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Chapter 1

Introduction

This thesis analyses synchronization phenomena occurring in large ensembles of
interacting oscillatory units.

The concept of macroscopic mutual synchronization (or macroscopic mutual
entrainment) is essential in order to understand self-organization phenomena aris-
ing at many levels in nature. This means that multiple periodic processes with
different natural frequencies come to acquire a common frequency (and in some
cases also a common phase) as a result of their mutual influence. The importance
of the function of synchronization in the self-organization in nature may be realized
from the fact that what looks like a single periodic process on a macroscopic level
often turns out to be a collective oscillation resulting from the mutual synchro-
nization among an enormous number of the constituent oscillators. This notion
was first explored by Norbert Wiener in connection with the human alpha rhythm
in the brain: He concluded that some physiological rhythms might reflect mutual
synchronization of myriads of individual oscillatory processes (Wiener, 1958).

In general the biological organisms are characterized by complex internal dy-
namics. In some cases these dynamics are cyclic, so that an organism persistently
goes through a closed sequence of states and in this sense, operates as a clock.
Thus, these forms of internal dynamics can be viewed as an active motion along
a certain cyclic coordinate (Winfree, 1967). The actual processes underlying the
cyclic behavior of a biological organism are typically very complex and may differ
greatly from one organism to another (Winfree, 1980). Additionally, in biology
the oscillators must be self-sustained and nonidentical, in contrast to many-body
physics, where the oscillators are usually assumed to be conservative and identical.
Here, self-sustained oscillator means that each oscillator is of a dissipative type,
or equivalently that it rides a (stable) limit cycle corresponding to the individual’s
free-running oscillation. This assumption is appropriate, because perturbed biolog-
ical oscillators generally regulate their amplitude, i.e. they return to their attractor,
whereas conservative oscillators would remain in the perturbed state forever.

1



2 Introduction

Very often enormous communities of biological oscillators are found. In such
cases, the interaction between individual oscillators may lead to mutual entrain-
ment of their cycles and thus to the emergence of coherent internal dynamics.
There are many examples of collective synchronization in nature. For instance, an
impressive example is that performed by the fireflies in the jungles of Southeast
Asia. Male fireflies emit light at regular intervals, typically twice per second. Large
communities of such insects may cover the trees and when the cycles of the individ-
ual insects are synchronized these trees are seen rapidly flashing (Buck and Buck,
1968). In addition, visual and acoustic interactions also make crickets and frogs
chorus (Walker, 1969; Winfree, 1980) and an audience clap in synchrony (Néda
et al., 2000). Synchronization is therefore a phenomenon of self-organization in
time.

Similar phenomena are known at a cellular level. For instance, oscillations
of the glycolysis in suspensions of yeast cells (Richard et al., 1996; Dano et al.,
2001), or in the cells forming pacemaker nodes, may become synchronous so that
a large amplitude periodic signal is generated (Winfree, 1980; Glass and Mackey,
1988). Moreover, synchronization is related with several central issues in neuro-
science (Singer, 1999; Varela et al., 2001): the simultaneous spiking in a neuronal
population is a typical response to visual (Eckhorn et al., 1988; Gray et al., 1989),
odorous (Stopfer et al., 1997) or tactile (Steinmetz et al., 2000) stimuli and it is
the mechanism that maintains vital rhythms as respiration (Koshiya and Smith,
1999). In contrast, synchronization is sometimes regarded as dangerous as in the
case of several neurological diseases, e.g. epilepsy (Engel and Pedley, 1975).

Another important example in nature is the synchronization of population cy-
cles in ecology that takes place in very broad geographic regions (Blasius et al.,
1999). In this context it is known that synchronization of fluctuating population
numbers is strongly connected to the risk of global species extinction (Heino et al.,
1997; Earn et al., 2000). On the other hand applications of synchronization of
many systems in physics and engineering may be found in chemical reactions (Ertl,
1991; Mikhailov and Loskutov, 1996), lasers (Garcia-Ojalvo et al., 1999; Garcia-
Ojalvo and Roy, 2001), digital-logic circuitry (Wiesenfeld et al., 1996, 1998) and in
neural networks (Hoppensteadt and Izhikevich, 1998, 1999, 2000). Moreover, the
emergence and breakdown of coherent collective motion are not a unique property
of the internal dynamics of the oscillators. Similar effects are possible when cyclic
collective motions of swarms in physical coordinate space are considered (Gray,
1928; Taylor, 1951).

The problem of synchronization can be formulated mathematically in terms
of coupled nonlinear differential equations and hence, in the case of weak interac-
tions, it becomes a problem of perturbations. In this context the concept ‘isochron’
was developed by Winfree (1967) in order to treat with oscillators perturbed off
their limit cycles. This is important because biological oscillators are almost never
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on their attracting cycles. In the present thesis these ideas are incorporated into
the Kuramoto model, which is a paradigmatic model to investigate mathematically
macroscopic mutual synchronization (Kuramoto, 1974; Pikovsky et al., 2001).

This work is organized as follows: Chapters 2 and 3 intend to give the neces-
sary background information. Chapter 2 briefly describes the two canonical models
that will be used to study synchronization. First the Landau-Stuart model, that
describes a general dissipative system close to the onset of oscillations (Hopf bifur-
cation). This model contains two independent parameters: the natural frequency
and the nonisochronicity, that is a parameter related with the isochrons, and de-
scribes the amplitude dependence of the frequency. The second model describes
the oscillators dynamics in terms of a single phase variable: Taking the effect of
the perturbations on the evolution of the oscillators into account allows to reduce
a weakly perturbed oscillatory system to a single equation which describes the evo-
lution of the phase. Therefore, the so called phase equations permit to write a
generic system of N weakly coupled, nearly identical, limit cycle oscillators as a
system consisting of N coupled differential equations of N phase variables. Finally,
the synchronization of two phase oscillators is studied and compared with that of
two diffusively coupled Landau-Stuart oscillators. This helps to determine the re-
strictions imposed by the phase approximation and, particularly, to introduce the
concept of nonisochronicity.

Chapter 3 presents the most remarkable results concerning mutual synchroniza-
tion in large populations of oscillators. The Kuramoto model (Kuramoto, 1974),
that is the simplest possible phase model, is introduced and analyzed. Despite its
simplicity it still retains very fundamental information about the synchronization
process 1. In particular, if an order parameter (measuring the degree of phase
coherence in the model) is defined, the sudden transition from incoherent to syn-
chronized motion at a critical value of the coupling strength, is strikingly similar
to a thermodynamic second-order phase transition. Using the language of bifur-
cations theory, the transition occurs through a Hopf bifurcation. In the course of
Chapter 3 several analytical techniques that will be used later are developed and
finally the phase reduction of the Landau-Stuart model is presented.

In Chapter 4 the phenomenon called ’anomalous synchronization’ is described.
Generally, it is assumed that diffusive interaction between nonlinear oscillators in
one dynamical variable will eventually lead to synchronization of the phases of
such oscillators. However, it has been shown that weak diffusive interaction can
also lead to dephasing of the oscillators, which then entails a variety of new dynam-

1In fact, ensembles of superconducting Josephson junctions (Wiesenfeld et al., 1996; Kiss et al.,
2002), lasers (Oliva and Strogatz, 2001) and electrochemical oscillators (Kiss et al., 2002) show a
transition to synchronization exactly as the Kuramoto model predicts.



4 Introduction

ical phenomena such as chemical turbulence (Kuramoto, 1974; Kurrer, 1997) and
intermittency (Han et al., 1995). Here, a novel mechanism is presented where the
coupling can enlarge the natural disorder of frequencies, desynchronizing the en-
semble of oscillators (in the regime of weak coupling) (Blasius et al., 2003; Montbrió
and Blasius, 2003; Montbrió et al., 2004a). This effect arises due to the presence of
nonisochronicity of the oscillators in the ensemble. In particular, the nonisochronic-
ity must be correlated with the natural frequency of oscillation. This premise is
pertinent because the inhomogeneities in the ensemble may, firstly, affect all the
parameters in the system and, secondly, maintain certain correlations.

On the other hand, when nonisochronicity and natural frequency have nega-
tive covariance synchronization can be enhanced. This allows for synchronization
control: With a careful choice of oscillator parameters the effect of anomalous syn-
chronization can be used to either enhance or inhibit the synchronization in the
ensemble. Similar strategies can be used in biological systems and thus anomalous
synchronization might play an important role in living systems.

Chapter 5 is devoted to a different problem where, again the effects of the
nonisochronicity are remarkable (Montbrió et al., 2004b). In particular, in this
chapter it is argued that nonisochronicity may have a fundamental influence in
the synchronization process taking place between two interacting populations of
oscillators, as it happens in the case of two coupled nonisochronous oscillators
(Aronson et al., 1990).

The problem of coupling two different macroscopic populations has been mostly
unexplored, so far. The paradigmatic examples of synchronization in populations of
many interacting oscillators are typically modelized as a single population of oscil-
lators coupled via an equally weighted mean field coupling - all oscillators interact
identically with the mean field. This problem has been extensively studied con-
sidering the distribution of natural frequencies to be unimodal (Kuramoto, 1974),
symmetric (Kuramoto, 1974; Bonilla et al., 1992; Crawford, 1994) and asymmetric
bimodal (Acebrón et al., 1998), or multimodal (Acebrón et al., 2001). However,
all these studies do not account for the fact that many of such biological popula-
tions may, in fact, be composed of sub-populations, that could be of different type
and that may interact in a different fashion internally and externally. For example,
synchronization seems to be a central mechanism for neuronal information process-
ing within a brain area as well as for communication between different brain areas
(Singer and Gray, 1995; Singer, 1999). Moreover, Eckhorn et al. (1988) and Gray
et al. (1989) have shown experimentally that synchronization arises between dif-
ferent neighboring visual cortex columns, and also between different cortical areas.
It is believed that such mechanisms play a crucial role in the pattern recognition
tasks. The last experiments motivated the first study about synchronization of two
different populations composed of identical phase oscillators under the influence of
white noises (Okuda and Kuramoto, 1991).
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Here, in Chapter 5, the results of Okuda and Kuramoto (1991) are generalized
for the case of nonidentical oscillators. Moreover, in our study the coupling function
is of a more general form: The oscillators are considered to be phase oscillators
of a Landau-Stuart type, i.e. the coupling possesses a parameter (a phase shift in
the Kuramoto’s coupling function), that accounts for the nonisochronicity effects
(Sakaguchi and Kuramoto, 1986). Such a coupling function has also been proved to
be useful in modeling information concerning the synaptic connections in a neural
network (Hoppensteadt and Izhikevich, 1998) and time delays (Izhikevich, 1998).
On the other hand it also appears naturally in the phase reduction of an array
of superconducting Josephson junctions (Wiensenfeld and Swift, 1995; Wiesenfeld
et al., 1996).

In contrast to Chapter 4, the inhomogeneity in the ensemble is now introduced
simply through the natural frequencies, and not through the parameters related
with nonisochronicity. Additionally, the synchronization transition in the regime
of stronger interactions is considered. Here strong coupling means that the systems
are in regions of the parameter space close to criticality, i.e. close to the transition
between the incoherent and the synchronized motion.

The case of two coupled populations is especially interesting also from a theo-
retical perspective, because is combines the concept of macroscopic synchronization
(Chapter 3) with that of mutual synchronization of two oscillators (Chapter 2). In
this respect the presence of nonisochronicity plays a prominent role.

Finally, in Chapter 6, the results of this work are summarized, discussed and
some directions for future work are proposed.





Chapter 2

Dynamics of perturbed

oscillatory systems

In this Chapter two fundamental models for oscillatory systems are presented which
will be mainly used for analyzing synchronization phenomena.

The first model is the Landau-Stuart equation (Landau, 1944; Stuart, 1960)
which describes a general dissipative system near a Hopf bifurcation point.

The second model are the so called phase equations (Kuramoto, 1974). They
are based on a fundamental approximation applicable in general to weakly per-
turbed limit cycle oscillators, and therefore to weakly coupled oscillators in general.
Here the simplification of the dynamics comes essentially from the fact that the
amplitude disturbances decay much faster than the phase disturbances and thus
the original dynamics is contracted to a much simpler one, which still retains a suf-
ficiently large number of degrees of freedom to admit a variety of self-organization
phenomena.

Finally the synchronization of two coupled Landau-Stuart systems is studied
and compared with the synchronization process taking place between the corre-
sponding phase oscillators for the Landau-Stuart system. This permits to check
the validity of the phase approximation as well as to study the influence of the
nonisochronicity of the original limit cycle system, into the corresponding phase
equations.

2.1 Fundamental models for synchronization studies

2.1.1 The Landau-Stuart model

Many theories on the nonlinear dynamics of dissipative systems are based on the
first order ordinary differential equations

dx

dt
= F(x;χ) (2.1)

7



8 Dynamics of perturbed oscillatory systems

where x ∈ R
n and χ represents some parameters of the system. Assume that for

some range of the parameters χ the system has a stable steady state which loses sta-
bility at some critical value of χc, giving rise to a periodic motion. This phenomenon
is generally called Hopf bifurcation. As the parameter χ is increased further, the
system may show more complex behavior through a number of bifurcations, that
may lead to quasi-periodic, chaotic or a variety of non-periodic behaviors. How-
ever, all the systems come to behave in a similar manner sufficiently close to the
Hopf bifurcation. This important fact permits to reduce the system (2.1) to a very
simple universal equation sometimes called the Landau-Stuart (or λ−ω) equation.

The Landau-Stuart model in complex variables writes

ż = z[1 + i(ω + q) − (1 + iq)zz̄], (2.2)

or in polar coordinates, z = reiθ,

ṙ = r(1 − r2) (2.3)

θ̇ = ω + q(1 − r2). (2.4)

The parameter ω is the natural frequency of the oscillator and q is the non-
isochronicity, or shear term. It reflects that the oscillation frequency is a function of
the amplitude of the oscillations 1. From Eq.(2.3 in follows that the origin (r = 0)
is always an unstable fixed point, and that there are stable oscillations of radius
r = 1.

The solution of Eq.(2.2) with initial conditions r0 = r(0) and θ0 = θ(0) is

r(t) =

(

1 +
1 − r2

0

r20
e−2t

)−1/2

,

θ(t) = θ0 + ωt− q

2
ln(r2

0 + (1 − r2
0)e

−2t).

(2.5)

For the case of zero nonisochronicity, q = 0, the Landau-Stuart system rotates with
constant velocity ω for all initial conditions (r0, θ0). However, if the nonisochronic-
ity deviates from zero, the system still rotates with the natural frequency ω on the
limit cycle C, but it can have different frequencies in the other regions of the phase
space (r, θ).

2.1.2 Isochrons

In such a situation, when the rotation frequency depends on the location in the
phase space, it is not clear a priori how to define the phase outside the limit cycle C.
In order to deal with oscillatory systems perturbed off their limit cycles, Winfree

1The Landau-Stuart equations are not derived here. Some derivations can be found for instance
in (Kuramoto, 1974; Aronson et al., 1990; Hoppensteadt and Izhikevich, 1998)).
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Figure 2.1: Isochronous (q = 0) Landau-Stuart system (2.2). The isochrons (dashed
lines) are orthogonal to the limit cycle C. A trajectory starting at time t with initial
position φ0 = θ0 at the isochron I0, crosses the isochron I0 at times t + n(2π/ω), where
n = 1, 2, . . . . The depicted trajectory (bold face line) is obtained through the solution
(2.5) taking (r0 = 2, θ0 = 0).
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(dashed lines) are given by (2.6). A trajectory starting at time t with initial position
φ0 at the isochron I0, crosses the isochron I0 at times t + n(2π/ω), where n = 1, 2, . . . .
The depicted trajectory (bold face line) is obtained through the solution (2.5) taking
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10 Dynamics of perturbed oscillatory systems

(1967) developed the concept ’isochron’. According to Winfree the phase variable
φ is defined by the condition that all the points are rotating uniformly with the
same frequency ω in the neighborhood of C. Thus, the phase in not necessarily a
simple angle in the phase space. Instead points of constant phase define curves in
phase space which are called the isochrons. This concept is very useful for studying
systems consisting of many interacting oscillators, because they will almost never
be on their attractors.

In the case of the Landau-Stuart oscillator, from Eq. (2.5) we see that the new
phase φ can be defined in a small region around cycle C as

φ(r, θ) = θ − q ln r,

since the additional phase shift of a trajectory starting at (r0, θ0) is −q ln r0. There-
fore the isochrone Iφ0 is the curve of constant phase φ0 defined, for the Landau-
Stuart system, as

Iφ0 : φ0 = θ − q ln r. (2.6)

• The isochrons for the case q = 0 are just lines perpendicular to the cycle
C (see Fig. 2.1). In this case the definition of the new phase φ coincides
with the angle variable θ of the Landau-Stuart system (2.2). In general, we
refer to the systems with amplitude-independent frequency (defined as the
time derivative of the angle variable of the original system) as isochronous
oscillators.

• The isochrons of the Landau-Stuart system (and thus of any oscillatory sys-
tem close to the onset of oscillations) for q 6= 0 are logarithmic spirals (see
Fig. 2.2). We refer to such systems with an amplitude-dependent frequency
(defined as the time derivative of the angle variable of the original system)
as nonisochronous oscillators.

Similarly the isochrons can be defined for any system (2.1) as n−1 dimensional
surfaces of constant phase.

2.1.3 Phase dynamics

In this section we describe a fundamental approximation which will be very much
used in this work. In the previous Section the individual system was supposed
to be in the neighborhood of the Hopf bifurcation point. The description here is
related with perturbations acting on the system: when the perturbations are weak,
there exists another asymptotic regime where the description of the dynamics is
greatly simplified. In this context the concept of isochrons becomes very useful.

Later such perturbations will play the role of the coupling strength, i.e. the
interaction among the oscillators that will lead to collective behavior.
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We first consider a single limit cycle oscillator, with natural frequency ω, rep-
resented by a n-dynamical system (2.1). We then can define the phase φ corre-
sponding to an arbitrary x in the space state representing the system. The most
natural treatment is to define a phase variable φ in such a way that, with the
time development of x given by Eq.(2.1) the phase evolves uniformly. Therefore φ
satisfies

φ̇ = ω, (2.7)

and using the original system (2.1), the new definition (2.7) implies

∇xφ · F(x) = ω.

The phase dynamics method is extremely effective in describing systems of
weakly coupled oscillators. In this case, we can treat the interactions effect on a
single oscillator as being generated by a weak external force p(t). Let us proceed
in this manner, writing the forced system

dx

dt
= F(x) + p(t).
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Then, we consider the correspondingly perturbed motion of φ. Formally, we have

φ̇ = ∇xφ · (F(x) + p(t)).

The vector ∇x is perpendicular to the isochron (surface of constant phase) Iφ (see
Fig.2.3). If the perturbation in question is sufficiently weak, we expect that the
point x representing the system’s state will be close to the limit cycle orbit C of the
unperturbed system. Thus, we can replace ∇x by its realization at the intersection
of Iφ and C, so that ∇x0φ ≡ Z(φ), as it is shown in Fig. 2.3. In other words, we
write

φ̇ = ω + Z(φ) · p.
Clearly, we have that Z(φ+ 2π) = Z(φ).

2.1.4 Two coupled phase oscillators

Let us now consider the situation in which the system consists in two coupled
identical oscillators in which the interaction between oscillators can be represented
by a perturbation of the form p = V(x1,x2), where x1 is the state of the first
oscillator and x2 the state of the second one. Now, with x1 and x2 having the
isochrons Iφ1 and Iφ2 , with the same reasoning used above. We can replace x1 and
x2 in V by their values at the intersections of C with Iφ1 and C with Iφ2 by x10

and x20. We thus obtain for the first oscillator the following evolution equation
involving only the phases

φ̇1 = ω +G(φ1, φ2), (2.8)

where

G(φ1, φ2) ≡ Z(φ1) ·V(x0(φ1),x0(φ2)),

is a 2π-periodic function in both φ1 and φ2. We further simplify this equation as
follows. First, introducing the phase disturbances ψ1 and ψ2 as φ1 = ωt+ ψ1, and
φ2 = ωt+ ψ2. Replacing φ1 and φ2 in Eq.(2.8) with these expressions, we have

ψ̇1 = G(ωt+ ψ1, ωt+ ψ2). (2.9)

Since the coupling between the oscillators is weak, G is small and ψ1 and ψ2 change
slowly in time. Thus, in one period 2π/ω, ψ1 and ψ2 change only very slightly,
and we can approximate them as constants. We thus average the right hand side
of Eq.(2.9) over one period and obtain, (in terms of φ1 and φ2)

φ̇1 = ω + Γ(φ1 − φ2),

with

Γ(φ1 − φ2) =
1

2π

∫ 2π

0
G(φ1, φ2)d(ωt).
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The function Γ is called the interaction function, and it is a 2π periodic function
of the phase difference φ1 − φ2.

