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Abstract

In the present dissertation paper an approach which ensures an efficient control

of such diverse systems as noisy or chaotic oscillators and neural ensembles is

developed. This approach is implemented by a simple linear feedback loop. The

dissertation paper consists of two main parts. One part of the work is dedicated

to the application of the suggested technique to a population of neurons with a

goal to suppress their synchronous collective dynamics. The other part is aimed

at investigating linear feedback control of coherence of a noisy or chaotic self-

sustained oscillator.

First we start with a problem of suppressing synchronization in a large pop-

ulation of interacting neurons. The importance of this task is based on the

hypothesis that emergence of pathological brain activity in the case of Parkin-

son’s disease and other neurological disorders is caused by synchrony of many

thousands of neurons.

The established therapy for the patients with such disorders is a permanent

high-frequency electrical stimulation via the depth microelectrodes, called Deep

Brain Stimulation (DBS). In spite of efficiency of such stimulation, it has several

side effects and mechanisms underlying DBS remain unclear. In the present work

an efficient and simple control technique is suggested. It is designed to ensure

suppression of synchrony in a neural ensemble by a minimized stimulation that

vanishes as soon as the tremor is suppressed. This vanishing-stimulation tech-

nique would be a useful tool of experimental neuroscience; on the other hand,

control of collective dynamics in a large population of units represents an in-

teresting physical problem. The main idea of suggested approach is related to

the classical problem of oscillation theory, namely the interaction between a self-

sustained (active) oscillator and a passive load (resonator). It is known that
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under certain conditions the passive oscillator can suppress the oscillations of an

active one. In this thesis a much more complicated case of active medium, which

itself consists of thousands of oscillators is considered. Coupling this medium to

a specially designed passive oscillator, one can control the collective motion of

the ensemble, specifically can enhance or suppress it. Having in mind a possible

application in neuroscience, the problem of suppression is concentrated upon.

Second, the efficiency of suggested suppression scheme is illustrated by con-

sidering more complex case, i.e. when the population of neurons generating the

undesired rhythm consists of two non-overlapping subpopulations: the first one

is affected by the stimulation, while the collective activity is registered from the

second one. Generally speaking, the second population can be by itself both

active and passive; both cases are considered here. The possible applications of

suggested technique are discussed.

Third, the influence of the external linear feedback on coherence of a noisy

or chaotic self-sustained oscillator is considered. Coherence is one of the main

properties of self-oscillating systems and plays a key role in the construction of

clocks, electronic generators, lasers, etc. The coherence of a noisy limit cycle

oscillator in the context of phase dynamics is evaluated by the phase diffusion

constant, which is in its turn proportional to the width of the spectral peak of

oscillations. Many chaotic oscillators can be described within the framework of

phase dynamics, and, therefore, their coherence can be also quantified by the

way of the phase diffusion constant. The analytical theory for a general linear

feedback, considering noisy systems in the linear and Gaussian approximation is

developed and validated by numerical results.
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Zusammenfassung

In der vorliegenden Dissertation wird eine Näherung entwickelt, die eine effiziente

Kontrolle verschiedener Systeme wie verrauschten oder chaotischen Oszillatoren

und Neuronenensembles ermöglicht. Diese Näherung wird durch eine einfache

lineare Rückkopplungsschleife implementiert. Die Dissertation besteht aus zwei

Teilen. Ein Teil der Arbeit ist der Anwendung der vorgeschlagenen Technik auf

eine Population von Neuronen gewidmet, mit dem Ziel ihre synchrone Dynamik

zu unterdrücken. Der zweite Teil ist auf die Untersuchung der linearen Feedback-

Kontrolle der Kohärenz eines verrauschten oder chaotischen, selbst erregenden

Oszillators gerichtet.

Zunächst widmen wir uns dem Problem, die Synchronisation in einer großen

Population von aufeinander wirkenden Neuronen zu unterdrücken. Da angenom-

men wird, dass das Auftreten pathologischer Gehirntätigkeit, wie im Falle der

Parkinsonschen Krankheit oder bei Epilepsie, auf die Synchronisation großer Neu-

ronenpopulation zurück zu führen ist, ist das Verständnis dieser Prozesse von tra-

gender Bedeutung. Die Standardtherapie bei derartigen Erkrankungen besteht

in einer dauerhaften, hochfrequenten, intrakraniellen Hirnstimulation mittels im-

plantierter Elektroden (Deep Brain Stimulation, DBS). Trotz der Wirksamkeit

solcher Stimulationen können verschiedene Nebenwirkungen auftreten, und die

Mechanismen, die der DBS zu Grunde liegen sind nicht klar. In meiner Ar-

beit schlage ich eine effiziente und einfache Kontrolltechnik vor, die die Syn-

chronisation in einem Neuronenensemble durch eine minimierte Anregung un-

terdrückt und minimalinvasiv ist, da die Anregung stoppt, sobald der Tremor

erfolgreich unterdrückt wurde. Diese Technik der ”schwindenden Anregung”

wäre ein nützliches Werkzeug der experimentellen Neurowissenschaft. Desweit-

eren stellt die Kontrolle der kollektiven Dynamik in einer großen Population von

v



Einheiten ein interessantes physikalisches Problem dar. Der Grundansatz der

Näherung ist eng mit dem klassischen Problem der Schwingungstheorie verwandt

- der Interaktion eines selbst erregenden (aktiven) Oszillators und einer passiven

Last, dem Resonator. Ich betrachte den deutlich komplexeren Fall eines aktiven

Mediums, welches aus vielen tausenden Oszillatoren besteht. Durch Kopplung

dieses Mediums an einen speziell hierür konzipierten, passiven Oszillator kann

man die kollektive Bewegung des Ensembles kontrollieren, um diese zu erhöhen

oder zu unterdrücken. Mit Hinblick auf eine möglichen Anwendung im Bere-

ich der Neurowissenschaften, konzentriere ich mich hierbei auf das Problem der

Unterdrückung.

Im zweiten Teil wird die Wirksamkeit dieses Unterdrückungsschemas im Rah-

men eines komplexeren Falles, bei dem die Population von Neuronen, die einen

unerwünschten Rhythmus erzeugen, aus zwei nicht überlappenden Subpopulatio-

nen besteht, dargestellt. Zunächst wird eine der beiden Subpopulationen durch

Stimulation beeinflusst und die kollektive Aktivität an der zweiten Subpopulation

gemessen. Im Allgemeinen kann sich die zweite Subpopulation sowohl aktiv als

auch passiv verhalten. Beide Fälle werden eingehend betrachtet. Anschließend

werden die möglichen Anwendungen der vorgeschlagenen Technik besprochen.

Danach werden verschiedene Betrachtungen über den Einfluss des externen

linearen Feedbacks auf die Kohärenz eines verrauschten oder chaotischen selbst

erregenden Oszillators angestellt. Kohärenz ist eine Grundeigenschaft schwin-

gender Systeme und spielt ein tragende Rolle bei der Konstruktion von Uhren,

Generatoren oder Lasern. Die Kohärenz eines verrauschten Grenzzyklus Oszilla-

tors im Sinne der Phasendynamik wird durch die Phasendiffusionskonstante be-

wertet, die ihrerseits zur Breite der spektralen Spitze von Schwingungen propor-

tional ist. Viele chaotische Oszillatoren können im Rahmen der Phasendynamik

beschrieben werden, weshalb ihre Kohärenz auch über die Phasendiffusionskon-

stante gemessen werden kann. Die analytische Theorie eines allgemeinen linearen

Feedbacks in der Gauß’schen, als auch in der linearen, Näherung wird entwickelt

und durch numerische Ergebnisse gestützt.
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Chapter 1

Introduction

Feedback control is a basic mechanism by which many systems, whether mechani-

cal, electrical, or biological, maintain their equilibrium or other desired dynamical

behavior. Control systems of various types date back to antiquity, all the way

to the need for accurate determination of time in Greek and Arab water clocks.

The first water clocks represented a tank holding water with a very small hole

in its bottom, from which the water slowly drips. The level of water sinks and

its height is a measure of the time passed since it was full of water. Remarkably,

that the expression ”much water has flowed under the bridge since then” proba-

bly came from the water clocks. In the 3rd century B.C., Ctesibius or Ktesibios

of Alexandria, Egypt, a Greek physicist and inventor, improved the construction

of the water clocks by adding a float regulator. The function of this regulator

was to keep the water level in a tank at a constant depth. This constant depth

yielded a constant flow of water through a tube at the bottom of the tank which

filled a second tank at a constant rate. The level of water in the second tank was

thus proportional to the time elapsed.

The pivotal moment in the development of the control engineering was the

invention of the steam engine governor by J. Watt in 1769 — an essential contri-

bution to the Industrial Revolution. The classical control theory arose from a re-

quirement to implement and analyze a stable performance of the engine governor

and other technological systems. The basis of the theory was laid by the famous

J.C. Maxwell (1) in 1868 and independently by the Russian scientist I.A. Vysh-

negradskii (2) in 1876. In their works, they modelled the dynamics of a steam

1



2 CHAPTER 1. INTRODUCTION

engine with a Watt’s governor and performed the corresponding mathematical

analysis. In particular, their studies explained instability and onset of hunt-

ing. Since then, the development of the control theory was tightly interrelated

with the development of nonlinear physics, i.e., with the theory of oscillations

and nonlinear dynamics. However, in the works of Maxwell and Vyshnegradskii

the stability analysis of the governor was done under assumption that Coulomb

friction of the governor coupling (clutch) can be neglected, so that the differen-

tial equations of motion are linearized. Taking into account the nonlinearities,

such as the Coulomb friction in the control loop, makes the analysis much more

complicated. This full nonlinear problem remained unsolved for many years.

The decisive step in the development of nonlinear science was stimulated by

rapid strides in electrical and radio engineering in the 1920’s. The pioneering

work regarding the propagation of radio waves and nonlinear oscillations has

been done by van der Pol (3) and Appleton (4). The next essential impact on

this field, in particular on the development of mathematical tools for solving non-

linear problems, has been given by A.A. Andronov and his school. Together with

A.G. Maier he succeeded in resolving the problem, first considered by Maxwell

and Vyshnegradskii. Andronov and Maier made a great advance taking into ac-

count the effect of Coulomb friction on a system and thus considering a nonlinear

three-dimensional system of differential equations (5; 6). This nonlinear prob-

lem was solved by virtue of a mapping technique, developed by Andronov and

Maier (7). This method is a generalization of Andronov’s own work on limit cy-

cles, which was extended to higher dimensions of the state space and was used by

Andronov to address a number of other nonlinear problems in automatic control.

In the subsequent years, feedback control has been used in many areas of

engineering and technology. It is worth singling out two main trends and key

inventions namely, mass communications and the aerospace industry. The main

problem in the development of long-distance communication was to increase the

signal-to-noise ratio of an amplifier so that it amplifies only the voice signal, but

not the noise. For this purpose the electrical engineer H. S. Black used a negative

feedback loop (8). An important contribution to the aerospace industry was done

by R. Kalman, who developed an efficient recursive filter that provides accurate

continuously-updated information about the internal state of a dynamical system
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from a set and noisy measurements (9). The Kalman filter is essentially a set

of mathematical equations that provides an efficient computational method to

estimate the location of the target at the present time (filtering), at a future time

(prediction), or at a time in the past (interpolation or smoothing). It is used in

a wide range of engineering applications from radar to computer vision. Another

notable example for control in aerospace technologies comes from the control of

flight, namely the problem of dynamics of an airplane supplied by the autopilot

device, which has been investigated by Andronov and his student Bautin (10). A

detailed historical review of control theory is given in (11).

Feedback control is useful not only for engineering aspects of experiments

but also has found applications in various fields of physics (12) such as chaos

and nonlinear dynamics, statistical mechanics and optics. Particularly, a delayed

feedback is a commonly employed tool to control different properties of a dy-

namical system: to make chaotic systems operate periodically (famous Pyragas’

control method (13)), to suppress space-time chaos (14; 15; 16; 17), to manip-

ulate coherence of noisy periodic and chaotic oscillators (18; 19; 20). Feedback

mechanisms are ubiquitous in science and nature. For example, global climate

dynamics depend on the feedback interactions between the atmosphere, oceans,

land, and the sun. Many other examples of feedback regulation can be found

in living organisms; thus, feedback mechanisms play an important role in the

regulation of respiratory and cardiac rhythms (21; 22).

Before formulating the problem of the present doctoral study, we discuss a

physical problem that – at first glance – is not related to the field of feedback

control. This problem considers an interaction of an active system (or medium)

with a passive one. So, classical oscillation theory treats interaction between

an active, self-sustained oscillator and a passive load resonator. It is known

(see, e.g., (23)), that there is a certain parameter range when the passive system

can quench the active one. In a more complex formulation, one can analyze

the dynamics of an ensemble of (infinitely) many interacting units for the case

when some units are in the regime of self-sustained oscillations whereas the other

units are passive. Thus, one can speak of interaction between active and passive

subpopulations. The dynamics of such mixed populations of oscillators has been

investigated in (24; 25). It was reported that the collective dynamics of the
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ensemble (mean field) depends on the ratio between the numbers of active and

passive oscillators. In particular, for certain ratios and parameters the mean field

oscillation vanishes.

The main idea of the present doctoral study is to use the physical problem (in-

teraction of an active and a passive medium) described above, for the purpose of

control of complex systems. This link of nonlinear dynamics and control theory

provides efficient and easily implemented algorithms. Namely, we exploit spe-

cialy designed passive systems in order to control such diverse complex dynamical

systems as a neural population and a noisy or chaotic self-sustained oscillatory

system. In the language of control theory it means that we design a special feed-

back loop.

In particular, we consider two problems. The first problem addressed in

this thesis is related to the role of a macroscopic rhythmical neural activity

in a pathological brain functioning. Namely, it is related to the hypothesis

that some neurological diseases, in particular Parkinson’s disease and essen-

tial tremor are associated with an abnormal synchronization of many oscilla-

tors (26; 27; 28)). Correspondingly, suppression of this pathological synchronous

activity or, in other words, desynchronization of a neuronal ensemble is a cru-

cial problem of neuroscience. The standard therapy, which is used nowadays for

treatment of intractable Parkinsonian tremor is electrical Deep Brain Stimulation

(DBS) (29; 30; 31). This surgical technique involves implanting a microelectrode

into subcortical structure in the brain for high frequency (greater then 100 Hz)

long-term stimulation. When this procedure is successful, the abnormal tremor

is abolished. Although results of this therapy are impressive, DBS has some

limitations and several side effects. The high frequency Deep Brain Stimulation

was developed empirically, based on surgical procedures and the mechanism by

which this electrical stimulation suppresses tremor is still unknown. Thus, the

development of more mild and effective technique for suppression of undesired

synchronous dynamics of neural population constitutes a significant problem. A

number of methods have been suggested recently and they can be roughly classi-

fied into two approaches: non-feedback (see (26; 32) and references therein) and

feedback techniques ((33; 34; 35; 36)). A simple and effective technique, which

enables the restoration of desynchronized dynamics in a network of oscillatory
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neurons is developed and presented in the current work (37). This technique is

based on the design of a passive unit coupled to the neuronal population to be

controlled. From the control theory viewpoint, it means designing of a linear

feedback loop with a built-in second-order filter.

