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Abstract

Nowadays, reactions on surfaces are attaining great scientific interest because of

their diverse applications. Some well known examples are production of ammonia

on metal surfaces for fertilizers and reduction of poisonous gases from automobiles

using catalytic converters. More recently, also photoinduced reactions at surfaces,

useful, e.g., for photocatalysis, were studied in detail. Often, very short laser pulses

are used for this purpose.

Some of these reactions are occurring on femtosecond (1 fs=10−15 s) time scales

since the motion of atoms (which leads to bond breaking and new bond formation)

belongs to this time range. This thesis investigates the femtosecond laser induced

associative photodesorption of hydrogen, H2, and deuterium, D2, from a ruthenium

metal surface. Many interesting features of this reaction were explored by exper-

imentalists: (i) a huge isotope effect in the desorption probability of H2 and D2,

(ii) the desorption yield increases non-linearly with the applied visible (vis) laser

fluence, and (iii) unequal energy partitioning to different degrees of freedom. These

peculiarities are due to the fact that an ultrashort vis pulse creates hot electrons in

the metal. These hot electrons then transfer energy to adsorbate vibrations which

leads to desorption. In fact, adsorbate vibrations are strongly coupled to metal

electrons, i.e., through non-adiabatic couplings. This means that, surfaces intro-

duce additional channels for energy exchange which makes the control of surface

reactions more difficult than the control of reactions in the gas phase. In fact, the

quantum yield of surface photochemical reactions is often notoriously small.

One of the goals of the present thesis is to suggest, on the basis of theoretical

simulations, strategies to control/enhance the photodesorption yield of H2 and D2

from Ru(0001). For this purpose, we suggest a hybrid scheme to control the reaction,

where the adsorbate vibrations are initially excited by an infrared (IR) pulse, prior

to the vis pulse. Both adiabatic and non-adiabatic representations for photoinduced

desorption problems are employed here. The adiabatic representation is realized

within the classical picture using Molecular Dynamics (MD) with electronic frictions.

In a quantum mechanical description, non-adiabatic representations are employed



within open-system density matrix theory.

The time evolution of the desorption process is studied using a two-mode re-

duced dimensionality model with one vibrational coordinate and one translational

coordinate of the adsorbate. The ground and excited electronic state potentials, and

dipole function for the IR excitation are taken from first principles.

The IR driven vibrational excitation of adsorbate modes with moderate efficiency

is achieved by (modified) π-pulses or/and optimal control theory. The fluence depen-

dence of the desorption reaction is computed by including the electronic temperature

of the metal calculated from the two-temperature model. Here, our theoretical re-

sults show a good agreement with experimental and previous theoretical findings.

We then employed the IR+vis strategy in both models. Here, we found that vibra-

tional excitation indeed promotes the desorption of hydrogen and deuterium. To

summarize, we conclude that photocontrol of this surface reaction can be achieved

by our IR+vis scheme.



Zusammenfassung

Heutzutage werden Reaktionen auf Oberflächen wegen ihrer vielfältigen Anwen-

dungen intensiv untersucht. Einige der bekannten Beispiele sind die Herstellung von

Ammoniak auf Metalloberflächen für die Kunstdüngerproduktion und die Reduktion

giftiger Abgase in Autokatalysatoren. In letzter Zeit wurden auch photoinduzierte

Reaktionen an Oberflächen eingehender untersucht, die z.B. für die Photokatal-

yse verwandt werden können. Häufig werden in diesen Untersuchungen sehr kurze

Laserpulse benutzt.

Einige der Reaktionen finden auf einer Femtosekunden-Zeitskala (1 fs =10−15 s)

statt, da die Bewegungen einzelner Atome in derart kurzen Zeitspannen ablaufen

(durch die der Bindungsbruch und das Knüpfen neuer Bindungen verursacht wird).

Diese Arbeit untersucht die femtosekunden-laserinduzierte assoziative Photodes-

orption von Wasserstoff, H2, und Deuterium, D2, von einer Rutheniumoberfläche.

Viele interessante Eigenschaften dieser Reaktion wurden in Experimenten entdeckt:

(i) ein großer Isotopeneffekt in der Desorptionswahrscheinlichkeit von H2 und D2,

(ii) die Desorptionsausbeute steigt nicht-linear mit der (vis) Laserfluenz an und

(iii) eine Nicht-Gleichverteilung der Energie auf die einzelnen Freiheitsgrade. Diese

Auffälligkeiten sind durch den Umstand verursacht, dass der ultrakurze vis-Laserpuls

heiße Elektronen im Metall erzeugt. Die heißen Elektronen transferieren dann En-

ergie in die Schwingungen des Adsorbats, was zur Desorption führt. Tatsächlich sind

die Adsorbatschwingungen stark an die Elektronen gekoppelt, nämlich durch nicht-

adiabatische Kopplungen. Dies bedeutet, dass durch Oberflächen neue Kanäle für

den Energietransfer geöffnet werden, was die Kontrolle von Oberflächenreaktionen

im Vergleich zu solchen in der Gasphase erschwert. In der Tat sind die Quantenaus-

beuten von photochemischen Oberflächenreaktionen bekannterweise klein.

Eines der Ziele in der vorliegenden Arbeit ist es auf der Basis von theoretis-

chen Simulationen Strategien vorzuschlagen, um die Photodesorptionsausbeute von

H2 und D2 von Ru(0001) zu kontrollieren bzw. zu verbessern. Zu diesem Zweck

schlagen wir ein gemischtes Kontrollschema für die Reaktion vor, bei dem zunächst

die Adsorbatschwingungen vor dem vis-Puls durch einen infraroten (IR) Puls an-



geregt werden. Sowohl adiabatische als auch nicht-adiabatische Repräsentationen

für photoinduzierte Desorptionsprozesse werden dabei benutzt. Die adiabatische

Repräsentation ist in klassischen Molekulardynamik-Simulationen mit elektronis-

cher Reibung verwirklicht. In einer quantenmechanischen Beschreibung werden

nicht-adiabatische Repräsentationen innerhalb der Dichtematrixtheorie für offene

Quantensysteme verwandt.

Die zeitliche Entwicklung des Desorptionsprozesses wird in einem Zwei-

Modenmodell reduzierter Dimensionalität mit einer Schwingungs- und einer Trans-

lationskoordinate des Adsorbats beschrieben. Die Potentiale für den elektronische

Grundzustand und den angeregten Zustand sind abgeleitet aus quantenchemischen

Rechnungen (first principles).

Die IR-getriebene Schwingungsanregung der Adsorbatmoden mit moderatem

Wirkungsgrad wird mit (modifizierten) π-Pulsen und/oder der Theorie der opti-

malen Kontrolle erreicht. Die Abhängigkeit der Desorption von der Fluenz wird mit

Hilfe der elektronischen Temperatur des Metalls berechnet, welche im Rahmen des

Zwei-Temperatur-Modells bestimmt wird. Dabei weisen unsere Ergebnisse eine gute

Übereinstimmung mit experimentellen und früheren theoretischen Arbeiten auf. Da-

raufhin wandten wir die IR+vis Strategie in beiden Modellen an. Dadurch konnten

wir zeigen, dass Schwingungsanregung in der Tat die Desorption von Wasserstoff und

Deuterium begünstigt. Zusammenfassend stellen wir fest, dass die Photokontrolle

dieser Oberflächenreaktion durch unser IR+vis Schema erreichbar ist.
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Chapter 1

Introduction

Reactions on surfaces are attaining great scientific interest because of their diverse

applications, ranging from heterogeneous catalysis to the study of the ozone layer

depletion. The importance of surface chemistry was highlighted by the 2007 Nobel

prize in chemistry when it was awarded to G. Ertl. All over the world, scientists are

studying the importance of surfaces in catalytic reactions. A well known example

is the synthesis of ammonia on an iron surface [1]. A catalyst lowers the activation

energy by providing an alternate reaction path, thus promoting the reaction in a

large scale. In the case of heterogeneous catalysis on surfaces, the presence of the

metal electron cloud weakens/breaks the bonds in the educts which is often the rate

determining step. The invention of lasers opened new, photochemical channels to

promote and analyze surface reactions. When femtosecond (fs) lasers were first used

by A. H. Zewail to monitor chemical reactions, a break through was made in un-

derstanding and controlling reactions. In surface science, experimentalists started

utilizing these techniques to study the elementary reactions on surfaces such as ad-

sorption, desorption, dissociation and diffusion etc. [2, 3, 4, 5]. Often, the reactions

are occurring on femtosecond time scales since the motion of atoms (which leads to

bond breaking and new bond formation) belongs to this time range. Use of such

ultrashort pulses leads to the so-called femtochemistry [6].

The photoinduced desorption of adsorbates from metal surfaces can be achieved
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by two different mechanisms. One is a direct mechanism, in which the incoming

photons directly couple with the transition dipole moment of the adsorbate-surface

bond. Once enough energy is transferred into the bond then the adsorbate can

desorb from the surface or undergo another reaction. This is often done by infrared

(IR) pulses with a frequency in the same order of the adsorbate-surface vibration [7].

The other one is an indirect mechanism, typically realized with ultraviolet/visible

(UV/vis) pulses and metal surfaces. These pulses initially excite the metal electrons,

which then couple with the adsorbate electronic states [8]. In other words, “hot

electrons” are created in the metal which tunnel to an adsorbate acceptor level.

The electrons can also tunnel back from the adsorbate to the metal surface, on a

timescale τel (see below).

In general, surfaces allow for different channels for energy exchange between the

adsorbate and the substrate. The two main processes are vibrational relaxation and

electronic deexcitation of adsorbates [9]. The vibrational relaxation of adsorbates

is possible via either vibration-phonon or vibration-electron coupling. The former

is the main damping mechanism for adsorbate vibrations on insulator and semi-

conductor surfaces, because the band gap is much larger than an usual vibrational

quantum h̄ω0. The vibration-electron coupling is often dominant for the vibrational

relaxation of adspecies on metal surfaces. This is mainly true for the relaxation

of high-frequency modes. For low-energy modes, where the frequency of adsorbate

vibrations is smaller or only slightly larger than the Debye frequency of the solid

(a few hundred cm−1), vibration-phonon coupling can become prominent [10]. The

vibrational lifetimes τvib are temperature dependent and inversely proportional to

the electronic friction coefficients η used in the classical molecular dynamics simu-

lations [11, 12, 13]. The relaxation of electronically excited adsorbate states on a

timescale τel, e.g., “back-tunneling” of the electron, has great importance in surface

photochemistry. On metal surfaces, the electronic lifetimes can be as short as a few

femtoseconds. The determination of these lifetimes is very difficult both experimen-

tally and theoretically. Attempts to calculate the lifetimes of adsorbate electronic

states can be found elsewhere [14, 15, 16, 17, 18, 19, 20, 21].

The photodesorption of adsorbates from a metal surface is mainly non-adiabatic
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in nature because of the involvement of electronic excitations and the huge number

of non-adiabatic couplings. The type of electronic excitation predominantly depends

upon the incoming laser pulse. If the pulse has very low fluence, typically realized

with nanosecond pulses, single electronic transitions are occurring. The system

then relaxes to the ground electronic state within a lifetime τel. The desorption

occurs if enough energy is gained to break the surface-adsorbate bond. This kind of

mechanism is known as Desorption Induced by Electronic Transitions (DIET). When

pulses are used with high fluences, i.e., very short (femtosecond) pulses then there

may be multiple electronic excitations and relaxations. As a result, a vibrational

ladder climbing in the ground electronic state occurs. If the rate of this process

is higher than the rate of vibrational relaxation, desorption may take place. This

is called Desorption Induced by Multiple Electronic Transitions (DIMET) [22, 23].

DIMET leads to higher desorption yields compared to the DIET case. In the DIET

case, the fluence dependence of the desorption yield is linear while for DIMET, one

finds a power law dependence Y = CF n where n is typically 2 ≤ n ≤ 10 [9].

Here we study the femtosecond-laser induced recombinative desorption of

hydrogen or deuterium molecules from a Ru(0001) surface. This is one of the

prototypes of a surface reaction where one can elaborately investigate the un-

derlying mechanism. The corresponding experiments were carried out by Wolf,

Frischkorn et al. and many interesting aspects were found [3, 4, 24]. The femtosec-

ond experiments show a completely different reaction mechanism compared to ther-

mal desorption experiments. The main observations are:

� A large isotope effect with the desorption probability of H2 being typically 10

times higher than the one of D2.

� The desorbing molecules have high translational energy compared to vibra-

tional energy. There is also an isotope effect in the energy partitioning.

� The desorption yield increases non-linearly and unequal energy partitioning to

different degrees of freedom also increases with respect to an increase in the

applied laser fluence.
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� Two-pulse correlation experiments show that the reaction occurs through a

hot-electron mediated mechanism with a short response time of ∼ 1ps.

The experiments were done with 120-130 fs laser pulses at 800 nm center wave-

length (1.55 eV) with different fluences. These fs laser pulses, initially heat the

electrons of the Ruthenium (will be referred as substrate or bath in later sec-

tions) to produce high electron temperatures, Tel(t), which then transfer energy

to the adsorbate-substrate bond to break it. Thus the vis excitation is indirect

and hard to control. The theoretical modeling of this reaction was first done by

A. C. Luntz et al. using Molecular Dynamics (MD) with electronic frictions [25].

They used a three-dimensional model including two molecular coordinates (inter-

nuclear separation r and center of mass distance to the surface Z) and a single

phonon mode (q). The interaction of the laser pulse with metal electrons was

treated indirectly within the two-temperature model [26]. The breakdown of the

Born-Oppenheimer approximation due to electronic excitations in the substrate-

adsorbate complex was treated in an approximate fashion. The MD approach is

based on the adiabatic representation where the dynamics evolves on the ground

electronic state. Non-adiabaticity is indirectly included by electronic frictions and

fluctuating forces.

An alternative way to describe these dynamics is to employ non-adiabatic rep-

resentations using stochastic or jumping wavepackets [27], or open-system density

matrix theory [28]. In these models, the photodesorption takes place under explicit

participation of one or more electronically excited states. This is closely related to

a diabatic representation. In one-dimensional models, desorption is frequently ex-

plained by two different scenarios, namely, Menzel-Gomer-Redhead (MGR) [29, 30]

and Antoniewicz [31] models. In the MGR model, the electronic excited state is as-

sumed to be a repulsive state. As a consequence, the excited particle moves outward

initially (along the desorption coordinate) and then relaxes back to the ground elec-

tronic state, often within a few femtoseconds. However, some vibrational excitation

has survived after return to the ground state and if enough energy was gained, the

particle desorbs. In the Antoniewicz model, the excited state is considered to be

bound, ionic in character thus image charge stabilized on a metal surface. Since
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the equilibrium bond length of the photoexcited system is typically shorter than the

ground electronic state, the adspecies initially moves inward and is then quenched

back to the ground state.

Photodesorption yields are often small. One of the goals of the present thesis is to

control/enhance the photodesorption in H/Ru(0001). For this purpose, we suggest

a hybrid scheme to control the reaction where the adsorbate vibrations are initially

excited by an IR pulse, prior to the UV/vis pulse. The scheme is outlined in Fig. 1.1.

One can preexcite certain adsorbate modes, for example the adsorbate-surface bond

since IR photons couple directly with it, as stated above. Thus, the IR excitation is

controllable [32], and prepares the system for the subsequent photoreaction by the

UV/vis laser pulse. Similar IR+UV/vis strategies to control the photodesorption

or other reactions of molecules at surfaces have been suggested elsewhere [28, 32,

33, 34, 35, 36, 37, 38]. For DIET problems, the vibrational preexcitation can be

achieved either by IR excitation or by surface heating [39, 40, 41, 42].

Our strategy is inspired from the “vibrationally mediated chemistry” in gas phase

dynamics [43, 44, 45, 46], where mode- and isotope-selective IR excitation using

shaped laser pulses has been realized for systems with only a few modes [44]. It

seems to be much more difficult to attain such a goal for complex systems, including

condensed phases due to the highly dissipative environment. Recently, attempts

were successful to selectively excite and break an adsorbate-surface bond by IR

photons without thermalization, for the example of associative desorption of H2

from H/Si(111) in the ground electronic state [46, 47].

The aims of this thesis are: Firstly, we wish to investigate the performance

and relation of two schools of surface femtochemistry using either adiabatic or

non-adiabatic representations. If the models are successful in obtaining the ex-

perimental observations such as isotope effect and non-linear fluence dependence in

the desorption yield, then the possibility to control and enhance the reaction yield

by vibrational preexcitation will be considered. This includes the question as to

what extent mode-selective and state-selective IR excitation in a dissipative system

is possible.
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Figure 1.1: Vibrationally mediated chemistry. Left panel: A schematic repre-

sentation of the IR+UV/vis strategy to enhance the photodesorption yield. The

adsorbate vibrations are initially excited by an IR pulse (direct) prior to the ultra-

short UV/vis laser pulse (indirect). The UV/vis pulse then excites the system to an

excited electronic state. Right panel: The scheme is shown for an one-dimensional

Menzel-Gomer-Redhead model. Solid arrows show the vibrational/electronic ex-

citation and dotted arrows represent the vibrational/electronic deexcitation. The

system is initially excited to some vibrational state by an IR pulse followed by an

electronic excitation by a UV/vis pulse. The system evolves for a short time, τel,

in the repulsive excited state and quenches back to the ground state. As a result,

highly vibrationally excited states are created in the ground state. Electronic exci-

tations/deexcitations can be repeated several times depending on the UV/vis pulse

fluence. If the rate of this process is higher than the rate of vibrational relaxation,

τ−1
vib , desorption may take place.
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The thesis is organized as follows. In Chapter 2, theoretical methods for classical

and quantum dynamical descriptions are introduced. In the former, molecular

dynamics on a single potential with electronic frictions will be employed while

the latter makes use also of electronically excited states, and open-system density

matrix theory. Different laser control schemes for reactions at surfaces are outlined.

Chapter 3 describes the quantum mechanical treatment of DIET and DIMET of

H2/ D2 from a Ru(0001) surface. The possibility to excite adsorbate vibrations us-

ing shaped IR pulses and their influence on the desorption yield are investigated.

In the case of DIMET, non-linear fluence dependence of the reaction yield on the

incoming vis laser pulse is examined. Finally DIET and DIMET models are com-

pared. In Chapter 4, the DIMET regime is studied using MD simulations in the

adiabatic representation. Vibrationally excited modes are prepared by IR pulses

where vibrational relaxation is also included. The role of IR+UV/vis control scheme

for different delay times is investigated. As in Chapter 3, different UV/vis laser flu-

ences are considered. Chapter 5 summarizes the thesis and future directions are

outlined.



Chapter 2

Dissipative Dynamics

In this chapter, the models and methods which are commonly used in the pho-

toinduced dynamics on surfaces are reviewed. Both adiabatic and non-adiabatic

representations for the femtosecond-laser induced desorption are introduced here.

The main difference between these two approaches is the treatment of electronic

excited state dynamics. In the non-adiabatic representation, at least part of the

dynamics explicitly takes place in an excited state while in the adiabatic represen-

tation, non-adiabatic effects are only implicitly accounted for. Both representations

can be treated either classically or quantum mechanically. In the classical picture,

adiabatic representation is treated with electronic frictions using the Langevin for-

malism [48, 49]. This description is valid when one assumes that the non-adiabatic

coupling is weak and the electronic excitations are low in energy such that the metal

density of states is nearly constant in this energy range. In this case, the molecular

dynamics occurs on a single potential energy surface (PES). This approach will be

used in Chapter 4. The DIMET scenario can also be treated in a classical fashion

by a non-adiabatic representation using a ground and an excited potential energy

surface [23]. In Ref. [23], the electronic excitations were treated stochastically

assuming Frank-Condon transitions. The electronic excitation rate was calculated

by the principle of detailed balance from the time-dependent electronic temperature,

Tel, and the energy difference between the two PES. This classical, non-adiabatic ap-

proach was not employed in this thesis. Instead, an analogous quantum mechanical
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model was adopted, with classical particles replaced by stochastic quantum wave

packets [27, 28, 50], which are related to open-system density matrix theory. These

two methods will be discussed in detail (see below). We also treated IR-induced

ground state dynamics quantum mechanically, used for vibrational preexcitation.

In the quantum mechanical picture, also the IR-induced adiabatic dynamics can

be described by solving the time-dependent Schrödinger equation or by using the

density matrix description [9].