Next we generalize the previous discussion to two nonidentical (but nearly
identical) oscillators. Considering the vector fields to be slightly different

F(x1) = F0(x1) + δF(x1), F(x2) = F0(x2) + δF(x2) (2.10)

the full equation of motion for each oscillator can be written in the form dx/dt =
F(x), the vector field p can be included in the deviations δF(x), and under the
approximation made above, in which x is replaced by x0(φ), G comes to possess
the additional term Z(φ)δF(x0(φ)). Again, taking the average over one period, this
additional term yields the constant value δω. This represents a constant shift from
the characteristic frequency. With this, if the interaction is symmetric Eqs.(2.10)
come to assume the form

φ̇1 = ω1 + δω1 + Γ(φ1 − φ2),

φ̇2 = ω2 + δω2 + Γ(φ2 − φ1).
(2.11)

2.2 Synchronization of two oscillators

In the two oscillator model described in the previous section, if the phase difference
remains finite, i.e.

|φ1(t) − φ2(t)| < ct. for t→ ∞ (2.12)

then the average frequencies (or observed frequencies)

Ω = lim
t→∞

φ(t)

t
. (2.13)

for the two oscillators are identical. If this case we say that the oscillators are
mutually phase-synchronized (Pikovsky et al., 2001). When the phase difference
diverges as t → ∞, the synchronization is said to be broken, and the oscillators
drift.

2.2.1 Synchronization of two phase oscillators

If we write Eqs. (2.11) in terms of the phase differences φ = φ1 − φ2, the time
evolution of φ can be expressed in a closed form

φ̇ = ∆ω + 2Γodd(φ), (2.14)

where ∆ω ≡ ω1 − ω2, and Γodd(φ) is the anti-symmetric part of the interaction
function Γ(φ). Since Γodd(φ) is both anti-symmetric and 2π periodic, it satisfies

Γodd(0) = Γodd(π) = 0.
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For simplicity let us first assume that the oscillators are identical, i.e. ∆ω = 0.
Then there exist at least two synchronized solutions, one with φ = 0 and one with
φ = π. In order for these solutions to be stable, their corresponding differential
coefficients Γ′(0) and Γ′(π) must be negative. For example, let us take

Γ(φ) = −K
2

sin(φ+ α), (2.15)

with the coupling constant defined as K > 0. When synchronization has occurred
then φ has to remain constant and therefore if α < π/2 the motion of the oscillators
becomes synchronized (with frequency Ω−) in-phase, i.e. φ = 0. However, if
α > π/2 the oscillators synchronize (with frequency Ω+) in anti-phase, that is
φ = π. For more complicated coupling functions Γ, states in which the pase
difference is neither 0 nor π can result. On the other hand, it is interesting to note
that the oscillators synchronize to the frequencies

Ω∓ = φ∓ = ω ∓ K

2
sinα, (2.16)

that deviate from the individual frequencies of the oscillators if α is nonzero. Thus,
although the oscillators are identical the oscillators modify their frequencies due to
the coupling.

When the oscillators are considered to be nonidentical, it is also clear that the
solutions exist over some finite range of ∆ω around 0. If we write the Eqs. (2.11)
using the same coupling function (2.15) we have

φ̇1 = ω1 −
K

2
sin(φ1 − φ2 + α),

φ̇2 = ω2 −
K

2
sin(φ2 − φ1 + α). (2.17)

and the corresponding closed differential equation for the evolution of the phase
difference is given by

φ̇ = ∆ω −K cosα sinφ. (2.18)

This equation it is known as the Adler equation. There are two cases in the
dynamics of φ, as depicted in Fig.2.4. If the frequency detuning lies in the interval

−K cosα < ∆ω < K cosα (2.19)

then there is one pair of fixed points, i.e. a pair of stationary solutions for φ.
It is easy to see that one of this fixed points is (asymptotically) stable and the
other one unstable. Therefore, if (2.19) is fulfilled, the system evolves to one of
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Figure 2.4: The right hand side of Eq.(2.18) with α = 0 outside (a), at the border
(b), and inside the synchronization region (c). The stable and the unstable fixed points
are shown with the filled and open circles. In panel (b) the synchronization transition is
shown. Here the stable and the unstable fixed points collide and form a half-stable fixed
point which has been born in a saddle-node bifurcation.

the stable fixed points and stays there, so that the oscillators maintain a constant
phase difference given by

φ∗ = arcsin

(

∆ω

K cosα

)

. (2.20)

This regime determines when the oscillators are synchronized, i.e. they posses a
common frequency Ω that in general (α 6= 0) deviates from the mean ω̄ = (ω1 +
ω2)/2 (see Fig.2.5). This regime exists inside the domain (2.19) on the parameter
plane (∆ω,K), called the synchronization region, or range of entrainment.

Another situation is observed if the frequency detuning lies outside the synchro-
nization region (2.19). Then the time derivative of φ is permanently positive (or
negative) and thus increases indefinitely, corresponding to phase drift (Fig. 2.4(a)).
Notice that the phases do not separate at a uniform rate: φ increases most slowly
when it passes under the minimum of the sine function (bottleneck), in Fig. 2.4(a)
at φ = π/2, and most rapidly when it passes under the maximum at φ = −π/2.
Moreover, the period of phase drift may be calculated as

T =

∫ 2π

0

dφ

φ̇
(2.21)

which yields

T =
2π

√

∆ω2 − (K cosα)2
. (2.22)

The state of the system in the phase drift regime is quasiperiodic with two funda-
mental frequencies: the beat frequency

∆Ω = 2π/T, (2.23)
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Figure 2.5: Synchronization of two phase oscillators (2.17). Plotted is the averaged
frequencies (2.13) of each oscillator (left) and the beat frequency (2.23) ∆Ω(K) (right) as
a function of the coupling strength, K.

and the observed frequency 〈φ̇〉 = Ω, (Eq. (2.13)).

The transition between phase drift and synchronization occurs in a saddle-node
bifurcation at

(∆ω)c =
K

cosα
, or Kc =

∆ω

cosα
. (2.24)

Close to the synchronization region (2.19) it it possible to estimate the behavior
beat frequency ∆Ω, that gives

∆Ω ∼
√

∆ω −K cosα.

This shows that ∆Ω obeys the characteristic square root scaling law of a system
close to a saddle-node bifurcation (see Fig. (2.4(b)). Therefore the oscillators spend
a long time with some constant phase difference that it is interrupted by short
intervals where the phase difference φ increases (or decreases) by 2π: these events
are called phase slips.

2.2.2 Synchronization of two Landau-Stuart oscillators

In the following section we obtain the phase equations of a system consisting in
two diffusively coupled Landau-Stuart oscillators,

ż1,2 = z1,2[1 + i(ω1,2 + q1,2) − (1 + iq1,2)z1,2z̄1,2] +
K

2
(z2,1 − z1,2), (2.25)

where the subscripts refer to the oscillator 1 or 2. Aronson et al. (1990) showed
that the dynamics of (2.25) close to the transition to synchronization are greatly
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Figure 2.6: Frequencies (left) and averaged radius (right) of two coupled Landau-Stuart
oscillators (2.25) (solid lines) versus coupling strength K. The dotted lines in the left
panel correspond to the phase approximation (2.30) and the dotted lines in the right one
correspond to Eq. (2.28) (q1 = q2 = 0.666, ω1 = 0.25, ω2 = −0.25).

complicated due to the presence of the nonisochronicity. However, the weakly cou-
pled system presents an interesting property that was investigated and that will
be the the subject of Chapter 4. However, we first discuss briefly an important
phenomenon called oscillation death arising in the presence of both large param-
eter mismatch and strong coupling strength. In such circumstances the diffusive
coupling acting in limit cycle systems can lead to the suppression of the oscillations
(Bar-Eli, 1985; Aronson et al., 1990). The system (2.25) in polar coordinates writes

ṙ1,2 = r1,2(1 − K

2
− r21,2) +

K

2
r2,1 cos(θ2,1 − θ1,2), (2.26)

θ̇1,2 = ω1,2 + q1,2(1 − r2
1,2) +

K

2

r2,1
r1,2

sin(θ2,1 − θ1,2). (2.27)

In order to understand how oscillation death arises in the Landau-Stuart oscil-
lators (2.25) let us assume that the oscillators are not synchronized. In this
case, Eqs.(2.26) can be time-averaged over one period T of the phase difference
φ(t) = θ2 − θ1 in order to estimate the mean radius of the oscillators. Since the
oscillators are unlocked, the phases perform a quasiperiodic motion on a torus with
coordinates θ1 and θ2, and therefore the integration of the trigonometric terms in
the right-hand side of Eqs. (2.26) and (2.27) vanish. In particular, the equation for
the radius has a stable fixed point located at

r1,2 =

√

1 − K

2
, (2.28)
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Figure 2.7: Time evolution of the radius of two coupled Landau-Stuart oscillators (2.25)
for K = 0.05 (up) and for K = 0.47 (down). (q1 = q2 = 0.666, ω1 = 0.25, ω2 = −0.25).

and an unstable one at r1,2 = 0. Eq.(2.28) describes the effect of oscillation death:
At K = 2 the unstable and the stable solutions meet and thus the origin r1,2 = 0
becomes stable.

In Fig. (2.6) the transition to synchronization for two Landau-Stuart oscillators
is shown numerically integrating Eqs.(2.25) and computing the frequencies Ω1,Ω2,
as the coupling strength K is continuously increased from zero. The right panel
shows, in solid lines, the time-average of the radius r1 and r2. The approximation
(2.28) is plotted with dotted lines and presents good agreement with the numerics
as far as the oscillators are not synchronized. As soon as the oscillators become
locked, their radius increases reflecting the lower degree of interaction between the
oscillators.

In the left panel of Fig. (2.6) the frequencies of the oscillators are depicted (as
solid lines) as the coupling strength K is continuously increased from zero. Note
that there exists an important difference between Figs. (2.6)(left) and (2.5)(left).
In the present case the oscillators increase their frequencies despite the fact that
they are not synchronized: This reflects the presence of nonisochronicity in the
Landau-Stuart systems. In addition, note that as soon as the synchronization is
achieved the frequencies begin to decrease and tend to the mean ω̄ = (ω1 + ω2)/2
as K → ∞. This can be better understood by writing the corresponding phase
equations for the Landau-Stuart oscillators.
Next, we derive the phase equations corresponding to the Landau-Stuart system

(2.25). If we assume that for weak coupling the time evolution of the radial part
is approximately constant (see Fig. 2.7), ρ̇ ≈ ṙ1 ≈ ṙ2 ≈ 0, then the Eqs.(2.26) for
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the radius become

r21,2 = 1 − K

2
+
K

2

r2,1
r1,2

cos(θ2,1 − θ1,2), (2.29)

and substituting this into Eqs. (2.27) we obtain

θ̇1,2 = ω1,2 +
K

2
q1,2 +

K

2

r2,1
r1,2

[2 sin(θ2,1 − θ1,2) − q1,2 cos(θ2,1 − θ1,2)] , (2.30)

In Fig (2.6) a comparison of the phase Eqs.(2.30) with the original system (2.25)
is shown. Clearly, the phase approximation is valid as far as the systems interact
weakly and the amplitude of the oscillators remains constant in time. The validity
of the phase approximation can be better understood comparing the left panel of
Fig (2.6) with Figs. (2.7), where the time evolution of the oscillators amplitudes
for weak and for large (close to synchronization) coupling are shown.





Chapter 3

Synchronization in an ensemble

of nonidentical oscillators

”Below a threshold, anarchy prevails; above it, there is a collective rhythm (. . . )”

A. Winfree (2002)

This Chapter gives an overview on some of the main results that are known
about macroscopic synchronization, especially for the case of global coupling. The
material here can be mostly found in the book of Kuramoto (1974), the book of
Pikovsky et al. (2001) and in the papers Strogatz and Mirollo (1991) and Strogatz
(2000). On one side, our aim is to put the results of this thesis in a general context.
On the other, to present mathematical techniques that will be very much used in
the following chapters.

A starting date for the study of synchronization of many oscillators with dif-
ferent natural frequencies can be probably set in the context of cybernetics, when
Wiener (1958) suggested to approach the alpha rhythm in the brain as the entrain-
ment of a large number of neurons with different period. About ten years later the
problem of synchronization was reconsidered by Winfree (1967) as an ubiquitous
and central issue of biological systems.

Instead of the Fourier formalism used by Wiener, Winfree investigated the
problem looking at synchronization as a phase transition. As a simplified case, he
studied the behavior of a population of limit cycle oscillators with different natural
frequencies and all-to-all coupling. He numerically found that for low values of the
coupling strength, the system was incoherent : On average no collective oscillations
appear in the ensemble. Increasing the coupling term, a critical value is reached, at
which a small cluster of oscillators, rotating at the same frequency, emerges. With
further increase of coupling the cluster increases in size and the system enters

21



22 Synchronization in an ensemble of nonidentical oscillators

a region of partial locking. Using the centroid of the population of oscillators
as an order parameter and the the coupling strength, or alternatively the width
of the distribution of natural frequencies, as a control parameter, a phenomenon
analogous to a second order phase transition appears.

Later this phenomenon was studied in more detail by Kuramoto (1974), who
introduced the model that now is the standard framework for studying synchro-
nization phenomena, and is usually referred to as the Kuramoto model.

3.1 The Kuramoto model

We start analyzing the synchronization process in a macroscopic ensemble of N
oscillators using the simplest possible model. In the Chapter 2 the phase equations
corresponding to two coupled oscillators were derived, under the assumption of
weak coupling and nearly identical natural frequencies (see Eq.(2.11)). Using the
same arguments, the phase equations for an ensemble of nearly identical, weakly
coupled oscillators can be obtained. Thus we have

θ̇i = ωi −
K

N

N
∑

j=1

Γ(θi − θj), i = 1, . . . N (3.1)

where θi denotes the phase of the oscillator i in the ensemble and the frequencies ωi
are distributed according to some probability density g(ω). The simplest possible
form of the coupling function corresponds to the Kuramoto model

θ̇i = ωi −
K

N

N
∑

j=1

sin(θi − θj) (3.2)

where the frequency distribution g(ω) is assumed to be unimodal of width γ and
symmetric about its mean frequency ω̄, i.e. g(ω̄+ω) = g(ω̄−ω), for all ω. Moreover,
we set ω̄ = 0. This last assumption can be made without loss of generality (unlike
the hypothesis of symmetry) because the frequency distribution can be arbitrarily
shifted by choosing a frame of reference rotating with frequency −ω̄. In that case,
the phase variables are tranformed according to θi → θi+ ω̄t, and using this change
of variables, Eq. (3.2) goes over to

θ̇i = ωi − ω̄ − K

N

N
∑

j=1

sin(θi − θj). (3.3)

In order to study phase transitions, it is important to introduce an appropriate
order parameter, that is a macroscopic quantity defined between 0 and 1 whose
value (first order phase transitions) or the value of whose derivative (second order



3.1 The Kuramoto model 23

phase transitions) is discontinuous at a critical point. A natural choice is the
centroid of the oscillator positions on the circle, defined as (Kuramoto, 1974)

Z = Reiψ =
1

N

N
∑

j=1

eiθj , (3.4)

where j is an index that characterizes each oscillator in the ensemble. Clearly
the quantity Z is an important measure for characterizing the amount of phase
clustering in large populations of oscillators. The order parameter R measures the
phase coherence of the oscillators whereas ψ measures the average phase. When
the phases of the oscillators get closer to each other R tends to one whereas its
value fluctuates around zero when the oscillator phases are uncorrelated (with
standard deviation scaling as 1/

√
N with the population size) and vanishes in

the thermodynamic limit. Intermediate values of R correspond to configurations
where the oscillator density is neither localized nor uniform on the unit circle, like
in the case of clustering. Thus, R quantifies the degree of synchronization of the
population and a phase transition can be detected looking at discontinuities in its
value when one of the control parameters is changed. On the other hand, note
that in contrast to the frequency disorder σ (see Chapter 4), the order parameter
R does not provide direct information about the oscillator frequencies.

The order parameter as it has been defined in Eq.(3.4) has another important
advantage beyond those discussed previously: thanks to the trigonometrical iden-
tity obtained multiplying both sides of the order parameter equation (3.4) by eiθi ,
the Eqs.(3.2) can be written in terms of the centroid as

θ̇i = ωi −RK sin(θi − ψ). (3.5)

In this form the mean-field character of the Kuramoto model becomes very clear:
The dynamical equation for each oscillator appears to be uncoupled from all the
others. In fact, each of them interacts only with the population as a whole, or
equivalently with the mean field quantities R and ψ. The phase θi of each oscillator
is pulled toward the mean phase ψ, rather than toward the phase of each individual
oscillator. Moreover, the effective strength of the coupling is proportional to the
coherence of the mean field R and therefore, in the incoherent state R = 0, all
the oscillators are uncoupled and the distribution of natural frequencies remains
unperturbed 1. This proportionality sets up a positive feedback loop between
coupling and coherence: as the population becomes more coherent, R grows and
so the effective coupling increases, which tends to recruit even more oscillators into
the synchronized cluster. If the coherence is further increased by new recruits, the
process will continue. Otherwise, it becomes self-limiting.

1We will see in the next section that this is a specific property of the system Eq. (3.2). Therefore
this is not always true, for instance for the case of globally coupled nonisochronous oscillators.
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Figure 3.1: Histogram of the coupling-modified frequencies ω̃i of an ensemble of 400
oscillators with a Lorentzian frequency distribution g(ω). The dotted line represents the
distribution of frequencies in the incoherent state (which coincides with g(ω)) whereas
the solid line represents the synchronized state. The synchronized cluster appears at a
frequency value Ω = 0 (γ = 0.985, K = 2 for a Lorentzian frequency distribution).

From what we have seen until now, it is important to stress that we expect the
process of synchronization in a large population of oscillators to occur in a very
different fashion as it happens between two oscillators. As we have discussed in the
previous Chapter (2), the synchronization of two non-identical oscillators is through
a saddle-node bifurcation and thus the difference of the observed frequencies ∆Ω
goes to zero continuously as one control parameter is varied (see Figs.2.4, 2.5,
4.1 where the control parameter is the coupling strength K). In contrast to this,
Eq.(3.5) shows that in a large ensemble of oscillators the individual frequencies do
not vary when the parameter K is increased, or equivalently when the dispersal of
the frequency distribution is decreased.

Let us now look for the steady solutions of Eq.(3.5). First we choose a reference
frame rotating with the frequency of the order parameter Ω -that it is assumed to
be constant. Changing variables, θi →, θi − Ωt the model (3.5) becomes

θ̇i = ωi − Ω −RK sin θi. (3.6)

Since R is assumed to be also constant, Eq.(3.6) implies that the solution shows
distinct features depending on the parameter values. Specifically, the population
splits into two clusters (see Fig. (3.1)):

• |ωi−Ω| ≤ KR: The oscillators having frequencies close to Ω approach a fixed
point defined by

ωi − Ω = RK sin θi, |θi| ≤ π/2. (3.7)
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The oscillators of this group are locked to the frequency Ω of the mean field.
From Eq.(3.7) one can understand the basic mechanism of synchronization:
In order to compensate the difference between the natural frequency ωi and
the frequency of the mean field Ω, the oscillators phases are shifted (with
respect to the centroid) by Ω − ωi, so that the frequency mismatch can be
exactly balanced according to Eq.(3.7). Hence, in a typical locked state, the
oscillators describe an arch of circumference around the centroid. The arch
is symmetric because of the symmetry of the sinusoidal coupling function
and because of the distribution of natural frequencies. The oscillators are
located along the arch in order of natural frequency, the one with ωi = Ω
being in the middle and thus having the same phase as the centroid. From
the symmetry properties of the frequency distribution it also follows that the
locking frequency Ω coincides with the average natural frequency ω̄. Thus,
from Eq.(3.7) the locked oscillators have phases distributed according to

θ∗i = arcsin
( ωi
RK

)

. (3.8)

Fig. 3.2(d) presents a snapshot of the phases at a certain time t beyond
the transient period. The synchronized oscillators correspond to the central
cluster described by Eq.(3.8). Observe that the oscillators with natural fre-
quency ωi = ω̄ do not modify their frequencies whereas the rest of oscillators
belonging to the synchronized cluster form a frequency plateau depicted in
Fig. 3.2(c).