The destruction of undesirable synchronous oscillation is accomplished in the

following way. The activity of a neural population is permanently measured and

fed back after linear prossesing. The main advantage of the suggested technique,

is that the administered control input vanishes as soon as desynchronized state is

achieved. This feature is significant for therapeutic applications, since it means

reduction of intervention into a living tissue. Further, the efficiency of the sug-

gested suppression scheme is illustrated by considering more complex case, i.e.

when the population of neurons generating the undesired rhythm consists of two

non-overlapping subpopulations: first one is affected by the stimulation, and the

collective activity is measured from the second one. Possible applications of the

suggested technique are discussed.

The second problem, which is studied in the present thesis is control of a

noisy self-oscillatory or chaotic system. In particular, our goal is to control one

of the crucial characteristic of the dynamics of such systems, which is coherence,

or constancy of frequency. The coherence of a noisy limit cycle oscillator in the

context of phase dynamics is evaluated by the phase diffusion constant, which is

in its turn proportional to the width of the spectral peak of oscillations. Many

chaotic oscillators can be described within the framework of phase dynamics,

and, therefore, their coherence can be also quantified by the way of a phase

diffusion constant. Coherence plays a key role in the construction of clocks,

electronic generators, lasers, etc. In this thesis it is demonstrated that coherence

of a noisy or chaotic self-sustained oscillator can be efficiently manipulated by

a linear feedback. It should be stressed that the goal is not to suppress chaos,

but to control the diffusion constant. An analytical theory for a general linear

feedback, considering noisy systems in the linear and Gaussian approximation is

developed and proved by numerical results.

The present thesis has the following structure. Chapter 2 is devoted to the

problem of suppression of neuronal synchrony; here the proposed feedback scheme

is described and analyzed. The efficiency of the control technique is illustrated
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by an example of an isolated neuronal ensemble. Further, the same topic is

addressed, but in a more complex formulation, when the population of neurons

consists of two interacting subpopulations, one active and one passive. In Chapter

3 we turn our attention to the problem of utilizing general linear feedback to

control coherence of noisy or chaotic self-oscillatory systems. Chapter 4 presents

conclusions and discussion.



Chapter 2

Feedback suppression of neural

synchrony by vanishing

stimulation

Collective dynamics of large population of neurons is widely studied in neurophys-

iological experiments as well as in theoretical works. These studies are motivated

by the importance of macroscopic rhythmical neural activity in physiological and

pathological brain functioning (see, e.g., (26; 27; 28) and references therein). On

the other hand, the understanding of cooperative behavior in a large ensemble

of interacting units constitutes an essential problem of nonlinear dynamics. In

particular, the problem of high practical importance is to develop techniques for

control of collective neuronal activity. The significance of this task is motivated

by the hypothesis that pathological brain rhythms, which are registered by means

of electro- or magnetoencephalography in patients suffering from Parkinson’s dis-

ease and essential tremor syndrome, appear due to synchrony in many thousands

of neurons. Obviously, quenching of these rhythms constitutes a challenging

problem of neuroscience and a number of techniques has been proposed in order

to solve this problem. All these approaches are aimed to improve the technique,

currently used in medical practice and known as Deep Brain Stimulation(DBS).

7
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CHAPTER 2. FEEDBACK SUPPRESSION OF NEURAL SYNCHRONY BY

VANISHING STIMULATION

2.1 Controlling neural synchrony

2.1.1 Electrical stimulation of brain structures

For a couple of decades the electrical stimulation of the human brain has been

used in pilot studies with the aim of suppressing the pathological activity in

epilepsy (29; 30) and, with more successful clinical applications, in Parkinsons

disease (31). This surgical procedure, called Deep Brain Stimulation (DBS), im-

plies permanent electrical stimulation of certain brain structures via implanted

microelectrodes. In Parkinsonian patients, DBS at frequencies greater than 100

Hz has been shown to relieve tremor as well as other symptoms such as rigidity

and dyskinesia. It decreases tremor amplitude in a spectacular way; the illus-

tration of this effect with real data can be found on the PhysioNet web page 1.

Noteworthy, in spite of rather broad usage of DBS the neurophysiological mech-

anisms of such stimulation are poorly (if at all) understood. To our knowledge,

the only analysis of the action of high-frequency stimulation with the help of

a realistic model of the brain circuitry involved in the tremor generation has

been undertaken in Ref. (38). Although, effects of DBS are impressive, DBS has

been developed empirically and has some significant drawbacks and limitations.

Namely, the parameters of the stimulation must be determined by trial and error

and re-adjusted with time. Next, a certain amount of patients do not respond to

DBS (39); some patients may become tolerant of stimulation in time, thus, the

stimulation has to be increased over the years, in order to maintain the tremor

suppressive effect. Moreover, the energy consumption of the permanent stim-

ulation is quite high. Thus, the battery in the controller has to be exchanged

after 1-3 years by means of a surgery. Finally, permanent stimulation definitely

represents a very strong intervention into the system. Correspondingly, there is a

significant clinical need for mild and effective suppression technique, which would

provide destruction of a pathological brain activity by a minimized stimulation.

1URL: www.physionet.org/physiobank/database/tremordb/
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2.1.2 Development of model-based stimulation techniques

Several methods for a suppression of neural synchrony, closely related to the theo-

retical understanding of the problem, have been suggested recently. The ultimate

goal of these theoretical studies is to substitute the DBS by a more intelligent

stimulation technique. One theoretical approach to desynchronization is based

on the implementation of phase resetting of ensemble elements by precisely timed

pulses (see (26; 32) and references therein), whereas another approach exploits

a time-delayed feedback (34; 35; 33; 36). Although motivated by applications in

neuroscience, both methods are of general interest, because a control of collective

dynamics in a large population of units is not only relevant because of possible

neuroscience applications, but represents an interesting physical problem. The

mostly illustrative example of a physical system, where collective synchrony was

highly undesirable and had to be suppressed, is the London Millennium bridge

that exhibited high-amplitude lateral sway on the day of its opening (40; 41).

We mention here also recent experiments on desynchronization of a population

of coupled electrochemical oscillators (42).

2.1.3 Synchrony in neural populations

A commonly used theoretical description of macroscopical brain rhythms assumes

their appearance due to synchronization in a large population of interacting neu-

rons (26), when a large part or all units adjust their rhythms and produce a non-

zero mean field, which has the same frequency as the synchronized majority. This

viewpoint is supported by experimental observations (43; 44; 45; 46). Because of

a rich connectivity in such a population, the dynamics is often modelled by an

ensemble of dynamical neurons with an all-to-all coupling. The simplest model

for the synchronization in such an ensemble is a Kuramoto transition (47; 48) in a

population of all-to-all coupled phase oscillators: if the coupling strength ε in the

ensemble exceeds some threshold value εcr, the macroscopic mean field appears

and its amplitude growth with the super-criticality ε−εcr. This transition is often

considered in an analogy to second order phase transitions; on the other hand,

it can be viewed at as a supercritical Hopf bifurcation for the mean field. Cor-

respondingly, the problem of suppression of neural synchrony is often formulated
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VANISHING STIMULATION

as the problem of desynchronization of a large neuronal population (26). This

means that the desired stimulation technique should not suppress oscillations

of individual neurons, but only destroy the synchrony between them. Another

important requirement is to minimize the intervention into the live system by

reducing the intensity of the applied stimulation.

Although analytical treatment of Kuramoto-like models is possible only for

fully connected ensembles (what is certainly not true in real systems), this ap-

proximation is considered to be reasonable, due to a relatively high connectivity

in neuronal networks.We illustrate the Kuramoto transition by an example, con-

sidering an ensemble of N Bonhoeffer - van der Pol oscillators (with N → ∞ in

the thermodynamic limit), coupled via the mean field in the x variable:

ẋi = xi − x3
i /3 − yi + Ii + εX ,

ẏi = 0.1(xi + 0.7 − 0.8yi) .
(2.1)

Each unit is driven by the force εX, where ε quantifies the strength of the mean

field coupling and X = N−1
∑N

i=1 xi is the mean field. Parameter Ii has the

meaning of the external current and directly influences the spiking frequency of

elements of the ensemble. The elements are not identical: parameter Ii is taken

as Ii = 0.6+σ, where σ is a Gaussian distributed number with zero mean and 0.1

rms value. For the coupling strength below the critical value, ε < εcr ≈ 0.015, one

observes small irregular fluctuations of the mean field X around X0 ≈ −0.25 (see

the red line in Fig. 2.1(a) for an example computed for N = 500 and ε = 0.01);

these fluctuations are due to the finite size of the ensemble. With the increase

of ε beyond the critical value ε > εcr ≈ 0.015, the oscillators of the ensemble

synchronize (see the black line in Fig. 2.1(a) computed for ε = 0.03).

2.1.4 Suggested approach

In this chapter we develop and analyze an efficient technique for desynchroniza-

tion in a population of interacting units. The main requirement for this method

is to provide a vanishing-stimulation control2. That is, the magnitude of the con-

trol input (stimulation) C should be proportional to the synchronous rhythmic

2In the context of chaos control the schemes with vanishing feedback signal are sometimes

called noninvasive. Having in mind possible applications in neuroscience, we prefer not to use
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Figure 2.1: (a) The evolution of the mean field in the population of 500 Bonhoeffer

– van der Pol neurons (Eqs. (2.1)) for subcritical coupling ε = 0.01 (red line) and

supercritical coupling ε = 0.03 (black line). (b) Transition to the macroscopic

mean field in the model (2.1).

activity and must vanish as soon as the suppression is achieved. This can be

accomplished by a feedback technique, where the control input decreases to the

fluctuation level as soon as the rhythm is suppressed. Accordingly, we assume

that in an experiment the mean field (or a related quantity, see Section 2.3.2)

can be measured and subsequently used for stimulation of the ensemble via a

feedback loop (see Fig. 2.2 below).

From a rather general physical viewpoint the population of neural oscillators

to be controlled can be considered as an active medium. The main idea of our

approach is to couple it to an additional passive oscillator. If we model the dy-

namics of the active medium by a single non-zero mode, then the problem is

similar to a classical problem of the oscillation theory and nonlinear dynamics,

where an interaction of an active, self-sustained oscillator, with a passive load

(resonator) has been considered (see, e.g., (23)). It is known, that under certain

condition such a passive system can quench the active oscillator. Similarly, the

appearance of collective synchronization in a mixed population of active and pas-

sive oscillators depends on the proportion of passive elements; this effect, called

aging, has attracted attention recently (for instance see (24; 25)). However, in the

context of neuroscience applications, a special consideration is necessary, because

this term here, because in this field any measurement/stimulation using implanted electrodes

is considered as invasive.
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β
phase shift

∫

Figure 2.2: Suggested suppression scheme. The local field potential related to

the mean field of the population is measured by the recording electrode and is

fed back via the field application electrode. The feedback loop contains a passive

oscillator playing the role of a band pass filter, an integrator, a summator, and

two amplifiers. Stimulation is characterized by an a priori unknown phase shift.

there appear three additional requirements to the suppression scheme: (i) the

stimulation should compensate the unknown phase shift inherent to stimulation

(see Fig. 2.2 and discussion below); (ii) the controller should be able to extract

the relevant signal from its mixture with the rhythms produced by neighbouring

neuronal populations and with the measuremental noise; (iii) the control scheme

should be able to compensate the latency in measurements. In our approach, pre-

sented below, we construct an auxiliary passive oscillator whose interaction with

the ensemble of all-to-all coupled active units destroys the collective synchrony

under the requirements formulated.

2.2 Stabilization of an active oscillator by a pas-

sive one

Suppression of an undesired rhythm can be considered as a stabilization of an

unknown unstable steady state of a complex multi-dimensional system. Stabi-

lization of steady states is a classical problem of the control theory. A common

approach to treat this problem is to implement a feedback control. Typically,

the feedback signal is proportional to the deviation of a coordinate of the sys-
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tems from the desired state (proportional control), or to the derivative of the

coordinate (proportional-derivative control), or to the integral of the coordinate

over the past (proportional-integral control), or to a combination of these three

values (12). Another group of stabilization techniques uses linear or nonlinear

time-delayed feedback, see, e.g., (13; 49; 50; 51; 52; 53). For low-dimensional

systems (see, e.g., (54; 55) and references therein), the theory of feedback stabi-

lization is well-developed and finds many technical applications. In this Section

we consider the stabilization problem on a macroscopic level, taking into account

only the collective motion. In this way the problem is reduced to stabilization

of a low-dimensional dynamics. However, the known techniques generally do not

meet the above formulated requirements and therefore are not appropriate for

the considered neuroscience application. Thus, we assume that the collective

oscillating mode is active and close to a Hopf bifurcation:

Ȧ = (ξ + iω)A− |A|2A+ Ceiβ . (2.2)

Here A is the complex amplitude of oscillations having frequency ω, ξ is the di-

mensionless parameter describing the instability of the equilibrium A = 0, which

we want to stabilize, and C is the control signal (stimulation). The parameter

β describes the uncertainty of our action on the active oscillator: in a realistic

application, the way the external force is coming in the equations is typically

unknown.

Our aim is to construct the control signal C based on a scalar observable which,

without lost of generality, can be chosen proportional to X(t) = const + Re(A);

here the constant reflects the fact that for neuronal models, the fixed point of

collective oscillations is typically not at zero. (Note also that the case of other

linear in A observable corresponds to a shift of the parameter β.) In (34; 35)

a time-delayed proportional feedback C∼(X(t − τ) − X(t)) has been suggested

and treated numerically and analytically. Theory and simulation with bursting

and spiking neurons, also with synaptic connections (36), as well as recent ex-

periment (42), show that such a control scheme provides a reliable suppression

of oscillations, i.e. var(X) → 0, with vanishing stimulation, C → 0. On the con-

trary, if a feedback is proportional to the delayed mean field, C ∼ X(t−τ) (34; 35)

or to its power (51; 52; 33), then the stimulation is generally not vanishing; i.e.
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a permanent stimulation with C = const is required for the maintenance of the

suppressed state, var(X) → 0. A general disadvantage of a delayed feedback is

a new, undesirable, instability, which the delay term can bring into the system.

To overcome this, we suggest a suppression scheme without delay which exploits

an additional passive oscillator.

The above formulated requirements for the suppression can be now specified

as follows: (i) a constant component in the observed field should be washed out;

(ii) there should be a possibility to vary the phase shift in the feedback loop in

a large range, to be able to compensate for the unknown phase factor β and for

a possible latency in the observations; (iii) noise and other components in the

observed field which are not related to the main rhythm should be washed out.