2.1 Quantum dynamical methods

2.1.1 Open-system density matrix theory

The density matrix theory allows one to treat the dynamics of systems which are

either in a pure state or which are a statistical mixture of states. The density

operator ρ̂ for a system reads [51]

ρ̂ =
∑

i

pi|ψi〉〈ψi| , (2.1)

where pi is the probability to find the system in a pure state i described by a state

vector |ψi〉.

The density operator ρ̂ can be represented in a matrix form by taking the eigen-

states of the Hamiltonian Ĥ using the principle of superposition. The state vector

ψi can be expanded in these eigenstates |ϕm〉 (basis states) as follows,

Ĥ|ϕm〉 = εm|ϕm〉 , (2.2)

|ψi〉 =
∑

m

ami|ϕm〉 . (2.3)

The density matrix in the above basis representation can be readily written down
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from Eq. (2.1) and Eqs. (2.3),

ρmn = 〈ϕm|ρ̂|ϕn〉 =
∑

i

pi〈ϕm|ψi〉〈ψi|ϕn〉 (2.4)

=
∑

i

piamia
∗
ni . (2.5)

The diagonal elements ρmm of such a density matrix are populations of respective

states m and the off-diagonal elements ρmn are the coherences between the states m

and n.

For a closed system, the time evolution of the ρ̂ can be derived from the Time-

Dependent Schrödinger Equation (TDSE)

ih̄
∂

∂t
ψ(t) = Ĥψ(t) , (2.6)

which is equivalent to the Liouville-von Neumann (LvN) equation:

∂ρ̂

∂t
= ˙̂ρ =

∂

∂t

∑

i

pi|ψi〉〈ψi| (2.7)

=
∑

i

pi(|ψ̇i〉〈ψi| + |ψi〉〈ψ̇i|) (2.8)

= LH [ρ̂] = − i

h̄
[Ĥ, ρ̂] , (2.9)

where LH is called the Liouvillian superoperator.

When the system is in contact with surroundings (a bath), the above equation

has to be modified to include dissipation. Dissipation can be, for example, energy

relaxation or phase relaxation. Both can occur in inelastic processes, while the latter

can also happen by elastic processes. In this case this is called pure dephasing. Then

one usually does the “reduced dynamics” by tracing out the bath degrees of freedom

from the total density operator. In this ansatz, the total Hamiltonian is

Ĥtot = Ĥs + Ĥb + Ĥsb , (2.10)

where the individual terms denote the system, bath and system-bath coupling

Hamiltonians, respectively.
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The reduced density operator of the system can be written,

ρ̂s = Trb ρ̂tot , (2.11)

where Trb is the trace over bath modes. In the following, we work under the Markov

approximation by implying that the density operator ρ̂s in Eq. (2.11) has no memory.

This means that the time-derivative of the density operator is assumed to only

depend on ρ̂s at that time. Under this approximation one obtains an open-system

LvN equation for the time evolution of the reduced density operator [51]

˙̂ρs = L[ρ̂s] = LH [ρ̂s] + LD[ρ̂s] (2.12)

where LD is known as the dissipative Liouvillian, and 1

LH [ρ̂s] = − i

h̄
[Ĥs, ρ̂s] . (2.13)

There are many approaches to model the dissipation in open systems. Here

we took the Lindblad approach [52] to treat dissipation. In the Lindblad ansatz,

Eq. (2.12) can be written as:

∂ρ̂s

∂t
= − i

h̄
[Ĥs, ρ̂s] +

K
∑

k=1

(Ĉkρ̂sĈ
†
k −

1

2
[Ĉ†

kĈk, ρ̂s]+) (2.14)

where Ĉk are Lindblad operators and k denotes the different dissipation channels,

e.g., energy or phase relaxation. As an example, if the energy relaxation from an

excited state |e〉 to a ground state |g〉 is to be modelled, the corresponding Lindblad

operator is

Ĉ1 =
√

Γe→g|g〉〈e| (2.15)

where Γe→g is the decay rate, and τ = Γ−1
e→g is the lifetime of the excited state.

The Lindblad form ensures complete positivity of the density matrix during the

time evolution. This has the consequence that the populations are always zero or

positive, unlike in other Markovian theories such as Redfield theory [51, 53], where

negative probabilities can emerge.

1In general, there is also a shift term in Eq. (2.13) which is neglected here.
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2.1.2 Monte Carlo Wave Packet method

The direct propagation of the density operator can be tedious depending on the

number of basis functions used to represent the operators. The numerical solution

of Eq. (2.14) is difficult even for a two-mode model because of the large memory

requirement. The latter scales quadratically with the number of basis functions, if

ρ̂s in Eq. (2.14) is represented as a matrix.

There are several stochastic wave packet methods [54, 55, 56] which solve the

LvN equation indirectly. The main advantage of these methods is that the memory

required for the propagation scales only linearly with the number of basis functions.

These methods were originally developed for laser excitations in an atomic two-level

system. One such method is the Monte Carlo Wave Packet (MCWP) approach, as

suggested by Mølmer and co-workers [57]. In this method, one has to run several

stochastic trajectories which undergo several discontinuous jumps. The jumps,

which model dissipation, are determined by a random number algorithm, where the

name Monte Carlo originates from. This method can solve Eq. (2.14) exactly with

less computational effort, if the number of realizations is not too large. The MCWP

method is only applicable to LvN equations of Lindblad form. Extensions to more

general forms of dissipation are possible [58, 59, 60].

The algorithm works as follows (say, for T =0 K):

1. Initialization of an initial wave function |ψ(0)〉, which is typically the ground

state at T =0 K.

2. A wave function at each time |ψ′

(t + ∆t)〉 is obtained from |ψ(t)〉 by the

solution of the time-dependent Schrödinger equation

ih̄
∂

∂t
ψ(t) = Ĥ ′

sψ(t) (2.16)

with the non-Hermitian Hamiltonian Ĥ ′

s

Ĥ ′

s = Ĥs −
ih̄

2

K
∑

k

Ĉ†
kĈk , (2.17)
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where Ĉk are the Lindblad operators mentioned in Eq. (2.14). Due to the non-

Hermiticity of the Hamiltonian, the new wave function |ψ′

(t + ∆t)〉 obtained

is not normalized. The loss of norm ∆p is calculated at each time step:

∆p = 1 − 〈ψ′

(t+ ∆t)|ψ′

(t+ ∆t)〉 . (2.18)

3. In the next step, a random number ǫ is drawn, equally distributed between 0

and 1. If ∆p > ǫ, a quantum jump occurs, and the new wave function is chosen

among the different states Ĉk|ψ(t)〉 with the probability pk = ∆pk/∆p, with

∆pk = ∆t〈ψ(t)|Ĉk
†
Ĉk|ψ(t)〉 ≥ 0 being the loss due to the dissipative channel

k in a first-order approximation. The new wave function is then calculated,

|ψ(t+ ∆t)〉 =
Ĉk|ψ(t)〉

〈ψ(t)|Ĉk
†
Ĉk|ψ(t)〉 1

2

. (2.19)

For ∆p ≤ ǫ, no quantum jump occurs and the new renormalized wave function

is obtained as

|ψ(t+ ∆t)〉 =
|ψ′

(t+ ∆t)〉
(1 − ∆p)

1
2

. (2.20)

4. This procedure is repeated N times, i.e. there are N quantum trajectories.

For each trajectory n, the expectation value of an operator Â is calculated as

An(t) = 〈ψn(t)|Â|ψn(t)〉 . (2.21)

5. The expectation value of an operator Â averaged over N trajectories is calcu-

lated as

〈Â〉(t) =
1

N

N
∑

n

An(t) . (2.22)

2.1.3 A special jumping wave packet scheme

For the DIET problems, in a two-state system, only one dissipative channel is con-

sidered for the electronic dissipation. In Eq. (2.14), then K becomes 1, and the

corresponding Lindblad operater Ĉ1 =
√

Γe→g|g〉〈e| as defined in Eq. (2.15) leads

to the deexcitation of the wave packet from the electronic excited state to the elec-

tronic ground state. Gadzuk suggested a “jumping wave packet” approach by which
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this decay process can efficiently be handled [27, 61]. In this approach, in a first

step one runs several “excitation-deexcitation” quantum trajectories, corresponding

to a residence time τR on the excited electronic potential. It has been shown that

this method is a rapidly converging stochastic wave packet method derived from the

MCWP algorithm and thus can solve Eq. (2.14) exactly [50]. In fact, the difference

between these two methods comes only from the selection of individual quantum

trajectories for sampling. In the MCWP method, most of the quantum trajectories

relax at shorter residence times driven by the random number generator. In contrast,

in the Gadzuk method the residence times are uniformly distributed, and individual

expectation values An in Eq. (2.22) are weighted with exponential weighting factors.

As such, the approach is exact if (i) only a single relaxation channel exists, (ii) the

decay rate Γe→g is assumed to be coordinate-independent (exponential decay), and

(iii) if the excitation process is idealized as being “sudden”. Generalizations to the

case of coordinate-dependent decay rates have been suggested [62].

Specifically, the wave function in the Gadzuk approach for an individual quantum

trajectory is (for τR < t)

|ψ(t; τR)〉 = e−iĤg(t−τR)/h̄|g〉〈e|e−iĤeτR/h̄|e〉〈g|φ0〉 . (2.23)

The initial wave function |φ0〉 is, at T =0 K, the vibrational ground state wave

function of the electronically unexcited adsorbate. Ĥg and Ĥe are the ground state

and excited state Hamiltonians of the system, respectively. Eq. (2.23) implies that

the hot-electron mediated excitation step, modelled by the “upward operator” |e〉〈g|
is assumed to be incoherent, sudden, and leaves the initial wave function undistorted.

Then the wave function evolves in the excited state up to time τR, when a “downward

operator” |g〉〈e| transfers the wave function to the ground state |g〉, where it evolves

to some final time, t.

The expectation value of an operator Â for a trajectory with a residence time τR

on the excited state potential can be calculated as

A(t; τR) := 〈ψ(t; τR)|Â|ψ(t; τR)〉 . (2.24)

The final expectation values for an observable is computed by a weighted and
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normalized average with different survival probabilities over an infinite number of

residence times. Assuming a coordinate-independent lifetime, τel, of the electronic

excited state, the latter decays strictly exponential and the observables are given by

〈A〉(t) =

∫∞
0
e−τR/τelA(t; τR)dτR
∫∞

0
e−τR/τeldτR

(2.25)

where e−τR/τeldτR/
∫∞

0
e−τR/τeldτR is the probability that the resonance decays

between τR and τR + dτR.

In practice, the residence times τR can be chosen on a discrete time grid according

to τRn = τR0 + n∆τR, resulting in a discrete version of Eq. (2.25):

〈Â〉(t) =

∑N−1
n=0 e

−τRn/τelA(t; τR)
∑N−1

n=0 e
−τRn/τel

. (2.26)

2.2 Classical dynamics

2.2.1 Langevin dynamics

The Brownian motion of molecules has been widely investigated using the general-

ized Langevin approach [63, 64, 65]. This approach was successful in treating the

dynamics for many adsorbate-metal systems [66, 67]. One main advantage of this

model over quantum dynamical methods is that it can treat more degrees of freedom

[68, 69]. The main approximations here are the classical motion of the nuclei and

that the dynamics evolves on a single effective potential.

The Langevin dynamics can also be used to model non-adiabatic dynamics at

metal surfaces. The breakdown of the Born-Oppenheimer approximation can hap-

pen due to the strong coupling between electronic excitations in the metal and

adsorbate nuclear motion [70]. The femtosecond visible lasers can produce mul-

tiple electronic excitations in the metal because of the vanishing band gap. The

ordinary, classical equations of motion have to be modified to include this electron
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dynamics. Tully et al. developed a classical MD simulation scheme to incorpo-

rate non-adiabatic couplings in the weak coupling approximation [71]. The method

is known as molecular dynamics with electronic frictions for the dynamics of ad-

molecules on a continuum of metal-adsorbate potential energy surfaces. The hot

electron excitations by adsorbate motions are included by electronic frictions while

the transfer of electronic energy to the adsorbate degrees of freedom are incorporated

by fluctuating forces.

Within the Markov limit, the Langevin equation for the motion of a particle with

mass mq along a nuclear coordinate q is:

mq q̈ = −∂V
∂q

− ηqq q̇ −
∑

q′ 6=q

ηqq′ q̇
′ +Rq(t) , (2.27)

where q̇ and q̈ are the velocity and acceleration along the coordinate q. ηqq is the diag-

onal electronic friction coefficient, and ηqq′ , an off-diagonal friction coefficient, which

couples different modes through dissipation. The first term on the r.h.s accounts

for the force from the potential, the second and third term describe the dissipation

of energy through frictional forces. The fourth term, Rq(t) provides random forces

on the nuclei due to finite temperatures, T , of the environment. In our case, T will

be the electronic temperature, Tel, which also happens to be time-dependent (see

below). The friction terms and random part are analogous to Lindblad operators in

Eq. (2.14) which describe the dissipation of energy in various channels.

2.2.2 Electronic friction

The vibrational relaxation of adsorbates through the non-adiabatic coupling between

hot metal electrons and adsorbate vibrations can be well described by electronic fric-

tions [12, 72, 73]. It has been proven that high frequency vibrations can excite metal

electrons by dissipating energy through an electronic channel [74, 75]. Neglecting

the off-diagonal friction terms in Eq. (2.27) and setting Rq(t) = 0 (i.e., Tel = 0),

Eq. (2.27) describes a damped motion along q with an energy loss rate

Ė = −ηqq q̇
2 (2.28)
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where it also has been assumed that ηqq is coordinate-independent [76]. In gen-

eral, ηqq (and also all ηqq′) depend on the coordinates of all F degrees of freedom,

ηqq′ = ηqq′(q1, ....qF ). Further, the fluctuating forces R(t) are non-zero for non-zero

Tel(t). The electronic temperature, Tel(t), is time-dependent due to the action of a

laser pulse, which excites the electron-hole pairs in the metal before the electrons are

cooled down again by electron-phonon coupling and heat diffusion. The calculation

of Tel(t) in a typical femtosecond-laser experiment will be described below.

The diagonal friction coefficients can be calculated by Density Functional Theory

(DFT) using the following equation,

ηqq = 2πh̄
∑

α,β

|〈χα|
∂ν

∂q
|χβ〉|2δ(εα − εF )δ(εβ − εF ) (2.29)

where χi and εi are the Kohn-Sham orbitals and orbital energies, ∂ν
∂q

is the derivative

of the Kohn-Sham potential ν with respect to nuclear coordinate q, for e.g., different

positions of the adsorbate on the surface, and εF is the Fermi energy [77]. These

quantities are calculated using periodic DFT methods, and the Kohn-Sham potential

ν consists of three terms: attraction between the nuclei and electrons, the Coulomb

potential from the electron-electron repulsion, and the exchange-correlation poten-

tial [78]. εα and εβ are highest occupied and lowest unoccupied molecular orbitals

[12]. The above equation is derived from the golden-rule expression for the vibra-

tional damping rate γ to the states which are close to Fermi level. There is an

alternate approach to calculate electronic friction coefficients using cluster models

based on molecular orbital theory suggested by Tully et al. [71]. The off-diagonal

friction elements ηqq′ can be calculated from diagonal friction elements ηqq as de-

scribed in Ref. [77].

The electronic frictions vary with the position of the adsorbate and the elec-

tronic temperature, Tel. The temperature dependence of the friction is only im-

portant when the electronic temperatures are in the order of electronic excitation

energies [48]. In the Markov approximation, the temperature dependence of friction

coefficients is obtained by modifying Eq. (2.29) [79] to

ηqq = 2πh̄
∑

α,β

|〈χα|
∂ν

∂q
|χβ〉|2

∫

dε

[

−df(ε)

dε

]

δ(ε− εα)δ(ε− εβ) (2.30)

where f(ε) is the Fermi-Dirac distribution at Tel.
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2.2.3 Fluctuation-dissipation theorem

The energy transfer from hot metal electrons to the adsorbate motion is implemented

in the molecular dynamics approach by random forces acting on the adsorbate nuclei.

The laser driven adsorbate-substrate dynamics is similar to the Brownian motion of

particles driven by an external force (electro-magnetic field) which always suffer a

resisting force from the collisions with surrounding particles (metal electrons). Even-

though, these collisions are random, such collisions can set the Brownian particles

(adsorbate atoms) in motion. Thus the random collisions cause two kinds of events

in the system; in one case, they invoke a random driving force on the Brownian

particle and in the other case, they generate a frictional force for the forced motion.

This leads to the conclusion that the frictional force and the random force must be

related, because both originate from a same source. The relation between the fric-

tional part and the random part is given by the well known fluctuation-dissipation

theorem (FDT) [65]. The second fluctuation-dissipation theorem states that the

amount of energy dissipated through friction from the system into the bath should

be balanced by the energy pumped into the system by the fluctuating force in order

to maintain a finite temperature [66].

The electronic friction approach to treat dynamics is only relevant when the

electronic time scale is much faster than the adsorbate motions. Thus, the effect of

metal electrons can be considered as noise on the adsorbate motion [48]. For the

sake of simplicity, the random forces are usually considered as a Gaussian process

with infinitesimally small correlation time. The Gaussian assumption is reasonably

good for a Brownian molecule having a mass larger than the colliding molecules

within the central limit theorem. The second assumption implies that the process

is Markovian. The random force which follows from these two conditions is com-

monly called Gaussian White Noise (GWN). The Gaussian white noise Rq(t) has

the following properties [80, 81],

〈Rq(t)〉 = 0 , (2.31)

〈Rq(t)Rq(t
′)〉 = 2kBTηqqδ(t− t′) , (2.32)

〈Rq(t)Rq′(t
′)〉 = kBTηqq′δ(t− t′) , (2.33)



2.3 Laser driven dynamics at surfaces 19

where T is the temperature of the bath, and ηqq and ηqq′ are the diagonal and

off-diagonal electronic friction coefficients.

Eq. (2.31) shows that the expectation value of GWN has zero mean, Eq. (2.32)

and Eq. (2.33) define the time correlation of random forces through the FDT and

the Markovian approximation. Eq. (2.32) and Eq. (2.33) clearly show that random

forces are dependent on the nature of the environment through the friction and the

temperature.

2.3 Laser driven dynamics at surfaces

2.3.1 Direct excitation by IR laser pulses

The direct interaction of an IR laser field with an adsorbate is treated within the

semi-classical dipole approximation. This means that (i) the field is treated clas-

sically, (ii) only the electric field (and not the magnetic field) component of the

radiation is considered, (iii) the coordinate-dependence of the electric field is ne-

glected.

A way to treat such a process is given by the time-dependent Schrödinger equa-

tion (TDSE). The TDSE for the nuclear motion is given by

ih̄
∂

∂t
ψ(t) = Ĥ(t)ψ(t) , (2.34)

where the time-dependent Hamiltonian within the semi-classical approximation can

be written as,

Ĥ(t) = Ĥ0 − ~µ(R) ~E(t) (2.35)

Ĥ(t) = T̂ + V̂ − ~µ(R) ~E(t) . (2.36)

Here Ĥ0 is the field-free time-independent Hamiltonian, and −~µ(R) ~E(t) is the in-

teraction Hamiltonian which describes the interaction with the IR laser field. ~µ(R)

is the permanent dipole moment of the molecule obtained from DFT calculations

and R represents the nuclear degrees of freedom of the system.
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In the following, the IR excitation of vibrational levels is done either by analytical

π-pulses or by shaped pulses generated from optimal control theory.

π-pulses

In an ideal two-level, dissipation-free system, a π-pulse brings a total population

inversion within the Rotating Wave Approximation (RWA) [82]. We use a sin2

shaped pulse, given as

~E(t) =







~E0 sin2

(

πt
tf

)

cos(ωt) if 0 ≤ t ≤ tf

0 else

(2.37)

where tf is the pulse duration and ω is the transition frequency between the two

levels, if the pulse is in resonance.

The field amplitude ~E0 for a sin2 shaped π-pulse follows as [83],

| ~E0| =
2πh̄

tf|~µif|
(2.38)

where ~E0 and ~µif are parallel, acting in the same direction.

For a sin2 shaped π-pulse, the fluence is calculated as

F π =
1

2
ǫ0c

∫ tf

0

∣

∣

∣

~E0 sin2

(

πt

tf

)

∣

∣

∣

2

dt , (2.39)

=
3ǫ0c tf ~E

2
0

16
, (2.40)

where ǫ0 is the vacuum permeability and c is the speed of light.

