the transpose
1s induced by the differential operator

(T (A)(p, 7)) u
= —% (U%:(A) (p, (—sin g, cos ) u) — 0%(A) (p, (cos p,sin ) zu
. Ju .
= —0x(A) (p, (=sing, cos p)) 7% a5 (A) (p, (cos ¢, sing)) (z — Lu
=—om(A)(p,1—2)u,
we are reduced to looking for complex values z such that the problem

{ o5 (A) (p, (=sing,cosp)) §& = 2 oi(A) (p, (cosp,sing))u, € R,
u(p +2m) = u(yp), RS g 5y

has a non-trivial solution in C'OO(Sl)k.
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To do this, we make use of the ellipticity of A at the point p, which enables
us to conclude that the matrix ok (A) (p, n) is invertible on the unit circle in the
cotangent plane 77 (M). Set

. -1 .
M(p) = (0£(A) (p, (—sing,cosp))) ™ ax(4) (p, (cos p,sinp));
it follows that M (¢) is a (k x k)-matrix of C'* functions on R, periodic with
period m. Then, the general solution of the differential equation in (8.1) is known
to be
f;’ M(8)de

u(p) = e’ Ug, ug € C*.

We next substitute this solution u into the periodicity condition of (8.1).
As

u(p +2m) = ezfo ug
K fD M(8)do+22 fD M(G)deuO’
this gives

(ez f;’ M(8)do+22 fD"M(e)de _ f;’ M(e)de) S

for all ¢ € R. In particular, taking ¢ = 0, we deduce that 1 is an eigenvalue of
the matrix

2 fD”M(e)de’ (8.2)

for we require non-trivial solutions to (8.1).

Conversely, if 1 is an eigenvalue of matrix (8.2) and the matrices foﬂ M(0)do
and fow M (0)df commute, for each ¢ € (0, 1), then problem (8.1) has non-trivial
solutions.

We now proceed with the study of matrix (8.2). The following properties of
the matrix M () are straightforward:

M(p+5)M(p) = —I,
M'(¢) = (M(p))* + I,

Iy being the identity (k x k)-matrix. It follows from any one of these prop-
erties that M (y) is constant, i.e., independent of ¢, if and only if it satisfies
(M(¢))? = —Ix. Such is the case for classical differential operators associated
to a Riemannian metric.

Indeed, notice that the principal symbol of a geometric differential operator
A satisfies

(= (A ) o (A (p,n) = [n]Le, €Ty (M),

which 1s equivalent to the system of equalities

(Aa(p))” As(p) + (A5 (p))” Aalp) = 20pls, lo| =18 =1,
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up being the Kronecker delta. In particular, the inverse of ok (A)(p, n) coincides
with the adjoint (U%:(A)(p, 7]))*, for n € S~'. Now, an easy computation shows
that

M(p) = (A0,1(p))" A10(p), ¢ €R,

as required.
Returning to (8.2), we expand the exponential function of a matrix as power
series. Since M is independent of ¢ and satisfies M? = —I, we obtain

esz M(#)d _ orzM

= Z (2mzM)*

_ 2t 2141
Z 27Tz I, + Z 2 ) (27Tz) M

=cos 27z Ik +sin 27wz M,

for ¢ € R. Consequently, in order that 1 be an eigenvalue of matrix (8.2), it is
necessary and sufficient that z = 0,£1,.. ..

We have thus proved that spec o (A)(p, -) = Z which is symmetric relative
to each line Rz =i or Nz =i + %, where ¢ € Z.

In the general case the spectrum of oaq(A)(p,-) is among the roots of the
characteristic equality

det (J'Z Jormeae _ Ik) = 0. (8.3)
Our last example demonstrates rather strikingly that even in the general

case 1t is to be expected that the spectrum coincides with the set of all integers.

Example 8.1 Suppose A is a scalar elliptic differential operator of order
1, ie., k= 1. Then, ok(A)(p,n) = A10m + Ao,1m2 up to a non-zero complex
factor, where A; 5 and Ag; are real numbers different from zero. It follows that

Arpcosp +1iAp1sing
M(p) =

—Aj0sine + tAg 1 cos

which is no longer constant in ¢. We write this as M (¢) = RM (p) + iISM (¢),
with

(Ag A7 ,0) cos psin

TM = :
()= 32 i) + A2 (conp)?
—Ag 1410
SM = -
@)= 2 ol + A (con )
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Since RM (7 — ) = —RM () for all ¢ € [0, Z], we conclude that

/OW RM (6)d6 = 0.

On the other hand,

dt
241

/ %M(G)dﬁ = -2 sign (AO,lAl,O) /
0 0
= —sign (AO,lAl,O) T,

as is easy to check. Thus, the integral of M (y) is an integer multiple of 7é while
the matrix M (p) is itself of rather general nature. Therefore, equation (8.3)

becomes
6—27Ti sign (Ao,141,0) 2 __ 1= 0’

showing specos (A)(p, ) = Z.

9 Applications

We will touch only a direct consequence of Theorems 3.1, 6.3 and 7.2 along the
classical line.

Corollary 9.1 (Riemann inequality)
dime (6, A) > ind A 4 degd. (9.1)

In particular, if ind A + degd > 0, then the space L(d, A) is non-trivial.
So this space will be always non-trivial if we fix the orders of “zeros” and
allow “poles” of sufficiently high order to make the degree degd sufficiently
large. For example, in the setting of Section 6, we can fix any set of points
P1,---,pN—1 and any weights my, ..., my_1, but take my sufficiently large to
arrive at dime L(d, A) > 0.

In case A bears a unique continuation property, even the equality in (9.1)
can be claimed if one has a sufficiently large number of “poles.”

For a deeper discussion of applications of the Riemann-Roch Theorem we

refer the reader to Gromov and Shubin [GS93a].
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