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Analysis and Exploration of
Virtual 3D City Models using

3D Information Lenses

Abstract
This thesis addresses real-time rendering techniques for 3D information lenses based on
the focus & context metaphor. It analyzes, conceives, implements, and reviews its appli-
cability to objects and structures of virtual 3D city models. In contrast to digital terrain
models, the application of focus & context visualization to virtual 3D city models is barely
researched. However, the purposeful visualization of contextual data of is extreme impor-
tance for the interactive exploration and analysis of this field. Programmable hardware
enables the implementation of new lens techniques, that allow the augmentation of the
perceptive and cognitive quality of the visualization compared to classical perspective
projections. A set of 3D information lenses is integrated into a 3D scene-graph system:

• Occlusion lenses modify the appearance of virtual 3D city model objects to resolve
their occlusion and consequently facilitate the navigation.

• Best-view lenses display city model objects in a priority-based manner and mediate
their meta information. Thus, they support exploration and navigation of virtual
3D city models.

• Color and deformation lenses modify the appearance and geometry of 3D city models
to facilitate their perception.

The presented techniques for 3D information lenses and their application to virtual 3D
city models clarify their potential for interactive visualization and form a base for further
development.
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Analyse und Exploration
virtueller 3D-Stadtmodelle durch

3D-Informationslinsen

Zusammenfassung
Diese Diplomarbeit behandelt echtzeitfähige Renderingverfahren für 3D-
Informationslinsen, die auf der Fokus-&-Kontext-Metapher basieren. Im folgenden
werden ihre Anwendbarkeit auf Objekte und Strukturen von virtuellen 3D-Stadtmodellen
analysiert, konzipiert, implementiert und bewertet. Die Focus-&-Kontext-Visualisierung
für virtuelle 3D-Stadtmodelle ist im Gegensatz zum Anwendungsbereich der 3D-
Geländemodelle kaum untersucht. Hier jedoch ist eine gezielte Visualisierung von
kontextbezogenen Daten zu Objekten von großer Bedeutung für die interaktive Ex-
ploration und Analyse. Programmierbare Computerhardware erlaubt die Umsetzung
neuer Linsen-Techniken, welche die Steigerung der perzeptorischen und kognitiven
Qualität der Visualisierung im Vergleich zu klassischen perspektivischen Projektionen
zum Ziel hat. Für eine Auswahl von 3D-Informationslinsen wird die Integration in ein
3D-Szenengraph-System durchgeführt:

• Verdeckungslinsen modifizieren die Gestaltung von virtuellen 3D-Stadtmodell-
Objekten, um deren Verdeckungen aufzulösen und somit die Navigation zu erle-
ichtern.

• Best-View Linsen zeigen Stadtmodell-Objekte in einer prioritätsdefinierten Weise
und vermitteln Meta-Informationen virtueller 3D-Stadtmodelle. Sie unterstützen
dadurch deren Exploration und Navigation.

• Farb- und Deformationslinsen modifizieren die Gestaltung und die Geometrie von
3D-Stadtmodell-Bereichen, um deren Wahrnehmung zu steigern.

Die in dieser Arbeit präsentierten Techniken für 3D Informationslinsen und die Anwen-
dung auf virtuelle 3D Stadt-Modelle verdeutlichen deren Potenzial in der interaktiven
Visualisierung und bilden eine Basis für Weiterentwicklungen.
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Chapter 1

Introduction

They are ill discoverers that think there is no land,
when they can see nothing but sea.

-Sir Francis Bacon

1.1 Motivation
Today all privileged regions of the world that have access to modern information tech-
nology suffer from a fundamental problem. The quantum of encoded information grows
at a tremendous rate while the ability of unproblematic access to this data decreases at
the same time. Also geospatial information represented by geo-data, such as virtual 3D
city model data, is affected by this phenomenon. A 3D city model usually is a three-
dimensional representation of an existing city or an urban environment.
Due to the rapid development of computer hardware and the progress in (semi-) automatic
data acquisition, it is now possible to create large-scale 3D city models at reasonable
costs. This development has led to a numerous applications, e.g., in urban planning,
telecommunications and ecology, as well as in tourism and entertainment.
In times of services such as Google Earth, WorldWind, and geotainment products like
Munich 3D, Berlin 3D, and Virtual Helsinki fast and coherent access to geospatial in-
formation becomes more and more important, i.e., to find a specific information without
the transgression of a critical amount of time. This implies the solution of a search prob-
lem: from an uncertain key information to a certain one. The optimal case would be
if knowledge is available about what specific information is needed and where it can be
found. If no such kind of a mapping exists, we are forced to explore and navigate through
the data space. In case of virtual 3D city models, users face a three dimensional space.
Unfortunately, users tend to get lost in many 3D systems requiring them to navigate [95].
Information visualization addresses the problem of how to effectively present information
visually. Visualization techniques include selective hiding of data, layering data, and
taking advantage of psychological principles of layout, such as proximity, alignment, and
shared visual properties (e.g., color).
Focus & Context Visualization (FCV) is a principle of information visualization. It dis-
plays the most important data at the focal point at full size and detail, as well as the
area around the focal point (the context) to help make sense of how the important in-
formation relates to the entire data structure. Regions far from the focal point may be
displayed smaller (as in fisheye views) or selectively omitted. Displaying information in

1



CHAPTER 1. INTRODUCTION

a context that makes it easier for users to understand is the central task in information
visualization. Information visualization is an attempt to display structural relationships
and context that would be more difficult to detect by individual retrieval requests [73].
Today we are in demand of visualizations that support fast decisions. Providing overview
and detail is only one possible solution. In case of virtual 3D city models the application
of FCV is generally not explored, but this technology possesses a wide range of target
applications (inter alia):

• Displaying roads or other surface networks. The user should be able to obtain a
detailed view onto these objects without occlusions or navigation overhead.

• Highlighting or depicting points/object of interest or important route finding infor-
mation such as cross roads etc. which are far away from the viewers location.

• Enabling visualization of spatial significance for market reports or similar purposes.

• Depicting user- or referenced data such as floor occupancy (living space vs. office
space) or other annotations [33, 36].

• Facilitating selective level-of-detail (LOD) representations. The geometry in the
focus area can be rendered with a higher level of detail or with a lower LOD.
A possible application could be the exploration of a city model based on Smart
Buildings [37].

1.2 Problem Statement
Nowadays, it is possible to render a large amount of spatial data in real-time under the
assumption of having optimized LOD data structures and hardware accelerated rendering
methods. The principle of FCV conflicts with some of these methods. The nature of
virtual 3D city models requires some important restrictions:

1. Spatial relations within a model are fixed. Methods for reflecting data relationships
as spatial relationships such as in tree visualization are not applicable.

2. It cannot be assumed that hierarchical information such as building adjacencies or
other statistical criteria are available a priori.

3. One has to act on the assumption that a large amount of geometrical data has to
be processed.

The aim is to develop scene-graph tools and techniques for 3D focus & context visual-
ization/navigation, 3D object highlighting, as well as 3D focus and context separation
methods. These methods should work without any semantic information about the ob-
jects in the scene. It is known that at least two main restrictions affect the visualization of
3D city models: the limitation of screen space and processing power. The first restriction
addresses directly the problem of screen real estate: the amount of space available on
a display for an application to provide output. Typically, the effective usage of screen
real estate is one of the most difficult design challenges because of the desire to have as
much data and as many controls visible on the screen as possible to minimize the need for

2



CHAPTER 1. INTRODUCTION

hidden commands or scrolling. At the same time, excessive information may be organized
poorly or confusing. Because of that, effective screen layouts must be developed with
appropriate use of free space.
Usually, FCV techniques are able to maximize the use of screen real estate and can present
a large amount of data within a small space. They allow the examination of a local area in
detail within context of the whole data set. But how to integrate additional information
in a rendering of a 3D city model scene that uses standard perspective projection? The
following list should give an overview over some possibilities for improving the analysis
and exploration of virtual 3D city models:

• Resolving building occlusion using geometrical distortions or visual abstractions of
shape and texture. Visual abstractions are able to shift the cognitive load to the
application. Abstract information increases the ability of the users to assimilate
and retrieve information. This is useful for verifying or falsifying a hypothesis by
analyzing the 3D information space.

• Giving overview and insight for areas which are located far away from the viewer
by using multiple simultaneous views or separated global views. This supports the
exploration of a city model, as well as the investigation of the 3D information space
without a hypothesis.

• Easing orientation, navigation, and preattentive perception by applying different
render techniques or visual abstractions such as non-photorealistic rendering (NPR).

• Adding thematic information to the scene. Application-defined data attached to
buildings is essential for all applications operating on 3D city models.

1.3 Fundamentals & Notations
It follows a list of short descriptions of fundamental terms used in this thesis.

Virtual 3D City Model A virtual 3D city model represents a specialized geovirtual environ-
ment and consists of an underlying 3D terrain model, 3D buildings, and 3D vegetation.
Additionally, street and green spaces can be defined. 3D city models provide basic func-
tionality for exploration, analysis, presentation, and editing of spatial information.

3D Information Lens A 3D information lens unifies the aspects of focus & context visual-
ization/navigation as well as thematic/semantic lenses in the domain of virtual 3D city
models.

Focus In this thesis the term focus can be understood as a location of immediate interest.
This location is usually placed in the coordinate system of the virtual 3D city model. Its
dimension is described by the focus area.

Context The specific circumstances (e.g., spatial data) of the focus will denoted as con-
text. It also describes the coherence of situation and topic that relates to the focus.
Similar to the focus, the dimension of the complementary context will be described by
the context area.
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CHAPTER 1. INTRODUCTION

Focus Area The focus area describes the location and spatial dimensions of a region of
interest. Thus, it describes all geometry which is inside this volume or attached to it. A
3D information lens could possess more than one focus area.

Context Area The context area describes the complementary space of all foci areas. All
geometry outside any focus area is part of the context area.

Focus Rendering The result of the rendering of the geometry inside the focus area is
denoted as focus rendering which can be the product of a complex render technique or
can be empty.

Context Rendering Analog to focus rendering, context rendering denotes the rendering of
the geometry of the context area.

Due to variations in the notation for vector and matrix calculations, a short overview of
the notation used throughout this thesis is necessary. Vectors are denoted with capital,
components with small letters, e.g., A = (x, y, z). The length of a vector is written as
|A|, the normalized form is expressed by ‖A‖, a · represents scalar multiplication and /
scalar division. The specific vector O = (0, 0, 0) ∈ R

3 represents the origin of a coordinate
system. Finally A•B describes the dot-product and A×B the cross-product of the vectors
A and B. Matrices are denoted with non-italic uppercase bold letters: M. Functions are
designated with Greek letters. Table 1.3.1 shows an overview of coordinate systems in
use.

Abbreviation Explanation

WCS ⊆ R
3 World Space Coordinate System

CCS ⊆ R
3 Camera or Eye Space Coordinate System

SCS = [0, w] × [0, h] ⊂ N
2 Screen Space Coordinate System

NDC = [−1, 1]2 ⊂ R
2 Normalized Device Coordinates

Table 1.3.1: Coordinate systems used in this thesis.
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1.4 Structure & Typographic Conventions
Structure: The remainder of this thesis is structured as follows:
Chapter 2 briefly reviews related work in the fields of FCV, introduces necessary hardware-
accelerated rendering techniques and concepts that utilize the programmable rendering
pipeline.
Chapter 3 outlines the concepts and principles of 3D information lenses and possible appli-
cations for each lens type. It introduces volumetric depth sprites as well as the volumetric
depth test. The chapters covers occlusion, best-view, color, and deformation lenses. The
concept of generic uber-shaders will be developed and specified.
Chapter 4 shortly describes important implementation issues of the concepts mentioned
above. It covers basic design decisions and software architectural aspects of this thesis.
Chapter 5 analyzes and discusses the performance and limitations of the presented ap-
proaches. The chapter concludes with potential future research directions. It covers
potential technical improvements as well as an outline of continuative features of 3D in-
formation lenses.
Chapter 6 gives conclusions by summarizing and reviewing the presented approaches re-
lated to their applications.

Typographic Conventions: This thesis includes different typesettings. Words that relate
to an implementation keyword will be set in typewriter. Proper nouns will be set
emphazised. All class diagrams describing issues of software architecture are composed
in UML 2.0 [27].
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Chapter 2

Related Work

Lens-based visualization (LBV) provides capabilities for in-place presentation of details
in a global context. Interactive LBV can be applied to explore continuous geospatial
representations as well as non-geospatial visualizations such as network diagrams [13].
This section focuses on 3D lens rendering approaches and focus & context visualization
approaches, that could be utilized for 3D information lenses.

2.1 3D Lens-Based Visualization Techniques
We can distinguish between two types of 3D lenses: flat 3D lenses and lenses with a
volumetric shape. This section presents a brief introduction to the basic concepts of 3D
lenses and does not address any applications to volume rendering.
The magic lens metaphor and ToolglassesTM have been introduced by Bier et al. [17].
They describe widgets as interface tools that can appear between an application and a tra-
ditional cursor. Visual filters bind to the widgets, known as magic lenses, can modify the
visual appearance of application objects, enhance data of interest or suppress information
in the region of interest, that is determined by the shape of the lens. A sophisticating
overview of 3D magic lenses and magic lights is given in [79]. This work applies this
metaphor to immersive building services.

Analytical Approaches An application to 3D environments and volumetric lenses was first
published by Cignoni et al. [68]. They introduced the MagicSphere metaphor as an insight
tool for 3D data visualization, that is restricted to a spherical shape. The analytical
approach classifies the geometry upon its relation to the lens shape (inside, outside, on
the border). The rendering is done within two passes, each for every classification. In
each pass different visual appearances can be applied. The border geometry is rendered
in both of them. The MagicSphere metaphor generates visual artifacts near its border.
A different analytical approach of a similar concept has been used by Idelix Software Inc.
[34, 13]. The pliable display technology 3D (PDT3D) avoids object occlusions in 3D vir-
tual environments by analyzing camera and lens parameters and applying corresponding
geometric transformations to occluding objects. Thus, it is possible to select a region of
interest to which the system provides an occlusion-free view. The major disadvantage of
this concept is the modification of the scene structure lying outside the region of interest
through geometrical transformations. That leads to a loss of contextual information.
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CHAPTER 2. RELATED WORK

Figure 2.2.1: Examples of context maps. Left: Google Maps c©, Right: System Shock 2 c© game.

Image-Based Approaches A more general extension of the magic lens metaphor to 3D
virtual environments has been presented by Viega et al. [46]. They introduced an algo-
rithm for the visualization of volumetric lenses as well as flat lenses in a 3D environment.
The implementation is done by using infinite clipping planes for the volume faces. This
approach is computationally expensive for complex lens shapes.
Ropinski [92] presented an algorithm for real-time rendering of volumetric magic lenses,
that have an arbitrary convex shape which is fully hardware-accelerated. It supports
the combination of different visualization appearances in one scene. The approach uses
multipass rendering and shadow-mapping to separate focus from context data.

2.2 Focus & Context Visualization
Focus & Context Visualization in virtual 3D environments has been well researched during
the past years [23, 86, 12, 64, 32, 31]. There is a multitude of approaches for virtual 3D
terrain lenses such as view dependent non-linear visualization techniques e.g., pliable
surface technology (PDT) [34, 58, 56, 57, 95, 60, 69, 66, 51]. These approaches distort
the underlying mesh vertices so that the impression of magnification occurs. One can
find also texture based approaches such as cartographic lenses [25] and thematic texture
lenses [93, 39, 30, 40]. Many researchers have addressed the screen real-estate problem.
One solution, the so-called detail-in-context technique, integrates detail with contextual
information. Figure 2.2.1 shows two examples. This section is restricted to techniques
that are applicable to 3D virtual environments.

Non-Distortion Techniques The Through-The-Lens metaphor [82] presents a set of tools
that enable simultaneous exploration of a virtual world from two different viewpoints.
One is used to display the surrounding environment and represents the user, the other is
interactively adjusted to a point of interest (POI). The resulting image is displayed in a
dedicated window.
Textual and 2D image landmark representations lack the depth and context needed for
humans to recognize 3D landmarks reliably. Worldlets [88] describe a 3D thumbnail

7



CHAPTER 2. RELATED WORK

landmark affordance. It represents 3D fragments of a virtual world and enables first-
person, multi-viewpoint representations of potential destinations.
Semantic Depth of Field Rendering (SDOF) utilizes a well-known method from photo-
graphy and cinematography (depth-of-field effect) for information visualization, that is to
blur different parts of the depicted scene in dependence of their relevance. Independent
of their spatial locations, objects of interest are depicted sharply in SDOF, whereas the
context of the visualization is blurred [72, 71]. Evaluations of this technique prove that
the SDOF concept is preattentive and that it supports directly the perception of sharp
target items when the context is blurred. SDOF can support users in focusing on relevant
data significantly and guide their attention [94].