The transition dipole moment ~µif between initial and final states occurring in

Eq. (2.38) can be calculated as

~µif = 〈φi|~µ(R)|φf〉 (2.41)

where φi and φf are the vibrational eigenfunctions of the initial and final states, if

vibrational excitation is to be considered.
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Optimal control theory

An alternative tool to achieve specific vibrationally excited states is Optimal Control

Theory (OCT) [84]. This allows one to get often more state-selectivity due to an

optimization of the applied field. Here our goal is to optimize the IR laser field, in

order to accomplish maximum population in the desired states.

The evolution of the system depends upon the initial state and the applied laser

field. The algorithm works, for non-dissipative dynamics, as follows:

A total objective functional is defined (here and below h̄ := 1)

J = 〈ψ(tf)|Ô|ψ(tf)〉−
∫ tf

0

α(t) | ~E(t)|2dt−2Re

[

∫ tf

0

〈χ(t)| ∂
∂t

+i(Ĥ0−~µ(R) ~E(t))|ψ(t)〉dt
]

.

(2.42)

� Here, Ô is a positive target operator, whose expectation value has to be maxi-

mized over the optimization time tf. This target operator steers the algorithm

to a desired target state ψt, Ô = |ψt〉〈ψt| in the following. The first term on

the r.h.s of Eq. (2.42) is then the expectation value of Ô (i.e., the population

of state |ψt〉), at final time tf, and ψ(tf) is the wave function at that time.

� The second term contains a time-dependent penalty factor α(t) as a constraint

to control the laser pulse energy. A shape function s(t) can also be applied to

influence the shape of the optimal laser field:

α(t) =
α

s(t)
. (2.43)

� An additional constraint is implemented as the third term in Eq. (2.42)

with the help of the Lagrange multiplier χ(t) to comply the time-dependent

Schrödinger equation for the time evolution of ψ(t).

The maximum value of functional J is calculated by setting its derivative equal

to zero. The functional derivative δJ is calculated by the variation of its parameters,
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which gives three coupled differential equations:

iψ̇(t) = (Ĥ0 − ~µ(R) ~E(t))ψ(t) , ψ(t0) = ψ0 (2.44)

iχ̇(t) = (Ĥ0 − ~µ(R) ~E(t))χ(t) , χ(tf) = Ôψ(tf) (2.45)

~E(t) = − 1

α(t)
Im[〈χ(t)|~µ(R)|ψ(t)〉] . (2.46)

The Eq. (2.44) and Eq. (2.45) are the TDSE for the wave function ψ(t), and the

Lagrange multiplier χ(t), respectively. Since the boundary conditions for ψ(t) and

χ(t) are different, one has to propagate Eq. (2.44) forward with its initial condition

and Eq. (2.45) is propagated backward in time by taking its boundary condition at

the final time. Then Eq. (2.46) for the optimal field which is a coupled equation of

ψ(t) and χ(t), is solved by an iterative method [85].

2.3.2 Indirect excitation by UV/vis laser pulses

Photoinduced surface reactions, driven by ultrashort UV/vis laser pulses, are quite

different from a conventional thermal mechanism. In such a case, the metal electrons

and phonons respond on different timescales to the incoming laser pulse. This can

be modelled, under certain approximations, with the help of two temperatures, an

electronic temperature (Tel) and a lattice or phonon temperature (Tph). The metal

electrons absorb the laser energy, through photon-electron interaction and Tel is built

up first because of the small heat capacity of the electron system. This creates a high

electron temperature in the order of a few 1000 K within several femtoseconds. The

hot electrons then dissipate energy through thermal diffusion, and electron-phonon

coupling which often occurs on a picosecond (ps) time scale. The latter process

changes the phonon temperature Tph in the metal. The time evolution of these two

subsystems can be treated by the Two-Temperature Model (TTM) developed by

S.I. Anisimov et al. [26].

The Tel and Tph temperatures are accordingly calculated by solving two coupled
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differential equations:

Cel(Tel)
∂Tel

∂t
=

∂

∂z
(κ

∂

∂z
Tel) − g(Tel − Tph) + S(z, t) , (2.47)

Cph(Tph)
∂Tph

∂t
= g(Tel − Tph) , (2.48)

where Cel and Cph are the specific heat capacities of electrons and phonons respec-

tively. κ is the electron thermal conductivity and g is the electron-phonon coupling

constant. S(z, t) is the source term (absorbed laser power per unit volume) at

different positions, z, in the bulk (z-axis perpendicular to the surface) [86]. In

Eq. (2.47), the first term on r.h.s denotes the thermal diffusion by electron-electron

scattering, the second term describes the heat transfer to the phonon subsystem

through electron-phonon coupling, and the third term denotes the influence of the

applied laser energy on Tel. The obtained Tel is also dependent on the position z.

Eq. (2.48) gives Tph where only the electron-phonon coupling term is taken into

account. The diffusive part is neglected because heat diffusion through phonons is

slow.

From Eq. (2.47), one can see that the specific heat capacity of electrons Cel

depends on the electronic temperature Tel. Cel can be calculated from the electron

specific heat constant γ [87] as

Cel(Tel) = γ Tel . (2.49)

The electron thermal conductivity κ is also temperature dependent and can be

obtained as

κ ≈ κ0
Tel

Tph

, (2.50)

where κ0 is an empirical electron thermal conductivity [88, 89].

The phonon heat capacity Cph is calculated using the Debye model for the phonon

spectrum as

Cph(Tph) = 9NAkB

(

Tph

θ

)3
∫ θ/Tph

0

x4ex

(ex − 1)2
dx (2.51)

where θ is the Debye temperature of the metal [87, 89]. Further, x = h̄csk/kBTph

where k is the wave vector in the k-space and cs is the speed of sound in the solid.
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The source term S(z, t) can be calculated as

S(z, t) =
AI(t) e−z/ζ

ζ
(2.52)

where AI(t) is the absorbed intensity and the intensity I(t) of the pulse is assumed

to be a Gaussian function [89]. ζ is the optical penetration depth which can be

derived from the wavelength λ of the incoming UV/vis laser light and the complex

refractive index, n = nR + inI ,

ζ =
λ

4πnI

, (2.53)

where the values of nI are taken from [90].

The calculation of Tel(t) for a Ruthenium surface illuminated by a laser pulse

will be demonstrated below. It enters the theory used in this work in two different

places. First, in the quantum mechanical treatment of femtosecond-laser induced

desorption (DIMET, Desorption Induced by Multiple Electronic Transitions), we not

only take the decay of an excited state |e〉 according to the Lindblad operator Ĉ1

in Eq. (2.14) into account, but also explicitly, the hot-electron mediated excitation

step via a second Lindblad operator, Ĉ2, which depends on Tel(t). Details will be

given in Chapter 3.4. Here it suffices to say that, since Tel is varying with time,

the corresponding Lindblad functional also becomes time-dependent. Inclusion of

a Lindblad operator Ĉ2 which accounts for the electronic excitations is the main

difference between DIET and DIMET regimes, see below.

The second place, where Tel(t) enters is for the classical Langevin dynamics, is

through the fluctuating forces acting on the adsorbates. The precise dependence of

the random forces on Tel(t) will be described in Chapter 4.



Chapter 3

Quantum dynamical study of

photodesorption of H2 (D2) from a

Ru(0001) surface

This chapter discusses the quantum mechanical treatment of photoinduced associa-

tive desorption of H2 and D2 from a Ru(0001) surface. The effect of vibrational

preexcitation by shaped IR pulses prior to the vis laser pulse is investigated. Dif-

ferent IR and vis pulse energies are used to unravel the reaction cross section. Both

DIET and DIMET models for the photodesorption are realized for the above men-

tioned desorption reaction.

3.1 Electronic structure

The calculation of the full dimensional Born-Oppenheimer potential energy surfaces

for adsorbate-surface systems is difficult. One has to make approximations, and a

generally accepted method is to freeze the surface atoms. This approximation treats

the surface as rigid and only the degrees of freedom of the adsorbate (relative to

the surface) are considered. Thus, in our case the incoming H2 (D2) molecule has
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Figure 3.1: Coordinates for a H2 molecule on a metal surface. X , Y and Z are the

center of mass coordinates of the diatomic molecule, r is the internuclear distance,

and θ and ϕ are rotational degrees of freedom.

six degrees of freedom (6D). One possible choice of these six coordinates is shown in

Fig. 3.1. Furthermore, 6D models can be reduced to lower-dimensionality models

with a few selected modes, which are relevant for desorption dynamics.

3.1.1 Ground state potential energy surface

The dynamics starts in the ground electronic state, for which we need a potential

surface. We used a modified version of the six-dimensional (6D) potential calculated

by Luppi et al. [91, 92] for a (2 × 2) coverage of H on Ru(0001). The potential

was generated from periodic DFT calculations with the DACAPO code [93] using a

plane wave basis set for a three-layer, relaxed slab model. Two different gradient-

corrected exchange correlation functionals, namely PW91 [94] and RPBE [95] were

tested to obtain the PES. Here we used the potential arising from the RPBE func-

tional which seems to be better than the PW91 functional, at least when judging

previous dynamics calculations [92]. The potential was fitted to an analytic form
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using the corrugation reducing procedure (CRP) [96]. The 6D potential is created

from the CRP scheme by the combination of 3D atomic potentials and an interpo-

lation function which contains rest of the information about the 6D PES [91]. From

the 6D potential, a two-dimensional (2D) reduced dimensionality minimal model

was constructed in which the two basic coordinates for associative desorption are

adapted. These two most important coordinates are the center of mass motion of

the molecule perpendicular to the surface, Z, and the internal vibrational coordi-

nate (H-H distance) of the desorbing molecule, r. These two modes are essential

in our model because the adsorbed H atoms have to move first along r coordinate

to form a bond and then associatively desorb from the surface. A 2D potential is

constructed from the 6D potential as Vg(r, Z;X0, Y0, θ0, ϕ0), where X0, Y0, θ0 and

ϕ0 are the frozen lateral and rotational degrees of freedom. We choose X0 = 0,

Y =
√

3d/6, θ = 90◦, and ϕ = 0◦, with d = 2.75 Å is the smallest distance between

2 Ru atoms in the first layer of the Ru(0001) surface. The coordinates used are

shown as an inset in Fig. 3.2.

Since we are interested in desorption from a (1× 1)-covered surface, we blocked

diffusion to neighbouring empty fcc hollow sites, as well as subsurface absorption

sites by adding repulsive walls starting from the transition states towards diffusion

and subsurface absorption respectively. This modification mimics the (1 × 1) cov-

erage, but has no great effect on other parts of the potential. The resulting ground

state potential Vg(r, Z) is shown as a contour plot in Fig. 3.2.

The two-dimensional PES shows an adsorption minimum at Z0 = 1.06 Å and

r0 = 2.75 Å (which is the shortest distance between two fcc sites on the surface and

equal to d), with a binding energy of 0.85 eV ( 0.425 eV per H atom). We found

a barrier of 0.18 eV for the incoming H2 molecule located in the entrance channel

for the dissociative adsorption and hence in the exit channel for the associative des-

orption. This barrier (transition state) is located at Z‡ = 2.24 Å and r‡ = 0.77 Å.

The bond length of free H2 is 0.74 Å, i.e., only slightly shorter than the transition

state value r‡. The potential is similar to the one calculated by Luntz et al. [25], for

a (1 × 1) H coverage. The binding energy per H atom for fcc sites is largest, and is

in good agreement with experiments [97] and previous theory [98].
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Figure 3.2: Left: Shown is the ground state potential Vg(r, Z) used in this work.

Contours start at 0.5 eV with an increment of 0.5 eV. Bullets indicate the minimum

at Z0 = 1.06 Å and r0 = 2.75 Å and the transition state at Z‡ = 2.24 Å and

r‡ = 0.77 Å. The dotted curve shows the approximate minimum energy path S

for the associative desorption. Right: Sketch of the coordinate system used. The

H atoms reside in a plane given by the interatomic axis, and the surface normal.

Initially, they are in fcc (face centered cubic) sites of the Ru(0001) surface.
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3.1.2 Adsorbate vibrations

The ground state potential Vg(r, Z) determines the bound vibrational states of ad-

sorbates. For this purpose, the time-independent vibrational Schrödinger equation,

Ĥgφnr,nZ
(r, Z) = εnr,nZ

φnr,nZ
(r, Z) , (3.1)

is solved for 2H/Ru(0001) and 2D/Ru(0001) using the Fourier Grid Hamiltonian

(FGH) method [99], see Appendix A. The lowest vibrational states are classified

according to their quantum numbers in the r and Z modes, i.e., nr and nZ . For

convenience, we also represent vibrational states φnr,nZ
as (nr, nZ) or |nr, nZ〉 for

short.

The Hamiltonian for the two-mode model is given by

Ĥg = − h̄2

2µr

∂2

∂r2
− h̄2

2µZ

∂2

∂Z2
+ Vg(r, Z) . (3.2)

Here, µr and µZ are vibrational masses along the respective coordinates, with

µr = mH/2 and µZ = 2mH in the case of 2H/Ru(0001) (mH=hydrogen mass) and

Vg(r, Z) is the ground state potential. We used a smaller grid for the bound state

calculation, compared to the grid used for the wave packet propagation (see below).

More specifically, the 2D vibrational eigenstates are solved on a grid with 68 equidis-

tant points from 0.32 Å to 5.59 Å along r and 100 points from 0.19 Å to 2.23 Å

along Z.

There are 32 bound vibrational states for 2H/Ru(0001) and 64 bound vi-

brational states for 2D/Ru(0001). The calculated vibrational energies are

h̄ωr = 94 meV (758 cm−1) and h̄ωZ = 136 meV (1097 cm−1), and thus in reasonable

agreement with experiment [100], which gives h̄ωr = 85 meV and h̄ωZ = 140 meV

at a coverage of (1 × 1). For 2D/Ru(0001), the corresponding theoretical values are

h̄ωr = 67 meV and h̄ωZ = 97 meV.

We have calculated the anharmonicity of the vibrational levels. Defining “anhar-

monicity constants” for both modes as xr := 1− ε(2,0)−ε(1,0)

ε(1,0)−ε(0,0)
and xZ := 1− ε(0,2)−ε(0,1)

ε(0,1)−ε(0,0)
,

we find xr = 0.002 and xZ = 0.005, showing that the anharmonicity is weak, at
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Figure 3.3: Contours of |φ(r, Z)|2 for low-lying vibrational states of 2H/Ru(0001).

least for the low-lying states. Selected low-lying vibrational states for 2H/Ru(0001)

are shown as contour plots in Fig. 3.3.

3.1.3 Excited state potential energy surface

Till date, accurate ab initio calculations of (adsorbate) excited states at metal sur-

faces are not yet available. Time-dependent DFT, TD-DFT [101] calculations in

conjunction with a cluster approach [102] can provide excited states of metal / ad-

sorbate systems at a reasonable level of theory. Here, we employed two clusters

H2Run (with n = 3 and n = 12), which are shown in Fig. 3.4. Calculations are

carried out with the GAUSSIAN 98 program package [103], using the B3LYP hy-
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brid functional [104], and a LANL2DZ basis set and corresponding quasi-relativistic

effective core potentials (for Ru) [105]. Only singlet excited states are calculated,

and the Ru lattice was fixed at the experimental Ru-Ru distance of 2.7059 Å. This

value is similar to the optimized Ru-Ru distance d = 2.75 Å (slightly different from

the experimental bulk value) used in periodic DFT calculations in Sec. 3.1.1. The

employed clusters have no symmetry, which greatly improves SCF convergence.

The 2D ground state potential obtained using the larger cluster (n = 12) is in

very good agreement with the potential from the periodic model: The basis set

superposition error corrected binding energy is 0.48 eV/H atom and the optimized

adsorption geometry very close to the one given above. The adsorbate vibrational

states are calculated as described in Sec. 3.1.2 and the corresponding anharmonic

vibrational frequencies obtained are in good agreement with the values from the

periodic model, giving h̄ωr = 80 meV and h̄ωZ = 135 meV, respectively.

For the small cluster H2Ru3, one finds about 40 electronic excited states within

the photochemically relevant energy region up to 2 eV. Closer inspection shows that

most of these states have a topology very similar to the ground state PES, with

their minima simultaneously shifted along the r and Z modes away from the ground

state minimum by some amounts ∆r and ∆Z, respectively. The displacements of

these excited states with their excitation energies Eex (non-vertical excitation en-

ergy) from the ground electronic state minimum are shown in Fig. 3.4. Most of

these excited states are metal excitations. But there is also the possibility for a

contribution from negative ion resonance and positive ion resonance states. Fig. 3.4

proves some interesting features of the electronic excited states: (i) ∆r ≈ −∆Z,

i.e., the displacements along both the coordinates are equal in magnitude but op-

posite in sign (ii) both positive and negative ∆r (∆Z) are possible and (iii) shifts

∆ := |∆r| ≈ |∆Z | up to ∆ ≈ 0.1− 0.2 Å are found. Since all of these states can be

reached by femtosecond lasers, they can play a role in the photodesorption. How-

ever, we assume only one electronic excited state is involved in the dynamics, thus

a “representative” excited state Ve(r, Z) is used for an effective two-state model.

Based on the above information, the excited state potential is taken as a shifted
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Figure 3.4: Left: Excited states of a Ru3H2 cluster, calculated at the

TDB3LYP/LANL2DZ level of theory. The computed shifts of the potential minima

relative to the ground state of the cluster are shown together with the non-vertical

excitation energies. Right: Top view of the Ru3H2 (upper panel) and Ru12H2 clus-

ters (lower panel) used for excited states, and geometry optimization and dipole

functions, respectively (see text). Large bullets: Ru, small ones: H.

ground state potential:

Ve(r, Z) = Vg(r − ∆, Z + ∆) + Eex , (3.3)

where ∆ was chosen from reasonable ranges to match with experimental results.

Eex = 1.55 eV is taken from experimental wavelength of 800 nm [24]. In the DIMET

regime, for MCWP calculations, we used different asymptotics for Ve(r, Z) in the

exit channel (see sec. 3.4.1).

3.1.4 Ground state dipole function

The permanent dipole moment in the ground state is also calculated using the

Ru12H2 cluster mentioned in Sec. 3.1.3. We found that the z -component (perpendic-

ular to the Ru surface) of the dipole function is dominant while x and y components

(parallel to the Ru surface) are very small. The large value for the z -component of
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the dipole moment is due to the charge transfer between the H atoms and Ru atoms

in this direction. The dipole moment along the Z coordinate initially increases and

then becomes zero for the desorbed H2 molecule. An analytic fit has been made

to the calculated z-component of the dipole function μz(r, Z) which is shown is

Fig. 3.5. This analytical form will be used below for the IR excitation. The dipole

function in (atomic units ea0) the (r, Z) range of interest is represented by

μz(r, Z) = a · Z2 · (tanh(b(r − c)) + 1) , (3.4)

with the parameters a = −0.0473 ea0
−1, b = 0.7 a0

−1 and c = 1.195 a0.

r [ °A]

Z [ °A]

-3
-2.5

-2
-1.5

-1
-0.5

 0

µz [ea0]
µz

 0
 1

 2
 3

 4
 5

 0  1  2  3  4  5

µz [ea0]

Figure 3.5: The z -component of the permanent dipole moment as a function of r

and Z fitted to results from the Ru12H2 cluster.

The dipole transition matrix elements for the vibrational eigenfunctions

φn := φnr,nZ
are calculated as

μmn = 〈φn|μ̂z|φm〉 , (3.5)

where n,m are short-hand notations for (nr, nZ) and (mr,mZ).

The transition dipole moments of interest for the low-lying states are shown in

the upper half of Tab. 3.1. One can see that transition dipole moments are larger
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0 1 2 3 4 5 6 7 8

(0,0) (1,0) (0,1) (2,0) (1,1) (0,2) (3,0) (2,1) (1,2)

0 (0,0) — 6.9 60.8 13.6 1.1 3.2 0.1 0.1 0.1

1 (1,0) 760 — 2.6 10.4 58.7 0.3 23.2 2.7 4.1

2 (0,1) 1095 335 — 7.7 7.0 86.4 1.0 14.1 1.4

3 (2,0) 1518 758 423 — 4.3 1.0 15.6 56.5 1.3

4 (1,1) 1823 1064 729 305 — 4.1 12.9 10.0 81.8

5 (0,2) 2184 1424 1089 666 361 — 1.1 10.7 7.4

6 (3,0) 2272 1513 1177 754 449 88 — 6.7 1.8

7 (2,1) 2542 1782 1447 1023 718 357 269 — 8.1

8 (1,2) 2884 2125 1789 1366 1061 700 612 343 —

Table 3.1: H2/Ru(0001): Absolute values of selected dipole matrix elements (in

units of 10−3 ea0) in the upper right half of the table, and transition energies between

the lowest vibrational levels in cm−1 in the lower left half. The states are labelled

(nr, nZ), and 0 to 8 for short.

for the Z mode compared to the r mode, especially for the ∆nr = ±1 transition.