• |ωi − Ω| > KR: The oscillators of this group are called drifting oscillators
and consists in those which fail to be entrained to the macroscopic field. Note
that Eq.(3.8) states that any finite population admits a fully locked solution
for sufficiently large coupling strength, which increases with the width γ of
the parameter distribution. Since the sine function is bounded, though, the
oscillators with natural frequency very different from ω̄, i.e. those belonging
to the tails of the frequency distribution g(ω), in practice can never be locked
and even large values of the coupling constant will lead at most to a partially
synchronized solution. This is always the case for an infinite population size
when the distribution of natural frequencies is unbounded.

The Eq.(3.6) for the drifting oscillators can be integrated and gives

θi = ω̃it+ f((ω̃i − Ω)t), (3.9)

where the coupling-modified frequencies ω̃ are given by

ω̃i = Ω + (ωi − Ω)

√

1 −
(

KR

ωi − Ω

)2

, (3.10)
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Figure 3.2: Ensemble of 400 phase oscillators governed by Eqs.(3.5). Plotted are the
oscillator index i versus coupling-modified frequencies ω̃i ((a) and (c)) and the instanta-
neous phase θi ((b) and (d)), below (K < Kc) (top) and above (K > Kc) (bottom) the
synchronization threshold. In figure (c) the frequency distribution below criticality (dot-
ted line, same as (a)) is also shown. The natural frequencies were distributed according
to a Lorentzian distribution, with ω̄ = 0.

and f is a certain 2π-periodic function that modulates the time evolution of
the phase. From Eq.(3.10), an oscillator having natural frequency far away
from the centroid’s frequency Ω finds its natural frequency almost unper-
turbed, in contrast with those oscillators with frequencies close to that of the
mean field Ω. This is shown in Fig. 3.2(c), where the coupling-modified fre-
quencies ω̃i for each oscillator i have been computed as in Eq.(2.13). Without
considering the central plateau corresponding to the oscillators locked to the
mean field, note that only the drifting oscillators close to such plateau have
a frequency that differs substantially from their original natural frequencies.

Moreover, the drifting oscillators behave as if they were uncoupled but ex-
ternally forced via the mean field, with strength KR. Note that Eq.(3.10)
reflects the generic square root scaling law close to a saddle node bifurcation
(see for instance Strogatz (1994); Guckenheimer and Holmes (1996)).

The next step is to find the contributions of the clusters of locked and drifting
oscillators to the mean field. Indicating with 〈 〉l the average over the locked
oscillators and with 〈 〉d the average over the drifting ones, we have

R = 〈eiθ〉l + 〈eiθ〉d, (3.11)



3.1 The Kuramoto model 27

where the index corresponding to the oscillator number has been dropped, since in
the thermodynamic limit N → ∞.

The contribution of the locked oscillators is simplified due to the symmetry of
the distribution of the locked phases (3.8): Since the distribution of frequencies is
symmetric, an oscillator with frequency ω gives exactly the opposite contribution
as the corresponding oscillator with natural frequency −ω. Thanks to this fact,
the imaginary part of 〈eiθ〉l averages out and hence in the thermodynamic limit

〈eiθ〉l = 〈cos θ〉l = KR

∫

|ω−Ω|≤KR
cos θ g(ω) dθ.

From Eq.(3.7) it is possible to express the natural frequencies as a function of
the angular position, and the contribution of the synchronized oscillators to the
centroid is

〈eiθ〉l = KR

∫ 2π

0
cos2 θ g(KR sin θ + Ω) dθ. (3.12)

Now let us consider the drifting oscillators. In order to proceed Kuramoto made
the following additional hypothesis that he did not prove: the oscillators move on a
unit circle with a speed that may change in time, but their distribution is stationary.
If we define a density function so that ρ(θ, ω)dθ describes the number of oscillators
with natural frequency ω that lie between θ and θ + dθ, Kuramoto’s hypothesis
implies that ρ must be stationary. The expression for ρ(θ, ω) is straightforwardly
obtained thinking that the oscillators will spend more time in a given small interval
when they have lower speed, and less where their velocity is higher. In other words,
the function ρ(θ, ω) must be inversely proportional to the velocity (3.5), which again
is a function of θ

ρ(θ, ω) =
C

|ω −RK sin θ| . (3.13)

The normalization constant C is determined through the normalization condition
for the density ρ

1 =

∫ 2π

0
ρ(θ, ω)dθ =

∫ 2π

0

C

|ω −RK sin θ|dθ

which yields

C =
1

2π

√

ω2 − (KR)2.

The contribution of the drifting oscillators can now be written as follows

〈eiθ〉d =

∫ 2π

0

∫

|ω−Ω|>KR
eiθρ(θ, ω)g(ω)dωdθ. (3.14)

Again we can use symmetry arguments to see that this integral vanishes, since g(ω)
is an even function and, from Eq.(3.13), ρ(θ + π, ω) = ρ(θ,−ω).
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The sums (3.12) and (3.14) yield the exact self-consistent equation

R = KR

∫ 2π

0
cos2 θ g(KR sin θ + Ω) dθ,

that is always satisfied if R = 0, i.e., in the incoherent case. However, a nontrivial
solution, corresponding to the locked regime, can be found by eliminating R

1 = K

∫ 2π

0
cos2 θ g(KR sin θ + Ω) dθ. (3.15)

Now the condition for the onset of synchronization can be obtained by solving the
integral for R→ 0+. This leads to the critical value of K

Kc =
2

πg(ω̄)
, (3.16)

which is the Kuramoto’s critical coupling for the onset of collective synchronization.
The behavior of the order parameter in the vicinity of the onset of synchroniza-

tion can be studied performing an expansion of Eq.(3.15) for K close to the critical
value

1 − π

2
Kg(ω̄) − π

16
K3g′′(ω̄)R2 +O(R3) = 0. (3.17)

It turns out that the character of the bifurcation, that is whether the centroid’s
oscillations amplitude increases for coupling larger (supercritical) or smaller (sub-
critical) thanKc, is determined by the value of g′′(ω̄). In particular, we will consider
the supercritical case g′′(ω̄) < 0, when R can be estimated as

R ≈
√

16

−πK3
c g

′′(ω̄)

√

K −Kc

Kc
. (3.18)

This relation also tells us that the order parameter scales as the square root of the
distance from the critical point, which is a generic feature of infinite dimensional
systems and corresponds, from a dynamics systems perspective, to the order pa-
rameter undergoing a supercritical Hopf bifurcation.

We want to stress that this self-consistent method has two important limita-
tions:

• The analysis is concerned only with steady-state behavior and it therefore
provides no information about stability. This important question will be
discussed in the Section 3.2.

• It depends crucially on the sinusoidal form of the coupling in the model
(3.2). Because of a convenient trigonometric identity, the order parameter
(3.4) appears in the governing equation (3.5). This is the coincidence which
allows the order parameter to be determined self-consistently.
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3.1.1 Asymmetric coupling function

This section is devoted to compare the results obtained for the Kuramoto model
with the results obtained by Sakaguchi and Kuramoto (1986) using a more general
coupling function Γ in Eq.(3.1)

θ̇i = ωi −
K

N

N
∑

i=1

sin(θi − θj + α), (3.19)

where |α| < π/2. Using the order parameter (3.4), the model (3.19) becomes

θ̇i = ωi −KR sin(θi − θj + α). (3.20)

The model (3.20) is essentially the Kuramoto model with a phase shift α in the
coupling function. This term in especially important when nonisochronicity is
considered, as it will be shown in Section 3.3. On the other hand Eqs. (3.20) have
also been proved to be useful in modeling information concerning the synaptic
connections in a neural network (Hoppensteadt and Izhikevich, 1998) and time
delays (Izhikevich, 1998) and they also appear naturally in the phase reduction
of an array of superconducting Josephson junctions (Wiensenfeld and Swift, 1995;
Wiesenfeld et al., 1996).

The fundamental difference between Eq.(3.19) and the Kuramoto model (3.2) is
that the in the present case the cluster of synchronized oscillators (i.e. the velocity
of the order parameter Ω) is not determined trivially as in the previous case as the
mean bare frequency ω̄, and therefore Ω must be determined self-consistently as
well as the order parameter R. Sakaguchi and Kuramoto (1986) showed that the
quantities R and Ω can be determined from the following self-consistency relation

Reiα = KR

(

iJ +

∫ π/2

π/2
g(Ω +KR sin ξ)eiξ cos ξ dξ

)

, (3.21)

where

J =

∫ π/2

0

cos ξ(1 − cos ξ)

sin3 ξ
[g(Ω + µ) − g(Ω − µ)] dξ (3.22)

with µ = KR/ sin ξ. Specifically, the critical point K = Kc is located at the point
where the R > 0 solution branches off the R = 0 solution.

Thus the synchronized cluster is Ω-shifted with respect the mean frequency.
This fact in general is able to break the symmetry imposed through the choice of a
reflection-symmetric frequency distribution. In other words, the locked oscillators
are in general not equally distributed around (ω̄ − Ω), as it is shown in Fig 3.3.
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Figure 3.3: Histogram of the coupling-modified frequencies ω̃i of the model (3.19) (com-
pare with Fig.3.1). The synchronized cluster appears at a frequency value Ω that differs
from the mean of g(ω) (compare with Fig.3.1). (γ = 0.985, K = 2.8, α = π/4rad. for a
Lorentzian frequency distribution.)

3.2 Stability of incoherence in the Kuramoto model

As we have seen in the previous section, the stability properties of the steady solu-
tions of the Kuramoto model can not be understood from the classical Kuramoto’s
analysis. Since the incoherent state and the partially synchronized state emerge
when the initial value problem is solved numerically, each must be stable in the
appropriate range of K at least in an operational sense. However, the theoretical
explanation of this stability has proved to be rather subtle even for the incoher-
ent state (Strogatz and Mirollo, 1991; Strogatz et al., 1992; Strogatz, 2000). This
section is devoted to explain the appropriate theoretical tools for the study of the
stability of the possible dynamical states of the Kuramoto model. The theoretical
treatment will be very much used in the rest of this PhD thesis.

3.2.1 Continuum limit of the Kuramoto model

The infinite system should be visualized as follows: for each frequency ω, there is a
continuum of oscillators distributed along the circle. Suppose then that this distri-
bution is characterized by a density function ρ defined so that Ng(ω)ρ(θ, ω, t)dθdω
describes the number of oscillators with natural frequencies in [ω, ω + dω] and
phases in [θ, θ + dθ]. Thus ρ(θ, ω, t)dθ denotes the fraction of oscillators with nat-
ural frequency ω and phase in [θ, θ + dθ] and satisfies the normalization

∫ π

−π
ρ(θ, ω, t)dθ = 1,
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for all ω and t. Furthermore, the density ρ is required to be 2π-periodic in θ and
nonnegative. The evolution of ρ is governed by the continuity equation

∂ρ

∂t
= −∂(ρv)

∂θ
, (3.23)

which expresses conservation of oscillators of frequency ω. Here the velocity v(θ, t, ω)
is interpreted in an Eulerian sense as the instantaneous velocity of an oscillator at
position θ, given that it has natural frequency ω. From (3.5) that velocity is

vi(θ, t, ω) = ωi −RK sin(θi − ψ). (3.24)

The incoherent state is described by the uniform distribution

ρ0 =
1

2π
,

and defines an equilibrium for Eq.(3.23) since R = 0 at ρ0.
The stationary states of the continuity equation (3.23) are the steady solutions

that we have seen in the previous section. The stationarity of Eq.(3.23) implies
that

ρv = C(ω), (3.25)

and if C(ω) 6= 0, we recover the stationary density (3.13) that has been derived
intuitively for the drifting oscillators. On the other hand if C(ω) = 0 the density
function ρ must be a delta function in θ.

The order parameter (3.4) can be alternatively expressed in terms of the density
as

Reiψ =

∫ 2π

0
dθ

∫ ∞

−∞
eiθρ(θ, ω, t)g(ω)dω. (3.26)

The density function ρ(θ, t, ω) is 2π-periodic in θ and therefore it admits the
Fourier expansion

ρ(θ, ω, t) =
l=∞
∑

l=−∞
ρl(ω, t)e

ilθ, (3.27)

with coefficients ρ−l = ρ∗−l since the density function is real. An important ob-
servation to be done is that the purely sinusoidal coupling allows to express the
order parameter exclusively in terms of the first Fourier mode. Indeed, substituting
(3.27) into the order parameter (3.4) yields

Reiψ = 2π

∫ ∞

−∞
ρ∗1(ω, t)g(ω)dω, (3.28)

and so

−R sin(θi − ψ) =2πIm

[(
∫ ∞

−∞
ρ∗1(ω, t)g(ω)dω

)

e−iθ
]

=iπ

(
∫ ∞

−∞
ρ1(ω, t)g(ω)dω

)

eiθ + c.c.,

(3.29)
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where c.c. denotes the complex conjugate of the preceding term.
The continuity equation (3.23) and the order parameter can be combined to

yield the equation for the evolution of the density ρ

∂ρ(θ, ω, t)

∂t
= − ∂

∂θ

[

ρ(θ, ω, t)

(

ω +Kiπ

(
∫ ∞

−∞
ρ1(ω

′, t)g(ω′)dω′
)

eiθ + c.c.

)]

.

This equation provides a continuum description of the oscillator population for
which issues of stability and bifurcations can be analyzed in detail. It is equivalent
to the following infinite system of integro-differential equations for the Fourier
modes

∂ρl(ω, t)

∂t
= −iωlρl(ω, t) + lKπρl−1(ω, t)

∫ ∞

−∞
ρ1(ω

′, t)g(ω′)dω′

− lKπρl+1(ω, t)

∫ ∞

−∞
ρ∗1(ω

′, t)g(ω′)dω′.
(3.30)

Note that equations corresponding to the negative modes are just the complex
conjugate to the equations for the positive modes.

3.2.2 Linear stability analysis of the incoherent state

First note that the homogeneous distribution of the phases where all the Fourier
modes -except ρ0- vanish, is a solution of the system (3.30). Next, we study the
evolution of a small perturbation of the incoherent state ρ0. This corresponds to

ρl = O(ε) ∀l 6= 0;

ρ0 = 1/2π,

where ε � 1. Thus from Eqs. (3.30) it can be easily checked that all the modes
have the form

∂ρl(ω, t)

∂t
= −ilωρl(ω, t) +O(ε2)

except the modes l = 1 and l = −1. The equation corresponding to the mode l = 1
up to first order in ε is

∂ρ1(ω, t)

∂t
= −iωρ1(ω, t) +

K

2

∫ ∞

−∞
ρ1(ω

′, t)g(ω′)dω′ (3.31)

and the equation for the l = −1 is just the complex conjugate of Eq.(3.31). There-
fore only these modes contribute to the linear stability of the incoherent state
ρ0. Then the coherence R(t) is determined at this order by ρ1 via Eq.(3.31). In
particular, if ρ1 grows exponentially, so does R(t).

Equation (3.31) reflects the mean-field character of the Kuramoto model: for
any given ω, the evolution of ρ1(ω, t) depends on all the other frequencies through
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the integrals in the right-hand side of Eq.(3.31). However, this dependence is the
same for all frequencies because the integral is independent of ω.

The right-hand side of Eq.(3.31) defines the following linear operator L

Lρ1(ω, t) = −iωρ1(ω, t) +
K

2

∫ ∞

∞
ρ1(ω

′, t)g(ω′)dω′ (3.32)

that has both, a continuous and a discrete spectrum. We concentrate the discussion
on the discrete part since it is the only one that is relevant for our purposes.

The linear problem (3.31) has the solution

ρ1(ω, t) = b(ω)eλt,

that implies

λb(ω) = −iωb(ω) +
K

2

∫ ∞

−∞
b(ω′)g(ω′)dω′. (3.33)

Here, the integral in the right-hand side is just a real constant to be determined
self-consistently. Therefore the function b(ω) must satisfy

b(ω) =
1

λ+ iω

K

2

∫ ∞

−∞
b(ω′)g(ω′)dω′,

that can be substituted back to Eq.(3.33) in order to obtain the following condition

1 =
K

2

∫ ∞

−∞

1

λ+ iω
g(ω)dω, (3.34)

to be satisfied by the eigenvalues λ. Note that until now we have not made as-
sumptions of any kind about the shape of the frequency distribution g(ω) nor about
the type of solutions that we expect. Eq.(3.34) gives the discrete spectrum of the
system (3.31) that determines the linear stability properties of the incoherent state
ρ0, in contrast to the Kuramoto analysis. In particular Eq.(3.34) also permits to
calculate the critical coupling Kc for which synchronization takes place for a given
frequency distribution.

Eq.(3.34) can be alternatively written as

1 =
K

2

(
∫ ∞

−∞

λ∗

|λ|2 + ω2 − 2ωIm(λ)
g(ω)dω −

∫ ∞

−∞

iω

|λ|2 + ω2 − 2ωIm(λ)
g(ω)dω

)

,

(3.35)
This equation can be simplified making two assumptions about g(ω):

• The function g(ω) is an even function, i.e. g(ω) = g(−ω). As we have
already discussed in previous section, in virtue of the reflection symmetry
of the Kuramoto model it is always possible to go into a rotating frame
moving with frequency ω̄ the mean of g(ω). Therefore this condition holds
for symmetric unimodal and bimodal frequency distributions.
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• g(ω) is assumed to be nonincreasing on [0,∞), in the sense that g(ω) ≤ g(ω ′)
for all ω ≥ ω′. Of course this property only holds for unimodal frequency
distributions.

If these two assumptions are fulfilled one can prove that Eq. (3.31) has at most
one solution for λ, and if such solution exists, it is necessarily real (Mirollo and
Strogatz, 1990). Then the second integral of the r.h.s vanishes exactly since its
integrand is an odd function of ω. Thus Eq.(3.34) reduces to

1 =
K

2

∫ ∞

−∞

λ

λ2 + ω2
g(ω)dω. (3.36)

This result is very interesting: It shows that the eigenvalue λ must be a positive
number, since otherwise the right-hand side of Eq. (3.36) is negative or zero. Hence,
the fundamental mode l = 1 is never linearly stable (Strogatz and Mirollo, 1991).

Now it is possible to calculate the critical coupling Kc of synchronization by
letting λ→ 0+ on Eq.(3.36). Noting that

lim
λ→0+

λ

λ2 + ω2
= πδ(ω),

Eq. (3.36) implies that

Kc =
2

πg(ω)
,

which is the critical coupling (3.16) found by Kuramoto. However, note that this
is a demonstration that the the incoherent state becomes unstable at Kc.

3.3 Ensemble of Landau-Stuart oscillators

In the following we study the synchronization in an ensemble of globally coupled
Landau-Stuart oscillators. The system is the following

żi = zi[1 + i(ωi + q) − (1 + iq)ziz
∗
i ] −

K

N

N
∑

j=1

(zi − zj) (3.37)

where the natural frequencies ωi are assumed to be randomly selected from a fre-
quency distribution g(ω). As usual it can be assumed that the sample mean of ω
is zero: if the mean of ω is ω̄, ω̄ 6= 0, we can go into a rotating frame defining
z′i = zie

−iω̄t and then the equations for z ′i are identical to Eqs.(3.37) with zero
mean frequency. We assume that g(ω) is symmetric and non-increasing on [0,∞).

If we use the order parameter (3.4), then Eq.(3.37) becomes

żi = zi[1 + i(ωi + q) − (1 + iq)ziz
∗
i ] −K(zi − Z) (3.38)
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A simple stability analysis can be carried out under the assumption that for a large
difference in the natural frequencies the phases of the individual oscillators are
randomly distributed, while the amplitudes rearrange themselves around a given
mean value, so that the value of the averaged position is close to zero Z ≈ 0. It is
then useful to rewrite Eq.(3.38) in the following way:

żi = zi[1 + i(ωi + q) − (1 + iq)ziz
∗
i ] −K(zi − Z)

≈ zi[1 −K + i(ωi + q) − (1 + iq)ziz
∗
i ].