Occlusion Techniques The depiction of occluded structures is a common problem in com-
puter graphics. This difficulty is known under the terms virtual X-ray vision, cut-away,
break-away, as well as ghost views. The goal of this set of techniques is to show objects
that are present in the scene but occluded from view. A taxonomy of occlusion techniques
and a comprehensive problem analysis is provided by Elmqvist et al.[67].
X-Ray Vision is mainly researched in the field of augmented reality. A set of interactive
virtual X-Ray vision tools for depicting occluded infrastructure is presented in [76]. The
tools directly augment the users’ view of the environment, enabling them to explore
the scene in direct first person view. Different depiction styles for enhancing the depth
relationships of objects are researched in [61]. In the field of virtual reality, a correct 3D
perspective cut-away lens technique is introduced in [8]. The user can define a cutout
shape and sweep it over the occluding geometry of an arbitrary 3D graphics scene. This
approach uses CSG methods to cut into the obstructing geometry.
Occlusion lenses can also be found in volume rendering. By navigating through a dense
volume dataset the view of the camera will always be occluded. To avoid this problem
Ropinski et al. [87, 91] propose an occlusion lens which renders those parts of the volume
dataset transparently that occludes the region of interest.

2.3 Programmable Graphic Hardware
The latest improvements of the rendering pipeline increase the degree of general processing
with graphic accelerators. Figure 2.3.1 shows a comparison of the standard rendering
pipeline (A) and the modern DX10 [77] influenced rendering pipeline (B). Besides a new
memory model, which enables the ubiquity resource access in every programmable stage of
the pipeline, geometry shaders and stream output [62] are the main alterations. Geometry
shaders support geometry amplification due to the emission of new primitives of a specified
output type. The stream output allows data to be directly passed through either the vertex
or geometry shader, which then in turn passes the information straight to the frame buffer
memory. This facilitates the intra/inter-frame re-use of geometry.
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Figure 2.3.1: Comparison of rendering pipelines. A: standard rendering pipeline, B: DX10 rendering
pipeline.

OpenGL Shading Language The OpenGL Shading Language (GLSL or GLslang) is a C-
like high-level shading language specifically designed for the OpenGL Architecture by the
OpenGL ARB. It can be used to gain direct control of specific features of the graphics
pipeline. Shader programs consist of shaders that implement leastwise either one vertex
and/or one fragment shader. Shader programs are then made part of the current rendering
state of the rendering context of OpenGL [59]. Consequently, only one program can be ac-
tive at one point of the time. The listing 2.3 shows a common example for a vertex shader.

The shader calculates the vertex position gl Position for the rasterizer/interpolator.

Listing 2.3.1 Vertex shader example.

1 vary ing vec3 normal ;

void main ( void )
{

g l P o s i t i o n = f t r a n s f o rm ( ) ;
6 normal = no rma l i z e ( g l No rma lMat r i x ∗ g l Norma l ) ;

g l TexCoord [ 0 ] = g l Mu l t iTexCoord0 ;

return ;
}

Therefore it uses the built-in function ftransform, which represents the fixed-function
vertex transformation. It also computes the vertex normal in eye-space coordinates using
a derived matrix state. Finally, the shader transfers the first multi-texture coordinate
by using a built-in varying variable. A varying variable represents an interface between
vertex and fragment shader. Listing 2.3 shows the corresponding fragment shader.
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Listing 2.3.2 Fragment shader example.

uniform sampler2D samp le r0 ;
vary ing vec3 normal ;

void main ( void )
5 {

// 2 r end e r t a r g e t s
g l F ragData [ 0 ] = t ex tu re2D ( sampler0 , g l TexCoord [ 0 ] . s t ) ;
g l F ragData [ 1 ] = vec4 ( normal , 1 . 0 ) ;

10 return ;
}

The shader demonstrates GLSL ability to render into multiple targets in a single pass (see
section 2.3). It samples from a 2D texture using the built-in texture function texture2D

with the texture handle sampler0 and the texture coordinate interpolated by the ras-
terizer/interpolator for the current fragment as arguments. The output variable array
gl FragData[] enables the fragment shader to address multiple render targets.

A : Buffer B : Buffer

Perform Rendering Pass

Swap Buffers

[Finish?]
[Yes]

[No]

Figure 2.3.2: Activity diagram of the ping-
pong rendering technique.

Render-To-Texture Render-To-Texture (RTT) is
a efficient method to use pixel data that have
been rendered to a texture. The RTT method
allows to write pixel data directly into a buffer
that could be a texture. The alternative copy-to-
texture(CTT) method performs worst and is out
of date. Depending on the application program-
ming interface (API), render-to-texture can be
implemented in various ways. Since this thesis
is based on the OpenGL API, it uses the frame-
buffer object (FBO) extension in combination
with high-precision 16/32bit floating-point tex-
tures [62].
Ping-Pong Rendering [15] is a technique that is
used with RTT to avoid reading and writing the
same buffer simultaneously, instead of swapping
between a pair of buffers. Such a technique is often required in general purpose computa-
tions on the GPU: iterative algorithms write data in one pass and then read back this data
to generate the results of the next pass. Figure 2.3.2 depicts this process. Alternating,
the buffers A and B are bound for reading and writing respectively.
The Multiple Render Target technology (MRT) [62] enables the fragment shader to save
per-pixel data in multiple buffers within one rendering pass. Typical information stored in
these kinds of buffers include position, normal, color, and material. This allows advanced
postprocessing techniques such as deferred shading or other effects. Figure 2.3.3 shows
an example of this technique. The background colors were chosen to punctuate the
differences.
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A B C D E

Figure 2.3.3: Example of using multiple render targets for color (B), normalized world coordinates
(C), normal (D) and depth (E).

Figure 2.3.4: Example of the depth-
peeling technique with
n = 6 layers.

Depth Peeling Depth peeling is the underlying
multipass fragment-level technique that allows
order independent transparency, i.e., it elimi-
nates the need for depth sort or traditional pre-
processing on CPU and is suitable for per-pixel
lighting. It is an image space algorithm on GPU
that emulates dual depth buffer tests. Standard
depth testing gives us the nearest fragment with-
out imposing any ordering restrictions. However,
it does not give us any straightforward way to
render the nth nearest surface.
Depth peeling solves this problem. This tech-
nique uses n passes over a scene to obtain n lay-
ers of unique depth [6] and the particular color
maps (see figure 2.3.4). These maps will be
alpha-blended in back to front order. Depth Peeling can be used in combination with
edge enhancement or blueprint rendering [59]. For more precision, it could be used in
combination with linearised depth buffers [20, 19] (see figure 2.3.5). The necessity of
several rendering passes represents a serious drawback of this approach. To achieve high
visual quality as well as an acceptable performance, it is required to know the sufficient
number of passes n. It is possible to approximate depth-peeling for efficient transparency
by bounding the number of rendering passes using a blending heuristic [24].

Figure 2.3.5: Example of depth peeling algorithm for n = 8. The depth values increase from left
to right.
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Vertices (Mesh) + Attributes Triangle Refinement Pattern, Level l = 5 Refined Mesh
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(u,v,w) = (0,1,0)

VR = (u * V0) + (v * V1) + (w * V2)

CPU GPU

VR

V0 V1

V2

Figure 2.3.6: Concept of generic mesh-refinement on GPU.

Generic Mesh Refinement It can be found different methods to improve the visual quality
by keeping a low geometry complexity. Texture-, bump-, and displacement-mapping
are only some examples. To distort geometry, we require methods which allow us to
keep visual quality high and ensure an amount of vertex information for distortion when
needed. One ubiquitous technique to generate complex geometric models is to start from
a coarse model and apply refinement techniques to get the enriched model.
The refinement techniques that have been proposed can be divided in two main families:
displacement mapping that is usually employed to add some geometric details to a coarse
model, and subdivision surfaces that are used to generate smooth surfaces from a small
number of polygons. To enable mesh distortion in combination with real-time rendering,
the generic mesh refinement approach by [89] is used. It is flexible, easy to implement,
and can be applied on a large variety of refinement techniques. The main idea is to
define a generic refinement pattern (RP) that will be used to virtually create additional
inner vertices for a given polygon. These vertices are then transformed by using linear
interpolation (see figure 2.3.6 for details).
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Chapter 3

Concept of 3D Information Lenses

Art and science have their meeting point in method.

-Edward Robert Bulwer-Lytton

Information lenses for virtual 3D city models unify the aspects of focus & context visual-
ization and navigation as well as thematic or semantic lenses in this area of application.
This thesis tries to sketch a framework for this purpose which is applicable for real-time
rendering. Hereby focus and context data is strictly separated, i.e., there is no transition
area between focus and context. Consequently, the techniques presented in this thesis
cannot deal with a continuous degree of interest (DOI). To achieve lens functionality in
real-time a 3D lens has to perform the following main tasks:

• Separate the geometry in the focus area (focus geometry) from the geometry of the
context (context geometry). The focus geometry can possess thematic properties
such as demographic data or other application dependent meta data.

• Render the focus, context, and lens geometry in a proper way by using different
visualization techniques and their combinations [28, 38, 54].

• Integrate the above renderings by a composition using different integration modi.

Generic Properties A 3D lens possesses a set of common attributes [22] such as a name, a
numerical ID, and a color, that grant the possibility to distinguish it on different levels of
an application. Each lens has a position in world space coordinates P ∈ WSC. Usually the
position coincides with a POI that is represented by the lens. For interaction purposes,
a lens could adopt to one of four interaction states: Normal, Roll-Over, Selected, and
Disabled. This thesis tries to take into account that for each type of lens a multiple
number of instances should be available. The maximum number of lenses of each type
depends on its implementation.
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Specific Lenses The generic lens is extended by four kinds of lenses introduced by this
thesis:

• Occlusion lenses resolve intra-object and inter-object occlusions. This lens type
introduces non-uniform transparency distribution and the x-ray shading technique
for city structures.

• Best-view lenses allow the image-based static and dynamic annotation of city
structures by using detail and overview techniques in combination with context-
lines.

• Color lenses support pixel-precise encoding of spatial information by exploiting
the difference of rendering styles.

• Deformation lens is an experimental technique to facilitate the accentuation of
buildings by global deformations.

3.1 Volumetric Depth Sprites
For the focus and context separation methods in the next section it is necessary to find
a flexible representation of the 3D lens shape. To allow accurate, scalable, and fast focus
and context separation/integration methods it is useful to represent the lens shapes as
high-precision textures. For efficient encoding of the shape information into a raster
representation and to overcome the limitation of usual depth sprites, I introduce the
concept of a volumetric depth sprite (VDS) data structure.
Vertex texture fetch (VTF) [62] offers the possibility to access raster data in the transfor-
mation and lighting (T&L) stage of the rendering pipeline. Thus, one can determine for a
given vertex of the scene geometry and a VDS of the lens shape if it is inside the focus or
not. This concept is essential for the most algorithms presented in this work, especially
for image-based focus and context separation and integration methods.

3.1.1 Definition

Index Register

Back Depth
Front Depth

Shape Contour

FD BD ID C

FCPNCP
z

x

FD
C

BD

Lens Shape

Figure 3.1.1: Details of the volumetric sprite concept.
A: value encoding, B: coherence in an or-
thographic projection.

Conceptually, volumetric depth
sprites are bilateral depth sprites
without color information. It is
acceptable to disregard the color
information because the main as-
pect of this approach lies in the
representation of the shapes vol-
ume information. Depth sprites
or Z-sprites have their origin in
image based rendering [21]. A depth
sprite is a billboarded quad with
a grayscale texture for offsetting
the depth buffer so that flat sprites
appear to have shape and volume.
Because of that, the sprites can

14



CHAPTER 3. CONCEPT OF 3D INFORMATION LENSES

FD

BD

ID

C

Combine

Lens Shape Render-To-Texture Volumetric Depth Sprite

Figure 3.1.2: The creation concept and the constituents of a volumetric depth sprite for a complex
shape.

intersect each other or other geometry. Usually, the reference depth is the front depth of
an object. A volumetric depth sprite stores both, the front and the back depth of the
lens object. The concept of VDS is only applicable to convex geometry. The values are
stored by reinterpreting the usual RGBA1 layers of an image. Figure 3.1.1 shows the
used mappings and the particular coherence for a cubic lens shape. The quality of a VDS
depends on the resolution and format of the texture (see section 3.1.3 for details).

3.1.2 Creation Process
A VDS can be created with minor effort during preprocessing of a scene or on demand.
The difference lies within the particular projection setup. The creation process can be
done with a two-stage RTT technique in combination with a shader program (compare
to figure 3.1.2):

1. Setup the standard depth test (less), clear the depth buffer with value 1, set every
color channel in the render target to zero, and render front depth of the input
geometry (lens shape) to a texture. In this pass the encoding of contour and lens
ID is done as well.

2. Change the depth test to greater, clear depth buffer and every color channel in the
render target to zero, render the back depth of the geometry, and integrate the
results with the results of the previous pass.

Additionally, for preprocessing issues, the near clipping plane (NCP) and far clipping
plane (FCP) parameter of the projection are required to scale the depth values while
integrating the VDS into a scene with a different depth ratio. The sprite front or back
depth value dS between the creation clipping setting nearS, farS and the integration
setting nearI , farI , assuming nearI ≤ nearS < farS ≤ farI , can be achieved by interval
scaling:

dI =
(nearS · (1 − dS) + farS · dS) − nearI

farI

(3.1)

1The additive color system mixes a color by using red, green and blue components.
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A B C D E

Figure 3.1.3: Aggregation of two volumetric depth sprites. A: Front depth, B: Back depth, C:
Object identity, D: All layers, E: Visualization of the VDS volume.

The encoding of the object identity id ∈ I = 0, . . . , n, where n denotes the maximum
number identities, can be calculated as follows:

γ : I −→ C, id 
−→ 2id/2n+1, C = {2x/2n+1|∀x ∈ I} (3.2)

With n + 1 bits being the maximum resolution of a color channel. This is necessary due
to the lack of bit-wise operations in the shading language [45]. It is possible to combine
two volumetric depth sprites (figure 3.1.3). The result is a union of both depth sprites.
Object identities as well as the contours will be added together. An inverse mapping of
γ is described in section 4.

3.1.3 Depth-Buffer Precision Issues
By speaking of the representation of depth values, a sufficient buffer precision is essential.
There are four different depth buffer types available at the moment (compare to figure
3.1.4):

• Z-Buffer and Complementary Z-Buffer: Classical Z-buffering is non-linear and
allocates more bits for surfaces that are close to the eye-point and less bits farther
away [16] (figure 3.1.4.A and B). The normalized mapping functions λ for Z-buffering
are defined as follows:

λZ(d) =
f

f − n
·
(
1 − n

d

)
λZ(d) = 1 − λZ(d) =

n

f − n
·
(

f

d
− 1

)
(3.3)

Whereas d ∈ [n, f ] ⊆ R is the z component of a vertex V ∈ CCS. Furthermore, n
denotes the distance from the eye point to the NCP and f the distance to the FCP.
The greater the ratio r = f/n, the less effective the Z-buffer is at distinguishing
between surfaces that are close to each other. This quantization of the depth buffer
results in stair-artifacts in the distance.

• W-Buffer and Complementary 1/W-Buffer: A W-buffer and its complemen-
tary 1/W-buffer (see figure 3.1.4.C and D) is a perspective-correct quasi-linear depth
buffer. It is more accurate and generally produces better results in the mid-range.
The normalized mapping functions λ for W-buffer are defined as:

λW (d) =
d

f
λW (d) =

n

d
(3.4)

A W-buffer delivers a bad resolution if r = f/n ≈ 1 thus has an incomplete storage
range but comes at a low additional calculation cost.
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BA C D

Figure 3.1.4: Comparison of different depth buffer types. A: Non-linear Z-buffer, B: Inverted non-
linear Z-buffer, C: Linear W-buffer, D: Inverted linear 1/W buffer.

Under the assumption of large distances f > 100 and a high-precision floating-point
texture (16 or 32 bit) the 1/W-buffer and the complementary Z-Buffer are candidates for
an optimal storage format for VDS [19, 20]. Under the additional assumption that most
of the lenses will be placed in the mid-range of the scene, 1/W-buffers should be preferred.

