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Abstract
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Introduction

Let Y be a smooth manifold of dimension n (for simplicity, one can view this man-
ifold as the Cartesian space R"™). Consider a direct product

[0,1) x Y. (1)

The coordinates on this product will be denoted by (x,y) , where x € [0,1), and y
are (local) coordinates on Y. We define the set of operators of Borel-Fuchs type of
degree k as operators on the product (1) with special degeneration at # = 0. Namely,
the general form of a Borel-Fuchs operator of order £ is

H=H (:z:,y,i:z:k""laa—x,—i%) ,

where H (x,y, p,q) are polynomials in (p, q) with smooth in (z,y) coefficients.

The aim of this paper is to investigate hyperbolic equations for operators of the
above described type. Such equations are given on the product Ry x [0,1) x ¥ and
have the form

0

. 0 0
Hu=H (t,x,y, _i%”k+16_x’ —@'a—y> u=0,1teR,,

the symbol (Hamiltonian) H (¢, x,y, £, p, ¢) of the operator H being a polynomial in
(E,p,q) with smooth coefficients of some order m; we denote by Hy (¢, x,y, E,p,q)
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the homogeneous part of H of (higher) order m. The hyperbolicity of such operators
mean that the roots ¥ = E (t,x,y,p,q) of the equation

HO (tvxvvavpvc,Z) =0

are real and do not coincide with one another.
To show all the arising effects and to introduce all the necessary technique of
investigation, it is sufficient to consider equations of the form

2
g—; =—-H (t x y,z:z;k"'laa ,—i%) u, (2)

dx? Ay
side. The considerations in the general case are quite similar.
Clearly, equation (2) requires initial conditions. We choose these initial condi-
tions in the form

with a second-order positive operator H <t x,y, iaktt L —ii> in the right-hand

u (tvxvy)|t:0 = Uo (:z:,y),
du (t,z,y)

o1 :ul(xvy)

t=0

with u; (x,y) being WKB-expansions of exponential degree k at x = 0:

uj(,y) =) _exp {ng;,Ey) } > wla(y), =01 (3)

for £ >0, and

= Z:LJSO ia%]l yIn'z, j=0,1 (4)

(=0

for k = 0. Here, the outer sum on the right in (3) and (4) is supposed to be finite.
Due to the linearity of the problem, we can consider initial data with only one
exponential in expansions (3) and (4). As a result, we arrive at the problem

2 .

%—tg =—H <t,x,y,@xk+1§ 17>

u(t,z,y)|i—p = uo (2, y) —exp{ };EM (5)
0:

_ixkau (t,z,y) = uy (z,y) = exp{ ky)} 2la?, (y

t
3

t=0



(for simplicity, in the following two sections we consider the case k& > 0, all modifi-
cation needed for the case k = 0 are quite evident). In the last section, we consider
the problem from the viewpoint of the general theory of differential equations in
abstract algebras. This allows us to obtain different types of asymptotic expansions
from the geometrical viewpoint.

1 Solution of the problem “in small”

In this section, we shall construct the solution to problem (5) “in small”, that is,
for sufficiently small values of ¢. We search for solutions to (5) in the form

u(t,z,y) = exp {is(;;y)} ixlal (t,y).

(=0

1. To begin with, let us construct asymptotic solutions to the equation involved
into problem (5); the initial data will be taken into account later.
Differentiating the latter expression with respect to ¢, r, and y, we obtain

Z-xk+18_u (t,2,y) = exp {iS (;;y)} [kS (t.y) + i$k+1(9a_x] Z war(t,y),

Ox
=0

Ou _ St y) LO08(Ly) 0]
_za(t,x,y)_exp{@ - }{x TRy Zxal(t’y)’

z (=0
and
Ou _ St y) 05 (Ly) O]
Zay (t,x,y)—exp{z o } {:1; 99 Zay 12:0::1; ar(t,y).

Now, expanding the operator involved into problem (5) in powers of x, substitut-
ing the latter relations into the obtained equation, and cancelling out the exponen-
tial, we obtain the following equation for amplitude functions a; (t,y), 7 = 0,1,....

9SO\ > o _,08 0
_k_ o . 7 ) . k-|—1_ _k_ Y
[(:1; T Zat> g ! H; (t,y,kS + 1 50" 3y Zay>]

=0



where the functions H; (¢,y,p, q) defined by the relation

o0

H(tz,y,p,q) =Y «H(ty,pq)

J=0

are polynomials of the second order in (p, ¢) with smooth in (¢, y) coefficients.
The further computations is quite different for the cases k£ = 1 and £ > 1. Let
us consider first the more simple case k = 1.

1.1 Degeneration of the first degree
In this case, denoting
H; (ty.p.q) = H" (ty) p* + (Z 19 (t,y) ql) pt+ > 1" Gy age, (1)
=1 {,m=1

we rewrite equation (6) in the form

95\ ? s o 928 92 <
-2 (Y2 D T e AN B R R R j (0)
”x <6t> S T TR a#] POE {H] (t,)

2
5% 4+ 2@':1;25& — <x2g>

. ox ox

dy! dy! Oz dzdy!

., 08 0 ., 0%8 0? =
—21x 1a—ylay—m — X 1aylaym — aylaym] }:| Z(Elal (t7y) =

(=0

2 n
08 000 L O } + > H™ (1) {x_za_sa_s

Equating terms with one and the same power of x, we arrive at the following recur-

99\ > a9

(this is the Hamilton-Jacobi equation; this equation will be used for determining the
function S = S (t,y)),

IS0 Oy (D9SN 9 0 Loy (08N 9
ator g \"V "y ) ot T o 20q0q, \" 7 0y ) dgidyn,

. ) . _,OH, )
_ZHI (tv Y, 07 a_y> + ZSa—p (tv Y, 07 a_y>:| ao (tv y) =0

rent system:
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(the transport equation' with respect to the unknown function ag (¢,y)), and the
sequence of higher transport equations having the form

QIS0 Oy (08N 9 0% L oMy (o 0S\ 9
oot g \" "y ) oyt T o T 20q0q, \" 7 0y ) dgidyn,

a5 OH a5
_ZHI (tvyvo ) —I_ZS—O (tvyvo >:| al(tvy):f[am-"val—l]

"y dp "y
for I = 1,2,..., where Flag,...,a;_1] are linear combinations of the functions
ag,...,a;_1 and their derivatives with smooth coefficients; the form of the latter

expressions is not essential for us in future.
We emphasize that the transport operator

p a5 0 8[—[0( 85) a 9*S 1 9*Hy ( 85)

ot og oy T o T 20904,

0%8 ) aS . 0H, aS
i, 22 Ll 22
 ndy 1<’y’0’ 9y>+ls dp (,y,o, 9y>

0, — 0, —
7y7 7ay 7y7 7ay

involved into the transport equations, has the additional term

. _,OH, )
25 ap <t7y7078_y>

compared with that in the case of classical WKB-method (see, for example, [1], [2]).
This term depends on the action function S (¢,y) itself, not on derivatives of this
function. The latter remark shows that all the above equations must be considered
on a Legendre manifold rather than on a Lagrangian one.