(3.39)

The eigenvalues of the origin in Eq.(3.39) are 1−K±i(ωi+q) and therefore, as soon
as K > 1, the origin becomes attracting. This phenomenon is known as oscillation
death (Mirollo and Strogatz, 1990).

Next we reduce Eqs. (3.38) to their corresponding phase equations (in the limit
of weak coupling K and narrowly distributed frequencies), as we made in Chapter 2
in the case of two coupled Landau-Stuart oscillators. We start by rewriting the
Eqs. (3.38) in polar coordinates

ṙi = ri(1 − r2
i ) +K[R cos(θi − ψ) − ri]

θ̇i = ωi + q(1 − r2
i ) −

KR

ri
sin(θi − ψ).

(3.40)

In the incoherent state, the differential equations for the radial part of Eqs. (3.40)
reduce to

1 − r2
i = K[1 − R

ri
cos(θi − ψ)],

since ṙi ≈ 0 for all i. This can be substituted into the angular component of
Eq.(3.40), and hence the angular part of Eqs. (3.40) reduce to

θ̇i = ωi + qK −KR[sin(θi − ψ) + q cos(θi − ψ)]. (3.41)

This result confirms that any population of weakly and diffusively coupled limit
cycles close to a Hopf bifurcation can be generically expressed in the form of
Eqs. (3.41). Note that in the case of isochronous oscillators, q = 0, Eqs. (3.41)
reduce to the Kuramoto model (3.2). We have written phase equations were the
effect of the frequency response to the small perturbation is taken into account
through the terms proportional to the nonisochronicity q.

The transformation α ≡ tan−1 q leaves the system

θ̇i = ωi +K tanα− K

cosα
sin(θi − θj + α), (3.42)

which is very similar to the model presented in Section 3.1.1. However, in the
present case the coupling has a direct effect on the distribution of natural frequen-
cies in the incoherent state due to the presence of nonisochronicity. This first effect
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of α (realized by the factor K tanα in Eq.(3.42)) is the most relevant effect of the
nonisochronicity far from the synchronization transition, i.e. for small coupling.
The study of such effects in more general systems will be the subject of Chapter 4.
On the other hand, close to the synchronization transition the angular terms in
Eqs. (3.42) are fundamental: In this regime Eqs. (3.42) behave essentially as the
Eqs. (3.19) studied Section 3.1.1. Therefore the nonisochronicity also breaks the
symmetry imposed through the distribution of frequencies. In the Chapter 5 we
investigate the influence of such effects in the transition to synchronization of two
coupled populations of a Landau-Stuart type (3.42).



Chapter 4

Anomalous synchronization

In this Chapter the concept of anomalous synchronization is described. Whereas in
the previous Chapter the analysis of synchronization has been restricted to Landau-
Stuart and phase oscillators, here synchronization is studied in a broader class of
systems. However, the phase approximation described, described in Chapter 2, is
still of validity since we consider weakly coupled and nearly identical oscillators.

The phenomenon described here arises when the nonisochronicity of each os-
cillator in the ensemble is related with its natural frequency. As it was shown in
Chapter 3, the heterogeneity in the ensemble is usually taken into account consid-
ering that the oscillators have natural frequencies according to a certain distribu-
tion. However, here we show that there are new collective phenomena emerging
if there is disorder in other characteristics of the individual oscillators. Besides
the natural frequency, the next relevant parameter in synchronization theory is the
nonisochroncity.

The outline of this Chapter is as follows: first, in Section 4.1, we define the type
of systems under investigation as an interacting ensemble of limit cycle systems or
chaotic oscillators. Further we review some basic properties of phase synchro-
nization in chaotic systems. Next, we use these methods to numerically explore
the transition to phase synchronization in spatially extended ecological systems
with oscillating dynamics. This will lead us to the phenomenon of anomalous
synchronization. In the following Section 4.2 we present analytic arguments which
demonstrate the origin of these effects and provide an exact criteria that permits to
know when anomalous effects are to be expected. In order to show that anomalous
synchronization appears universally, in Section 4.3 an ensemble of weakly nonlinear
Van-der-Pol oscillators is analyzed and the theoretical results show effectively that
the previously developed techniques are useful. The last Section is devoted to the
study of anomalous synchronization in the Landau-Stuart model. This equations
are specially convenient because the natural frequency and the nonisochronicity

37
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appear as independent parameters. This fact allows to apply the analytical tech-
niques developed in Chapter 3 in order to calculate the synchronization threshold.
The results obtained in this Chapter are summarized in (Blasius et al., 2003; Mont-
brió and Blasius, 2003), and the last section will be published in (Montbrió et al.,
2004a).

4.1 Numerical results for general systems

In this Section the systems under investigation consist in N -coupled nonidentical
oscillators of the following form

ẋi = F(xi;χi) +
K

N
C

N
∑

j=1

(xj − xi), i = 1 . . . N. (4.1)

To be more specific, Eqs. (4.1) have the following properties:

• In the absence of coupling each oscillator follows its own local dynamics
ẋ = F (x, χ) where x belongs to Rn. All oscillators have the same functional
form but depend on a set of l control parameters χ = (a, b..). It is always
assumed that each oscillator is parameterized either on a limit cycle or on a
regime with phase coherent chaos. Thus every, possibly chaotic, oscillator is
characterized by a well defined natural frequency which is given by the long

term average of phase velocity, ω = θ̇(t) (Pikovsky et al., 2001).

• Disorder or quenched noise is imposed onto the system by assigning to each
oscillator i an independent value for every control parameter out of the set
χi, usually taken from a statistical distribution. Here, a uniform distribution
is always used. However our results remain valid if different distributions
such as a Gaussian are used. In general, the control parameters affect the
natural or unperturbed frequency of each oscillator, ωi = ω(χi). Therefore,
the natural disorder in control parameters leads to a frequency mismatch
between the oscillators which it is also referred to as frequency disorder.

• Each oscillator is coupled with strength K to a predefined set of m neighbors
{j}. In this Chapter, only two cases are considered: either coupling to next
neighbors in a one or two dimensional lattice or global coupling. However
we have obtained similar results with different coupling topologies. C =
diag(c1, c2..., cn) is a diagonal matrix which indicates the strength of the
interaction in each component of the state vector x. We also assume that
even with the onset of coupling each oscillator is still rotating uniformly. This
means especially that we don’t allow for situations with oscillation death
(Aronson et al., 1990; Mirollo and Strogatz, 1990). In practice, this can
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always be realized if the coupling is restricted to be small enough and the
variance of the inhomogeneities in the ensemble parameters is not large.

Synchronization arises as an interplay between the interaction and the frequency
mismatch of the oscillators. Thereby, in general, the frequency of each oscillator
will be detuned

Ωi = Ωi(K). (4.2)

The process of synchronization between two mutually coupled phase oscillators
has been described in Chapter 2. Interestingly, these ideas can directly be extended
to systems with self sustained chaotic dynamics (Rosenblum et al., 1996). For these
aims it is necessary to extend the concepts of phase and frequency to the case of a
chaotic attractor. This is well established in phase coherent chaotic systems. Let
us take for example the Rössler system (Rössler, 1976)

ẋ = −by − z,

ẏ = bx+ ay,

ż = 0.4 + (x− 8.5)z.

(4.3)

In the parameter range a ≈ 0.15 and b ≈ 1 the motion shows phase coherent
dynamics (see also Fig.4.3). In this regime a phase can be defined as an angle
in (x, y)-phase plane or via the Hilbert-transform (Rosenblum et al., 1996). In
this work, the phase of chaotic systems is always estimated by counting successive
maxima, e.g. the times tn of the n’th local maxima of the y-variable are located.
We define that the phase increases by 2π between two successive maxima and
interpolate linearly in between (Pikovsky et al., 2001)

φ(t) = 2π
t− tn

tn+1 − tn
+ 2πn, tn < t < tn+1. (4.4)

Next we explore the transition to synchronization in two mutually coupled
Rössler systems (see Fig. 4.1). The oscillators are nonidentical and vary in the
value of parameter b. Both oscillators are diffusively coupled in the y variable
with strength K (i.e. by adding the term K(y2,1 − y1,2) in the equation of ẏ1,2).
As can be seen in Fig.4.1, despite the chaotic amplitudes the transition to the
synchronized state is very similar to the case of two coupled phase oscillators. Due
to the interaction both oscillators are detuned and the frequencies approach each
other. As a result the frequency difference, ∆Ω(K) decreases monotonically until
it becomes zero in the synchronized state. In the following we study how these
ideas generalize to an ensemble of many interacting Rössler systems (Osipov et al.,
1997)

ẋi = −biyi − zi
ẏi = bixi + ayi +

K
m

∑

j(yj − yi)

żi = 0.4 + (xi − 8.5)zi.

(4.5)
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Figure 4.1: Transition to synchronization in two coupled Rössler systems (4.3). Plotted
is the frequency difference ∆Ω(K) (left) and the individual frequencies of each oscillator,
Ω12(K) (right) as a function of coupling strength. Parameter values a = 0.15, b1,2 =
1.0 ± 0.01.

Here, all Rössler oscillators are nonidentical. The disorder is realized by taking the
parameters bi for each oscillator from a uniform distribution and thereby assigning
it its own frequency ωi ≈ bi. In Fig. 4.2 we plot the numerical results in a ring of
10 locally coupled Rössler oscillators. With the onset of coupling the frequencies of
all oscillators move towards each other forming synchronized clusters. At a certain
coupling strength only one cluster is left and the ensemble reaches the synchronized
state.

In this Chapter we introduce another measure for detecting synchronization. In
Chapter 3 the complex order parameter (3.4) was defined in order to measure the
phase coherence in the ensemble. However, in this Chapter we are also interested
in the behavior of the frequencies, and hence another measure for synchronization
is required. The frequency synchronization in the ensemble can be revealed by
measuring the standard deviation of the frequencies (4.2), σ(K). As is shown in
Fig.4.2, σ(K) is a decreasing function of coupling strength. Global phase synchro-
nization is achieved when σ(K > Kc) = 0 and all oscillators rotate with the same
frequency. By comparing Fig. 4.2 with Fig. 4.1 it follows that in interacting os-
cillator systems the standard deviation σ(K) takes over the role of ∆Ω(K) in the
case of two coupled oscillators.

To summarize, in order to measure the transition to synchronization in a sys-
tem of interacting oscillators (4.1) we identify the frequency of each oscillator in
dependence of the coupling strength, ωi(K). For phase coherent chaotic dynamics
this is done by counting the number of local maxima of a chosen variable. We
define the frequency disorder as the standard deviation of all oscillator frequen-
cies σ(K). Then synchronization is given by the single criterion that σ(K) = 0.
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Figure 4.2: Transition to synchronization in a ring of ten diffusively coupled Rössler
systems (4.5) with periodic boundary conditions. Plotted is the standard deviation σ(K)
of all oscillator frequencies in percent (left) and the individual oscillator frequencies Ωi

(right) as a function of coupling strength K. Parameters are taken randomly in the range
bi = 0.97 ± 0.025 and a = 0.15.

Occasionally, we also use the the complex order parameter R(K) to characterize
the synchrony in the ensemble which then is always compared to our usual measure.

4.1.1 Anomalous synchronization in ecological models

The question arises whether the simple transition to synchronization as exemplified
in Figs. 4.1 and 4.2 is universal, e.g. whether the frequency disorder σ(K) is always
a monotonically decreasing function of coupling strength. To explore this case
we turn to spatially extended ecological systems which are examples for spatio-
temporal synchronization in natural systems (Heino et al., 1997). Maybe the most
intriguing example is Ecology’s well known Canadian hare-lynx cycle with hare
and lynx populations synchronizing in phase to a collective 10-year cycle over vast
regions in Canada (Blasius et al., 1999; Elton and Nicholson, 1942; Schwartz et al.,
2002).

In order to describe such phenomenon the following model was proposed (Bla-
sius et al., 1999; Blasius and Stone, 2000)

ẋi = a (xi − x0) −α1xiyi
ẏi = −bi(yi − y0) +α1xiyi −α2yizi +

K
m

∑

j(yj − yi)

żi = −c (zi − z0) +α2yizi.

(4.6)

This model describes a three level “vertical” food chain where the vegetation x is
consumed by herbivores y which themselves are preyed upon by the top predator
z. In the absence of interspecific interactions the dynamics is linearly expanded
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Figure 4.3: Comparison of the transition to synchronization in a chain of 500 locally
coupled Rössler systems (4.5) (left) and foodweb models (4.6) (right). Oscillators have
been coupled in the y-variable with strength K to next neighbors in a ring with periodic
boundary conditions. Initial values were set randomly. Top: attractor projection of
the uncoupled system in the (x, y)-plane. Bottom: standard deviation of frequencies,
σ(K), as a function of coupling strength. Parameter values: Rössler system a = 0.15;
Foodweb model x0 = 1.5, y0 = 0, z0 = 0.1, α1 = 0.1, α2 = 0.6, a = 1, c = 10. Parameters
bi are taken in both systems as uniformly distributed random numbers in the range
bi = 0.97 ± 0.025.

around the steady state (x0, y0, z0) with coefficients a, b and c that represent the
respective net growth and death rates of each species. Predator-prey interactions
are introduced via Lotka-Volterra terms with strength α1 and α2.

Despite their minimal structure, the equations are able to capture complex dy-
namics which matches real data for example in the Canadian hare-lynx cycle (Bla-
sius and Stone, 2000; Blasius et al., 1999; Vandermeer et al., 2001; Schwartz et al.,
2002). In this parameter range the model shows phase coherent chaotic dynam-
ics, where the trajectory rotates with nearly constant frequency in the (x, y)-plane
but with chaotic dynamics that appear as irregular spikes in the top predator z
[Fig.4.3]. This behavior of the foodweb model is reminiscent to the Rössler system
and therefore one might expect similar synchronization properties in both systems.
To explore this in more detail, in Fig.4.3 we compare the transition to synchro-
nization in coupled chains of Rössler and foodweb systems. Quenched disorder is
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Figure 4.4: Onset of synchronization in a chain of 500 nonidentical Rössler systems (4.5)
(left) and foodweb models (4.6) (right) for different coupling topologies. Plotted is the
standard deviation of frequencies, σ(K). Oscillators are coupled in the y-variable with
strength K either in a ring with next neighbor coupling (solid lines), with global coupling
(dashed lines) or using the approximation of independent oscillators (4.12) (dotted lines).
Parameters and methods otherwise as in Fig.4.3.

introduced by taking bi for each oscillator from the same statistical distribution.
Despite the fact that both systems have very similar attractor topology we find
fundamental differences in their response to the interaction. For the ensemble of
Rössler systems the onset of synchronization is as expected and σ(K) decreases
monotonically with increasing coupling strength, in accordance to the above the-
ory. In contrast, the ensemble of foodweb models shows a totally different behavior.
Here, with increasing coupling the frequency disorder is first amplified leading to
a maximal decoherence for intermediate levels of coupling. Only for much larger
coupling strength frequency disorder is reduced again and synchronization sets in.
We denote this unusual increase of disorder with coupling strength as anomalous
transition to phase synchronization (Blasius et al., 2003).

We have tested the robustness of anomalous synchronization in a large number
of numerical simulations. We have always found that the long term behavior is
independent of initial conditions, which usually are set randomly for each oscilla-
tor (in the foodweb model initial conditions have to be taken out of the domain
of attraction of the phase coherent attractor). Our results are numerically ro-
bust to the network topology. We have numerically checked simulations in 1 and
2-dimensional lattices with different sizes and also in systems with global cou-
pling. In all cases we have found large parameter ranges in which the ecological
model exhibits anomalous synchronization (see Fig. 4.4). In general, the strength
of anomalous synchronization, measured as the maximal gain of frequency disorder,
increases with the number of next neighbors and is most pronounced with global
coupling. Furthermore, we have found anomalous synchronization when disorder
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is realized by different statistical distributions and it retains also in chains with
linearly increasing control parameters bi. Anomalous synchronization appears al-
ready in two coupled chaotic foodweb models, albeit not as pronounced as in large
ensembles. In general we find that the effect of anomalous synchronization appears
independently of the number of oscillators, with a tendency to be more distinct
in large systems. Note, that the strength of anomalous synchronization in general
depends also on the choice of control parameters and may appear only in certain
regimes in parameter space.

To gain more insight into the strikingly different behavior of Rössler and food-
web systems in Fig.4.5 the frequency detuning of individual oscillators in a globally
coupled ensemble is depicted. In the Rössler system synchronization appears in the
usual way. For small coupling levels the oscillator frequencies are not much affected
and fall down slightly with coupling strength. When coupling reaches a critical level
all oscillator frequencies are rapidly attracted towards each other and synchronize
to a common frequency. In the foodweb model the transition to the synchronized
state is totally different. Compared to the Rössler system the average decrease of
oscillator frequencies is much stronger. Simultaneously, the interaction leads to a
repelling of frequencies where the whole ensemble deviation is enlarged. In this
way σ(K) can reach values which are four times larger than the natural frequency
disorder σ(0). This picture is further complicated due to the appearance of clus-
tering. Therefore, Fig.4.5 also includes a plot of the order parameter R(K). In the
Rössler system for small coupling levels R(K) remains nearly zero. At the critical
level, K = Kth, cluster formation sets in and all oscillators fastly synchronize to
one final cluster. This is reflected in the sudden increase of the order parameter
R(K) which appears in the same coupling range as the rapid drop of σ(K). In
contrast, in the foodweb model clustering sets in already for small coupling levels
where the oscillators start to form one main cluster at the high frequency range.
This process is accompanied by a slow increase of R(K) and, simultaneously, by
a rise of the frequency disorder σ(K). With increasing coupling strength the clus-
ter is able to catch more and more oscillators until finally all frequencies become
identical for K > Kc.

The simultaneous increase of order parameter and frequency disorder with cou-
pling as exemplified here in the foodweb model is rather unusual in the sense that
both measures for synchronization lead to different results. Whereas the increase
of R(K) signifies the onset of synchronization it is evident from the increase of
σ(K) that the frequencies are driven away from each other. This apparent paradox
can be explained by the fact that while the cluster is able to attract frequencies in
close range, at the same instant oscillators with a bigger frequency distance from
it are repelled off even stronger. As will be shown later anomalous synchronization
does not always go together with such complications and it is also possible that the
oscillator frequencies simply split apart without simultaneous onset of clustering.
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Figure 4.5: Top: Frequency disorder σ(K) and order parameter R(K) as function of
coupling in an ensemble of 500 globally coupled Rössler systems (4.5) (left) and foodweb
models (4.6) (right). Additionally the frequencies Ωi(K) of 20 randomly selected oscilla-
tors are indicated as well (bottom). Parameters and methods otherwise as in Fig.4.3.

We now explore whether chaotic dynamics is a necessary ingredient in order
to obtain anomalous synchronization. To this end we take again an example from
Ecology and study an interacting ensemble of Lotka-Volterra systems (May, 1973)
which can be thought of as a limit cycle counterpart to the more complicated
chaotic system (4.6)

ẋi = axi(1 − xi
K

) − k
xiyi

1 + κxi
+
Kx

2

∑

j

(xj − xi)

ẏi = −biyi + k
xiyi

1 + κxi
+
Ky

2

∑

j

(yj − yi). (4.7)

Here, x denotes the prey and y the predator species, a and b are the birth and
death rates, K is the prey carrying capacity, k the predation rate and κ the half
saturation constant of the functional response. Without coupling system (4.7) is
well known to exhibit limit cycle oscillations with a frequency roughly determined
by ω =

√
ab (May, 1973).