Let us include in the control loop a linear damped oscillator in a way that it

is driven by the measured signal:

ü+ αu̇+ ω2
0u = X(t) . (2.3)

The parameter ω0 is taken to be equal to the frequency ω of macroscopic os-

cillations in (2.2) without control; this frequency can be easily measured in an

experiment. This means that the driven oscillator (2.3) is in resonance with the

forcing (for a moment we can consider it as a harmonic one with the frequency

ω) and the phase of the output u is shifted by π/2 with respect to the the phase

of the input X(t), whereas the phase shift of the derivative of the output signal u̇

with respect to the input X(t) is zero. It is important to note that the variable u̇

does not contain a constant component, 〈u̇〉 = 0, even if the observed field does.

Thus, stimulation proportional to u̇ vanishes as soon as the control is successful,

and the requirement (i) to the control strategy is fulfilled. Moreover, the output

u̇ can be considered as an application of a band pass filter to the input signal X,

which filters out noise and other components outside of the vicinity of the main

oscillation mode – this accomplishes the requirement (iii).

To compensate the unknown phase shift β (requirement (ii)) we include a unit

described by the following equation:

µḋ+ d = u̇ . (2.4)

For µω ≫ 1 this unit operates as an integrator (with an additional multiplication

by the factor 1/µ), whereas for ω → 0 its transfer function is 1. Hence, the output
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of system (2.4) has the same average as the input, i.e. 〈d〉 = 0. Finally, the control

signal C is taken proportional to the weighted sum of u̇ and d: C ∼ εf (u̇ + γd),

where the parameter γ determines the desired phase shift. The units performing

this summation and the integration according to Eq. (2.4) form the phase shifter.

It is seen from Fig. 2.3 that the phase difference θ between the output u̇+ γd of

the phase shifter and its input u̇ is

θ = − arctan

(
γ

ωµ

)
, (2.5)

and therefore can be arbitrary varied in the interval −π/2 < θ < π/2. The

u̇

γd u̇ + γd

θ

Figure 2.3: Illustration of the function of the phase shifter. The input to the

shifter is represented by the vector u̇. Integrator delays this input by π/2 and

multiplies by 1/(µω), result of this operation is represented by vector d. The

output of the shifter is the sum u̇+ γd. It is easy to see that the phase difference

θ between the output of the phase shifter and its input is determined by the

free parameter γ according to Eq. (2.5). For the stimulation we use the output

(bold blue line), normalized by
√

1 + γ2/ω2µ2 (see Eq. (2.6)), what provides an

independence of the amplification in the feedback loop from θ.

phase shift in the interval π/2 < θ < 3π/2 can be obtained by the sign inversion:

εf → −εf . Summarizing, the control input C to the system is constructed as

C = ± εf√
1 + γ2/ω2µ2

(u̇+ γd) = εf cos θ · (u̇− ωµd tan θ) , (2.6)

where
√

1 + γ2/ω2µ2 = 1/ cos θ is the normalization coefficient. It ensures an

independence of the amplification in the feedback loop from the phase shift θ, so
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that this amplification is completely determined by εf . At the points θ = ±π/2
the control term is calculated as C = εfωµd.

To complete the design of the control loop, we have to choose the parameter

α which is the damping factor of the oscillator (2.3). This parameter determines

the width of the band pass, ∆f = α/2π. Having in mind the application to

Parkinsonian rhythms with realistic values for the band pass from 10 to 13 Hz,

we choose ∆f/f ≈ 0.3 what gives α = 0.3ω.

The final equations for the controlled system read

Ȧ = (ξ + iω)A− |A|2A+
εf√

1 + γ2/µ2ω2
(u̇+ γd)eiβ ,

ü + αu̇+ ω2u = Re(A) ,

µḋ + d = u̇ .

(2.7)

In the following we denote E = εf/
√

1 + γ2/µ2ω2 = εf cos θ.

The desired asynchronous state of the ensemble corresponds to the fixed point

A = 0 in the model equation. To analyze the stability of this solution, we consider

only the linear terms of Eqs. (2.7), substitute A = x+ iy and u̇ = v, and rewrite

the system Eqs. (2.7) as a system of 5 real differential equations of first order.

Seeking the solution in the form x = Xeλt , y = Y eλt, u = Ueλt, v = V eλt,

d = Deλt, we obtain the algebraic system of 5 linear equations. This system has

a non-trivial solution if its determinant is equal to 0; this condition provides the

equation f(λ, E , γ) = 0 (its exact form is given by Eq. (A.1)). The border of the

stability domain is determined by the condition Re(λ) = 0. Therefore, taking

λ = iΩ on the stability boundary and separating real and imaginary parts, we

obtain two real equations

fr(Ω, E , γ) = 0 ,

fi(Ω, E , γ) = 0 .
(2.8)

Both equations are linear with respect to E and γ. Therefore this system can be

analytically resolved with respect to γ and E and, with the account of Eq. (2.5)

and εf cos θ = E , rewritten as

θ = θ(Ω) ,

εf = εf (Ω) .
(2.9)

These are the equations of the stability boundary in the parameter plane (θ, εf )

in a parametric form; these lengthy expressions are given in the Appendix. Fig-
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ure 2.4 shows stability domains according to Eqs. (2.16) for different values of

the phase shift β and for the following values of the parameters: ω = 2π/32.5,

α = 0.3ω, µ = 500, ξ = 0.0048. These parameters are chosen for comparison

of the theory with the results of numerical simulation presented below. The do-

mains quantitatively agree with the suppression domains, obtained in simulations

of stimulated ensemble of all-to-all coupled Bonhoeffer - van der Pol oscillators,

see Figs. 2.6,2.7 below.
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Figure 2.4: Stability domains for the model equation (2.7) for different values of

β. (a) β = 0, (b) β = π/20, (c) β = π/10, (d) β = −π/7. The domains represent

large, closed islands, which extend to large negative values of εf ; only areas of

strong stability are shown here.

2.3 Control of synchrony in neural ensembles

To demonstrate the efficiency of our technique, we start by consideration of a

simple model of collective synchrony. In a population of neurons each unit usu-

ally interacts with many other units, and, therefore, the collective dynamics is
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typically described by a mean-field model, which assumes a global (all-to-all) cou-

pling between the elements. However, simulations with Rulkov neuronal model

(56) show that a randomly coupled population with a rather low connectivity of

about 0.5% can be with a good precision described by a mean-field model (36).

2.3.1 Bonhoeffer - van der Pol oscillators

For the introduction of collective synchrony control we consider suppression of

the mean field in an ensemble of N Bonhoeffer - van der Pol oscillators, coupled

via the mean field in the x variable (Eq. 2.1). The stimulation C is modeled

by including an additional term into the r.h.s. of the Bonhoeffer - van der Pol

model (2.1). However, in fact it is unknown, which variable, x or y, is affected

by the stimulation. Therefore, for the generality, we assume that the stimulation

is applied to both equations for x and y:

ẋi = xi − x3
i /3 − yi + Ii + εX + C cosψ ,

ẏi = 0.1(xi + 0.7 − 0.8yi) + C sinψ ,
(2.10)

where the parameter ψ governs the distribution of the stimulation between two

equations. Note that the parameter ψ is related but not equal to the parameter

β in Eq. (2.2). Indeed, as was shown in (35), even if ψ = 0, in the correspond-

ing amplitude equation for the collective oscillations near the bifurcation point

there appears a phase shift β, which is generally not zero. The parameter β

is determined by the organization of global coupling in the ensemble and by the

properties of individual units. This parameter characterizes the a priori unknown

phase shift, inherent to the stimulation.

We emphasize, that model (2.10) is quite general, and, though we are speak-

ing about interacting neurons here, our method can be applied to control the

dynamics of a population of limit cycle oscillators of any physical nature. On the

other hand, model (2.10) lacks several important features specific for neuronal

interaction. These features are considered in a more realistic model below.

We introduce the control loop via Eqs. (2.3,2.4,2.6). We simulated the sys-

tem (2.10) for N = 10000 and internal coupling ε = 0.03. The parameters of the

band pass filter are ω = 2π/32.5, α = 0.3ω. The parameter of the integrator is

µ = 500. The results for β = 0, θ = 0 are shown in Fig. 2.5. The control was
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switched on at t0 = 300, i.e., εf = 0 for t < t0 and εf = −0.009 for t > t0. The

panels (a) and (b) present the mean field and the control signal, respectively.

It is seen that the stimulation results in a rapid suppression of the collective

oscillation of the ensemble, where only small noise-like fluctuations remain. We

quantify the suppression by the coefficient S =
rms(X)

rms(Xf )
, where X and Xf are

the mean fields in the absence and presence of the feedback, respectively. For the

example shown in Fig. 2.5, we get S = 157. Generally, the suppression coefficient

depends on the population size N like S∼

√
N (cf. (34)).

It is important that as soon as the suppression is achieved, the feedback signal

practically vanishes, 〈C〉 = −5 · 10−6 and rms(C) = 0.0005, to be compared to

the amplitude of individual units ≈ 1.8. The dynamics of two neurons is shown

in Fig. 2.5(c). One can see that the feedback control does not affect oscillations

of individual units, but just destroys the synchrony between them so that they

oscillate incoherently and therefore produce no macroscopic oscillation.

To illustrate the effect of damping parameter α of the filter on suppression we

present in Fig. 2.6 the dependencies of the suppression coefficient S on θ, εf for an

ensemble of N = 500 Bonhoeffer - van der Pol oscillators (2.10); here ψ = 0. The

domains, where suppression is effective, represent closed, isolated areas. From

these figures we can conclude that suppression of synchrony is observed for a

relatively large parameter range. One can also see that with the increase of the

damping parameter α, the suppression domains increase as well.

Figure 2.7 illustrates the functioning of the phase shifter. Here we show the

suppression domains S = S(θ, εf ) for different values of the phase shift ψ (see

Eq. (2.10)). For example, for ψ = π/10, the collective synchrony cannot be

suppressed for θ = 0, i.e., the suppression is achieved only with the help of the

phase shifter.

2.3.2 Desynchronization in a model of neuronal ensemble

with synaptic coupling

In this Section we make a step towards more realistic modeling of controlled

neuronal dynamics. For the introductory example we used a quite abstract model

(2.10); now we take into account several important features of the measurement
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Figure 2.5: Suppression of synchrony in the population of Bonhoeffer - van der

Pol oscillators, Eqs. (2.10). (a,b) The mean field X and the control signal C vs

time. (c) Synchronous and asynchronous dynamics of two neurons in the absence

and in the presence of the stimulation, respectively. The arrows indicate when

the control is switched on.

of the collective neuronal activity and of the coupling between the neurons.

We have assumed that the collective activity of the population is reflected

in the local field potential (LFP); the latter can be registered by an extracellu-

lar electrode. The question is how to relate the variables of conductance-based

neuronal models to the LFP. The extracellular potential can be obtained via

solution of the Poisson equation with the membrane currents3 determining the

boundary condition (57; 58). Thus, the potential registered by the electrode is

3These currents are due to the motion of ions from the extracellular space into the cells and

back.
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Figure 2.6: Domains of suppression for N = 500 Bonhoeffer - van der Pol neu-

rons (2.10) in dependence on the damping parameter α of the oscillator (2.3).

The suppression factor S is shown in a blue scale coding. (a) α = 0.1ω, (b)

α = 0.3ω, (c) α = 0.5ω, (d) α = 0.7ω. Note that only the regions with rela-

tively large suppression factor are shown: actually the stability domains extend

for quite large negative values of εf (cf. Fig. 2.4).

Φ ∼
∑

i(Ii/ri), where ri is the distance between the current source, i.e. the mem-

brane current of the ith neuron Ii, and the measuring point. Hence, in the first

approximation, neglecting the spatial structure of the ensemble, we can represent

the measured signal as

Φ∼

∑

i

Ii . (2.11)

Ii is the right hand side of the equation for the membrane potential Vi of a

conductance-based neuronal model

Ci
dVi
dt

= Ii ,

where Ci is the capacitance of the membrane. Note that Ii are the total mem-

brane currents which contain the currents through different ion channels and
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Figure 2.7: Domains of suppression for N = 500 Bonhoeffer - van der Pol neu-

rons (2.10) for different values of the phase shift ψ: (a) ψ = π/10, (b) ψ = π/20,

(c) ψ = −π/7, (d) ψ = π/3. These domains confirm that the phase shifter indeed

ensures suppression. The damping parameter α = 0.3ω. These numerical results

are in good agreement with theoretical results (cf. Fig. 2.4).

external currents, including the current due to stimulation. Using the notations

of Eqs. 2.10, we can write Φ ∼ ∑
i Ii =

∑
i ẋi = NẊ. It means, that the

stimulation is now proportional to the derivative of the mean field.

Now we explore the efficacy of suppression of collective rhythms in a neu-

ronal ensemble with all-to-all synaptic connections. Indeed, interaction via the

electrical (gap junction) coupling is possible only if the neurons are spatial neigh-

bors4. Therefore, in a large network, where even spatially distant neurons can

be synaptically linked by long axons, synaptic coupling plays a more important

role.

Each neuron is modeled by the Hindmarsh-Rose equations (59), whereas

the model and parameters of the inhibitory synaptic coupling are taken from

4The electrical coupling is a usual resistive coupling; it is possible only if the interacting

neurons are closely spaced.
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Ref. (60). Thus, the dynamics of the ensemble is described by the following set

of equations:

ẋi = yi + 3x2
i − x3

i − zi + Ii −
ε

N − 1
(xi + Vc)

∑N
j 6=i

[
1 + e(xj−x0)/η

]−1
+ C ,

ẏi = 1 − 5x2
i − yi ,

żi = r[ν(xi − χ) − zi] ,

(2.12)

where r = 0.006, ν = 1, χ = −1.56. ε is the strength of the synaptic coupling

with the reverse potential Vc = 1.4; other parameters of synapses are η = 0.01,

x0 = 0.85. Ii is taken as Ii = 4.2 + σ, where σ is Gaussian distributed with

zero mean and 0.05 rms value. For zero coupling, each neuron exhibits regular

spiking. With the increase of the synaptic coupling between the neurons, the

model demonstrates a transition from independent firing to coherent collective

activity5. In the Eqs. (2.12) the variable x has the meaning of the membrane

potential V . Hence, the local filed potential should be taken as Φ ∼ ∑
i ẋi ∼ Ẋ. It

means, that the derivative of the mean field is measured and that the stimulation

is now proportional to Ẋ. While modeling the suppression by feedback control,

we assume that the stimulation can be described as an additional external current,

identical for all neurons. Therefore, the term, describing stimulation, enters the

right hand side of the first equation (2.12).

The results of simulation for N = 200 nonidentical inhibitory coupled neurons

are illustrated in Fig. 2.8. Here we show in blue-scale coding the suppression

factor S as a function of the feedback strength εf and the phase shift θ. We

remind that this shift is a free parameter of the control scheme and is intended to

compensate the unknown phase shift β, inherent to stimulation. One can see that

the suppression domain qualitatively is in good agreement with the theoretical

result, see Fig. 2.4. The simulations have been done for the following values of

the parameters: ε = 0.15 and α = 0.3ω. The average frequency of the mean field

was estimated as ω = 2π/3.82. Note that in this model the mean action on each

element is not the mean field X. Nevertheless, the measurement of Ẋ suffice to

ensure desynchronization in the ensemble.