2. Let us now interpret the Hamilton-Jacobi equation and the transport equa-
tions as equations on some Legendre manifold. Taking into account the initial data
of problem (5), we arrive at the following Cauchy problem for Hamilton-Jacobi

95\’ 05
(W) - HO (tvyvov a_y> - 07

Slimo = 5° (y).- (9)

equation (8):

This problem can be interpreted in the following way. Consider the contact space

CR;xY)=R, xTj (R xY) (10)

!Here and below we use the so-called summation convention according to which the summation
is performed in each term of the expression over pairs of identical indices if one of them is the
upper and another is lower.



with local coordinates (s,t,y, £, q), where, as earlier, y are local coordinates on Y/,
and ¢q are corresponding impulses. The structure form defining the contact structure
in (10) is locally given by
a =ds — Edt — qdy;
one can easily see that this form does not depend on the choice of local coordinates
in Y.
The function S (y) determines a submanifold £° in C'(R; x Y') by the relations

s=S(y),
t=0,

_05(y)
4= =gy

E* — Hy(0,y,0,q9) = 0.
For this manifold to be regular, we require that 95/0dy # 0, and, hence,

H, (t,y,(), a%;”) £0

at any point of the manifold Y. It is easy to see that in this case the manifold £°
splits into a disjoint union of the two manifolds £ and £% corresponding to the
two possible choices of the sign in the expression

HO (07 Y, 07 Q)

Later on, the Hamilton-Jacobi equation shows that the Legendre manifolds £4
determined by the functions Sy (¢, y) corresponding to the two possible signs in the
determination of £, that is,

S = S:I: (yvt) )
L= aS:I: (yvt)
- ot
qg= aS:I: (y7 t)
y 2
must lie on the zero levels of the Hamilton functions
H:I: (t7y7E7Q) =F+ HO (tvyv()v(Z)v (11)

respectively. Similar to the symplectic case, the latter condition is equivalent to the
fact that the manifolds £4 are invariant with respect to the contact vector fields

v, L OMed OHe 0 OHe O OMi 0
He ™ 9E ot ot OE T 9q Oy Jy 0Oqg

OHe  OHL\ O
+<E6E +qaq>%’
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or, in view of the explicit expressions (11) for functions Hy,

9 _ 1 9Hy D 1 OHyd _ 1 OHy )
o1 T oy, ot OE 2V, 9q 0y | o/, dy dq

| aH())g
2\/H0 aq 887

where the function Hy and its derivatives are computed at the same point as in (11).

Xy, =

-|-<E:|:q

Since these fields do not vanish and are transversal to the manifolds £, we can
define the manifolds £ as the phase flows of £ along X3, , respectively. At points
where these manifolds are isomorphically projected on the space with coordinates
(t,y), they determine solutions S (¢,y) to problem (9). We remark that this will
be true for all points such that |¢| < e with sufficiently small €. So, the Legendre
manifolds £ constructed above, give us the required geometric interpretation of
solutions to problem (9) for the Hamilton-Jacobi equation and, what is more, this
description is global in contrast to that given by the function S(¢,y) itself.

Let us now turn our mind to the interpretation of the transport equations.
Clearly, to the above two actions Sy (y,?) there correspond two sequences of the
amplitude functions af (t,y). Dividing the transport equations for these functions
by 2054 /dt and taking into account the Hamilton-Jacobi equation, we arrive at the
following equations with respect to aZ (,y):

0 1 0OHy 0 1 9*S 1 0%°Hy 0*S

Ol 2T Oq Oy T 2 I 0 /I, 00i0qm Oyidyn
: S o,

1
+—H
oV, T oV, op

One can easily see that the first two terms on the left in the latter equation are the

(3mm) at (t,y) = 0. (12)

coordinate expression (in the coordinates (¢,y) of a nonsingular charts of L) of the
vector field Xy, on the manifold £;. Later on, let us define the measure py on £
by the following two requirements:

i) The measure p4 is invariant with respect to the vector field Xy, .

it) The density my of the measure uy in the coordinates® (¢,y) equals to the
density of the measure dy A dt at t = 0.

2As it was remarked before, a neighborhood of ¢ = 0 lies as a whole in a nonsingular chart of
the manifold £4.



It is evident that py is uniquely determined as a measure on L4 by the require-
ments i) and ii).
Now we perform a change of the unknown in equation (12) given by

aEJt (tv y) = S‘QEJE (tv y) my (tv y)v

where the branch of the square root is chosen equal to 1 at ¢ = 0. The computations
similar to that in the symplectic case (see, e. g. [2]) lead us to the equation with
respect of the new unknown ¢ (¢, y) of the form

1 82]-[0 i 7 H. — 18 8[‘[0)
AHy 0oy ' 2v/Hy - 2/Hy Op

So, the transport operator is

Xyii<

] Pt (t,y) = 0.
Lt

Pi . X% + ( 1 82]-[0 7 18 8[‘[0)
- +

H _
4v/H, 6q;8y’+2«/[{0 Yo /H, dp

and it is clear that this operator is defined on the Legendre (not Lagrangian) mani-
fold.

The rest transport equations have the form

Proit = F* [of, ... 0f ]

with the same transport operator P+ and some expressions F+ [c,oa—L, cees c,ofc_l] of the
above described type.