We now take a disordered ensemble of such foodweb models, introduce disor-
der as usual in the death rates bi and explore the transition to synchronization
(see Fig.4.6). The foodwebs are globally coupled with strength Kx and Ky. We
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Figure 4.6: Anomalous synchronization in limit cycle systems. Plotted is the transition
to synchronization in an ensemble of globally coupled Lotka-Volterra systems (4.7). Pa-
rameter values a = 1, k = 3, K = 3 κ = 1. Parameters bi are taken from a uniform
distribution in the range 1 ± 0.025. Coupling has been introduced either in both x and
y-variable (solid line), solely in the x-variable (dotted line) or in the y-variable (dashed
line).

distinguish between three different coupling schemes: a) only prey migrate, b)
only predators migrate and c) both prey and predators migrate. In all three cases
we observe strong anomalous synchronization. However, the exact form of the
transition depends on the coupling type. Thus, we conclude that anomalous syn-
chronization can arise in limit cycle systems and therefore the effect does not rely
on chaotic dynamics. Interestingly it is again an ecological model, here with limit
cycle dynamics, which shows anomalous synchronization. Summarizing, in the
classic theory the introduction of coupling leads to synchronization via a monoton-
ical decrease of frequency disorder σ(K). In contrast, in both ecological foodweb
models which have been studied here the transition to synchronization is strongly
modified. In these models we find that σ(K) increases with K, reaches a maximal
decoherence for intermediate coupling strength and synchronization sets in only for
larger levels of K. Thus we observe a counterintuitive effect of coupling which leads
to a desynchronization of the oscillators and to an enlargement of the frequency
disorder. Lacking a better terminology we call this phenomenon anomalous phase
synchronization. To our knowledge such an anomalous onset of synchronization
has never before been noted in the literature. The rest of this Chapter is dedicated
to a detailed study of this phenomenon.

4.2 Analytical treatment

In this section we start with an analytical treatment and estimate the oscillator
frequencies in the regime of weak coupling to gain some insight into the origin of
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anomalous synchronization. The aim is to derive exact criteria which determine
the conditions when anomalous effects are to be expected.

4.2.1 Approximation as uncoupled oscillators

To explain the basic method we start with the examples of the Rössler and food-
web models of the previous section. Later these results will be put into a more
general framework. Take again the interacting ensemble of Rössler systems (4.5)
and rewrite the equation for the y variable in the following way

ẏi = bixi + ayi +
K

m

m
∑

j=1

(yj − yi) = bixi + (a−K)yi +K〈yj〉. (4.8)

Here, 〈yj〉 = 1
m

∑

j yj denotes the average of the y-variable over all oscillators in a
coupling neighborhood of oscillator i. For small coupling we can assume that the
oscillators are nearly independent and therefore we can safely replace the ensemble
average 〈yj〉 by the time average of the uncoupled oscillator ȳi. As a result, in the
limit of very small coupling the interacting system essentially behaves as a system
of independent oscillators with modified dynamics

ẋi = −biyi − zi
ẏi = bixi + (a−K)yi +Kȳi
żi = 0.4 + (xi − 8.5)zi.

(4.9)

Here, in the case of the Rössler system we can approximate the constant ȳi ≈ 0.
Therefore, the only effect of weak coupling is to introduce a small damping into
the dynamics of each oscillator which is seen as an effective reduction of parameter
a→ a−K. To test this approximation of independent oscillators we have included
in Fig. 4.4 a plot of the frequency disorder calculated for system (4.9). Indeed, in
the range of small coupling the approximated frequency disorder closely follows the
numerical results of the full system. Using equation (4.9) it is possible in principle
to calculate the frequency detuning of each oscillator in the ensemble as a function
of coupling strength Ωi(K). In order to proceed further we need to estimate the
average rotating frequency of the chaotic system. As a crude approximation here
we simply use the imaginary part of the eigenvalues in a linear expansion around
the unstable fixed point. To simplify the algebra even more we make use of the
fact that in the Rössler system the dynamics takes place mainly in z = 0 plane and
set z ≈ 0. Putting all this together leads to

Ωi(K) ≈
√

b2i −
1

4
(a−K)2 ≈ ωi +

a

4ωi
K, (4.10)

where the natural frequency of the Rössler system has been approximated by ωi =
√

b2i − 1
4a

2.
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Figure 4.7: Frequency detuning here schematically indicated for 4 oscillators as a func-
tion of coupling strength, Ωi(K) = ωi + Kκi. Left: the slope of each line, κi, decreases
with ωi. Therefore, frequency disorder σ(K) is reduced leading to synchronization en-
hancement. Right: anomalous synchronization when κi increases with ωi.

Eq. (4.10) tells that the mean frequency at the first order in K is a linear
increasing function of coupling strength with a slope κi = a

4ωi
that depends on

the natural frequency of this unperturbed oscillator (see Fig. 4.7). In the usual
parameter range the detuning is very small, κ ≈ 0.04, which corresponds very well
with Fig. 4.5 where for small coupling ranges the frequencies are nearly unaffected
by coupling.

From this analysis (4.10) it is also clear that the Rössler systems in the form
(4.5) cannot exhibit anomalous synchronization (see Fig.4.7). The simple reason
is that for every oscillator the slope κi is decreasing with the natural frequency,
κi ∼ 1/ωi. Therefore, in oscillators which start out with higher natural frequency
ωi, the oscillating frequency Ωi(K) is changing less with coupling than in oscillators
with smaller ωi. By this mechanism all frequencies Ωi(K) are attracted together
with coupling, which finally confirms the usual synchronization transition of the
interacting Rössler systems.

We now proceed in a similar way for the ensemble of coupled foodweb models
(4.6). Recall that this system shows an anomalous enlargement of the natural
frequency disorder and therefore behaves exactly in the opposite way as the Rössler
system. In analogy to (4.9) we replace the interacting ensemble with the following
system of uncoupled oscillators

ẋi = a (xi − x0) −α1xiyi
ẏi = −(bi +K)yi + biy0 +α1xiyi −α2yizi +Kȳi
żi = −c (zi − z0) +α2yizi.

(4.11)

From inspection of Fig.4 it is clear that in our parameter range ȳ ≈ 10 and therefore
the time average cannot be set to zero as in the Rössler system. Probably for
this reason the simple scheme (4.10) is not applicable to estimate the average
rotating frequency of the model (4.11). When calculating the imaginary parts of the
eigenvalue of the unstable fixed point and setting z = 0 we obtain a bad estimate of
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Ωi(K). Despite these analytical difficulties, the numerically evaluated frequencies
of model (4.11) agree perfectly with the behavior of the full model as long as
K � Kc. The same holds for the frequency disorder of the uncoupled system,
σ(K), which is plotted in Fig. 4.4b and shows similar anomalous synchronization
effects. Thus again, for weak coupling the approximation of uncoupled oscillators
(4.11) provides an excellent description for the full system dynamics.

The origin of this anomalous increase in σ(K) can be understood from Fig. 4.6
which depicts the frequencies Ωi(K) for each oscillator. We find that in the foodweb
model the frequencies are a nearly linear decreasing function of K with slope κi ≈
−2. Careful inspection of Fig. 4.6 reveals that for different oscillators the slope κi
increases with the natural frequency ωi. Note, that this is just the opposite trend
as exhibited in the Rössler system. As a result, in contrast to the Rössler system
here the frequency disorder effectively can be enlarged with coupling strength.
Schematically this situation is sketched in Fig. 4.7b which in this way gives a
visualization of the basic mechanism underlying anomalous synchronization.

4.2.2 General approach

In the previous examples we have demonstrated how the frequency detuning can
be estimated in the weak coupling regime. Now we generalize the approach to gain
deeper theoretical understanding about the parameter regimes where anomalous
synchronization appears. Take again the general system of interacting oscillators
(4.1). Without coupling the system is quasiperiodic and all oscillators are rotating
independently from each other on a N -torus. Now suppose that weak coupling
is switched on. As long as the coupling is very weak, K � Kc, it is reasonable
to assume that the system remains quasiperiodic and therefore is still filling the
N -torus. In this limit we can replace the average over the coupling neighborhood
of oscillator i with the time average of the single oscillator. Thus for weak coupling
the interacting system (4.1) can be treated as a system of N uncoupled oscillators
with modified dynamics (as in (4.9) and (4.11)),

ẋi = F(xi;χi) + C
K

m

m
∑

j=1

(xj − xi) ≈ F(xi;χi) − CK(xi − x̄i). (4.12)

Here, x̄i indicates the temporal average of each uncoupled oscillator. With the new
term −CK(xi− x̄i) effectively a damping proportional to the coupling strength has
been introduced. In our numerical simulations we have always found that (4.12) is
a very good approximation as long as the coupling strength remains small enough.
This is demonstrated for example in Fig. 4.4 where we have plotted σ(K) for the
Rössler and foodweb systems using approximation (4.12).

In the uncoupled system (4.12) the frequency of each oscillator depends only
on its individual parameters and on coupling strength, but is independent of the
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other oscillators, Ωi = Ωi(χi,K). If this expression is developed as a Taylor series
in K we can write the frequency detuning in first order as follows

Ωi ≈ Ω(χi,K) ≈ ω(χi) + κ(χi) K. (4.13)

Here ω(χi) represents the natural frequency of each oscillator i in the absence of
coupling. κ(χi) describes the frequency response of the system to the interaction.
Similar to the natural frequency it is a characteristic of the unperturbed system
dynamics and, as will be shown later, it is closely related to the nonisochronicity of
oscillation. Both functions ω(χi) and κ(χi) depend only on the control parameters
χi of each system i and, in principle, can be determined by various techniques.
For example in the previous section we used a linearization about the unstable
fixed point in order to estimate Ω(χi,K) for the Rössler system (4.10). Other
more rigorous approaches include for example normal form expansions or averaging
methods (see Section 4.3).

Note that relation (4.13) does not depend on the fact whether the system dy-
namics is a limit cycle or phase coherent chaos. An alternative way to derive
formula (4.13) in the case of nearly identical oscillators goes back to the represen-
tation of phase equations. Again assuming independently rotating oscillators for
K << Kc the frequency response κ(χi) can be calculated as an average over the
interaction function

κ(χi) =
1

m

m
∑

j=1

1

2π

∫ 2π

0
Γij(∆θij)d∆θij . (4.14)

Once ω(χi) and κ(χi) are known for every oscillator it is straightforward to
calculate ensemble magnitudes. The mean frequency Ω is simply given by

〈Ωi〉 = 〈ωi〉 + 〈κi〉 K. (4.15)

Similar, the standard deviation of the ensemble frequencies up to first order in K
is

σ(K) =
√

σ2
ω + 2Cov(ωi, κi)K ≈ σω +

K

σω
Cov(ωi, κi). (4.16)

Here σω represents the standard deviation of the natural frequencies ωi. Therefore,
the appearance of anomalous effects depends on the the covariance

Cov(ωi, κi) = 〈(ωi − 〈ωi〉)(κi − 〈κi〉)〉 (4.17)

between the values ωi and κi of all oscillators in the ensemble. Note, that this
corresponds to the schematic representation in Fig. 4.7. If Cov(ωi, κi) > 0 then
the κi increase on average with the natural frequencies ωi and thus the frequency
disorder spreads out with increasing coupling strength.
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Eq. (4.16) is our analytic expression for the frequency disorder of an interacting
oscillator system. It provides a general criterion to decide under which conditions
anomalous synchronization can be observed. Anomalous enlargement of frequency
disorder appears if Cov(ω, κ) > 0 in the whole parameter range of the system. On
the other hand if the covariance is negative then synchronization is enhanced. In
other words in order to achieve anomalous synchronization ω and κ must both be
on average increasing or decreasing functions of the parameters χi.

Thus, if we want to observe anomalous synchronization in a specific system it
is fundamental to know the regions in the parameter space where the correlation
function is positive. More formally this can be phrased in the following terms.
In order to calculate σ(K) we need to know the characteristics ωi and κi for all
oscillators. They are determined for each oscillator by the value of the l control
parameters χi = (ai, bi, ..). Let us denote the parameter space for each individual
oscillator by Σ ⊆ Rl. Then we are interested in the function

F : Σ → R2, χi 7→ (ω(χi), κ(χi)) . (4.18)

In the whole disordered ensemble the parameters are determined by a subset S ⊂ Σ.
The mathematical problem now is to find an appropriate parameter set S so that
Cov(F (S)) > 0. Furthermore we have to take care that the region in parameter
space which can physically be realized in a given system usually is much smaller
than the size of the full parameter space Σ.

In the remainder of this section we provide some simple criteria which allow
to determine appropriate parameter sets. For simplicity, assume that system pa-
rameters are uniformly distributed continuous variables. Different oscillators are
identified by the value of their control parameter. We first discuss the simplest
case l = 1 where the oscillators differ only in one control parameter b. Then (4.13)
takes the form

Ωi ≈ Ω(b,K) ≈ ω(b) + κ(b) K.

It is straightforward to write down the conditions that the functions ω(b) and κ(b)
have to fulfill in order that anomalous synchronization can be observed. Using
either (4.16) or simply from inspection of Fig. 4.7 ω and κ must simultaneously be
increasing or decreasing functions of the system parameter b. Therefore, a sufficient
condition for anomalous synchronization can be written as

dκ

dω
> 0. (4.19)

If this relation is fulfilled over the whole parameter range S of the interacting
ensemble anomalous synchronization will be achieved. In this case we call S an
‘anomalous (parameter) set’. Similarly if over the whole parameter range dκ

dω < 0
then σ(K) is a decreasing function of coupling and synchronization is enhanced.
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So far the disorder has always been introduced only in one parameter. Now
we extend the analysis to the case l = 2 when the disorder is distributed between
two control parameters a and b (the same ideas can then easily be generalized to a
larger number of control parameters). In this case (4.13) takes the form

Ωi ≈ Ωi(a, b,K) ≈ ω(a, b) + κ(a, b) K. (4.20)

Now we cannot simply use condition (4.19) because it involves the differentials of a
and b. Instead, in the case of several independently varying parameters a sufficient
condition for anomalous frequency enlargement is given by

∇ω · ∇κ > 0. (4.21)

Relation (4.21) defines regions in the parameter space where the angle between
the two gradients is smaller than π

2 . In these regions ω and κ are simultaneously
increasing or decreasing functions of the parameters a, b and as a result these regions
are anomalous. Similar we find for synchronization enhancement

∇ω · ∇κ < 0. (4.22)

From this we conclude that even in systems where no anomalous set can be found
with l = 1, there is still a high chance to achieve anomalous synchronization when
two parameters are varied simultaneously.

One particularly interesting case arises if different oscillators are parameterized
along a one dimensional trajectory in Σ in such a way that both functions ω and
κ are simultaneously increasing with the path length. This possibility depends on
the determinant of the Jacobian matrix of F in (4.18),

J =

∣

∣

∣

∣

∂(ω, κ)

∂(a, b)

∣

∣

∣

∣

. (4.23)

If J = 0 then the two functions ω(a, b) and κ(a, b) are functionally related and the
sign of condition (4.19) cannot easily be controlled. However, if J 6= 0 the system
(4.18) is invertible,

a = a(ω, κ), b = b(ω, κ). (4.24)

In this case any relation between ω and κ can be realized by simply plugging
κ = κ(ω) into (4.24) and calculating the values of a and b in a certain range of
frequencies ω. In this way it is possible to systematically find parameter sets so that
our anomalous criteria (4.19) can be fulfilled. Such a parameter set corresponds
to a trajectory in the parameter space Σ. Of course in practice one has to take
care that this trajectory in Σ intersects with the subset of parameters which can
be realized physically.



4.2 Analytical treatment 53

4.2.3 Anomalous synchronization in the Rössler system

Above we have demonstrated how anomalous effects may be achieved in a given
system by simultaneous variation of two parameters. In order to demonstrate how
all this works we now apply these ideas to the Rössler model. We have already
calculated an estimate for the frequency detuning (4.10) by linearizing the system
around its fixed point

ω =
√

b2 − a2/4, κ =
a

4
√

b2 − a2/4
. (4.25)

For our purposes this crude approximation gives all information that is needed to
check for the presence of anomalous synchronization. First we check for anomalous
behavior when, as usual, only one parameter b is varied. This corresponds to the
case l = 1. Application of criteria (4.19) yields dκ

dω = a−4b2/a > 0. This is fulfilled
for positive parameters only if 4b2 < a2. However in this regime the Rössler system
does not exhibit phase coherent chaos. This again confirms our simulation results
that Rössler systems cannot show anomalous synchronization if the oscillators vary
only in parameter b.

However, as mentioned above it might still be possible to observe anomalous
synchronization when a functional dependence between two system parameters can
be achieved. Using (4.25) we find for the Rössler system that the Jacobian J 6= 0
and therefore the function F in (4.18) is invertible. The inverted system is given
by

a = 4κω, b = ω
√

1 + 4κ2. (4.26)

Now, following the above outlined scheme, the procedure to achieve anomalous
synchronization in the Rössler system is as follows: take a certain distribution of
frequencies {ω}, choose some appropriate values of {κ(ω)} and, finally, use (4.26) to
calculate the resulting set of control parameters {(a, b)}. Usually we are considering
nearly identical oscillators and therefore our parameter range is very small. Then
the relation κ(ω) can be linearized κ(ω) = cω + c0. Of course anomalous behavior
relies on a choice of c > 0. For practical purposes we can use an even more simple
scheme. Instead of implying a linear relation in (ω, κ) space we can also linearize
directly in Σ. Thus we demand that parameters a and b are taken from a straight
line with slope k in parameter space. This can be realized with a ‘test’ function
a − 〈a〉 = k(b − 〈b〉) where parameters b are uniformly distributed in the range
b = 〈b〉 ± δ. To check for anomalous effects we have to find the projected gradients
of both functions κ(a, b) and ω(a, b) in all possible directions k. This is measured
by the scalar product of each gradient with the unit vector k̂ = 1√

1+k2
(k, 1), i.e.

by taking the directional derivative in all k directions Dk̂. In this way we can
determine the directions in parameter space where condition (4.21) is fulfilled. In
this scheme the criterion for anomalous behavior becomes

Dk̂ωDk̂κ > 0. (4.27)
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Figure 4.8: Possibility of anomalous behavior in the Rössler system which is achieved
by simultaneously varying two parameters. Plotted is the frequency disorder σ(K) as a
function of coupling strength K in an ensemble of 300 globally coupled Rössler oscillators.
Parameter values are taken as a = k(b− 〈b〉) + 〈a〉 with δ=0.025, 〈b〉=0.97 and 〈a〉=0.15.
We observe anomalous synchronization for k = 2 (dashed line), usual synchronization for
k = 0 (solid line) and enhanced synchronization for k = −2 (dotted line).

In the Rössler system this can be calculated with the help of (4.25) where, as
usual, we take the natural frequencies in the range b ≈ 1. As a result positive
anomaly is present when parameter a is simultaneously verifying a < k and a <
1/k. These two conditions can be fulfilled for instance when k = 2. Indeed for
this choice of k we have achieved our goal and the ensemble of Rössler systems
shows anomalous behavior (see Fig. 4.8). Similar if k = 0 and parameter a is
constant in the ensemble the conditions cannot be fulfilled and synchronization
anomalies are absent. By reversing our criterion (4.27) we can identify the region for
synchronization enhancement in the Rössler system. For example, this is fulfilled
for a choice of k = −2 which agrees perfectly with the simulation results in Fig.4.8.

4.3 Ensemble of Van-der-Pol oscillators

We now demonstrate how the methods of the previous section can be practically
applied in a weakly nonlinear system. As an illustrative example we use an ensemble
of nonidentical Van-der-Pol oscillators which are coupled in the x and y variables

ẋi = yi +
K

N

N
∑

j

(xj − xi)

ẏi = ai(1 − x2
i )yi − b2ixi +

K

N

N
∑

j

(yj − yi). (4.28)



4.3 Ensemble of Van-der-Pol oscillators 55

Here a is the nonlinearity or stiffness of the system and b is the harmonic frequency
of oscillation. In the following we use frequencies in the range b ≈ 1 and further
assume weak nonlinearity, a << 1. Our main goal now is to express the oscillation
frequency as a function of coupling strength. This can be achieved with the help of
perturbation techniques. Here we use a normal form expansion up to third order
in a (Kahn and Zarmi, 1998) and find for the radial and the angular equations

ṙi =
1

2
air(1 − 1

4
r2) − rK +O(a3

i )

θ̇i = bi −
a2
i

bi
(
1

8
− 3

16
r2 +

11

256
r4) +O(a4

i ). (4.29)

Note, that in the Van-der-Pol oscillator non-isochronicities appear only with the
second order in the nonlinearity a. The coupling term in the radial equation has
been calculated assuming that ṙ = 0 after relaxation, and thus has a single stable
equilibrium r∗2 = 4

(

1 − 2K
a

)

. Plugging this into the angular equation we obtain
the mean frequency in first order in K

Ωi(K) = bi −
a2
i

16bi
+

5ai
4bi

K. (4.30)

With this the system of Van-der-Pol oscillators has been brought into the general
form (4.13) with

ω(a, b) = b− a2

16b
, κ(a, b) =

5a

4b
. (4.31)

4.3.1 Functional dependence between control parameters

At this point we have to specify how the disorder is realized in the control param-
eters a and b. The simplest possibility would be to introduce disorder only in the
harmonic frequencies b. In this case ω(b) and κ(b) in (4.31) are functions of only
one parameter b. It is straightforward to see that in this form it is not possible
to obtain anomalous desynchronization since inequality (4.19) can then only be
fulfilled if a < 0. However Van-der-Pol systems are not defined for negative values
of the nonlinearity. Therefore, ensembles of Van der Pol oscillators do not show
anomalous enlargement of frequency disorder if the oscillators are varying only in
their harmonic frequencies b.

