
Independent component analysis

and beyond

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium

– Dr. rer. nat. –

eingereicht an der

Mathematisch-Naturwissenschaftlichen Fakultät

der Universität Potsdam

von

Stefan Harmeling

Potsdam, im August 2004



Summary

Independent component analysis (ICA) is a tool for statistical data analysis and signal
processing that is able to decompose multivariate signals into their underlying source
components. Although the classical ICA model is highly useful, there are many real-
world applications that require powerful extensions of ICA. This thesis presents new
methods that extend the functionality of ICA.

Reliability and grouping of independent components with noise injection. Usually
noise is considered to be destructive. We present a new method that constructively
injects noise to assess the reliability and the grouping structure of empirical indepen-
dent component estimates. We generalize hereby earlier work on reliability assessment
based on bootstrap to arbitrary ICA algorithms. Our method can be viewed as a
Monte-Carlo-style approximation of the curvature of some performance measure at
the solution. Simulations using artificial and real-world data validate our approach.

Robust and overcomplete ICA with inlier detection. Classical ICA algorithms are
often sensitive to outliers. We present a new ICA algorithm for super-Gaussian sources
that is based on an index for outlier detection that uses nearest neighbor methods. The
outlier index is not employed to remove outliers but instead directly to find inliers—
the data points in the most concentrated regions—which represent the ICA directions
for super-Gaussian source signals. Our inlier-based approach is by construction robust
against outliers and can be naturally applied to the overcomplete ICA problem, in
which there are more sources than sensors. A comparison of our new method with
classical algorithms—in terms of robustness—and a comprehensive empirical analysis
of its performance—with respect to dimensionality, number of sources and number of
data points—underlines its key advantages.

Nonlinear ICA with kernel methods. We present a kernel-based algorithm for non-
linear ICA that uses kernel feature spaces to approximate nonlinearities. Applying
linear ICA based on time structure in the resulting high-dimensional spaces can un-
mix strongly nonlinear mixtures. The key is to use some dimensionality reduction
technique to make the application of ICA methods computationally and numerically
tractable. Experiments demonstrate the excellent performance and efficiency of our
algorithm for several problems of nonlinear ICA.

Keywords: ICA, reliability assessment, robust ICA, overcomplete ICA, outlier detec-
tion, nonlinear ICA, kernel PCA, kernel methods.
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Zusammenfassung

“Independent component analysis” (ICA) ist ein Werkzeug der statistischen Daten-
analyse und Signalverarbeitung, welches multivariate Signale in ihre Quellkomponen-
ten zerlegen kann. Obwohl das klassische ICA Modell sehr nützlich ist, gibt es viele An-
wendungen, die Erweiterungen von ICA erfordern. In dieser Dissertation präsentieren
wir neue Verfahren, die die Funktionalität von ICA erweitern.

Zuverlässigkeit und Gruppierung von ICA Komponenten durch Hinzufügung von
Rauschen (“noise injection”). Normalerweise, ist Rauschen in Signalen von Nachteil.
Wir präsentieren eine neues Verfahren, das Rauschen konstruktiv zum Signal addiert,
um die Zuverlässigkeit und Gruppenstruktur von empirischen ICA Komponenten zu
bestimmen. Hierbei verallgemeinern wir frühere, auf “bootstrap” basierende Arbeiten
zur Zuverlässigkeitsbestimmung auf beliebige ICA Algorithmen. Unsere Methode kann
man als Monte-Carlo-Approximation der Krümmung gewisser Evaluierungsfunktionen
an der Lösung auffassen. Simulationen mit künstlichen und echten Daten validieren
unseren Ansatz.