3. Let us consider the initial conditions for the functions pE. The solution to
problem (5) is searched in the form

u(t,v,y) = exp{ 57 (ty) }mel
G RTa ) S )

Taking into account the initial conditions of problem (5), we arrive at the following
relations

S‘QEIJ— (07 y) + Yo (07 y) = ago (y) )

\/ H, (o, .0, aaiy <y>) ot (0.y) — @5 (0,9)] = a (v)



for functions T at t = 0. Since, by assumption, Hy <0, y,0, % (y)> # 0, the latter

system 1is solvable in smooth functions with respect to c,oa—L‘t:O, which supplies us
with initial data for the first transport equation. The initial data for all the rest
transport equations can be obtained in the quite similar manner. Now, solving all
transport equations, one can obtain the solution to problem (5) up to any power of
x.

1.2 Degeneration of higher degree

1. Since all the effects can be seen for the operators with degeneration of the second
degree, we consider here the problem

u _ 30 _.0
oz = —H <t,:1:,y,z:1; %,—z@> u,

6, 2,1)lp = 0 (2,y) = exp {5 2”} S 2l (). (13)
S

=0
One can check that the asymptotic solutions to the latter problem of the form
Sty v
u (tv L, y) = exp {iné 12_0: xlal (tv y)

does not exist, at least in the case when the dependence of the symbol

H(t,z,y,p,q)

in x is a generic one. To improve the situation it occurs to be sufficient (as we shall
see below) to allow the regular dependence of functions S and a; on the variable x.

However, there arises an ambiguity in expansions in powers of x of the type

exp {ZM} 2 :xlal (t,z,y)
X
=0

(for example, one can reexpand the coefficients a;(¢, #, y) and regular terms in the phase function
r=25(t, z,y) again in the Taylor series thus obtaining another expansion of the same type). To fix
this ambiguity, we remark that, in essence, we search the solution to problem (13) in the form

U(t,l‘, ) = U(t,$1,$2,y)

10



with U (¢, 21, #2, y) satisfying the problem

28 =t (te,y it (2 + ) —id ) U
Utan, e y)lmo = U (w1, 22,9) = exp {i JJ}Zx ah ().

20U (t,z1,22,y)
at

i

=Ui (21, 22,y) = 1ad; (),

t=0

searching solutions as expansions in the variable r;. The solution to the latter problem must be
searched in the form

t
U(tal‘l,l‘z,y):exp{ xy}zl‘laltl‘y

We shall not carry out this substitution in the explicit manner, but one can have in mind the

described representation to understand the separation of orders which will be used below.

2. So, let us search for solutions to problem (13) in the form

u(t,z y)—exp{ Lfy)}a(t,x,y),

X

where
o0

a(t,x,y) = Zxalt:py

=0
Clearly, one can generalize the initial data in problem (13) replacing the functions
ug (x,y) and uy (x,y) by

o (e,y) = eXP{'%}ixla&(l‘ y),

ui(z,y) = exp{ S‘;’y }i:xal, z,y) (14)

where the functions S°(z,y), aj,(z,y), and a¥,(z,y) are smooth in z up to = 0.
Differentiating the above expression for u (¢, x,y), we obtain the following relations:

du S(t,x,y) ,08 0] <= |
—@a_exp{zT} {:1: W_ a}zxal(tvxvy)v

., 0u (t,z,y NG I e
3 - § {
11X a—x = exXp { } |:25 — w -I_ r 8x:| T ap (t7 €T, y) ”

(=0

Ou t:z;y 0] <~
_za—y_exp{ }{ — ay}z:pal(t,x,y).

(=0

11



Substituting the latter relations for derivatives of the solution to the equation from
(13), we come to the equation

0s 0] 9S . 4,0 _,08 0
—20° O _ 0 9 oo .0
{:1; 5 Zat} a=H (t,x,y,ZS T + i a s 3y Zay> (15)
for the amplitude function
a=a(t,x,y) = :Jclalt:zjy

=

Using the representation of the symbol H (t, T, Y, P, q)
=1 {,m=1
similar to (7), we can rewrite equation (15) in the more detailed form

95\’ 95 0 1S | & 05
—a (92 5. 000 . 00 O 2 g0
T <6t> Q1x ETT 12 92 61‘2] lg_o rha; = {Hg {45 4:1:Sax

2 2
—|—4zr35g—|—:1; <8_5> — 2iz? a—Sg—l—m a—S—m 6_5_ <x3g> ]

ox ox

a5 _,05 08 0 a5 0S 0
H2‘2— MR F I VR NG
+Z : [ v dz dy! ZSayl Z@yl —I_mayl Oz

. 85 d . 0%8 5 0 _ _, 05 9S8
—I—Z:I;%a—yl—l—m—axayl + x —axayl] + Z H,, {:1;

.08 0 . _,08 o . _, 0°S 02 Hi“‘l“l-

T gloyr T aymay T dylayr T dyloy

(=0

Equating terms with one and the same power of x in the both sides of the latter
equality (in this process, we do not take into account the dependence of the functions
Hy, Hi, Hypy S, and a; on this variable), we obtain the following equations:

e The comparison of coefficient of the highest negative power of & (namely, of
x~1) gives the equation

2
[(%—f) —H <t,x,y,0,g—j>] ao (t,z,y) = 0.

12



Since we are intended to obtain nontrivial solutions to the equation in question,
we can suppose that the function ag (¢, x,y) does not vanish, so the Hamilton-

2
<aa—f> —H (t,x,y,O,Z—j) =0 (16)

e Under the requirement that the function S is a solution to equation (16)

Jacobi equation

must be fulfilled.

(in what follows we suppose that it is so), the coefficient of x~* vanishes
automatically.

e Equating the coefficients of 272 leads us to the equality
85 0 Z oH 0 zn: *H 0928
T da o L a0qn 0y'Oy™

. OH
—I-QZS%} ao(t,x,y) =0 (17)

(the function H and its derivatives are computed in the same point as in (16)).
e All the rest equations have the form

Paj(t,x,y):f[ao,...,aj_l], 7 >1,

where
P 85 0 oH 0 82 H  0%S L OH
S 'y s
8t ot aq 8y 8q18qm Ayt oy Jdp
is the transport operator involved into equation (17), and F[aq,...,a;—1] is a
linear combination of functions ay, ..., a;_1 and their derivatives with smooth
coefficients.