Finally, we consider the case when individual neurons exhibit chaotic burst-

5The dynamics of the coherent activity is quite complicated, however, it can be suppressed.
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Figure 2.8: Domain of suppression for the ensemble of 200 nonidentical synapti-

cally coupled Hindmarsh-Rose neurons (Eq. 2.12) in a regime of periodic spiking.

ing, i.e. generation of action potentials (spikes) alternates with the epochs of

quiescence, so that the oscillation can be characterized by two time scales. This

dynamics is provided by the Eq. (2.12) with the following set of parameters:

r = 0.006, ν = 4, χ = −1.6; the parameters of coupling are kept the same as

in the previous example. Synchronization occurs on the slower time scale, i.e.

different neurons burst nearly at the same time, whereas the spiking within the

bursts is not synchronous, and therefore is to a large extent averaged out in the

mean field (Fig. 2.9b). However, some high frequency jitter remains due to cor-

relations in spiking. As a result, the mean field is irregular; besides this jitter, it

also exhibits a low frequency modulation. The (average) frequency of the mean

field is ω = 2π/176, this corresponds to the inter-burst intervals.

Figure 2.9b demonstrates that though the mean field is irregular, it has a

strong periodic component and therefore we expect that our technique is efficient

in this case as well. This is indeed confirmed by the results of numerical simu-

lation for Ii = 3.2, ε = 0.2 and various values of the damping parameter α, see

Fig. 2.10. We note that in order to avoid large current pulse at the beginning

of the stimulation, the latter is switched on in a smooth way (Fig. 2.9a). As
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in the case of spiking neurons and in agreement with the theory, for the burst-

ing neurons the stability domains elongate for rather large negative values of εf .

Simulations also show that the increase of the damping parameter α, i.e. the

increase of the bandwidth of the filter, leads to the extension of the suppression

regions, similarly to the case of periodic oscillators (cf. Fig. 2.6). We conclude

that suppression is possible in case of irregular mean field as well, as long as the

latter has a strong periodic component (what is expected if the system is not too

far from the point of transition to synchronization). We remind, that in order

to simulate the measurement of LFP we use for stimulation the derivative of the

mean field. This process (Fig. 2.9c) is even more complex than X; however, the

suppression is achieved.



26
CHAPTER 2. FEEDBACK SUPPRESSION OF NEURAL SYNCHRONY BY

VANISHING STIMULATION

-1.5

-1

-0.5

0

0 2000 4000 6000

-0.4

0

0.4

-0.1

0

ε f
X

Ẋ
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Figure 2.9: (a) Feedback control ensures suppression of collective activity in an

ensemble of bursting Hindmarsh-Rose neurons. Slow switching of the stimula-

tion helps to avoid initial large current pulse. (b) Mean field in ensemble of

synaptically coupled bursting Hindmarsh-Rose neurons is irregular but has a

strong periodic component. The control has been switched on smoothly between

t = 3000 and t = 5000. The suppression factor is S = 6.5, εf = −0.12, θ = −1.2,

α = 0.3ω. Note that for the measured signal we took the derivative of the mean

field, shown in (c).
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Figure 2.10: Domains of suppression for 200 bursting Hindmarsh-Rose neurons

Eq. (2.12) for different values of the damping parameter α: (a) α = 0.1ω, (b)

α = 0.3ω, (c) α = 0.5ω, (d) α = 0.7ω.
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2.4 Suppression of synchrony in two interacting

neuronal populations

As it has been demonstrated above, suppression of pathological brain rhythms

in a large population of globally coupled elements can be effectively achieved by

means of proposed linear feedback technique; we suggested that this technique

can be used for suppression of pathological brain rhythms with the help of DBS.

We proceed from the assumption that the collective activity of many neurons is

represented in the local field potential (LFP), which can be continuously mon-

itored in an experiment and subsequently, after a certain processing, used for

stimulation of the brain tissue via a feedback loop. We also assumed, that the

signal from the whole network can be registered and that the whole network can

be stimulated. However, for practical applications it is important to consider

the situation when the measuremental and stimulation electrodes are implanted

into different, non-overlapping, though interacting, populations: the first one is

affected by the stimulation, while the collective activity is registered from the

second one. Generally speaking, the second population can be by itself both

active and passive (below we consider both cases).

For this reason, in this Section we treat a model of two interacting globally

coupled ensembles (cf. (61; 62; 36; 63)), where one population is supposed to

be affected by the stimulation derived from collective activity (LFP) of the sec-

ond one (see Fig. 2.11). Our requirements to the suppression technique remain

the same, we just run through the main points. First, we require that as soon

as the desired asynchronous state is achieved, the control signal should vanish,

or, strictly speaking, should decrease to the noise level (vanishing-stimulation

control). Next, the control scheme should be able to compensate an a priory

unknown phase shift, inherent to stimulation. This phase shift β is determined

by the way the stimulation is incorporated into model equations (note, that exact

electro-physiological mechanism of stimulation is unknown) and by organization

of internal coupling in the ensemble (see discussion in (35)).

The control technique should also be able to compensate latency in mea-

surements. Another requirement is that the controller should be able to extract

the relevant signal from its mixture with the rhythms produced by neighboring
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Figure 2.11: Suggested suppression scheme. The local field potential of the pop-

ulation B is measured by the recording electrode and is fed back via the field

application electrode to the population A. The feedback loop contains a passive

oscillator playing the role of a band pass filter, an integrator, a summator, and

two amplifiers.

neuronal populations and with the measuremental noise.

2.4.1 Stability analysis of two interacting neuronal ensem-

bles

Here we analyze the controlled dynamics of two interacting ensembles of neurons.

It is assumed that the elements within each population are globally coupled and

the interaction between these populations is of the mean field type, i.e. the mean

field A of one ensemble acts on all elements of the second ensemble and, vice

versa, the mean field B of the second ensemble influences all elements of the first

one.

Model equations

Following the theoretical description outlined in Section 2.2 we can write two

symmetrically coupled equations for the complex amplitudes A and B together
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with the equations for the control loop:

Ȧ = (ξ1 + iω1)A− |A|2A+ ε(B − A) + Ceiβ ,
Ḃ = (ξ2 + iω2)B − |B|2B + ε(A−B) ,

ü + αu̇+ ω2
0u = Re(B) ,

µḋ + d = u̇ .

(2.13)

The external stimulus administered to all elements of the first subpopulation has

the same form as in Eq. (2.6), namely

C = ± εf√
1 + γ2/ω2µ2

(u̇+ γd) = εf cos θ · (u̇− ωµd tan θ) ,

where
√

1 + γ2/ω2µ2 = 1/ cos θ is the normalization coefficient. It ensures an

independence of the amplification in the feedback loop from the phase shift θ, so

that this amplification is completely determined by εf . At the points θ = ±π/2
the control term is calculated as C = εfωµd. We recall that the phase shift β

describes the uncertainty of our action on the active oscillator.

Similarly to the stability analysis, performed in Section 2.2 for one neural

population, we neglect the nonlinear terms of Eqs. (2.13) and substitute A =

a1 + ia2, B = b1 + ib2, u̇ = v in Eq. (2.13). Writing separately the real and

imaginary parts we obtain:

ȧ1 = ξ1a1 − ω1a2 + ε(b1 − a1) + E(v + γd) cos β ,

ȧ2 = ξ1a2 + ω1a1 + ε(b2 − a2) + E(v + γd) sin β ,

ḃ1 = ξ2b1 − ω2b2 + ε(a1 − b1) ,

ḃ2 = ξ2b2 + ω2b1 + ε(a2 − b2) ,

u̇ = v ,

v̇ + αv + ω2
0u = b1 ,

µḋ + d = u̇ .

(2.14)

Here we denote E = εf/
√

1 + γ2/µ2ω2
0 = εf cos θ. Seeking the solution in the

form a1 = A1e
λt , a2 = A2e

λt, b1 = B1e
λt , b2 = B2e

λt, u = Ueλt, v = V eλt,

d = Deλt we obtain the algebraic system of 7 linear equations. This system has

a non-trivial solution if its determinant is equal to 0; this condition provides the

equation f(λ, E , γ) = 0. The boundary of the stability domain is determined by
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the condition Re(λ) = 0. Therefore, taking λ = iΩ on the stability boundary

and separating real and imaginary parts, we obtain two real equations

fr(Ω, E , γ) = 0 ,

fi(Ω, E , γ) = 0 .
(2.15)

Both equations are linear with respect to E and γ. Therefore this system can

be analytically resolved with respect to γ and E and, with the account of θ =

− arctan

(
γ

ωµ

)
and εf cos θ = E , rewritten as

θ = θ(Ω) ,

εf = εf (Ω) .
(2.16)

These are the equations of the stability boundary in the parameter plane (θ, εf )

in a parametric form. This system has been solved by using the same algorithm

as in Sec. 2.2. Since dimension of the system in this case is equal to 7 we skip

here all these very lengthy expressions, but provide the code, by means of which

this system has been solved (see Appendix B).

Different regimes can be implemented by choosing appropriate values of fre-

quencies ω1,2 and increments ξ1,2 . Let us consider first the case of two interacting

identical subsystems (ω1 = ω2 = ω0 = 1.0, ξ1 = ξ2 = 0.02). The stability domain

in the parameter plane (θ, ε), i.e. the region, where the control is efficient for this

case, is presented in Fig. 2.12a. Second, we take two nonidentical populations:

ω1 = 1.0, ω2 = 1.04, ω0 = 1.0. The results show (see Fig. 2.12b) that suppression

can be achieved in this case as well. Finally, we model a situation when the

population, from which LFP is measured, is by itself stable (ξ2 < 0). This may

reflect the case when the recording electrode is placed rather far from the region

of pathological activity, e.g., on the surface of the scalp. We illustrate this case

in Fig. 2.12c.

2.4.2 Numerical example: two coupled Bonhoeffer - van

der Pol populations

To compare the above obtained results of theoretical analysis with the results

of numerical stimulation, we consider two interacting ensembles of N globally
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Figure 2.12: Stability domains for the model equation (2.13) for the case of

identical (a) and nonidentical (b) subpopulations. Panel (c) represents the case,

when the population B, where the measurement is performed, is stable (ξ2 =

−0.02). The other parameters are: ε = 0.05, α = 0.3ω0, µ = 500, β = 0.

coupled Bonhoeffer - van der Pol oscillators:

ẋAi = xAi − x3
Ai/3 − yAi + IAi + εAXA + K(XB −XA) + C cosψ ,

ẏAi = 0.1(xAi + 0.7 − 0.8yAi) + C sinψ ,

ẋBi = xBi − x3
Bi/3 − yBi + IBi + εBXB + K(XA −XB) , (2.17)

ẏBi = 0.1(xBi + 0.7 − 0.8yBi) ,

ü + αu̇+ ω2
0u = XB ,

µḋ + d = u̇ ,

where two last equations describe the feedback loop. The oscillators within each

ensemble are globally coupled via the mean fields XA,B = N−1
∑

i xAi,Bi, with the

internal coupling strengths εA and εB; i = 1, . . . , N is the index of the neuron.
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Parameters IAi,Bi have the meaning of the external current and directly influence

the spiking frequency of elements of both ensembles. In our case oscillators are

not identical: IAi = 0.6 + σ, IBi = 0.62 + σ, where σ is a Gaussian distributed

number with zero mean and 0.1 rms value. The external stimulus administered

to all elements of first population is modeled by including an additional term into

the r.h.s. of the Bonhoeffer - van der Pol equations and has the same form as

in Eq. (2.6). Parameter ψ describes the uncertainty of how stimulation enters

the equations. We remind that the parameter ψ is related but not equal to the

parameter β in Eq. (2.13).

The results of simulation for N = 10000 oscillators in each population are

shown in Fig. 2.13 for the following set of parameters: internal coupling εA =

εB = 0.03, K = 0.1, and ψ = 0, θ = 0.03. The parameters of the band pass

filter and integrator are: ω0 = 2π/32.5, µ = 500. Here again we chose the

damping factor of the oscillator as α = 0.3ω0, reasoning from the knowledge of

the Parkinsonian rhythm band pass from 10 to 13 Hz.

The panel 2.13a presents the mean field dynamics of the subsystems A and

B. The control signal is switched on at t0 = 400, i.e., εf = 0 for t < t0 and

εf = −0.012 for t > t0 (see Fig. 2.13b). Switching on the stimulation leads to the

desynchronization in both subpopulations. The suppression is characterized by

SA,B =
rms(XA,B)

rms(XAf ,Bf
)
,

where XA,B and XAf ,Bf
are the mean fields in the absence and presence of the

feedback, respectively. For this particular example we get SA = 149, SB = 143.

Figure 2.13 demonstrates two main properties of our feedback scheme: (i) as soon

as desired suppression is achieved the measured mean field XB tends to zero and

thus the feedback signal practically vanishes, i.e 〈C〉 = 1.3 · 10−7 and rms(C) =

0.001; (ii) the stimulation does not effect the natural oscillatory dynamics of

individual neurons. It is seen from Fig. 2.13, where dynamics of two neurons

is presented in the absence (Fig. 2.13c) and in the presence (Fig. 2.13d) of the

control. Individual neurons continue oscillating as before, but not coherently. In

biological terms, this would mean suppression of the tremor-related brain activity

with a minimal intervention into the neural tissue that does not destroy individual

units.
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Figure 2.13: Suppression of synchrony in two coupled Bonhoeffer - van der Pol

subpopulations (Eqs. (2.17)). (a) The mean fields of these subpopulations (XA,

XB) without (t < 500) and with (t > 500) an external feedback. (b) The control

signal C vs time. (c), (d) Synchronous and asynchronous dynamics of two neurons

in the absence and in the presence of the stimulation, respectively.

For the quantitative comparison of the theoretical description within the

framework of the model equation (2.13) with the numerics we simulate N = 500

Bonhoeffer - van der Pol oscillators (2.17) in each population and plot in a color-

scale coding suppression coefficients SA (Fig. 2.14a) and SB (Fig. 2.14b) as a

function of the phase shift θ and the feedback strength εf . The dark red color

corresponds to the maximum suppression factor S. In this case each ensemble

in the absence of control produces macroscopic mean field (εAf ,Bf
> εcr), or in

other words, both ensembles are active. The parameters of ensembles and feed-

back control are taken as in the previous example (Fig. 2.13). These domains

of suppression have to be compared with theoretically obtained stability regions

in the case of two nonidentical populations (see Fig. 2.12b). The case when the
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Figure 2.14: Domains of suppression for two active coupled Bonhoeffer - van

der Pol ensembles (2.17). Each population consists of N = 500 oscillators. The

suppression factor is shown in a color-scale coding: (a) the suppression factor SA

of the stimulated population A, (b) the suppression factor SB of the measured

population B.

stimulated population produces non-zero macroscopic mean field, i.e., the popu-

lation is active, εAf
> εcr, whereas the monitored population is passive, εBf

< εcr,

is presented in Fig. 2.15. As it is seen from this picture, the obtained suppres-

sion domains are larger then in the previous case (Fig. 2.14), that quantitatively

corresponds to the theoretical results illustrated in Fig. 2.12c.