However we have already demonstrated that, in general, it is possible to achieve
anomalous synchronization if some functional dependence between control parame-
ters can be maintained. This means that the disorder necessarily must be affecting
both parameters a and b. Here we show that anomalous synchronization can be
obtained if we have the possibility to adjust the parameters of each oscillator in
the ensemble. To this aim we take parameters b from a uniform distribution with
center 〈b〉=1 and width δ = 0.5 and adjust the system parameters in such a way
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that the nonlinearity or stiffness of each oscillator is a function of the harmonic
frequency, a = a(b). If the range or spread of parameters δ is small enough the
functional dependence is essentially linear,

a = kb− k0. (4.32)

Here, the value of k determines the strength of correlation between nonlinearity
and natural frequency. Note, that the absolute value k0 has to be chosen in such a
way that in the whole range parameters a are always positive.

When the parameters are fixed (4.32) we can use (4.30) to calculate the standard
deviation σ(K)

σ(K) =
5

4
σb[

3

4
+ (k − 1)(K − 1

10
)]. (4.33)

Here σb represents the standard deviation of the uniformly distributed natural
frequencies b, i.e. σb = δ√

12
. With this result (4.33) we have calculated an approx-

imation for the frequency disorder of an ensemble of weakly nonlinear Van-der-Pol
oscillators in the regime of small coupling.

To check our results in Fig. 4.9 we compare formula (4.33) with a direct simu-
lation in an ensemble of 800 globally coupled Van-der-Pol oscillators for different
functional dependencies of the control parameters. Take first the case k = 0 when
the nonlinearity a is independent of b and it is a constant for all oscillators in the
ensemble. As mentioned above, in this case synchronization arises in the usual way
and σ(K) is a decreasing function of K. However, from (4.33) when nonlinearity
increases sufficiently with the natural frequency and k > 1, σ(K) increases with K
and anomalous synchronization is achieved. This is plotted in Fig. 4.9 for k = 3. In
the opposite case when k < 1 we find that synchronization is enhanced (depicted
as k = −3 in Fig. 4.9). Note the good agreement of numerical results and ana-
lytics (4.33) in the regime of small coupling. As has been demonstrated already
in Fig.4.5, it is quite possible that cluster formation starts immediately after the
onset of coupling and therefore σ(K) provides only partial information about the
amount of synchronization in the system. To obtain more information about the
transition to synchronization we include in Fig.4.9 a plot of the order parameter
as function of coupling strength, R(K). Again, we observe that anomalous syn-
chronization has large consequences also in the higher coupling regime. Inspection
of Fig.4.9 reveals that the synchronization threshold is lifted up to higher coupling
values in both measures with increasing levels of k. In consequence the synchro-
nization threshold can be controlled through parameter k. It is interesting to note
that coupling induced changes in the frequency disorder (i.e. anomalous effects)
are not detectable with the complex order parameter which is already nearly zero
for small coupling levels.

We want to stress that in order to compare the synchronization thresholds in
Fig.4.9 for different k, one must take into account that by the way in which k
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Figure 4.9: Standard deviation σ(K) (top) and order parameter amplitudes R(K) (bot-
tom) as a function of coupling strength K in 800 globally coupled Van-der-Pol oscillators
(4.28). Natural frequencies are taken from a uniform distribution with δ = 0.5, 〈b〉 = 1
and related to nonlinearities with a = k(b−〈b〉)+〈b〉. Plotted are results for k = 3 (dashed
line), k = 0 (solid line) and k = −3 (dotted line). Inset: analytical results Eq. (4.33).

has been introduced in (4.32) any change of k simultaneously affects the natural
frequency disorder σ(0) of the ensemble. Therefore by increasing the value of k
automatically the system disorder is reduced. This is seen as the different heights of
σ(0) for different values of k in Fig.4.9. In order to have a ‘fair’ comparison between
different functional dependencies of parameters a and b one would have to rescale
the overall system disorder to equal starting values. Nevertheless, even without
this procedure we observe that higher level of k can increase the synchronization
threshold despite the fact that the overall disorder has effectively reduced. For
example in Fig.4.9 the synchronization threshold has been increased by a factor of
around 100

4.3.2 Correlation between system parameters

In the previous section we have demonstrated how anomalous synchronization can
be achieved in ensembles of Van-der-Pol oscillators if there is some functional de-
pendence (4.32) between the control parameters. However, such a tight relation
might not always be possible to realize in a practical situation. In this section
we study a more general situation in which the two control parameters are ran-
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Figure 4.10: Transition to synchronization in an ensemble of 800 globally coupled Van-
der-Pol oscillators (4.28) with correlated parameter values, Corr(ai, bi) = r. The distri-
bution of control parameters is based on two series, ãi and b̃i, of uniformly distributed
random numbers in the range [−δ, δ] that are correlated with coefficient r. Then, parame-
ter values are taken as bi = 〈b〉+ b̃i, and ai = 〈a〉+ k ãi, for k = 3, δ = 0.25, 〈a〉 = 〈b〉 = 1
and r = 0 (left), r = 0.5 (center), r = 0.7 (right). Top) Subset of 100 parameter pairs,
{ai, bi}, in the parameter space. Bottom) Numerical results of standard deviation σ(K)
and order parameter amplitude R(K).

dom numbers that are correlated to a certain degree. The question arises if it is
still possible to achieve anomalous synchronization effects in a such more realistic
scenario.

Let us start with a calculation of the synchronization regimes when disorder is
distributed independently in both parameters a and b. By using condition (4.21)
we obtain the following inequality

∇ω(a, b) · ∇κ(a, b) = − 5

32

a

b2
(9 +

1

2

a2

b2
) > 0. (4.34)

The solution of this inequality is the unphysical region a < 0, and therefore we
find no anomalous parameter sets with two independently varying parameters.
In the physical region a > 0, however, inequality (4.22) is always fulfilled and
therefore synchronization is enhanced. This result can be observed in a numerical
simulation (see Fig.4.10, left) where in the small coupling regime the standard
deviation decreases with increasing coupling strength. Now we explore how this
situation is changed when some correlation has been imposed upon the control
parameters of the Van-der-Pol oscillators. Suppose that parameters a and b are
generated to be random numbers with a certain correlation coefficient r which still
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Figure 4.11: Same as Fig.4.10 with k = −3 and r = 0 (left), r = −0.5 (center), r = −0.7
(right). Increasing anticorrelation between a and b leads to anomalous enhancement of
synchronization.

have a linear functional dependences as in the previous subsection: k = 3 and
k = −3. Figs. 4.10 and 4.11 show the corresponding subsets in parameter space
(a, b) for different values of r and the numerical simulation results for σ(K) and
R(K).

When the correlation coefficient r = 0 then a and b are independent control
parameters and all oscillator parameters are uniformly distributed in the region
[0.25,1.75]×[0.75,1.25]. Figs. 4.10 and 4.11 show the emergence of anomalous syn-
chronization (k = 3) and fast synchronization (k = −3) with increasing levels of |r|.
Note that in both cases even if parameters are correlated only with 70%, |r| = 0.7,
the synchronization transition is already significantly modified compared to the
case r = 0 where a and b are uncorrelated. To summarize, it is sufficient that
two control parameters are related only ‘on average’ in order to achieve anomalous
synchronization effects.

4.4 Anomalous synchronization in the Landau-Stuart

model

As we have discussed in the Chapter 2, the Landau-Stuart model has two in-
dependent parameters that represent exactly the natural frequency and the non-
isochronicity. Thus, anomalous synchronization is expected to occur by establishing
functional dependences between the system’s parameters. As we will see, this fact
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Figure 4.12: Left: Frequency difference of two coupled Landau-Stuart oscillators (see
Chapter 2 for details) with ∆q = k∆ω as a function of coupling strength for different
values of k (ω1=1.2, ω2=0.8). Plotted are the simulation results (dotted lines) and the
analytical result from Eq. (4.36) (solid lines). Right: Synchronization threshold, Kc, as
a function of k. Solid line: analytical result from Eq. (4.36) by making ∆Ω = 0 , circles:
numerical results.

makes this model especially indicated for studying the phenomenon of anomalous
synchronization analytically.

4.4.1 Two coupled oscillators

So far our analytic treatment of anomalous synchronization effects has been re-
stricted to very small coupling levels, K � Kc, so that we could use the assump-
tion of independently rotating oscillators. Now we show that in the case of two
coupled Landau-Stuart oscillators (2.25) the full transition to synchronization can
be described analytically. Using the phase equations (4.45) with N = 2 we obtain
for the phase difference φ = θ2 − θ1

φ̇ = ∆ω −K[2 sinφ+ ∆q(cosφ− 1)], (4.35)

with ∆ω = ω2 − ω1 and ∆q = q2 − q1. It is straightforward to solve this equation
for φ(t). The beat frequency can be analytically calculated as it has been shown
in Chapter 2. Integration leads for the mean frequency difference, ∆Ω = 2π/T , to

∆Ω(K) =
√

∆ω2 + 2K∆ω∆q − 4K2. (4.36)

With this expression the transition to synchronization of two coupled nearly identi-
cal, weakly nonlinear oscillators has been described in the full coupling range. Note,
that our criterion (4.16) here simplifies to the product ∆ω∆q. For ∆q = 0 expres-
sion (4.36) reduces to the well known beat frequency of two coupled isochronous
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phase oscillators. In general however, ∆q 6= 0 and we can write ∆q = k∆ω.
Fig. 4.12 shows the results for different correlations between ∆ω and ∆q. We
observe a good agreement of the analytical result (4.36) with the numerical simula-
tions as long as both oscillators differ not too much. In particular, for positive values
of k we find anomalous synchronization, whereas negative values of k lead to an
enhancement of synchronization, as expected. Note that anomalous synchroniza-
tion is effective not only at the onset of coupling but has important consequences
also in the regime of larger coupling levels. This can be observed for example in
the synchronization threshold Kc which is shifted substantially by increasing levels
of |∆q|.

As a consequence, anomalous synchronization is also reflected in the Arnold
tongue structure of the system. Here, the idea is to indicate the synchronization
region in the (∆ω,K)-plane (see Fig. 4.13). This region typically has the form
of vertical (Arnold-)tongues. In our case the Arnold tongue is easily obtained
by setting ∆Ω(K) = 0 in (4.36). If ∆q = 0 we recover the usual result for two
coupled phase oscillators that the border of the tongues are the two straight lines
K = |∆ω|/2.

When both oscillators differ in their respective value of nonisochronicity, ∆q 6=
0, the Arnold tongue becomes asymmetrical with respect the ∆ω axis. A simple
calculation shows that the border of the tongue is still given by a straight line, but
with a modified slope which is scaled by a factor ξ and ξ−1 on the right and left
side, respectively. Thus, the anomalous synchronization borders are given by

K =

{

∆ω
2 ξ(∆q

2 ), ∆ω > 0

−∆ω
2

1
ξ(∆q

2
)
, ∆ω < 0

(4.37)

or in a more compact form

K =
|∆ω|

2

[

ξ

(

∆q

2

)]sign(∆ω)

. (4.38)

Here, the function ξ(x) defines the modification of the slope in dependence on
the difference in nonisochronicity, 2x = ∆q, and is given by

ξ(x) = x+
√

x2 + 1. (4.39)

Note, the special property ξ(x) = 1/ξ(−x). Fig. 4.13 shows the Arnold tongue
of the system for a given value of ∆q > 0. In concord to our above discussion
we find that on the right side of Fig. 4.13a where there is a positive correlation
between nonisochronicity and natural frequency, ∆ω∆q > 0, synchronization is
largely inhibited, whereas on the left side with negative covariance the synchro-
nization regime is enlarged.
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Figure 4.13: Deformation of the Arnold tongues in the presence of nonisochronicity.
a) Comparison between the Arnold tongues in a system of two coupled Landau-Stuart
oscillators (4.35) with identical nonisochronicity ∆q = 0 (dashed line) and with ∆q = 4
(solid line). If both oscillators differ in nonisochronicity, on the right hand side where
∆ω∆q > 0 the entrainment requires a higher coupling and the slope of the border of the
tongue is enlarged by a factor ξ(∆q/2). In contrast, on the left side where ∆ω∆q < 0
synchronization is enhanced and the slope is reduced by a factor 1/ξ (4.38). b) Arnold
tongue of an externally forced phase oscillator 4.42) without nonisochronicity, q = 0
(dashed line) and with q = 2 (solid line). In the nonisochronous oscillator there is a
similar deformation of the Arnold tongue (4.43) and effectively results in a rotation by an
angle α (4.44). c) Plot of the function ξ(x) = x+

√
x2 + 1 (4.39). d) Rotation angle, α,

of the Arnold tongue in b) as a function of nonisochronicity.

We want to stress that assuming different values of ω and q in both oscillators we
always observe anomalous effects, either inhibiting or enhancing synchronization.
Since the Landau-Stuart model is a very general way to describe any oscillator
of type (4.1) near its Hopf bifurcation we can say that the effects which we are
describing are always present in the synchronization transition of two non-identical
oscillators which vary in both natural frequency and non-isochronicity.

4.4.2 Asymmetric coupling and periodically forced oscillator

In the previous sections we have discussed how anomalous effects can emerge when
there is a correlation between two system characteristics such as nonisochronicity
and natural frequency. In this section we show that similar effects arise even
when the oscillators have identical nonisochronicity, q, if the coupling between the
oscillators is asymmetrical. For simplicity, we restrict us to the case of two coupled
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oscillators (2.25), where oscillators z1 and z2 are coupled with strength K1 and K2,
respectively. In this case of asymmetrical coupling we find for the phase difference
in a analogy to (4.35)

φ̇ = ∆ω − (K2 +K1) sinφ− (K2 −K1)q(cosφ− 1). (4.40)

Proceeding as in the previous section the observed frequency difference yields

∆Ω(K) =
√

∆ω2 + 2q∆ω(K2 −K1) − (K1 +K2)2. (4.41)

By comparison with (4.36) it is immediately evident that we find anomalous en-
largement when the product q∆ω∆K > 0 and anomalous synchronization enhance-
ment if q∆ω∆K < 0. Thus, if the oscillators are nonisochronous the asymmetry
of coupling is reflected through an asymmetry of the synchronization regime and
the Arnold tongue.

It is especially important the limiting case of an externally forced oscillator
which arises when we set K1 = 0. In this case (4.40) goes over to (for simplicity
we denote K2 = K)

φ̇ = ∆ω −K[sinφ+ q(cos φ− 1)]. (4.42)

This equation describes the evolution of the phase difference between a single non-
isochronous oscillator and a periodically driving force, where the natural frequency
of the oscillator and the driving frequency have a frequency mismatch of ∆ω.

We now analyze the synchronization threshold and the geometry of the Arnold
tongue in dependence of the nonisochronicity q. If q = 0 the border of the Arnold
tongue is given by the two lines K = |∆ω| (see Fig. 4.13b). However, if q 6= 0 the
slope of the lines is scaled similar to (4.38)

K = |∆ω| [ξ(q)]sign(∆ω) . (4.43)

Thus, the whole synchronization transition depends on the sign of ∆ω. If q > 0 and
the natural frequency of oscillation is larger than the driving frequency, then the
synchronization threshold is enlarged. Otherwise, the synchronization threshold is
reduced. Indeed, here in the case of an externally forced phase oscillator it turns out
that the Arnold tongue is simply rotated due to the presence of nonisochronicity.
The rotation angle α is given by

tan(2α) = q. (4.44)

In the limit of infinite large nonisochronicity the Arnold tongue is rotated by 900

degrees. In other words the rotation angle of the Arnold tongue is a measurement
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for the nonisochronicity of oscillation (see Fig. 4.13b). Similar asymmetric Arnold
tongues are well known from many experimental data (Pikovsky et al., 2001). In
these cases a simple measurement of the position and asymmetry of the Arnold
tongue can reveal valuable information about the dynamics of the observed oscil-
lator.

4.4.3 Ensemble of phase oscillators of Landau-Stuart type

In the following we generalize our discussion to an ensemble of phase oscillators
of Landau-Stuart type. It is important to stress that since in the Landau-Stuart
model the parameters ω and q are independent, in order to observe anomalous
synchronization one must take correlated distributions.

As it has been shown in Chapter 3 the phase equations corresponding to the
Landau-Stuart model are

θ̇i = ωi −
K

N

N
∑

j=1

[sin(θi − θj) + qi(1 − cos(θi − θj)] . (4.45)

For small coupling levels, K � Kc, the oscillators are rotating nearly independently
and the trigonometric functions

N
∑

j=1

sin(θi − θj) ≈
N
∑

j=1

cos(θi − θj) ≈ 0

and thus the system transforms into an ensemble of independent oscillators

θ̇i(K) = ωi + qiK. (4.46)

Note, that this equation can also be obtained by using (4.14) and averaging over
the interaction function in (4.45).

With Eq.(4.46), the frequency of the system of interacting Landau-Stuart oscil-
lators becomes fully described in the range of small coupling where it takes a very
simple form. The physical interpretation is straightforward. Due to the interac-
tion the oscillators are perturbed off their limit cycle. On average this leads to a
radial contraction of each limit cycle which produces a shift of the angular velocity
proportional to the value of the shear term qi.

Note that formula (4.46) corresponds exactly to (4.13), and the nonisochronicity
qi takes over the role of the κi in the general system. Obviously in Landau Stuart
systems the functions ω and q are directly the independent control parameters. In
this respect system (4.45) is especially interesting for our studies since we don’t
have to consider the roundabouts of mapping F (4.18) of the previous section.

Now assume again a disordered system where the oscillators differ in their re-
spective values of ωi and qi. If the ‘faster’ oscillators (with higher natural frequency,
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Figure 4.14: Ensemble of 500 globally coupled Landau Stuart oscillators (4.45) with q =
k(ω−〈ω〉)+ 〈ω〉. Natural frequencies are linearly increasing in the range δ = 0.25, 〈ω〉=1.
Left) k = 3: anomalous synchronization; center) k = 0: usual synchronization; right)
k = −3 enhanced synchronization. Top) Standard deviation of the ensemble frequencies
σ(K); numerical simulation (solid line) and analytical result using 4.48) (dashed line).
Further indicated is the order parameter R(K) (dotted line). Bottom) Frequencies Ωi(K)
of 11 equally spaced oscillators as a function of coupling strength K.

ωi) have a stronger shear of phase flow (higher value of qi) compared to the ‘slower’
ones, then small coupling leads to an enlargement of the frequency difference be-
tween the ‘faster’ and the ‘slower’ oscillators (see Fig.4.7). Therefore, if the ωi
covary with qi then small coupling tends to desynchronize the oscillators. In fact,
this is nothing else but our previous result (4.16) that anomalous effects arise only
if the nonisochronicity of oscillation covaries with the natural frequency.

Suppose now that the nonisochronicity of each oscillator depends in some spe-
cific way on the natural frequency q = q(ω). If the width of the distribution of ω is
small in the spirit of the previous section we can develop this dependence in first
order as

q(ω) = kω + q0. (4.47)

Then it is straightforward to calculate the standard deviation of the ensemble
frequencies. Up to first order we find

σ(K) = (1 + kK)σω. (4.48)

Thus, the standard deviation is an increasing function of coupling strength when
k > 0 and a decreasing function when k < 0. When k = 0 we are only varying
the natural frequency and the correlation term in Eq. (4.16) is zero. We have
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tested these results in a direct simulation of 500 globally coupled Landau Stuart
systems for different values of k (see Fig. 4.14). Again, we find a perfect agreement
between our theory and the numerical simulations. Note that σ(0) does not change
with k, or equivalently with q. This means that by increasing |k|, i.e. by making
the ensemble more ‘non-identical’, σ(0) remains constant and the ensemble has
apparently the same ‘disorder’. Only when K 6= 0 coupling is able to reduce the
mean oscillation amplitudes and non-isochronicity effects begin to play a role.