3.2 Decomposition of Focus & Context Areas
To achieve focus & context visualization in combination with graphic hardware accelera-
tion and scene-graph oriented graphic APIs, it is necessary to distinguish the particular
influence of the focus from the context. This differentiation can be achieved on different
levels. Mainly, there are three possible approaches to determine whether a particular
geometry falls into focus or context:

1. The object-based approach operates whilst evaluating the scene graph, before the
geometry of shapes is sent to the rendering pipeline.

2. The vertex-based approach decides for each vertex V ∈ WCS whether it is placed
inside a lens or not.

3. The third approach performs this test for each fragment F ∈ SCS in image space
and is from now on denoted as image-based approach.

The latter two approaches are unproblematic if programmable hardware is available. All
the presented techniques have advantages and drawbacks, that will be discussed in the
next sections. These approaches can be combined as well. Table 3.2.1 shows the ap-
proaches that are applied by each lens type.

3D Information Lens Object-based Vertex-based Image-based

Color lens ×
Deformation lens × ×
Occlusion lens × ×
Table 3.2.1: 3D Information lenses classified after their decomposition approaches.
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3.2.1 Object-Based Approach
This is a coarse decomposition approach. It operates on per-object basis, i.e., on geo-
metric shapes and their bounding volumes [21]. Object-based decomposition takes place
during the traversal of the scene graph. Depending on the result of the decomposition,
the attributes of the scene-graph can be changed, copied, or extended to achieve lens func-
tionality. Certain lens methods can require to alter geometry and need to save original
data [79]. This implies that an explicit access to the geometry or its bounding volume is
essential for the accurateness of this test. Since this decomposition approach utilizes the
CPU, it is the most flexible of the three introduced methods. The inter-object occlusion
test (see section 3.3.1) is an example for this class of methods.

3.2.2 Vertex-Based Approach
Vertex-based focus and context decomposition represents the next possible refinement
level. This approach can be applied in world and eye space coordinates and is important
for the implementation of deformation lenses. For each vertex V ∈ WCS can be decided
whether it belongs to the focus or the context.

Vertex-Based Approach with Analytic Shapes

The usage of analytical methods are a simple and straight way to accomplish the decompo-
sition problem. They are suitable for analytic shapes such as cylinders, spheres or cubes.
It represents a limited approach that can only be applied to a small selection of shapes and
is mentioned for the sake of completeness. Especially for further applications, it could be
useful to provide more degrees of freedom. To overcome this limitation, the next section
presents a technique that enables the access of raster data for parametrization.

Vertex-Based Approach with Textures

F

VB N

VS

VT
s

t

VP

V

VAA·w

B·h

d

Figure 3.2.1: Texture coordinate calculation.

Consider a VDS that represents a convex
shape or just a contour of this shape. VTF
allows the access to the texture data of the
VDS. The following section describes an
approach to calculate texture coordinates
for a given vertex. It has parallels to the
projective texturing method described in
[7]. However, the presented solution allows
more control and overcomes problems such
as reverse projection.
The algorithm can be implemented in a
vertex shader. After gaining access to the
VDS or an other arbitrary texture, that
represents the lens shape, we can determine
how the vertex is affiliated to a lens shape. This vertex-based approach is necessary for
the concept of deformation lenses that will be introduced in section 3.6. Considering a
plane P = (F, A,B) and the scaling vectors w, h ∈ R\0.
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A B

Figure 3.2.2: Example of vertex-based decomposition for color lenses.

The plane is defined by its normal vector N = A×B, the base vector F ∈ WCS, and the
normalized direction vectors A, B ∈ [0, 1]3. The function

κ : WCS × P −→ [0, 1]2 (3.5)

generates texture coordinates s, t ∈ [0, 1] for a given vertex V ∈ WCS. It is defined by:

s =
|F − VS|
|A · w| t =

|F − VT |
|B · h| (3.6)

VP = ρPlane(V, F, N) VS = ρLine(VP , F, VA) VT = ρLine(VP , F, VB)

This function uses two kinds of projections: ρPlane projects a vertex onto a plane while
ρLine determines the perpendicular of the vertex onto a given line. These functions are
defined as follows:

ρPlane(P, O,N) = P − ((P − O) • N) · N (3.7)

ρLine(P, A, B) = A + (P − A) · ((P − A) • ‖B − A‖) (3.8)

To determine if V lays in the correct half-space of P , one can apply the following boolean
test:

ϑ(VP , A,B, VS, VT ) =

{
1, if (A × N) • (VS − VP ) < 0 ∧ (B × N) • (VT − VP ) < 0
0, otherwise

(3.9)
By using the above equations, one can determine whether a vertex V is associated with the
focus or the context. This method is very flexible and allows the representation of arbitrary
2D lens shapes (see figure 5.3.3). So far, this approach is limited to two dimensions. By
calculating the distance d = |VP − V |, we have access to a third dimension, that allows
a volumetric depth test in the world coordinate system. The next section describes and
demonstrates the application of this method in image space.
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Figure 3.2.3: Application of the image-based focus and context separation and integration on the
example of an intra-object occlusion lens using a volumetric depth sprite of a cube
(A), a sphere (B) and multiple spheres with different radii (C).

3.2.3 Image-Based Approach
The image-based approach is essential for lens algorithms that operate in image space. It
delivers pixel-precise results [21] and is implemented using shader programs. Analogue to
the vertex-based decomposition we can distinguish between two approaches of different
flexibility: analytical and texture-based. This section focuses on the latter one. For each
fragment F ∈ SCS and a given VDS which describes the dimension of a lens (the focus
area), a two-sided depth test can determine whether F is in the focus area or not. The
classic depth test performs a boolean operation ◦ ∈ {<,>,≤,≥, =, �=, Never, Always} :
D × D −→ B = {0, 1} upon dI ◦ dC where dI is the incoming depth of a fragment and dC

the current depth in the depth buffer. The depth values are normalized in D = [0, 1] ⊆ R.
A volumetric depth test:

δF : D × D × D −→ B (3.10)

can perform the following modi F ∈ {Inside, Outside, Equal, Never, Always} on an in-
coming depth dI and the front- and back-depth dF , dB ∈ D of a VDS respectively:

δInside(dI , dF , dB) =

{
1, if(dF < dI) ∧ (dI < dB)
0, otherwise

(3.11)

δOutside(dI , dF , dB) =

{
1, if(dF > dI) ∨ (dI > dB)
0, otherwise

(3.12)

δEqual(dI , dF , dB) =

{
1, if(dF = dI) ∨ (dI = dB)
0, otherwise

(3.13)

Figure 3.2.3 shows some examples of the volumetric depth test using single and multiple
shapes.
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A B C D

Figure 3.3.1: A comparison of screen-aligned intra-object occlusion lenses. A: Opaque rendering of
the Maybeck Studio, B: Transparent rendering with layers of uniform alpha values, C:
Selective transparency with layers of uniform alpha values, D: Selective transparency
with layers of non-uniform alpha values.

3.3 Occlusion Lens
As the name suggests, the task of an occlusion lens in virtual 3D city models is the
compensation of a certain kind of occlusions. In this application the viewer encounters
two kinds of categories: intra-object occlusions and inter-object occlusions.

Intra-Object Occlusion describes a seldom case of occlusion in 3D city models and is of
secondary importance in this section. Considering a LOD-4 building [37, 26] which interior
is occluded by its surrounding walls. Intra-object occlusion occurs if the viewer wants to
see into a building or the view is blocked inside a building by interior walls. Thus, intra-
object occlusion denotes the partial occlusion of object parts by each other [52]. This
occurs mainly within point-based user activity.
Figure 3.3.1 shows an approach to deal with intra-object occlusions by using selective
order-independent transparency rendering via depth peeling [6] (see section 2.3) in combi-
nation with a non-uniform alpha value distribution along the peeled color layers. Thereby,
the alpha value of the color maps decreases toward the center of projection (COP). Given
a number of color layers n ∈ N. The alpha value a ∈ [0, 1] for a color layer Li ∈ {0, ...n}
can be calculated using a smooth step-function:

a = t2 · (3–2 · t) (3.14)

t = min(max(i/n, 0), 1)

Here, n is the farthest layer from the camera. The advantage of a non-uniform alpha
distribution can be perceived by comparing the sub-figures 3.3.1.C and 3.3.1.D.

Inter-Object Occlusion or scene occlusion denotes the occlusion between two structures.
The most common case would be the inter-object occlusion between a number of buildings.
This targets mostly local-based user activity. An object that is hidden behind another one
will be denoted as occludee. An object that hides an occludee is denoted as occluder. In
this case an occluder prevents the user from gaining access to visual, spatial or structural
information of the occludee. The benefit of resolving inter-object occlusion lies in a
decrease of navigation overhead for the user.
This can be achieved by reinterpretation or transformation of the occluders building in-
formation such as structure or their appearance in the vicinity of the viewers location.
The reinterpretation in form of special rendering techniques allows a surplus with the
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Figure 3.3.2: Comparison of occlusion detection tests for occlusion lenses. A: Spherical occlusion
test, B: Viewers Height occlusion test, C: View Axis occlusion test.

preservation of occluder information (like shape or texture) in combination with the in-
formation of the occludee. This could also be applied to the editing process of a city
model.
However, the concept of an occlusion lens is quite simple. It uses the object-based sepa-
ration approach for a set of city structures like buildings or vegetation objects to divide
it into two disjoint sets based on their characteristic properties regarding the users COP.
The occluder area set contains all structures that are classified as occluders by failing an
occlusion detection test (see section 3.3.1). All other structures are part of the comple-
mentary occludee area set. There are three different rendering techniques for structures
of the occluder area set:

• Discard any geometry of the occluding object.

• Apply visual abstraction methods to the occluder object.

• Flatten the geometry of the occluder and preserve special features of the object
(e.g., façade texture information).

The following section presents three occlusion tests for city structures under the assump-
tion that an axis-aligned bounding box (AABB) is available, that describes the volume
of the structures.

3.3.1 Occlusion Detection Tests
In the context described above, occlusion detection is the categorization of each building
or other structure as an occluder or occludee. If such a structure is determined as an
occluder, one of the three techniques can be applied to it. Considering the users orientation
L = (LF, LT, LU) ∈ R

3×R
3×R

3, whereas LF represents the COP, LT the view direction
vector, and LU the up-vector of the camera. Together with the buildings AABB =
(LLF, URB), an occlusion detection test or function delivers a boolean value true if the
structure is categorized as an occluder:

ωF (AABB,L) 
−→ B (3.15)

For a particular function instance F a differentiation between the following three occlusion
detection approaches is possible. The values 1 and 0 will be further referenced as true
and false.
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Spherical Occlusion Detection Given a radius r ∈ R that determines the area of occlusion
around the COP and the center point C ∈ R

3 of the AABB, we can define a spherical
occlusion detection test as follows:

ωSpherical(ABBB, L) =

{
1, if |MV · C| < r
0, otherwise

(3.16)

Hereby, the vector C is transformed into the camera coordinate system by multiplication
with the current model-view transformation matrix MV. It is also possible to use another
reference point instead of C or even a set of reference points to test against in order to
deliver more accurate results. The above equation also expresses a cylindrical occlusion
test by projecting C onto a plane with origin LF and normal vector LU so that C ′ =
ρPlane(C, LF, LU) (compare to figure 3.3.2.A).

Viewers-Height Occlusion Detection This approach extends the spherical occlusion detec-
tion test. Given the users orientation L and the AABB, a building can be categorized as
occluder if the AABB intersects the plane with origin LF and the normalized vector LU
(compare to figure 3.3.2.B):

ωPlane(ABBB, L) = ωSpherical(ABBB, L) ∧ intersectPlane(AABB,L) (3.17)

View-Axis Occlusion Detection Given a set of scene POIs S = {POI0, . . . , POIn} (see
figure 3.3.2.C) and the users orientation L, the view-axis occlusion test will deliver a
positive result if the AABB intersects at least one view axis Ai, with Ai = ((0, 0, 0),MV ·
POIi). Formally spoken:

ωAxis(AABB,L) =

{
1, if

∑n
i=0 intersectLine(AABB,Ai) > 0

0, otherwise
(3.18)

A fast AABB intersection test intersectLine is described in Kreuzer et al. [47].

3.3.2 Rendering of Occlusion Lenses
Depending on the method of resolving the occlusions, the rendering of occlusion lenses
can be done using multi-pass rendering:

1. Context Rendering: The first pass renders the terrain geometry of the city model
and all structures classified as occludees.

2. Focus Rendering: The second and all successive passes render only occluder ge-
ometry by applying rendering techniques for visual abstractions.

The next two sections focus on rendering techniques that are able to convey certain aspects
or information of the occluder.
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D E F

Figure 3.3.3: Examples for visual abstraction of buildings. A: Occluder buildings, B: Discarded
occluder geometry, C: Rendering of the occluders bounding box, D: Transparent ren-
dering of the occluder with preserved texture information, E: Transparent rendering of
the occluder with discarded texture information, F: Transparent rendering of bounding
box.

3.3.3 Visual Abstraction
In the context of 3D city models one can roughly distinguish between two kinds of visual
abstractions: the abstraction of a buildings shape or its façade information, such as
shading, texturing [48, 28] or edges [59]. For navigation and orientation issues, it could be
necessary to maintain a generalized shape of an occluder building. Besides a generalized
hull [83, 84], the buildings axis-aligned bounding box (AABB) is such a generalized shape.
Order-independent transparency as described in section 2.3 serves to simplify the buildings
color information. Figure 3.3.3 shows several examples of occlusion lenses with different
levels of shape appearance and abstraction.
The visual abstractions possess some disadvantages. To omit all occluder information can
irritate the user. Sub-figures C and D suffer from a low contrast between the bounding
box or the transparent shapes and the scene. But decreasing the transparency leads
to a reduced perception of the occludees (sub-figures E and F). The essence of resolving
occlusions is presented by a so-called X-Ray or Ghost Shader. All surfaces that are parallel
to the view plane become transparent. This reduces the number of overlapping transparent
shapes and increases the perception of the occludees. The approach is reasonable by
considering the generally cubical form of the buildings. For a given vertex V ∈ WCS and
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A B C

Figure 3.3.4: Example of an inter-object occlusion lens utilizing an x-ray shader: with preserved
texture information (A), with color abstraction (B), and with shape and color ab-
straction.

its corresponding normal N ∈ CCS the opacity term o ∈ [0, 1] is calculated as follows:

o = 1 −
(∣∣‖ − N‖ • ‖ − (MV · V − O)‖∣∣)e

(3.19)

The edge fall-off parameter is determined by e ∈ [0, 1]. The opacity term o can be mapped
directly onto alpha value of the vertex V . To achieve more user control, the vertex color
and opacity can be sampled from 1D textures depending on o. Figure 3.3.4 demonstrates
the results.

3.3.4 Flatten Geometry
Another possibility to overcome object occlusion is flattening the object which occludes a
POI. This approach can be useful for recognizing the original position and the dimension
of the base area of the occluder.

Ad Hoc Solution An object can be flattened just by setting the particular vertex compo-
nent V = (x, y, z, 1) ∈ R

4 to an specified value v ∈ R which represents the base of the
object. Hereby, v can be taken from buildings AABB. Consequently, vertical flatting can
be done using the following transformation:

V ′ = V · MS · MT (v), MT (v) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 v
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , MS =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (3.20)

The quality of this approach is sufficient if objects in the far or middle distance are
supposed to be flattened. Since the solution delivers dissatisfying results near the COP,
this thesis proposes a high-quality approach which is described in the following.
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Figure 3.3.5: Concept of the flatten-lens rendering technique.

