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Abstract

The paper is devoted to pseudodi�erential boundary value problems in domains
with singular points on the boundary� The tangent cone at a singular point
is allowed to degenerate� In particular� the boundary may rotate and oscillate
in a neighbourhood of such a point� We show a criterion for the Fredholm
property of a boundary value problem and derive estimates of solutions close
to singular points�
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Introduction

In 
���� Kondrat�ev published his paper �Kon��� on elliptic boundary value
problems in domains with conical points on the boundary� Although con

crete examples had already been treated by other authors in the early ���s
�see Gokhberg and Krupnik �GK���� Grisvard �Gri��� and references there��
he was the �rst who studied these questions systematically� After the work of
Kondrat�ev� the Fredholm property and asymptotic behaviour of solutions to
boundary value problems in domains with conical points and edges were in

vestigated by Eskin �Esk���� Leguillon and Sanches
Palencia �LSP���� Maz�ya
�see �MKR��� for the complete bibliography�� Melrose and Mendoza �MM����
Nazarov and Plamenevskii �NP�
�� Schulze �Sch�
� Sch��� Sch���� Grisvard
�Gri���� Schrohe and Schulze �SS��� SS��� and other authors�

In this paper we consider elliptic boundary value problems in domains with
singular points on the boundary which are more intricate than the conical
singularities� The tangent cone to the boundary is allowed to degenerate at
singular points� In particular� the boundary may rotate and oscillate in a
neighbourhood of a singular point� We derive a criterion for the Fredholm
property of a boundary value problem and show estimates of the solutions
near singular points�

In subsequent papers we will apply these results to boundary value prob

lems of the elasticity theory in domains with such singular points�

Boundary value problems in domains with cusps on the boundary were
earlier considered by Feigin �Fei�
�� Bagirov and Feigin �BF���� Maz�ya and
Plamenevskii �MP��� MP���� In these papers the neighbourhood of a singular
point was mapped onto a cylinder with the help of a change of variables de

pending on the structure of the singularity� The papers �Fei�
� BF��� MP���
contain elliptic estimates and Fredholm property for general boundary value
problems in weighted Sobolev spaces� In �MP���� an asymptotic formula for
solutions of the Dirichlet problem is shown� Feigin �Fei��� also investigated
boundary value problems in domains with cusps concentrated along an edge
on the boundary�

The study of elliptic boundary value problems in domains with logarithmic
whirl points originates with the papers �Rab��� Rab��a� Rab���� An algebra
of pseudodi�erential operators on a compact closed manifold with rather gen


�
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eral singular points was constructed in �ST���� Under an additional condition
on the smoothness of symbols near singular points� the Fredholm property in
Sobolev spaces with explicit asymptotics was proved for elliptic operators in
the algebra and an index formula of Fedosov�s type was shown� The assump

tion in question actually corresponds to the setting of the cone algebra as for
the purposes of index theory this class is su�cient� In �ST��� it was shown
how to dispense with this assumption in the case of power
like cusps� This
latter case was studied by Schulze� Sternin and Shatalov in �SSS���� where
functions of non
commuting operators are used to construct a pseudodi�eren

tial algebra� An operator algebra corresponding to power
like cusps of order

 is treated in Melrose and Nistor �MN��� where the Hochschild homology
of such an algebra are described� Note that the general results of Maz�ya
and Plamenevskii �MP��� Pla��� still apply to derive asymptotic expansions
of solutions of elliptic di�erential equations on a closed manifold with cusps�
The class of singularities we allow includes� 
� whirl points� in which case

the tangent cone does not exist and the boundary oscillates and rotates close
to the point	 �� cusps� in which case the tangent cone degenerates	 and ��
cusp
like whirl points� in which case we have an intricate combination of the
singularities of �rst two types�
The following example sheds some light on the behaviour of the domain

close to a singular point in case n � �� n being the dimension of the space�
Consider a domain D in R� given close to the singular point � � �D by

D � f�r� �� � ��� ��� ��� ��� � r�f��r� � � � r�f��r� � r��f��r�g �����
�

with some � � �� where �r� �� are polar coordinates in R� with centre at the
origin and fi are real
valued functions on ��� �� satisfying

j�r����	�r�jfi�r�j � ci�j for all j � �� 
� 
 
 
 �
lim
r��
�r����	�r�fi�r� � ��

inf
r������

�f��r�� f��r�� � �

�������

As but one instance of functions fi�r� which ful�l the conditions �������
we show f��r� � sin r��� � f��r� � � � cos r��� and f��r� � sin r��� � where
� � ��� �� � �� If � � �� we replace �����
� with

D � f�r� �� � ��� ��� ��� ��� � r�f��r� � � � r�f��r� � log rf��r�g
 �������

The functions f��r� � sin�log r��� � f��r� � �� cos�log r��� � f��r� � sin�log r���

are easily veri�ed to meet conditions ������� for � � �� provided � � ��� �� � 
�
If the domain D is given by �����
� with all the fi�r�� i � 
� �� �� constant� then
the origin is a cusp on the boundary of D� On the other hand� under conditions
�������� the origin is a logarithmic whirl point for the domain D speci�ed by
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�������� In the general case� by �����
� and ������� is de�ned a wide class of
singular points at which the boundary is not Lipschitz�
Our approach to the study of boundary value problems in domains with

singular points is based on a calculus of pseudodi�erential operators with
operator
valued symbols� It takes into account the behaviour of the bound

ary close to singular points� In the framework of this calculus we construct
local inverse operators �regularisers� for a boundary value problem at singular
points� The existence of local regularisers at singular points along with the
ellipticity of the problem away from the singular points implies the Fredholm
property of the problem in a familiar way� Moreover� the construction of local
regularisers allows us to derive also estimates of solutions near singular points
and asymptotic expansions of solutions provided that fi behave �well� in a
neighbourhood of the singularity�
Let us brie�y describe the structure of the paper� In Chapter 
 we de


velop a calculus of pseudodi�erential operators with operator
valued symbols
to encompass the problems we study� In Chapter � we indicate how these tech

niques can be used to treat pseudodi�erential operators on closed manifolds
with singular points� In particular� we show a condition which is necessary and
su�cient in order that an operator be Fredholm� In �nal Chapter � we study
di�erential boundary value problems in domains with singular points on the
boundary� We restrict our attention to domains with cusps	 more complicated
singularities will be considered in forthcoming papers� The coe�cients of the
di�erential operators under study are allowed to have oscillating discontinu

ities at the cusps� the degree of the oscillation depending on the structure of
the cusps� In fact� we proceed in much the same way as in the case of mani

folds without boundary� thus presenting a uni�ed approach to treating these
problems� As mentioned� our results apply to boundary value problems of the
elasticity theory in domains with singular points�
The authors are greatly indebted to V� A� Kondrat�ev for many stimulating

conversations during the preparation of the paper� He draws the author�s
attention to the fact that the techniques elaborated here may be used to study
general boundary value problems for parabolic equations in a compact domain�
such as the Dirichlet problem for the heat equation� The main di�culty in
treating such problems is that the boundary contains points where the tangent
hyperplane is orthogonal to the axis t� At these points the boundary surface is
characteristic for the di�erential operator� In order to control the smoothness
of solutions at these boundary points� one invokes weighted Sobolev spaces
similar to those of Section ��� �cf� �Kon�����



Chapter �

Pseudodi�erential Operators

with Operator�Valued Symbols

��� Weight operator�valued functions

Let H� �H be complex Hilbert spaces� We always assume that they are sepa

rable� Denote by L�H� �H� the space of all continuous linear operators from H
to �H �

De
nition ����� By ��H� �H� we mean the space of all functions ��
� de�
�ned on the real axis R and with values in L�H� �H� such that� for each 
 � R�
there exists the inverse ����
� and it satis�es

k��
 � ������
�kL� �H� �H� � c h�i� for all � � R� �
�
�
�

with some c� � � R independent of 
 and �� where h�i � �
 � j�j������

The elements of ��H� �H� will be referred to as the weight operator�valued
functions� Let us show two important examples of such functions�

Example ����� Suppose M is a smooth compact closed manifold and V
a smooth vector bundle over M � Given any m � R� set

Rm
V �
� � �
 � 
� � V �

m��� 
 � R


where  V � r�
VrV is the Laplace�Beltrami operator on M associated with a

connection rV for V � It is well
known that Rm
V �
� extends to a topological

isomorphism Hs�M�V � � Hs�m�M�V �� for each s � R and 
 � R� Pick
s � R� We claim that

��
� � Rs
V �
�� 
 � R�

ful�lls �
�
�
� with H � Hs�M�V �� �H � L��M�V � and � � jsj� Indeed� the
operator  V is selfadjoint and it has an orthonormal system of eigenfunctions

�



A Calculus of Boundary Value Problems �

�ei�i	������� which is complete in L��M�V �� Let ��i� be the system of corre

sponding eigenvalues� each �i being non
negative� It is evident that

��
 � ������
�u �
�X
i	�

�i�
 � �����
i �
� �u� ei�ei� �
�
���

where �i�
� � �
 � 
� � �i�s�� and ��� �� is a scalar product in L��M�V �� From
�
�
��� it follows that

k��
 � ������
�kL�L��M�V ��L��M�V ��

� sup
i��
�
 � �
 � ��� � �i�

s���
 � 
� � �i�
�s��

� �jsj��h�ijsj�

the last estimate being a consequence of a well
known elementary inequality�
This is the required assertion�

�

Example ����� LetM be a compact smooth manifold with boundary �M �
Denote by �M the doubled manifold� i�e�� the smooth compact closed manifold
obtained by gluing two copies of M together along �M � Each smooth vector
bundle V over M is the restriction of a smooth vector bundle �V over �M � If
s � R� we write Hs�M�V � for the restriction of the Sobolev space Hs��M� �V �
to the interior ofM � Given any m �Z� there is a parameter
dependent elliptic
pseudodi�erential operator Rm�
� of order m and of type V � V on �M � such
that

	 Rm�
� has a symbol in Sm
����T

��M 	R� bearing the transmission property
with respect to �M 	

	 the operator Rm
V �
� � r�R

m�
�e� extends to a topological isomorphism
Hs�M�V � � Hs�m�M�V � for all s � R with s � ��

�� provided j
j is
large enough	 its inverse is also pseudodi�erential�

Here� e� denotes extension by zero to �M and r� restriction toM � Such oper

ators Rm

V �
� are known as order�reducing operators in the theory of boundary
value problems� These types of operators have been used throughout� Boutet
de Monvel �BdM�
�� Rempel and Schulze �RS��� ����� Grubb �Gru��� ����� and
so on� For an explicit construction we refer the reader to Schrohe and Schulze
�SS��� ����
��� In �SS��� ���� it is even proven that the order
reducing oper

ators occuring there are classical� Pick s � Z�� By including an additional
parameter we may actually assume that Rs

V �
� � H
s�M�V � � L��M�V � is a

topological isomorphism for all 
 � R �cf� �SS��� ��
�
��� Set

��
� � Rs
V �
�� 
 � R�
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then � � ��Hs�M�V �� L��M�V �� and

k��
 � ������
�kL�L��M�V ��L��M�V �� � c h�is

for all 
� � � R� with c a constant independent of 
 and ��
�

��� Symbol classes

Fix
�� � ��H�� �H���

�� � ��H�� �H��


De
nition ����� By S���� ��� we mean the class of C� functions a�x� 
�
on R� R with values in L�H��H�� such that� for each �� � � Z�� there is a
constant c��	�a� with the property that

k���
��D
	
xD

�
� a�x� 
���

��
� �
�kL� �H�� �H��

� c��	�a� for all x� 
 � R
 �
���
�

The space S���� ��� is given a Fr!echet topology by the best constants c��	�a�
in �
���
��
The elements of S���� ��� will be referred to as operator�valued symbols� To

any symbol a � S���� ��� we assign a pseudodi�erential operator A � op�a�
by

Au �x� �



��

Z
d


Z
ei�x�x

���a�x� 
�u�x��dx�� x � R�

where u � C�
comp�R�H�� and the integral is over all of R�R�

Let us denote by OP S���� ��� the space of all operators A � op�a� with
symbols a � S���� ���� For these operators we will occasionally write a � �A�

De
nition ����� Sd���� ��� stands for the class of C� functions a�x� x�� 
�
on R�R�R with values in L�H��H�� satisfying

k���
��D
	
xD



x�D

�
� a�x� x

�� 
�����
� �
�kL� �H�� �H��

� c��	�
�a�� x� x�� 
 � R�

for each �� �� � � Z�� with c��	�
�a� a constant independent of x� x� and 
�

The elements of Sd���� ��� are said to be double operator
valued symbols�
To any double symbol a�x� x�� 
� there corresponds a pseudodi�erential opera

tor A � op�a� by

Au �x� �



��

Z
d


Z
ei�x�x

���a�x� x�� 
�u�x��dx�� x � R� �
�����

for u � C�
comp�R�H��� The class of such operators is denoted by OP Sd���� ����

Pseudodi�erential operators with operator
valued symbols obeying esti

mates based on reductions of orders with parameters were �rst considered by
Schulze �Sch���� The idea to use weight operator
valued functions satisfying
�
�
�
� is due to Rabinovich �Rab��a��
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��� Oscillatory integrals

Suppose we are given a C� function a�y� �� on R�Rwith values in L�H��H��
satisfying� for some � � R� the estimates

kD	
yD

�
� a�y� ��kL�H��H�� � c��	�a� h�i

�� y� � � R� �
���
�

for all �� � �Z��
To a�y� �� we assign the operator
valued integral

I�a� � lim
���

ZZ
���y� ���eiy�a�y� ��dyd�� �
�����

where ��y� �� is a cut
o� function� i�e�� � � C�
comp�R

�� and ��y� �� � 
 in a
neighbourhood of the origin�

Proposition ����� Limit �����	
 exists in the norm of L�H��H�� and does
not depend on the particular choice of the cut�o� function �� It fact� it is given
by

I�a� �

ZZ
eiy�hyi��N�hD�i

�N�
�
h�i��N�hDyi

�N�a�y� ��
�
dyd��

where N�� N� are non�negative integers satisfying �N� � 
� �N� � � � 
�
Moreover� the value of I�a� is independent of N� and N� in the above range
and the norm of I�a� is estimated by

kI�a�kL�H��H�� � c
X

�����N�

��	��N�

c��	�a�
 �
�����

Proof� In the scalar case this proposition is well
known and the proof
thereof can be found in Kumano
go �Kg�
� and elsewhere� The proof for
operator
valued symbols is quite analogous�

�

��� Composition formulas for pseudodi�eren�

tial operators

To be short we begin with the main result of this section�

Proposition �����

� If A � OP S���� ��� and B � OP S���� ���� then BA � OP S���� ����

the symbol of BA is

�BA�x� 
� �



��

ZZ
e�iy��B�x� 
 � ���A�x� y� 
�dyd� �
���
�
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and the corresponding mapping S���� ���� S���� ���� S���� ��� is continu�
ous�

�� If A � OP Sd���� ��� is an operator with double symbol a�x� x�� 
�� then
A � OP S���� ���� the symbol of A is

�A�x� 
� �



��

ZZ
e�iy�a�x� x� y� 
 � ��dyd� �
�����

and the corresponding mapping Sd���� ���� S���� ��� is continuous�

Note that the double integrals in �
���
� and �
���
� have to be regarded as
oscillatory integrals�

Proof� Formulas �
���
� and �
����� for the symbols are obtained in the
same way as in the scalar case �cf� �Kg�
��� We are thus left with the task to
verify that the integrals �
���
� and �
����� belong to the appropriate symbol
classes�

Let us check it for the symbol �BA�x� 
�� To this end� set a�x� 
� � �A�x� 
�
and b�x� 
� � �B�x� 
��

From De�nition 
�
�
 it follows that if � � ��H� �H�� then

k����kL�H� �H� � k����������kL�H�H�k����kL�H� �H�

� c h�i�� � � R� �
�����

with some d � R� Analogously�

k������kL� �H�H� � c h�i�� � � R
 �
�����

Set c�x� y� 
� �� � b�x� 
 � ��a�x� y� 
�� Given any �� � � Z�� we estimate
the derivative D	

yD
�
� c�x� y� 
� �� for �xed x and 
� For this purpose� we invoke

De�nition 
���
 and estimates �
����� and �
����� obtaining

kD	
yD

�
� c�x� y� 
� ��kL�H��H�� � k���

� �
 � ��kL� �H��H��

k���
 � ���D�
� b�x� 
 � ������

� �
 � ��kL� �H�� �H��

k���
 � �����
� �
�kL� �H� � �H��

k���
��D
	
y a�x� y� 
�����

� �
�kL� �H� � �H��

k���
�kL�H�� �H��

� c h
 � �i��h�i��h
i�� � �
�����

for each y� � � R� Here� �i is the number of De�nition 
�
�
 corresponding
to �i� i � 
� �� �� Proposition 
���
 now shows that the oscillatory integral in
�
���
� is well
de�ned�
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Let us prove that �BA � S���� ���� To do this� we write �BA�x� 
� as an
oscillatory integral

�BA�x� 
� �



��

ZZ
e�iy�hyi��N�hD�i

�N�
�
h�i��N�hDyi

�N�c�x� y� 
� ��
�
dyd��

�
�����
where �N� � 
� �N� � �� � �� � 
� From �
����� we deduce that �BA�x� 
� is a
�nite sum of terms

s�x� 
� �



��

ZZ
e�iy�hyi��N�h�i��ND�

� b�x� 
 � ��D	
y a�x� y� 
�dyd��

where N� � N � N� �N� and � � ��N �N��� � � �N�� Writing

���
�s�x� 
��
��
� �
�

�



��

ZZ
e�iy�hyi��N�h�i��N���
��

��
� �
 � �����
 � ��D�

� b�x� 
 � ��

���
� �
 � �����
 � �����

� �
����
�D
	
y a�x� y� 
����

� �
�dyd�

and applying inequality �
�
�
� for the weight functions �� and ��� we arrive
at the estimate

sup
x��

k���
�s�x� 
��
��
� �
�kL� �H�� �H��

� c

ZZ
hyi��N�h�i��N������dyd�

� sup
x��

k���
�D
�
� b�x� 
��

��
� �
�kL� �H�� �H��

sup
x��

k���
�D
	
xa�x� 
��

��
� �
�kL� �H�� �H��




�
�����

As ��N� � �
 and ��N � �� � �� � �
� the integral on the right
hand side
of �
����� converges� Therefore�

k���
��BA�x� 
��
��
� �
�kL� �H�� �H��

� c

�
�N�X
�	�

c����b�

��
�N�X
		�

c��	�a�

�



The estimates of the derivatives of �BA�x� 
� are proved in a similar way�
Hence it follows that �BA � S���� ��� and the mapping

S���� ��� �S���� ���� S���� ���

given by ��A� �B� 
� �BA is continuous�

This completes the proof of the �rst part of the proposition� The proof of
the second part is analogous�

�
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��	 Pseudodi�erential operators with symbols

slowly varying at in
nity

Pseudodi�erential operators with slowly varying scalar symbols were �rst in

troduced in the paper �Gru��� by Grushin�

De
nition ��	�� A symbol a�x� 
� � S���� ��� is said to vary slowly as
x� �� if

lim
x���

sup
��R

k���
��D
	
xD

�
� a�x� 
���

��
� �
�kL� �H�� �H��

� �� �
���
�

for each � �Z� and each � � Z� with � �� ��

We shall say that a double symbol a�x� x�� 
� � Sd���� ��� varies slowly as
x� �� if

lim
x���

sup
y�K
��R

k���
��D
	
xD



yD

�
� a�x� x� y� 
�����

� �
�kL� �H�� �H��
� ��

for each compact set K 
 R� each � �Z� and each �� � �Z� with �� � �� ��
Let Ssv���� ��� and Sd�sv���� ��� stand for the classes of symbols slowly

varying as x� ���
We also distinguish the subclass S����� ��� of Ssv���� ��� consisting of those

symbols a�x� 
� which obey estimate �
���
� for all �� � � Z� �thus including
� � ���

Proposition ��	��


� If A � OP Ssv������� and B � OP Ssv�������� then BA � OP Ssv�������
and the symbol of BA is of the form

�BA�x� 
� � �B�x� 
��A�x� 
� � r�x� 
�� �
�����

where r�x� 
� � S����� ����
�� If A � OP Sd�sv���� ��� is an operator with double symbol a�x� x�� 
�� then

A � OP Ssv���� ��� and the symbol of A is of the form

�A�x� 
� � a�x� x� 
� � r�x� 
�� �
�����

where r�x� 
� � S����� ����

Proof� To prove �
����� we make use of formula �
���
�� Set a � �A and
b � �B� Substituting the Lagrange expansion of a�x� y� 
� at y � � to �
���
�
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gives

�BA�x� 
� �

�



��

ZZ
e�iy�b�x� 
 � ��dyd�

�
a�x� 
�

�

Z �

�

d�



��

ZZ
ye�iy�b�x� 
 � ��

�a

�x
�x� �y� 
�dyd�

� b�x� 
�a�x� 
� � r�x� 
��

where r�x� 
� �
�R
�

I��x� 
�d� and

I��x� 
� �



��i

ZZ
e�iy�

�b

�

�x� 
 � ��

�a

�x
�x� �y� 
�dyd�


Our next task is to estimate the oscillatory integral I��x� 
�� To this end�
we write it in the form

I��x� 
� �



��i

ZZ
e�iy�

hyi��N�hD�i
�N�

�
h�i��N�hDyi

�N�
�b

�

�x� 
 � ��

�a

�x
�x� �y� 
�

�
dyd��

where �N� � 
 � 
 and �N� � �� � �� � 
� Once again� I��x� 
� is a �nite sum
of terms

s�x� 
� �



��i

ZZ
e�iy�hyi��N�h�i��ND�

� b�x� 
 � ��D	
y a�x� y� 
�dyd��

with N� � N � N� �N� and


 � � � �N� � 
�

 � � � �N� � 



Analysis similar to that in the proof of Proposition 
���
 shows that there
is a constant c independent of x� such that

sup
�
k���
�I��x� 
��

��
� �
�kL� �H� � �H��

� c

�N���X
�	�

sup
�
k���
�D

�
� b�x� 
��

��
� �
�kL� �H�� �H��

�
�N���X
		�

sup
y��

k���
�hyi
��D	

xa�x� �y� 
����� �
�kL� �H� � �H��
�
�����

for all x � R� Since a � Ssv���� ���� it is a simple matter to see that the second
factor in the right
hand side of �
����� tends to zero� as x� ��� Moreover�
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the limit is achieved uniformly with respect to � � ��� 
�� The same argument
applies to the derivatives of I��x� 
� whence it follows that r � S����� ���� as
required�
The second part of the proposition is proved in a similar way�

�

��� Sobolev spaces and boundedness of pseu�

dodi�erential operators

In what follows we assume that the weight operator
valued functions under
consideration are of class C� on R and satisfy

sup
�
k�D���
������
�kL� �H� �H� � c� for all � �Z�� �
���
�

with c� a constant depending on ��
If � � ��H� �H� meets these conditions� then it is easily seen that � �

S��� Id �H�� Here we have an identi�cation of the function ��
� on R and the
function a�x� 
� �� ��
� on R � R� The converse is also true� and so our
assumption on � just amounts to saying that � is a �constant� symbol with
respect to x�

Proposition ����� Let � � ��H� �H�� Then� from � � S��� Id �H� it follows
that ��� � S�Id �H� ���

Proof� Indeed� using the equality

D��� � �����D������

we obtain

k��
�D����
�kL� �H� �H� � k � �D��
������
�kL� �H� �H�

� c�

for all 
 � R� Further�

�D���� � ���D������� � �D������

whence

k��
�D�����
�kL� �H� �H�

� � k�D��
������
�k�
L� �H� �H�

� k�D���
������
�kL� �H� �H�

� � c�� � c�
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In the general case� for � �� �� we have

�D���� � p��D������� 
 
 
 � �D��������

p being a polynomial with integer coe�cients of non
commuting operators in
the space �H� In fact�

p��D������� 
 
 
 � �D������� � �"��D�������� � 
 
 
� �D������


Hence the desired statement follows�
�

For a function u � C�
comp�R�H�� we denote by #u�
� �

R
e�i�xu�x�dx the

Fourier transform of u�

De
nition ����� Let � � ��H� �H�� By H��� is meant the completion of
the space C�

comp�R�H� with respect to the norm

kukH�
� �

�Z
k��
�#u�
�k��Hd


����


 �
�����

From the Parseval identity it follows that norm �
����� coincides with the
norm

kukH�
� �

�Z
kop���uk��Hdx

����




Proposition ����� Each operator A � OP S���� ��� extends to a contin�
uous linear mapping H����� H����� Moreover�

kAukH�
�� � c �
X

��	�N

c��	��A�� kukH�
��� u � H����� �
�����

the constants c � � and N �Z� being independent of A�

Proof� The boundedness of the operator A � H����� H���� is equivalent
to the boundedness of the operator �A � L��R� �H�� � L��R� �H��� where �A �
op����Aop��

��
� �� By Proposition 
���
�

op����
� � � OP S�Id �H�

� ����
op���� � OP S���� Id �H�

��

therefore Proposition 
���
 yields �A � OP S�Id �H�
� Id �H�

�� As the symbols in
S�Id �H�

� Id �H�
� obey the estimate

sup
x��

kD	
xD

�
� �a�x� 
�kL� �H�� �H��

� c��	��a�� for each �� � �Z��
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we may invoke the Calderon
Vaillancourt theorem �cf� Taylor �Tay���� to
conclude that �A extends to a bounded operator L��R� �H��� L��R� �H�� and

k �AkL�L��R� �H���L��R� �H���
� �c

X
��	� �N

c��	�� �A��

with �c � � and �N � Z� constants independent of �A� Combining this with
Proposition 
���
 �cf� 
�� we arrive at estimate �
������ as required�

�

��� Local invertibility of pseudodifferential

operators at the point at in
nity

We begin with two auxiliary propositions�

Proposition ����� Let � � C�
comp�R� and �R�x� � �� x

R
�� R � �� Then�

for each operator A � OP S���� ���� we have

lim
R��

k��R� A�kL�H�
���H�
��� � �
 �
���
�

where ��R� A� � �RA�A�R�

Proof� Set a � �A� In just the same way as in the proof of Proposition

���� �cf� 
� we obtain that

�A�R�x� 
� � �R�x�a�x� 
� � rR�x� 
��

where

rR�x� 
� �



R

Z �

�

d�



��i

ZZ
e�iy�

�a

�

�x� 
 � ��

��

�x
�
x� �y

R
�dyd�
 �
�����

Interpreting the right
hand side of �
����� as an oscillatory integral we de

duce easily that

lim
R��

sup
x��

k���
�D
	
xD

�
� rR�x� 
��

��
� �
�kL� �H�� �H��

� �


As ��R� A� � �op�rR�� equality �
���
� follows from Proposition 
����� which
completes the proof�

�
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Proposition ����� Suppose that � � C��R� satis�es ��x� � � for x � 

and ��x� � 
 for x � �� Set �R�x� � �� x

R
�� R � �� Then� for each A �

OP S����� ���� we have

lim
R��

k�RAkL�H�
���H�
��� � ��

lim
R��

kA�RkL�H�
���H�
��� � �

�
�����

Proof� Set a � �A� It is evident that

��RA�x� 
� � �R�x�a�x� 
�


Since a � S����� ���� we can assert that

lim
R��

sup
x��

k���
��D
	
xD

�
� ��R�x�a�x� 
����

��
� �
�kL� �H�� �H��

� �

for all �� � �Z�� Combining this with Proposition 
���� gives the �rst equality
of �
������
On the other hand� since

�A�R�x� �� � �R�x�a�x� 
�� �
�R�A��x� 
��

the second equality in �
����� follows from the �rst one with the help of Propo

sition 
���
�

�

The function � of Proposition 
���� gives rise to what we shall call the cut�
o� function at the point ��� By such a function we mean any � � C��R�
equal to 
 in a neighbourhood of �� and vanishing for x � a� where a � ��
Clearly� Proposition 
���� still holds for arbitrary cut
o� functions ��
In the sequel �R stands for the function of Proposition 
����� The following

de�nition is basic in our theory�

De
nition ����� An operator A � L�H�����H����� is said to be locally
invertible from the left �right
 at the point �� if there exist a number R � �
and an operator B � L�H�����H����� such that BA�R � �R ��RAB � �R
�
respectively�

An operator A is called locally invertible at the point �� if it is locally
invertible both from the left and from the right at this point�

Theorem ����� Suppose A � op�a�� where a � Ssv���� ���� Then the
operator A � H���� � H���� is locally invertible at the point �� if and
only if there exists a number R � � such that the operator�valued function
a�x� 
� � H� � H� is invertible for all �x� 
� � �R�����R and

sup
�R�����R

k���
�a
���x� 
����

� �
�kL� �H�� �H��
��
 �
�����
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Proof� We �rst prove that an operator A � OP S���� ��� is locally invert

ible at the point �� as an operator acting from H���� to H���� if and only
if the operator �A � op����A op��

��
� � is locally invertible at the point �� as

an operator acting from L��R� �H�� to L��R� �H��� We give the proof only for
the local invertibility from the left at the point ��	 similar arguments apply
to the case of local invertibility from the right�
To this end� we assume that A � H���� � H���� is locally invertible from

the left at the point ��� By de�nition� there are an R � � and an operator
B � L�H�����H����� such that BA�R � �R� We can rewrite this equality as

BA op����
� � op�����R � �R

or T op�����R � �R� where T � BA op����
� �� Since

T op�����R op��
��
� � � T�R � T ��R� op����� op��

��
� ��

�R op��
��
� � � op����

� ��R � ��R� op��
��
� ���

we deduce that

op����T�R � op����T ��R� op����� op��
��
� � � �R � op������R� op��

��
� ��


Put

SR � op����T ��R� op����� op��
��
� �� op������R� op��

��
� ���

the operator acting in L��R� �H��� By Proposition 
���
� the norm of this oper

ator tends to � when R���
Let �� be another cut
o� function at the point ��� such that ��� � ���

Then�

op����T ��R � �Id � SR���R�

where Id stands for the identity operator in L��R� �H��� Choose an R � � with
the property that kSRk � 
	�� Then the inverse �Id � SR�

�� exists and

�Id � SR�
�� op����T ��R � ��R


Substituting T � BA op����
� � to this equality yields

�Id � SR�
�� op����B op��

��
� � �A��R � ��R�

and consequently the operator �A � op����A op��
��
� � is locally invertible from

the left at the point ���
In the same manner we can see that if the operator �A has a left locally

inverse operator at the point ��� then A does so�
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Let A � OP Ssv���� ���� Then �A � OP Ssv�Id �H�
� Id �H�

�� as is easy to see�

In particular� the symbol �a of �A obeys the estimates

sup
x��

kD	
xD

�
� �a�x� 
�kL� �H�� �H��

� c��	��a�� �
�����

for �� � �Z�� Moreover� Proposition 
���� shows that

�a�x� 
� � ���
�a�x� 
��
��
� �x� 
� � r�x� 
��

where r � S��Id �H�
� Id �H�

�� Hence it follows� by Proposition 
����� that

lim
R���

k�R op�r�kL� �H� � �H��
� �� �
�����

for each cut
o� function � at the point ���
From �
����� we conclude that the operator op�r� is not essential for the

local invertibility of �A at the point ��� We are thus reduced to proving
Theorem 
���� for the operators with symbols ���
�a�x� 
��

��
� �x� 
� satisfying

estimates �
������ These have been treated in the paper of Rabinovich �Rab��b�
where a criterion of local invertibility at the point �� is proved� The desired
statement now follows immediately from Theorem 
�
 in �Rab��b��

�

The important point to note here is the nature of the local inverse operator
under the condition of Theorem 
����� Namely B � OP S���� ���� which is
clear from the arguments in the proof of Theorem 
�
 in �Rab��b�

��
 Pseudodi�erential operators in classes

with exponential weights

For a number � � R� we denote by H��	 �� the completion of C�
comp�R�H� with

respect to the norm
kukH�
�
� � ke


xukH�
�


An operator A � op�a� acting in these Sobolev spaces with exponential
weights can be written in the form

Au �x� �



��

Z
R�i


dz

Z
R

ei�x�x
��za�x� z�u�x��dx�� x � R�

for u � C�
comp�R�H��� where z � 
 � i�� 
 � R�

We assume that a�x� 
 � i�� obeys estimates �
���
�� the constants c��	�a�
being allowed to depend on �� Let us denote by S���� ��	 �� the class of all such
symbols� As in Section 
��� we distinguish the subclass Ssv���� ��	 �� consisting
of those symbols a � S���� ��	 �� which vary slowly at the point ���
The results of this chapter extend to the operators of class OP S���� ��	 ��

acting from H���	 �� to H���	 ��� The proofs are actually the same�



Chapter �

Weighted Pseudodi�erential

Operators

��� Weighted Fourier transform

Let x � ��t� be a di�eomorphism of R� onto R� such that ���t� � � for all
t � R�� Thus�

lim
t���

��t� � ���

lim
t���

��t� � ��


Set
��u �x� � u�����x��� x � R	
��f �t� � f���t��� t � R�


Then�

�� � C�
comp�R��H� � C�

comp�R�H��
�� � C�

comp�R�H� � C�
comp�R��H�

are inverse to each other and extend to isomorphisms of Hilbert spaces

�� � L��R�� dm�H� � L��R�H��
�� � L��R�H� � L��R�� dm�H��

where dm � j���t�jdt�

For a function u � C�
comp�R��H�� we de�ne the weighted Fourier transform

by

Fu �� � �

Z
R

e�i�x��u�x�dx

�

Z
R�

e�i���t�u�t�dm�t�� � � R


��
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From the properties of the usual Fourier transform it follows that F extends
to an isomorphismL��R��m�H�� L��R�H�� Moreover� the inverse transform
is given by the formula

F��f �t� �



��

Z
R

ei��t��f�� �d�� t � R��

for f � C�
comp�R�H��

The construction of the weighted Fourier transform goes back as far as
Glushko and Savchenko �GS��� �cf� also Hirschmann �Hir���� Schulze and Tar

khanov �ST�����

Example ����� Let ��t� � � log t� In this case the weighted Fourier trans

form is actually the Mellin transform

Fu �� � �

Z
R�

t�i�u�t�
dt

t

� Mu ��i� �� � � R


Recall that the inversion formula for the Mellin transform reads

M��f �t� �



��

Z
R

t��f�� �d�� t � R�


�

Example ����� For a p � �� consider the function

��t� �

� �
ptp
� t � ��� 
�	

�t� t � ������


We extend � to the interval �
� �� so as to obtain a di�eomorphism of R� onto R
with negative derivative� Then� the corresponding weighted Fourier transform
F can be regarded as a �correction� to the p
Borel transform�

�

Example ����� Consider the function

��t� �

�
e
�

t � t � ��� 
�	
�t� t � ������


Once again� we extend � to the interval �
� �� so as to arrive at a di�eomorphism
of R� onto R with negative derivative� In this case� the weighted Fourier
transform F is of transcendental nature�

�

In what follows we are interested in the weighted Fourier transform for
functions x � ��t� de�ned in a small interval ��� ��� � � �� and arbitrarily
extended to the whole semiaxis so as to be di�eomorphisms of R� onto R with
negative derivative�
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��� Weighted pseudodi�erential operators

In this section we introduce classes of pseudodi�erential operators which are
based on the weighted Fourier transform F just in the same way as the classes
S���� ��� and Ssv���� ��� are based on the usual Fourier transform� The crucial
fact is that all results concerning weighted pseudodi�erential operators are
obtained from the usual theory by means of the evident change of variables
x � ��t��
We begin with the observation that the weighted Fourier transform is re


lated to the derivative

D �



���t�




i

�

�t

in the same manner as the usual Fourier transform to the derivative D � �
i
�
�t

�cf� �ST�����
Fix

�� � ��H�� �H���

�� � ��H�� �H��


De
nition ����� We denote by Sw���� ��	 �� the class of C� functions
a�t� �� de�ned on R�� �R�i�� and taking their values in L�H��H�� such that�
for each �� � �Z�� there is a constant c��	�a� with the property that

k���� ��D
	
tD

�
� a�t� ��i����

��
� �� �kL� �H�� �H��

� c��	�a� for all �t� � � � R��R

�����
�

We emphasise that the constants c��	�a� in �����
� are allowed to depend
on ��
To any symbol a � Sw���� ��	 �� we assign a weighted pseudodi�erential

operator A � op�a� by setting

Au �t� �



��

Z
R�i


d�

Z
R�

ei���t����t
����a�t� ��u�t��dm�t��� t � R�� �������

for u � C�
comp�R��H��� where dm�t�� � j���t��jdt��

Example ����� Consider an ordinary di�erential operator with operator

valued coe�cients

Au�t� �

mX
j	�

aj�t�D
ju�t�� t � R��

where aj � C��R�� L�H��H��� ful�ll the estimates

kD	aj�t�kL�H��H�� � cj�	� for each � �Z�
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This operator can be written in the form ������� with

a�t� �� �
mX
j	�

aj�t��
j� �t� �� � R�� �R� i���

as is easy to check� In order to get a � Sw���� ��	 ��� it is necessary to put
some further restrictions on �� and ���

�

The class of all pseudodi�erential operators with symbols in Sw���� ��	 ��
is denoted by OP Sw���� ��	 ��� In particular� if ��t� � � log t� we arrive at the
class of Mellin pseudodi�erential operators �cf� for instance Schulze �Sch�
��
Rabinovich �Rab��a���
In much the same way we can introduce the class OP Sw�d���� ��	 �� of

weighted pseudodi�erential operators with double symbols�
We shall say that a symbol a�t� �� � Sw���� ��	 �� varies slowly at the point

t � � if

lim
t���

sup
��R

k���� ��D
	
tD

�
� a�t� � � i������

� �� �kL� �H�� �H��
� �� �������

for each � �Z� and each � �Z� with � �� ��
The class of such symbols is denoted by Sw�sv���� ��	 ��� We distinguish

the subclass Sw������ ��	 �� in Sw�sv���� ��	 �� consisting of those symbols a�t� ��
which obey estimates ������� for all �� � �Z� �i�e�� including � � ���

In a similar way we de�ne the class Sw�d�sv���� ��	 �� of slowly varying double
weighted symbols� The corresponding classes of pseudodi�erential operators
are denoted by

OP Sw�sv���� ��	 ���
OP Sw������ ��	 ���
OP Sw�d�sv���� ��	 ��


Example ����� LetM be a smooth compact closed manifold of dimension
n� Consider a di�erential operator A of order m on the semicylinder R��M
over M � In each local chart U on M � we have

A �
X

j�j�j�m

aj���t� x�D
jD�

x �

where aj�� � C��R� � U�� Suppose that the coe�cients aj�� satisfy the esti

mates

sup
t�R�

jD	
tD



xaj���t� x�j � c	�
� � �Z�� � �Z

n
�� �������



�� V� Rabinovich� B��W� Schulze� and N� Tarkhanov

uniformly in x on compact subsets of U � Then� for any �xed s� � � R� we have
A � OP Sw���� ��	 ��� where

���� � � �
 � � � � M�
s
� �

���� � � �
 � � � � M�
s�m
� �

 M being a non
negative Laplace
Beltrami operator on M �cf� Example 
�
��
in case V �M � C �� If� in addition to �������� aj�� bear

lim
t���

Dtaj���t� x� � �

uniformly in x on compact subsets of U � then A � OP Sw�sv���� ��	 ���
�

The coe�cients �aj��� ful�lling ������� need not be smooth up to t � �� In
particular� they are allowed to behave like e�p��t����t���c�x�� where �p � � and
� � R�
By private communication we learned that T� Hirschmann �
���� unpub�

lished� has independently studied a particular subclass for the case of closed
manifolds M � In his setting the coe�cients in the symbols are supposed to
have asymptotics of conormal type� for t � �� The algebra thus obtained
is an extension of the cone algebra of Schulze �Sch�
� and it is closed under
parametrix construction for elliptic elements�

Example ����� LetM be a compact smooth manifold with boundary �M
and let V � �V �W � �W � be smooth vector bundles over M ��M�� respectively�
For an m � Zand d � Z�� we denote by Alg

m�d�V� �V 	W� �W � the algebra of
Boutet de Monvel�s operators of order m and type d between sections of the
vector bundles in question �cf� Boutet de Monvel �BdM�
�� Rempel and Schulze
�RS���� Grubb �Gru���� Schulze �Sch����� An operator A � Algm�d�V� �V 	W� �W �
extends to a continuous mapping

A �
Hs�M�V �

�
Hs��M�W �

�
Hs�m�M� �V �

�

Hs�m��M� �W ��

for every s � R with s � d � �
�� For m � Z� pick a family of order
reducing

isomorphisms

Rm
V�W �� � �

Hs�M�V �
�

Hs��M�W �
�

Hs�m�M�V �
�

Hs�m��M�W �
� s � �




�
�

within the algebra Algm���V� V 	W�W �� parametrised by � � R� In fact� we
can always choose Rm

V�W of being without potential and trace conditions� i�e��
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of the form Rm
V�W � R

m
V �R

m
W �cf� Examples 
�
�� and 
�
���� For an s �Z��

set
���� � � Rs

V�W �� ��
���� � � Rs�m

�V � �W
�� ��

�������

where � � R� Hence it follows that

�� � ��Hs�M�V ��Hs��M�W �� L��M�V �� L���M�W ���

�� � ��Hs�m�M� �V ��Hs�m��M� �W �� L��M� �V �� L���M� �W ��


Now� given any s �Z� and � � R� we can consider weighted pseudodi�erential
operators ������� with symbols a � Sw���� ��	 �� taking their values in the
algebra Algm�d�V� �V 	W� �W �� where ��� �� are weight functions �������� In this
way we obtain what is a signi�cant ingredient of the algebra of boundary value
problems on a manifold with singular points on the boundary �cf� Schrohe and
Schulze �SS��� SS�����

�

��� Function spaces related to weighted pseu�

dodi�erential operators

In what follows we assume that � � ��H� �H� is a symbol �with constant
coe�cients��

De
nition ����� By Hw��� is meant the completion of C�
comp�R��H� with

respect to the norm

kukHw�
� �

�Z
R

k��� �Fu�� �k��Hd�

����


 �����
�

From the Parseval identity it follows that norm �����
� coincides with the
norm

kukHw�
� �

�Z
R�

kop���uk��Hdm�t�

����

�

where op��� � F����� �F�
We now proceed similarly to Section 
��� For � � R� we denote byHw��	 ��

the space of all distributions u on R� with values in H� such that e
��t�u �
Hw���� This space is topologised under the norm

kukHw�
�
� � ke

��t�ukHw�
�


We check at once that

kukHw�
�
� �

�Z
R�i


k�����Fu���k��Hd�

����

�



�� V� Rabinovich� B��W� Schulze� and N� Tarkhanov

for each u � Hw��	 ���
In the sequel we use also two
parameter spaces Hw��	 �� ��� for �� � �

R� These consist of all distributions u on R� with values in H� such that
e
��t�����t���u � Hw���� We endow Hw��	 �� �� with the norm

kukHw�
�
��� � ke
��t�����t���ukHw�
�

� k����t���ukHw�
�
�


In general� Hw��	 �� �� do not behave properly under action of weighted
pseudodi�erential operators� In order to get asymptotic results it is necessary
to put some further restrictions to � �cf� Section ��
��

��� Composition formulas

Let a�s� �� be a C� function on R��R taking values in L�H��H�� and satis

fying� for some � � R� the estimates

kD	
sD

�
� a�s� ��kL�H��H�� � c��	�a� h�i

�� �s� �� � R��R� �����
�

for all �� � �Z��
To a�s� �� we assign the operator
valued integral

I�a� � lim
���

ZZ
R��R

�����s�� ���ei��s��a�s� ��dm�s�d��

where ��y� �� is a cut
o� function� i�e�� � � C�
comp�R

�� and ��y� �� � 
 in a
neighbourhood of the origin�
With the help of the change of variables y � ��s� it is easy to see that I�a�

exists and is independent of the particular choice of �� Moreover�

I�a� �

ZZ
R��R

ei��s��h��s�i��N�hD�i
�N�
�
h�i��N�hDsi

�N�a�s� ��
�
dm�s�d��

�������
where N�� N� are non
negative integers satisfying �N� � 
� �N� � �� 
�
To derive composition formulas for weighted pseudodi�erential operators

on the semiaxis� we pull back the group structure from R to R� via the dif

feomorphism �� Namely� we set

t � s � ������t� � ��s��� t� s � R��

then �R�� �� is a locally compact commutative group with invariant measure
dm� In the case of Mellin pseudodi�erential operators� we have ��t� � � log t�
t � s � ts and dm�t� � dt

t
�
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Proposition �����

� Suppose that A � OP Sw���� ��	 �� and B � OP Sw���� ��	 ��� Then�

BA � OP Sw���� ��	 ��� the symbol of BA is

�BA�t� � � �



��

ZZ
R��R

e�i��s���B�t� � � ���A�t � s� � �dm�s�d� �������

and the corresponding mapping Sw���� ��	 ���Sw���� ��	 ��� Sw���� ��	 �� is
continuous�
�� Suppose that A � OP Sw�d���� ��	 �� is an operator with double symbol

a�t� t�� � �� Then� A � OP Sw���� ��	 ��� the symbol of A is

�A�t� � � �



��

ZZ
R��R

e�i��s��a�t� t � s� � � ��dm�s�d� �������

and the corresponding mapping Sw�d���� ��	 ��� Sw���� ��	 �� is continuous�

We emphasise that the integrals in ������� and ������� are regarded as os

cillatory integrals in the sense of formula ��������

Proposition �����

� Suppose that A � OP Sw�sv���� ��	 �� and B � OP Sw�sv���� ��	 ��� Then�

BA � OP Sw�sv���� ��	 �� and the symbol of BA is of the form

�BA�t� � � � �B�t� � ��A�t� � � � r�t� � ��

where r�t� � � � Sw������ ��	 ���
�� Suppose that A � OP Sd�sv���� ��	 �� is an operator with double symbol

a�t� t�� � �� Then� A � OP Sw�sv���� ��	 �� and the symbol of A is of the form

�A�t� � � � a�t� t� � � � r�t� � ��

where r�t� � � � Sw������ ��	 ���

The proofs of Propositions ����
 and ����� are quite analogous to those of
Propositions 
���
 and 
����� respectively�

��	 Boundedness

The continuity of weighted pseudodi�erential operators is established by our
next proposition�

Proposition ��	�� Each operator A � OP Sw���� ��	 �� extends to a con�
tinuous linear mapping Hw����� Hw����� Moreover�

kAkL�Hw�
���Hw�
��� � c
X

��	�N

c��	��A��

where the constants c � � and N �Z� are independent of A�
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�

�Rb

Ra

t

x

x � ��t�

����Rb� ����Ra�

x � ���R�t�




Fig� ��
� A cut
o� function at the point t � ��

Proof� This follows by the same method as in the proof of Proposi

tion 
�����

�

Let � be a cut
o� function at the point ��� i�e�� let � � C��R� vanish
for x � a and be equal to 
 for x � b� where � � a � b � �� As in Section

��� set �R�x� � �� x

R
�� for R � �� This is again a cut
o� function at ��� The

pull
back ���R of �R under the mapping x � ��t� is then what we shall call
the cut�o� function at the point t � � �cf� Fig� ��
��

Proposition ��	�� For each A � OP Sw������ ��	 ��� it follows that

lim
R��

k���RAkL�Hw�
���Hw�
��� � ��

lim
R��

kA���RkL�Hw�
���Hw�
��� � �


Proof� This is just a restatement of Proposition 
���� in terms of weighted
pseudodi�erential operators�

�

Let us mention an important consequence of this proposition which states
that the perturbations by operators in OP Sw������ ��	 �� do not a�ect the local
invertibility at the point t � �� provided this is de�ned by invoking the cut
o�
functions ���R�

Corollary ��	�� Suppose S � OP Sw������ ��	 ��� Then� an operator A in
L�Hw�����Hw����� is locally invertible at the point t � � if and only if so is
A� S�

Proof� The proof is immediate from Proposition ������
�

Thus� the operators of OP Sw������ ��	 �� are unessential in the problem of
local invertibility at the point t � �� for operators in OP Sw���� ��	 ���
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��� Local invertibility of weighted pseudodif�

ferential operators at the singular point

An operator A � L�Hw�����Hw����� is said to be locally invertible from the
left �right� at the point t � � if there are an R � � and an operator B �
L�Hw�����Hw����� such that BA���R � ���R �resp� ���RAB � ���R��

An operator A is called locally invertible at the point t � � if it is locally
invertible both from the left and from the right at this point�

We are now in a position to formulate the main result of this chapter which
provides a criterion for the local invertibility of operators with symbols slowly
varying at t � ��

Theorem ����� Let A � op�a�� where a � Sw�sv���� ��	 ��� Then the op�
erator A � Hw���� � Hw���� is locally invertible at the point t � � if and
only if there exists a number � � � such that the operator�valued function
a�t� � � � H� � H� is invertible for all �t� � � � ��� ���R and

sup
������R

k���� �a
���t� � ����

� �� �kL� �H�� �H��
��
 �����
�

Proof� Cf� Theorem 
�����

�

Under the condition of this theorem� the local inverse operator B is guar

anteed to exist within the space OP Sw���� ��� �cf� the remark after the proof
of Theorem 
������

��� Weighted pseudodi�erential operators in

classes with exponential weights

If a � Sw���� ��	 ��� � � R� then the operator A � op�a� given by �������
extends to a continuous mapping Hw���	 �� � Hw���	 ��� Theorem ����
 is
carried over to this setting in a slightly di�erent form�

Theorem ����� Let A � op�a�� where a � Sw�sv���� ��	 ��� � � R� Then
the operator A � Hw���	 �� � Hw���	 �� is locally invertible at the point t � �
if and only if there exists an � � � such that the operator�valued function
a�t� � � i�� �H� � H� is invertible for all �t� � � � ��� ���R and

sup
������R

k���� �a
���t� � � i�����

� �� �kL� �H�� �H��
��
 �����
�



�� V� Rabinovich� B��W� Schulze� and N� Tarkhanov

Denote by H� the space H equipped with the norm u 
� k��� �uk �H depend

ing on the parameter � � R� Then� another way of stating �����
� is to say
that

sup
������R

ka���t� � � i��kL�H��� �H��� � ��


The theorem gains in interest if we realise that� for the symbols a�t� ��
su�ciently smooth up to t � �� condition �����
� can be replaced by that at
t � �� To do this� let us specify the meaning of being �su�ciently smooth��
A symbol a � Sw���� ��	 �� is said to be regular up to t � � if the limit

lim
t��

a�t� �� � a��� �� �������

exists in the sense that� for each �� � �Z�� we have

lim
t��
sup
��R

k���� �D
	
tD

�
� �a�t� � � i��� a��� � � i������

� �� �kL� �H�� �H��
� �


Obviously� each symbol a � Sw���� ��	 �� regular up to t � � varies slowly
at this point� On the other hand� for a symbol a � Sw�sv���� ��	 ��� equality
������� reduces to

lim
t��
sup
��R

k���� �D
�
� �a�t� � � i��� a��� � � i������

� �� �kL� �H�� �H��
� �

for all � �Z��

Corollary ����� Suppose A � Sw���� ��	 ��� � � R� is an operator with a
symbol a regular up to t � �� Then the operator A � Hw���	 �� � Hw���	 �� is
locally invertible at the point t � � if and only if the operator�valued function
a��� �� � H� � H� is invertible for all � � R� i� and

sup
��R

k���� �a
����� � � i�����

� �� �kL� �H�� �H��
��
 �������

Proof� Indeed� the equality ������� just amounts to saying that the dif

ference a�t� �� � a��� �� is of class Sw������ ��	 ��� Applying Corollary �����
completes the proof�

�



Chapter �

Di�erential Operators in

Domains with Cusps

��� Cusps

Let $ be a domain in Rn star
shaped with respect to the origin and let x �
S��� be a di�eomorphism of $ onto an open subset of the unit sphere Sn in
R
n���

For a point x� � Rn��� the set of all points x � x��rS��� with r � R� and
� � $ is an open cone with vertex at x�� We call �r� �� the polar coordinates
of the point x�

As but one instance of this� we show

S��� �

�
��� 
 
 
 � �n�

q

 � ��

� � 
 
 
� ��
n

�
�

S being a di�eomorphism of the unit ball in Rn with center at the origin onto
the upper half
sphere fx � Sn � xn�� � �g in Rn���
In the sequel� B�x�� �� stands for the ball with centre x� and radius � � �

in Rn���
Consider a closed domain D in Rn�� given near a singular point x� � �D

by

D � �B�x�� �� n fx�g� � fx� � rS�f�r��� � r � ��� ��� � �Mg ���
�
�

with some � � �� where f is a positive function on the interval ��� �� and M a
compact subdomain of $ with smooth boundary�
To specify the function f in ���
�
� we begin with a transparent geometric

example�

��
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�

�

x�

x�

r

�
�
rf�r�

�������
x�

F �x�� �
p
x�
� � x�

�

Fig� ��
� A domain with a cusp at the origin�

Example ����� Suppose

D � fx � R�� x� � �� F �x�� �
q
x�
� � x�

�g�

where F is a positive smooth function on the half
line R� satisfying F ���� � �
�cf� Fig� ��
�� Let f�r� be an implicit function of r � � de�ned by the equation

F

�q
r� �

�
�
�
rf
���

� �
�
rf
 ���
���

As is easy to see� f�r� is uniquely de�ned unless F is rather intricate� Moreover�
we have jf�r�j � � for all r � �� Then�

D � �B�x�� �� n fx�g�

� fr�f�r���� f�r����
p

��f�r�������f�r������ � r � ��� ��� ��� � ��� �

�
�
�

��
g


Since F ���� � �� it follows from ���
��� that

lim
r��

f�r�p
�� �f�r���

� F �����

or� equivalently�

lim
r��

f�r� �
�F �����p

 � �F �������

���
���

provided the derivative F ����� exists� If the boundary of D is smooth �i�e��
possesses a tangential plane� at the origin� then F ����� � �� and so ���
���
gives f���� � �� If the origin is a conical point on the boundary �i�e�� the
tangential cone to �D at x � � is non
degenerate�� then F ����� is �nite and
di�erent from zero� In this case f���� is in the interval ��� ��� Finally� if
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the boundary of D has a cusp at the origin �i�e�� the tangential cone to the
boundary at x � � degenerates�� then F ����� � �� whence f���� � �� In
particular� consider F �t� � tp� where p � �� then ���
��� becomes � r

�
���p������

f��p � f�� The boundary of D is smooth at the origin� if � � p � 
� has a
conical point at the origin� if p � 
� and has a power
like cusp at the origin� if
p � 
�

�

Having disposed of this preliminary step� we can now return to the function
f in ���
�
�� Unless otherwise stated� we assume that f � C���� �� is positive
and bounded�
Set

��t� �

Z �

t

dr

rf�r�
� for t � ��� ��� ���
���

then � ful�lls the requirements of Section ��
�
Let us consider the %totally characteristic� derivative

D �



���t�
D

� ��tf�t��D�

the last equality being a consequence of ���
���� By the above� the coe�cient
�tf�t� is in�nitesimal as t� �� The following technical result sheds light on
the coe�cients of Dj� for j �Z��

Proposition ����� For each j � �� 
� 
 
 
� we have

Dj � ��tf�jDj �

j��X
�	�

pj�j���f� tDf� 
 
 
 � t
�D�f���tf�j��Dj�� � ���
���

where pj�j�� is a polynomial of degree � with �integer
 complex coe�cients�

Proof� Since

D ���tf��u� � ��tf��Du� ���tf����
i
f � tDf�u�

D �t�D�f� � �� �
i
f�t�D�f�� f�t���D���f��

equality ���
��� follows by induction in j�
�

Equality ���
��� suggests a condition on the behaviour of f close to t � �
which guarantees that the coe�cients of the powers Dj are in�nitesimal as
t� �� Namely�

sup
t������

jtjDjf�t�j � cj� j � �� 
� 
 
 
 
 ���
���

Let us show two typical choices of f satisfying ���
����
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Example ����� We set f�r� � rp� where p � �� This corresponds to a
conical point� if p � �� and a power
like cusp� if p � ��

�

Example ����� We set f�r� � e���r� This corresponds to an exponential
cusp�

�

��� Di�erential operators

Let A �
P

j	j�m a	�x�D	 be a di�erential operator with C� coe�cients in

D � �B�x�� �� n fx�g�� We are looking for an expression for A in the �polar�
coordinates �r� �� � ��� �� �M � where x � x� � rS�f�r���� To this end� we
make use of the following proposition�
Set �

�S

��

���

��� �

�
�S

��

T �S

��

���
�S

��

T

� � � $�

where �S
��
�
	
�S�
��j



is the Jacobian matrix of S and the superscript %T� means

the transposed matrix� Since rankR
�S
��
� n in the domain $� the inverse of

�S
��

T �S
��
exists and is smooth in $� It follows that

�
�S
��

���
is a left inverse for

�S
��
�

Proposition ����� For every j � 
� 
 
 
 � n� 
� we have

�

�xj
� Sj�f��

�

�r
�



rf

nX
�	�

��
�S

��

���

�j

�f��� r
�f

�r
Sj�f�� ��

�
�

���
� �����
�

�
�S
��

���

�j
being the ��� j��entry of

�
�S
��

���
�

Proof� We have x � x� � rS�f�r���� whence

�x

��r� ��
�

�
S�f�r��� � �f

�r

nP
�	�

�S
���
�f���� rf �S

��
�f��

�
�

S being regarded as a column vector�
Moreover� since S�

���� � 
 
 
� S�
n����� � 
 for all � � $� it follows that

ST �S
��
� � in $�

whence

det
�S���

��
� ��
����S� det

�
S

�S

��

�
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for each � � 
� 
 
 
 � n � 
� Here S��� denotes the mapping S with the � th
component omitted�
By Cramer�s rule� the inverse matrix for �x