This can be understood from Fig. 3.5 where the permanent dipole moment is found

to change more rapidly along Z than along r.

3.2 Vibrational preexcitation

Since our main goal is to investigate the effect of vibrational preexcitation on the des-

orption yield, we try to excite the vibrational modes using IR pulses. The possibility

of state-selective and mode-selective excitation of adsorbate bonds is addressed. The

shaped IR pulses from OCT and conventional π-pulses are used for this purpose.

The direct excitation by IR pulses is restricted only to both the r and Z modes

of 2H/Ru(0001). 40 vibrational states are taken into account for the excitation.

The time-dependent Schrödinger equation (Eq. (2.34)) is solved in the basis of these

40 vibrational states. Since the field-free time-independent Hamiltonian, and the
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interaction Hamiltonian in Eq. (2.35) do not commute, we employed an operator

splitting scheme used in Ref. [106].

3.2.1 Excitation of the Z mode

We first used a π-pulse of sin2 form to excite the Z mode as explained in Sec. 2.3.1.

The π-pulse parameters are chosen for a |0, 0〉 → |0, 1〉 transition with a pulse dura-

tion of 300 fs. The carrier frequency is chosen to match with h̄ω(0,0)→(0,1) = 136 meV

and the transition dipole moment is |µ(0,0)→(0,1)| = 60.8 ×10−3 ea0. The fluence of

the pulse is 274 mJ/cm2 which is calculated using Eq. (2.39).

The π-pulse used along with time-dependent populations are shown in Fig. 3.6.

Since the anharmonicity is weak for low-lying states, not only the first excited state

in Z but also higher Z modes are getting populated. Fig. 3.6 shows that a π-pulse

brings 90 % population PZ =
∑6

nZ=1 P(0,nZ) in the first 6 pure Z modes (i.e. nr = 0).

The rest of the population is mainly in the ground vibrational state |0, 0〉. Therefore,

no population transfer to the r mode occurs. This, however, means that the π-pulse

is successful for mode-selective excitation of the Z mode. The pulse is not state-

selective, however, since only about P(0,1) = 21 % end up in the target state |0, 1〉.

We then tried optimized pulses from Optimal Control Theory (OCT) outlined

in Sec. 2.3.1. We took a Gaussian form for the shape function,

s(t) = e−
[

t−tm
∆ts

]2

, (3.6)

where tm specifies the time when the shape function, s(t), is maximal and ∆ts

determines the width of the shape function. The target state is defined as the first

excited state in Z, |0, 1〉. We took the π-pulse as the initial field for the OCT

algorithm and the same pulse duration of 300 fs as before. The penalty factor α

in Eq. (2.43) is chosen as 0.3 (ea0)
2/(h̄Eh) with ∆ts of 68 fs and tm = 150 fs.

The target operator is selected in this case as Ô = |0, 1〉〈0, 1|. The laser fluence

for the optimized field is 204 mJ/cm2. The optimal field obtained from OCT, and

populations in the ground vibrational state and low-lying Z modes are demonstrated
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Figure 3.6: Left panel: The π-pulse used for the Z mode excitation of 2H/Ru(0001)

for a target state |0, 1〉. The pulse width is 300 fs and other π-pulse parameters

are chosen for the |0, 0〉 → |0, 1〉 transition. See text for details. Right panel:

Populations of low-lying pure Z states along with the ground state population, and

the total population in the first 6 pure Z modes, PZ , during the π-pulse excitation

are shown. We get PZ = 90 % and the rest of the 10 % population is mainly in the

ground vibrational state |0, 0〉. This means that the π-pulse excitation for the Z

mode is mode-selective.
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in Fig. 3.7. Fig. 3.7 shows that the optimized pulse is successful in bringing a

population of 37 % into the target state, |0, 1〉, which is by a factor of about 2 higher

than the π-pulse yield. The OCT pulse brings 67 % population PZ =
∑6

nZ=1 P(0,nZ)

in the first 6 pure Z modes. The ground vibrational state |0, 0〉 population is 33 %.

This means that the Z excitation still remains mode-selective and state-selectivity is

improved in the OCT scheme, however, the total excitation probability is lowered.

Figure 3.7: Left panel: The optimized field for the Z mode excitation of

2H/Ru(0001) for a target state |0, 1〉 from the OCT algorithm. The target op-

erator is chosen in this case as Ô = |0, 1〉〈0, 1|. The pulse duration is 300 fs like in

the π-pulse excitation, and ∆ts is taken as 68 fs. Right panel: The time-dependent

population of low-lying pure Z states along with ground state population, and the

total population in the first 6 pure Z modes, PZ , from the OCT scheme. The final

target state population is 37 %. See text for more details.

Both π-pulse and OCT pulse are compared in the frequency domain as depicted

in Fig. 3.8. One can see that both pulses are centered at slightly different frequencies

and the frequency range is broader for the OCT pulse compared to the π-pulse. In

the π-pulse, the anharmonicity of the potential is fully taken care of. Also higher Z
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Figure 3.8: Frequency distributions of π-pulse and OCT pulse are compared for

the Z mode excitation of 2H/Ru(0001). The target state is the first excited state

in Z, |0, 1〉. The pulse duration for both pulses is 300 fs. See text for details.

levels are reached. In contrast, for OCT the ω(0,0)→(0,1) frequency is not optimally

matched, by choosing ωOCT
(0,0)→(0,1) > ωanh

(0,0)→(0,1). As a consequence, the higher excited

states |0, 2〉, |0, 3〉, |0, 4〉, |0, 5〉, and |0, 6〉 are not populated as much. This is the

reason why the PZ value goes down and state-selectivity increases. The width of the

frequency distribution and the shoulder remain unexplained. Moreover, the fluence

of the OCT pulse 204 mJ/cm2 is smaller than the π-pulse fluence of 274 mJ/cm2.

Longer pulses were also tried which gave smaller target populations, nevertheless

with smaller field strength. To conclude, both π-pulse and OCT pulse are efficient

in the mode-selective excitation of the Z mode while the latter has the advantage of

a more state-selective excitation.
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3.2.2 Excitation of the r mode

The IR excitation of the r mode is difficult due to smaller transition dipole mo-

ments in comparison to the values for Z mode as can be seen from Tab. 3.1.

The transition dipole moment for the first vibrationally excited state in r,

|µ(0,0)→(1,0)| = 6.9 ·10−3 ea0 is an order of magnitude smaller than the corresponding

one for the Z mode. This is due to the fact that the dipole moment varies more

rapidly along Z than along r. This, however, means that r excitation is difficult

to achieve and one has to use stronger fields. For the excitation of the r mode, a

π-pulse similar to the one employed for the excitation of the Z mode is used. The

π-pulse parameters are chosen for a |0, 0〉 → |1, 0〉 transition with a carrier frequency

resonant with h̄ω(0,0)→(1,0) = 94 meV. Here, we used longer pulses up to 1ps which

has a fluence of 6.4 J/cm2.

The π-pulse employed for the |0, 0〉 → |1, 0〉 excitation and populations obtained

are shown in Fig. 3.9. From Fig. 3.9, one can see that the π-pulse brings only

76.2 % population Pr =
∑6

nr=1 P(nr,0) in the first 6 pure r modes (i.e. nZ = 0) which

is slightly less than what we obtained for the Z excitation. The reason for this

is other vibrational states, Pothers = 12.5 % is also getting populated. The ground

vibrational state |0, 0〉 has 11.3 % population. Thus, the mode-selectivity is reduced

for the r mode excitation compared to the Z mode excitation. Like in the case of Z

excitation, the state-selectivity is also small because population in the target state

|1, 0〉, P(1,0) is only 23 %.

We also employed the OCT algorithm like for the Z mode excitation to generate

optimized pulses. We started with a π-pulse as initial field and took the first excited

state in r, |1, 0〉 as the target state. A pulse duration of 1 ps is adopted with

α = 0.03 (ea0)
2/(h̄Eh) with ∆ts = 218 fs and tm = 500 fs for the Gaussian shape

function. The target operator is chosen in this case as Ô = |1, 0〉〈1, 0|. The optimal

field obtained from the OCT scheme has a fluence of 4.4 J/cm2. The optimized pulse

is plotted in Fig. 3.10 along with populations in the ground vibrational state, and

target state |1, 0〉, and in the first 6 pure r modes. One can see that 47 % population

end up in the target state. This is to be compared to the π-pulse population of 23 %.
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Figure 3.9: Left panel: The π-pulse employed for the r mode excitation of

2H/Ru(0001) for a target state |1, 0〉. The pulse duration is 1 ps and other π-pulse

parameters are chosen for the |0, 0〉 → |1, 0〉 transition. See text for details. Right

panel: The time-dependent populations of the ground vibrational state, first excited

in r |1, 0〉, the total population in the first 6 pure r modes, Pr, and other higher

vibrational modes, Pothers are shown here. The π-pulse excitation of the r mode is

not so mode-selective since other states are also getting populated.
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Furthermore, the OCT pulse brings 64 % population Pr =
∑6

nr=1 P(nr,0) in the first

6 pure r modes. The ground state has a population of 35.3 % when the pulse is off

which is a factor of 3 higher than the π-pulse. In contrary to the π-pulse excitation,

populations in the other modes are nearly zero. This concludes that the OCT pulse is

mode-selective and state-selectivity is improved compared to the π-pulse excitation.

In contrast, the excitation probability Pex = 1−P(0,0) is nearly 89 % for the π-pulse

and 65 % for the OCT pulse. This lower excitation probability for the OCT pulse can

be similarly explained as in the case of Z excitation. The laser fluence of 4.4 J/cm2

for the OCT pulse is lower than the corresponding 6.4 J/cm2 for the π-pulse. Both

π-pulse and OCT pulse are compared in the frequency domain as shown in Fig. 3.11.

From there one finds that both pulses are centered at the resonance frequency of

0.00345 Eh (94 meV) and have a similar shape; the OCT pulse is only spectrally

slightly broader. Still, OCT is successful to populate the target state better by a

factor of 2. It should be noted that there is no population transfer to the Z mode.

Thus, both pulse techniques are capable of r mode excitation while the OCT can

be more state-selective.

Finally, we summarize that mode-selective IR excitations of both Z and r modes

are achievable by π-pulses and OCT pulses. Due to smaller transition dipole mo-

ments, the r mode excitation needs higher laser fluences than excitation of the Z

mode. It has been shown that OCT is more capable of doing state-selective excita-

tion even in nearly harmonic systems. In our model, the vibrational relaxation of Z

and r modes are not taken into account. Vibrational lifetimes are finite. Therefore,

τvib = 500 fs was adapted for the vibrational excitation of Z and r modes by IR

pulses in Ref. [83], in the framework of an open-system density matrix description

of vibrational excitation with IR pulses. For example, here we get PZ = 80 % with a

π-pulse which is slightly higher than the PZ = 75 % obtained in the above reference

with same π-pulse parameters. This means that vibrational relaxation of adsorbate

modes can play a role and this will be included in the friction model outlined in the

next chapter. The IR pulse fluence used here is higher than typical experimental IR

laser fluences of ∼ 20 mJ/cm2 [107].
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Figure 3.10: Left panel: The r mode excitation of 2H/Ru(0001) by an OCT pulse

for a target state |1, 0〉. The target operator is chosen in this case as Ô = |1, 0〉〈1, 0|.
The pulse duration is 1 ps and ∆ts = 218 fs for the Gaussian shape function, s(t)

in Eq. (3.6). Right panel: The time-dependent populations obtained from the OCT

scheme is shown. An improved state-selective excitation of the target state |1, 0〉 is

achieved when using the OCT algorithm. The excitation is still mode-selective.

Figure 3.11: Frequency distributions of π-pulse and OCT pulse are compared for

the r mode excitation of 2H/Ru(0001). The target state is the first excited state in

r, |1, 0〉. The pulse duration for both pulses is 1 ps. See text for details.
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3.3 Associative DIET

3.3.1 Model

We used a two-state, open-system density matrix model to treat the associative

photodesorption of H2 and D2 from a fully covered Ru(0001) surface, first in the

DIET limit. Here, we employed a two-mode reduced dimensionality model as de-

scribed in Sec. 3.1.2. In this model, we assume that the desorption occurs under

participation of a representative electronic excited state, |e〉. The “jumping wave

packet” model suggested by Gadzuk (Sec. 2.1.3) is used. The ground and excited

state Hamiltonians have the same form as mentioned in Eq. (3.2). For the excited

state Hamiltonian Ĥe, Vg(r, Z) is replaced by the excited state potential Ve(r, Z),

which is constructed as outlined in Sec. 3.1.3.

To describe DIET, we solved Eq. (2.23) and Eq. (2.25) initially for the ground

vibrational state |φ0,0〉. Later, also vibrationally excited states will be employed as

initial states |φ0〉. There is little known about the lifetime of the excited state τel.

From the experience with similar systems [23, 27], it is expected to be in the few-fs

regime. Therefore, τel has been chosen from this range as an empirical parameter.

To solve Eq. (2.23), we propagate the wave function on ground and excited

states, represented on a grid, using the split operator method [108] in conjunction

with the Fast Fourier Transform method [109], see Appendices B and C. At time

t = 0, the wave packet is excited and the Franck-Condon excited wave packet returns

from Ve to Vg after a residence time τR. To avoid the unbound part of the wave packet

reaching the grid boundaries, we use a negative imaginary absorbing potential, which

linearly increases after a point Zabs towards the end of the grid [110]. We analyze the

outgoing wave packet in a state-resolved fashion by the time-energy method [111]

at a line Z = Zdes. Zdes is chosen such that the potential along Z coordinate is

flat after this line. Details of the time-energy method and the absorbing potential

are outlined in Appendices D and E. This method allows the calculation of state-

resolved desorption probabilities, by projection on the eigenstates of the desorbing
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molecules, in this case the vibrational eigenfunctions χvr of free H2 (or D2). χvr is

calculated at Zdes using the Fourier Grid Hamiltonian (FGH) method [99]

[

− h̄2

2µr

d2

dr2
+ V (r;Zdes)

]

χvr = εvrχvr , (3.7)

where µr is the reduced mass along r, V (r;Zdes) is the 1D potential along r at Zdes

and εvr is the energy of the vibrational state vr.

The desorption probability Pdes (also referred as Y in later sections), the vibra-

tional energy, Evib, and the translational energy, Etr, per desorbing molecule are

calculated from the time-energy method as

Pdes =
∑

vr

Pvr (3.8)

Evib =

∑

vr
Pvr(εvr − ε0)

Pdes

(3.9)

Etr =

∑

vr
Ekin,vr

Pdes

(3.10)

where Pvr denotes vibrational state populations and Ekin,vr represents the kinetic

energy of desorbing part of H2 (or D2) along the Z coordinate projected on the

vibrational states χvr .

While time-resolved information is obtained, we give below all computed observ-

ables at the final propagation time only, which is close to 1 ps. (Most properties,

however, converged much faster.) The numerical parameters used for wave packet

propagation, analysis, and lifetime averaging are given in Tab. 3.2.

3.3.2 Results for ground vibrational state as initial state

As a first example, we assume a temperature T = 0 K, and no vibrational excitation,

such that the system is in its ground vibrational state, φ0 = φ0,0 initially. Using

the ground vibrational state as initial state, we investigated the dependence of the

results on the excited state lifetime in the range τel ∈ [2, 10] fs. We also employed

different excited state displacements (∆) from Fig. 3.4. Both positive and negative ∆
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Time propagation

Time step for propagation 0.0121 fs

Total propagation time 990 fs

Grid

Number of grid points along r 128

Grid spacing along r 0.149 a0

Number of grid points along Z 512

Grid spacing along Z 0.039 a0

Analysis

Number of states χvr to analyze wave packet 20

Time energy analysis line along Z (Zdes) 10.57 a0

Absorbing potential starts at (Zabs) 10.6 a0

Value of imaginary potential at last Z point -i 0.0027 Eh

Lifetime averaging

First residence time 1 fs

∆τR 1 fs

Number of residence times 30

Table 3.2: Parameters of wave packet propagation, analysis, and lifetime averaging

for the DIET model.
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Figure 3.12: Time evolution of the wave packet for H2 with a residence time of 10

fs with ∆ = 0.2 Å is shown. See text for details.

were tested. The excited state potential is chosen in a manner that it is shifted to

larger Z for ∆ > 0 and to smaller r values, by the same amount. Therefore, the

Franck-Condon excited wave packet moves initially away from the surface in this

case, and simultaneously in the direction of decreasing r as will be discussed in

Fig. 3.16 below.

The time evolution of the wave packet for a residence time, τR = 10 fs, with

∆ = 0.2 Å is shown in Fig. 3.12. One can see that the wave packet starts to spread

after the sudden deexcitation from the electronic excited state to the electronic

ground state at 20 fs. At 100 fs, already some part of the wave packet reached the

exit channel and at 500 fs, most of the desorbing parts of the wave packet crossed

the desorption line, Zdes = 10.57 a0 = 5.6 Å.
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When using an excited state displacement |∆| = 0.2 Å, and a lifetime of

τel = 2 fs, one finds that associative desorption takes place in the DIET case, with

computed observables similar to those found in DIMET experiments [3]. Some com-

puted properties are shown in Tab. 3.3, and, where possible, compared to DIMET

experiments. Tab. 3.3 shows the desorption probability, Y , for H2 and D2 for two

different excited state displacements. We get a higher desorption probability for H2

than for D2, which is in agreement with the experimental results. In particular,

an isotope effect of Ides = Y (H2)/Y (D2) of close to 10 is found for both the shifts,

∆ = +0.2 Å and ∆ = −0.2 Å. This is in good agreement with the experimen-

tally found isotope effect of 10 ± 2 under DIMET conditions at fluences around

60-85 J/m2 [3, 4]. The vibrational energy, Evib, and the translational energy, Etr,

per desorbing molecule for both isotopomers are given along with the energies ob-

tained from the experiments in the table. Translational energies are higher than

vibrational energies which is similar to the trend observed in experiments.

All computed observables depend quantitatively on the shift ∆ and also on the

lifetime, τel. Concerning the former we find that both positive and negative ∆

lead to desorption and the qualitative features are independent on the particu-

lar choice of those parameters, when taken from reasonable ranges. For exam-

ple, with ∆ = −0.2 Å (excited state shifted towards the surface) one obtains the

results shown in the second line of Tab. 3.3. Desorption is possible by initial

outward (∆ > 0) and inward (∆ < 0) motion of the photoexcited wave packet,

similar as predicted by the celebrated Menzel-Gomer-Redhead (MGR) [29, 30] and

Antoniewicz [31] models of photodesorption. When large excited state displace-

ments are used, the desorption probabilities increase. This is the case also for

higher τel, where we observe the same trend. The dependence of isotope effect Ides

on the excited state lifetime τel is shown in Fig. 3.13 where Ides decreases with an

increase in τel. This is due to the fact the wave packet gains more energy from the

electronic excited state when ∆ and/or τel are higher. Furthermore, increase in des-

orption probabilities leads to a smaller isotope effect Ides. A short lifetime around

τel ≈ 2 fs gives an isotope effect which is closest to experiment, for |∆| = 0.2 Å.

The energy partitioning is, independent of |∆|, in qualitative agreement with exper-

iment, however, not quantitatively. In particular we find that vibration is “too cold”
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Y(H2) Y(D2) Ides Evib(H2) Evib(D2) Etr(H2) Etr(D2)

(meV) (meV) (meV) (meV)

∆ = 0.2 Å 8.07 ·10−4 8.81 ·10−5 9.2 43 45 341 311

∆ = −0.2 Å 5.53 ·10−4 4.41 ·10−5 12.6 67 78 361 336

Exp. [3] – – 10 ± 2 – – 365 300

Exp. [4] – – 10 ± 2.4 – 100 – 430

Table 3.3: Associative desorption of H2 and D2 from Ru(0001). The DIET results

are from our theoretical model, after sudden excitation of the ground state wave

function φ0 = φ0,0, corresponding to TS = 0 K. Two different shift parameters ∆,

and an excited state lifetime of τel = 2 fs have been used. The DIMET results are

experimental, obtained with 120-130 fs laser pulses and absorbed fluences of about

60 J/m2 [3] (first result) and 85 J/m2 [4], respectively.

with respect to translation. The latter is well reproduced quantitatively. The

propensity for translation is due to the “late” barrier along the desorption path,

which favours translationally rather than vibrationally excited species according to

Polanyi’s rules. In fact associative desorption is the reverse reaction to dissociative

adsorption, for which translational rather than vibrational energy helps to overcome

“early barriers” [112].