Robuste und überbestimmte (“over-complete”) ICA durch Ausreissererkennung.
Klassische ICA Algorithmen sind oft Ausreisser-anfällig. Wir präsentieren einen neuen
ICA Algorithmus für supergausssche Quellsignale, der auf Ausreisserindizes basiert,
welche “nearest-neighbor” Methoden verwenden. Der Ausreisserindex wird jedoch
nicht dazu benutzt, um Ausreisser zu entfernen, sondern direkt um “Inlier” (das Gegen-
teil von “Outlier”, d.h. von Ausreissern) zu finden, welche dann die ICA Richtungen für
supergausssche Quellsignale darstellen. Unser auf “inlier” basierende Ansatz ist nach
Konstruktion robust gegenüber Ausreissern und kann auf Probleme der überbestimmten
ICA angewandt werden, welche mehr Quellen als Sensoren haben. Ein Vergleich un-
serer Methode mit anderen klassischen ICA-Verfahren zeigt empirisch die Robustheit
unseres Verfahrens gegenüber Ausreissern und zusätzlichem Rauschen.

Nichtlineare ICA mit Kernmethoden. Wir präsentieren ein kernbasiertes Verfahren
zur nichtlinearen ICA, das mithilfe von Kernmerkmalsräumen die Nichtlinearitäten
approximiert. Die Anwendung von linearer ICA, die auf Zeitstruktur basiert, in den
resultierenden hochdimensionalen Räumen entmischt stark nichtlineare Mischungen.
Der Schlüssel ist der Einsatz von Methoden zur Dimensionsreduktion, um die An-
wendung von ICA Verfahren überhaupt möglich zu machen. Experimente demonstri-
eren die Leistungsfähigkeit und Effizienz unseres Verfahrens für verschiedene Probleme
nichtlinearer ICA.
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Adlershof, Schöneberg and Golm much shorter than they might appear by looking at
the schedules of public transportation.

Notably, I would like to thank my colleagues that have proof-read parts, Dr. Pavel
Laskov, Steven Lemm, Frank Meinecke, Dr. Sebastian Mika, Dr. Motoaki Kawanabe.

Several other people contributed to this thesis in one way or another. In particular,
I thank the co-authors of my publications, Dr. Benjamin Blankertz, Guido Dornhege,
Dr. Motoaki Kawanabe, Frank Meinecke, Prof. Dr. Klaus-Robert Müller, Dr. David
Tax and Andreas Ziehe, for fruitful collaborations and allowing me use parts of our
articles as a basis for this thesis. Chapter 3 is based on [37, 36], Chapter 4 contains
material of [35, 69, 68], and Chapter 5 is based on [41, 40].

I gratefully acknowledge partial support from DFG grants (DFG SFB 618-B4, JA
379/9-2, MU 987/1-1), from EU-project BLISS (IST-1999-14190) and from the EU-
PASCAL network of excellence (IST-2002-506778).

Finally, I would like to thank my parents and Dr. Simone Wissing.

iv



Contents

Summary ii

Zusammenfassung iii

Acknowledgements iv

1 Introduction 1

2 Objective functions of classical ICA 8

2.1 Basic notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Tools from information geometry . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Manifolds in distribution space . . . . . . . . . . . . . . . . . . . 10

2.2.2 Pythagoras in distribution space . . . . . . . . . . . . . . . . . . 11

2.2.3 Projections in distribution space . . . . . . . . . . . . . . . . . . 11

2.3 Non-property assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Maximizing the likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Objective functions assuming non-Gaussianity . . . . . . . . . . . . . . . 16

2.6 Objective functions assuming non-stationarity . . . . . . . . . . . . . . . 18

2.7 Objective functions assuming non-flatness . . . . . . . . . . . . . . . . . 19

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Reliability and grouping of independent components with noise-injection 22

3.1 Theoretical motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Injecting noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.3 Measuring reliability based on the true distribution . . . . . . . . 28

3.1.4 Relation to bootstrap resampling . . . . . . . . . . . . . . . . . . 29

3.2 Algorithmic details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 True versus estimated RMSAD . . . . . . . . . . . . . . . . . . . 34