Advanced Solution Figure 3.3.5 shows the creation process. An approach that delivers
better results can be achieved by using a RTT technique (see section 2.3) for the focus ren-
dering. The object has to be flatten against the ground XZ-plane by using an orthographic
projection. Assuming an AABB = (LLF, URB) ∈ R

3 ×R
3 one could calculate the addi-

tional vectors that are denoted by a combination of F for front, B for back, L for left, R for
right, U for upper, and L for lower. For offscreen-rendering, the orthographic projection
with a viewing volume defined by: top = LRBx, bottom = LLFz, left = LLFx, right =
LRBx, near = d, and far = LLFy is used. This ensures the correct size and proportions
for the texture. d is the near distance which can be defined by the user. The orientation
of L is defined as look from top with:

L = ((LLF + LRB)/2 + (0, |URBy − LLFy| + d, 0), (LLF + LRB)/2, (0, 0, 1)) (3.21)

To achieve accurate lighting, we have to consider the following issue: The OpenGL spec-
ification [45] states that a light position is converted to eye-space coordinates automat-
ically. Let MSP ,MSO be the projection and orientation transformation matrices of the
scene camera and MLP ,MLO be the matrices in respect to the local camera. There are
at least two possibilities to fix this problem. One could use a vertex shader to correct the
lighting respectively to MSO or apply deferred shading by employing a fragment shader
in combination with multiple-render-targets (MRT). However, the solution can be done
without the usage of shaders. We have to adapt the orientation matrix for the local cam-
era. The correct lighting transformation settings M′

LP ,M′
LO can be calculated as follows:

M′
LP = MLP · M−1

SO, M′
LO = MSO · MLO (3.22)

These transformation corrections must be made every time the orientation of the scene
camera changes. To take the light attenuation into account, the flatten object has to be
translated. The translation vector T can determined by T = (0,−(|LLFy| + |URBy|, 0).
Instead of rendering the building geometry, the technique renders a textured quad Q
which was extracted from the AABB. To avoid Z-fighting2, the depth test should be
disabled. An alternative integration method can be done by projective texturing which
requires an additional rendering pass and also the storage of the texture. The integration
of the flatten texture can be enhanced by blurring its alpha mask before texturing the
quad Q. Figure 3.3.6 depicts the comparison between alpha testing (A), simple alpha
blending with sharp alpha mask (B), and alpha blending with blurred alpha mask (C).

2Z-fighting is a phenomenon that occurs when two coplanar primitives have similar values in the
Z-buffer.
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Figure 3.3.6: Comparison of different integration methods for a flat-lens texture using alpha test
(A), alpha blending (B) and alpha blending with adaptive blur of the alpha mask (C).

3.4 Best-View Lens
This class of lenses is designed to aid the exploration of 3D city models by depicting
distant locations in virtual worlds. The concept of a 3D best-view lens (BVL) evolves
from the principle of 2D context maps and the Through-the-Lens metaphor [82]. Context
maps represent an information space at a larger or smaller scale by providing overview
or detail information. They allow dynamic interactive positioning of the local detail
without compromising spatial relationships severely [95]. This facilitates combined 2D/3D
interfaces that extends annotations of 3D scene objects by linking and referencing complex
2D views with callout-lines [14]. This overview and detail approach has been found useful
in previous studies [50] but in general, context maps suffer from two essential problems:

• Occlusion problem: A lens (e.g., magnification lens) occludes parts of its context
if it is placed over the area of interest.

• Continuity problem: If the focus or context areas are dislocated, the association
between them is difficult for the user.

We can encounter both problems with best-view lenses too. Another related visualization
approach is the multiple views or multiple-viewport metaphor [9, 3]. A single scene is
rendered from different camera positions into multiple viewports. Basically, a BVL is an
abstraction of this technology. It overcomes the spatial separation of multiple viewports
by integrating them into the scene rendering. That can be achieved by placing focus and
context overlays on separated parts of the viewport together with the depiction of their
associations to the POI in the scene. This image-based approach is used frequently. Two
examples are shown in figure 3.4.1 and 2.2.1. They demonstrate different aspects of usage.
Figure 2.2.1 provides context information while figure 3.4.1 shows a focus view of a scene
object in the distance.
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Figure 3.4.1: Custom-made best-view lenses and context-lines that integrate the focus depictions
into a context.

We can find different applications in virtual 3D city models for a best-view lens:

• It allows the depiction of city model objects and their special aspects in a priority
based manner.

• It supports focus & context navigation by integrating landmarks, photographs of
POI, and other raster data into the scene rendering.

• It eases the creation and integration of dynamic scene-bookmarks.

• It facilitates the tracing of moving objects in the virtual scene.

3.4.1 Lens Models
Figure 3.4.2 provides an overview of the best-view lenses introduced in this section. It
reveals that worldlets [88], static as well as dynamic landmarks and map-views are special
instances of a BVL. They can be implemented with a single framework.

Best-View Lens (BVL)

Dynamic Best-View Lens (DBVL)

Single Center-of-Projection  (SCOP) DBVL

Map-View Lens (MVL)

Multiple Center-of-Projection  (MCOP) DBVL

Static Best-View Lens (SBVL)

Static Annotations

Worldlets

3D See-Through Interface

Dynamic Annotations

Figure 3.4.2: Taxonomy of best-view lenses covered by this thesis (grayed).
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Figure 3.4.3: Examples of a static best-view and a map-view lens.

Its concept consists mainly of the following two parts:

• Overlay: An image that is placed over the scene rendering. It contains either the
focus or the context rendering.

• Context-Line: It represents the association between the overlay and a point in the
scene.

A static BVL associates a given depiction or photo with a geo-referenced object, while a
dynamic BVL creates this depiction by rendering the city model with a local camera. The
parameters of the local camera, particularly its orientation and projection, can be altered
per frame. A further specialization into multiple-center-of-projection (MCOP) and single-
center-of-projection (SCOP) best-view lenses is based on the orientation constraints of the
local scene camera.

Static Best-View Lens

A static best-view lens (SBVL) or annotation lens integrates predefined raster data with
the viewport and allows an association with a given number of locations. Figure 3.4.3.A
demonstrates an application. In contrast to the classical landmark and POI rendering,
the static depiction is placed in an overlay on the viewport and not in the scene directly.
This is reasonable if the distance between the viewer and the POI is large. The overlay
can also occlude the scene partially. In this case, one can use a tilted 3D call-out which
could resolve some occlusions of this local context [81].
The call-out principle is a visual device for associating annotations with an image, program
listing, or similar figure and has its origin in typesetting. Each location is identified with
a mark, and the annotation is identified with the same mark. This is somewhat analogous
to the notion of footnotes in print. An advantage of this lens type is the representation
of an arbitrary number of relations between overlay and scene.
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Dynamic Best-View Lens

A dynamic best-view lens (DBVL) is represented by a local scene camera, that delivers
the focus or context rendering for the overlay representation. The DBVL can be de-
pendent or independent of the viewers position. Using dynamic BVL instead of static
ones has some major advantages. Focus and context exhibit a homogeneous appearance.
This increases the probability of recognizing the depicted scene objects. The animation
of the local camera enables tracing a number of moving objects in the scene without
forcing the observer to move. Besides free positioning of camera in the scene, its lo-
cation can also be calculated by using a given bounding box. This requires the scene
object to have a best-view normal (BVN) that indicates a preferred view on the object.

SCOP

LTn

LTmLFScene

VNn

VNm

LTScene

MCOP

LTm = LTn = LFScene LFm

dn

dm

LTScene

LFn

Figure 3.4.4: Comparison between
a SCOP and MCOP
best-view lenses.

For a projection with a horizontal field-of-view (FOV)
of 90 degrees and a bounding sphere S = (M, r) of the
object, the orientation LBV N of the local scene camera
can be calculated as follows:

LBV N = (LFBV N , M, LUScene) (3.23)

LFBV N = M + BV N ·
√

2 · r2

M ∈ R
3 denotes the center and r ∈ R the radius

of the sphere. For a given viewer orientation L =
(LFScene, LTScene, LUScene), a differentiation of DBVL
into two categories is possible. The multiple-center-of-
projection DBVL is always orientated toward LFScene.
A single-center-of-projection DBVL obtains this vec-
tor as COP but possesses different view directions. A
rear view mirror is an example of such a DBVL.
Figure 3.4.4 clarifies the distinction of both sub-
classifications by using two local camera se-
tups LLCn = (LFn, LTn, LUn) and LLCm =
(LFm, LTm, LUm). Given the view direction normal
V N ∈ R

3 and a distance d ∈ R, the orientation of the respective local scene camera
LMCOP = (LFMCOP , LTMCOP , LUMCOP ) can be calculated by:

LMCOP = (LFScene + (V N · d), LFScene, LTScene − LFScene) (3.24)

The absolute orientation LSCOP = (LFSCOP , LTSCOP , LUSCOP ) of the SCOP DBVL can
be determined by:

LSCOP = (LFScene, LFScene + V D,LUScene) (3.25)

The view direction of this orientation is expressed by the normal vector V D ∈ R
3.
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Figure 3.4.5: Rendering of map-view lenses. A: North-up map-view lens, B: Head-up map-view
lens, C: North-up map-view lens with indication of the users view direction.

Map-View Lens

A map-view lens (MVL) represents the specialization of a MCOP best-view lens. This
method provides context information by generating an overview of the current viewers
surrounding. Figure 2.2.1 shows two applications of map-view lenses. The principle
orientation setup of the local scene camera is calculated using equation 3.24. We can
distinguish between three different dynamic map-view lenses in general [11] (compare to
figure 3.4.5).

• North-Up Mode: The map view is always aligned north. In this modus the user
cannot determine its heading from the map view. The up-vector of the local scene
camera is corrected according to a scene north vector NS ∈ R

3 so that LUSC = ‖NS‖.
This viewer position is centered in the overlay (see figure 3.4.5.A).

• Track-Up or Head-Up Mode: The map view is aligned with the current view
direction of the user. Figure 3.4.5.B shows a compass, that allows orientation within
the context.

• North-Up with User-View Mode: It operates by using the same principle as the
North-Up mode but possesses an symbol, that visualizes the users heading direction
(compare to figure 3.4.5.C).

3.4.2 Overlays
Overlays allow the displacement of the focus rendering from its original position in the
scene. Simultaneously, they also solve the occlusion problem partially. An overlay is
mainly represented by its dimensions on the viewport and its transparency. The dimen-
sions will be defined by a layout. The essential task of the layout is to manage the
available screen space in an efficient way. The overlay style can be configured by using 2D
texture maps for the alpha mask [21] and the frame mask (see figure 3.4.6). The texture
representation of overlay alpha and frame mask afford a multitude of design possibilities
and facilitates the application of irregular lens shapes.
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Figure 3.4.6: Components of an overlay. The focus rendering or the static annotation texture will
be alpha-blended with the overlay alpha-map and the frame-mask.

3.4.3 Context-Lines
”One challenge in navigating through any large data space is maintaining a sense of
relationship between what you are looking at and where it is with respect to the rest of
the data” [4]. A context-line (CL) visualizes the association between the overlay and the
corresponding point in the scene. This can often be seen in touristic visualizations of a
city or a particular area (see figure 3.4.1 left). Subjectively, users prefer to have a linked
overview, but they are not necessarily faster or more effective using it [49]. A context-line
is mainly defined by a focus anchor FA and a context anchor point CA (compare to figure
3.4.7). The focus anchor point is the projected lens position.
The usage of context-lines leads to two problems. On the one hand, two context-lines
can overlap or interfere each other. The resulting confusion of the user can be avoided
partially by sorting the context-lines according to their alignment. On the other hand, the
context lines occlude important areas of the scene. By acting on the following assumption,
the problem can be solved: The look-at point is the current center of interest within the
scene. With a given radius r ∈ N around the screen center C = (w/2, h/2) ∈ SCS and a
drop-off parameter e ∈ N, 0 ≤ e ≤ r, we can fade the alpha value a ∈ [0, 1] of an occluding
context-line fragment F ∈ SCS (see figure 3.4.8) according to

a = mix(0, 1, smoothstep(e, r, d)) with d = |C − F | (3.26)

The description of problems and their solutions above evolve into a generic solution in form
of globally applied constraints, that can alter the visibility or appearance of a context-line.

A B

Color Mask

Alpha Mask

FAT

FAB

CAT

CAB

CA (Context Anchor) FA (Focus Anchor)

NFANCA

offsetCA offsetFA

Figure 3.4.7: Concept of a straight context-line. A: the quad is represented by two vectors CA and
FA with their offsets. B: Example skin for the context-line.
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A B

Figure 3.4.8: Examples of visibility constraints for context-lines. A: Demonstration of CL ordering
and hiding. B: Alpha fading towards the center of interest.

3.5 Color Lens

Figure 3.5.1: Example of a single color lens. The fo-
cus area appears normal while the con-
text is blurred after sepia color trans-
formation.

A color lens is able to integrate differ-
ent renderings of the same scene geom-
etry using the same projection. It is an
image-based technique that allows hy-
brid rendering, i.e., mixing of photoreal-
ism and NPR [74, 75]. It facilitates the
implementation of rendering techniques
which support preattentive perception
and allows the extension of the available
expression dimensions in a visualization
environment. The encoding of informa-
tion by different rendering styles is a
common method. When appropriately
used, graphical features such as shape,
size, color, and position have proved to
be effective in information visualization
because they are mentally economical,
rapidly and efficiently processed by the
preattentive visual system rather than
with cognitive effort [53]. In the context
of geovirtual environments, these encodings can be used to identify, localize, correlate,
and categorize city model objects as well as to find data distributions. For example:
the visualization of data significance in 3D, the catchment area of schools, hospitals, su-
permarkets or the coverage of telecommunication antennas. Color lenses also enable the
visualization of spatial-temporal aspects or differences. This lens approach addresses a
global user activity and applies the image-based focus and context separation/integration
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A CB

Figure 3.5.2: Examples of different post render-styles which supporting preattentive perception. A:
Context cueing, the context is darkened while the focus remain unchanged. B and C:
Same principle, but the color information of the context discard and then inverted.

method presented in section 3.2.3. The technique works under the assumption, that the
geometrical model of the focus and the context rendering is coherent and not deformed.

3.5.1 Render Styles
The potential of color lens addresses the selective and associative characteristics of visual
variables such as color and texture on a high level. Figure 3.5.2 shows the impact of
different styles for focus and context rendering. It demonstrates the application of some
principles for enhancing preattentive perception after [10]. One can distinguish coarsely
between two factors that are able to emphasize or strengthen the visual differences between
the lens focus and its context:

• Shading: It determines how the scene is shaded and lit. Strong discontinuities
in shading or complementary shading colors can be perceived by humans. This
addresses mainly the differences between NPR shading styles like cel-, gooch-, and
standard shading. Figure 3.5.3 A and C shows two examples.

• Image Filtering: These image-based postprocessing methods [42] can be applied
after the shading of the scene geometry. Color allows the encoding of correlations
between objects with equal properties. This visual variable can be used to identify
and localize buildings or other objects in the scene. Figure 3.5.2 shows examples
of color transformations. Figure 3.5.1 demonstrates the application of convolution
filtering [21] in order to implement semantic depth-of-field [72, 71].

To allow an application to deal with these factors on a high level, the term render style
(RS) introduced. A RS is a group of rendering controls for objects. According to the
above list, we can identify two classes of render styles: scene render-styles (SRS) and
post render-styles (PRS). A render-style configuration consists of a single scene render-
style and n post render styles: RSC = (SRS, {PRS0, . . . , PRSn}. Render-styles can
be represented and implemented by using uber-shader programs (see section 3.7). This
allows various combinations of different RS.
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A B C

Figure 3.5.3: Examples of color lenses with different render styles and lens shapes. A: Flat shading
scene render style in combination with standard shading and texturing. B: Color
overlay post render style. C: Similar to sub-figure A but with inverted flat shading.

3.5.2 Lens Model
A color lens allows the association between a render-style configuration and a volumetric
depth sprite. Hereby, the configuration is directly associated with the object identity id
described in section 3.1.2. Consequently, the number of simultaneous available render
style configurations is limited to the maximal number of VDS object identities. Following
to that, there is a specific render-style configuration for the scene. More formally, a color
lens Ll can be defined as Ll = (RSCl, V DSl). The position of the lens is inherent given
by the position of the VDS shape.

3.5.3 Rendering of Color Lenses
The rendering of color lenses uses multi-pass RTT. It assumes the same camera setup
that is used for VDS creation. Given a list of color lenses L = L0, . . . , Ln and the
context render-style configuration RSCC = (SRSC , {PRSC0 , . . . , PRSCn}, the rendering
algorithm for n color lenses can be outlined as follows (compare to figure 3.5.4):

1. Focus Rendering: For each lens Li ∈ L do: set the SRS of the lens RSCi and
render the scene into a texture Ti. Usually, this texture has the dimensions of the
viewport. After this, apply all PRSi to Ti. This can be done by texturing a screen
align quad with Ti and apply the render-style shaders successively.

2. Context Rendering: Set SRSC and render the scene into a color map TC and a
depth map TD. Apply all PRSCi

to TC afterwards.
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Figure 3.5.4: Color lens integration process and participating components.

3. Compositing: Finally, integrate all lens rendering Ti and the context rendering TC

into an output image. Figure 3.5.4 demonstrates the integration process for a single
color lens Li. The integration of the context rendering TC and a focus rendering
Ti can be achieved by performing a volumetric depth test (see equation 3.10) using
the depth map TD and the particular volumetric depth sprite V DSi. Consider the
scene depth ds of TC and the front and back depths dFi

, dBi
of the lens V DSi.