3.3.3 Vibrationally excited states as initial states

Since the DIET model is consistent with experiments (under DIMET conditions),

at least at a semiquantitative level, we extended the model to study the effects

of vibrational preexcitation. For this purpose, we use vibrationally excited states

φnr,nZ
as initial states φ0 in Eq. (2.23), where nr > 0 or nZ > 0 or both. We

also worked with vibrational wave packets, i.e., linear combinations of vibrational

eigenfunctions as initial states. That vibrationally excited states can be prepared

by appropriate IR pulses, has been demonstrated in Sec. 3.2. For all calculations

below, we took ∆ = 0.2 Å and τel = 2 fs. The same calculations were also carried

out with ∆ = −0.2 Å , which gave similar results.
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Figure 3.13: The dependence of isotope effect Ides on the excited state lifetime τel

is shown. The Ides as a function of τel for an excited state shift ∆Z = 0.2 Å and

∆r = −0.2 Å (i.e., ∆ = 0.2 Å) is plotted. See text for details.

Vibrational eigenstates

We performed the calculations first with initial vibrational eigenstates of the ad-

sorbed species. We observed that the desorption probability per excitation event

increases dramatically when excited vibrations are employed, by up to a factor ∼ 30

for D2 for the higher excited states. This is shown in Fig. 3.14.

From Fig. 3.14, a few conclusions can be drawn:

(i) There is a pronounced enhancement in desorption yields when higher vi-

brational states are employed. This can be explained from the experimental ob-

servation/prediction of enhanced yields for several systems at higher temperatures

[40, 41]. From the theoretical point of view, this effect has been explained for one-

dimensional models where only one desorption coordinate is considered. In both

MGR and Antoniewicz scenarios [113], the outer (MGR) or inner (Antoniewicz)

lobes of the excited wave function have a better chance to reach the asymptotic

potential regions Z → ∞, due to the initial outward (MGR-type desorption)

and inward (Antoniewicz-type) motion of the wave packet. In higher-dimensional
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Figure 3.14: (a) Dependence of desorption yields for H2 and D2 on initial vibra-

tional state. (b) Translational and vibrational energies of H2 and D2 as a function

of vibrational excited state. ∆ = 0.2 Å and τel = 2 fs.

situations, excitation of internal, non-desorptive modes can be helpful, if the Franck-

Condon excited wave packet moves initially along this internal mode before coupling

into the desorption coordinate occurs [114].

(ii) Fig. 3.14(a) shows that the excitation of both the r and Z modes are about

equally efficient. The enhanced desorption yields for both modes come from the fact

that our excited state potential is equally shifted along r and Z, by an amount ∆,

with similar gradient along both directions. Thus, after the Frank-Condon excita-

tion, the wave packet moves simultaneously in both directions on the excited state

potential.

(iii) The difference in vibrational frequencies and transition dipole moments of

D2 and H2 may allow isotope-selective IR preparation and subsequent desorption in

case of coadsorption. In contrast, simple thermal heating will enhance the desorption

probabilities for both isotopomers simultaneously, leaving the isotope effect Ides

largely unaffected.

(iv) Apart from desorption probabilities, the energy partitioning to vibrational

and translational modes is increased. This is shown in Fig. 3.14(b) for H2 and D2.
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The translational, Etr and vibrational, Evib, energies increase by a different amount.

The trend is similar for both H2 and D2. The effect is more visible for vibrations

where it changes by a factor of two. The translational energy changes only by about

25 % maximum. This lead us to the conclusion that an increase in temperature will

enhance the vibrational energy of the desorbing molecules more than its translational

energy. This energy gain is due to the fact that the energy of excited vibrational

states employed here is in the order of ≈ 100 meV. This energy is then transferred

to the vibrational and translational modes during the desorption process.

Vibrational wave packets

Vibrational wave packets may be more efficient than eigenstates to promote

desorption. This expectation is based on dynamical and static arguments. A

“dynamical” mechanism is by a wave packet which moves in the ground state and

is then promoted to an excited state. If its actual momentum is in a direction

favourable for desorption, e.g. inward motion in case of an Antoniewicz scenario,

the desorption cross section will be enhanced [32]. As a “static” enhancement mech-

anism we note that a vibrational wave packet is localized, at different times, at dif-

ferent positions in configuration space, e.g. at classical turning points at times 0,

T/2, T , 3T/2 . . . , when T is the vibrational period. An excited wave packet will

then experience after excitation, other regions of the excited state potential. If the

gradient is larger in these regions and in the right direction, the desorption cross

section will be enhanced. If these conditions are not met, the desorption probability

can be diminished.

We now consider four initial wave packets

|φ±
r 〉 =

1√
2

(|0, 0〉 ± |1, 0〉) , (3.11)

|φ±
Z〉 =

1√
2

(|0, 0〉 ± |0, 1〉) , (3.12)

representing functions that are localized close to their classical turning points on

the ground state potential, along the r and Z directions. They are used to study

the “static” mechanism.
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Figure 3.15: Dependence of desorption probability of H2, as a function of the

energy of the initial vibrational state, relative to the ground state, for ∆ = 0.2 Å

and τel = 2 fs. Circles: vibrational eigenstates; triangles: vibrational wave packets,

all with an obvious notation.

Fig. 3.15 shows that different wave packets either enhance or reduce the desorp-

tion probabilities. The wave packets with the minus sign in Eqs. (3.11) and (3.12)

lead to enhanced, those with positive sign to diminished reactivity. These results

can be explained from the time evolution of the wave packet in the excited state.

The r excited wave packet, |φ−
r 〉 = 1√

2
(|0, 0〉 − |1, 0〉), is localized at a larger r value

(〈r〉 = 2.96 Å) than the vibrational ground state (〈r〉 ≈ r0 = 2.75 Å). Therefore,

this wave packet is even more displaced from the excited state potential minimum

along r than |0, 0〉 and experiences a larger gradient along r towards smaller r. The

expectation value for 〈Z〉 remains unaffected compared to |0, 0〉. This leads to an

enhanced desorption probability. All the 4 different wave packets along with ground

vibrational state are shown in Fig. 3.16 as contour plots, along with their expec-

tation values for r and Z modes during the first 10 fs after excitation. The wave

packet with plus sign, |φ+
r 〉 = 1√

2
(|0, 0〉 + |1, 0〉), is localized at smaller r than the
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|0, 0〉 |φ−
r 〉 |φ+

r 〉 |φ−
Z〉 |φ+

Z〉

Figure 3.16: 2H/Ru(0001), ∆ = 0.2 Å, τel = 2 fs. Contours of |φ(r, Z)|2 for various

initial wave functions, and the resultant expectation values (in Å) of r and Z when

motion in the excited states sets in after Franck-Condon excitation.

vibrational ground state (〈r〉 = 2.53 Å), and experiences only a small r gradient

after excitation. As a consequence, this wave packet moves hardly along r and the

desorption probability is low. The enhanced yield of |φ−
Z〉 and the diminished yield

of |φ+
Z〉 are similarly explained, by larger and smaller gradients along Z, respectively.

We also worked with vibrational wave packets created from higher vibrational

states. The results are similar to what we obtained above. Furthermore, we have also

employed ∆ = −0.2 Å, i.e., an “Antoniewicz”-like situation. This results in a similar

outcome, i.e., the desorption yield is either enhanced or diminished. It has to be

noted that in the cases of enhancement in yield, vibrational wave packets have a clear

dominance over vibrational eigenstates with about the same energy. For example,

in Fig. 3.15 vibrational wave packets with minus sign, |φ−
r 〉 = 1√

2
(|0, 0〉− |1, 0〉) and

|φ−
Z〉 = 1√

2
(|0, 0〉 − |0, 1〉) have comparable desorption probabilities as vibrational

eigenstates, |1, 0〉 and |0, 1〉, despite the energy of the wave packets is smaller.
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3.4 Quantum mechanical description of DIMET

In this section, we explicitly study the effect of femtosecond laser pulses with dif-

ferent fluences on the desorption probability and energy partitioning to different

modes. These are interesting aspects of DIMET models and extensive theoretical

investigations have been done for similar systems [115, 116].

3.4.1 Model

The two-state, two-mode model used to describe DIET (Sec. 3.3.1) is also em-

ployed here. The ground state potential and the excited state potential are same

as in the DIET calculations. Therefore, the shift in the excited state potential,

∆Z = −∆r = 0.2 Å is kept fixed for the calculations except in the exit channel. In

the exit channel, we used different asymptotics for Ve(r, Z) due to the “late jumps”

occurring during the wave packet propagation, which complicated the analysis. For

this purpose, ∆r is varied as follows

−∆r(Å) =















0.2 Z < 2.1 Å

0.2 − a(Z − 2.1) 2.1 Å ≤ Z ≤ 5.2 Å

0 Z > 5.2 Å

(3.13)

where a = 0.0645 and with this choice we get the same ground state and excited

state potentials at the analysis line. It was made sure that this technical procedure

did not affect the results, e.g., in DIET calculations. The excited state lifetime of

2 fs, which reproduced most of the experimental results, is used also here.

The DIMET regime is studied using the open-system density matrix theory de-

scribed in Sec. 2.1.1 with Lindblad dissipation. In the two-state model, we solve

Eq. (2.14) with a reduced density matrix,

ρ̂ = ρ̂gg|g〉〈g| + ρ̂ee|e〉〈e| + ρ̂eg|e〉〈g| + ρ̂ge|g〉〈e| , (3.14)

and an uncoupled Hamiltonian

Ĥ = Ĥgg|g〉〈g| + Ĥee|e〉〈e| . (3.15)



3.4 Quantum mechanical description of DIMET 55

Since there is no coherent (direct) coupling between the two electronic states in the

hot electron mechanism, the ρ̂eg and ρ̂ge of the reduced matrix remain zero and can

therefore be eliminated.

The second term in the r.h.s of Eq. (2.14) describes the dissipation through

Lindblad operators, including the hot-electron mediated excitation. The first

Lindblad operator Ĉ1 =
√

Γe→g|g〉〈e| as defined in Eq. (2.15) accounts for the

energy relaxation from electronic excited state to the electronic ground state, with

the rate Γe→g = 1/τel = (2 fs)−1 of the “downward process”.

For DIMET, a second Lindblad operator Ĉ2 is introduced to describe the hot-

electron mediated excitation step to the electronic excited state, as mentioned in

Sec. 2.3.2. The form of this operator is

Ĉ2 =
√

Γg→e|e〉〈g| (3.16)

where Γg→e is the electronic excitation rate of the “upward process”. The inclusion

of Ĉ2 makes the DIMET distinct from the DIET, which drives the system into a

cycle of upward and downward processes (multiple excitations).

The upward rate Γg→e is time-dependent and determined by the downward rate

and the electronic temperature Tel, by the principle of detailed balance [51],

Γg→e(t) = Γe→g e
− ∆V

kBTel(t) , (3.17)

where ∆V is the energy difference between Ve and Vg, which is coordinate-dependent

in general. Since the lifetime is very short, however, the coordinate-dependence

of rates through the energy difference ∆V can be neglected, without altering the

desorption considerably [28]. Thus, we employ a constant ∆V = 1.55 eV which

corresponds to the experimental wavelength of 800 nm [3], and which is the same

choice as Eex in Eq. (3.3).

The electronic temperature Tel(t) is determined from the two-temperature model

(Sec. 2.3.2), by using a computer program provided by M. Bonn, Leiden. The TTM

is applied for a Gaussian-shaped laser pulse consistent with experiment [24], where
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Parameter Value

Electron-phonon coupling constant g 185 1016 W m−3 K−1

Electron specific heat constant γ 400 J m−3 K−2

Thermal conductivity κ0 117 W m−1 K−1

Debye temperature θ 600 K

Density ρ0 12370 kg m−3

Optical penetration depth(λ = 800 nm) ζ 15.6 nm

Table 3.4: Parameters for the two-temperature model for Ruthenium.

the intensity

I =
~E2

0ǫ0c

2
e−

t2

2σ2 , (3.18)

with FWHM = 130 fs, and a wavelength of 800 nm. Eq. (2.47) is realized for

different laser fluences, F , namely 60 J/m2, 80 J/m2, 100 J/m2, and 120 J/m2. The

material constants required for the TTM (Eq. (2.47) and following equations) for

a Ruthenium surface are given in Tab. 3.4 [88]. The source term, S, is calculated

from the fluence F as

S(z, t) =
F e

−z
ζ

ζ

e−
t2

2σ2

√
2π σ

, (3.19)

where t is the time. ζ and z are the optical penetration depth and the position

perpendicular to the surface in the bulk, respectively. The fluence of a Gaussian

pulse reads as

F =
ǫ0c

2
~E2

0

∫ ∞

−∞
e−

t2

2σ2 dt (3.20)

= ~E2
0ǫ0c σ

√
π

2
, (3.21)

where ~E0 is the amplitude of the pulse.

The calculated electronic temperatures for different fluences are shown Fig. 3.17.

All the calculations were performed assuming that the surface temperature is 100 K

prior to the vis pulse excitation. From Fig. 3.17 one can see that Tel(t) reaches

a maximum around 350 fs and then starts to cool down by equilibrating with the

lattice. When the laser fluence is increasing, the maximum temperature obtained is
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Figure 3.17: Electronic temperatures calculated with different laser fluences for

Ruthenium. The dotted curve represents the phonon temperature, Tph, for a fluence

of 60 J/m2. Gaussian pulse parameters: FWHM = 130 fs, λ = 800 nm.

also increasing. In Fig. 3.18, the maximum electronic temperature Tmax
el obtained

from the TTM is plotted as a function of laser fluence F . From Fig. 3.18, one can

see that Tmax
el is, in excellent approximation, proportional to

√
F . That Tmax

el ∝
√
F

has already earlier been suggested by Corkum et al. [117]. We get a similar rela-

tionship from the calculated Tmax
el such that Tmax

el ∝ F 0.58. The upward rate Γg→e is

calculated from Tel(t) for different laser fluences. Compared to Tel(t), Γg→e increases

dramatically with laser fluence as shown in Fig. 3.19. This can be easily perceived

from Eq. (3.17) according to which Γg→e is an exponential function of Tel(t).

The numerical solution of Eq. (2.14) is difficult, even for a two-mode model.

We used the Monte Carlo Wave Packet (MCWP) method described in Sec. 2.1.2,

which has been applied to photodesorption problems before [50, 118, 119, 120].

According to the MCWP algorithm one runs a number of “quantum trajectories”,

which undergo (multiple) random jumps between the ground and excited states |g〉
and |e〉. These jumps are driven by the upward and downward rates, Γg→e(Tel(t))

and Γe→g, respectively. To be more precise, according to Eq. (2.19), the action of a

Lindblad operator Ĉ on the wave function has to be computed if the loss of norm ∆p
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Figure 3.18: Maximum electronic temperature Tmax
el calculated from TTM, plotted

as a function of laser fluence, F . An approximate relation Tmax
el ∝

√
F is obtained.

Figure 3.19: Dependence of the upward rate Γg→e on the applied laser fluence

calculated from Eq. (3.17). Parameters: Γe→g = (2 fs)−1, ∆V = 1.55 eV.
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is larger than the random number. In the two-state model, the wave function is a

vector ψ = (ψ1, ψ2) with ψ1 and ψ2 being the components in states |1〉 = |g〉 and

|2〉 = |e〉. The Lindblad operator Ĉ1 =
√

Γe→g|1〉〈2| becomes a matrix

C1 =
√

Γe→g

(

0 1

0 0

)

. (3.22)

The operation C1 ψ gives
√

Γe→g (ψ2, 0), i.e. the wave packet is reduced to the

state |1〉. Similarly for C2

C2 =
√

Γg→e

(

0 0

1 0

)

. (3.23)

The operation C2 ψ gives
√

Γg→e (0, ψ1), i.e. the wave packet is reduced to the state

|2〉. In the present case, the wave packet is either up or down, i.e., ψ = (0, ψ2) or

ψ = (ψ1, 0), such that the “reduction of the wave packet” is indeed always only a

jump from one surface to the other.

To get some insight into the number of trajectories required for convergence

of the algorithm, we started with a simple two-level system, without coordinate-

dependence. The algorithm is realized for a 130 fs Gaussian pulse with a fluence of

60 J/m 2 for 2H/Ru(0001), τel = 2 fs and ∆V = 1.55 eV, and use of Eq. (3.17).

We assume that the initial temperature is T = 0 K, such that only the ground

state is populated. The calculated excited state populations with different numbers

N of realizations are shown in Fig. 3.20 along with the exact solution obtained

by numerically solving rate laws for a first-order reaction. From Fig. 3.20, it is

clear that, one has to run several thousands of trajectories, depending upon the

convergence of the desired property which in this case is the population in the

excited state, 〈Ne〉. Fig. 3.20 also demonstrates that, since the parameters are

chosen analogous to 2H/Ru(0001), a maximum population in the excited state of

about 1 % is to be expected.

Now, similar like in the DIET case, we run 2D wave packet propagations on a

grid using the split operator method with the Fast Fourier Transform technique for

the treatment of the DIMET of H2/D2 from Ru(0001). The analysis of observables is

done in a similar fashion like in the DIET model. The parameters for the wave packet
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Figure 3.20: Excited state population 〈Ne〉 for a two-level system with

∆V = 1.55 eV and τel = 2 fs for a fluence of 60 J/m2. The direct solution ob-

tained from first-order rate laws and the calculated excited state populations with

different numbers N of realizations from the MCWP method are compared.

propagations and analysis are the same as given in Tab. 3.2. The “trajectories” are

propagated to a final time of 2.5 ps, which is longer than in the DIET case; this is

to include the substantial cooling of Tel(t). The computation of observables is done

by averaging over all the stochastic trajectories using Eq. (2.22).

3.4.2 Results for ground vibrational state as initial state

The desorption probabilities for H2 and D2 are first calculated by taking the ground

vibrational state φ0 = φ0,0 as the initial state. This assumption is appropriate for

a low surface temperature (100 K), at the start of the propagation. For H2, 8000

trajectories and for D2, 10000 trajectories were run to get good accuracy for a laser

fluence of 100 J/m2, and a pulse length (FWHM) of 130 fs. Fig. 3.21 demonstrates

the convergence of desorption probabilities with respect to the number of quantum

trajectories N for this case. It can be noted that for smallN , large fluctuations occur

for both H2 and D2, then H2 converges faster than D2. Due to the lower desorption

probability of D2, convergence of the desorption probability is largely dependent on
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Figure 3.21: Desorption probability for H2 and D2 for a fluence of 100 J/m2 as

a function of the number of quantum trajectories, N , using the MCWP method in

the DIMET model. 8000 or 10000 stochastic trajectories were used for H2 and D2,

respectively to get a 10 % accuracy.

the number of random jumps. Therefore, one has to run more quantum trajectories

for D2. For the desorption probabilities of H2, we find Y(0,0) = 3.78×10−3, for D2

we get Y(0,0) = 7.59×10−4 at this fluence. The observed isotope effect of 5 in the

desorption probability is in reasonable agreement with experiments [24].

Fig. 3.22, which shows the (averaged) population of the excited state, 〈Ne〉,
for H2, demonstrates that most of the excitations take place when the Tel(t) is

maximal. The number of excitations then gradually decreases as the Tel(t) starts

to cool down. This is consistent with Fig. 3.19 where one can see that the rate of

the upward process is higher when the Tel(t) is maximal. From Fig. 3.22, it is also

noted that the maximal excited state population is in the order of 1 %.

The energy partitioning of desorbates is also analyzed. For H2 and a fluence

of 100 J/m2, translations are “hotter”, Etr =454 meV, compared to the vibra-

tions, Evib =161 meV. For D2, a similar trend is seen, where translational energy,

Etr =403 meV and vibrational energy, Evib =146 meV. Like in experiments, we also

get more energy for H2 than D2 in both coordinates.
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Figure 3.22: Averaged time-dependent electronic excited state population 〈Ne〉 for

H2 for a fluence of 100 J/m2 in the DIMET model. The populations are averaged

over 8000 trajectories obtained from the MCWP method.

3.4.3 Dependence on laser fluence

In the DIMET regime, the desorption probabilities are non-linearly dependent on

the laser fluence. This peculiarity of DIMET has been investigated with different

fluences in the range F ∈ [60,120] J/m2 leading to the Tel(t) curves of Fig. 3.17.