3. In this case, the interpretation of the Hamilton-Jacobi equation and the trans-
port equation requires consideration of a family of Legendre manifolds, in contrast
to the case considered in the previous subsection. Using the initial data (14) of prob-
lem (13), we arrive at the following Cauchy problem for Hamilton-Jacobi equation

(16):
() s ) o
Slio = 5% (w,y).

13



The function S°(z,y) determines now a smooth family of manifolds £° () in
C (R X Y') parameterized by :

s=95(x,y),
t=0,
_ 95(z,y)
— T

E* — H(0,2,y,0,q) = 0.

Since all our considerations are performed near the point x = 0, the requirement
0S/0y # 0 must be fulfilled at this point. Similar to the previous case, the family
L° () splits into a disjoint union of the two families £$ (z) and L2 (x) corresponding
to the choice of the sign in the expression

E=4+H(0,2,9,0,q).

The two families L4 () of Legendre manifold determining the solution to Cauchy
problem (1.2) can be obtained as the phase flows of £ () and £% () with respect
to the contact fields X3, corresponding to the Hamilton functions

Hy(t,y,E,q)=E++/H(t,2,4,0,q) (18)

(it would be more precise to speak about the families of Hamilton functions, but we
shall not emphasize this fact in what follows for brevity). These vector fields are

given by the formula

0 1 QH O _ 1 9HO _ 1 9HD
Xu, = R e O

9t T o/H 0L OF © /i 0q 0y | 2/H 0y 0q

+ (E + qLa—H> g
2/H 0q ) 0Os

At points where these manifolds are isomorphically projected on the space with
coordinates (t,y), they determine solutions Sy (f,x,y) to problem (1.2). So, the
Legendre manifolds £, (x) give us the required geometric interpretation of solutions
to this problem.

Let us now turn our mind to the interpretation of the transport equation. Clearly,
to the above two actions Sy (¢, x, y) there correspond two sequences of the amplitude
functions af (t,z,y). Similar to the previous subsection, the first transport equation
can be written down in the form

PiLa_ngF LS 1 pH oS
ot 2/H 0q dy = 2/H 0t* — 4/H 0q10¢, 0410y,

1S OH
TV o

] at (t,z,y) = 0. (19)

14



The first two terms on the left in the latter equation are the coordinate expression
of the vector field Xy, on the manifold L4 (z).

Again, using the invariant measure pg (¢, 2,y) on L4 (x), which is constructed
literally in the same way as in the previous subsection, we perform a change of the
unknown in equation (19) given by

af (t, v, y) = f (t,2,y) Vs (1,2, y),

thus reducing the transport equation to the form

1 82 18 aHO
Xy, + (=
b (2 dqoy! 2\/H0 dp )

]@3 (t,z,y) = 0.

So, the transport operator in this case equals

Pi . X% + (1 82]-[0 18 8[‘[0)
- +

20q0y! 2/, Op

The rest transport equations have the form

Prpf = F* [oF, ... ¢ ]

with the same transport operator P+ and some expressions F+ [c,oa—L, cees c,ofc_l] of the
above described type.

4. Let us consider the initial conditions for the functions pZ. The solution to
problem (13) (with the modified initial conditions (14)) is searched in the form

t
u(t,x,y) = exp{S xy}\/m_|_ t,x,y) g 2ol (12, y)
S t:z;y
+ exp vm_ (t,x,y) g alor (tx,y), (20)

and, hence, the initial conditions for the functions ¢ (¢,z,y) and ¢; (¢,z,y) are
given by

50,2, y) + w5 (0,2, y) = agy (2, y),

\/H <O,x,y,0,aa—5;(y)> [od (0,2,y) — ¢ (0,2,y)] = aly (z,y).  (21)

15



Similar to the previous subsection, solving all transport equations, one can obtain
the solution to problem (5) up to any power of .

5. Now we are able to describe the main difference between the cases £ = 1 and
k > 1. Expanding the functions S* and af = ,/mic,of in powers of x, we obtain
the asymptotic solution u (¢, x,y) in the form

Si—2 (tvy) _I_ Si—l (tvy)

2

o0

—I—Sar(t,y)—l-..}}z:z;lbf(t,y)

(=0

+exp {@ [S:Qx(f’y) MEELG ) So (ty)+ - } } i 2'b; (t,y)

Z
(=0

vite) = ewfi|

T T

with some smooth functions b;c (t,y). Later on, expanding the regular parts of the
exponentials in the latter expression again in powers of =, we finally arrive at the
expansion

nn) = oo fi [0 SRS

Z Z
(=0

fexn {Z [szafzt,y) L% (t,y)} } il‘lﬁ_ (t,y)

Z
(=0

with smooth coefficients C;E (t,y). The latter expression does not contain an ambi-
guity in determining the coefficients C;E (t,y). However, in contrast to the expansion
obtained in the previous subsection for the case k = 1, it contains two irregular
terms x725%, (1,y) and 7'SE, (1,y) in both exponentials. It is clear that the num-
ber of the irregular terms in the exponentials will increase for increasing k, so that
the expansion for an arbitrary values of k will have the form

u(t,z,y) = exp{i [ZW]}ZQJC?@W)

7=1 =0

+ exp {z [Z WI } ixlcl_ (t,y).

7=1 =0

2 Solution of the problem “in large”

The aim of this section is to construct a solution to Cauchy problem “in large”.
This means that we must construct a solution not only in a neighborhood of any

16



nonsingular point of the corresponding Legendre manifold, but also in a neighbor-
hood of all its singular points. The construction of asymptotic expansions will be
carried out by Maslov’s canonical operator method. Again, we shall consider first
the simplest case of a singular point of degree 1.

2.1 Degeneration of the first degree

To construct asymptotic solutions to problem (5) near singular points of the corre-
sponding Legendre manifold, we shall use the mixed coordinate-impulse represen-
tation. We recall ([2]) that in a neighborhood of any point of a Legendre manifold
L there exists a chart of the special form (the so-called canonical chart). In such a
chart the coordinates have the form

<yi17"'yi17Qj17"'7Qjm>7
{i iU gmt = {1, 0}y
{Zl,,ll}m{jl,,]m}:®

To shorten the notation, we shall denote by [ the set of indices I = {iy,...,4;}; then
the set {J1,...,Jm} is a complement of the set [ in {1,...,n}, and we denote it by
1. So, the coordinates in the canonical chart will be denoted by (yl,cﬁ), and the
chart itself will be denoted by Uj.