The following equations determine the lens output color CCSi
from the input colors

CFi
∈ Ti and CC :

CCSi
=

{
CFi

, if(δInside(dS, dFi
, dBi

) = 1
CC , otherwise

(3.27)

This test is performed for all Li. The resulting CCS will be blend over successively.

3.6 Deformation Lens
This experimental technique tries to provide additional information about the scene by
simultaneously preserving its spatial coherence. This method has mainly two possible
applications: resolving occlusions through object deformation and highlighting of user
defined space. This approach uses global deformations applied in a vertex shader and
assumes appropriated tessellated shapes. If a shape is not tessellated in a sufficient way,
the mesh-refinement approach described in section 2.3 is applied. The control of the
deformation operations is done by utilizing 2D texture maps. Therefore, it utilizes vertex-
based decomposition described in section 3.2.2.

Global Deformations Generally, space deformations can roughly be divided in axial, sur-
face, lattice, and other specialized space-deformations. A global deformation is an axial
space-deformation, that takes a vertex V and outputs a deformed vertex V ′:

θ : WCS −→ WCS, V ′ = θ(V ) (3.28)
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A B C D E F G

Figure 3.6.1: Examples of global-deformation operators. A: undeformed reference building, B: ver-
tical bending, C: horizontal shearing, D: vertical tapering, E: horizontal twisting, F:
combination taper and twist operator, G: combination of taper, twist, and bending
operator.

θ is hereby denoted as global deformation operator [1]. Figure 3.6.1 demonstrate some ex-
amples of global-deformation operators applied to a single building. Figure 3.6.2 demon-
strates the application of global deformations to a more complex model. Deformation
operators can be combined by applying them successively to a vertex.

Lens Model One can distinguish lenses models on the basis of the coordinate system
in which the deformation is applied. Usually, this will be the world-coordinate-system.
However, there are possible applications for deformation in the camera space CCS. This
work concentrates on deformation in the world-coordinate-system WCS. Figure 3.6.3
shows some examples of deformation lenses. The rendering of them can be done within a
single pass by using vertex shader. They apply vertex-based decomposition (see section
3.2.2) to determine the affiliation of a vertex to the context or focus. The lens shape
is represented by a monochrome 2D texture. Simultaneously, this texture allows the
parametrization of the deformation operator. A deformation lens is a tuple:

L = (P , T, θ) (3.29)

The structure of P is described in section 3.2.2. It defines the lens position, dimension,
and orientation. T represents the 2D texture, that control the deformation operator θ.

A B C

Figure 3.6.2: Global deformation operations applied to a simple city model. A: Bending around the
z-axis, B: bending around the x-axis, C: bending around x- and z-axis.
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D

Figure 3.6.3: Example for global deformations in world coordinates.

For an incoming vertex V ∈ WCS the model transformation M is applied to V so that
VM = M · V . Dependent of the implementation, it can be necessary to extract the model
matrix from the model-view matrix MV by calculating M = MV · V−1. Considering a
parametrized deformation operator θ, the projected vertex V ′ can then be calculated as
follows:

V ′ = VP ·
(
θ
(
T(VM)−1

) · T(VM)
)

(3.30)

First, VM is translated into the coordinate origin. The result represents the input of the
deformation operator θ. Afterwards, the deformed vertex is translated back. Finally, the
deformed vertex is multiplied with view-projection matrix VP.

3.7 Shader Management
Programmable hardware comes along with a main conceptual problem: it is only possible
to have a single active shader, that replaces parts of the fixed function rendering pipeline
and becomes part of the rendering context. This results in multiple independent shaders
for multiple variations of rendering. Consider an encapsulated functionality of a shader,
that is integrated into a scene-graph based high-level graphic API such as VRS or OpenSG.
The combination of such shaders requires the work of an engineer, that is able to develop
a new shader, that functionality is a conglomerate of several features. This aspect is an
antagonism to the generic characteristics of such an API. The aim is to achieve logical
decoupled functionality and implementation.
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Problem Statement To achieve decoupled functionality within a scene-graph based ren-
dering platform, one has to solve the following two problems [29]:

1. Permutation Problem: In current engines or frameworks many shaders are vari-
ations and combinations of basic functionality (e.g., material LOD approximations,
lighting models, animation skinning etc.). It can be expected, that the total number
of combinations will increase in the future. Creating and managing these permuta-
tions would be time consuming, error prone, and hard to maintain.

2. Independence Problem: By paying respect to the increasing general propose
GPU computation trend, shader move away from tasks such as lighting and ani-
mation to the more general and complex applications. Many modern shader-driven
engines [85] or frameworks utilize the concept of a shader library [2]. To enable a
generic solution one have to ensure, that multiple instances of shader permutations
can interact and perform independent from each other.

It can be assumed that hardware restrictions such as the limitation of shader instructions
and constant/varying registers will decrease in the future. This leads to growing com-
plexity and size per shader. Since the introduction of shader model 3.0, GPU programs
support instructions for flow control (loops and branching).

Generic Uber-Shader The concept of generic uber-shaders (US) represents the technical
backbone of the color lens and deformation lens implementation. The basic idea is a
generic approach for uber-shaders, denoted as dynamic uber-shader construction. Be-
sides low-level approaches such as micro-shader and shader-fragments which use script-
languages in preprocessing [29], this approach is able to solve the permutation and inde-
pendence problems.
An US is a single, monolithic, and independent shader for multiple geometry using static
or dynamic branching to control the execution of the particular code paths. McGuire [65]
demonstrated this by creating an uber-shader that is able to render several effects. The
so-called SuperShader allows arbitrary combinations of rendering effects to be applied to
surfaces simultaneously. It uses run-time code generation to produce optimized shaders
for each surface and a cache to re-use shaders from similar surfaces.

Static vs. Dynamic Branching Todays hardware supports two different types of branching:
static and dynamic branching [43].
With dynamic branching, the comparison condition resides in a variable. The comparison
is done for each vertex or each pixel at run time (as opposed to the comparison occurring
at compile time, or between two draw calls). The performance hit is the cost of the branch
plus the cost of the instructions on the side of the branch taken.
Static branching denotes the capability of a shader model, that allows blocks of code to
be switched on or off based on a boolean shader constant. This is a convenient method
for enabling or disabling code paths based on the type of object currently being rendered.
Between draw calls, one can decide which features have to support with the current shader
and then set the boolean flags required to achieve that behavior. Any statements that
are disabled by a boolean constant are skipped during the execution of the shader.
The presented method uses static branching because dynamic branching is currently avail-
able for vertex shader only. It is applicable to high-level shading languages similar to
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GLSL. Furthermore, it acts on the assumptions that no special shader compiler and no
special syntax is necessary. The integration and concatenation of the shader source code is
done by an shader-management-system (SMS). It combines several shader-handler (SH),
grouped by uber-shader programs into a single US controlled by the SMS.

Handler Concept Automatic source code generation solves the permutation problem.
To achieve a generic conglomerate of independent functionality, the shaders are split
into functional components: vertex shader-handler (V SH) and fragment shader-handler
(FSH). These components deal for example with animation, transformation, and light-
ing. The handlers are a quadruple of:

V SHidV
= (idV , name, mode, source), FSHidF

= (idF , name, mode, source) (3.31)

The identifiers idV , idF are unique properties of the shader handler. The name denotes
the functionality and is important for the automatic combination of shader handler. The
source attribute contains the GLSL shader source code that implements the particular
functionality. Finally, mode ∈ {Local, Global, Optional, Ignore} defines the execution
mode of a handler. The following execution modes can be distinguished:

• Global: The handler will always be invoked during the execution of the uber-shader.
Examples can be clipping, fog or writing to multiple render-targets.

• Local: The handler will only be invoked when it is set to active. The interpolation
for the generic mesh-refinement described in section 2.3 is a local handler.

• Optional: The handler will only be invoked if no handler of its prototype was
invoked before.

• Ignore: The shader handler will never be invoked.

The set of all available unique vertex shader hander is denoted as VSH. The set of all
fragment shader handler is denoted as FSH. Handler can communicate using a predefined
interface, i.e., by reading and writing a context which encapsulates the output variables of
the particular shader type. This enables the access to the results of the previous handler
in order to save calculation costs. A vertex context can encapsulate the position, normal,
point size, and clip vertex coordinates. A fragment context can store the fragment output
targets and the fragment depth (see section 4.4.2 for details). There are two special
handler for each shader type. The init handler sets up the particular context at the
beginning of a shader. The finish handler sets the particular shader output state to the
results of the respective vertex or fragment context. All V SH and FSH will be integrated
into a single uber-shader, that consists of one vertex shader and one fragment shader. The
integration is controlled by the uber-shader system. V SH and FSH can be grouped in
uber-shader programs. These programs control the invocation of the particularly shader
handlers. An uber-shader program USP i consists of the following components:

USP i = (VSHi,FSHi, V HITi, FHITi),VSHi ⊆ VSH,FSHi ⊆ FSH (3.32)

V HITi = {idVx|∀x : V SHidVx
∈ VSHi}

V FITi = {idFx|∀x : FSHidFx
∈ FSHi}
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The global uber-shader US is described as:

US = (VSH,FSH, V HHT, FHHT ) (3.33)

The global order of SH execution is controlled by the vertex-handler hook-table (V HHT )
and fragment-handler hook-table (FHHT ):

V HHT = idV0 , . . . , idVa , FHHT = idF0 , . . . , idFb
(3.34)

with V SHidVi
∈ VSH and FSHidFj

∈ FSH. The length of the global hook-tables is

given by: a = |VSH| and b = |FSH|. These tables are generated by the application.
This process is transparent for the developer. To determine the order of shader-handler
within the V HHT and FHHT , the SMS manages an ordered list of so-called prototype
handlers:

VHP = V HP0, . . . , V HPs FHP = FHP0, . . . , FHPt (3.35)

These prototypes consist of the name and the default execution mode: V HP =
(name,mode), FHP = (name,mode). An instance of V SH or FSH is associated with
a particular prototype handler by its name. So, these global lists represents the inherent
execution order of the shader handlers with the same type within an uber-shader program.
The SMS specifies a number of vertex and fragment prototype handler a priori.
The V HHT and FHHT are configured by a corresponding vertex-handler invoker-table
(V HITi) and fragment-handler invoker-table (FHITi) for each USP i. These invoker-
table arrays represent the boolean state for the main vertex and fragment shader that
implement the V HHT and FHHT . They denote the particular shader handler of an
USP i, that are active during its execution.
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Implementation of 3D Lenses

4.1 Development Environment
The implementation of the 3D information lenses presented in the previous chapter is
done by using C++ and the VRS class library with an OpenGL 2.0 binding. The imple-
mentation makes some general assumptions on the graphic hardware. It requires a GPU
that supports shader model 3.0 or fulfill GLSL 1.10 specification. The GPU programming
is done with several non-vendor specific ARB extensions [62].

General Design Decisions The Virtual Rendering System (VRS) [41] is an object-oriented
3D computer graphics library. It provides building blocks for composing 3D scenes, ani-
mating 3D objects, and interacting with 3D objects. It serves as a framework and testbed
for application-specific or experimental rendering, animation, and interaction techniques.
Figure 4.1.2 shows the class diagram of the basic static structure which is important to
understand the VRS integration of the lens techniques. The next sections describe shortly
this set of base classes.
Among others, VRS distinguishes between geometry (Shape), its attribution (Attribute)
and rendering algorithms (Shader, Technique). Inherited objects of the Attribute

type encapsulate graphical attributes that can be stored in contexts under a given cat-
egory. VRS differentiates between two types of attributes. Only one class instance of
the MonoAttribute type can be active simultaneously while multiple instances of the
PolyAttribute type can be active at the same time. Thus, poly-attribute objects al-
low to represent sets of similar attributes (e.g light sources). The subclasses of the

VRS::MonoAttribute

VRS::MonoAttributePainter

VRS::PolyAttribute

VRS::Shape

VRS::ShapePainter

VRS:Shader

VRS::PolyAttributePainter

VRS::Handler

VRS::Painter

VRS::Attribute VRS::RenderObjVRS::Technique

VRS::AttributePainter

Figure 4.1.1: Part of the VRS class hierarchy.
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VRS LENS BESTVIEW COLOR DEFORMATIONOCCLUSION

«refines»

«uses»

Figure 4.1.2: Package hierarchy of the lens framework.

Shape base class represent renderable geometry. The abstract base class Handler is
an interface that provides services to engines. The base classes MonoAttributePainter,
PolyAttributePainter and ShapePainter are used to evaluate attributes and shapes
while the Shader class encapsulates multipass shading and rendering of a sub-scene-
graph. The interface Technique enables combinations of multipass rendering strategies
for the whole scene graph.
Due to the design rules of the VRS API, most of the object compositions are imple-
mented as weak aggregations [27] using the SO<> smart-pointer template class. Further,
programming rules for effective class implementations are considered [63, 78].

Naming Conventions The implementation uses the usual naming conventions for VRS.
Namespaces as well as constants are written in uppercase letters. Each word of a class
name begins with a capital letter. Names are chosen to be significant. The class member
variables are designated with an underline at the end.

3D Information Lenses Figure 4.1.2 shows the logical architecture model [27]. The im-
plementation is splitted into four subpackages that are integrated into the main package
LENS. The base class LENS::Lens inherits the VRS::PolyAttribute class in order to en-
able multiple lens instances. This aims basically at the best-view lens and color lens
subsystem. The base class encapsulates the properties described in section 3. During the
evaluation of the poly-attributes, a corresponding VRS::PolyAttributePainter handler
will be invoked that registers the particular lens instance to a corresponding lens man-
ager. Each lens type possesses its own manager class which is implemented by using the
singleton pattern [18]. In general, the implementation does not consider the rendering of
the terrain model. It assumes that the terrain is rendered before applying the lens tech-
niques. The remainder of this section focuses on the implementation of best-view lenses
and occlusion lenses which represents the main results of this work. The development of
color and deformation lenses is a proof-of-concept and does not result in a stable software
architecture.

43



CHAPTER 4. IMPLEMENTATION OF 3D LENSES

BESTVIEW::BestViewLensTechniqueGL

BESTVIEW::ContextLineFactory

BESTVIEW::OverlayManager

BESTVIEW::OverlayLayout

BESTVIEW::DynamicOverlay

1

*

BESTVIEW::ContextLine

1

1
BESTVIEW::BestViewLens

BESTVIEW::OverlayFactory

Figure 4.2.1: Main view on the static architecture of the BVL framework.

4.2 Best-View Lens
This section covers the static architecture model of the BVL implementation. All classes
are embedded in the LENS::BESTVIEW namespace. Due to the design of different lens
types, this subsystem is of high complexity. First, the main classes, interfaces, and their
cooperation are introduced (see figure 4.2.1). Further, the classes that extend these in-
terfaces will be described in detail.

4.2.1 Main Classes and Interfaces
Figure 4.2.1 presents the class structure of the BVL framework and considers only the
main classes. Table 4.4.1 gives a short explanation and overview of the underlying design
principle. The central class OverlayManager coordinates the cooperation between the
interfaces and the rendering technique (BestViewLensTechniqueGL). It is possible to
extend the framework with new layouts and other types of overlays or context-lines. The
OverlayManager manages ordered lists of context-lines (see section 3.4.3). A specific BVL
will be registered to the manager during the traversal of the scene graph. This process
is invoked by the particular BVL painter. Figure 4.2.2 shows a corresponding sequence
diagram. The manager controls the creation of dynamic overlays and its corresponding
context-line by using the overlay and context-line factories. After the registration of all
lenses, the rendering technique initiates the layout algorithm for the overlays by delegating
this task to an registered instance of an OverlayLayout subclass. Depending on the
lens type, the technique initiates offscreen multi-pass rendering to prepare the overlay
annotation data. Afterwards, it applies all context-line constraints before rendering them
(see section 4.2.5). Finally, the rendering of all overlay instances will be invoked. A
token in form of a BestViewLensEvaluation attribute which contains a reference to the
currently evaluated lens is pushed before every offscreen rendering pass. This enables a
binding of a user-defined VRS::MonoAttributePainter or a rendering techniques to each
lens.
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LensPainter OverlayManager ContextLineFactory ContextLineOverlayFactory

register(Lens)

generateOverlay(Lens)

Overlay

new

generateContextLine(Lens, Overlay)

new

ContextLine

Overlay

Overlay

return

ContextLine

add

construct

construct

Figure 4.2.2: Sequence diagram for lens registration.