��r���
is of the form

��r� ��

�x

����
x	x��rS�f��

�

�
ST �f��

�
rf�r�

�
�S
��

���
�f��

�
�
r �f
�r

rf

�
BB


�
ST �f����


 
 

ST �f���n

�
CCA �

where
�
�S
��

���
is the left inverse for �S

��
�

Thus� the chain rule yields

�

�xj
�

�r

�xj

�

�r
�

nX
�	�

���
�xj

�

���

� Sj�f��
�

�r
�



rf

nX
�	�

��
�S

��

���

�j

�f��� r
�f

�r
Sj�f�� ��

�
�

���
�

for j � 
� 
 
 
 � n� 
� as required�
�

Using matrix conventions� we can rewrite �����
� as

Dx �
�

�rf

�
S�f��Dr �

	�
�S
��

���
�f��


T
D� � r �f

�r
S�f�� �D�

�
�

where �D� �
Pn

�	� ��
�
i

�
���
� Since

D �
�rf

� �
�rf
��
i
f � rDf��

DS�f�� � �

�
nP
�	�

�S
���
�f�� f�i

�
rDf�

D� S�f�� � fD�S �f���

we deduce that� under the change of variables ��r� �� � x� � rS�f�r���� the
di�erential operator A transforms into an operator

��A � ����r��
m
X

j�j�j�m

�

 X

j�j�j�j	j�m

����r��
j	j�m

p
�	�
j�� ��a	�r� ��

�
ADjD�

�

�������

on the cylinder ��� �� �M over M � where p
�	�
j�� are polynomials with integer

coe�cients of r�f ��� �� � �� 
� 
 
 
 � j�j � j�� � and elements of the matrices DI
�S

and DI
�

�
�S
��

���
� jIj � j�j�j�j�j� with � � f�� �The operator ��A is called the

pull�back of A under ��� The polynomials p�	�j�� can be computed from �����
��
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Note that the pull
backs ��a	�r� �� behave �well� on the cylinder ��� ��� $ if
so do the coe�cients of A near the point x��
Set

aj���r� �� �
X

j�j�j�j	j�m

����r��
j	j�m

p
�	�
j�� ��a	�r� ���

for �r� �� � ��� ���M � We require aj�� to ful�ll the estimates

sup
r������

jD	
rD



� aj���r� ��j � c	�
� � � Z�� � �Z

n
�� �������

uniformly in � �M �cf� ��������� Proposition ��
�� shows that� under condition
���
���� aj�� satisfy ������� if so do ��a	�r� ��� i�e��

jDBa	�x�j � cB �a	�
�
����jx� x�j�

�jBj
�������

for all multi
indices B �Zn��
� �

Estimates ������� just amount to saying that �����m��A is a weighted di�er

ential operator in the sense of Section ���� with � given by ���
���� Moreover�
�����m��A is a di�erential operators with a symbol slowly varying at the point
r � � if� in addition to �������� the coe�cients aj�� bear

lim
r��

Draj���r� �� � � �������

uniformly in � �M �
As but one instance of a function a�r� �� satisfying ������� and ������� we

show ei���r��
�

c���� where c � C��M� and � � ��� 
��

Proposition ����� Suppose that

lim
r���

rjDjf�r� � �� for each j � 
� �� 
 
 
 
 �������

Let ���	�

 hold� Then� aj�� satisfy ���	��
 if so do ��a	�r� ��� i�e��

lim
x�x�

Dxja	�x�	�
��jx� x�j� � � �������

for every j � 
� 
 
 
 � n� 
�

Proof� Indeed� condition ������� implies

lim
r��

Dr �
�a	�r� �� � �

uniformly in � �M � Moreover�

Dr ��
��r��� � �i � ����r��� �f � rf ��
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vanishes as r � �� for each � � �� It remains to evaluate the derivative of
p
�	�
j�� when r � �� To this end� set 
� � r�f ���� � � �� 
� 
 
 
 � j�j � j� and let
�� � � � 
� 
 
 
 � N � be an indexing of the elements of both matrices DI

�S and

DI
�

�
�S
��

���
� jIj � j�j � j � j�j� where � � f�� By the chain rule� we get

Dr p
�	�
j�� �

j	j�jX
�	�

�p
�	�
j��

�
�
D
�
r�f ���

�
�

NX
�	�

�p
�	�
j��

���
Dr ���f��

and
D
�
r�f ���

�
� if

�
�r�f ��� � r���f �����

�
�

Dr ���f�� � �

�
nP
�	�

��
���
���

�
j�	f� rDf�

whence
lim
r��

Dr p
�	�
j�� � �

uniformly in � �M � This completes the proof�
�

The choice of f meeting ������� seems to be the best adapted to our theory�
Note that this condition is stronger than ���
����
Let us mention yet another advantage of using functions f satisfying ��������

To this end� we denote by q�	�j�� the polynomial obtained from p
�	�
j�� via replacing

rf �� 
 
 
 � rj	j�jf �j	j�j� by zeroes� It is easy to see that q�	�j�� depends on r and
� � f� rather than on � directly� Set

a
���
j���r� �� �

X
j	j	m

q
�	�
j�� ��a	�r� ���

and write
��A � ����m

X
j�j�j�m

a
���
j���r� ��D

jD�
� � ��

��mS
 �������

Proposition ����� Under condition ���	��
� if moreover a	 ful�ll ���	�

�
then the coe�cients of the di�erential operator S in ���	��
 are in�nitesimal
as r� ��

Proof� Indeed� we have

S �
X

j�j�j�m

�j��D
jD�

� �

with

�j�� � aj���r� ��� a
���
j���r� ��

�
X
j	j	m

	
p
�	�
j�� � q

�	�
j��



��a	�r� �� �

X
j�j�j�j	j�m

����r��j	j�m p
�	�
j�� ��a	�r� ��
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If j � j�j� then p
�	�
j�� � q

�	�
j�� � � by the very de�nition� For �xed j� � and �

with j � j�j � m� set J � j�j�j� Using Taylor�s expansion for the polynomial

p
�	�
j�� gives

p
�	�
j�� � q

�	�
j�� �

X

�ZJ���N

�
nf�g


�	
J��	���	
J���N	�




�"
�
�����p

�	�
j�� j��	���	�J	��rf

��
� 
 
 
 �rJf �J��
J 


Combining this with ������� and �������� we deduce that the �rst sum in the
expression for �j�� vanishes when r� ��

On the other hand� if j�j � m� then ����r��j	j�m � � as r� �� This shows
that the second term of �j�� also vanishes when r � �� Hence the desired
conclusion follows�

�

We show below that the operator ����mS has a small local norm in suitable
function spaces and is thus unessential in the problem of local invertibility at
the point r � ��
The class of coe�cients satisfying ������� and ������� contains some func


tions rapidly oscillating near the cusp �i�e�� close to r � ���

Example ����� For each � � p � 
 and c � C��$�� the function

a�r� �� � ei���r��
p

c���

ful�lls both ������� and ��������
�

��� Di�erential operators on manifolds with

cusps

Let M be a �topological� submanifold of Rn�� of dimension d � 
� where
� � d � n�
A point x� � M is said to be a singular point of this manifold ifM is given

close to x� in the form

M� �B�x�� �� n fx�g� � fx� � rS�f�r��� � r � ��� ��� � �Mg� �����
�

with some � � �� where f is a positive function on the interval ��� �� and M is
a smooth compact closed submanifold of $ of dimension d�
We may specify the function f in �����
� in the same way as in Section ��
�

thus specifying various kinds of singular points�
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We will restrict our attention to local coordinate charts on M with local
coordinates ��

�
�� � ������


 
 

�n � �n����

where rank
	
��i
��j



� d for all � � ���� 
 
 
 � �d� varying over a domain & 
 Rd�

Under the change of variables ��r� �� � x�� rS�f�r���� a di�erential oper

ator A on the �smooth part�M��B�x�� ��nfx�g� ofM close to x� transforms
into an operator ��A on the cylinder ��� �� �M over M � Moreover� analysis
similar to that in Section ��� actually shows that ��A is of the form ������� in
local coordinates � � ���� on M �
We are thus led to typical di�erential operators on the manifoldM close

to the singular point x�� When written in the polar coordinates with center
x�� these are di�erential operators on the cylinder ��� �� �M over M of the
form

A �

�



�rf

�m mX
j	�

aj�r�D
j �

where aj � C����� ���Di�m�j�M�� and D � ��rf�Dr� Thus� in every local

chart U
		
� & 
 Rd on M � we have

aj�r� �
X

j�j�m�j

aj���r� ��D
�
� �

aj�� being C� functions in ��� ���&�
We shall make two standing assumptions on the coe�cients aj�� under

consideration �cf� Example ������� Namely� they are required to ful�ll both
������� and ������� uniformly on compact subsets of &� It is immaterial which
covering ofM by local charts we choose to de�ne our class of operators as long
as M is compact�

��� Canonical domains and surfaces with

cusps

Fix a bounded positive function f � C���� ��� From now on we tacitly assume
that f bears estimates ���
����
We extend f to a positive C� function on the entire semiaxis R� which is

constant for r � R � �� It will cause no confusion if we use the same letter to
designate f and its extension�
If f�r� � c� for r � ��� ��� which we may assume� then there is a desired

extension of f with values in ��� c���
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Suppose M be a subset of $� such that c�M 
 $� Let

Cx� � fx
� � rS�f�r��� � r � R�� � �Mg� �����
�

the right
hand side being well
de�ned due to the fact that $ is star
shaped
with respect to the origin�
Note that the part of Cx� lying outside the ball B�x

�� R� is a conical set�
i�e�� if x � Cx� and jx� x�j � R� then x� � ��x� x�� � Cx� for all � � 
�
If M is a compact domain with smooth boundary in $� then we call Cx�

the canonical domain with a singular point on the boundary�
If M is a smooth compact closed submanifold of $ of dimension d� with

� � d � n� then Cx� is said to be a canonical surface with a singular point�

Remark ����� Obviously� if Cx� is a canonical domain with a singular
point on the boundary� then the boundary of Cx� is a canonical surface with a
singular point�

��	 Function spaces in a canonical domain

Consider a canonical domain with a singular point on the boundary given by
�����
�� M being a compact domain with smooth boundary in $�
Let

��t� �

Z �

t

dr

rf�r�
� for t � R�

�cf� ���
����� From the properties of the function f it follows that � is a
di�eomorphism of R� onto the entire real axis�
For s � Z� and �� � � R� the space Hs�
���Cx�� is de�ned to be the com


pletion of C�
comp�Cx�� with respect to the norm

kukHs�����C
x�

� �

�Z
R�

e�
��r�����r���� �
sX

j	�

kDj��uk�Hs�j�M�� dm�r�

� �

�

�

�����
�
where ��u stands for the pull
back of u under the mapping � � R��M � Cx�

given by ��r� �� � x� � rS�f�r���� �Note that ��u � C�
comp�R�� C

��M��
provided u � C�

comp�Cx����
If f�r� � c�� i�e�� x� is a conical point� then ��r� � �

c�
log �

r
� and hence

e��r� � � �
r
�
�

c� is a power of ���r� � � �
c�

�
r
up to an unessential constant factor�

In this case we can restrict the discussion to two
parameter spaces Hs�
�Cx���
as is customary in the cone theory �cf� Schulze �Sch�
� Sch��� Sch����� In the
general case e� is by no means a multiple of a power of ���
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Example ��	�� Let f�r� � rp for r � ��� ��� where p � �� Then we have