To write down a WKB-element in a singular chart (that is, in the chart where
I # 0) we shall use the so-called x~'-Fourier transform (see, e. g. [2]) in the

variables y!. This transform is given by?®

i

F oy ar) = Fyly/qu [f]= (—L> 2 /eXp{—équT} ! <x,y17y7> dy', (22)

2rx

and its inverse is

I

= (ﬁ)T /eXp {équT} Flry' ) daz. (23)

The properties of the z~!-Fourier transform are known rather well, and we need
only to derive the commutation formula with the operator ix*d/dx.

I T\ _ pl/= ;
f <x,y Y > = b T {f

3Here and below we again use the natural summation rules. For example, the expression quT

must be read as _ '
Var=> v
JET
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To do this, we can simply differentiate formula (23) by the operator iz29/dz.
We obtain

7| _
2 (etd) = () foo{ ) [

_ ] a -
+y'qr + sza—w} f 2,y q7) dgy

To get rid of the dependence on yT in the function in the integrand on the right in
the latter formula, we use the integration by parts:

- -
/eXp {;quT} viarf (x,y", q7) dag
i T . a ~ I
= [ exp ;y q7 zxa—qT a7 f (:z:,y ,q7> dq7

T = 0\ =
= /exp {équf} (@:1; ‘[‘ + Zl’qTa—qT> f (:zj,yl,cﬁ) dqs.

So, finally we obtain

P _
-2 U 1T\ _
2 amf(ﬂfi,y ,y>—
7] o
(N * L R N L P P PR S
= (27Tx> /exp{xy qI} [ 5 x—I_ZxQIaqT—I_Zx ppe f(:l?,y ,qI> dqs.

Later on, the operator —ixa/ayT is taken by transforms (22), (23) to the multi-

plication by ¢7, and the multiplication by y’ is taken to the operator izd/d¢s. So,
applying these transforms to the equation involved into problem (5) (for & = 1), we
arrive at the equation

% R 1 B B R
W:_H (t,l’,y,ll’a—qf,Tl"l‘Zl'QTa—qT‘l‘lw a_xa_la—yp(IT u, (24)

where @ = 4 (t, z,y, q7> is the z~'-Fourier transform of the function u (¢, z,y) with

respect to the variables yT.

We remark that in general the operator on the right in the latter formula is a pseudodifferential
one. We shall not present here the exact description of such operators, as well as of the spaces

where they act; the reader can find all needed definitions and affirmations in the book cited above.
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For equation (24), we shall again search a solution in the WKB-form

o0

u <t7 Z, ylv QT> — exXp {ésl <t7 ylv QT> } Z l’la” <t7 ylv QT> .

(=0

Substituting this expansion into equation (24) and equating terms with one and the
same powers of = in both its sides, we arrive at the following relations:

o Hamilton-Jacobi equation

951\ ° aS; as
<8—t1> - HO (tv ylv _a—qTIv 07 a—yfv QT> = 07 (25)

o [irst transport equation

05 oy 0 oy 0 (95 1 0y 9,
ot dqr dy! oyl dgr otz 20qrdqr Oyloy!
0*Hy 025t 0*Hy 0*S; > , , ( S >
_ _ 2 —iH 4| —grat 4 S
DqroyT 0yldqr  OyToy! 0q0q7 e\ T a7 !
oH,
apo} ago <t7y17QT> = 0;

X

o Transport equations of higher order
Pay; (t,yl,qf) = Flago,...,ar-1].

Here H; (t,y,p,q) are, as above, the Taylor coefficients of the function H in the
variable z, the functions H; and their derivatives in the transport equations are
computed at the same point as in the Hamilton-Jacobi equation, the operator P is
given by the formula

b 2@ _OHy 0 O0Hy O P51 0Py 925
T ot dqr 0y 9yl dgp otz 20qrdqr Oyloy!
0*Hy 025t 0*Hy 0%S; > . ( S > oH,
_ _ P —iH 4| —gr=L 4 S :
a0y 0y10qr  oyloy oqroar) 1\ Tag T7) Top

and Flajo,...,ar;—1] is a linear combination of functions ajo,...,as;—1 and their
derivatives with smooth coefficients.
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Let us consider first the Hamilton-Jacobi equation. It is known that if U7 is a
canonical chart on the Lagrangian manifold £ (or £_), then the equations of this
manifold can be written down in the form

_05F
L
8q7’

where the function S7 is a coordinate expression of the function

T
S — 47y ot (26)
in the chart U; (for the manifold £_ the function ST must be replaced by the
function S} defined in the similar manner). So, Hamilton-Jacobi equation (25) will
be satisfied on the manifold £ if we choose S; to be equal to function (26) (the
same relates to the manifold £_ if we replace ST by S7; we shall omit such remarks

below).

Further, performing the change of the unknown

+ _ + +
Ap; =AMy,

in the transport equations (here m7 is a density of the measure u* with respect to

the coordinates (yl, q7>) and taking into account the relation

—q—% +57 = q—yT‘ +s—qp| =
I aQT I I o+ I o+ Lt
we reduce the transport equations to the form
,P:tg‘ozlto = 07
+ =+ + + .
Prom = F [99[07---79911_1] , 321

on the manifolds £4, where the transport operator P is given by the formula

2
Lt

Pi . X% + (1 82H0 7 18 8[‘[0)
- +

- H — - =70
28q;8y’+2«/H0 Yo /H, dp

as above (see Subsection 2.1).