4.2.2 Best-View Lens Types
The BestViewLens class extends the LENS::Lens base class with a boolean
hasContextLine and a color attribute. Additionally, it forms the base class for the dif-
ferent best-view lenses. Figure 4.2.3 reflects the BVL taxonomy presented in section 3.4.
The StaticBestViewLens subclass encapsulates basically a 2D texture that contains the
annotation data provided by the user. Thus, the creation of complex annotation data can
be delegated to other systems or components. The DynamicBestViewLens class and its
child classes manage a local scene camera. This VRS::Camera is used for dynamic creation
of the overlay content which is initiated by the BestViewLensTechniqueGL class. There-
fore, the camera scope will be set to Camera::LOCAL. The subclasses SCOPBestViewLens,
MCOPBestViewLens, and MapViewLens apply the orientation transformations described in
section 3.4.1 by overloading the getCamera() method.

BESTVIEW::BestViewLens

LENS::Lens

BESTVIEW::BestViewLensTechniqueGL

BESTVIEW::DynamicBestViewLens

BESTVIEW::MapViewLens

BESTVIEW::SCOPDynamicBestViewLens

BESTVIEW::MCOPDynamicBestViewLens

VRS::TechniqueGL

BESTVIEW::StaticBestViewLens

BESTVIEW::DynamicBestViewLensPainter

BESTVIEW::StaticBestViewLensPainter

BESTVIEW::OverlayManager VRS::PolyAttributePainter

Figure 4.2.3: Inheritance hierarchy of the different BVLs and the integration into the VRS API.
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Class Function

BestViewLens Represents the BVL base class.
OverlayManager Encapsulates BVL resource management and ap-

plication logic.
DynamicOverlay Represents a non-abstract overlay interface that

encapsulates mainly a 2D texture.
OverlayFactory Provides an abstract interface to the overlay man-

ager that creates and configures dynamic overlays.
OverlayLayout Provides an abstract interface to the manager

whose subclasses enable the implementation of dif-
ferent layout strategies.

ContextLine Represents the graphical association of a BVL and
a dynamic overlay.

ContextLineFactory Provides an interface for the creation and configu-
ration of context-lines.

BestViewLensTechniqueGL Controls the rendering process of BVLs, overlays
and context-lines, as well as the application of lay-
out strategies and context-line constraints.

Table 4.2.1: Functionality of BVL classes and interfaces.

4.2.3 Dynamic Overlays
To support a wide range of overlay-types with different appearances and functionalities,
the DynamicOverlay class provides an interface to the OverlayManager. The class di-
agram in figure 4.2.4 shows the provided overlay types that are necessary for the par-
ticular BVL types. Each overlay type will be instantiated by its corresponding fac-
tory. Therefore, a potential factory has to subclass the OverlayFactory interface and
to overload the generateOverlay() function. It is invoked after registering a BVL to
the overlay manager (see figure 4.2.2). The factory must be registered to the manager
before. The DynamicBoxOverlay provides a simple non-transparent overlay while the
DynamicAlphaMaskOverlay class implements the overlay appearances shown in section
3.4.1 and 3.4.3. The MapViewOverlay subclass extends the features of this class by
redefining the overlay rendering to support the different map-view modes described in
section 3.4.1.

4.2.4 Overlay Layout
The abstract base class OverlayLayout represents the overlay layout interface to the
OverlayManager. The main tasks of this class are the calculation of all overlay dimen-
sions and the management of context anchors (CA) of the particular context-lines (see
section 3.4.3). These features are implemented in subclasses by overloading the respec-
tive functions updateLayout() and updateContextLineAnchor(). The calculation of
the overlay dimensions depends on the current viewport size and can be parametrized
according to minimal, maximal, and preferred size constraints which are encapsulated by
the OverlaySizeConstraint class. The class diagram in figure 4.2.5 shows the two sup-
ported overlay types VerticalOverlayLayout and HorizontalOverlayLayout. These
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BESTVIEW::DynamicOverlay VRS::Shape VRS::ShapePainter

BESTVIEW::DynamicAlphaMaskOverlay BESTVIEW::DynamicAlphaMaskOverlayPainter

BESTVIEW::DynamicBoxOverlay BESTVIEW::DynamicBoxOverlayPainter

BESTVIEW::MapViewOverlay BESTVIEW::MapViewOverlayPainter

BESTVIEW::OverlayFactory

BESTVIEW::BoxOverlayFactory

BESTVIEW::AlphaOverlayFactory

BESTVIEW::MapViewOverlayFactory

Figure 4.2.4: Different characteristics of dynamic overlays and their embedding into the VRS frame-
work.

classes support left, right, top, and bottom vertical and horizontal overlay alignments as
well as parameters for the overlay margins.

4.2.5 Context-Lines
The association class ContextLine implements a binary association between an overlay
and a BVL. It also represents the base class for different types of context-lines. The
implementation currently supports a straight context-line StraightContextLine (as de-
scribed in section 3.4.3). The instantiation and initialization of a context-line type is
handled by the StraightContextLineFactory. The appearance can be modified by us-
ing the StraightContextLineStyle class. The rendering of a straight context-line is
controlled by the StraightContextLinePainter. The behavior of context-lines can be
manipulated via constraints (see section 3.4.3). Figure 4.2.7 shows the embedding of
the ContextLineConstraint class. Subclasses can implement specific functionality by
overloading the applyConstraint() function. Two constraints are currently available:
The ContextLineVisibilityConstraint hides the particular context-line if the focus-
anchor (FA) is outside the viewport area. The ContextLineOcclusionConstraint fades

BESTVIEW::HorizontalOverlayLayoutBESTVIEW::VerticalOverlayLayout

BESTVIEW::OverlayLayout

BESTVIEW::OverlaySizeConstraint

BESTVIEW::ContextLineVRS::SharedObj

BESTVIEW::DynamicOverlay

1 *

1
*

VRS::Viewport

Figure 4.2.5: Horizontal and vertical overlay layouts.
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BESTVIEW::ContextLine

1 1

BESTVIEW::DynamicOverlayBESTVIEW::BestViewLens

VRS::ShapeBESTVIEW::ContextLineFactory

VRS::SharedObj

BESTVIEW::ContextLineStyle

BESTVIEW::StraightContextLine

VRS::ShapePainter

BESTVIEW::StraightContextLineFactory

VRS::LineStyle

BESTVIEW::StraightContextLineStyle

BESTVIEW::StraightContextLinePainter

Figure 4.2.6: Embedding of the context-line association class into the BVL and VRS framework

the transparency of the context-line if it occludes a designated area on the viewport (see
figure 3.4.8).

4.3 Occlusion Lens
The implementation classes of the 3D occlusion lenses are embedded in the OCCLUSION

namespace. It uses VRS shader because the concept requires multiple evaluations of a
scene graph (see section 3.3). A VRS shader is a handler that provides a service to
the rendering engine and encapsulates multi-pass shading and rendering of a sub-scene-
graph. Since VRS shader can only provide services for mono attributes, it becomes
necessary to lever the inheritance hierarchy that was designed for multiple instances of
lenses. This can be acceptable under the circumstance of the application (permitted for
a single center-of-projection usage). The integration into VRS is divided according to the
concept represented in section 3.3.

4.3.1 Intra-Object Occlusion Lenses
The intra-object occlusion lenses are implemented as a subclass of a general depth peeling
shader (compare to section 2.3). It uses the VDS data structure which implementation
which is described in section 3.1. Usually, depth peeling is implemented by using a
modified shadow mapping approach (in combination with a dot-product depth-replace
texture shader [62]) to achieve a second depth test [6]. Since high-precision textures
and programmable GPUs are available, this depth test can be done in a fragment shader

BESTVIEW::ContextLineConstraint

BESTVIEW::ContextLineVisibilityConstraint BESTVIEW::ContextLineOcclusionConstraint

VRS::SharedObj

BESTVIEW::OverlayManager

1
* BESTVIEW::ContextLine

VRS::Engine

1

Figure 4.2.7: The static structure of context-line constraints which are supported by the implemen-
tation.
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program [59]. Listing 4.3.1 shows the shader source code that accomplishes this depth test.
The DepthPeelingShader creates color and depth maps according to the number of

Listing 4.3.1 Fragment shader for depth-peeling technique.

uniform sampler2D depthMap ;
uniform f l o a t v i ewpor tWidth ;
uniform f l o a t v i ewpo r tHe i gh t ;

4 uniform f l o a t pas s ;
vary ing f l o a t depthInCamera ;

void main ( void )
{

9 f l o a t z = depthInCamera ;
i f ( pas s > 0 . 0 )
{

f l o a t w = g l F ragCoo rd . x / v i ewpor tWidth ;
f l o a t h = g l F ragCoo rd . y / v i ewpo r tHe i gh t ;

14 // Perform f i r s t depth t e s t w i th depth map
i f ( z <= t ex tu re2D ( depthMap , vec2 (w, h ) ) . x ) d i scard ;

}// e n d i f
g l F ragData [ 0 ] = g l C o l o r ;
g l F ragData [ 1 ] = vec4 ( z , z , z , 1 . 0 ) ;

19 return ;
}

layers using offscreen rendering, framebuffer objects (VRS::FrameBufferObjectGL), and
and multiple-render targets (GL2::DrawBuffers). These 2D textures can be accessed and
processed by a particular subclass. The postprocessing and integration of the results into
the previous rendered scene can be done by texturing a screen-aligned quad. Alternatively,
this shader could be implemented by ping-pong rendering as described in section 2.3 (if no
depth maps are needed). The behavior of the DepthPeeling shader can be controlled by
various parameter combinations of texture width, height, and the number of peeling layers.
If the developer does not limit the number of layers, the DepthPeelingShader employs
an occlusion query [62] to determine the number of necessary peeling passes. A general
order-independent transparency shader for VRS (OrderIndependentTransparency) is an
additional result of this implementation approach.

OCCLUSION::IntraObjectOcclusionLens OCCLUSION::IntraObjectOcclusionLensShader

VRS::DepthPeeling VRS::DepthPeelingShader

VRS::OrderIndependentTransparency VRS::OrderIndependentTransparencyShader

VRS::MonoAttribute VRS::MonoAttributePainter

Figure 4.3.1: Static class structure for the intra-object occlusion lens.
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OCCLUSION::InterObjectOcclusionLensAlpha

OCCLUSION::InterObjectOcclusionLensBoundingBox

OCCLUSION::InterObjectOcclusionLensFlatten

OCCLUSION::InterObjectOcclusionLensShader

OCCLUSION::InterObjectOcclusionLensXRay

OCCLUSION::InterObjectOcclusionLensXRayShader

OCCLUSION::InterObjectOcclusionLensFlattenShader

OCCLUSION::InterObjectOcclusionLensAlphaShader

VRS::Shader

OCCLUSION::InterObjectOcclusionLens

OCCLUSION::OcclusionDetectionModeLENS::Lens

OCCLUSION::InterObjectOcclusionLensBoundingBoxShader

Figure 4.3.2: Inter-object occlusion lens classes and shader.

4.3.2 Inter-Object Occlusion Lenses
Figure 4.3.2 shows the attributes and the corresponding shader of the inter-object oc-
clusion lens implementation. Except for the transparency occlusion approach, the
shaders need two rendering passes. The InterObjectOcclusionLensBoundingBoxShader
class renders the bounding box of an occluder shape instead of its geometry. The
line style can be controlled by a VRS::LineStyle attribute. The flatten shader
(InterObjectOcclusionLensFlattenShader) performs the flattening operation as de-
scribed in section 3.3.4. A standard shader (InterObjectOcclusionLensShader) omits
the rendering of an occluder shape. The InterObjectOcclusionLensXRayShader applies
the visual abstraction as described in section 3.3.3. Finally, the transparency shader
(InterObjectOcclusionLensAlphaShader) implements a reduced depth peeling algo-
rithm using the ping-pong rendering technique for the second depth test (see section 2.3).
This technique needs to perform five passes. The first pass renders the occludees and the
remaining four passes [6] accomplish order-independent transparency.

4.3.3 Occlusion Detection Test
The inter-object occlusion detection tests are implemented as subclasses of the abstract
base class OcclusionDetectionMode. These classes have to overload the pure virtual
function occlusion() to apply their particular functionality. Instances of these tests are
part of a specific InterObjectionOcclusionLens. The occlusion() function is called
by the eval() method of a particular inter-object occlusion lens shader. A boolean return
value categorizes the evaluated shape as occluder (true) or occludee (false). The class
diagram in figure 4.3.3 shows the embedding and the provided occlusion detection tests
as described in section 3.3.1.
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OCCLUSION::OcclusionDetectionMode

OCCLUSION::OcclusionDetectionSphericalMode

OCCLUSION::OcclusionDetectionUserHeightMode

OCCLUSION::OcclusionDetectionViewAxisMode

OCCLUSION::OcclusionDetectionBoundingBoxGroundMode

VRS::MonoAttribute VRS::LookAtVRS::Bounds VRS::Engine

Figure 4.3.3: Implementation and embedding of different occlusion detection tests.

4.4 Selected Representations
This section covers different elementary and essential implementation issues. It focuses
on methods and technologies that are contributed to the VRS API or essentially used by
the specific lens implementations.

4.4.1 Volumetric Depth Sprites
The implementation of volumetric depth sprites as introduced in section 3.1 is part of the
lens framework and therefore located in the LENS package. Figure 4.4.1 describes the static
structure of the participated classes. Two approaches for the creation of a VSD are evolved
in the implementation. The SimpleVolumetricDepthSprite inherits the VRS::Shape

base class and enables the encoding of standard VRS shapes into a VDS. It encapsulates
a 2D texture and an integer object ID. The corresponding painter implements the cre-
ation process described in section 3.1.2. The ComplexVolumetricDepthSprite attribute
enables the transformation of sub-scene graph contents into a VDS by configuration and
invocation of the ComplexVolumetricDepthSpriteShader. The shape displayed in figure
3.1.2 is of such a complex kind. The VolumetricDepthSpriteContext class enables a
global VDS configuration concerning the precision (see section 3.1.3) as well as managing
the object identities. It is possible to combine different VDS. The combination of two
object IDs is expressed as their sum. Due to the lack of bitwise operators in GLSL [45],
a workaround has to be developed to invert the identity mapping function γ in equation
3.2. Listing B.3 describes a part of the fragment shader that is able to test if a particular
object ID is a summand of a combined object ID.

VRS::MonoAttribute

VRS::Shape

VRS::Shader

VRS::ShapePainter

LENS::ComplexVolumetricDepthSprite LENS::ComplexVolumetricDepthSpriteShader LENS::VolumetricDepthSpriteContext

LENS::SimpleVolumetricDepthSpritePainterLENS::SimpleVolumetricDepthSprite

VRS::SharedObj

Figure 4.4.1: Implementation of volumetric depth sprites.
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UberShaderManager

VertexHandlerObject FragmentHandlerObject

1
*

1
*

ShaderHandler
1

*
1

*

1
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VRS::SharedObj

FragmentHandlerReader VertexHandlerReader

VRS::ObjectReader

UberShaderProgramObject

VRS::MonoAttribute

UberShaderProgramObjectPainter

VRS::MonoAttributePainter

1

*

Figure 4.4.2: Architecture of the uber-shader system.

4.4.2 Shader Management
For standard shader applications the VRS::GL2 shader API is re-used. These shader
sources are linked statically into the particular classes. The VRS uber-shader API is
embedded in the GL2::EXTSHADER namespace. Figure 4.4.2 shows its static structure and
table 4.4.1 summarizes the functions of the participating classes. Additional thereto, the
classes UberShaderUniformVariable and UberSchaderSamplerVariable have the same
functionality as their GL2 pendants. The usage of US is also analog to GL2 shaders.
Instances of VertexHandlerObject and FragmentHandlerObject are attached to an in-
stance of an UberShaderProgram. To enable the design of a custom uber-shader frame-

Class Function

UberShaderManager Encapsulates the program logic and manages resources.
VertexHandlerObject Represents a vertex shader that could contain one or

more vertex shader handler.
FragmentHandlerObject Represents a fragment shader that could contain one or

more fragment shader handler.
UberShaderProgram Represents a single uber-shader and consists of multiple

vertex- and fragment-hander objects.
PrototypeHandler Defines a prototype of a shader handler. A prototype

consists of a unique name and a default handler mode.
ShaderHandler Is an concrete instance of a prototype handler and en-

capsulates a single vertex or fragment handler.