Another way to compare the theoretical analysis with the numerics is pre-

sented in Figs. 2.16, 2.17. Here we first compute the variance of the mean field

for N = 500 elements in both subpopulations. Then, we estimate the variance of

the mean field for subcritical coupling to be 0.0075; this value corresponds to the

level of noise in the system. We use this value as a cutoff level: if the variance of

the mean field is larger than this value, the system is considered to be unstable.

The obtained stability domains are shown in Fig. 2.16 for the case when both

systems are active and in Fig. 2.17 for the case when one system is active and

another one is passive. The results demonstrate a good correspondence between

the theory and numerics.
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ensembles (2.17). Each population consists of N = 500 oscillators. The suppres-
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Figure 2.16: Results of numerical analysis of the stability domains of the two

coupled Bonhoeffer - van der Pol ensembles (2.17). The case of two coupled

active populations is presented here: (a) the stimulated population A, (b) the

monitored population B.
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Figure 2.17: Results of numerical analysis of the stability domains of the two

coupled Bonhoeffer - van der Pol ensembles (2.17). (a) the stimulated population

A is active, (b) the monitored population B is passive.

2.5 Determination of stimulation parameters by

a test stimulation

The presented suppression scheme has two parameters to be determined, namely

the feedback strength εf and the phase shift θ. The parameter θ is related to the

phase shift β, which is inherent to stimulation. We recall that the phase shift

θ is a free parameter of our control scheme and it has been introduced with the

purpose to compensate the unknown phase shift β, inherent to the stimulation.

To find the appropriate parameters for an efficient stimulation one has to estimate

the phase shift β. Here we introduce the simple way how this can be done in an

experiment.

Suppose first that we deal with one population only. For the determination

of the unknown parameter β we make use of a general property of oscillators,

namely of their ability to be synchronized by a weak external forcing. Considering

the population as one oscillator, we stimulate it by a harmonic force with the

same frequency as its collective oscillation, i.e C = εf cos(ωt), and examine the

entrained oscillation. (Note that in this setup we deal with an open loop system.)

If the phase shift β were zero, the oscillator and the force would be in-phase.
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Otherwise, the difference of the oscillator phase and phase of the force will be

φosc−φforce = β. Accordingly, at first the frequency of the uncontrolled oscillation

ω has to be measured and then the proper test signal C = εf cos(ωt) has to

be applied. The unknown parameter β can be calculated by virtue of Fourier

transformation for this frequency, i.e.

β̃ = − arg

(
T−1
s

∫ Ts

0

X(t)eiωtdt

)
, (2.18)

where Ts is the time of stimulation.

To validate this method for the case of two coupled ensembles, we simulated

Eqs. (2.13). In order to compare the obtained results with the results of stability

analysis of Section 2.2, we consider three different cases. First, we take two

identical ensembles (ω1 = ω2 = 1.0, ξ1 = ξ2 = 0.02) with the parameters ε = 0.05,

εf = 0.07, β = 0; as a result we obtain β̃ = −6 · 10−5. In the case of nonidentical

ensembles, ω1 = 1.0, ω2 = 1.04, we obtain β̃ = 0.11. Finally, in the case when

one system is active and the second one is passive, ξ1 = 0.02, ξ2 = −0.02) we

obtain β̃ = 0.08. Thus, in all cases the estimated values are very close to the

true value β = 0 and are in a good correspondence with the optimal value of the

phase shift (see Fig. 2.12).

2.6 Summary and discussion

In this chapter we have considered in detail the suppression of the mean field in

an ensemble of oscillators from the viewpoint of a possible application in neu-

roscience. In particular, we have proposed an efficient and simple technique for

control of synchrony in a population of globally coupled elements. Though we

have concentrated on the problem of desynchronization, the technique can be

also used for excitation of collective oscillation, if the coupling in the ensemble

is subcritical and, thus, the uncontrolled system is stable. The suppression or

excitation can be achieved if the total phase shift provided by the feedback loop

is π or zero, respectively.

We begin with the consideration of one isolated population of globally cou-

pled neurons. Then, we have extended our non-delayed feedback approach for
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control of synchrony in a population of globally coupled elements to a more com-

plex setting of two interacting populations, where the first one is affected by the

stimulation, whereas the measurement is performed from the second one. The

considered situation can model suppression of pathological rhythm when regis-

tration and stimulation of the brain tissue cannot be carried out by the same

or closely placed electrode(s). We have considered the cases when the second

population is either active or passive; the latter case may describe the measure-

ments by a surface electrode. We have shown that our control technique provides

a vanishing-stimulation suppression, and thus reduces the invasion into the sys-

tem, what is a crucial property for possible applications in neuroscience. The

theoretical analysis of suppression in a system of two interacting ensembles has

been done in the framework of the model amplitude equations and the results

are in a good agreement with numerical simulations.

We hope that our technique can be used for manipulation of neuronal rhythms,

at least in an isolated population of neurons. This is confirmed by numerical

simulations of a model of neuronal population. Important advantages of the

technique are the simplicity of its practical implementation, built-in band pass

filter, and the ability to compensate the phase shift inherent to stimulation of

the ensemble. We emphasize, that with our method we are able to stabilize the

unknown steady state of the ensemble, which can also drift with time, and to

maintain it by vanishingly small stimulation (cf. (54; 55; 49)). No knowledge of

the properties of individual units and coupling between them is required. Finally,

we remark that the latency in the measurement can be easily compensated by

the phase shifter.
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Chapter 3

Controlling oscillator coherence

by a linear feedback

The problem, addressed in this chapter is control of a complex irregular motion,

in particular, an adjustment of the coherence of a noisy or chaotic self-oscillatory

system in a desirable manner. Coherence, that is to say, persistence of oscillation

frequency is an essential property of self-oscillating systems and it plays a key

role in the construction of clocks, electronic generators, lasers, etc. Another im-

portant characteristic of the coherence is that it determines the predisposition of

an oscillatory system to synchronization (64). This is a very significant property,

since the synchronization is a very wide-spread phenomena. The coherence of

a noisy limit cycle oscillator in the context of phase dynamics is evaluated by

the phase diffusion constant, which is in its turn proportional to the width of

the spectral peak of oscillations. It is known, that many chaotic oscillators can

be described within the framework of phase dynamics; therefore their coherence

can be also quantified by way of the phase diffusion constant (64). The influ-

ence of the external delayed feedback on a coherence of stochastic limit cycle

systems and deterministic chaotic ones has been addressed in (18; 19) for a single

delayed feedback and for a multiple delayed feedback as well (20). It was ana-

lytically derived and numerically proved that the coherence of noisy or chaotic

self-sustained oscillators is essentially controlled by an external delayed feedback.

The main difficulty faced in (18; 19) was that in the case of delay the process is

non-Markovian and that is why the well-established tools like the Fokker-Planck

41
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formalism cannot be applied, as in the Markovian case. For this purpose, ad

hoc statistical method (Gaussian approximation) has been developed. In turn,

we consider here more general case, namely, the coherence control of a noisy

or chaotic self-sustained oscillators is implemented by a general linear feedback,

what includes, in particular, a linear delayed feedback.

3.1 Basic phase model

We begin with the theoretical description of the effect of a linear feedback control

on noisy self-sustained oscillators. As a model we take noisy van der Pol oscillator

in the case of small nonlinearity µ≪ 1:

ẋ = Ω0y ,

ẏ = −Ω0x+ µ(1 − x2)y +
ε

Ω0

L̂(x) +
1

Ω0

ζ(t) , 〈ζ(t)ζ(t′)〉 = 2d2δ(t− t′) .

(3.1)

The general theory states (see, e.g., (47)) that in the first approximation external

force acting on a limit cycle oscillator affects the phase variable, but not the

amplitudes, because the phase is free and can be adjusted by a very weak action.

For further consideration we relay on this statement and use the so-called phase

description, which is valid for small noise and feedback. The van der Pol model

for small nonlinearity µ and in the absence of noise and control (d = ε = 0) has

a limit cycle solution x0 ≈ 2 cosφ, ẋ0 ≈ −2Ω0 sinφ with a uniformly growing

phase φ(t) ≈ Ω0t + φ0 (65). Under the influence of noise and in the absence of

feedback (d > 0, ε = 0), φ(t) diffuses according to 〈(φ(t) − 〈φ(t)〉)2〉 ∝ D0t. The

uncontrolled diffusion constant D0 is proportional to the intensity of noise d2.

The control term is presented by the linear differential operator L̂(x), which can

be expressed in terms of Green’s function G(t− t′) as L̂(x) =
t∫

−∞

G(t− t′)x(t′)dt′.

According to (47; 64; 18; 19) we can apply the standard procedure to derive the

phase equation, i.e.,

φ̇ = Ω0 +
∂φ

∂y0

( ε

Ω0

L̂(x0) +
1

Ω0

ζ(t)
)
,

where x0 = 2 cosφ, y0 = −2 sinφ are the limit cycle solutions; the phase φ =

− arctan(y0/x0) and therefore
∂φ

∂y0

= − x0

x2
0 + y2

0

. Substituting the variables x0, y0
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on the r.h.s. by φ we obtain

φ̇(t) = Ω0 −
ε

2Ω0

L̂(x0) cosφ(t) − 1

2Ω0

ζ(t) cosφ(t) . (3.2)

In terms of Green’s function we can write

φ̇(t) = Ω0 −
ε

Ω0

t∫

−∞

G(t− t′) cosφ(t′) cosφ(t)dt′ − 1

2Ω0

ζ(t) cosφ(t) . (3.3)

Next, we average the r.h.s. over the period of oscillations and by using

〈cosφ(t) cosφ(t′)〉 =
1

2
cos(φ(t′) − φ(t)) , obtain

φ̇ = Ω0 −
1

2Ω0

ζ(t) cosφ(t) − ε

2Ω0

t∫

−∞

G(t− t′) cos(φ(t′) − φ(t))dt′.

We use the fact that ζ is delta-correlated and independent of φ, so that

〈ζ(t)ζ(t′) cosφ(t) cosφ(t′)〉 ≈ 〈ζ(t)ζ(t′)〉 〈cosφ(t) cosφ(t′)〉 = d2δ(t− t′) .

Finally, we obtain the basic phase equation

φ̇ = Ω0 + a

t∫

−∞

G(t− t′) cos(φ(t′) − φ(t))dt′ + ξ(t) , (3.4)

where a = − ε

2Ω0

and ξ(t) is the effective noise satisfying 〈ξ(t)ξ(t′)〉 =
d2

4Ω2
0

δ(t−t′).
It is important to note, that in spite of the fact that this equation has been

obtained for the van der Pol oscillator (3.1), similar phase equation can be derived

for any limit cycle oscillator under a weak perturbation. An additional point

to emphasize is that since the phase dynamics of many chaotic oscillators is

qualitatively similar to the dynamics of noisy periodic oscillators (see Ref.(64)),

Eq. (3.4) can also describe phase dynamics for chaotic oscillators in the presence

of the feedback loop.

Our main goal is to investigate the diffusion properties of the phase. For

this purpose we split the phase into an average growth and fluctuations, namely,

φ = Ωt+ψ. Then, for the fluctuating instantaneous frequency v(t) = ψ̇, satisfying
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〈v〉 = 0, from Eq. (3.4) we obtain

v(t) = Ω0 − Ω + ξ(t) + a

t∫

−∞

G(t− t′) cos(Ω(t′ − t)) cos(ψ(t′) − ψ(t))dt′

−a
t∫

−∞

G(t− t′) sin(Ω(t′ − t)) sin(ψ(t′) − ψ(t))dt′. (3.5)

3.1.1 Noise-free case

Let us first consider a noise-free case, ξ = ψ = v = 0. Then Eq. (3.5) reduces to

Ω − a

t∫

−∞

G(t− t′) cos(Ω(t′ − t))dt′ = Ω0 .

Making the change of variables t− t′ = τ , we can write

Ω − a

∞∫

0

G(τ) cos Ωτdτ = Ω0 . (3.6)

It is seen from the Eq. (3.6) that the presence of the linear feedback changes

oscillator frequency. Furthermore, the Eq. (3.6) provides either a unique or mul-

tiple solutions for Ω. It is difficult to analyze the latter case, and it will be

considered elsewhere. In the following we choose the parameters in a way that

no multistability occurs.

3.1.2 Linear approximation

Here we assume that the fluctuations of the phase are weak, i.e.

ψ(t) − ψ(t− τ) ≪ 2π. From Eq. (3.5) with account of Eq. (3.6) we get

v(t) = −a
t∫

−∞

G(t− t′) sin
(
Ω(t′ − t)

)(
ψ(t′) − ψ(t)

)
dt′ + ξ(t) ,

and, substituting t− t′ = τ, rewrite

v(t) = a

∞∫

0

G(τ) sin Ωτ
(
ψ(t− τ) − ψ(t)

)
dτ + ξ(t) , (3.7)
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where Ω is the solution of Eq. (3.6). Applying Fourier transform to Eq. (3.7), we

obtain:

Fv(ω) = a

∞∫

0

G(τ) sin Ωτ(Fψ(ω)e−iωτ − Fψ(ω))dτ + Fξ(ω) ,

or

Fv(ω) =
a

iω

∞∫

0

G(τ) sin ΩτFv(ω)(e−iωτ − 1)dτ + Fξ(ω) ,

Fv(ω) =
Fξ(ω)

1 − a

iω

∞∫
0

G(τ) sin Ωτ(e−iωτ − 1)dτ

,

where v(t) =
∞∫

−∞

Fv(ω)e−iωtdω, ξ(t) =
∞∫

−∞

Fξ(ω)e−iωtdω. The power spectrum of

frequency fluctuations Sv(ω) is related to the power spectrum of noise Sξ(ω):

Sv(ω) =
Sξ(ω)

∣∣∣1 +
a

iω

∞∫
0

G(τ) sin Ωτ(e−iωτ − 1)dτ
∣∣∣
2
.

Considering the limit ω → 0 we obtain for the power spectrum of frequency

fluctuations Sv(0):

Sv(0) =
Sξ(0)

∣∣∣1 + a
∞∫
0

G(τ)τ sin Ωτdτ
∣∣∣
2
.

As a result, the general expression for the diffusion constant D = 2πSv(0) in

the linear approximation is

D =
D0[

1 + a
∞∫
0

G(τ)τ sin Ωτdτ

]2 , (3.8)

where D0 = 2πSξ(0) is the diffusion in the absence of the control.

3.1.3 Gaussian approximation

To perform statistical analysis analytically we make an assumption that the phase

fluctuations ψ(t) are Gaussian. We also assume the noisy term ξ(t) to be Gaus-

sian. After averaging Eq. (3.5) over the fluctuations of v(t) = ψ̇ (which are also
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Gaussian distributed), we obtain for the mean frequency Ω:

0 = Ω0 − Ω + a

t∫

−∞

G(t− t′) cos Ω(t′ − t)〈cos(ψ(t′) − ψ(t))〉dt′ , (3.9)

The phase difference ψ(t′)−ψ(t) = η(t) is Gaussian, hence 〈cos η〉 = exp[−〈η2〉/2].