We run 5000 to 20000 trajectories to get around 10 % accuracy for every fluence.

As can be seen from Fig. 3.23, the calculated desorption probabilities are increasing

with higher fluences. A power law fit Y ∝ F n is made to the desorption probabil-

ities, resulting in n=4.9 for H2 and n=6 for D2 as demonstrated in Fig. 3.23. The

exponents are higher than the experimentally observed n=2.8 for H2 and n=3.2 for

D2 [4], but in general agreement with the experimental findings and the previous

theoretical calculations [25].

The isotope effects in desorption yields, Ides, are shown in Fig. 3.24. Fig. 3.24

demonstrates that the calculated Ides decreases with increasing laser fluence from ∼ 8

to 3 for F ∈ [60,120] J/m2. Similar trends were observed in experiments and previous

theoretical calculations where Ides shows a strong fluence dependence such that Ides

reduces from ∼ 10 to 5 in the same fluence range [4, 25]. This is well understood
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Figure 3.23: Dependence of desorption probability for H2 and D2 on the applied

laser fluence obtained from the DIMET model using the MCWP method. A power

law fit is made to the calculated desorption probabilities where exponents are n=4.9

for H2 and n=6 for D2.

Figure 3.24: Isotope effect in the desorption probability, Y (H2)/Y (D2) obtained

from the DIMET model using the MCWP method for different laser fluences. The

calculated Ides decreases with increasing laser fluence F which is in reasonable agree-

ment with experimental observations.
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from the fact that when F increases the desorption probability also increases, thus

resulting in a lower ratio of Y (H2)/Y (D2). The small difference in isotope effect with

experiments may be due to the convergence problem for desorption probabilities in

our case. MCWP methods converge very slowly for low desorption probabilities

with the number of stochastic trajectories.

The translational and vibrational energies of desorbing H2 and D2 molecules as

a function of F are also analyzed. The computed translational and vibrational ener-

gies shown in Fig. 3.25 increase about linearly with fluence. The translation is hotter

compared to vibration and H2 possesses more energy than D2 in both the modes.

These two findings are in good agreement with the experimental observations [24]

where translational energies are higher than vibrational energies. Moreover, H2

gains more energy than D2 in both degrees of freedom. For example, the trans-

lational energy for D2 changes from around 300 meV to 500 meV in the fluence

range F ∈ [60,120] J/m2 in experiments, while our theoretical values are 338 meV

(at 60 J/m2) and 443 meV (at 120 J/m2). In Fig. 3.25, a slightly higher vibrational

energy of D2 than H2 for 60 J/m2 might be due to the fact that Evib is not to-

tally converged for D2. In fact, one has to run many trajectories at lower fluences

especially for D2 to get good convergence. We also notice that the ratio between

translation and vibration, Etr/Evib, decreases from 5.6 to 2.3 for H2 and 4.3 to 2.1

for D2, respectively. The reason for this is, at higher fluences a large amount of

energy is pumped into the system which is then transferred to translational and

vibrational modes of the desorbing molecule.

The non-linear dependence of the desorption yield on fluence can be better ex-

plained by the upward rate Γg→e rather than comparing with Tel(t) for different laser

fluences. From Fig. 3.19, one can see that Γg→e increases dramatically with laser

fluence. This means that, an increase in the fluence consequently greatly enhances

the electronic excitation probability. As a result, more molecules reach the higher

vibrational levels in the ground electronic state after the deexcitation, which pro-

motes desorption. In this context, one interesting question is how many “multiple”

excitations are occurring in the DIMET for each fluence? Histograms showing the

distribution of n-fold excitations, N(n), for different fluences F ∈ [60,120] J/m2 in
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Figure 3.25: Dependence of unequal energy partitioning for H2 and D2 on the ap-

plied laser fluence obtained from the DIMET model using the MCWP method. The

translational energy is much higher than vibrational energy for both isotopomers.

Desorbing H2 has more energy than D2.

the MCWP model with an excited state lifetime of 2 fs are shown in Fig. 3.26. From

Fig. 3.26, one can see that the most frequent excitation level changes for different

fluences showing a clear trend that for higher fluences, the excitation number n

increases. We can calculate the average number of excitations per pulse, 〈n〉

〈n〉(F ) =

∑

n n Nn

N
, (3.24)

where N is the total number of trajectories. The 〈n〉 increases with increasing laser

fluence. This is the main reason why we get large desorption probabilities for higher

fluences. For example, for a fluence of 120 J/m2, the most probable excitation

number is n = 1, and higher excitations occur as well which leads to 〈n〉 = 1.5. In

the case of 60 J/m2, the adsorbate remains unexcited (upper left panel of Fig. 3.26),

and 〈n〉 is only 0.13, with almost no multiple excitations.
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Figure 3.26: The histograms give the number of realizations N(n), for an n-fold

excitation in the DIMET model for H2 using the MCWP method. Simulations are

performed for F ∈ [60,120] J/m2, and an excited state lifetime of 2 fs. The total

number of trajectories, N , varies from 5000 to 12000 for the above fluence range.

3.4.4 Vibrationally excited states as initial states

We also studied the effect of vibrationally excited states on the desorption yield for

H2 using the MCWP method within the DIMET regime. We performed calculations

with first vibrationally excited states in r, |1, 0〉 and in Z, |0, 1〉 for a fluence of

100 J/m2, and a pulse length (FWHM) of 130 fs. As demonstrated in Fig. 3.27, the

desorption probability is increased by about a factor of 2 for the first vibrationally

excited state in r, Y (1, 0) = 7.24 ×10−3, and in Z, Y (0, 1) = 7.8 ×10−3 compared to

Y (0, 0) = 3.78 ×10−3 for the ground vibrational state. The yield is slightly higher

for the Z excitation than the r excitation as depicted in the figure. The results

can be similarly explained as for DIET along the lines of Sec. 3.3.3. To conclude,

vibrational preexcitation appears to be beneficial also for DIMET.
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Figure 3.27: The effect of vibrational preexcitation on the desorption yield of H2

is plotted for the first 3 vibrational states, |0, 0〉, |1, 0〉, and |0, 1〉. The results are

obtained using the MCWP method for the DIMET model for a fluence of 100 J/m2,

and a pulse length (FWHM) of 130 fs.

3.4.5 Comparison of DIET and DIMET results

The DIMET is found to be more efficient compared to the DIET case. The des-

orption yield is higher and the desorbates gain more vibrational and translational

energy. In the DIET case, there is no correlation between the electronic excitations

and thus the desorption yield depends linearly on the fluence. In the case of DIMET,

excitation/deexcitations cycles can be interconnected and multiple excitations are

possible. Therefore, the desorption probability increases superlinearly with fluence.

More quantitatively, the desorption yield of H2, Y (0, 0) = 3.78 ×10−3 in

the DIMET model for a fluence of 100 J/m2 is around 50 % higher than the

Y (0, 0) = 8.07 ×10−4 of the DIET when taking φ0 = φ0,0. For D2, with the same

fluence, the effect is even larger, where the DIMET yield is around one order of

magnitude higher than the DIET (Y (0, 0) = 7.59 ×10−4 vs. Y (0, 0) = 8.81 ×10−5).

Moreover, the computed DIET desorption yield is per successful excitation event,

while the DIMET yield is already weighted with a finite and small, excitation prob-



68 Quantum dynamical study of photodesorption of H2 (D2) from a Ru(0001) surface

ability. In the DIMET regime, Etr = 454 meV and Evib = 161 meV for H2 which

are larger than Etr = 341 meV and Evib = 43 meV obtained from the DIET model.

Similarly for D2, the DIMET values of Etr = 403 meV and Evib = 146 meV are larger

than the DIET values of Etr = 311 meV and Evib = 45 meV. One can see that, the

energy accumulated to translational and vibrational modes of desorbing H2 and D2

in the DIMET is roughly 100 meV greater than the DIET case. Especially, in the

DIMET case, vibrational energies are increased by about a factor of 3.5 compared

to DIET.

3.5 Summary and Conclusions

With a two-dimensional, two-state model we were successful to reproduce the exper-

imental observations for the photodesorption of H2 and D2 from a Ru(0001) surface.

We started with a rather simple DIET model which was used to study the nature of

the excited state potential and to estimate the excited state lifetime. We found that

the lifetime of the system should be very short (∼ fs) in the electronic excited state

to reproduce experiments, a finding which agrees with assumptions in experiments,

also for other metal-adsorbate systems. The excited state potential was based on

information from cluster calculations, with the same topology as the ground state

potential, but a shifted minimum. The DIET model reproduced qualitatively and

semiquantitatively the isotope effect and unequal energy partitioning on vibrational

and translational modes.

The model was further extended to treat vibrationally mediated chemistry at

surfaces. We prepared vibrationally excited states in r and Z using shaped IR

pulses, and dipole moments which were calculated from ab initio calculations. Both

π-pulses and optimized pulses from OCT were successful. It was found that OCT can

be more state-selective, even at a reduced field strength. The successful excitation

of vibrational modes was exploited to investigate the effect of vibrationally excited

states and vibrational wave packets on the reaction yield. We found that vibrational

preexcitation of adsorbate modes is a proficient tool for the enhancement of the
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desorption yield and the energy gain in the vibrational and translational modes.

We then extended the DIET model to the DIMET regime with different vis laser

fluences. The non-linear fluence dependence of the desorption probability, one of

the hallmarks of the DIMET scheme, is well portrayed. The reason for such a non-

linear dependence is rationalized by the dramatic increase in the rate for the upward

process. Furthermore, not only the desorption yield but also the energy deposited

in the vibrational and translational modes were increased. The larger translational

energy of the desorbing molecule compared to vibrational energy is due to the “late”

transition state on the ground state potential, together with the fact that most of

the dynamics takes place in the ground state. When the laser fluence increases the

isotope effect gets smaller.

The well known IR+UV/vis strategy was also tested for the DIMET model. We

found that the IR prepared vibrational states in r and Z in combination with a vis

pulse can promote the reaction by a factor of 2.

To conclude, we were successful in reproducing the experimental findings with

this reduced dimensionality model. New directions for the control of this photore-

action were suggested. In our hybrid scheme, the IR preexcitation could play a

significant role through the isotope- and mode-selective excitation which could pro-

mote the photodesorption of H2 and D2 from a Ru(0001) surface.



Chapter 4

Molecular dynamics approach to

photodesorption of H2/D2 from

Ru(0001)

This chapter treats the photoinduced desorption process using adiabatic represen-

tations. The vis pulse induced hot electron excitations and dissipation of energy

to adsorbate degrees of freedom are treated by Langevin dynamics. The IR+vis

strategy for the enhancement of the desorption yield is realized with different pulse

sequences.

4.1 Model

The two-mode model described in Sec. 3.1.2 for the quantum mechanical treatment

with one vibrational and one translational coordinate is also employed here. We

make an assumption based on the argument that the time-dependent change of the

potential is weak, because metal electrons respond nearly instantaneously to the

slow adsorbate motion [77]. This leads us to a conclusion that the dynamics can be

described on a single potential energy surface. The ground state potential energy
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surface depicted in Sec. 3.1.1 is taken here as a single effective potential to describe

the dynamics.

The 2-dimensional Langevin equations of motion for the dynamics on the ground

potential energy surface can be written as

µrr̈ = −∂Vg(r, Z)

∂r
− ηrrṙ +Rr(t) , (4.1)

µZZ̈ = −∂Vg(r, Z)

∂Z
− ηZZŻ +RZ(t) , (4.2)

where the first term in the r.h.s of the equation accounts for the force from the

ground state potential Vg(r, Z). In Eq. (4.1) and Eq. (4.2), the dissipative coupling

through off-diagonal friction terms ηrZ is neglected. The ηZZ and ηrr are the diag-

onal electronic friction coefficients along Z and r modes, respectively. The terms

containing the ηqq represent the dissipation of energy to the surface through elec-

tronic friction. The third terms characterize the random forces along the respective

modes at finite electronic temperatures, Tel(t). µr and µZ are the corresponding

reduced masses along the respective coordinates.

We haven’t performed ab initio calculations for friction coefficients to attain

the coupling of electron-hole pair excitations to adsorbate modes, which could be

done by Eq. (2.29). Instead, we took a representative analytical form for ηZZ(r,Z)

and ηrr(r,Z) based on generic models [121], with input from a DFT study on

2H/Ru(0001) in Ref. [25]. Our model has the following ingredients.

1. The electronic frictions are coordinate-dependent. The friction coefficients

diminish exponentially to zero as the adsorbate leaves the metal surface [74],

i.e. the free molecule is dissipation-free.

2. The previous theoretical calculations for H adsorbed on a Ru(0001) surface

predicted that values for ηZZ and ηrr are nearly the same for small values of S.

S is defined as a minimum energy path (MEP) on the ground state potential

from the adsorbed state to the desorbed state as can be seen from Fig. 3.2.

Only around the transition state, ηZZ and ηrr show different characteristics,

ηZZ increases while ηrr decreases. One finds ηZZ ≈ 3 ηrr near the transition

state [25].
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Parameter Value

a1 = a2 0.3 meV ps Å−2

b1 0.6 meV ps Å−2

b2 0.1 meV ps Å−2

c 4 Å−1

Z1 2.36 Å

Z2 2.25 Å

r1 = r2 0.74 Å

σZ 0.2 Å

σr 0.3 Å

Table 4.1: Parameters used in the functional form of ηZZ(r, Z) and ηrr(r, Z) are

given.

3. The temperature dependence of the friction coefficients which arises from a

time-dependent electronic temperature is neglected. This is in agreement with

a small Tel dependence as found in [25].

From the above ingredients and input from Ref. [25], we derived the functional

form for the coordinate-dependent electronic friction coefficients along r and Z

modes

ηZZ(r, Z) = a1
1

1 + ec(Z−Z1)
+ b1 e

[
−(r−r1)2

2σ2
Z

− (Z−Z1)2

2σ2
Z

]
, (4.3)

ηrr(r, Z) = a2
1

1 + ec(Z−Z2)
+ b2 e

[
−(r−r2)2

2σ2
r

− (Z−Z2)2

2σ2
r

]
. (4.4)

The parameters used in the above expressions are given in Tab. 4.1.

The first term in the r.h.s of Eq. (4.3) and Eq. (4.4) attributes the Z dependence

of the friction through a sigmoid function. This function exponentially goes to zero

as H2 (D2) desorbs from the surface and becomes close to 1 when the molecule is ad-

sorbed on the surface, Z ≈ Z0. The parameters Z1 and Z2 are close to Z‡ = 2.24 Å

at the desorption barrier and have been independently adjusted for a better fit.
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The second term represents the r dependence of the friction. r1 = r2 are taken as

req = 0.74 Å, the equilibrium distance of the free H2 molecule.

The above analytical forms are compared with the electronic friction coefficients

calculated by Luntz et al. obtained by DFT as mentioned in Sec. 2.2.2. Fig. 4.1

shows that ηZZ matches well with the calculations while ηrr is slightly different from

the calculations in Ref. [25] along the minimum energy path S. In Fig. 4.1, S = 0

denotes the adsorbed state of H on the Ru surface, S = 2.1 Å corresponds to the

transition state, and at S = 3 Å , the molecule is about to desorb from the Ru

surface.

The electronic temperatures Tel(t) are included in the random forces Rq(t) in

Eq. (4.1) and Eq. (4.2). These random forces are implemented as a Gaussian white

noise with properties defined in Sec. 2.2.3. In practice, we use the Box-Müller

algorithm [122] in accordance with the fluctuation-dissipation theorem [80, 123],

Rq(t) =

[

2kB Tel(t)ηqq)

∆t

] 1
2

(−2 ln b)
1
2 cos 2πc (4.5)

where ∆t and ηqq are the time step and electronic friction coefficient along the

respective coordinates. b and c are random numbers uniformly distributed on the in-

terval [0,1]. The electronic temperature Tel(t) is obtained from the two-temperature

model as depicted in Sec. 3.4.1 for different laser fluences.

The 2D Langevin equations are solved using the Ermak and Buckholz algorithm

[124, 68] over many stochastic trajectories, see Appendix F. All the trajectories are

started from the adsorption minimum in the ground state potential.
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Figure 4.1: Electronic friction coefficients along the minimum energy path (S)

obtained from the analytical form are compared with the friction coefficients of

Luntz et al. [25]. Top: ηZZ , bottom: ηrr. S = 0 corresponds to hydrogen adsorbed

at Ru(0001) in the equilibrium position (r0, Z0); S = 2.1 Å is the transition state

and S = 3 Å corresponds to the situation where the molecule is about to leave the

Ru surface.
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4.2 Vibrational preexcitation

The Eq. (4.1) and Eq. (4.2) have to be modified to incorporate the force due to

coupling to an IR laser field, EIR
z (t), which is polarized perpendicular to the surface.

Then, the equations Eq. (4.1) and Eq. (4.2) have the form

µrr̈ = −∂Vg(r, Z)

∂r
− ηrrṙ +Rr(t) + F field

r , (4.6)

µZZ̈ = −∂Vg(r, Z)

∂Z
− ηZZŻ +RZ(t) + F field

Z , (4.7)

where the forces due to the field are

F field
r =

∂µz(r, Z)

∂r
EIR

z (t) , (4.8)

F field
Z =

∂µz(r, Z)

∂Z
EIR

z (t) , (4.9)

where µz(r, Z) is the component of the dipole moment along the z-axis. Analytical

derivatives of the dipole function (Eq. (3.4)) are employed to calculate forces due

to field.

The IR excitation of adsorbate modes is enforced by similar sin2 pulses as the ones

which were used in the previous chapter. We use parameters which are optimized

for the Z mode, which is then dominantly excited. The reason for this is that the

dipole function increases more rapidly along the Z mode than the r mode as can be

seen from Fig. 3.5. We applied an IR field equal or similar to the π-pulse described

in Sec. 2.3.1 for both 2H/Ru(0001) and 2D/Ru(0001). A π-pulse duration of 500 fs

is adapted for all IR pulses. All the calculations are started from the adsorption

minimum in the potential. Since the surface temperature is taken as 0 K to avoid

temperature effects, initial velocities in both modes are zero.

For 2H/Ru(0001), a field amplitude ~E0 is chosen according to Eq. (2.38) for the

first excited mode along Z with h̄ωZ = 136 meV. The fluence of the pulse employed

is 164 mJ/cm2.

In Fig 4.2, the kinetic energy in the r mode,

Tr = 0.5 µrṙ
2 , (4.10)
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Figure 4.2: π-pulse excitation of the Z mode for 2H/Ru(0001). Left panel: The

kinetic energy, Tr, in the r mode as a function of time during the IR excitation.

Right panel: The kinetic energy, TZ , in the Z mode as a function of time during the

IR excitation. See text for details.

and the kinetic energy in the Z mode,

TZ = 0.5 µZŻ
2 , (4.11)

during the π-pulse excitation are shown. The oscillations are due to the fact that the

kinetic energy is constantly transferred to the potential energy like in a harmonic

oscillator. Fig. 4.2 shows that the IR π-pulse was successful to excite the Z mode,

and there is almost no excitation along the r mode as in the quantum mechanical

treatment. The pulse used for the excitation along with the total energy of the

system, EIR
tot, as a function of time is given in Fig. 4.3. The total energy of the

system is calculated as

EIR
tot = Tr + TZ + Vg(r, Z) − µz(r, Z) EIR

z (t) . (4.12)

From Fig. 4.3, one can see that EIR
tot, is around 300 meV when the pulse is off. This

value is higher than the carrier frequency h̄ωZ = 136 meV which is due to the weak

anharmonicity of the system.

The performance of the π-pulse can be improved by tuning the carrier frequency
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Figure 4.3: Left panel: π-pulse used for the Z mode excitation of 2H/Ru(0001). A

pulse duration of 500 fs, and h̄ωZ = 136 meV are employed. Right panel: The total

energy, EIR
tot, of 2H/Ru(0001) during the π-pulse excitation as a function of time.

near the harmonic1, h̄ωh= 139 meV and anharmonic2, h̄ωanh = 136 meV frequencies

of the Z mode. An optimized frequency h̄ωZ of 138 meV is found from Fig. 4.4

for the IR excitation. “Optimized” means here, that the energy uptake is maximal,

without optimizing other parameters such as the field amplitude.