Table 4.4.1: Uber-shader classes and their function

work, the communication between the particular handlers of the same type can be defined
by using the HandlerInterface class. It encapsulates the program state that is necessary
for data exchange between successive shader-handlers. A possible complex vertex hander
interface is shown in listing B.1. To define a custom handler interface, the full interface
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ShaderHandler

PrototypeHandler

VRS::SharedObj

UberShaderManager

HandlerInterface
1 *1

2

Figure 4.4.3: Implementation of the handler concept.

code block, the interface type name as well as the instance name, have to be specified. Fig-
ure 4.4.3 shows the static structure of the handler concept as described in section 3.7. This
concept is necessary for the automatic generation of the global VHHT and FHHT respec-
tively. The UberShaderManager encapsulates the preprocessing functions and contains
ordered lists of vertex and fragment shader handler prototypes (PrototypeHandler). By
creating an instance of a VertexHandlerObject or a FragmentHandlerObject, the object
will be registered and the shader source code will be parsed by the UberShaderManager.
According to the registered VHP and FHP, the manager tries to extract handlers of a
specific type from the shader source and determines their execution modes. If an handler
of a specific prototype is found, an instance of ShaderHandler will be created that repre-
sents the particular function in the shader source. During this process, the handler names
in the source code will be qualified with an unique name using string manipulation. After
this, the particular shader-handler-object represents a list of ShaderHandler.
The creation of the global uber-shader is done by the UberShaderManager during
the first evaluation of the scene graph. For all registered VertexHandlerObject and
FragmentHandlerObject instances a corresponding GL2 shader object will be created
and attached to a main GL2 shader program. Finally, the source code of the global VHHT
and FHHT will be generated and attached. For each prototype handler, all shader han-
dlers of the registered VHO and FHO will be analyzed. If an particular shader handler
is of the same type (has the same name) as the prototype, its qualified handler name is
gathered in the hook-table. Listing B.2 shows the vertex handler hook table generated
by the UberShaderManager class.
If an UberShaderProgramObject is evaluated, the UberShaderManager retrieves the list
of vertex and fragment shader-handler of the evaluated uber-shader program and modifies
the boolean state of the particular invoker table.

4.4.3 Generic Mesh Refinement
Figure 4.4.4 presents the embedding of a generic mesh refinement approach (see section
2.3) into VRS. The implementation consists mainly of the combination of a refinement
pattern, a refinement shape, and a LOD mapping. Due to the possibility of using triangles
and quads as refinement patterns, the abstract base class RefinementPatternGL is intro-
duced. The TriangleRefinementPatternGL subclass represents a triangular refinement
pattern for a specific sub-division level. It uses a VRS::MappedVertexAttributeGL for
the representation in the GPU memory. This is the VRS encapsulation of a vertex buffer
object (VBO) [62]. The generation of vertices according to a sub-division level is done in
the class constructor.
With regards to new generations of GPUs or other refinement primitives, the abstract
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LODRefinementPatternMapGL

RefinementPatternGL

RefinementPatternPainterGL

VRS::Shape VRS::ShapePainter
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RefinementShapeBase
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*
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*

VRS::MappedVertexAttributeShapeGL

Figure 4.4.4: Mesh-refinement classes and embedding.

base class RefinementShapeBase was introduced. Analog to the VRS::PolygonSet, the
RefinementShapeVector subclass encapsulates a set of triangles with their correspond-
ing color, normal, and texture coordinate attributes. The RefinementPatternMapGL

represents an 1 − n mapping of a RefinementShapeGL and a particular distance.
The LOD support is managed by the RefinementPatternMapManagerGL class that
associates a RefinementPatternMapGL with a specific RefinementShapeGL. It deliv-
ers a refinement pattern according to the distance between a given bounding box
of the refinement shape and a user defined reference point P ∈ WCS. The man-
ager is invoked by RefinementShapeVectorPainterGL during the evaluation of a
RefinementShapeVector. The painter transforms the vertex attributes into an array
of type std::vector<VertexData<4,float>> and sets it as global shader state by using
the EXTSHADER::UberShaderUniformVariable class (see section 4.4.2). After that it de-
termines the adequate refinement pattern and activates the rendering of this pattern. The
implementation uses an UberShaderProgram with a corresponding VertexHandlerObject

to perform the attribute interpolation described in section 2.3 (see listing B.4).

4.4.4 Multiple Render Targets
The implementation of 3D information lenses uses MRTs to create color and depth maps
for focus or context renderings within one pass. The usage of this feature requires a
hardware that supports FBOs. MRTs have consequences for the output variables of
the fragment shader [45]. Instead of writing to gl FragColor, the user has to use
gl FragData[] variable. The implementation in VRS is straight forward. The class
DrawBuffers which is part of GL2 namespace encapsulates an array of color buffer han-
dler (VRS::Array<GLenum>). The DrawBuffersPainter class applies the buffer setting
in each pass by performing a call to the glDrawBuffers() function.
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Analyse & Discussion

5.1 Performance
This section gives an overview of the runtime behavior of the presented lens techniques. An
accurate performance test of the software components is disclaimed since no particular
optimizations of the solutions are achieved. For best-view, occlusion, and color lens
techniques, the runtime complexity T will be approximated and discussed. In principle,
the performance of the presented solutions depends on CPU and GPU speed, the number
of scene objects as well as the number of vertices per object. Table 5.1.1 gives the mapping
of the used symbols. In principle, the values of TF , TC , and TV DS depend on the number

Symbol Denotation

TF Costs for focus rendering.
TC Costs for context rendering.
TI Integration costs for focus and/or context rendering.
TV DS Creation costs for a single VDS.

Table 5.1.1: Symbols for runtime approximations.

of vertices of the scene and the lens shape, as well as the viewport dimensions w, h ∈ SCS.
Since a VDS is represented as a single 2D RGBA texture, its space complexity amounts
into SV DS = w ·h ·C bit for C bits per pixel (bpp). The quality, especially of the contour,
of a VDS depends on the tesselation level of the shape. The implementation was tested
by using the dataset described in table 5.1.2.

Dataset Vertices Faces Origin

Maybeck Studio 3388 6596 K. Matthews & Artifice, Inc.
San Diego 29184 25920 Planet 9 Studios
Vancouver 2910 9220 Wizard Solutions Inc.
Kopenhagen 272219 464771 Kobenhavens Kommune
Griebnitzsee 45534 92063 Hasso-Plattner-Institut

Table 5.1.2: Test datasets for the implementation.
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Occlusion Lens The depth-peeling technique which is utilized to implement the intra-
object occlusion lens, possesses a high space and runtime complexity. The performance
of this technique depends on the number of peeling-layers, that are necessary to achieve
sufficient visual quality for order-independent transparency. The number of required
layers depends on the depth complexity of the model. The depth complexity denotes the
maximal number of overlapping polygons in a scene. A scene with n polygons can have a
maximal depth complexity of O(n2). For a given model with a depth complexity of n the
runtime can be approximated with:

T = n · (TF + TI) + TV DS + TC (5.1)

The runtime for one depth-peeling pass is denoted as TF while TI is the runtime for
the integration of n peeling layer in postprocessing. The detailed model of the Maybeck
Studio, which was used to create the figures 3.3.1 and 3.2.3, possesses a depth complexity
of 28. Using an occlusion query to terminate peeling, usually results in a non-interactive
rendering speed. Although, the number of layers that deliver sufficient visual results are
smaller than the maximal depth complexity. The corresponding space complexity in bits
for the viewport dimensions w, h, the color range C and the depth range D bit per pixel
(bpp) can be calculated by:

S = n · ((w · h) · (C + D)
)

+ SV DS (5.2)

It is possible to compensate S by using compressed textures, lower texture precision, and
smaller texture sizes. This leads to a decrease of image quality for the benefit of improved
runtime speed. Furthermore, using n MRTs will reduce the fillrate to 1/n. This is caused
by the limitation of the memory bandwidth. Thus, reading and writing of the data is the
bottle neck. To compensate the fillrate limitation one can choose a lower range for color
C and depth maps D. However, the usage of fixed-point or 16bit floating-point textures
is not sufficient enough for the depth test (see section 3.1.3). It causes unwanted artifacts
near or far away form the COP. The usage of MRT should be avoided in applications that
use extensively multi-pass rendering (depth peeling). If the number of peeling passes is
known, instances of FBOs should be created in advance to avoid unnecessary OpenGL
state changes.
The performance of inter-object occlusion lenses depends on the granularity of the city
model. If each building can be represented by a shape with a single AABB the granularity
is coarse. Vice versa, the granularity is fine if the buildings is described by more than
one AABB. The latter case will produce visual artifacts. For each shape of the scene the
membership to the focus or context area has to be determined by applying an occlusion
detection test. A runtime approximation for the rendering of an inter-object occlusion
lens with respect to the number of shapes n can be given through:

T = 2 · (TO · n) + (TC · n) + (TF · n) (5.3)

TO is the runtime of a specific occlusion detection test. It is CPU bound for 3D city model
with a fine granularity. When applying more complex visual abstractions, which require
multi-pass rendering on large amounts of city model objects, it is recommended to cache
these objects according to their categorization (occludee or occluder). In contrast to intra-
object occlusion lenses, the inter-object occlusion lenses posses a low space complexity
because they do not store any texture maps for later compositing.
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Best-View Lens The runtime performance of static and dynamic best-view lenses depends
mainly on the number of lenses n and context-lines m. Except for map-view lenses, it
usually applies n = m. An approximation can be given by:

T = n · TF + n · TO + TL + m · (TCL + TCLC) (5.4)

TO denotes the costs for integrating a dynamic overlay to the viewport, TL the runtime of
the layout algorithm, TCL the expense for rendering a context-line, and TCLC for evaluating
the context-line constraints. TL and TCLC are CPU bound for large number of overlays
and context-lines. To reduce the costs of TF which is GPU bounded by the fillrate, it
is recommend to set the width and height of the target texture to the exact overlay
dimension.

A

B

Figure 5.1.1: Comparison of fixed-point (A)
and floating-point (B) depth
ranges.

Color Lens The performance of color lenses is
conceptually limited by the number of lenses
and the number of post render-styles per lens.
The runtime T , required to render n color
lenses, can be estimated by:

T = n · TV DS + n · TF + TC + TI (5.5)

TF represents the runtime that is necessary to
create the focus rendering. It is composed of
the runtime for scene RTT and the rendering
of a particular number of post render-styles.
Color lenses draw their benefit from volumet-
ric depth sprites and the corresponding volu-
metric depth test. This concept enables a low
runtime complexity for each processed frag-
ment by taking a high space complexity into
account. Assuming a single VDS per lens,
the space complexity S for a number of color
lenses n can be determined by:

S = n · SV DS + n · SF + SC (5.6)

Usually, the space complexity of the particu-
lar focus and context rendering is SF = SC =
w · h · C. Here, the scene depth is encoded
in the alpha channel. The usage of high-
precision textures in combination with a lin-
earized depth buffer (see section 3.1.3) for the
volumetric depth test proves to be correct.
Figure 5.1.1 shows the comparison of differ-
ent depth ranges for a spherical VDS. The
sub-figure A uses 8bit range in combination with a non-linear depth calculation. It causes
artifacts near as well as far from the COP. In contrast, floating-point textures deliver
sufficient visual results (see sub-figure B).

57



CHAPTER 5. ANALYSE & DISCUSSION

Deformation Lens The performance of deformations lenses is mainly limited by the generic
mesh refinement approach which is used to refine the geometry before a deformation. The
following observations were made: The mesh refinement is CPU limited for the number
of triangles that have to be refined and GPU limited for level of subdivision per triangle.
The current implementation stalls at nearly 20,000 triangles on a subdivision level of
30. Further, the LOD approach for refinement-pattern selection is too costly. A general
subdivison level between 10-15 is sufficient in most cases.
Finally, this approach is not applicable to large numbers of triangles, i.e., to large 3D city
models. The usage of geometry shaders [44] for complete triangle subdivison on GPU will
overcome this limitation.

5.2 Limitations
Some of the introduced 3D lens concepts posses conceptual and technical limitations
which are described in this section. Most of this limitations concern the GPU. Since all of
the concepts of this thesis are developed under heavy usage of programmable GPUs, no
fallback code can be granted or incorporated. Due to the hardware architecture, reading
from and writing to the same texture is not possible simultaneously. Such a feature would
be useful to reduce the number of rendering passes for VDS creation or the depth-peeling
techniques.
The accessibility of raster data in the vertex shader is limited to four texture units and
there is no support for filtering of high-precision textures. This can be handled by imple-
menting bilinear filtering, using multi sampling (MS) [70](see listing 5.2). The VTF

Listing 5.2.1 VTF and MS for bi-linear filtering in a vertex shader.

uniform f l o a t texWidth ;
uniform f l o a t t e xHe i gh t ;

vec4 t e x t u r e 2DB iL i n e a r ( sampler2D sampler , vec2 s t )
5 {

f l o a t stepW = 1.0 / texWidth ;
f l o a t stepH = 1.0 / t e xHe i gh t ;
f l o a t f s = f r a c t ( s t . s ∗ texWidth ) ;
f l o a t f t = f r a c t ( s t . t ∗ t e xHe i gh t ) ;

10

vec4 s0 = t ex tu re2D ( sampler , s t ) ;
vec4 s1 = t ex tu re2D ( sampler , s t + vec2 ( stepW , 0 . 0 ) ) ;
vec4 s2 = t ex tu re2D ( sampler , s t + vec2 ( 0 . 0 , stepH ) ) ;
vec4 s3 = t ex tu re2D ( sampler , s t + vec2 ( stepW , stepH ) ) ;

15

vec4 sA = mix ( s0 , s1 , f s ) ;
vec4 sB = mix ( s2 , s3 , f s ) ;

return mix ( sA , sB , f t ) ;
20 }

is still slow, but the texture look-up speed will increase prospectively. Further, GLSL is
not well implemented by current drivers. This addresses mainly the uber-shader imple-
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mentation and leads to minor problems if a shader-handler wants to modify the global
GLSL shader state. The current driver does not fully compile shader objects until the
linkage of the program object. Currently, all the shader object sources for a single pro-
gram are concatenated and then compiled and linked. This means, there is no efficiency
from compiling shader objects once and linking them in multiple program objects.
The lack of the availability for conditional returns in shader programs results often in a
performance loss. Conditional returns can be used to skip instructions prematurely.
The application of best-view lenses is limited by the available screen size. A trade-off be-
tween the overlay dimension and the occluded parts of the scene can be observed. With an
increasing overlay dimension the number of displayable BVL decreases while the occluded
scene area increases simultaneously. The perceived information in the overlay decreases
with the dimension of the overlay area. Furthermore, the graphical representation of the
straight context-line is suboptimal. The texture filtering causes artifacts when it is bulged
too much.

5.3 Future Work
Since most of the lens techniques are proof-of-concepts there is still room for optimiza-
tions to grant their optimal performance. The application and integration of dynamic
occlusion, view-frustum, and back-face culling is an open issue as well. The mesh refine-
ment approach can be enhanced by using geometry shader [77]. Besides several technical
enhancements of the implementation, there are many possibilities to enrich the function-
ality of the introduced lens types. The theoretical and technical concepts can be extended
in order to support continuous degree-of-interest (DOI). Currently, the research of com-
bination of the developed lens techniques and the interdependence of navigation and lens
interaction is the most important issue. Further, the development of LOD lenses could
be a possible aim for future work. The methods of LOD lenses are able to represent the
fundamentals for applications such as semantic zooming for city models. Lens techniques
are in demand of suitable interaction concepts, which are able to operate in combination
with the different existing navigation approaches. The next sections present an overview
of possible enhancements for the particular lens techniques.

5.3.1 Occlusion Lens
Concerning the inter-object occlusion lenses, the development of more accurate occlusion
detection algorithms can be a topic for further research. Therefore, additional meta
information, such as building type, adjacencies, or statistical values, as well as raster data
can be incorporated. It is also advantageous to compare the introduced 3D occlusion
lenses with their 2D screen-aligned pendants (compare figure 3.2.3 and 3.3.1) to gain
information regarding the differences of effects on the user and the lens interaction. The
answer to the question, what rendering techniques can enhance the perception of the
occludees in combination with the presented occlusion lens methods, could be of interest.
Luft [90] introduced an approach for image enhancement by unsharp masking the depth
buffer that could be applied to the occludees.
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A

Context Line

B
Context

Overlay

Exploration Focus

Figure 5.3.2: Orientation- and distortion-based overlay layouts. A: The overlay which is associated
with the POI in the exploration focus is horizontally centered. B: Increase screen-
real-estate by using discrete non-linear resizing of the overlay areas.

5.3.2 Best-View Lens

Figure 5.3.1: Map-view lens with
applied non-linear dis-
tortions.