4.4.4 Linear stability analysis

It is possible to apply the techniques developed in Chapter 3 in order to determine
the synchronization threshold in the phase equations of Landau-Stuart type (4.45).

The analytic treatment is similar to the one performed in Section 3.2. Thus, if
we define an order parameter as in (3.4) the system (4.45) writes

θ̇i = ωi −KR [sin(θi − θj) + qi(1 − cos(θi − θj)] . (4.49)

where now the parameters ω and q are both distributed according to the two dis-
tributions g(ω) and h(ω), respectively. In order to proceed, we follow the following
strategy: In the thermodynamic limit it is possible to define a density function
ρ(θ, ω, t) that evolves according to the continuity equation (3.23). If we consider
the evolution of a small disturbance from the incoherent solution it is possible to
linearize the continuity equation around the incoherent solution ρ0, and from this
to determine when the stability of ρ0 is lost, i.e. the value of the synchronization
threshold Kc.

Since the function ρ(θ, ω, t) is 2π periodic (and real) it can be developed in
Fourier series. This permits to write the linearized problem for the first Fourier
mode as follows

∂ρ1

∂t
= −i(ω + qK)ρ1 +

K

2
(1 + iq)

∫ ∞

−∞

∫ ∞

−∞
ρ1(t, ω

′, q′) g(ω′)h(q′)dω′dq′, (4.50)

and the same complex conjugate equation for the mode -1. The right-hand of (4.50)
defines a linear operator that has both continuous and discrete parts. Let

ρ1(t, ω, q) = b(ω, q)eλt,

and hence Eq.(4.50) becomes

λb = −i(ω + qK)b+
K

2
(1 + iq)

∫ ∞

−∞

∫ ∞

−∞
b(ω′, q′) g(ω′)h(q′)dω′dq′, (4.51)

where the average integral in the right-hand side of Eq. (4.51) is just a real constant
B to be determined self-consistently. Hence solving (4.51) for b(ω, q) yields

b(ω, q) =
K

2

(1 + iq)

λ+ i(ω + qK)
B. (4.52)



4.4 Anomalous synchronization in the Landau-Stuart model 67

0 1 2
K

0

0.5

1

R

k=-2 k=0 k=2

Figure 4.15: Transition to synchronization of 500 oscillators with uniform frequency
distribution (g(ω) = (2γ)−1) with γ = 0.5 and with q = kω for k=-2 (enhanced synchro-
nization), k=0 and k=2 (anomalous synchronization).

Now invoking self-consistency and without considering the trivial solution b = 0,
Eq. (4.52) gives

1 =
K

2

∫ ∞

−∞

∫ ∞

−∞

1 + iq

λ+ i(ω + qK)
g(ω)h(q)dωdq. (4.53)

Equation (4.53) can alternatively be written, separating real and imaginary parts,
as

0 =

∫ ∞

−∞

∫ ∞

−∞

qRe(λ) − ω − Im(λ) − qK

Re(λ)2 + (Im(λ) + ω + qK)2
g(ω)h(q)dωdq (4.54)

2

K
=

∫ ∞

−∞

∫ ∞

−∞

Re(λ) + q(ω + Im(λ) + qK)

Re(λ)2 + (Im(λ) + ω + qK)2
g(ω)h(q)dωdq (4.55)

Combining the last two equations, the Eq. (4.55) can be also written as

2

K
=

∫ ∞

−∞

∫ ∞

−∞

Re(λ)(1 + q2)

Re(λ)2 + (Im(λ) + ω + qK)2
g(ω)h(q)dωdq. (4.56)

The synchronization threshold Kc can be determined form Eq.(4.56) by per-
forming the limit Re(λ) → 0 which yields

Kc =
2

π

(
∫ ∞

−∞

∫ ∞

−∞
δ(ω + Im(λ) + qK)(1 + q2) g(ω)h(q)dωdq

)−1

(4.57)
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using the fact that Re(λ)/(Re(λ)2 +x2) → πδ(x) as Re(λ) → 0. This equation has
to be calculated once Im(λ) is known through the equation (4.54)

∫ ∞

−∞

∫ ∞

−∞
q δ(ω + Im(λ) + qK) g(ω)h(q)dωdq

=
1

π

∫ ∞

−∞

∫ ∞

−∞

1

ω + Im(λ) + qK
g(ω)h(q)dωdq

(4.58)

Let us now suppose that the nonisochronicity and the natural frequency are
functionally related, for instance considering q = kω. Then assuming that g(ω)
is symmetric, the integrals (4.57) and (4.58) can be straightforwardly calculated.
Thus, the synchronization threshold yields

Kc =
2

πg(0) − k
. (4.59)

The Fig. 4.15 shows a numerical simulation of an ensemble of phase oscillators
showing anomalous synchronization and enhanced synchronization in good agree-
ment with the critical coupling (4.59).



Chapter 5

Synchronization between

populations of phase oscillators

In this Chapter we investigate the possible routes to synchronization taking place
between two populations of phase oscillators. Therefore we now combine the phe-
nomenon of mutual synchronization taking place between two single oscillators
(studied in Chapter 2) with that of macroscopic mutual entrainment (described in
Chapter 3). The results presented here are summarized in (Montbrió et al., 2004b).

The two ensembles are composed of phase oscillators of a Landau-Stuart type.
In contrast with Chapter 4 here the inhomogeneities in the populations are only
taken into account through a distribution of natural frequencies. Thus, we restrict
our study to the phase equations given by (3.19), since the other terms introduced
by the nonisochronicities into the phase equations have the trivial effect of rescaling
the coupling strength, and shifting the distributions of natural frequencies (see
Eq.3.42). Additionally, the model (3.19) is also of interest because it appears
naturally in the phase reduction of an array of superconducting Josephson junctions
(Wiensenfeld and Swift, 1995; Wiesenfeld et al., 1996). It also has been proved to
be useful in modeling information concerning the synaptic connections in a neural
network (Hoppensteadt and Izhikevich, 1998) and time delays (Izhikevich, 1998).

5.1 The model

The system under study is

θ̇
(1,2)
i =ω

(1,2)
i − Kp

N

N
∑

j=1

sin(θ
(1,2)
i − θ

(1,2)
j + α)

− K

N

N
∑

j=1

sin(θ
(1,2)
i − θ

(2,1)
j + α),

(5.1)

69
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where |α| < π/2 and i = 1, . . . , N � 1. Here, θ
(1,2)
i describes the phase of the ith

oscillator in population 1 or 2, respectively. Both populations have the same size
N and are coupled internally with intra-population coupling strength Kp, whereas
the inter-population coupling is determined by K. The oscillators within each

population have randomly distributed natural frequencies ω
(1,2)
i according to a

density g(1,2)(ω) of width γ that is assumed to be symmetric about the mean ω̄(1,2)

and unimodal. From now on we assume that ∆ω ≡ ω̄(1)−ω̄(2) > 0 and 0 ≤ α < π/2.
The phase coherence within each population is described by the two complex

order parameters (3.4),

R(1,2)eiψ
(1,2)

=
1

N

N
∑

j=1

eiθ
(1,2)
j , (5.2)

for each population, which permits to write system (5.1) in terms of the mean field
quantities R(1,2) and ψ(1,2)

θ̇
(1,2)
i =ω

(1,2)
i −KpR

(1,2) sin(θ
(1,2)
i − ψ(1,2) + α)

−K R(2,1) sin(θ
(1,2)
i − ψ(2,1) + α).

(5.3)

If the populations are uncoupled, i.e. K = 0, each of them reduces to the well
known Kuramoto model with a phase shift α in the coupling function (3.42) studied
in Chapter 3. For a given Kp this model exhibits a phase transition at a critical
value of the frequency dispersal γc. For γ > γc the oscillators rotate with their
natural frequencies and R(1,2) ∼ O(

√

1/N ), but for γ < γc mutual entrainment
occurs among a small fraction of oscillators giving rise to a finite value of the order
parameter R(1,2). Thus, a cluster of locked oscillators emerges through a Hopf-
bifurcation of frequency Ω(1,2) that, in general (α 6= 0), depends on the overall
shape of g(1,2)(ω). The drifting oscillators arrange in a stationary distribution that
does not contribute to the order parameters.

On the other hand, in the limit of identical oscillators γ = 0, the oscillators
within each population are all identical and therefore they are able to synchronize
in-phase (all the oscillator in each population have exactly the same phase for all
times, i.e. R(1,2) = 1) for arbitrary small Kp, and hence each population may
act exactly as a single oscillator. Note that in this case the observed frequency is
Ω(1,2) = ω̄(1,2) −Kp sinα, that therefore deviates from ω̄(1,2) because of α 6= 0, as
we have seen in Chapter 2.

When K > 0 the two locked clusters begin to interact. If this interaction is
similar to the frequency adjustment between two coupled oscillators, one expects
mutual locking between these two clusters to occur in a saddle-node bifurcation at
some critical value K = Kc, as we have seen in Chapter 2. Especially, for γ = 0,
synchronization should arise at

Kc =
∆ω

2 cosα
. (5.4)
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5.2 Linear stability analysis of the incoherent states

In the following we investigate the dynamics of (5.3) in the full (K, γ)-parameter
plane. We proceed as in Chapter 3: In the thermodynamic limit a density function
can be defined so that ρ(1,2)(θ, t, ω)dωdθ describes the number of oscillators with
natural frequencies in [ω, ω + dω] and phase in [θ, θ + dθ] at time t. For fixed ω
the distribution ρ(1,2)(θ, t, ω) of the phases θ is normalized to unity. The evolution
of ρ(1,2)(θ, t, ω) obeys the continuity equation ∂ρ(1,2)/∂t = −∂(ρ(1,2)θ̇(1,2))/∂θ, for
which the incoherent state ρ0 = (2π)−1 is always a trivial solution. The function
ρ(1,2)(θ, t, ω) is real and 2π-periodic in θ and therefore admits the Fourier expansion

ρ(1,2)(θ, t, ω) =
∞
∑

l=−∞
ρ
(1,2)
l (t, ω)eilθ. (5.5)

where ρ
(1,2)
−l = ρ

∗(1,2)
l . Using (5.2) and (5.5) the order parameter can be written in

terms of the Fourier components as R(1,2)eiψ
(1,2)

= 2π
〈

ρ
(1,2)∗
1

〉

(we use
〈

f (1,2)(ω)
〉

to denote frequency-average weighted with g(1,2)(ω), respectively). Now, after in-
serting (5.3) into the continuity equation, we obtain an infinite system of integro-
differential equations for the Fourier modes

ρ̇
(1,2)
l = − iωlρ

(1,2)
l +

lρ
(1,2)
l−1 πe

iα
(

Kp

〈

ρ
(1,2)
1

〉

+K
〈

ρ
(2,1)
1

〉)

−

lρ
(1,2)
l+1 πe

−iα
(

Kp

〈

ρ
∗(1,2)
1

〉

+K
〈

ρ
∗(2,1)
1

〉)

.

(5.6)

The stability of ρ0 can be analyzed by studying the evolution of a perturbed state

ρ(1,2)(θ, t, ω) close to ρ0 (note that ρ
(1,2)
l are then small quantities). Linearization

of (5.6) reveals that the only potentially unstable modes are l = ±1 and hence

l = 1 has solution ρ
(1,2)
1 (t, ω) = b(1,2)(ω)eλt +O(|ρl|2). This leads to

b(1,2)(ω) =
(

Kp

〈

b(1,2)(ω)
〉

+K
〈

b(2,1)(ω)
〉) eiα/2

λ+ iω
. (5.7)

the self-consistent problem (5.7) can be solved analytically. Eq (5.7) can be written
as

2
〈

b(1,2)(ω)
〉

e−iα =
(

Kp

〈

b(1,2)(ω)
〉

+K
〈

b(2,1)(ω)
〉)

∫ ∞

−∞

1

λ+ iω
g(1,2)(ω)dω.

(5.8)
If the distribution of frequencies is considered to be of Lorentzian type, g (1,2)(ω) =
(γ/π)[γ2 + (ω − ω̄(1,2))2]−1, then the integral in the right hand of Eq.(5.8) can be
solved analytically. First, the integrand is extended to the complex plane
∫ ∞

−∞

1

λ+ iω
g(1,2)(ω)dω =

−iγ
π

∮

C

dz

(z − iλ)(z − (ω̄(1,2) + iγ))(z − (ω̄(1,2) − iγ))
,
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Figure 5.1: (K, γ) phase diagram of system (5.1) assuming Lorentzian frequency dis-
tributions, ∆ω = 1/2, Kp = 1 and for α = 0. Fig.(b) in an enlarged region of Fig.(a).
Numerical stability boundaries (N = 1000) are indicated as solid lines. The dotted
line represents the analytical stability boundaries γc− obtained from (5.9) whereas the
boundary γc+ fully overlaps with numerical results. Region I: synchronization. Region II:
coexistence. Region III: incoherence. (b) Enlarged region where bistability between states
I and II (horizontal dashed) and between states III and I (vertical dashed) is observed.

where the real axis has been extended to the closed contour C by attaching a half-
circle in the upper half-plane. The integrand has two simple poles, at z = iλ and
z = ω̄(1,2) + iγ, and thus using the residue theorem the integral gives

∫ ∞

−∞

1

λ+ iω
g(1,2)(ω)dω =

2γ

(iλ− (ω̄(1,2) − iγ))(iλ − (ω̄(1,2) + iγ))

− i

(ω̄(1,2) + iγ − iλ)
=

=
γ − λ− iω̄(1,2)

γ2 + (ω̄(1,2) − iλ)2
.

Substituting the previous result into Eq. (5.8), this equation can be solved for λ
and gives

λ± = −γ +
Kpe

iα

2
± 1

2

√

K2ei2α − ∆ω2 − iω̄, (5.9)

with ω̄ ≡ (ω̄(1) + ω̄(2))/2. Thus the stability of the incoherent state ρ0 is described
by the two complex eigenvalues (5.9) for mode l = 1, and the complex conjugate
for l = −1.

Imposing Re(λ±) = 0 defines explicitly the two critical curves γc±(K) (see
Figs. 5.1, 5.5 and 5.9 where the stability boundaries in the γ-K parameter space
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Figure 5.2: Complex modulus of the function z0 (Eq.(5.11)), for different values of the
parameter α (in rad.).

are depicted for increasing values of α). Each curve represents a Hopf bifurcation
with frequency given by Ω± ≡ −Im(λ±). The largest eigenvalue determines the
stability of the incoherent state (III), and therefore the curve max(γc+, γc−) = γc+
separates the region where the incoherent solution III is stable from the unstable
regions, marked as I and II in the stability diagrams.

The eigenmodes
〈

ρ(1,2)(θ, t, ω)
〉

near criticality are

(

〈

ρ(1)
〉

〈

ρ(2)
〉

)

=

(

1/2π

1/2π

)

+Z+(t)

(−iz0
1

)

ei(θ−Ω+t) + c.c.+

Z−(t)

(

1

iz0

)

ei(θ−Ω−t) + c.c. +O(|Z|2),
(5.10)

where Z±(t) ≡ eRe(λ±)t and c.c. denotes the complex conjugate of the preceding
term. The modulus of the number

z0 ≡ e−iα

K
(∆ω −

√

∆ω2 − ei2αK2), (5.11)

is a weight for the fraction frequencies Ω+ and Ω− in populations 1 and 2, respec-
tively. The function |z0| as a function of K is depicted in Fig.5.2 for different values
of α.

5.3 The symmetric case, α = 0

The first important result is that our results coincide with those of Okuda and
Kuramoto (1991) when the width of the frequency distribution is substituted by
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the intensity of the noise. The eigenvalues in this case are simply

λ± = −γ +
Kp

2
± 1

2

√

K2 − ∆ω2 − iω̄, (5.12)

From the eigenvalues (5.12) the state III can become unstable in two different ways,
depending on the sign of (K − ∆ω):

• When K > ∆ω the transition III-I takes place through a single Hopf bifur-
cation and both populations synchronize to the same frequency Ω = ω̄. The
presence of a single macroscopic oscillation is denoted as region I.

• When K < ∆ω the instability is through a degenerated Hopf bifurcation.
Both (λ+, λ

∗
+) and (λ−, λ∗−) cross simultaneously the imaginary axis at γc± =

γc = Kp/2 (line CA) and two macroscopic oscillations with frequencies

Ω± = ∓1

2

√

∆ω2 −K2 + ω̄, (5.13)

emerge. The region of coexistence of two different macroscopic fields is labeled
as region II. Note that this result is a consequence of the reflectional symmetry
of the model (5.1) 1.

Observe that when K = 0 the amplitudes are |z0| = 0 in (5.10), and hence, if
γ < γc, the phase of the order parameters evolves uniformly, i.e. ψ(1) = Ω−t
and ψ(2) = Ω+t. On the other hand, when ∆ω = K then the function is
|z0| = 1, indicating synchronization of the order parameters.

The coupling-modified frequencies of the individual oscillators, provide a useful
measure of synchronization: when K = 0 the frequency-locked oscillators form a
single plateau that is the only contribution to the fields (5.2), as it it shown in
Fig.5.3(a). Thus, the phase of each order parameter evolves linearly in time ac-
cording to ψ(1) = ω̄(1)/t and ψ(2) = ω̄(2)/t, i.e. the phase difference of the order
parameters also grows uniformly as ∆ψ(t) = ψ(1)(t) − ψ(2)(t). The time evolution
of the order parameter of population 1 is depicted in Fig.5.4(a) (the population
2 behaves as population 1 due to the reflection symmetry, and therefore we show
only the order parameters corresponding to the first population).

With further increases in K, some of the oscillators in populations 1 and 2
begin to lock in a second plateau at Ω+ and Ω−, respectively, in accord to (5.10)
(see Fig.5.3(b)). Hence, R(1,2) begin to oscillate with frequency ∆Ω = Ω− − Ω+

(Fig.5.4(b)). With further increases in K the system approaches the saddle node

1When α = 0, a reflection (θ
(1,2)
i → −θ(1,2)

i and ω
(1,2)
i → −ω(1,2)

i ) in the rotating frame moving
with frequency (ω̄(1) + ω̄(2))/2 leaves the system (5.1) invariant. Otherwise the system in invariant

under the transformation (θ
(1,2)
i → −θ(1,2)

i , ω
(1,2)
i → −ω(1,2)

i , α→ −α).
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Figure 5.3: Coupling-modified frequencies ω̃i of populations 1(:black) and 2(:grey) as

a function of the oscillator’s index i: oscillator i has natural frequency ω
(1,2)
i = ω̄(1,2) +
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0.2, (c) K = 0.4, (d) K = 0.41. (∆ω = 1/2, ω̄ = 0, Kp = 1 N = 1000).
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Figure 5.4: Time evolution of the order parameter of population 1 from a random initial
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is N = 1000 and the state of the system at time t = 0 random initial conditions
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line Ba (see Figs 5.3(c) and 5.4(c)) from the region II. At this line the synchronized
state is reached, δΩ = 0, and the populations become synchronized (see Figs 5.3(d)
and 5.4(d)).

Note that our analysis gives

T = 2π/∆Ω ∼ 1/
√

∆ω2 −K2, (5.14)

and hence the saddle-node bifurcation should take place at Kc = ∆ω for all γ < γc
which deviates from the numerical line Ba even for γ = γc. The inset of Fig.5.1(a)
shows how the saddle-node line bad crosses the degenerated Hopf line γc at point
a, and joins the Hopf curve γc+ at the codimension-2 point d. Consequently the
Hopf bifurcation is supercritical all along the curve γc+, except in the vicinity of
point A (line aAd) where it is subcritical and therefore a small region of bistability
between states III/I and II/I is observed.