For 2D/Ru(0001), we took the same pulse as used for 2H/Ru(0001) by adjusting

its carrier frequency with respect to the vibrational frequency for 2D/Ru(0001), with

out changing other parameters. This strategy was successful in exciting vibrational

modes of 2D/Ru(0001). Fig. 4.4 shows that an optimized frequency h̄ωZ of 98 meV

brings more energy in the Z mode than its harmonic frequency of h̄ωh = 98.5 meV

and anharmonic frequency of h̄ωanh = 96.7 meV. The modified π-pulse with a 500 fs

pulse width, and the time-dependent total energy, EIR
tot, of the system are shown

in Fig. 4.5. Fig. 4.5 shows that the modified π-pulse was successful to excite the

Z mode. Like in the case of Z mode excitation of 2H/Ru(0001), the total energy

gained when the pulse is off, is higher than the h̄ωZ of 98 meV. This can be similarly

explained as in the case of 2H/Ru(0001).

1ωh =
√

k
µ
, k and µ are the force constant and the reduced mass of the oscillator, respectively.

2See Sec. 3.1.2 for details.
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Figure 4.4: The optimization of carrier frequency for the Z mode excitation of

both 2H/Ru(0001) and 2D/Ru(0001). A pulse duration of 500 fs is employed for all

calculations. Left panel: The final energy of 2H/Ru(0001) for different IR “π-pulse”

carrier frequencies. Right panel: The final energy of 2D/Ru(0001) with different IR

carrier frequencies.

Figure 4.5: Left panel: A modified π-pulse for the Z mode excitation of

2D/Ru(0001). The pulse duration is 500 fs with h̄ωZ = 98 meV. Right panel:

The total energy, EIR
tot, for 2D/Ru(0001) during the excitation. See text for details.



4.3 MD simulations with electronic frictions 79

To conclude, mode-selective excitation is possible for both 2H/Ru(0001) and

2D/Ru(0001). A fine tuning of the frequency of the IR pulse can enhance the

vibrational excitation.

4.3 MD simulations with electronic frictions

4.3.1 Ground state potential minimum as initial state

The associative desorption triggered by femtosecond laser excitations has been inves-

tigated within the adiabatic representation. The 2D Langevin equations (Eq. (4.1)

and Eq. (4.2)) for Z and r modes are solved for a electronic temperature caused by

a 800 nm laser pulse with a duration of 130 fs (FWHM), and a fluence of 120 J/m2.

The initial velocities are chosen according to Boltzmann equilibration such that the

kinetic energy in each mode is kBTS, where kB is the Boltzmann constant and the

initial potential energy was zero, because we start from the potential minimum. The

surface temperature TS = 100 K is taken in accordance with experiments, before the

laser pulse excitation [24]. All the trajectories were first run up to 1 ps to ensure

the thermal equilibration before excitation. After 1 ps, the vis pulse comes, and

heats the metal electrons. The equilibration scheme is shown in Fig. 4.6, where

the temperature of the system (adsorbate) is calculated from the kinetic energy in

each mode, i.e., Tr/kB + TZ/kB, as a function of time, with Tr and TZ defined in

Eq. (4.10) and Eq. (4.11).

The results are converged with a time step of 0.01 fs which is used for all cal-

culations. The desorption probability and the energy partitioning are analyzed at

a point in the exit channel, Zdes = 9.5 Å where the electronic friction is negligibly

small, and the potential is flat. A trajectory crossing the line at Zdes, is considered

as desorbed. The expectation values for translational energy, Etr, and vibrational
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Figure 4.6: The equilibration of classical trajectories (10000 realizations) up to

1ps for a surface temperature of 100 K. The adsorbate temperature as a function of

time is calculated from the kinetic energy in each mode. See text for details.

energy, Evib, are calculated by averaging over all (Nd) desorbing trajectories n:

Etr =
1

Nd

Nd
∑

n

1

2
µZŻ

2
n (4.13)

=
1

Nd

Nd
∑

n

En
tr , (4.14)

Evib =
1

Nd

Nd
∑

n

(

1

2
µrṙ

2
n + En

pot − Edes

)

(4.15)

=
1

Nd

Nd
∑

n

En
vib , (4.16)

where µZ and µr are reduced masses along the Z and the r coordinates. Ż and ṙ are

the corresponding velocities along the respective coordinates. Epot is the potential

energy of the desorbing trajectory at Zdes and Edes = 846 meV is the adsorption

energy for the two hydrogen atoms.

We consider the situation that no IR excitation took place. Trajectories were

started from the adsorption minimum and equilibrated to T = 100 K up to 1 ps as
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Figure 4.7: An example for a typical trajectory desorbing as molecular hydrogen is

overlaid on the ground state PES. The transition state for the associative desorption

is indicated by a bullet.

mentioned above. After 1 ps, the electronic temperature, Tel(t), calculated from the

TTM for a fluence of 120 J/m2 is taken as the surface temperature. The analysis of

different trajectories shows that trajectories with fluctuations in the reaction path

and sufficient energy desorb. An example for a “representative trajectory” which

leads to desorption is shown is Fig. 4.7. The statistics for desorbing trajectories

for 20000 realizations as a function of time is demonstrated in Fig. 4.8. The figure

shows, which trajectories desorb at which time. From Fig. 4.8, one can conclude that

a total propagation time of 3 ps including 1 ps of equilibration time is reasonable,

to converge desorption probabilities. Therefore, this value was kept fixed for rest of

the calculations.

The results are now averaged over 60000 trajectories for H2 and 80000 trajec-

tories for D2 to get a reasonable accuracy. We found a desorption probability of

Y = 2.55 ×10−2 for H2 and Y = 5.46 ×10−3 for D2. The desorption probability

was calculated as Y = Nd/N , where N is the total number of trajectories. The

larger desorption yield for H2 compared to D2 is again consistent with experimental

observations [4], and with the quantum dynamical results mentioned in Sec. 3.4.2.
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Figure 4.8: Upper panel: The trajectory number of desorbing classical trajectories

(for 20000 realizations) is plotted as a function of time. For example, a cross at

trajectory number 5000 at time t = 2 ps means that the 5000th trajectory desorbs

after that time. Lower panel: The surface temperature as a function of time. The

electronic temperature, Tel(t), from the vis pulse (800 nm, 130 fs, F = 120 J/m2)

starts at 1 ps after the equilibration time of 1 ps with 100 K. Most of the trajectories

desorb (upper curve) right after Tel (lower curve) was maximal.
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Most of the desorptions takes place immediately after the peaking of the electronic

temperature Tel as shown in Fig. 4.8. This can be easily explained from the fact that

the laser pulse heats the metal electrons, that leads to a Tel dependent, large R(t),

and desorption can occur. The time delay between maximal electronic temperature

and highest desorption rate shows that the system takes a certain time to climb up

the vibrational ladder.

We also averaged the translational energy and vibrational energy of desorbing

trajectories. The translational energies are 363 meV and 324 meV for H2 and D2

with a vibrational energy of 218 meV and 163 meV respectively. This unequal energy

partitioning is in good agreement with experimental results and previous theoretical

calculations. Analyzing the position expectation values for the r mode, we observe

that there is no atomic desorption of adsorbates.

4.3.2 Dependence on laser fluence

The non-linear fluence dependence of the reaction yield and the unequal energy par-

titioning are interesting features of this reaction. These hallmarks of DIMET exper-

iments are examined by applying different laser fluences ranging from 80-160 J/m2.

The desorption probabilities are shown in Fig. 4.9 as a function of vis pulse fluence,

and a power law fit is made to the desorption yield. The exponents found, namely

n=3.4 and 4.3 for H2 and D2 are very close to the one obtained from the experi-

ments and previous MD calculations where n ∼ 3 [4, 25]. 60000-140000 trajectories

were run depending upon the desorption probabilities to get a good convergence.

Fig. 4.10 shows that the lighter isotope H2 desorbs more easily than D2 with an

apparent isotope effect. The isotope effect, Ides = Y (H2)/Y (D2) decreases with

increase in vis laser fluence from ∼ 8 to 3 for F ∈ [80,160] J/m2. These observa-

tions are in agreement with experimental findings [4] and quantum DIMET results

(Sec. 3.4.3) in the same fluence range. Further discussion of Fig. 4.9 and Fig. 4.10

with the quantum MCWP results will be given in Sec. 4.4.

The unequal energy partitioning was also analyzed for different fluences. The
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Figure 4.9: Non-linear fluence dependence of desorption probabilities obtained

from MD simulations for different fluences. A power law fit is made to the des-

orption probabilities of H2 and D2. Similar results from MCWP calculations are

demonstrated in Fig. 3.23.

Figure 4.10: Isotope effect, Ides, in the desorption yield as a function of absorbed

laser fluence from the electronic friction model. The analogous MCWP results from

the quantum dynamical calculations are shown in Fig. 3.24.
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Figure 4.11: Averaged translational and vibrational energies of desorbing trajec-

tories as a function of laser fluence. H2 gains more energy in both translational and

vibrational modes compared to D2. The translations are hotter than vibrations for

both H2 and D2. See Fig. 3.25 for similar calculations with the MCWP method.

energy partitioning to vibrational and translational modes of the desorbing molecules

is depicted in Fig. 4.11. H2 has more translational and vibrational energy compared

to D2. Translations are hotter compared to vibrations for all the fluences which are

similar to previous DIMET calculations by the MCWP method and experiments [24].

Moreover, the energy gained by desorbates in both modes increases approximately

linearly with the laser fluence. This increase in energy is due to the fact that when

the fluence is large, more energy is pumped into the system through random forces.

Thus, molecules gain more energy in their modes and climb up the “vibrational

ladder” more easily. For example, the translational energy of H2 changes from

336 meV to 393 meV in the fluence range F ∈ [80,160] J/m2 while for D2 it is from

300 meV to 360 meV in the same fluence range. Similarly, the vibrational energy

of H2 increases from 172 meV to 264 meV while for D2 it changes from 104 meV to

199 meV for the above fluence range. This trend also makes a decrease in the ratio

between translation and vibration, Etr/Evib, from 2 to 1.5 for H2 and from 2.9 to

1.8 for D2.
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4.3.3 Effect of vibrational preexcitation

The validity of the IR+UV/vis strategy [28] in a strongly dissipative environment

is also examined, using classical Langevin dynamics. In this case, the vibrational

relaxation of adsorbate modes is included which was neglected in the quantum me-

chanical calculations (Sec. 3.4.4). Quantum mechanically, the vibrational lifetimes

are inversely proportional to the electronic friction coefficients, at T = 0 K. One can

estimate them from τ r
vib ≈ µr

ηrr(r0,Z0)
and τZ

vib ≈ µZ

ηZZ(r0,Z0)
. In our parameterization

of the friction coefficients, ηrr ≈ ηZZ ≈ 0.3 meV ps Å−2, thus for 2H/Ru(0001)

τ r
vib ≈ 175 fs, τZ

vib ≈ 700 fs. A more accurate treatment, based on the first principles

friction coefficients, gives τ r
vib ≈ 190 fs and τZ

vib ≈ 500 fs in Ref. [25]. The relaxation

of excited adsorbate vibrations along the r and the Z modes can also be calculated

from the classical friction model. For the calculation of vibrational lifetime along

the Z mode for 2H/Ru(0001), we took the vibrational energy h̄ωZ = 136 meV as the

initial kinetic energy in that mode. The (single) trajectory initially has a negative

momentum in the Z direction such that the system moves towards the surface. This

is illustrated in Fig. 4.12. We started from the adsorption minimum, and assumed

that the surface temperature is 0 K during the propagation. The total energy of the

system, Etot is calculated as

Etot = Tr + TZ + Epot (4.17)

where Tr and TZ are the kinetic energy along the r and the Z coordinates. The

total energy and position expectation value, 〈Z〉(t) along the Z coordinate are plot-

ted in Fig. 4.12 as a function of time. The vibrational lifetime along the Z mode,

τZ
vib is estimated as the time needed for the system to be reduced by a factor of

e, i.e. h̄ωZ/e. We obtained τZ
vib= 685 fs from Fig. 4.12, where an exponential fit,

h̄ωZ e−t/τZ
vib is made to model the decay of the total energy. The fit reproduces very

well the computed decay of Etot. This value is also close to the ≈ 600 fs lifetime

obtained from a cluster model using Tully’s approach [83], and the estimate just

made from µZ

ηZZ(r0,Z0)
. From Fig. 4.12, one can see that around 3 ps, the system has

relaxed back to its adsorption minimum i.e. 〈Z〉(t) is a damped oscillation which

approaches the value Z0 = 1.06 Å after about that time. A similar calculation is

also carried out to estimate the vibrational lifetime along the r mode, τ r
vib. Here, we
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Figure 4.12: The vibrational relaxation of the Z mode for 2H/Ru(0001) is shown.

Upper panel: The total energy of the system, Etot, is plotted as a function of time.

Lower panel: The position expectation value along the Z coordinate as a function

of time, t, is plotted, showing a damped oscillation around Z0. See text for details.

employed the vibrational energy h̄ωr = 94 meV as the initial kinetic energy in the r

mode with a positive momentum. The total energy and position expectation value,

〈r〉(t) along the r coordinate are demonstrated in Fig. 4.13 as a function of time. We

obtained τ r
vib = 215 fs from Fig. 4.13, where an exponential fit, h̄ωr e

−t/τr
vib , is made

to the decay of the total energy. This value is in good agreement with the estimated

lifetime, τ r
vib ≈ 175 fs from the formula µr

ηrr(r0,Z0)
. The corresponding cluster calcu-

lations based on Tully’s approach give a lifetime of ≈ 110 fs [83]. Fig. 4.13 shows

that also the oscillations along the r coordinate are damped towards the adsorption

minimum, i.e., 〈r〉(t) ≈ r0 = 2.75 Å after 1 ps.

In a next step, the 2H/Ru(0001) and 2D/Ru(0001) are vibrationally excited along

the Z mode by IR pulses following the scheme outlined in Sec. 4.2, and desorption

after action of a vis laser pulse is studied. TS = 0 K is taken to avoid temperature

effects. For the IR+vis strategy, both IR and vis pulses are applied, with an IR

pulse of 500 fs, and a vis pulse with 800 nm and 130 fs (FWHM). 50000 trajectories

were run for all calculations to get a few percentage accuracy (≈ 10 %). Different
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Figure 4.13: The vibrational relaxation of the r mode for 2H/Ru(0001) is shown.

Upper panel: The total energy of the system, Etot, is plotted as a function of time.

Lower panel: The position expectation value along the r coordinate as function of

time, t, is plotted, showing a damped oscillation around r0. See text for details.

combinations of fluences for both IR and vis pulses are applied. The two pulses are

delayed by a time delay, ∆t, between the start of the IR pulse and that of the vis

pulse. ∆t is varied from -5 ps to 4 ps. A pictorial representation of the scheme

for H2 desorption is shown in Fig. 4.14. In the upper panel, we see the electronic

temperature in response of the vis pulse which starts at t = 5 ps. Also shown are 10

different IR pulses in the interval from 0 to 9 ps, corresponding to ∆t ∈ [-5,+4] ps.

The lower panel shows the desorption probability for H2 as a function of the starting

time of the IR pulse. The slight fluctuations in the desorption probabilities for large

positive or negative delaytimes are within the error bars of statistical convergence.

Fig. 4.14 shows that the IR pulse (fluence 164 mJ/cm2) in combination with a vis

pulse (fluence of 120 J/m2) influences the desorption probability. When the IR and

vis excitations are done at the same time (∆t=0), the desorption probability reaches

a maximum, which is by a factor of 2 larger than the yield in the “uncorrelated case”,

i.e., for large positive or negative ∆t. In the “uncorrelated case”, the desorption

yield is about the same as no IR pulse excitation.
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Figure 4.14: IR+vis excitation and desorption of H2 with variable delay times, ∆t.

The IR excitation of the Z mode is done by a π-pulse as mentioned in Sec. 4.2, with

a fluence of 164 mJ/cm2. The vis pulse excitation is done by a laser pulse outlined

in Sec. 3.4.1, with a fluence of 120 J/m2. The electronic temperature, Tel, obtained

is shown in the upper panel.
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Figure 4.15: IR+vis excitation and desorption of H2 with variable delay times,

∆t. The IR excitation of the Z mode is done by a low fluence pulse (50 mJ/cm2)

as mentioned in Sec. 4.2. The vis excitation is done by the laser pulse outlined in

Sec. 3.4.1, with a fluence of 120 J/m2. See text for further details.

In Fig. 4.15, IR pulses with a lower fluence (50 mJ/cm2) are used in conjunction

with the same vis pulse mentioned above (F = 120 J/m2, tstart = 5 ps). In com-

parison to Fig. 4.14, it is found that the effect of IR excitation is less pronounced

with the lower IR fluence. Again, however, a considerable increase in the desorption

yield for ∆t = 0 is observed.

In Fig. 4.16, the same calculation is performed with an IR pulse fluence of

164 mJ/cm2 as in Fig. 4.14, but now a higher vis fluence of 160 J/m2 is used. It is

seen that in this case at ∆t = 0, a ∼ 35 % enhancement of the desorption probability

occurs. A delay time ∆t of -1 ps and 1 ps is also beneficial, with negative delays

(IR prior to vis) being more favourable than a positive delay (IR after vis pulse).

The same strategy is then applied to D2, again with IR excitation of the Z

mode. The IR excitation is done with a pulse mentioned in Sec. 4.2 of fluence

164 mJ/cm2. A vis pulse of fluence 160 J/m2 is used here. Fig. 4.17 shows that

there is a fair enhancement in the desorption yield when ∆t is small. This is due

to the fact that the vibrational relaxation takes place at a slower time scale com-

pared to the electronic excitation/deexcitation process. The vibrational lifetimes for
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Figure 4.16: IR+vis excitation and desorption of H2 with variable delay times,

∆t. The IR excitation of the Z mode is done by a π-pulse as mentioned in Sec. 4.2,

with a fluence of 164 mJ/cm2. The vis excitation is done by the laser pulse outlined

in Sec. 3.4.1, with a fluence of 160 J/m2. See text for details.

Figure 4.17: IR+UV excitation and desorption of D2 with variable delay time,

∆t. IR excitation of the Z mode by a pulse mentioned in Sec. 4.2 of fluence 164

mJ/cm2. The vis excitation is done by the laser pulse outlined in Sec. 3.4.1 for a

fluence of 160 J/m2.
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Figure 4.18: IR+vis excitation and desorption of H2 with short delay times,

∆t ∈ [-1,1] ps with a time interval of 250 fs. The IR excitation of the Z mode

is done by a π-pulse as mentioned in Sec. 4.2, with a fluence of 164 mJ/cm2. The

vis excitation is done by a laser pulse outlined in Sec. 3.4.1, with a fluence of

120 J/m2. See text for further details.

2D/Ru(0001) are similarly calculated as in the case of 2H/Ru(0001). We obtained

τ r
vib ≈ µr

ηrr(r0,Z0)
≈ 350 fs and τZ

vib ≈ µZ

ηZZ(r0,Z0)
≈ 1390 fs. These lifetimes are by a

factor of 2 higher than for 2H/Ru(0001).

In the all of the above calculations, the enhancement of the desorption yield

is prominent when the delay time, ∆t ∈ [-1,1] ps. For a more detailed inspection

of this range, we divided the interval [-1,1] ps more finely with a time interval of

250 fs. The calculations are carried out with an IR π-pulse of fluence 164 mJ/cm2

in combination with a vis pulse of fluence 120 J/m2 for 2H/Ru(0001). Fig. 4.18

shows that ∆t = -250 fs or 0 fs are most beneficial. That slightly negative or zero

time delays are better than positive ∆t can be understood from the duration of IR

pulse, 500 fs and the time ≈ 350 fs, after which the vis pulse leads to the highest

electron temperature, Tmax
el (see Fig. 3.17). Thus, an IR pulse starting at ∆t =

-250 fs or 0 fs, leads to maximal vibrational excitation after a time t = +250 fs

and +500 fs (relative to the start of the vis pulse), respectively. Therefore, full use

can be made by large Tel, which peaks at t ≈ 350 fs. In contrast at ∆t = -500 fs

already vibrational relaxation is substantial when Tel becomes maximal. Further,
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at ∆t > 0 the vibrational excitation is not complete at times when Tel goes already

substantially down again. Thus, slightly negative or zero ∆t are optimal.

To summarize, also the MD with frictions approach suggests that vibrational

excitation can play a big role in the hot electron mediated desorption of adsorbates

from a metal surface.