The only thing rest now is to establish a correspondence between amplitude
functions ¥ in different charts of the manifolds £1 (here we restrict ourselves by
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constructing the main term of the asymptotic expansion; the procedure of construct-
ing higher-order terms is standard and the reader can find it in the book [2]). This
can be done with the help of the usual stationary phase formula, and the result is
that if all functions %, are coordinate expressions of one and the same function T
on the Lagrangian manifold £y, then the local expressions for the Maslov’s canonical
operator

Fl/ggf[exp{ S ty qI} mfc,om ty ql]

coincide on projections of the intersections Uy N U of different charts of the consid-
ered Legendre manifolds with some concrete choice of the signs of the square roots
\/mZ; this choice is governed by the Maslov’s index (see [1], [2]). Hence, the usual
procedure using partition of unity leads us to the definition of Maslov’s canonical
operator K s+ ,+), and the solution to problem (5) for k = 1 is given by

Kiey oty [95] + Kooy [970) 5

where all the objects involved into the latter expression were defined above.

2.2 Degeneration of higher degree

The consideration of the case when the degree of degeneration of the considered
operator is more than one is in essence an easy compilation of the results and
the considerations of Subsections 1.2 and 2.1. Clearly, one has to construct the
canonical operator on a family of Legendre manifolds parameterized by = rather
than on a single Legendre manifold. The only question worth considering is the
application of the stationary phase method in the case when the phase function of the
rapidly oscillating integral in question depends (regularly) on the small parameter
of the expansion. So, in this subsection we present the corresponding version of the
stationary phase method and formulate the main results.

To be short, we shall consider here a one-dimensional rapidly oscillating integral

of the form
i \? i
I(z,y) = ( k) /exp {gQ (x,y,p)} a(x,y,p) dp, (27)

2rx

where p € R', and functions ® (z,y,p) and a(x,y,p) depend on x regularly up to
x = 0 (being clearly infinitely smooth functions in all their variables). We sup-
pose that the function a(x,y,p) has compact support and there exists exactly one

E7y7p0 y
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of the phase function ® (0,y, p) on the support suppa (we carry out all our consid-
erations in a sufficiently small neighborhood of # = 0), Moreover, we suppose that
this point is non-degenerate:

T2 (0.l £ 0.
p

From the above assumptions, it follows that the equation

od
a_p(xvyvp) =0

has a smooth up to @ = 0 solution p = p(x,y) for sufficiently small x. Later on,
using the Morse lemma, one can find the variable change p = p(x,y, z) such that:

e the function p(z,y, z) is smooth in all its variables up to « = 0;
e the point p = p(x,y) corresponds to z = 0;

e the function ® (z,y,p) is taken to the function

2

@(x,y,p(:li,y,Z)) = (I)O (l',y) + 2 )

where

Oq (2, y) = @ (z,y,p(,y)).

Performing the described variable change in integral (27), we reduce it to the

form
. 1/2 . ,
! ? l Op(x,y,z
o - () e ] s

X a(z,y,p(v,y,z)) dz

Now, expanding the integrand of the latter integral in powers of z and computing
the obtained integrals, we arrive at the relation

; alx,y,p(x,y))
I(z,y) = ex _k(I)O (z,y) 2 TO@),
y P{x ! } Vo @y p(e.y)

where the branch of the square root is chosen in accordance to the relation



We remark also that the definitions of the #~*-Fourier transforms are

i

ok 7 2 7 = — —
Fylf/_>q7[f] = <_2mk> /eXp{—ﬁyIQT}f@,yl,yI) dy’,

N
ok o 7 2 7 -
Fqu_/%yy M - <2mk> /eXp {gylfﬁ} F ey ap) dag.

After these remarks all the construction of the canonical operator ICEZL it in

the situation of degeneration of degree k goes quite similar to the constructions of
the previous subsection. We shall only formulate the main result.

Let (L4, 1) be the Legendre manifold with measure constructed in the previous
subsection. Let ¢ be functions on £ satisfying the transport equations

Pipy =0

and the initial conditions (21), where the transport operator Py is given by

1 0°H K H
Piszii<a zs@)

§8qlayl B 2\/ﬁ8—p

L4+ ‘
Then the function 0 0
k k _
Kcs ity [Tl + K my [#70)

satisfies problem (5) up to terms of the first order in x. Moreover, the local expres-
sions for the canonical operators involved into the latter relation can be rewritten

in the form
Eoot I
1/a" . 517_‘<t7y 7QT> + o4 T
Fq__>y7 [exp {Z Z - 7 my (tv Yy 7QT>

I j=1

(see the discussion in the end of Subsection 1.2).

3 Investigation of nonstationary problems in ab-
stract algebras

3.1 General theory

Let us now try to investigate the problem from the viewpoint of abstract algebras
(see [3]). To do this, we suppose that U is an abstract topological algebra with unity,
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(+,-) is a partial scalar product* on U, and
G:C—=U (28)
is an analytic group, that is, an analytic mapping such that

G (pr+p2) =G (p1) G(p2).

We suppose that all the conditions posed on these objects in the above cited paper
are fulfilled. Then the group (28) determines the following objects:

e An analytic transform

fG : A(C) — U,
Fall] = / G ip)U (p) dp

defined on the space A (C) of endlessly continuable analytic hyperfunctions;
the image of this transform will be denoted by U"; the elements from U" will
be called resurgent elements of the algebra .

o A Hilbert space H being a completion of Uy with respect to the pre-Hilbert
structure defined by the scalar product (-,-).

o A differentiation p of the algebra U” defined by the formula
ﬁRG = Ra (Zp) s
where by ip we denote also the operator of multiplication by p.

o A generating element
dG
A= —
)

of the group G it is supposed that this element is invertible in ¢/ and deter-
mines a positive self-adjoint operator in H.