The phase difference η can be represented as an integral of the instantaneous

frequency:

η(t) = −
t∫

t′

v(s)ds . (3.10)

With the account of Eq. (3.10) we can rewrite Eq. (3.9) as

0 = Ω0 − Ω + a

t∫

−∞

dt′G(t− t′) cos Ω(t′ − t)〈cos(

t∫

t′

v(s)ds)〉 .

Direct substitution τ = t− t′, z = s− t yields

0 = Ω0 − Ω + a

∞∫

0

dτ cos ΩτG(τ)〈cos(

0∫

−τ

v(t+ z)dz)〉 ,

0 = Ω0 − Ω + a

∞∫

0

dτ cos ΩτG(τ)e
− 1

2
〈[

0∫

−τ

v(t+z)dz]2〉

. (3.11)

For the variance of the phase difference η we obtain:

〈η2〉 = 〈[
0∫

−τ

v(t+ z)dz]2〉 = 〈
0∫

−τ

v(t+ t′)dt′
0∫

−τ

v(t+ t′′)dt′′〉 =

0∫

−τ

dt′
0∫

−τ

dt′′V (t′′ − t′) = 2

0∫

−τ

(τ − t′)V (t′)dt′ ≡ 2R , (3.12)

where V (t′) = 〈v(t)v(t+ t′)〉 is the autocorrelation function of the instantaneous

frequency. Substituting Eq. (3.12) into Eq. (3.11) we obtain:

0 = Ω0 − Ω + a

∞∫

0

dτ cos ΩτG(τ)e−R . (3.13)
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Note, that the obtained equation is similar to Eq. (3.6), but contains an additional

factor e−R.

Rewriting Eq. (3.5) with the account of Eq. (3.10) and substituting τ = t− t′,
z = s− t, we obtain:

v(t) = Ω0 − Ω + ξ(t) + a

∞∫

0

dτ cos ΩτG(τ) cos




0∫

−τ

dzv(z + t)





−a
∞∫

0

dτ sin ΩτG(τ) sin




0∫

−τ

dzv(z + t)



 . (3.14)

In order to obtain equations for the autocorrelation function V (t′), we intro-

duce the autocorrelation function of the noise Kξ(t
′) and the cross-correlation

function Kξv(t
′), i.e.,

Kξv(t
′) = 〈ξ(t+ t′)v(t)〉, Kξ(t

′) = 〈ξ(t+ t′)ξ(t)〉.

Multiplying Eq. (3.14) by ξ(t+t′), v(t+t′) and averaging, we obtain the equations

for the correlation functions Kξv(t
′) and Kv(t

′)

Kξv(t
′) = Kξ(t

′) + a

∞∫

0

dτ cos ΩτG(τ)〈ξ(t+ t′) cos




0∫

−τ

dzv(z + t)



〉

−a
∞∫

0

dτ sin ΩτG(τ)〈ξ(t+ t′) sin




0∫

−τ

dzv(z + t)



〉 , (3.15)

Kv(t
′) = Kξv(−t′) + a

∞∫

0

dτ cos ΩτG(τ)〈v(t+ t′) cos




0∫

−τ

dzv(z + t)



〉

−a
∞∫

0

dτ sin ΩτG(τ)〈v(t+ t′) sin




0∫

−τ

dzv(z + t)



〉 . (3.16)

For averaging Eqs. (3.15) and (3.16) we use the Furutsu-Novikov formula, valid

for zero-mean Gaussian variables x, y:

〈xF (y)〉 = 〈F ′(y)〉〈xy〉 .
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Thus, all terms having the form 〈x cos y〉 vanish, whereas all terms of type 〈x sin y〉
remain:

〈ξ(t+ t′) sin

[∫ 0

−τ

dzv(z + t)

]
〉 =

∫ 0

−τ

dzKξv(t
′ − z)e−R .

Finally we can rewrite Eqs. (3.15), (3.16) as:

Kξv(t
′) = Kξ(t

′) − a

∫ ∞

0

dτ sin ΩτG(τ)

∫ 0

−τ

dzKξv(t
′ − z)e−R , (3.17)

Kv(t
′) = Kξv(−t′) − a

∫ ∞

0

dτ sin ΩτG(τ)

∫ 0

−τ

dzKv(t
′ − z)e−R . (3.18)

To proceed further it is convenient to consider the spectra V(w) in the following

form:

V(ω) =
1

2π

∫ ∞

−∞

dtKv(t)e
−iωt ,

and similarly for S and C. Then Eqs. (3.17, 3.18) yield

S(ω) = C(ω) − aS(ω)

∫ ∞

0

dτ sin ΩτG(τ)e−R
∫ 0

−τ

dze−iωz , (3.19)

V(ω) = S(−ω) − aV(ω)

∫ ∞

0

dτ sin ΩτG(τ)e−R
∫ 0

−τ

dze−iωz . (3.20)

Equation (3.12) in the spectral form reads

R =

∫ ∞

−∞

1 − cosωτ

ω2
V(ω)dω . (3.21)

Here we have used that V(ω) is an even function. The integral (3.21) can be

approximated as

R ≈
∫ ∞

−∞

1 − cosωτ

ω2
V(0)dω =

τD

2
. (3.22)

Substituting Eq. (3.22) in Eqs. (3.19,3.20) we obtain the final expressions for

S(ω) and V(ω)

S(ω) = C(ω) + a
S(ω)

iω

∫ ∞

0

dτ sin ΩτG(τ)e−Dτ/2(1 − eiωτ ) , (3.23)

V(ω) = S(−ω) + a
V(ω)

iω

∫ ∞

0

dτ sin ΩτG(τ)e−Dτ/2(1 − eiωτ ) . (3.24)
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Excluding S(ω) we get

V(ω) =
C(ω)

∣∣∣1 − a

iω

∞∫
0

dτ sin ΩτG(τ)e−Dτ/2(1 − eiωτ )
∣∣∣
2
. (3.25)

The diffusion constant D is related to the spectral density of the frequency fluc-

tuations at zero frequency: D = 2πV(0). Thus, using Eq. (3.25) we obtain the

equation for determination of the diffusion constant in the Gaussian approxima-

tion as

D =
D0[

1 + a
∞∫
0

dττ sin ΩτG(τ)e−Dτ/2
]2 , (3.26)

where D0 = 2πC(0) is the diffusion constant in the absence of the feedback.

3.2 Several particular cases

3.2.1 General proportional and proportional derivative feed-

back

In a more general case, the control term can be designed as a combination of the

linear operators from x and ẋ, i.e.,

L̂(x) = L̂0(x) + L̂1(ẋ) =

t∫

−∞

G0(t− t′)x(t′)dt′ +

t∫

−∞

G1(t− t′)ẋ(t′)dt′

=

t∫

−∞

G0(t− t′)x(t′)dt′ +G1(0)x(t) +

t∫

−∞

G′
1(t− t′)x(t′)dt′

=

t∫

−∞

[
G0(t− t′) + 2G1(0)δ(t− t′) +G′

1(t− t′)
]
x(t′)dt′

=

τ∫

0

[
G0(τ) + 2G1(0)δ(τ) +G′

1(τ)
]
x(t− τ)dτ =

τ∫

0

G(τ)x(t− τ)dτ , (3.27)

where G(τ) = G0(τ) + 2G1(0)δ(τ) + G′
1(τ), and can be used for computation of

the phase diffusion constant by virtue of formulas obtained above.
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3.2.2 Controlling oscillator coherence by a linear damped

oscillator

As an example of a feedback loop we take the damped harmonic oscillator,

ü+ αu̇+ ω2
0u = x . (3.28)

The Green’s function for the damped harmonic oscillator is given by:

G(τ)osc =
1

y1 − y2

(ey1τ − ey2τ ) , (3.29)

where y1,2 are the roots of quadratic equation

y2 + αy + w2
0 = 0 .

Substituting y1,2 = −α/2 ±
√
α2/4 − ω2

0 = −α/2 ± iω′
0 into the expression for

the Green function (3.29) we obtain

G(τ)osc =
1

2iω′
0

[e−ατ/2(eiω
′

0
τ − e−iω

′

0
τ )] =

e−ατ/2 sinω′
0τ

ω′
0

. (3.30)

Below we consider the particular case, namely, controll of oscillator coherence by

the proportional derivative control.

3.2.3 Proportional derivative control

Let us consider proportional derivative control, which is designed as

L̂(x) = L̂1(x) =

t∫

−∞

G1(t− t′)ẋ(t′)dt′ =

τ∫

0

[
2G1(0)δ(τ) +G′

1(τ)
]
x(t− τ)dτ =

τ∫

0

G(τ)x(t− τ)dτ , (3.31)

where

G(τ) = 2G1(0)δ(τ) +G′
1(τ) = e−ατ/2(cosω′

0τ −
α

2ω′
0

sinω′
0τ) . (3.32)

Substituting (3.32) in the Eq. (3.6) leads to equation for the frequency Ω,

Ω − a

∞∫

0

[
2G1(0)δ(τ) +G′

1(τ)
]
cos Ωτdτ = Ω0 ,
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Ω − aΩ

∞∫

0

Gosc(τ) sin Ωτdτ = Ω0 .

Thus, the equation for the oscillation frequency in the linear approximation can

be read as

Ω − aΩ

ω′
0

∞∫

0

e−ατ/2 sinω′
0τ sin Ωτdτ = Ω0 .

Substituting (3.32) in the Eq. (3.8) we get the expression for the diffusion constant

in the linear approximation

D =
D0[

1 + a
∞∫
0

e−ατ/2(cosω′
0τ −

α

2ω′
0

sinω′
0τ)τ sin Ωτdτ

]2 . (3.33)

Substituting (3.32) in the Eqs. (3.11), (3.26) we get the equations for the

frequency and the diffusion constant in the Gaussian approximation, correspond-

ingly,

Ω − a

∞∫

0

e−(α+D)τ/2(cosω′
0τ −

α

2ω′
0

sinω′
0τ) cos Ωτdτ = Ω0 ,

D =
D0[

1 + a
∞∫
0

e−(α+D)τ/2(cosω′
0τ −

α

2ω′
0

sinω′
0τ)τ sin Ωτdτ

]2 . (3.34)

Finally, we obtain the main results of our analysis — closed system of two

equations in the linear approximation

Ω − 16aαΩ2

(
(Ω + ω)2 + α2/4

)(
(Ω − ω)2 + α2/4

) = Ω0 ,

D =
D0[

1 +
2aαΩ

(
Ω4 − (ω2 + α2/4)2

)
(
(Ω + ω)2 + α2/4

)2(
(Ω − ω)2 + α2/4

)2

]2 , (3.35)

and in the Gaussian approximation

Ω +
16aαΩ2 + 2aD

(
(α+D)2 + 4(Ω2 + ω2)

)

(
(Ω + ω)2 +

(α+D)2

4

)(
(Ω − ω)2 +

(α+D)2

4

) = Ω0 , (3.36)
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D = D0

/[
1 + (16ΩaD5 + 32ΩaαD4 − 32Ωa(α2 + 4ω2 − 4Ω2)D3

+128Ωaα(−2ω2 − α3 + 2Ω2)D2 + 16Ωa(−7α4 − 48ω4 + 8Ω2α2 + 16Ω4

+32Ω2ω2 − 40ω2α2)D − 512Ωaω4α+ 512Ω5aα− 256Ωaω′2
0α

3 − 32Ωaα5)

×
(
(Ω + ω′

0)
2 + (α+D)2/4

)−2(
(Ω − ω′

0)
2 + (α+D)2/4

)−2
]2

. (3.37)

These systems for two variables D and Ω have been solved numerically and

the results are presented in Figs. 3.1, 3.2, 3.3. First we analyze the dependence

of the diffusion constant D on the the oscillatordamping factor α (3.39). It is

seen that the feedback control essentially changes the diffusion constant for small

values of α. With an increase of the band pass of the filter the control effect

almost vanishes (see Fig. 3.3).
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Figure 3.1: Diffusion constant D for the phase of the controlled noise driven Van

der Pol oscillator as the function of oscillator frequency ω0 and ε in linear (left

panel) and Gaussian (right panel) approximation for α = 0.08ω0 andD0 = 0.0024.

Next, we analyze the impact of the oscillator frequency ω0. From Figs. 3.1,3.2,

3.3 one can see that there is only a slight difference between these two approxima-

tions. This difference is more noticeable in Fig. 3.4, where we show the analytical

results of linear (a) and Gaussian (b) approximations of diffusion constant D for

different values of oscillator frequency.

Below we compare numerical solutions of the analytically obtained equations

with direct numerical simulations.
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der Pol oscillator as the function of oscillator frequency ω0 and ε in linear (right

panel) and Gaussian (right panel) approximation for α = 0.1ω0 and D0 = 0.0024.
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Figure 3.3: Diffusion constant D for the phase of the controlled noise driven Van

der Pol oscillator as the function of oscillator frequency ω0 and ε in linear (left

panel) and Gaussian (right panel) approximation for α = 0.2ω0 and D0 = 0.0024.

3.3 Numerical results

In this section we verify the above derived theory by the results of numerical

simulation of a noisy Van der Pol oscillator. As a passive system we take a linear

damped oscillator and the control signal which is fed back into the system has

the form L̂(x) = u̇.

ẍ − µ(1 − x2)ẋ+ Ω0x = εu̇+ ζ(t) , 〈ζ(t)ζ(t′)〉 = 2d2δ(t− t′) , (3.38)

ü + αu̇+ ω2
0u = x . (3.39)

In the presence of control the diffusion can be suppressed or enhanced de-
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Figure 3.4: Theoretical results of linear (a) and Gaussian (b) approximations of

diffusion constant D for different values of oscillator frequency and for α = 0.1ω0.

pending on the feedback strength ε, which is confirmed by the numerical results

in Fig. 3.5 (blue curve) for Ω0 = ω0 = 1, α = 0.1ω0, d = 0.1, and µ = 0.2.

Black and red curves correspond to theoretical results for linear (Eq. (3.35)) and

Gaussian (Eq. (3.37)) approximations, respectively, for the following set of pa-

rameters: Ω0 = ω0 = 1.0, α = 0.1ω0, D0 = 0.0024. The correspondence between

the numerics and analytical results is very good in the case of small values of the

feedback strength ε.

In Fig. 3.6 we plot the diffusion constant D as a function of ε of controlled

Van der Pol model for different values of oscillator frequency ω0. Depending on

ω0 on can see that the curves are shifted with respect to the curve for ω0 = 1.0.

We point out that, although we derived the theory for the van der Pol equa-

tion, a similar phase equation (3.4) can be obtained for any limit cycle oscillator.

As the phase dynamics of some chaotic oscillators is qualitatively similar to the

dynamics of noisy periodic oscillators (see Ref. (64)), Eq. (3.4) can also be used

for chaotic oscillators in the presence of the feedback loop.
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Figure 3.5: The dependence of the phase diffusion constant D on the feedback

strength ε for the controlled Van der Pol model. The control is implemented

by linear passive oscillator Eq. (3.39). Blue curve represents results of numerical

simulation (Eqs. (3.38), (3.39)); black and red curves represent theoretical results

of linear Eq. (3.35) and Gaussian Eq. (3.37) approximations, respectively.