4.4 Summary and Conclusions

The two-mode model using MD with electronic frictions was able to reproduce the

experimental findings such as isotope effect and non-linear fluence dependence and

unequal energy partitioning. These results are also in good agreement with the

MCWP calculations for DIMET except for the absolute magnitude of desorption

yields. From Fig. 4.9 and Fig. 3.23 one can see that desorption yields in the

classical MD model are larger than the quantum DIMET model. For H2, the ratio

between the desorption yield of the MD model and the DIMET model scales from

5.5 to 3, depending on fluence. The reason may be, since the MD with frictions

is in slightly better agreement with experiment, the quantum DIMET model gives

too low yields. That could be due to the fact that the quantum model considered

here depends on two parameters ∆ and τel, of which at least the last one is not well

known. Still, the isotope effect, Ides is quite similar in both models as demonstrated

in Fig. 3.24 and Fig. 4.10. The n in the power law fit Y ∝ F n is lower in the classical

MD model compared to the quantum DIMET. In both models, the translational and

the vibrational energy of desorbates scale linearly with the applied laser fluence F ,

and are approximately in the same energy range (see Fig. 3.25 and Fig. 4.11). The

excitation of adsorbate vibrational modes by tuned IR laser pulses is possible for

both models. In both cases it has been shown that these excited vibrational modes

in combination with a vis pulse can enhance the photodesorption yield.

As to whether the relatively small differences between the “adiabatic classical”

and the “non-adiabatic quantum” models is due to quantum effects, or due to the

different model character, remains to be seen. For this purpose either “non-adiabatic

classical” or “adiabatic quantum” models must be applied. The 2D ground state
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potential from periodic DFT calculations with electronic friction coefficients derived

from phenomenological models were successful in representing the dynamics. In

contrast to the calculations of Luntz et al. [25], we neglected the phonon contri-

bution and frictional coupling, ηrZ of r and Z modes. However, neglect of these

two effects seems to have no great influence on the dynamics since we got very

comparable results to Ref. [25]. The ηrZ is small compared to the ηrr and ηZZ

values. The phonon contribution is not so important, since the adsorbate vibrations

are high in frequency which lead to relaxation on much longer timescales (perhaps

ns) than those of relevance here. The advantage of the classical model is that it

can be extended to higher-dimensionality models to get more information about the

influence of neglected modes (especially rotations). The classical dynamics effort

scales only linearly with the number of degrees of freedom (only if one neglects the

computational task to calculate forces from the potential), in contrast to quantum

dynamics.



Chapter 5

Final Conclusions and outlook

In this thesis, the role of vibrationally and electronically excited adsorbates for the

molecular desorption of H2 (D2) from a Ru(0001) surface has been investigated.

We have employed two approaches to treat photoinduced desorption problems on

surfaces, a quantum and a classical one. With our two-mode model we were able

to reproduce qualitatively and semiquantitatively the experimental observations for

the associative desorption of H2 (D2) from Ru(0001).

The system was first treated with quantum mechanical, non-adiabatic models

in the DIET and DIMET regimes. Here we considered a two-state model where

the adsorbate is electronically excited by indirect excitations. The lack of more

quantitative information about the electronic excited state is the bottleneck for

the quantum mechanical treatment. However, an educated guess about electronic

excited state based on TD-DFT cluster calculations was made. Another empirical

parameter, the lifetime of adsorbate-substrate complex τel, was chosen as a few

femtoseconds and reproduced the trends observed during the experiments. The

exact value of τel remains unknown. The ground state potential and dipole function

were calculated from first principles, and are known much better than excited state

properties.

We were successful in the mode-selective excitation of Z and r modes by IR laser
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pulses, using quantum dynamics. The Z mode excitation is more easily to achieve

than the r mode excitation due to higher transition dipole moments. It should

be noted that both π-pulse and shaped pulses from OCT were efficient for the IR

excitation of adsorbate modes. The state-selective excitation of the modes was only

partially successful due to the harmonicity of the system. A critical approximation

in the quantum model is the neglect of the vibrational relaxation of adsorbates due

to the coupling to metal electrons.

The use of vibrationally excited states as initial states showed a predominant

increase (up to a factor ∼ 30) in the desorption yield, and for the translational and

vibrational energies in the DIET model. In the DIMET model, the effect of vibra-

tional preexcitation was less pronounced, but still about a factor of 2. In general,

the desorption yields are larger in DIMET compared to the DIET, in particular,

when also the finite excitation probability for DIET is considered. The electronic

temperatures for DIMET were calculated from the two-temperature model. Thus,

multiple electronic excitations driven by electronic temperatures occur and are cor-

related in the DIMET, which helps to climb up the vibrational ladder more easily.

Both models reproduced very well the experimental findings, mainly the large iso-

tope effect in the desorption probability and energy partitioning, according to which

the translation energies are higher than the vibrational energies.

In the quantum mechanical DIMET model, the non-linear fluence dependence of

desorption yield is well reproduced within our model. The latter is a consequence

of the dramatic increase in electronic excitation rates as the electronic temperature

increases. As a result, the system obtains more energy on the electronic excited state

and desorbs more readily. This leads to a linear increase in the calculated transla-

tional and vibrational energies with fluence, with the former being more favoured

due to the “late barrier” on the ground state potential for the associative desorption.

The absolute values for desorption probabilities are about an order of magnitude

smaller than the previous theoretical calculations. The reasons may be due to the

semiempirical character of our excited electronic state and corresponding electronic

lifetime.
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We then also used the adiabatic, molecular dynamics model with friction, to treat

DIMET. In particular, the model was extended to include IR excitation of vibra-

tions. The friction model has adopted parameters from the non-adiabatic, quantum

DIMET model such as the 2D ground state potential, dipole function, and electronic

temperatures. The coupling of the system to electron-hole pair excitations are in-

cluded by fluctuating forces. The electronic friction coefficients which account for the

vibrational damping of adsorbate modes were derived from semi-phenomenological

models, with input from DFT [25]. Also this model was successful in reproducing

the experimental findings and previous theoretical calculations, especially the large

isotope effect, non-linear fluence dependence and unequal energy partitioning. The

calculated absolute desorption probabilities are higher than those of the quantum

mechanical calculations. A sound explanation for this difference is still unknown.

The translational energies and vibrational energies are slightly lower than in the

non-adiabatic quantum model. One reason may be that the vibrational relaxation

of both the modes is taken into account in the MD with electronic frictions model.

We were also capable of exciting the Z mode for both H2 and D2 using shaped IR

pulses. We then applied the IR+vis strategy by the IR excitation of vibrational

modes before or after the vis excitation. The time delay between both pulses was

varied. The results show that IR excitation prior to vis excitation really enhances

the desorption yield, especially for short time delays.

To conclude, the agreement with experimental findings was successfully achieved

for both our non-adiabatic and adiabatic representations. Even though both the

models are based on different representations, were able to qualitatively and semi-

quantitatively get similar results. This proves that dynamics takes place predomi-

nantly in the electronic ground state. For our system, tunneling plays obviously no

significant role. It has been proven that the IR excited adsorbate modes in combi-

nation with ultrashort vis pulses can boost a surface reaction. Here again, both the

models gave similar results. Thus, the photocontrol of reactions at surfaces should

be possible, even in dissipative environments, by using the concept of vibrationally

mediated chemistry.

This work can be extended in many directions. One goal would be to include
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more degrees of freedom, mainly the rotational modes of the system. This can be

most easily be done within the classical Langevin approach. In the quantum dynam-

ical simulations, the electronic excited state and its lifetime has to be improved by a

higher level of theory. The effect of vibrational relaxation on the reaction has to be

investigated as well. In the adiabatic, classical model, electronic friction coefficients

can be improved by basing them on more precise quantum chemical calculations. Fi-

nally, the performance of “classical, non-adiabatic” models (e.g., classical stochastic

trajectories in a two-state system), and of “quantum, adiabatic” models (e.g., quan-

tum Langevin dynamics or open-system density matrix theory on a single surface)

should be studied.



Appendix A

Fourier Grid Hamiltonian

The Fourier Grid Hamiltonian (FGH) has been developed by Marston and

Balint-Kurti [99] for the bound state calculation of the Schrödinger equation. Here

the Hamiltonian is represented as a matrix and evaluated on a grid. The wave

function ψ and the Hamiltonian Ĥ are expressed in the basis of the coordinate rep-

resentation. The basis vectors |x〉 of this representation are the eigenfunctions of

the coordinate operator x̂:

x̂|x〉 = x|x〉 . (A.1)

For an one-dimensional system, the wave function is expressed in the discrete

basis |xi〉 as

|ψ〉 =
∑

i

|xi〉∆xψi , (A.2)

where ∆x is the grid spacing and ψi are the coefficients (amplitudes) of the wave

function at grid points and are calculated using the variational method. The expec-

tation value of the energy is

E =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 . (A.3)

The matrix elements of the renormalized Hamiltonian is defined as

H ′
ij = 〈xi|Ĥ|xj〉∆x . (A.4)
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The Hamiltonian H ′
ij can be written in an equidistant grid basis as

H ′
ij = Tij + V (qi)δij , (A.5)

where V (qi) is the potential energy and the kinetic energy Tij is calculated as

Tii =
π2

µL2

N2 + 2

6
(A.6)

Tij = (−1)i−j π
2

µL2

1

sin2[(i− j)π/N ]
. (A.7)

Here, L is the grid length, N is the number of grid points (assumed to be even for

practical reasons) and µ is the reduced mass.

Eq. (A.3) becomes

E =

∑

i,j ψ
⋆
iH

′
ijψj

∑

i |ψi|2
. (A.8)

This energy is minimized with variation of the coefficients ψi yields the secular

equations
∑

j

[H ′
ij − EΩδij]ψ

Ω
j = 0 . (A.9)

The matrix elements H ′
ij are evaluated using the Fourier method. The eigenval-

ues, EΩ, and eigenfunctions, ψΩ
j give corresponding bound state energies and wave

functions, respectively.

The computational effort is very much dependent on the number of grid points,

N . For a N ×N matrix the computational task scales to N3.



Appendix B

Split Operator Propagator

For an one-dimensional system, the Time Dependent Schrödinger Equation (TDSE)

for the time evolution of the wave function is given by

ih̄
∂

∂t
|ψ(x, t)〉 =

[

− h̄2

2m
∇2 + V (x)

]

|ψ(x, t)〉 = Ĥ|ψ(x, t)〉 . (B.1)

For the solution of the TDSE, we calculate the wave function at time t as

|ψ(x, t)〉 = e
−iĤ(t−t0)

h̄ |ψ(x, t0)〉 . (B.2)

The numerical propagation of Eq. B.2 is usually done on a time grid at different

intervals t+ ∆t where ∆t is the time step.

Feit and Fleck [108] suggested a numerical propagation scheme to do so, Split

Operator Propagator (SPO) which is strictly unitary. The Hamiltonian has the form

Ĥ = T̂ + V̂ , (B.3)

where T̂ is the kinetic energy operator which is diagonal in the momentum space

and V̂ is the potential energy operator which is diagonal in the configuration space.

Writing the time evolution operator as a simple exponential product

e
−iĤ∆t

h̄ = e
−iT̂∆t

h̄ e
−iV̂ ∆t

h̄ + O(∆t)2 (B.4)
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leads to an error of second order in the time step ∆t. In the SPO method, the time

evolution operator is rewritten by a splitting of kinetic energy operator T̂ as

e
−iĤ∆t

h̄ = e
−iT̂∆t

2h̄ e
−iV̂ ∆t

h̄ e
−iT̂∆t

2h̄ + O(∆t)3 (B.5)

which leads to only an error of third order in ∆t.

Since T̂ and V̂ are diagonal in the momentum and position representations, it

is easy to apply the SPO technique with the help of the Fourier Transform (FT).

Thus the method works as follows: (i) Fourier transform the wave function from

the configuration space to the momentum space and apply the e
−iT̂∆t

2h̄ operator,

(ii) Fourier transform the wave function from the momentum space back to the

configuration space and apply the e
−iV̂ ∆t

h̄ operator, (iii) again Fourier transform the

wave function to the momentum space and apply e
−iT̂∆t

2h̄ to complete the action of

the kinetic energy operator, and (iv) Fourier transformation of the resulting wave

function to the configuration space gives the new wave function at t+ ∆t.

The Fourier transformation of the wave function is the most time consuming step

in the above case. The FT can be made easier by using a Fast Fourier Transformation

(FFT) method which will be discussed below.



Appendix C

Fast Fourier Transform

The wave function in the configuration space, ψ(x), and in the momentum space,

ψ̃(k), are related to each other through the Fourier transformation (FT) as

ψ̃(k) =
1√
2π

∫ +∞

−∞
dx e−ikx ψ(x) (C.1)

ψ(x) =
1√
2π

∫ +∞

−∞
dk eikx ψ̃(k) . (C.2)

Similarly, a function in the time domain can be represented in the frequency

domain through a FT. For example, a function in the time domain, f(t), can be

Fourier transformed to the frequency domain, F (ν) as

F (ν) =

∫ +∞

−∞
dt e−i2πνtf(t) . (C.3)

In practice, one does the above integration with a finite number, N , of data

points. The f(t) is then sampled at N discrete times separated by the interval ∆t.

fn = f(tn) ; tn = n∆t ; n = 0, 1, 2, ...., N − 1 . (C.4)

N is assumed to be even for FFT for practical reasons. Now we can get the Fourier

transform of the f(t) at the following frequencies

Fj = F (νj) ; νj =
j

N∆t
; j = −N

2
, ....,

N

2
. (C.5)
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Then Eq. (C.3) can be rewritten using the Discrete Fourier Transformation

(DFT) as

Fj =

∫ +∞

−∞
dt e−i2πνjt f(t) (C.6)

= ∆t
N
∑

n=0

e
−i2πjn

N fn . (C.7)

The Eq. (C.7) can be evaluated as a matrix vector multiplication as








Fj0
...

FjN−1









=









eaj0 n0 . . . eaj0 nN−1

...
. . .

...

eajN−1 n0 . . . eajN−1 nN−1

















fn0

...

fnN−1









with a = −i2π/N . This means that one needs N × N multiplications of complex

numbers for each transformation (only for one time). The computational task can

be reduced to N log2 N by using the Fast Fourier Transform (FFT) technique

[109, 122]. The Fourier transformation of N data points can be rewritten as a sum

of 2 discrete Fourier transformations with N/2 points, where one transformation

contains the even points (e) and the other one holds odd ones (o) by using the

Danielson-Lanczos Lemma. The proof is as follows:

Fj =
N
∑

n=0

e
−i2πj n

N fn (C.8)

=

N/2−1
∑

n=0

e
−i2πj 2n

N f2n +

N/2−1
∑

n=0

e
−i2πj (2n+1)

N f2n+1 (C.9)

=

N/2−1
∑

n=0

e
−i2πj n

N/2 f2n + e
−i2πj

N

N/2−1
∑

n=0

e
−i2πj n

N/2 f2n+1 (C.10)

= F e
j + e

−i2πj
N F o

j . (C.11)

We can apply the Danielson-Lanczos Lemma again to split these two discrete

Fourier transforms into 4 transformations of length N/4 and again and again, until

we get N transformations of length 1. Such a Fourier transform reduces to copying

of an input number into an output number

F eeoeeoo...eeooe
j = fn . (C.12)
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Therefore, we need to rearrange the input for every Fj and then the transformations

of lengths 2,4,8,16,...,N have to computed, by multiplying with e
−i2πj

N in Eq. (C.11).

This has to be done log2 N times, which leads to a numerical effort proportional to

N log2 N .



Appendix D

Time-Energy method

The time-energy method [111] allows to analyze the kinetic energy distribution of the

outgoing wave function in a state-resolved fashion. In this method, one projects the

outgoing wave packet onto the asymptotic fragment states and employ a time-energy

Fourier transform to get the projection coefficients. The projection coefficients are

calculated for our specific system as

C̃vr(Zdes; t) =

∫

ψ(r;Zdes; t)χvrdr (D.1)

where ψ(r;Zdes; t) is the outgoing wave function and χvr is a product vibrational

state, in our case computed from
[

− h̄2

2µr

d2

dr2
+ V (r;Zdes)

]

χvr = εvrχvr . (D.2)

The projection of the wave packet is done until all of the wave packet has passed

through the projection line at Z = Zdes. After the projection line, a complex

absorbing potential is usually used to absorb the outgoing wave packet.

The coefficients Cvr(Zdes; t) are calculated as

Cvr(Zdes; t) = C̃vr(Zdes; t) e
iεvr t . (D.3)

These coefficients are then Fourier transformed to the energy domain

Cvr(Zdes;E) =
1√
2π

∫ ∞

−∞
Cvr(Zdes; t)e

iEt/h̄ dt , (D.4)



107

where Cvr(Zdes;E) is the energy dependent projection coefficient.

The total, translational energy resolved desorption can be calculated by summing

over all the product vibrational states

P (E) =
2

h̄

√

E

2µZ

∑

vr

|Cvr(Zdes;E)|2 (D.5)

where µZ is the reduced mass along the product coordinate.

From Eq. (D.5), the quantities of interest are calculated as

Pdes =

∫ ∞

0

P (E)dE , (D.6)

Pvr(E) =
2

h̄

√

E

2µZ

|Cvr(Zdes;E)|2 , (D.7)

Pvr =

∫ ∞

0

Pvr(E)dE , (D.8)

Ekin,vr =

∫ ∞

0

E Pvr(E)dE . (D.9)



Appendix E

Complex absorbing potential

One of the general problems in the wave packet propagation is the reaching of

unbound parts of the wave packet at grid boundaries. So one has to use absorbing

boundary conditions after an analysis point to avoid the reentrance of the desorbed

wave packet through the other end of the grid. One generally used method is

a Complex Absorbing Potential (CAP) to solve this problem. Here one adds an

imaginary part to the potential in the absorbing region. Here we adopted a linear

ramp [110],

Vabs =

{

−iVi0(Z − Zabs) Z ≥ Zabs

0 Z < Zabs

(E.1)

In practice we add this potential to our ground state potential in the CAP region

which results in the multiplication of our wave function with a factor of e−A(Z). The

wave function will be diminished at the grid boundaries. A good CAP has to fullfill

two conditions; i) it has to absorb the wave function passing through the region and

ii) it has to make sure that no reflection occurs due to the interaction with the wave

function. The parameters for CAP are carefully chosen to prevent on the one hand

reflection with a too steep imaginary part, on the other hand transmission with a

small Vi0, at an absorber. To get a better CAP, we extended our grid along the Z

coordinate. The tunneling and reflection at a CAP can be analyzed by looking at

the density of the wave function in the position space and norm of the wave function.



Appendix F

Ermak and Buckholz algorithm

Ermak and Buckholz introduced a new method for the treatment of Langevin equa-

tions with certain assumptions [124, 68]. In this approach, the equations of motion

(Eq. (4.1) and Eq. (4.2)) are integrated over a time interval ∆t by assuming that the

forces from the potential (systematic force) remain approximately constant. Then

the algorithm works with stored positions, r, velocities, v, and accelerations, a. For

a one-component system, the algorithm can be written as

r(t+ ∆t) = r(t) + c1∆t v(t) + c2∆t
2 a(t) +RG

r (F.1)

v(t+ ∆t) = c0v(t) + c1∆t a(t) +RG
v (F.2)

where RG
r and RG

v are Gaussian random components acting on position and velocity,

respectively. In our case, RG
r and RG

v are derived from the Gaussian random force,

R(t), in Eq. (4.5). The integration coefficients in the above equations are

c0 = e−η∆t ≈ 1 − η∆t+
1

2
(η∆t)2 − 1

6
(η∆t)3 +

1

24
(η∆t)4 − . . . (F.3)

c1 = (η∆t)−1(1 − c0) ≈ 1 − 1

2
η∆t+

1

6
(η∆t)2 − 1

24
(η∆t)3 + . . . (F.4)

c2 = (η∆t)−1(1 − c1) ≈
1

2
− 1

6
η∆t+

1

24
(η∆t)2 − . . . (F.5)

where η is the friction coefficient.

In this algorithm, at low η values, the dynamical aspects dominate, and the

Newtonian mechanics is recovered as both η and R(t) become zero. Then Eq. (F.1)
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and Eq. (F.2) become a simple Taylor series expansion in time. This is not an

accurate method to treat Brownian dynamics at low friction and we need to include

a stochastic generalization, with friction, of a Verlet-like algorithm. This can be

incorporated by assuming that the systematic force varies linearly with time in the

integration of the velocity equation, Eq. (F.2) as

v(t+ ∆t) = c0v(t) + (c1 − c2)∆t a(t) + c2∆t a(t+ ∆t) +RG
v . (F.6)

These two equations (Eq. (F.1) and Eq. (F.6)) are used in the propagation of

2D Langevin equations in Chapter 4.
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