Let now R" denote the Cartesian space of dimension n with coordinates

(v ... y")

“The latter means that there exist a dense subspace Uy of U and a semilinear form (u, v) defined
at least each time when one of the factors u or v belongs to Uj.
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Consider some invertible element B € U determining a self-adjoint operator on H,
and the tuple

(a1,...,ax)
of elements from U such that each a;, 7 = 1,...k determines a bounded self-
adjoint operator in H and so are pa;, j = 1,...k (in such a situation the expression
@ (ay,...,ax) is well-defined for any C'*-function ¢ (z)).
Denote
0 0

dy’ at
these operators act on the set ¢ (R",U) of C*°-functions defined on the space R"
(or on some its open subset) with values in the algebra ¢. We shall consider here

D,=—iB™'—, D,=—iB"!

the problem
D? = H (ay,...,a5,y,p, D,)u
uli—g = w0 (y) , (29)
Diulyzg = vo (y),

where the operator H (ai,...,ax,y,p, Dy) is given by the formula
H(alv" s gy Y, p7 Z Z Gy alv"'vakvy)D;ﬁj
3=0 |a|<2—j

with aj, (z,y) € O (R”"’k) (we denote @ = (x1,...,2x), a = (ai,...ax)), and the
initial data ug (y) and v (y) are expansions of the generalized WKB-form
uo(y) = exp(iBSo(a,y) Y B ug;(a,y),

=0

vo(y) = exp(iBSo(a,y))ZB‘jvoj(a,y)

7=0

with values in the algebra .
Let us search for a solution to problem (29) in the form

u(t,y) =exp(iBS(t,a,y) ZB Tuj (t,a
We have

. oS o ,
Dyut,) = exp (55 () |5 (1) + 0, Y- B0,

7=0
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. oS = 4
Dua(t.9) = exp (GBS (t.a.) | 5 (1) + D] Y- B,

=0

and
pult,y) = exp(iBS(t,a,y))[ip(B)S(t a,y)

k 00
. oS s
+Zp(aj)%(tvavy) ZB ]Uj7
- "o

J=1
so that the equation involved into problem (29) can be rewritten in the form (we
omit the arguments (¢, a,y) of the functions S and u;)

aS 2 o » 3 k A A
(W—I_Dt) ;B ]u] = H(avyvlp(B)S—l_Zp(a])%—I_pva_y—l_Dy)

<Y B7u;. (30)
7=0

Below, we shall consider the two following special cases of the latter equation:

Case 1. The element p (i B) is a scalar element of the algebra ¢ (we can assume, without
loss of generality, that p (¢B) = 1), and

pla;) =B ro;(ar,...,ax), j=1,...k
with bounded real-valued C'*°-functions ¢; ()
Case 2. The relations
p(iB) =B, pla;) = B " (ar,...,ax), j=1,...k
hold for some positive integer .

Let us begin the consideration of Case 1. Passing to the spectral representation
associated with the (self-adjoint) operator A, one can easily see that the relation
p(B) =1 yields

B=A+c
with some scalar element ¢. It is not hard to see that this scalar element can be
removed by the expansion in the Taylor series, so that we can assume

B =A.
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Let us rewrite relation (30) taking into account the obtained information:

25 0N 'S L e s .95 .9
(a‘“‘ @> ZA uj = H(a,y,S+A ;mcz)@ma—y—za—y
XZA_jUj.

7=0

We remark that, being applied to expressions of the form Y A~7u; (¢,a,y), the
;=0

operator p has the order —1 with respect to the filtration defined by negative powers

of A. As above, we expand the latter relation in powers of A, thus obtaining a

recurrent system of equations with respect to the unknown functions S, wg, uq, .. ..

95\’ 05
(W) :H<a7y7578_y>

S|t:0 = SO (av y) :

Passing to the spectral representation corresponding to the set of commuting oper-

The main relation reads

with the initial conditions

ators ai, ..., ag, one can replace these operators by the corresponding variables !,
.., 2%, so obtaining the following Cauchy problem for the Hamilton-Jacobi equation
05\ _ < as>
<W> =H xvyvsvyy ’ (31)
S|t:0 = So (l‘, y) :

depending on the variables = as on parameters. This is exactly the Hamilton-Jacobi
equation obtained above for the particular cases but in this case it contains the
function S explicitly, and, by this reason, the corresponding Hamilton system must
be considered on the contact space J! (R?f) of the first jets on the Cartesian space
RZ;’I. The latter has the coordinates

(s,t,y, I, q)

and the structure form

ds — gdy — Edt.

To write down the equations of the corresponding Legendre manifolds, we remark
that the equation involved into problem (31), splits into the two equations

0S5+ )
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(we suppose that the function S is such that the expression under the square root
sign does not vanish for all values of y under consideration). The initial conditions
for both functions Si coincide and are given by the relation

Sj:|t:0 =5 (51?7 y) . (33)

So, problem (31) determines two Legendre manifolds £ corresponding to the two
different choices of the sign in (32). Each of them is defined as a phase flow along
the corresponding Hamilton system of the initial manifold

t =0,
o aSO(xjy)
'Coj: _ qi ayz )
s =250 (l',y)
E=4++/H(z,y,s,q).

The above mentioned Hamilton systems are given by the contact vector fields

0  O0H: 0O OHy 0 OHy JHe\ 0

KX = EJF Jg; ayi_E 0s 8—E_<8yi T 0s >8—%
OHL\ 0
(e r-a T )

corresponding to the following two Hamilton functions

H:I:(xvtvyvstv(Z):E:F \/H(l’,y,S,Q)

(summation rule is used in the latter expression). So, in this case the Legendre
manifolds corresponding to Hamilton-Jacobi equations (32) with initial conditions
(33) are defined with the help of the following Cauchy problem for the contact
Hamilton system:

= OH+ y' (0) = yé’
i
: OH OH ’ |
% == 6y§t — 4 q: (0) = oot
o o e
s = —Hy4 + + q; an7 5(0)250(51?790)-

We shall not derive the corresponding transport equations as well as the repre-
sentation of the solution in singular charts of the corresponding Legendre manifolds
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since this investigations are quite similar to that carried out above. We only mention
that for constructing the mixed coordinate-impulse representation one should use
the A-Fourier transform in a part of variables y:

]

fey'a) = Fp, [f]= <—%>T/6XP{—ZAyT€H}f (24" 07) d,

7 (zy'y") = B 7] = (%)T/GXP{iAyTQT}JE<$aylaqT> das.

We shall illustrate these considerations on the example in the end of this section.
Now, let us turn our mind to the consideration of Case 2. In this case equation
(30) can be rewritten in the form

9S & e~ 9s . oS
(E—I_Dt) ;B Tu; = H(a,y,B S—I—;B c,oj(a)%—l—p,a—y—l—l)y

o]
X E B_]u]‘.
=0

One can easily see that the operator p being applied to functions of the form

" B7iu; (t,a,y) has in this case order at least — — 1 with respect to the filtration
=0

given by powers of B (this can be proved with the help of the spectral representation
associated with the operator A). Hence, in this case the Cauchy problem for the

Hamilton-Jacobi equation has the form

() =1 (005 "
Slizo = So(2,9),

which differs from that of the previous case by the absence of the action function
S itself in this equation. However, it is clear that this function will appear in the
transport equations, and we again have to work with Legendre manifolds rather
than with Lagrangian ones.