��r� �



p

�



rp
�



�p

�

on ��� ��� It follows that e��r� grows exponentially as r � �� while ���r� �
�r�p�� is of power order of growth�

�

For the general case� we note that only the spaces Hs�����Cx�� are of inde

pendent interest while Hs�
���Cx�� can be derived from these as spaces with a
weight factor�

Proposition ��	�� Suppose f ful�lls estimates ������
� Then�

kukHs�����C
x�

� � k���e

�������ukHs�����Cx� �

for u � C�
comp�Cx���

where the equivalence of two norms means that their ratio is bounded both above
and below by positive constants independent of u�

The estimate we obtain on the course of proof seems to be of independent
interest�

Proof� Pick u � C��R��H�� H being a Hilbert space� An easy computa

tion shows that

D
�
e
������ u

�
� e
������Du�

�
�
i
� � ���

i
f � rDf�

�
e
������ u


We now proceed by induction in j � 
� �� 
 
 
� thus obtaining

Dj�e
������ u� � e
������Dju�

jX
�	�

pj�j���f� rDf� 
 
 
 � r
�D�f� e
������Dj��u�

�������
where pj�j�� is a polynomial of degree � with coe�cients depending on � and
� �cf� the proof of Proposition ��
���� From ������� we deduce in turn that

e
������Dju � Dj�e
������ u� �

jX
�	�

�pj�j���f� rDf� 
 
 
 � r
�D�f�Dj���e
������ u��

�������
�pj�j�� being a polynomial of degree � with coe�cients depending on � and ��
Combining ������� with ������� and invoking estimates ����
����� we con


clude that

c

jX
�	�

kD��e
������ u�kH � e
�������
jX

�	�

kD�ukH � C

jX
�	�

kD��e
������ u�kH
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for all t � R�� where c and C are positive constants depending only on f but
not on u� This gives the desired conclusion when substituted to �����
��

�

Under the pull
back mapping u 
� ��u the spaceHs�
���Cx�� is topologically
isomorphic to the Hilbert space Hw��	 �� �cf� Section ����� where ��� � �
Rs

M�C �� � is the order
reducing family of Example 
�
��� For a proof of this
fact we refer the reader to Schrohe and Schulze �SS��� ��
����
Combining this with Proposition ����� and with what has been said in

Section ���� we see that

kukHs�����C
x�

� � k����
��� ukHs�����C

x�
�

� k����� ��ukHw�Rs
M�C

�
�

�

�Z
R�i


kRs
M�C ����F���

��� ��u����k�L��M�d�

����




�������

For an integer s � �� we denote by Hs� �

�
�
����Cx�� the function space

on the boundary of Cx� consisting of the restrictions to �Cx� of elements in
Hs�
���Cx��� �Note that the boundary of Cx� does not contain x

� and hence is

smooth�� The space Hs� �

�
�
����Cx�� is topologised under the quotient norm�

��� Function spaces on a canonical surface

Function spaces on a canonical surface with a singular point are introduced
similarly to those on a canonical domain�
Namely� let Cx� is a canonical surface with a singular point� For s �Z� and

�� � � R� the space Hs�
���Cx�� is de�ned to be the completion of C
�
comp�Cx��

under the norm �����
�� where M is now a smooth compact closed manifold�
Proposition ����� still holds in this setting� Moreover� under the pull
back

mapping u 
� ��u the space Hs�
���Cx�� is topologically isomorphic to the
Hilbert space Hw��	 �� where ��� � � Rs

M�C �� � is the order
reducing family of
Example 
�
�� �cf� Schulze and Tarkhanov �ST��� 
�����
Since this latter space Hw��	 �� is in fact de�ned for all real s� we can extend

the de�nition of Hs�
���Cx�� to s � R� Then� applying Proposition ����� we
arrive at the scale of function spaces Hs�
���Cx�� over all s � R� Namely�
Hs�
���Cx�� is de�ned to be the completion of C

�
comp�Cx�� with respect to the

norm

kukHs�����C
x�

� � k��
��� ��ukHw�Rs

M�C
�
�
 �����
�

For s �Z� this gives what we have already de�ned above� up to an equiv

alent norm�
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Formulas ������� remain valid for all s � R in case Cx� is a canonical surface
with a singular point�
Moreover� if Cx� is a canonical domain with a singular point on the bound


ary� then the de�nitions of Hs� �

�
�
����Cx��� for s � Z�� at the end of Section

��� and by �����
� result in the same space up to an equivalent norm�

��� Local invertibility of a di�erential opera�

tor at a cusp

We are now prepared to apply Theorem ����
 to the problem of local invert

ibility of di�erential operators on a closed manifoldM with singular points�
SupposeM is written close to a singular point x� � M in the form �����
��

with M a smooth compact closed manifold� We assume that the function f
ful�lls estimates ���
����
Let A be a di�erential operator of order m onM� �B�x�� ��nfx�g�� where

� � �� As described in Section ���� after the change of variables

��x� �� � x� � rS�f�r���

the operator A takes the form

��A � ����m
mX
j	�

aj�r�D
j� �����
�

where aj � C����� ���Di�m�j�M��� The �coe�cients� aj���r� ��� j�j � m�j� of
these di�erential operators are required to satisfy estimates ������� and �������
uniformly on small balls in M �
We have �� �Au� � ���A���u or� equivalently�

Au � �� ��
�A���u �������

on functions u de�ned in a punctured neighbourhood of x� onM�

Proposition ����� For each s� �� � � R and each ��� � C�
comp��� ��� there

is a continuous extension

�����A ����� � H
s�
���Cx��� Hs�m�
���m�Cx��


Proof� We �rst observe that

�����A ����� � �� ���
�A�����

which is due to ��������
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Pick u � Hs�
���Cx��� Proposition ����� yields

k�����A �����ukHs�m�����m�C
x�

�

� c k��
�
e
�������m����A�� ��u

�
kHs�m�����C

x�
��

with c a constant independent of u� On the other hand� combining �����
� and
������� we conclude that

e
�������m����A����u �

mX
j	�

�ajD
j
�
e
��������u

�
�

where �aj � C��R��Di�
m�j�M�� vanish away from the interval ��� ��� More


over� the �coe�cients� of �aj still ful�ll estimates ������� �and �������� uniformly
on small balls in M �
Set

�a�r� � � �
mX
j	�

�aj�r��
j�

then �a � Sw�Rs
M�C �R

s�m
M�C 	 �� �cf� Example ������� We now invoke equality

�����
� to obtain

k��
�
e
�������m����A�� ��u

�
kHs�m�����C

x�
�� kop��a�

�
e
��������u

�
kHw�R

s�m
M�C

�

� c ke
��������ukHw�Rs
M�C

�

with some new constant c independent of u� the last estimate being a con

sequence of Proposition ����
� Repeated application of �����
� completes the
proof�

�

Since A is a di�erential operator� the local invertibility of A at the point x�

is completely determined by the restriction of A to a punctured neighbourhood
of x� onM� Thus� we can assume that the coe�cients of A vanish away from
a compact subset ofM�B�x�� ��� for if not� we replace A by �����A with any
cut
o� function � � C�

comp��� ��� Proposition ����
 makes it obvious that the
operator A � Hs�
���Cx�� � Hs�m�
���m�Cx�� is locally invertible at the point
x� if and only if �����m��A � Hw�Rs

M�C 	 �� �� � Hw�R
s�m
M�C 	 �� �� is locally

invertible at the point r � �� This latter operator has symbol

a�r� �� �
mX
j	�

aj�r��
j

which is of class Sw�sv�Rs
M�C �R

s�m
M�C 	 ��� Hence Theorem ����
 is applicable

and we arrive at the following result�
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Theorem ����� The operator A � Hs�
���Cx��� Hs�m�
��m�Cx�� is locally
invertible at the point x� if and only if there exists a number � � � such that
the operator�valued function a�r� � � i�� �Hs�M�� Hs�m�M� is invertible for
all �r� � � � ��� ���R and

sup
������R

kRs
M�C �� �a

���r� � � i��Rm�s
M�C �� �kL�L��M��L��M�� ��
 �������

If a�r� �� i�� is an elliptic operator onM with parameter � � R� uniformly
in r � ��� �� �see for instance Agranovich and Vishik �AV����� then Theorem
����� reads as follows�

Corollary ����� Let �i�r� ��� i � 
� �� 
 
 
� be the eigenvalues of the oper�
ator pencil a�r� � � i��� and let s� � � R� Then� in order that the operator
A � Hs�
���Cx���Hs�m�
��m�Cx�� be locally invertible at the point x�� it is nec�
essary and su�cient that

lim
���

inf
r������

j��i�r� ��j � �� �������

for each i � 
� �� 
 
 
�

Condition ������� means that there exists an open strip in the complex
plane� which contains the real axis and which is free of the eigenvalues �i�r� ��
for r � ��� ���� where �� is small enough�

Proof� Consider the composition

��r� � � � Rs�m
M�C �� �a�r� � � i��R�s

M�C �� �


By assumption� ��r� � � is an elliptic pseudodi�erential operator of order zero
on M with parameter � � R� uniformly in r � ��� ��� Hence it follows� by a
theorem of Agranovich and Vishik �AV���� that there exists an R � � such
that ��r� � � is invertible for all r � ��� �� and � � R with j� j � R� On the
other hand� since both R�s

M�C �� � and R
s�m
M�C �� � are families of isomorphisms�

condition ������� is equivalent to the fact that to everyR � � there corresponds
an �� � ��� �� such that ��r� � � is invertible whenever r � ��� ��� and j� j � R�
We thus conclude that a�r� � � i�� is invertible for all r � ��� ��� and � � R�
Moreover� the inverse ����r� � � � Rs

M�C �� �a
���r� � � i��Rm�s

M�C �� � meets the
estimate �������� Indeed� if j� j � R� then ������� follows from the continuity of
����r� � � in � � If j� j � R� then ������� is a consequence of norm estimates for
pseudodi�erential operators with parameter in Sobolev spaces� cf� ibid� This
completes the proof� when combined with Theorem ������

�

To extend Theorem ����� and Corollary ����� to arbitrary weight exponents
� �not merely � � �� we impose an additional condition on f � namely

lim
r���

rjDjf�r� � �� for each j � �� 
� 
 
 
 
 �������
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�cf� ��������� As described in Section ��
� this corresponds to the case where
x� is a cusp�

Corollary ����� Suppose that f ful�lls ������
� Let s� �� � � R� Then�
the operator A � Hs�
���Cx���Hs�m�
���m�Cx�� is locally invertible at the point
x� if and only if there exists an � � � such that the operator�valued function
a�r� � � i�� � Hs�M� � Hs�m�M� is invertible for all �r� � � � ��� �� � R� and
its inverse meets ������
�

Proof� Indeed� by ������� �or ���������

Dj ������ u� � �����
	
Dju�

Pj
�	� pj�j���f� rDf� 
 
 
 � r

�D�f�Dj��u


�

pj�j�� being a polynomial of degree � with coe�cients depending on �� such that
pj�j����� � �� Hence it follows that� under assumption �������� the operator D
commutes with the weight factor ����� up to an operator which is unessential
for the local invertibility� Thus� applying Theorem ����� yields the desired
conclusion�

�

��
 Local invertibility of a boundary value

problem at a cusp

In this section we indicate how the above techniques may be used to treat a
boundary value problem in a closed domain D 
 Rn�� with a singular point
x� on the boundary� Namely��

Au � f in D n fx�g�
Biu � ui on �D n fx�g�

�����
�

where A is a di�erential operator in D n fx�g and �Bi� a system of di�erential
operators de�ned in a neighbourhood of �D n fx�g� We write m for the order
of A and mi for the order of Bi�
Suppose D is written close to x� in the form ���
�
�� whereM is a compact

domain with smooth boundary in $� We assume that f ful�lls ���
����
We are concerned with the problem of local invertibility of �����
� at the

singular point x�� For this reason we restrict our attention to the punctured
neighbourhood of x� given by ���
�
�� This is nothing but Cx� �B�x

�� �� where
Cx� is a canonical domain with a singular point on the boundary �cf� �����
���
There is no loss of generality in assuming that both A and �Bi� are de�ned
on the entire domain Cx� and vanish away from a ball with center x

�� We are
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thus led to a boundary value problem in the canonical domainCx� � Proposition
����
 suggests us suitable function spaces to study the problem� namely

�
A

�r�C
x�
Bi

�
� Hs�
���Cx���

Hs�m�
���m�Cx��
�

�Hs�mi�
�

�
�
���mi��Cx��

� �������

where r�C
x�
means restriction to the boundary of Cx� and s is any integer

with s � maxmi�
Under the change of variables ��r� �� � x� � rS�f�r���� the operators A

and �Bi� transform into operators

��A � ����m
P

j�j�j�m

aj���r� ��Dj
rD

�
� �

��Bi � ����mi
P

j�j�j�mi

bi�j���r� ��D
j
rD

�
�

over the semicylinder R� �M The coe�cients aj�� and bi�j�� are required to
satisfy ������� and ������� uniformly in � �M �
Since the factor ���r� is di�erent from zero for r � �� operator ������� is

locally invertible at the point x� if and only if the operator

�
�����m��A

�r�M�����mi��Bi

�
� Hw�Rs

M�C 	 �� ���

Hw�R
s�m
M�C 	 �� ��
�

�Hw�R
s�mi�

�

�

�M�C 	 �� ��

�������

is locally invertible at the point r � �� Here Rs
M�C �� � stands for the order


reducing family of Example 
�
�� and R
s�mi�

�

�

�M�C �� � for that of Example 
�
���
The advantage of using this reformulation of problem ������� lies in the fact

that operator ������� �ts in the theory of Part �� It has symbol

a�r� �� �

�
B


P
j�j�j�m

aj���r� ��D�
� �

j�

�
P

j�j�j�mi

r�Mbi�j���r� ��D�
� �

j

�
CA � Hs�M��

Hs�m�M�
�

�Hs�mi�
�

� ��M�

which is of class Sw�sv���� ��	 ��� with

���� � � Rs
M�C �� ��

���� � � Rs�m
M�C �� ��

	
�R

s�mi�
�

�

�M�C �� �





It is worth emphasising that the symbol a�r� �� takes its values in the �al

gebra� of boundary value problems on the domain M �
We thus conclude that Theorem ����
 is applicable which results in the

following criterion of local solvability of problem �����
� at the point x��
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Theorem ��
�� Let s �Z� satisfy s � maxmi and let � � R� � � �� The
operator �����	
 is locally invertible at x� if and only if there exists an � � �

such that the symbol a�r� � � i�� �Hs�M�� Hs�m�M�� ��Hs�mi�
�

� ��M�� is
invertible for all �r� � � � ��� ���R and

sup
������R

k���� �a
���r� � � i�����

� �� �kL�L��M�
�
L���M���L��M�� ��
 �������

If a�r� � � i�� is an elliptic boundary value problem on M with parameter
� � R� uniformly in r � ��� ��� then Theorem ����
 reads just as Corollary
������

Corollary ��
�� Let �i�r� ��� i � 
� �� 
 
 
� be the eigenvalues of the operator
pencil a�r� � � i��� Then� in order that operator �����	
 �for � � �
 be locally
invertible at the point x�� it is necessary and su�cient that

lim
���

inf
r������

j��i�r� ��j � ��

for each i � 
� �� 
 
 
�

We now wish to arrange that these results hold for arbitrary � � R� not
merely � � �� To this end� we proceed as in Corollary ������

Corollary ��
�� Suppose f ful�lls ������
� Let s � Z� satisfy s � maxmi

and let �� � � R� Then� operator �����	
 is locally invertible at the point x� if
and only if there exists a number � � � such that the operator�valued function
a�r� � � i�� � Hs�M� � Hs�m�M� � ��Hs�mi�

�

� ��M�� is invertible for all
�r� � � � ��� ���R� and its inverse meets �����

�

The symbol a�r� �� which controls the local solvability of problem �����
�
at the singular point x� is similar to that in case x� is a conical point �cf�
Kondrat�ev �Kon����� However� the case of pure cusps di�ers from the case of
conical points to some extent� Namely� Corollary ����� shows that the weight
factors ����� do not in�uence the local solvability of problem �����
�	 only the
weight exponent � enters condition �������� On the other hand� in the case of
conical points �� is a multiple of 
	r and it is well
known that condition �������
depends on the weight factors r
 �prohibited weight exponents� cf� ibid�� The
reason of this is that the function f � const does not meet condition ��������

��� The Dirichlet and Neumann problems in

a domain with cusps

In this section we consider the Dirichlet and Neumann problems for the Laplace
equation in a closed domainD 
 R�with a singular point x� � �D� We assume
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that the portion of D in a small ball with centre x� is given by

D � �B�x�� �� n fx�g� � fx� � �r cos�f�r���� r sin�f�r���� � r � ��� ��� � �Mg�

where f is a positive function on the interval ��� �� and M � ���� ��� is a
segment in ��� ����
The function f is required to ful�ll the following assumptions�

	 f � C���� ��	

	 limr��� r
jDjf � �� for each j � �� 
� 
 
 


�thus� x� is a cusp��
We extend f to a smooth positive function on the whole semiaxis R�� such

that f�r� � const for r large enough� Then� we introduce the di�eomorphism
� � R� � R by ���
���� for each t � R��
A trivial veri�cation shows that

�
�x�

� cos�f�� �
�r
� �

rf

�
� sin�f��� r �f

�r
� cos�f��

�
�
��
�

�
�x�

� sin�f�� �
�r
� �

rf

�
cos�f��� r �f

�r
� sin�f��

�
�
��

�cf� �����
��� It follows that the pull
back of the Laplace operator  under the
change of variables ��r� �� � x� � �r cos�f�r���� r sin�f�r���� is

�� � �����
�
�D�

r �D�
� � S

�
�

where the operator S has a small local norm at the singular point and is
thus unessential in the problem of local invertibility� Moreover� since the unit
outward vector to �D at the point �r� �� is

� �
	
cos
	�
�
� f�



� sin

	�
�
� f�




�

we have

��
�

��
� ��

�
�

�

��

�
up to unessential operator�
From what has been proved in Section ��� we deduce that the local solv


ability at x�� for the Dirichlet problem

�
 

r�C
x�

�
� Hs�
���Cx���

Hs���
�����Cx��
�

Hs� �

�
�
����Cx��

�����
�

with s �Z� and s �
�
� � is controlled by the operator
valued symbol�
�D�

� � ��

r�M

�
� Hs�M��

Hs���M�
�

Hs� �

� ��M�
�
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where � � R� i�� This symbol is easily veri�ed to be an isomorphism unless
�� � � and � � �����

�
j� j �Zn f�g� Corollary ����� now leads to the following

result�

Theorem ����� Let � �� �����
�

j for all j � Zn f�g� Then� as de�ned by
������
� the Dirichlet problem is locally invertible at the cusp�

For an explicit algebra of pseudodi�erential operators containing local para

metrices of the Dirichlet problem in a plane domain with a conical point on
the boundary� we refer the reader to a recent paper of Ueda �Ued���� The
same parametrix construction still goes for the Dirichlet problem for a general
strongly elliptic operator� not merely for the Laplacian�
We now turn to the Neumann problem� As described in Section ���� the

local solvability at x�� for the Neumann problem

�
 

r�C
x�

�
��

�
� Hs�
���Cx���

Hs���
�����Cx��
�

Hs� �

�
�
����Cx��

�������

with s �Z� and s �
�
�
� is controlled by the operator
valued symbol

�
�D�

� � ��

r�M
�
��

�
� Hs�M��

Hs���M�
�

Hs� �

� ��M�
�

where � � R� i�� This symbol is easily proved to be an isomorphism unless
�� � � and � � �����

�
j� j �Z� Corollary ����� now gives the following result�

Theorem ����� Let � �� �����
�

j for all j �Z� Then� as de�ned by �����	
�
the Neumann problem is locally invertible at the cusp�

���� Fredholm property

Let D be a compact domain in Rn�� with a �nite number of singular points
on the boundary� sing �D � fx�� 
 
 
 � xNg� Suppose that D n sing �D is a
C� manifold with boundary� Moreover� we require x�� 
 
 
 � xN to be cusps� as
de�ned in Section ��
�
Consider a boundary value problem in D��

Au � f in D n sing �D�
Biu � ui on �D n sing �D�

���
��
�

whereA is a di�erential operator in Dnsing �D and �Bi� a system of di�erential
operators de�ned in a neighbourhood of �Dnsing �D� In the sequel� we denote
by m the order of A and by mi the order of Bi�
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We �rst de�ne appropriate function spaces to study problem ���
��
�� To
this end� for each point x�� choose a ball B�x�� ��� such that the part of D
lying in B�x�� ��� is given by ���
�
�� now all the objects S� f andM depending
on �� We can assume� by decreasing �� if necessary� that the balls B�x�� ���
are pairwise non
overlapping� For each � � 
� 
 
 
 � N � we �x a C� function
�� with a compact support in B�x�� ���� such that � � �� � 
 and �� � 

in a neigbourhood of the point x�� Moreover� we set �� � 
 �

PN
�	� ��� Let

s �Z� and let � � ���� 
 
 
 � �N �� � � ���� 
 
 
 � �N � be tuples of RN� Denote by
Hs�
���D� the completion of the space C�

comp�D n sing �D� with respect to the
norm

kukHs�����D� �

�
k��uk

�
Hs�D� �

NX
�	�

k��uk
�
Hs������ �Cx� �

� �

�

�cf� �����
��� It is a simple matter to see that Hs�
���D� is a Hilbert space� We

write Hs� �

�
�
����D� for the function space on the boundary of D which consists

of the traces on the smooth part of �D of elements in Hs�
���D�� This space
is topologised under the quotient norm�
We require the coe�cients of the operators A and �Bi� to satisfy conditions

������� and ������� close to each point x�� � � 
� 
 
 
 � N � Then� for each integer
s � maxmi and each �� � � RN� problem ���
��
� gives rise to a continuous
linear operator

�
A

�r�DBi

�
� Hs�
���D��

Hs�m�
���m�D�
�

�Hs�mi�
�

�
�
���mi��D�

���
����

�cf� ���������
To every singular point x� we assign an operator pencil ax��r� ��� as de


scribed in Section ���� Suppose� for each � � 
� 
 
 
 � N � that ax� �r� � � i��� is
an elliptic boundary value problem on M� with parameter � � R� uniformly
in r � ��� ����

Theorem ������ Let s � Z� satisfy s � maxmi� and let �� � � RN�
Then� the operator ������	
 is Fredholm if and only if�

� the boundary value problem �A��Bi� is elliptic at each point of D n

sing �D� and
�� at each point x� � sing �D� we have

lim
���

inf
r������

j��x� �i�r� ���j � ��

for each i � 
� �� 
 
 
� where �x� �i�r� ��� are the eigenvalues of the operator pencil
ax� �r� � � i����
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Proof� The proof is straightforward from Corollary ����� by invoking the
standard machinery connected with the �pasting together� of a global regu

lariser from local regularisers by means of a special partition of unity on D�

�

Theorem ��
��
 applies� in particular� to the Dirichlet and Neumann prob

lems treated in Section ��� �cf� also Maz�ya and Plamenevskii �MP�����
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