5.3.1 Higher-order entrainment

In the Chapter 3 we have discussed how the drifting oscillators behave in the pres-
ence of a cluster of mutually entrained elements in the ensemble. In particular, the
drifting oscillators form a stationary distribution which do not contribute to the
coherence, and each individual oscillator behaves exactly as if it was forced by an
external periodic field, independently from all the other drifting oscillators. In the
present study, the situation is different: The drifting oscillators are coupled to two
distinct fields with different effective coupling strengths KpR

(1,2) and KR(2,1). In
this section we investigate such effects over the drifting oscillators.

From Figs.5.3 we can see that there is an important contribution to the order
parameters which has not been taken into account by the linear theory developed
in the previous section. In Figs.5.3(b) and 5.3(c) we observe clusters of frequency-
synchronized oscillators with mean frequencies that are not the frequencies Ω+ and
Ω−. Specifically, these frequencies do not appear in the the eigenmodes (5.10): It
is obvious that the new locked oscillators must generate a coherent field that will
sum up together with the contributions of the main clusters, and hence it should
be included in the equations describing the mean fields of populations 1 and 2.

On the other hand, the Figs.5.3 show that the number of new plateaus as well as
their size grows as the system approaches the saddle-node bifurcation Ba from the
region of coexistence II. Therefore the new contribution to the order parameters
must be also increasingly significant close to the bifurcating line Ba (within region
II). At this line the synchronized state I is reached, so ∆Ω = 0, and the steps
disappear abruptly, as it can be seen in Fig.5.3(c). We will see in the next section
that in the asymmetric case the new clusters can even provoke synchronization of
the populations within region II.
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From our numerics we observe that the new clusters emerge due to mutual

entrainment of the drifting oscillators having frequencies ω̃
(1,2)
i close to

Ωn = Ω− + n∆Ω, where n = 1,±2,±3.... (5.15)

In the following we discuss the dynamics of the drifting oscillators: If we start
with initial conditions corresponding to the incoherent state, the linear stability
analysis indicates that the first thing to occur is the emergence of the two clusters
of frequencies Ω+ and Ω−. As we have seen, the degenerated Hopf bifurcation
leading to region II is supercritical except in a small region close to point A (see
diagram 5.5). Therefore the amplitude of the emergent fields is small close to
criticality and the solutions (5.10) are of validity.

Consequently, a drifting oscillator is actually forced by the two mean fields
(5.10) not far -in the parameter space- from the incoherent state. Thus its dy-
namical equation is given by Eq.(5.3) with the mean fields near criticality (5.10).
Moreover, exploiting the rotational symmetry of the model (5.3) it is always pos-
sible to go into a rotating frame such that in the new coordinates ω̄ = 0 (see
Chapter (3). After this the system is symmetric with respect reflections and there-
fore R ≡ R(1) = R(2) and ψ ≡ ψ(1) = −ψ(2). This allows us to write without loss
of generality the Eq.(5.3) for the drifting oscillators in population 1 as

θ̇
(1)
i = ω

(1)
i −R[(K +Kp) sin θ

(1)
i cosψ + (K −Kp) cos θ

(1)
i sinψ], (5.16)

where R(t) is a time-periodic function given by Eq.(5.10) (with period T and given
by Eq.(5.14)), and ψ is a monotonically increasing function of t with slope Ω−.

In order to simplify the analysis let us assume that Kp = K, i.e. a bimodal
frequency distribution. Then Eq.(5.16) becomes

θ̇
(1)
i = ω

(1)
i − f(t) sin θ

(1)
i , (5.17)

where

f(t) ≡ 2KR(t) cosψ(t),

is a periodic function, with period given by 2T . The function R(t) is positive and
has its minimum exactly when ψ = π/2. Therefore we can consider that the drifting
oscillators are governed by the Adler equation (2.18) with a time periodic coupling.
Such system produces similar higher order entrainment as the one observed in
Figs 5.3.

The observation of similar clusters was reported by Sakaguchi (1988) in an
externally periodically forced population of nonidentical phase oscillators, even
though their origin was not explained. Additionally similar locking plateaus ap-
pear in when an external periodic forcing is applied to a single phase oscillator
(for a derivation for a weakly nonlinear Van der Pol oscillator under a general
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Figure 5.5: (K, γ) phase diagram of system (5.1) assuming Lorentzian frequency distri-
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α = π/4. Numerical stability boundaries (N = 1000) are indicated as solid lines. Dotted
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external periodic forcing see Landa (1996)). In such case the emergent plateaus
are known as Shapiro steps (Shapiro, 1963; Shapiro et al., 1964), and it has been
shown that their effect over a population of nonidentical oscillators with randomly
distributed coupling strengths leads to periodic synchronization (Choi et al., 1994).

5.4 The asymmetric case, α > 0

As α is increased from zero the bifurcating lines γc+ and γc− split due to the
breaking of symmetry. Interestingly, the eigenmodes (5.10) do not reflect the
asymmetry through the amplitudes |z0|, but only through the different exponential
growths Z±(t). Figs.5.6 show the modified frequencies of the oscillators for α = π/4
(Fig.5.5(b)), keeping K constant and decreasing γ continuously from region III.

We find that incoherence (Fig.5.6(a)) only goes unstable through a single Hopf
bifurcation γc+ (at Ω+ in Fig.5.6(b)) and hence nucleation first takes place mainly
within population 2.

The second Hopf bifurcation (at Ω− in Fig.5.6(c)) follows γc− as far as the
system is close enough to the incoherent state III. Fig.5.7(a) shows the order pa-
rameters of the populations in the region II close to the bifurcating line γc−.As γ is
decreased further the system approaches the saddle-node bifurcation, Bd, and an
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increasing number of oscillators in population 1 become entrained to the frequen-
cies given by (5.15) (see Figs.5.6(d,e)). In consequence the order parameter R(1)(t)
oscillates with frequency ∆Ω with a large amplitude whereas R(2)(t) remains al-
most constant (Fig.5.7(b)). The phase difference between the order parameters
∆ψ(t) ≡ ψ(1) − ψ(2) reveals the presence of such clusters (see Fig. 5.8): ∆ψ(t)
(Figs.5.7(a,b)) is bounded despite the fact that the populations are not locked in
frequency (Fig.5.6(c,e)).

The bistability regions - enlarged in the insets of Figs.5.5(a,b) - are located near
the intersection a of the Hopf line CA with the saddle-node line Bd. Within the
region enclosed by Aba the states I and II coexist, as in the α = 0 case. In contrast,
the region enclosed byAad is surrounded only by the region I and bistability be-
tween a small and a large amplitude of the synchronized oscillation in population
1 is observed.

With increase in α, the synchronization regions I and II become gradually
smaller because as α → π/2 synchronization is increasingly inhibited due to frus-
tration (Daido, 1987; Bonilla et al., 1993). At the same time, the number |z0|
decreases indicating a lower degree of synchronization between the populations.
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This is in qualitative agreement with the approaching of the saddle node line to
the γ = 0 axis (see Figs. 5.5). At the critical value α = α∗ the saddle-node line
collides with the γ = 0 axis and disappears, as it is shown in Fig. 5.9. Note also
that the regions of bistability spread in a larger region around the end of the Hopf
line A. Therefore, for α > α∗ synchronization between the populations always
occurs when the oscillation of frequency Ω− dies in the Hopf bifurcation γ−.

5.5 The limit γ = 0

The limit identical oscillators in each population γ = 0 is of special interest. First
note that the transition point B simply follows Eq.(5.4) as far as α < α∗. Since
the oscillators within each population are identical, they synchronize in-phase,
R(1,2) = 1, and the population’s dynamics reduce to that of a system of two
identical oscillators. However, for α > α∗ the synchronization transition occurs
via a Hopf bifurcation A, and thus the behavior in each population is of higher
complexity (see Fig.5.10).

As soon as α reaches the critical value α∗ (point P ), the curve Kc splits in
two bifurcating lines, KI

c and KII
c , that enclose the new regions II’ and I’ where

the order parameters are not synchronized (Fig.5.11) and synchronized (Fig.5.12),
respectively. Within those regions the oscillators in population 1 are not in-phase
synchronized and hence R(1)(t) < 1, whereas the population 2 shows perfect in-
phase entrainment R(2)(t) = 1. We point out that R(1)(t) strongly depends on the
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initial conditions whereas ∆ψ(t) and R(2)(t) not, as it can be seen by in Figs. 5.11
(region II’) and Figs .5.12 (region I’).

5.5.1 Linear stability analysis of the 2-oscillator locked state

Finally we outline the linear stability analysis of the in-phase synchronized state
in population 1 when the populations are locked (region I).

As we have seen in Chapter 2 the phase difference of two synchronized non-
identical phase oscillators yields ∆ψ = arcsin ∆ω/(2K cosα), and hence this also
holds for the two in-phase synchronized populations in state I. Then linearization
of (5.1) results in a simple Jacobi matrix with one eigenvalue N − 1 eigenvalues
µ+ and N − 1 eigenvalues µ− characterizing the stability of the in-phase state of
populations 1 and 2, respectively

µ± = Kp cosα+K cos (±∆ψ + α) < 0, (5.18)

and two eigenvalues µ0 = 0 and µc = −2K cosα cos ∆ψ 2. Since π/2 > ∆ψ >
0, the condition (5.18) is only violated for the population 1, and hence µ+ = 0
determines the boundary KI

c and thus, the point P in very good agreement to
numerics (Fig.5.10).

2Note that µc = 0 leads to Eq.(5.4)
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Notice that with K = 0 we recover the in-phase stability condition for a sin-
gle population, Kp cosα > 0. For |α| > π/2 this state becomes unstable and
reaches a new (splay) state, which is neutrally stable. The splay state has been
the subject of intense theoretical work due to the applications in devices consisting
of superconducting Josephson Junctions (Wiensenfeld and Swift, 1995; Watanabe
and Strogatz, 1993). In the present case, however, even for |α| < π/2 the in-phase
state in one population can be destabilized (population 1) or overstabilized (pop-
ulation 2) due to the interaction with the other population. The global stability
properties of the states I’ and II’ are interesting directions of further study.



Chapter 6

Conclusion

This work was devoted to an investigation of synchronization in large ensembles of
nonidentical oscillators, with special emphasis on the effects that nonisochronicity
bears upon the synchronization process.

The work presented in this thesis has been focused on two particular problems:

• A population of oscillators with inherent disorder in the nonisochronicities,
in addition to the disorder in the natural frequencies. In this context the new
phenomenon of ‘anomalous synchronization’ has been discovered, in which
small coupling is able to increase the frequency disorder, inducing a spread of
the oscillator frequencies. It has been demonstrated that occurs naturally in
groups of globally and locally coupled oscillatory systems of different types:
phase oscillators, limit cycles and chaotic oscillators (Blasius et al., 2003;
Montbrió and Blasius, 2003; Montbrió et al., 2004a) 1.

• A study of the routes leading to synchronization between two populations of
globally coupled oscillators (Montbrió et al., 2004b). The systems that have
been used are phase oscillators of a Landau-Stuart type. In this case the in-
homogeneity in the ensemble has been introduced simply through the natural
frequencies whereas the nonisochronicity has been considered to be constant
for all the elements in the ensembles. However, it has been demonstrated that
the presence of nonisochronicity plays a significant role, because it induces
a breaking of the reflectional symmetry properties of the purely isochronous
system.

Altogether these results stress the importance of considering the presence of
nonisochronicity in the synchronization theory.

1Additionally, anomalous synchronization has been recently observed in coupled spatially ex-
tended systems of a Ginzburg-Landau type (Bragard et al., 2003, 2004), and also experimentally
in coupled Chua’s circuits (Dana et al., 2004).
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6.1 Results

6.1.1 Anomalous synchronization

In the Chapter 4 of this thesis anomalous synchronization has been described an-
alytically in the regime of weak coupling and the validity of these results has been
numerically confirmed for a number of different models. It has been demonstrated
that the effect emerges because the interaction perturbs the oscillators away from
their attractors. This brings the nonisochronicity of the oscillation into play. Disor-
der enlargement occurs if nonisochronicity has positive covariance with the natural
frequency of oscillation. As such, it is a universal effect and generically appears
when inherent disorder is affecting more than one characteristics of the system.
Among all known coupling-induced effects anomalous synchronization stands out,
since the effect sets in without a threshold, whereas usually coupling-induced in-
stabilities arise only when the coupling level is larger than a critical threshold.

On the other hand, it has been shown that anomalous synchronization effects
have consequences for the large coupling regime. In particular, they strongly con-
trol the synchronization threshold. Therefore anomalous synchronization might
have important applications for the synchronization and control of large ensembles
of coupled oscillators. With appropriate choice of system parameters it is possible
to change the synchronization transition of the system, and in this way either to
increase or decrease the onset of synchronization. This was particularly clear in
the case of ensembles of globally coupled phase oscillators, for which an analytical
expression for the synchronization threshold was obtained (Montbrió et al., 2004a).
For more general systems, the control of the onset of synchronization was achieved
when different parameters of the system were simultaneously affected by the dis-
order. On the other hand, it was shown that there are also classes of oscillators,
like for example predator-prey systems, for which this is automatically achieved by
distributing only one parameter.

Anomalous synchronization has implications for biological systems which are
typically characterized by large amounts of inherent disorder. In many cases
strong synchronization is desirable for biological reasons. Therefore, it is quite
possible that evolution has made use of this effect by selecting organisms with
(anti)correlated system parameters in such a way as to speed up synchronization
and by this to compensate the natural heterogeneity of all living environments.

On the other hand there are situations where synchronization is regarded as
dangerous. For example, it is known that synchronization of fluctuating popula-
tion numbers is strongly connected to the risk of global species extinction (Heino
et al., 1997; Earn et al., 2000). Such synchronization effects are now understood
to be critical in controlling the regional extinction rates of endangered species.
This is because asynchrony between a set of patch populations makes it possible to
‘spread the risk’ of survival in a fluctuating environment and increases the chances
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of global persistence. Synchronization, on the other hand, tends to increase the
extinction probability. In this context, the above findings of the presence of anoma-
lous synchronization in typical ecological models obtain a particular importance.
Because of the presence of the anomaly spatially extended ecological systems are
not synchronized for levels of coupling which otherwise would have led to collective,
and therefore dangerous, cycles. In this respect the anomalous synchrony inhibit-
ing effect of coupling, which we find in ecological predator-prey models, may have
important consequences for conservation ecology.

6.1.2 Synchronization between populations of oscillators

In Chapter 5 the presence of nonisochronicity has been proved to be important
in the transition to synchronization of two globally coupled populations of non-
identical phase oscillators of a Landau-Stuart type. The isochronicity in the phase
equations is modelized simply by introducing a phase shift α in the coupling func-
tion of the usual Kuramoto model.

The system has been investigated numerically in a broad region of its parameter
space. Additionally analytical results were provided close to the onset of synchro-
nization, studying the linear stability analysis of the incoherent states (or desyn-
chronized states) of the ensembles. Altogether, the analytical and the numerical
results, have been presented in several bifurcating diagrams, whereas the param-
eter regions with more interesting dynamical behavior have been analyzed in detail.

The analysis has been organized in two different sections in order to understand
the effect the nonisochronicity in the system:

• The isochronous case:

– We have found that the incoherent state can become unstable in two
different ways: Either through a single or through a degenerated Hopf
bifurcation. The analytical stability boundaries show good agreement
with the numerics. The nonisochronous system possesses a reflectional
symmetry, that produces identical behavior in both populations. This
symmetry is reflected in the degeneracy of the Hopf bifurcating line,
that leads to similar nucleation within each population.

– The synchronization between the macroscopic fields occurs always via
a saddle-node bifurcation, as in the synchronization of two single os-
cillators. Around the intersection of the saddle-node with the Hopf
bifurcations, bistability is observed.

– The coupling-modified frequencies show higher-order entrainment in the
region of coexistence of the oscillations. The effect of the new synchro-
nized clusters on the order parameters is relevant when the systems are



88 Conclusion

close to the saddle-node bifurcation. This phenomenon is not explained
by the critical eigenvectors. However, it can be understood consider-
ing that the drifting oscillators are forced by two order parameters (one
from each population).

• The nonisochronous case:

– The main effect due to the presence of nonisochronicity in the systems is
the breaking of the reflectional symmetry of the model : The degeneracy
of the Hopf lines is broken. Due to this fact the incoherent state becomes
unstable either via a single Hopf bifurcation or via two different Hopf
bifurcations (with different eigenvalues): This difference is the origin
of the dissimilar behavior shown by the two ensembles. The analytical
results show good agreement with the numerics as far as the system
remains close enough to the incoherent state. On the other hand, the
bistability regions are located at the intersection of the saddle-node line
with the second Hopf bifurcation.

– The behavior of the two populations is clearly asymmetric, as shown by
the coupling-modified frequencies and the order parameters. In some
parameter regions (large values of Kp) the two order parameters are
locked in phase , even though the individual oscillators within the pop-
ulations van possess very different frequencies. This phenomenon can
be explained taking into account the contribution of many oscillators
entrained to higher order frequencies.

– As the nonisochronicity is increased further, the saddle-node line ap-
proaches and collides with the γ = 0 axis. This establishes a critical
value α∗ of the nonisochronicity above which the synchronization be-
tween the two populations always takes place through a Hopf bifurcation,
in contrast to what happens for two single oscillators. Moreover, the
bistability region spreads in a larger region around the end of the sec-
ond Hopf line.

– It has been shown that the limit of identical oscillators in each pop-
ulation presents interesting stability properties for α > α∗ since the
identical oscillators within one of the populations leave being in-phase
synchronized. The linear stability analysis of the in-phase synchronized
populations has confirmed the breakdown of the ’2-oscillator dynamics’
in this limiting case. The global stability properties of this problem
are interesting directions of further study, since they seem to be related
with the neutral stability of an splay state (Watanabe and Strogatz,
1993; Wiensenfeld and Swift, 1995).
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6.2 Outlook

A number of interesting questions arise from the present level of understanding
reached in this thesis, pointing to possible promising directions for future investi-
gations in this field.

All realistic oscillatory systems are nonisochronous, and hence it is worth to
study synchronization phenomena in the presence of nonisochonicity. Our study
has been restricted to weakly coupled systems, in which the amplitude degrees of
freedom of the oscillators have been neglected. However, we showed that some
important effects of the nonisochronicity could be included in the phase equations
and thus the problem of synchronization in the presence of nonisochronicity could
be significantly simplified. Nevertheless, when amplitude variations are not negli-
gible, a number of intriguing new phenomena can occur. For instance, the simplest
possibility is amplitude death, that is a coupling induced stabilization of the origin
arising typically in presence of both large parameter mismatch and strong cou-
pling (Yamaguchi and Shimizu, 1984; Bar-Eli, 1985; Mirollo and Strogatz, 1990;
Reddy et al., 1999). Besides, it has been shown that isochronous Landau-Stuart
oscillators present a plethora of nonsteady regimes, ranging from quasiperiodicity
to high dimensional chaos, whose description require in general a higher number
of effective degrees of freedom (Matthews et al., 1991; Hakim and Rappel, 1992).
Additionally, Aronson et al. (1990) showed that the nonisochronicity terms greatly
complicate the dynamics in systems of two coupled oscillators. We have demon-
strated that two populations of nonisochronous phase oscillators show already very
complex dynamics (Montbrió et al., 2004b). However, one natural question would
be whether the inclusion of the amplitude terms can have interesting dynamical
effects.

On the other hand, the mean field model studied in Chapter 5 is one of the
simplest models of coupled populations of nonidentical oscillators. Beyond its im-
portance for theory of synchronization, oscillating systems consisting in asymmet-
rically interacting subunits are common in neuroscience (Gray et al., 1989) and are
likely to be found in nature (Winfree, 1980). Moreover, the study of two coupled
populations of oscillators is a first step in order to understand synchronization in
complex networks (Strogatz, 2001; Albert and Barabási, 2002). Therefore, we be-
lieve that considering more realistic models would be an interesting direction for
further study. Such models would incorporate features such as different population
sizes, temporal delays, noise and the consideration of heterogeneity in more that
one parameter of the system (Montbrió and Blasius, 2003).
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Bonilla, L. L., Pérez Vicente, C. J., and Rub́ı, J. M. (1993). Glassy synchronization
in a population of coupled oscillators. J. Stat. Phys., 70:921–937.

Bragard, J., Boccaletti, S., and Mancini, H. (2003). Asymmetric coupling effects
in the synchronization of spatially extended chaotic systems. Phys. Rev. Lett.,
61:064103.

92



BIBLIOGRAPHY 93
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