As usual, the equation in problem (34) is split into the two equations

95 95
g H e
ot i\/ (x,y,(), ay>
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(clearly, we suppose that the function on the right in the latter relation is smooth
for values of y in question). So, for this case the corresponding Legendre manifolds
L4 can be obtained with the help of solution of the following initial data problem
for the Hamilton system

= Q% y' (0) =y,
E=0, £ (0) = 1 (00,0, 200 )
. 0 3 ;
q; = _%7 . 050 (l’,yo)
Yy 9 ¢ (0) = Oy
=—H:+ E+ = _
= ""0g; s(0) = 5o (z,y0) -

where
H:I: (x7t7y7E7Q) = E:F V H(xvyv()v(Z)

The reader can see that this problem has exactly the same form as in the examples
above, so that these examples serve as a good guide to the construction of the rest
of the theory, and we shall not stand here on this point.

3.2 Example

We conclude this section with an example of the situation described in the Case 1 (as
we have written above, the preceding sections give us good examples of the situation

of Case 2).
Consider the following Cauchy problem

oG = () v h
u|t:0=exp{ So(y)} ao(y) (35)

o {550} oy

with some smooth functions Sy (y), ao(y), and by (y), where x and y are one-
dimensional variables. Searching for solution to this problem in the form

u = exp{éS(t,y)}a(t,y)a

we arrive at the following equation

a5 o\’ L0\ oS . 9N’
(61‘ zxa> a(t,y)= [(S—m 6_:1;> —|—<a—y—ma—y> a(t,y)
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or

aS\* . 959 . 9*S AN Y
[(E) —QZJ}EQ—ZJ}W—I- (—ma> ]a— {{S — 2z Sa—x

_'28_5+ _'2g2_|_ 8_52_2' a_Sg_az_S+ _'Q2
1r ax 1r ax ay Zxayay Zway2 Zxay a.

Expanding the latter equation in powers of z and equating the coefficients of 2° and
x! in both its parts, we obtain the following equations:

aSN®  [a5\*

<5> _<6_y> H

959 059 98 %S
Paa—%waﬁﬁ—@ﬁﬂw*ﬂ o

Let us consider in detail the first of these two equations — the Hamilton-Jacobi
equation. As earlier, it splits into the following two equations

aai; = ﬂ/(%)z + (5%)? (37)

SFio = So(y).

Clearly, we must require that the expression under the square root sign on the right
in (37) does not vanish®. Let us solve the Hamilton system

with the initial data

g =Tqlg + 77,

Q= tqs[q*+ 7,
s =45 [¢* + 52]_1/2 .

corresponding to the Hamilton-Jacobi equation in question. Denoting by (vo, qo, $o)
the initial data for this system, we obtain the solution to the latter problem in the

form 2
y:yozFQOt[qg‘|’5(2J] )

q = qoexp { £sot [q2 + 2]

Y

s = sgexp 4 Esot [¢2 + 53]_1/2

>We emphasize that this condition can be fulfilled even in the case when y are local coordinates
on the compact manifold.
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To obtain the equation for the Legendre manifolds £, one has to substitute

_ 950 (Yo)

do = 9vo , S0 = S0 (yo) .

So, the equations of the Legendre manifolds £ are

, —1/2
yi(tayo) = yothaSaoy(Oyo) (asaoy(oyo)> +[50(y0)]2 )
, —1/2
- 950 (Yo) 950 (o) 2
7 (Lyo) = oy P itSO(yO)KTy(J) +[50(yo)]] ;
, —1/2
F (o) = Solu)esp itso@o)[(asg—;f“) ‘|‘[50(y0)]2]

Now, the solutions to the Hamilton-Jacobi equation in nonsingular charts of Legen-
dre manifolds £4 can be obtained with the help of the formula
Si (tv y) = Si (tv yO)‘

yo=yE (1)’

where the function yF (t,y) is defined as a solution to the equation

y = y* (,y0)

with respect to yo (the existence of this solution is the necessary and sufficient
condition for the point to be in a nonsingular chart of the manifold £4). Similar,
the action S* (¢,p) in the singular chart of the manifold L4 is given by

S* (tvp) = [Si (tv yo) - yi (tv yo) qi (tv yo)] ‘ (t,9)

Yo=Yq

where yE (1, ¢) is a solution to
4= q* (t,0)
with respect to yo.

Let us now turn our mind to the solution to the transport equation (the second
equation in (36)). Similar to the case considered in the examples above, we can
transform this equation with the help of the invariant measure p* which is defined
literally in the same way as above. The result is

dc,oi
L
dt ’
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where d/dt is the derivative along the trajectories of the Hamilton system, the
function »* is a function on L4 such that a* (¢,y) and a* (¢, ) are defined by the
formulas

a* (ty) = /m= (Ly)e™ (Ly), @ (t,q) = /m* (tq)e™ (t,9),

and m¥* (¢,y), m* (¢, q) are densities of the measure u* with respect to the coordi-
nates (¢,y) and (¢, q), respectively. We suppose that the signs of the square roots in
the above expressions are chosen in accordance to the Maslov’s index.

Now, defining the initial data for the functions p% exactly as it was done in the
above considered examples, we obtain the following expressions for these functions:

Ly = 5 { (o) £ bo (30} [(850 ) <y0>>2] }

0
Yo vo=yZ (t,9)
in a nonsingular chart, and
1 95 ’
P (1) = 5 3ol () [(ZC8) 4 (51 )
: %o vo=v3 (£,9)

in a singular one. Therefore, the solution to problem (35) is described by the formula
i
u(t,z,y) = exp {;5+ (, y)} mt (Ly)e™ (L y)

+ exp {25_ (t, y)} m= (ty)e~ (Ly)

in a nonsingular chart, and

vt = B oo { L5 o VA ot (0

+ exp {;gw(t, Q)} m= (t,q)e” (1, Q)}

in a singular one, where all functions involved into the latter formulas as well as the
inverse 1/z-Fourier transform Fqllfi, were defined above.
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