Best-view lenses should reference areas and not just
lens positions. Figure 5.3.2 depicts some possible im-
provements to compensate the lack of viewport space
by applying discrete distortions [55] to the overlays.
This can also be utilized to resize the overlay in de-
pendency of the distance between its associated lo-
cation and the viewers position. It could be useful
to research smart dynamic positioning of overlays to
avoid occlusions with lens POIs. Also, the integration
of non-linear distortion of the overlay content may be
of interest (see figure 5.3.1).
The concept of best-view lenses can be coupled with
automatic identification of landmarks in 3D city mod-
els [35]. The identified landmark can be preprocessed
and organized in a database. The map-view lens can
be enriched by implementing a lazy position tracking
that minimizes the movement of the context. Further,
it could be auspicious to add LOD functionality to
context-lines. If the distance between the viewer and the POI passes a threshold, the
representation of the context-line could swap into an arrow that indicates the direction
of POI. Additionally, one can think of non-straight context-lines represented by curves.
They may be able to solve the occlusion problem for context-lines.

5.3.3 Color Lens
The main task concerning color lenses is the research of render-style configurations and
their combinations. Possibly, the combination of photorealistic and non-photorealistic
rendering (e.g., sketchy drawings, blue print rendering, and edge-enhancement) discloses
advantages for FCV. Studies that identify and define possible semantics could be con-
ducted. A result can be the design and activation of an automated mapping between
these semantics and the render-style configurations. A class framework needs to be devel-
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CHAPTER 5. ANALYSE & DISCUSSION

A B C

Figure 5.3.3: Application of deformation lenses for terrain rendering. Creation of an 3D call-out
rendering (C) by using mesh refinement in combination with displacement map (A),
and a corresponding lens shape (B).

oped that enables the combination of rendering styles as well as their mapping to a fixed
number of semantics. Unfortunately, a solution for a OO encapsulation and combination
of render styles seems hard to achieve. This applies especially to multi-pass techniques. A
modern shader driven engine architecture in combination with the uber-shader approach
could be able to overcome this limitation. Color lenses draw their benefits from volumet-
ric depth sprites (VDS). Admittedly, the interactive manipulation and creation of their
shape has to be examined.

5.3.4 Deformation Lens
Some types of global deformations in camera space can be utilized for the creation of
interactive panoramic maps [80, 5]. This addresses especially the bend-operator. This
provides the base to research the relevance of global deformation for focus & context
navigation in geovirtual environments. Further, the unification of occlusion detection
tests with deformation lenses can be researched. Figure 5.3.3 shows an example for the
combination of the translation and scaling operator that are both controlled by textures.
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Chapter 6

Conclusions

This thesis presents several real-time techniques for 3D information lenses and their ap-
plication to virtual 3D city models. It demonstrates reasonable applications of different
lens metaphors and pointed out use-cases. These techniques address mainly resolving of
object occlusions and facilitate the usage of focus and context visualization.
The concept of best-view lenses enables the unification of three different focus & context
approaches: world-lets, through-the-lens metaphor, as well as dislocated annotations. It
allows exploring distant locations or hidden features of the city model surrounding the
user, without having to move to the remote location.
A class framework was presented that allows the generic creation, the layout, and inte-
gration of such lenses. By resolving occlusions between arbitrary objects of a city model,
occlusion lenses allow gaining more spatial related information. Different methods for
high-level occlusion detection and occlusion resolving were presented. Color lenses facil-
itate the integration of different rendering-styles into one result image. This possibility
poses a problem which could be meaningful for a future research: What are the semantics
of such a mixture of rendering styles?
Except for intra-object occlusion lenses, all approaches are capable of real-time rendering.
They cover point-based, local, and global degrees of user activity. Some of the presented
techniques, such as best-view lenses and deformation lenses, are generally applicable to
the geo-spatial domain.
Furthermore, this work introduced volumetric depth sprites and the volumetric depth
test image-based integration technique. This concept has proven to be an efficient way
to represent convex geometric lens volumes as raster data; the advantages compared to
other approaches [92] include its scalability, persistence, and flexibility.
This work includes also a proposal for a flexible and extensible implementation framework
that is able to deal with multiple instances of the particular lens types. In general, the
framework extended the VRS API with useful development features such as uber-shader,
generic depth peeling, and an approach for generic mesh refinement. The application of
modern programmable graphics hardware enables these concepts without any data prepro-
cessing. The presented methodologies and techniques offer potentials for further research
and development. Although each of the proposed techniques has some limitations, the
combination of them provides a powerful set of tools.

62



References

[1] Alan H. Barr. Global and Local Deformations of Solid Primitives. Computer Graph-
ics, 18(3), July. 3.6

[2] Alex Vlachos, ATI TECHNOLOGIES INC. Designing a Game’s Shader Library
for Current and Next Generation Hardware. In GDC Game Developers Conference,
2002. 2

[3] Andreas Becks, Christian Seeling. Swapit: A multiple views paradigm for exploring
associations of texts and structured data. 2004. 3.4

[4] Benjamin B. Bederson, Larry Stead, James D. Hollan. Pad++: Advances in Multi-
scale Interfaces. In SIGCHI, 1994. 3.4.3

[5] Bernhard Jenny, Institute of Cartography, ETH Zurich (Switzerland). Design of a
Panorama Map with Plan Oblique and Spherical Projection. In 5th ICA Mountain
Cartography Workshop, Bohinj, Slovenia, 2006. 5.3.4

[6] Cass Everitt. Interactive Order-Independent Transparency. Technical report,
NVIDIA OpenGL Applications Engineering, 2001. 2.3, 3.3, 4.3.1, 4.3.2

[7] Cass Everitt. Projective Texture Mapping. April 2001. 3.2.2

[8] Chris Coffin, Tobias Höllerer. Interactive Perspective Cut-away Views for General
3D Scenes. In IEEE Symposium on 3D User Interfaces, 2006. 2.2

[9] Christian Seeling, Andreas Becks. Analysing Associations of Textual and Relational
Data with a Multiple Views System. March 2004. 3.4

[10] Christopher G. Healey. Perception in Visualization. 3.5.1

[11] Colin Ware. Information Visualization - Perception for Design, volume 2nd (Juni
2004) of Morgan Kaufmann Series. Morgan Kaufmann, 2nd edition, 2004. 3.4.1

[12] David Baar. Questions of Focus: Advances in Lens-based Visualizations for Intelli-
gence Analysis. 2.2

[13] David Baar, IDELIX Software Inc. Questions of Focus: Advances in Lens-based
Visualizations for Intelligence Analysis. April 2005. 2, 2.1

[14] Dieter Schmalstieg. Augmented reality techniques in games. July 2005. 3.4

[15] Dominik Göddeke. Playing Ping Pong with Render-To-Texture. Technical report,
University of Dortmund, Germany, 2005. 2.3

63



REFERENCES

[16] Doug Rogers. W-Buffering in Direct3D. Technical report, NVIDIA Corporation,
2000. 3.1.3

[17] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, Tony D. DeRose. Tool-
glass and Magic Lenses: The See-Through Interface. In SIGGRAPH, pages 73–80.
ACM Press, 1993. 2.1

[18] Erich Gamma, Richard Helm, Ralph E. Johnson, John Vlissides. Design Patterns.
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995. 4.1

[19] Eugene Lapidous, Guofang Jiao. Optimal Depth Buffer for Low-Cost Graphics Hard-
ware. In Eurographics. Trident Microsystems Inc., ACM, 1999. 2.3, 3.1.3

[20] Eugene Lapidous, Guofang Jiao, Jianbo Zhang, Timothy Wilson. Quasi-Linear Depth
Buffers With Variable Resolution. In HWWS. ViewSpace Technologies Inc., Trident
Microsystems Inc., ACM, 2001. 2.3, 3.1.3

[21] Foley, van Dam, Feiner, Hughes. Computer Graphics, Principles and Practise. Ad-
dison Wesley, 1996. 3.1.1, 3.2.1, 3.2.3, 3.4.2, 3.5.1

[22] G. Fuchs, H. Griethe, H. Schumann, Universität Rostock. Definition allgemeiner
Linsentechniken auf unterschiedlichen Stufen des Visualisierungsprozesses. 2006. 3

[23] G. Fuchs, M. Kreuseler H. Schumann. Extended Focus & Context for Visualizing
Abstract Data on Maps. In CODATA Prague Workshop Information Visualization,
Presentation, and Design, 29-31 March 2004. 2.2
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Appendix A

List of Abbreviations

A
API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Programming Interface
ARB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Architectural Review Board
AABB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Axis-Aligned Bounding Box

B
BVL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Best View Lens
BVN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Best View Normal

C
CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Context Anchor
CL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Context-Line
COP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Center of Projection
CCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Camera Coordinate System
CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Central Processing Unit
CSG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Constructive Solid Geometry
CTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Copy To Texture

D
DBVL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dynamic Best View Lens
DOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Depth of Field
DOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Degree of Interest

F
FA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Focus Anchor
FBO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame Buffer Object
FCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Far Clipping Plane
FCV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Focus & Context Visualization
FHHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fragment Handler Hook Table
FHIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Fragment Handler Invoker Table
FHO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fragment Handler Object
FHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fragment Handler Prototype
FOV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Field of View
FSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Fragment Shader Handler
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APPENDIX A. LIST OF ABBREVIATIONS

G
GLSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OpenGL Shading Language
GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Graphic Processing Unit

L
LBV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lens Based Visualization
LDX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LandXplorer
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Appendix B

Fragment- and Vertex-Shader

B.1

Listing B.1.1 Example of a vertex-handler context.

s t ruc t u s Ve r tCon t e x t // i n t e r f a c e type name
{

vec4 u s P o s i t i o n ; // i n t e r f a c e code b l o ck
vec3 us Normal ;

5 f l o a t u s Po i n t S i z e ;
vec4 u s C l i pV e r t e x ;

} Ver tContex t ; // i n s t a n c e name

B.2

Listing B.2.1 Example of a VHHT that contains three vertex shader-handler.

uniform bool v e r t e xHand l e r I n v o k e rTab l e [ 3 ] ;
2

void s h ad e r t e s t 2 g l o b a l 1Bv e r t 2 onT r an s f o rm ( inout u s Ve r tCon t e x t ) ;
void s h a d e r t e s t 2 g l o b a l 1A v e r t 1 o n L i g h t i n g ( inout u s Ve r tCon t e x t ) ;
void s h a d e r t e s t 2 g l o b a l 1B v e r t 3 o nF i n i s h ( inout u s Ve r tCon t e x t ) ;

7 void hookTab leVer tex ( void )
{

i f ( v e r t e xHand l e r I n v o k e rTab l e [ 1 ] )
s h ad e r t e s t 2 g l o b a l 1Bv e r t 2 onT r an s f o rm ( Ver tContex t ) ;

i f ( v e r t e xHand l e r I n v o k e rTab l e [ 0 ] )
12 s h a d e r t e s t 2 g l o b a l 1A v e r t 1 o n L i g h t i n g ( Ve r tContex t ) ;

i f ( v e r t e xHand l e r I n v o k e rTab l e [ 2 ] )
s h a d e r t e s t 2 g l o b a l 1B v e r t 3 o nF i n i s h ( Ve r tContex t ) ;

}
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B.3

Listing B.3.1 VDS Identity encoding and decoding.

f l o a t encodeID ( f l o a t l en s ID , f l o a t maxID )
{

return pow ( 2 . 0 f , l e n s ID ) / pow ( 2 . 0 f , maxID+1);
}

5

bool t e s t ID ( f l o a t encodedIDs , f l o a t ID , f l o a t maxID )
{

f l o a t t e s t = encodedIDs ; f l o a t r ema inde r ;
f o r ( f l o a t i = maxID ; i > ID ; i −−)

10 {
f l o a t encodedID = encodeID ( i , maxID ) ;
r ema inde r = t e s t − encodedID ;
i f ( r ema inde r >= 0)
{

15 t e s t = rema inde r ;
}// e n d i f

}// end f o r
r ema inde r = t e s t − encodeID ( ID , maxID ) ;
i f ( r ema inde r >= 0) return true ;

20 return f a l s e ;
}
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B.4

Listing B.4.1 Vertex-handler object for generic mesh-refinement.

uniform vec4 a t t r [ 1 2 ] ;

void o n I n i t ( inout u s Ve r tCon t e x t con t e x t )
4 {

#de f i n e V g l V e r t e x ;
vec4 v0 = a t t r [ 0 ] ; vec4 v1 = a t t r [ 1 ] ; vec4 v2 = a t t r [ 2 ] ;
vec4 c0 = a t t r [ 3 ] ; vec4 c1 = a t t r [ 4 ] ; vec4 c2 = a t t r [ 5 ] ;
vec4 t0 = a t t r [ 9 ] ; vec4 t1 = a t t r [ 1 0 ] ; vec4 t2 = a t t r [ 1 1 ] ;

9 vec3 n0 = a t t r [ 6 ] . xyz ;
vec3 n1 = a t t r [ 7 ] . xyz ;
vec3 n2 = a t t r [ 8 ] . xyz ;
g l F r o n tC o l o r = (V. x ∗ c0 ) + (V. y ∗ c1 ) + (V. z ∗ c2 ) ;
g l TexCoord [ 0 ] = (V. x ∗ t0 ) + (V. y ∗ t1 ) + (V. z ∗ t2 ) ;

14 con t e x t . us Normal = (V. x ∗ n0 ) + (V. y ∗ n1 ) + (V. z ∗ n2 ) ;
c on t e x t . u s P o s i t i o n = (V. x ∗ v0 ) + (V. y ∗ v1 ) + (V. z ∗ v2 ) ;

return ;
}

19

#de f i n e ONFINISH o p t i o n a l
void onF i n i s h ( i n u s Ve r tCon t e x t con t e x t )
{

g l P o s i t i o n = con t e x t . u s P o s i t i o n ;
24 return ;

} ;
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B.5

Listing B.5.1 Basic fragment handler for directional lighting.

#i f n d e f FRAGMENTINTERFACE
#d e f i n e FRAGMENTINTERFACE
s t ruc t us F ragContex t
{

5 bool us useMRT ;
vec4 u s F r agCo l o r ;
vec4 us FragData [ g l MaxDrawBuf fe r s ] ;
f l o a t us FragDepth ;

10 } ; // e nd s t r u c t u s F ragContex t
#end i f

void onL i gh t i n g ( inout us F ragContex t con t e x t )
{

15 con t e x t . u s F r agCo l o r = g l C o l o r ;
return ;

}

#de f i n e ONFNISH o p t i o n a l
20 void onF i n i s h ( i n us F ragContex t con t e x t )

{
g l F r a gCo l o r = con t e x t . u s F r agCo l o r ;
return ;

}
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B.6

Listing B.6.1 Basic vertex handler for directional lighting.

1 #i f n d e f VERTEXINTERFACE
#d e f i n e VERTEXINTERFACE
s t ruc t u s Ve r tCon t e x t
{

vec4 u s P o s i t i o n ;
6 vec3 us Normal ;

f l o a t u s Po i n t S i z e ;
vec4 u s C l i pV e r t e x ;

} ; // e nd s t r u c t u s Ve r tCon t e x t
11 #end i f

vary ing vec3 normal ;

#d e f i n e ONINIT o p t i o n a l
void o n I n i t ( inout u s Ve r tCon t e x t con t e x t )

16 {
con t e x t . u s P o s i t i o n = g l V e r t e x ;
c on t e x t . us Normal = g l Norma l ;

}
void onTransform ( inout u s Ve r tCon t e x t con t e x t )

21 {
con t e x t . u s P o s i t i o n =

g l Mode lV i ewP ro j e c t i o nMa t r i x ∗ con t e x t . u s P o s i t i o n ;
c on t e x t . us Normal =

no rma l i z e ( g l No rma lMat r i x ∗ con t e x t . us Normal ) ;
26 }

void onL i gh t i n g ( inout u s Ve r tCon t e x t con t e x t )
{

vec3 d i r e c t i o n =
no rma l i z e ( vec3 ( g l L i g h t S o u r c e [ 0 ] . p o s i t i o n ) ) ;

31 f l o a t NL = max ( dot ( c on t e x t . us Normal , d i r e c t i o n ) , 0 . 0 ) ;
g l F r o n tC o l o r =

NL ∗ g l F r o n tMa t e r i a l . d i f f u s e ∗ g l L i g h t S o u r c e [ 0 ] . d i f f u s e ;
}
#de f i n e ONFINISH o p t i o n a l

36 void onF i n i s h ( inout u s Ve r tCon t e x t con t e x t )
{

g l P o s i t i o n = con t e x t . u s P o s i t i o n ;
normal = con t e x t . us Normal ;

}
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