To prove it numerically we consider the chaotic Lorenz system, controlled by

the passive oscillator (3.39)

ẋ = σ(y − x) ,

ẏ = rx− y − xz ,

ż = −bz + xy + εu̇ , (3.40)

ü + αu̇+ ω2
0u = z ,

where σ = 10, r = 28, and b = 8/3. The phase of the Lorenz system is well-

defined if one uses a projection of the phase space on the plane (u =
√
x2 + y2, z)

(see (64) and Fig. 3.9 below):

φ = arctan
z(t) − z0

y(t) − u0

,

where the point {u0 = 2b(r − 1), z0 = r − 1} corresponds to the nontrivial fixed

points of the Lorenz system. Notice that there is no noise term in Eqs. (3.40).
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Figure 3.6: Results of numerical simulation for the controlled Van der Pol

model (3.38), (3.39) for different values of the oscillator frequency: ω0 = 1.0

(blue curve), ω0 = 1.05 (black curve), ω0 = 1.07 (red curve).

However, due to chaos, the phase of the autonomous system grows non-uniformly,

with a non-zero diffusion constant. The diffusion constant D as the function of

the feedback strength ε is shown in Fig. (3.7). The diffusion constant strongly

depends on the frequency ω0 of the linear damped oscillator, which play the role

of the band pass filter. This dependence for Lorenz system is demonstrated in

Fig. 3.8.

It is noteworthy, that the effect of suppression of diffusion in not due to the

suppression of the chaos. It is seen from Fig. 3.9, where we show the projec-

tions of the phase portrait for the system without feedback and also for maximal

suppression and enhancement.

Another way to represent the effect of the linear oscillator on the coherence

can be also given by the power spectrum. The power spectrum has a peak at

frequency Ω0, and the width of the peak is proportional to the diffusion constant

D. It is seen from Fig. 3.10 that the feedback control in the case of suppression of

the diffusion makes the spectral peak essentially more narrow (a) and vice versa,

more wide in the case of enhancement (b).



3.4. SUMMARY AND DISCUSSION 57

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

D

ε

Figure 3.7: Diffusion constant D for the phase of the controlled Lorenz sys-

tem (3.40) as the function of feedback strength ε, for ω0 = 2π/0.76, α = 0.1ω0.

3.4 Summary and discussion

In this chapter we have demonstrated that linear feedback is an effective tool to

control coherence of noisy limit cycle oscillators, as well as of chaotic systems,

where the computation of the phase is possible. Using the Gaussian approxima-

tion, we have derived a system of equations for the diffusion constant and the

mean frequency. The numerical calculations show that this theory works pretty

good if the feedback is not very strong. The situation in the case of strong feed-

back, where several stable oscillation frequencies are possible, remains unsolved

and will be considered elsewhere.
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Figure 3.8: The dependence of the diffusion constant D for the phase of the

controlled Lorenz system (3.40) on the oscillator frequency ω0, for ε = 0.5, α =

0.1ω0.
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Figure 3.9: The projections of the phase portrait for the Lorenz system (3.40) in

the absence of feedback, D = 0.28 (left column) and in the presence of feedback

for ε = 0.96, D = 0.08 (middle column), ε = −0.88, D = 0.85 (right column).

Parameters are: ω0 = 2π/0.76, α = 0.1ω0.
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Figure 3.10: Spectra S(f) of the z component of the Lorenz system (3.40) for

ε = 0.5 (a) and for ε = −0.3 (b). The red curve corresponds to the controlled

Lorenz system, whereas the blue curve corresponds to the system without control.

Other parameters: ω0 = 2π/0.76, α = 0.1ω0.



Chapter 4

Conclusion

In the present doctoral study we have discussed the control problem of systems

as diverse as stochastic limit cycles, deterministic chaotic oscillators and neural

ensembles. Particularly, a technique which ensures an efficient control of such

diverse systems has been developed. The main concept of this thesis is to relate

nonlinear dynamics with control theory for the purpose of control of complex

systems. From the viewpoint of control theory, our suggested approach is an

extension of filter-based techniques (54; 49), where a filter in the feedback loop

estimates the fixed point dynamically and eventually stabilizes it. From the

viewpoint of nonlinear dynamics, our method dates back to the classical problem

of the oscillation theory, viz. to the problem of interaction of an active oscillator

(or medium) with a passive one. It is known that for certain parameter values

the load can quench the active system. In our approach we exploit this idea in

order to control such diverse complex dynamical systems as a neural population

and a noisy or chaotic self-sustained oscillatory system.

In the following, we discuss the main results of the work and open ques-

tions. We have started with the application of the suggested technique to an

isolated population of neurons with a purpose to suppress the collective syn-

chrony. This problem is motivated by a hypothesis that for neurolagical diseases

like Parkinsons, symptoms result from a synchronized pacemaker-like activity

of a population of many thousands of neurons in the basal ganglia, whereas

a normal functioning of the basal ganglia is characterized by an uncorrelated

firing of neurons. This hypothesis is supported by several experimental stud-
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ies (43; 44; 45; 46). Having in mind possible application in neuroscience, our

main requirement to the suppresion technique is to provide control with vanish-

ing stimulation and thus minimizing invasion into the system. We have shown,

that this can be achieved by a specialy designed feedback loop with a built-in

second-order filter. We have supported our idea by numerical simulation of the

ensemble dynamics using the idealized model of globally coupled neurons. We

have also modelled a more realistic neuronal ensemble with all-to-all synaptic con-

nections and numerical analysis also indicates that our approach works in this

case as well. Furthermore, we extended our feedback approach for control of syn-

chrony to a more complex setting of two interacting populations, where the first

one is affected by stimulation, whereas measurement is performed from the sec-

ond one. The considered situation can model suppression of pathological rhythm

when registration and stimulation of the brain tissue cannot be carried out by

the same or closely placed electrode(s). We have considered the cases when the

second population is either active or passive; the latter case may describe mea-

surements by a surface electrode. The theoretical analysis of suppression can be

performed in the framework of the model amplitude equation and the results are

in a good agreement with simulations.

Important advantages of our linear feedback control are simplicity of its im-

plementation, an ability to compensate a phase shift inherent to stimulation as

well as a latency in measurements, and presence of a built-in bandpass filter.

The last one allows one to extract the relevant signal from its mixture with other

rhythms and noise; the central frequency and the bandwidth of the filter are

governed by parameters ω0 and α. With this method we also overcome the main

disadvantage of the time-delayed method, namely a new instability can arise if

the delay is large enough. The parameters of the control scheme can be easily

tuned by means of a test stimulation by a harmonic force. We expect that our

technique can contribute significantly to the development of mild and efficient

techniques for suppression of pathological brain activity. The main advantage of

the suggested technique is that the administered control input vanishes as soon

as a desynchronized state is achieved. This feature is extremely important for

therapeutic applications, since it means significant reduction of intervention into

a living tissue. As a problem for ongoing research we mention a development of
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an adaptive, self-tuning suppression technique.

Next, we have demonstrated the effect of the coherence control by means of

a linear feedback. The control is possible for noisy limit cycles oscillators as well

as for chaotic systems. The coherence, or constancy of oscillation frequency, is

a crucial property of the dynamics determining their quality as clocks. As a

characteristic of coherence we have used the phase diffusion constant, which is

proportional to the width of the spectral peak of oscillations. We have developed

a statistical theory of phase diffusion under the influence of a general linear

feedback and validated it by numerical results. Using the Gaussian approximation,

we have derived a closed system of equations for the diffusion constant and the

mean frequency. The theory works if the feedback is not very strong, or if the

noise is strong enough to suppress multistability in mean frequency. The case

of multistability gives some opportunities for possible direction of the future

development.

The suggested technique may possibly substitute delayed-feedback schemes

in some other applications, e.g., in stabilization of low-dimensional systems (13;

50; 51; 52; 54; 55; 49; 53; 12), control of noise-induced oscillations (66), etc.
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Appendix A

Stability domain of the model

equation

Computation of the determinant of system (2.7) provides

λ5µ+ λ4(1 + αµ− 2ξµ) + λ3(ξ2µ− Eµ cos β + 2ω2µ− 2ξαµ+ α− 2ξ)

+λ2(ω2αµ−E cos β−Eγ cos β−2ξω2µ−2ξα+ξEµ cos β+ξ2αµ+ωEµ sin β+2ω2+ξ2)

+λ(ωE sin β+ξE cos β+ωEγ sin β+ξ2ω2µ+ω4µ+ω2α+ξ2α−2ξω2 +ξEγ cos β)

+ ξ2ω2 + ω4 = 0 . (A.1)

Stability domain in the parameter plane (γ, E), or, equivalently in the param-

eter plane (θ, εf ), is determined by the condition Re(λ) < 0. (We remind that

γ = −ωµ tan θ and E = εf cos θ.) Taking λ = iΩ on the stability border and

separating real and imaginary parts, we obtain

Ω4(αµ+1−2ξµ)+Ω2[E cos β(1−ξµ+γ)−ωµE sin β+2ξα−2ω2−ξ2+2ξω2µ−ω2αµ

− ξ2αµ] + ω4 + ξ2ω2 = 0 , (A.2)

Ω{Ω4µ+ Ω2[µ(E cos β − ξ2 − 2ω2 + 2ξα) + 2ξ − α] + E(1 + γ)(ω sin β + ξ cos β)

+ ω2(ξ2µ+ α− 2ξ) + ω4µ+ ξ2α} = 0 . (A.3)

Thus, we have two equations for two variables (γ, E), and Ω is a parameter. It

is easy to check that Ω = 0 provides no solution, therefore we divide the Eq. (A.3)
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by Ω 6= 0 and express E from this equation. Substituting it into the Eq. (A.2) we

get γ. Then, substituting γ into the expression for E we finally obtain E . Hence,

γ = A/B ,

where

A = ω sin β[Ω6µ2 + Ω4(1 − 2ω2µ2 + 2µ2ξα− µ2ξ2) + Ω2(ω2µ2ξ2 − 2ω2 + ω4µ2

+2ξα−ξ2)+ξ2ω2 +ω4]+cosβ[Ω6(αµ2−ξµ2)+Ω4(α−ξ−ξ3µ2 +ξ2µ2α−ω2αµ2)

+ Ω2(ξ2α− ω2α− ξ3 + ξµ2ω4 + ξ3µ2ω2) + ξ3ω2 + ω4ξ] , (A.4)

B = ω sin β[Ω4(2ξµ−αµ−1)+Ω2(ξ2αµ−2ξω2µ−2ξα+ξ2+ω2+ω2αµ)−ξ2ω2−ω4]

+ cos β[Ω6µ+ Ω4(αµξ + ξ2µ− 2ω2µ+ ξ − α) + Ω2(ω4µ− ξ2ω2µ+ ω2αµξ + ξ3αµ

− ξ2α+ ω2α+ ξ3) − ξ3ω2 − ω4ξ] . (A.5)

and

E = C/D ,

where

C = cosβ[−Ω6µ+Ω4(2ω2µ− ξ2µ−αµξ+α− ξ)+Ω2(ξ2ω2µ− ξ3 −ω4µ− ξ3αµ

−ω2αµξ+ξ2α−ω2α)+ξ3ω2+ω4ξ]+ω sin β[Ω4(1−2ξµ+αµ)+Ω2(2ξα+2ξω2µ−ω2αµ

− ξ2αµ− ξ2 − 2ω2) + ω4 + ξ2ω2] , (A.6)

D = µΩ2[ξω sin 2β + ω2 + cos2 β(Ω2 + ξ2 − ω2)] . (A.7)



Appendix B

Maple code for stability analysis

of the model equation (2.13)

> with(LinearAlgebra):

> M:=Matrix(7,[[lambda-xi1+epsilon,omega1,-epsilon,0,0,-k*cos(beta),

-gmk*cos(beta)],[-omega1,lambda-xi1+epsilon,0,-epsilon,0,-k*sin(beta),

-gmk*sin(beta)],[-epsilon,0,lambda-xi2+epsilon,omega2,0,0,0],[0,

-epsilon,-omega2,lambda-xi2+epsilon,0,0,0],[0,0,0,0,lambda,-1,0],

[0,0,-1,0,omega^2, lambda+alpha,0],[0,0,0,0,-lambda,0,mu*lambda+1]]);

M :=

[lambda - xi1 + epsilon , omega1 , -epsilon , 0 , 0 ,

-k cos(beta) , -gmk cos(beta)]

[-omega1 , lambda - xi1 + epsilon , 0 , -epsilon , 0 ,

-k sin(beta) , -gmk sin(beta)]

[-epsilon , 0 , lambda - xi2 + epsilon , omega2 , 0 , 0 , 0]

[0 , -epsilon , -omega2 , lambda - xi2 + epsilon , 0 , 0 , 0]

[0 , 0 , 0 , 0 , lambda , -1 , 0]

[ 2 ]
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[0 , 0 , -1 , 0 , omega , lambda + alpha , 0]

[0 , 0 , 0 , 0 , -lambda , 0 , mu lambda + 1]

> det:=Determinant(M):

> collect(det, lambda^7):

> eq:=subs(lambda=I*Omega, det):

> eqtmp:=evalc(eq):