3.3.2 Toy data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.3 Fetal ECG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.4 Fading into the grouping structure . . . . . . . . . . . . . . . . . 37

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

v



Contents

4 Robust and overcomplete ICA with inlier detection 41
4.1 Inlier indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Kappa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.2 Gamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.3 Simple properties of κ and γ . . . . . . . . . . . . . . . . . . . . 43

4.2 Inlier-based ICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 Performance measures . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.2 Robustness against kurtotic noise and outliers . . . . . . . . . . . 48
4.3.3 Overcomplete mixtures in two dimensions . . . . . . . . . . . . . 49
4.3.4 Performance as a function of the number of sources . . . . . . . . 53
4.3.5 Performance as a function of the number of nearest neighbors . . 56
4.3.6 Toy problems with images . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Nonlinear ICA with kernel methods 61
5.1 Constructing kernel feature spaces of reduced dimension . . . . . . . . . 64

5.1.1 Finding a basis via random sampling/clustering . . . . . . . . . . 64
5.1.2 Finding a basis via kernel PCA . . . . . . . . . . . . . . . . . . . 67

5.2 Nonlinear ICA with time structure . . . . . . . . . . . . . . . . . . . . . 68
5.3 Selecting from the extracted components . . . . . . . . . . . . . . . . . . 68

5.3.1 Reconstructing the extracted components . . . . . . . . . . . . . 69
5.3.2 Selection by rerunning the algorithm . . . . . . . . . . . . . . . . 71

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.1 Deterministic artificial data . . . . . . . . . . . . . . . . . . . . . 72
5.4.2 Speech data—bended . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4.3 Speech data—twisted . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4.4 Analysis of the cross correlations through time . . . . . . . . . . 77
5.4.5 Kernel PCA versus random sampling versus clustering . . . . . . 77
5.4.6 Stochastic artificial data . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.7 More than two sources . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Synopsis 90

A Appendix: omitted proofs and lemmata 92
A.1 Whitening (also called sphering) . . . . . . . . . . . . . . . . . . . . . . 92
A.2 Density of a transformation . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.3 Connection between likelihood and KLD . . . . . . . . . . . . . . . . . . 94
A.4 Invariance of the KLD under invertible transformations . . . . . . . . . 95
A.5 Decomposing the mutual information . . . . . . . . . . . . . . . . . . . . 95
A.6 Jacobian and Hessian matrices of a matrix-valued matrix function . . . 96
A.7 Approximating the data manifold in feature space . . . . . . . . . . . . 96

Bibliography 98

vi



1 Introduction

Suppose we are having a conversation at a crowded cocktail party. It is usually no
problem to focus on the person you are talking to, although our two ears are receiving
a wild mixture of different sounds originating from various sources: for example, the
conversation of the people next to us or the stereo system playing background music.
Despite all the background noise the brain enables us to understand the person we are
trying to listen to.

Replace the two ears with microphones and the brain with a computer. Can we
program a computer such that it separates the microphone recordings into the different
sound sources of the cocktail party? Can it single out the words of the person in front of
us? This is the cocktail-party problem which is quite difficult to solve, but it illustrates
the goal of blind source separation (BSS): decompose signals that have been recorded
by an array of sensors (i.e. multichannel recordings) into the underlying sources. This
source separation problem is called blind because neither the mixing process nor the
characteristics of the source signals are known.

The BSS problem in the real world

The BSS problem arises in diverse situations: for example, a doctor records the elec-
trocardiogram (ECG) of a pregnant woman with several electrodes located at her
abdomen and her thorax in order to examine the heart rhythm of the fetus. Besides
other sources the recorded signals contain the heartbeat of the mother and also—
with much smaller amplitude—the heartbeat of the fetus. The BSS problem in this
situation is to separate the signal generated by the fetus from the heartbeat of the
mother.