> eqr:=omega1^2*Omega^4-Omega^6*alpha*mu+Omega^4*omega^2

+xi2^2*Omega^4+xi1^2*Omega^4-Omega^6+xi1^2*xi2^2*omega^2

+xi1^2*epsilon^2*omega^2+xi1^2*omega2^2*omega^2

+epsilon^2*xi2^2*omega^2+epsilon^2*omega2^2*omega^2

-2*xi1^2*xi2*epsilon*omega^2+omega1^2*xi2^2*omega^2

+omega1^2*epsilon^2*omega^2+omega1^2*omega2^2*omega^2

+2*xi1*xi2*epsilon^2*omega^2-2*xi1*epsilon*xi2^2*omega^2

-2*xi1*epsilon*omega2^2*omega^2-2*omega1^2*xi2*epsilon*omega^2

+2*omega1*epsilon^2*omega2*omega^2-4*Omega^6*epsilon*mu

+2*Omega^6*xi2*mu-2*Omega^4*xi2*alpha+4*Omega^4*epsilon*alpha

-6*xi2*epsilon*Omega^4-2*xi1*Omega^4*alpha+4*xi1*Omega^4*xi2

-6*xi1*Omega^4*epsilon+4*xi2*epsilon^2*Omega^2*alpha

+6*Omega^2*xi2*epsilon*omega^2-4*xi1*Omega^2*xi2*omega^2

-2*Omega^4*xi2*omega^2*mu+4*Omega^4*epsilon*omega^2*mu

+xi2^2*alpha*mu*Omega^4+4*epsilon^2*alpha*mu*Omega^4

+omega2^2*alpha*mu*Omega^4-Omega^2*xi2^2*omega^2

-4*Omega^2*epsilon^2*omega^2-Omega^2*omega2^2*omega^2

+2*xi1*Omega^6*mu-xi1^2*Omega^2*omega^2-xi1^2*omega2^2*Omega^2

-xi1^2*epsilon^2*Omega^2-xi1^2*xi2^2*Omega^2

-epsilon^2*xi2^2*Omega^2-epsilon^2*omega2^2*Omega^2

+4*epsilon^2*Omega^4+omega2^2*Omega^4-omega1^2*epsilon^2*Omega^2

-omega1^2*Omega^2*omega^2+2*omega1^2*Omega^2*xi2*omega^2*mu

-2*omega1^2*Omega^2*epsilon*omega^2*mu

-omega1^2*xi2^2*alpha*mu*Omega^2-omega1^2*epsilon^2*alpha*mu*Omega^2

-4*xi2*epsilon^2*mu*Omega^4-2*xi1*Omega^4*omega^2*mu

+6*xi1*Omega^2*epsilon*omega^2+2*xi1*xi2^2*Omega^2*alpha

+4*xi1*epsilon^2*Omega^2*alpha+2*xi1*omega2^2*Omega^2*alpha

-2*epsilon*xi2^2*Omega^2*alpha-2*epsilon*omega2^2*Omega^2*alpha

+2*xi1^2*Omega^2*xi2*alpha-2*xi1^2*Omega^2*epsilon*alpha

+2*xi1^2*xi2*epsilon*Omega^2-2*xi1*xi2*epsilon^2*Omega^2

+2*xi1*epsilon*xi2^2*Omega^2+2*xi1*epsilon*omega2^2*Omega^2

+2*omega1^2*Omega^2*xi2*alpha-2*omega1^2*Omega^2*epsilon*alpha
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+2*omega1^2*xi2*epsilon*Omega^2-2*omega1*epsilon^2*omega2*Omega^2

-2*xi1*xi2^2*mu*Omega^4-4*xi1*epsilon^2*mu*Omega^4

-2*xi1*omega2^2*mu*Omega^4+2*epsilon*xi2^2*mu*Omega^4

+2*epsilon*omega2^2*mu*Omega^4+xi1^2*Omega^4*alpha*mu

-2*xi1^2*Omega^4*xi2*mu+2*xi1^2*Omega^4*epsilon*mu

-6*xi2*epsilon*alpha*mu*Omega^4+4*xi2*epsilon^2*omega^2*mu*Omega^2

+4*xi1*Omega^4*xi2*alpha*mu-6*xi1*Omega^4*epsilon*alpha*mu

+2*xi1*xi2^2*omega^2*mu*Omega^2+8*xi1*xi2*epsilon*mu*Omega^4

-8*xi1*xi2*epsilon*Omega^2*alpha+4*xi1*epsilon^2*omega^2*mu*Omega^2

+2*xi1*omega2^2*omega^2*mu*Omega^2-8*xi1*xi2*epsilon*omega^2*mu*Omega^2

-2*epsilon*xi2^2*omega^2*mu*Omega^2

-2*epsilon*omega2^2*omega^2*mu*Omega^2+2*xi1^2*Omega^2*xi2*omega^2*mu

-2*xi1^2*Omega^2*epsilon*omega^2*mu-xi1^2*xi2^2*alpha*mu*Omega^2

-xi1^2*epsilon^2*alpha*mu*Omega^2-xi1^2*omega2^2*alpha*mu*Omega^2

+2*xi1^2*xi2*epsilon*alpha*mu*Omega^2-epsilon^2*xi2^2*alpha*mu*Omega^2

-epsilon^2*omega2^2*alpha*mu*Omega^2-omega1^2*xi2^2*Omega^2

-omega1^2*omega2^2*Omega^2+omega1^2*Omega^4*alpha*mu

-2*omega1^2*Omega^4*xi2*mu+2*omega1^2*Omega^4*epsilon*mu

+2*epsilon^2*Omega^2*k*cos(beta)-2*xi1*xi2*epsilon^2*alpha*mu*Omega^2

+2*xi1*epsilon*xi2^2*alpha*mu*Omega^2+2*xi1*epsilon*omega2^2*alpha*mu*Omega^2

-omega1^2*omega2^2*alpha*mu*Omega^2+2*omega1^2*xi2*epsilon*alpha*mu*Omega^2

-2*omega1*epsilon^2*omega2*alpha*mu*Omega^2-epsilon*omega2*Omega^2*k*sin(beta)

-epsilon*omega2*Omega^2*k*gm*sin(beta)-epsilon^2*omega2*Omega^2*k*sin(beta)*mu

+xi1*epsilon*omega2*Omega^2*k*sin(beta)*mu

-omega1*epsilon*omega2*Omega^2*k*cos(beta)*mu

-omega1*epsilon^2*Omega^2*k*sin(beta)*mu+2*epsilon^2*Omega^2*gm*k*cos(beta)

-xi1*epsilon^2*Omega^2*k*cos(beta)*mu-epsilon^2*xi2*Omega^2*k*cos(beta)*mu

-epsilon*omega1*Omega^2*k*sin(beta)-epsilon*Omega^4*k*cos(beta)*mu

-epsilon*xi2*Omega^2*k*cos(beta)-epsilon*xi1*Omega^2*k*cos(beta)

-epsilon*omega1*Omega^2*k*gm*sin(beta)

+epsilon*omega1*xi2*Omega^2*k*sin(beta)*mu-epsilon*xi2*Omega^2*gm*k*cos(beta)

-epsilon*xi1*Omega^2*gm*k*cos(beta)+epsilon*xi1*xi2*Omega^2*k*cos(beta)*mu:

> eqm:=-omega1^2*Omega^3*alpha+2*xi1*Omega^3*omega^2+2*xi1*omega2^2*Omega^3

+4*xi1*epsilon^2*Omega^3+Omega^5*omega^2*mu+2*Omega^3*xi2*omega^2

-4*Omega^3*epsilon*omega^2+xi2^2*mu*Omega^5-xi2^2*Omega^3*alpha

+4*epsilon^2*mu*Omega^5-4*epsilon^2*Omega^3*alpha-2*Omega^5*xi2*alpha*mu

+4*Omega^5*epsilon*alpha*mu-xi2^2*omega^2*mu*Omega^3

-6*xi2*epsilon*mu*Omega^5+6*xi2*epsilon*Omega^3*alpha

-4*epsilon^2*omega^2*mu*Omega^3-omega2^2*omega^2*mu*Omega^3
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-2*xi1*Omega^5*alpha*mu+4*xi1*Omega^5*xi2*mu-4*xi1*Omega^3*xi2*alpha

-6*xi1*Omega^5*epsilon*mu+6*xi1*Omega^3*epsilon*alpha

-8*xi1*xi2*epsilon*Omega^3-xi1^2*Omega^3*omega^2*mu

-2*xi1^2*Omega*xi2*omega^2+2*xi1^2*Omega*epsilon*omega^2

-xi1^2*xi2^2*mu*Omega^3+xi1^2*xi2^2*Omega*alpha

-xi1^2*epsilon^2*mu*Omega^3+xi1^2*epsilon^2*Omega*alpha

-xi1^2*omega2^2*mu*Omega^3+xi1^2*omega2^2*Omega*alpha

-epsilon^2*xi2^2*mu*Omega^3+epsilon^2*xi2^2*Omega*alpha

-epsilon^2*omega2^2*mu*Omega^3+epsilon^2*omega2^2*Omega*alpha

-4*Omega*xi2*epsilon^2*omega^2-2*Omega*xi1*xi2^2*omega^2

-4*Omega*xi1*epsilon^2*omega^2-2*Omega*xi1*omega2^2*omega^2

+2*Omega*epsilon*xi2^2*omega^2+2*Omega*epsilon*omega2^2*omega^2

-omega1^2*Omega^3*omega^2*mu-2*omega1^2*Omega*xi2*omega^2

+2*omega1^2*Omega*epsilon*omega^2-omega1^2*xi2^2*mu*Omega^3

+omega1^2*xi2^2*Omega*alpha-omega1^2*epsilon^2*mu*Omega^3

+omega1^2*epsilon^2*Omega*alpha-omega1^2*omega2^2*mu*Omega^3

+omega1^2*omega2^2*Omega*alpha+epsilon*Omega^3*k*cos(beta)

-Omega^7*mu+Omega^5*alpha-2*Omega^5*xi2+4*Omega^5*epsilon

-2*xi1*Omega^5+omega2^2*mu*Omega^5-omega2^2*Omega^3*alpha

+4*xi2*epsilon^2*Omega^3+2*xi1*xi2^2*Omega^3

-2*epsilon*xi2^2*Omega^3-2*epsilon*omega2^2*Omega^3

+xi1^2*Omega^5*mu-xi1^2*Omega^3*alpha+2*xi1^2*Omega^3*xi2

-2*xi1^2*Omega^3*epsilon+omega1^2*Omega^5*mu

+2*omega1^2*Omega^3*xi2-2*omega1^2*Omega^3*epsilon

+2*omega1^2*Omega^3*xi2*alpha*mu-2*omega1^2*Omega^3*epsilon*alpha*mu

+omega1^2*xi2^2*omega^2*mu*Omega+2*omega1^2*xi2*epsilon*mu*Omega^3

-2*omega1^2*xi2*epsilon*Omega*alpha

+omega1^2*epsilon^2*omega^2*mu*Omega+6*xi2*epsilon*omega^2*mu*Omega^3

+4*xi2*epsilon^2*alpha*mu*Omega^3-4*xi1*Omega^3*xi2*omega^2*mu

+6*xi1*Omega^3*epsilon*omega^2*mu+2*xi1*xi2^2*alpha*mu*Omega^3

+4*xi1*epsilon^2*alpha*mu*Omega^3+2*xi1*omega2^2*alpha*mu*Omega^3

-8*xi1*xi2*epsilon*alpha*mu*Omega^3-2*epsilon*xi2^2*alpha*mu*Omega^3

-2*epsilon*omega2^2*alpha*mu*Omega^3+2*xi1^2*Omega^3*xi2*alpha*mu

-2*xi1^2*Omega^3*epsilon*alpha*mu+xi1^2*xi2^2*omega^2*mu*Omega

+2*xi1^2*xi2*epsilon*mu*Omega^3-2*xi1^2*xi2*epsilon*Omega*alpha

+xi1^2*epsilon^2*omega^2*mu*Omega+xi1^2*omega2^2*omega^2*mu*Omega

-2*xi1^2*xi2*epsilon*omega^2*mu*Omega

+epsilon^2*xi2^2*omega^2*mu*Omega+epsilon^2*omega2^2*omega^2*mu*Omega

+8*Omega*xi1*xi2*epsilon*omega^2-2*xi1*xi2*epsilon^2*mu*Omega^3

+2*xi1*xi2*epsilon^2*Omega*alpha+2*xi1*epsilon*xi2^2*mu*Omega^3
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-2*xi1*epsilon*xi2^2*Omega*alpha+2*xi1*epsilon*omega2^2*mu*Omega^3

-2*xi1*epsilon*omega2^2*Omega*alpha+2*xi1*xi2*epsilon^2*omega^2*mu*Omega

-2*xi1*epsilon*xi2^2*omega^2*mu*Omega

-2*xi1*epsilon*omega2^2*omega^2*mu*Omega

+omega1^2*omega2^2*omega^2*mu*Omega-2*omega1^2*xi2*epsilon*omega^2*mu*Omega

-2*omega1*epsilon^2*omega2*mu*Omega^3+2*omega1*epsilon^2*omega2*Omega*alpha

+2*omega1*epsilon^2*omega2*omega^2*mu*Omega

-epsilon*omega2*Omega^3*k*sin(beta)*mu+epsilon^2*omega2*Omega*k*sin(beta)

+epsilon^2*omega2*Omega*k*gm*sin(beta)+omega1*epsilon^2*Omega*k*sin(beta)

-xi1*epsilon*omega2*Omega*k*sin(beta)-xi1*epsilon*omega2*Omega*k*gm*sin(beta)

+omega1*epsilon*omega2*Omega*k*cos(beta)

+omega1*epsilon*omega2*Omega*gm*k*cos(beta)

+omega1*epsilon^2*Omega*k*gm*sin(beta)+2*epsilon^2*Omega^3*k*cos(beta)*mu

+xi1*epsilon^2*Omega*k*cos(beta)+xi1*epsilon^2*Omega*gm*k*cos(beta)

+epsilon^2*xi2*Omega*k*cos(beta)+epsilon^2*xi2*Omega*gm*k*cos(beta)

+epsilon*Omega^3*gm*k*cos(beta)-epsilon*omega1*Omega^3*k*sin(beta)*mu

-epsilon*omega1*xi2*Omega*k*sin(beta)-epsilon*omega1*xi2*Omega*k*gm*sin(beta)

-epsilon*xi2*Omega^3*k*cos(beta)*mu-epsilon*xi1*Omega^3*k*cos(beta)*mu

-epsilon*xi1*xi2*Omega*k*cos(beta)-epsilon*xi1*xi2*Omega*gm*k*cos(beta):

> gmk1:=solve(subs(gm=gmk/k,eqm), gmk):

> eqr1:=subs(gm=gmk1/k,eqr):

> k1:=solve(eqr1,k):

> gm1:=subs(k=k1,gmk1/k):

> omega1:=1.0; omega2:=1.0; omega:=1.0; alpha:=0.3*omega: beta:=0.; xi1:=0.02;

xi2:=0.02; mu:=500: epsilon:=0.05;

omega1 := 1.0

omega2 := 1.0

omega := 1.0

beta := 0.

xi1 := 0.02
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APPENDIX B. MAPLE CODE FOR STABILITY ANALYSIS OF THE

MODEL EQUATION (??)

xi2 := 0.02

epsilon := 0.05

> theta:=-arctan(gm1/omega/mu):

> plot([theta,k1*sqrt(1+gm1^2/omega^2/mu^2),Omega=0..2.0], -1.58..1.58,

-1...2,numpoints=500,thickness=2);

> N1:=1000;

> Omega1:=5./mu;

> N2:=5000;

> dtf:=array(1..N1+N2,1..3);

> for i from 1 to N1 do

> Omega:=evalf(Omega1/N1*i);

> dtf[i,1]:=Omega;

> dtf[i,2]:=evalf(theta);

> dtf[i,3]:=evalf(k1*sqrt(1+gm1^2/omega^2/mu^2));

> od:

> for i from N1+1 to N1+N2 do

> Omega:=evalf(Omega1+(5-Omega1)/N2*(i-N1));

> dtf[i,1]:=Omega;

> dtf[i,2]:=evalf(theta);

> dtf[i,3]:=evalf(k1*sqrt(1+gm1^2/omega^2/mu^2));

> od:

N1 := 1000

Omega1 := 0.01000000000

N2 := 5000

dtf := array(1 .. 6000, 1 .. 3, [])

> fd:=fopen( "E:\\work\\stability\\twoens\\ident.dat", WRITE ):

> writedata(fd,dtf):

> close(fd):
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