In another medical context, neurologists monitor the electrical activity of the cortex
with an electroencephalogram (EEG) in order to study the brain patterns evoked
by different stimuli. Current EEG systems record simultaneously up to hundreds of
electrodes. The obtained signals are a mixture of the activity of the different areas
in the brain but also of artifacts such as the heartbeat or movements of the eyeballs.
The BSS problem is to remove the artifacts and to decompose the EEG signals into
signals originating from specific regions of the brain.

In a chemical plant, numerous sensors monitor the production process. For quality
control and much more importantly, for early warning systems, these sensor recordings
can be combined, which leads to the BSS problem of finding a clear representation of
the recorded data by identifying the relevant factors.

Principal component analysis (PCA) belongs to the standard techniques of statistical
data analysis. By making use of the correlations between simultaneously recorded
signals, PCA is able to obtain a representation with less redundancy. However, it can

1



1 Introduction

only identify an orthogonal basis of the subspace that contains the signals but it can
not determine the directions of the sources inside this subspace. Thus PCA does not
solve the BSS problem.

Independent component analysis (ICA) solves several instances of the BSS problem
by taking into account higher-order statistics which are ignored by PCA that relies
only on second-order statistics. ICA has been proposed in the 1980’s ([42, 43, 7]; see
[55] for a detailed history of ICA). Since its introduction it has become an indispensable
tool for statistical data analysis and processing of multi-channel data.

The classical ICA setting

Suppose we have recorded n signals x1[t], . . . , xn[t] for t = 1, . . . , T . In the simplest
setting for ICA, these n signals are modeled as linear combinations of n unknown
source signals s1[t], . . . , sn[t],

xi[t] =

n
∑

j=1

aij sj [t] for i = 1, . . . , n. (1.1)

The coefficients aij determine what proportions of the sources sj [t] appear in which
observed signal xi[t]. These coefficients form the so-called mixing matrix A, which
is assumed to be invertible and square. Viewing the recorded signals and the source
signals as multivariate time-series,

x[t] =







x1[t]
...

xn[t]






and s[t] =







s1[t]
...

sn[t]






, (1.2)

the ICA model can be succinctly written as

x[t] = As[t]. (1.3)

Because neither the mixing matrix A nor the true sources s[t] are known or observable,
ICA is called a blind technique. Prima facie, it seems to be impossible that we can
recover the sources s[t] only by analyzing the observed signals x[t]. However, the key is
to assume that the source signals s1[t], . . . , sn[t] are spatially statistically independent,
i.e. knowing the time course of one component, for example of s1[t], does not provide
any information about the time course of the other components s2[t], . . . , sn[t]. This
is a quite plausible assumption in the initial real-world examples. Note that spatial
independence is different from temporal independence which refers to independence in
time1, which would imply that s[t] is independent of s[t+ 1].

ICA tries to find a separating matrix B such that the resulting signals

y[t] = B x[t] (1.4)

1For simplicity, we view t as a time index. However, for unordered data, t enumerates the data in
an arbitrary order.
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1 Introduction

Classical ICA

Nonlinear ICA

Overcomplete ICA

Convolutive ICA

Robust ICA

Reliability of ICA

Figure 1.1: Main extensions of classical ICA.

are spatially as independent as possible. The n components of y[t] are called inde-
pendent components. If either (i) at most one source has a Gaussian distribution,
or (ii) the source signals have different spectra, or (iii) they have different variance
profiles, a separating matrix can be found such that the true sources are recovered by
the demixed signals, y[t] = Bx[t], up to permutation and scaling. These three assump-
tions are the basis for most ICA algorithms. In Chapter 2 we study these assumptions
with tools from information geometry and use them to derive the objective functions
of most classical ICA algorithms from the maximum likelihood principle in a uniform
way.

Despite its great success in many real-world applications (see [50] and references
therein), the classical ICA model has several limitations which has motivated new ICA
paradigms that are beyond the classical setting. This thesis proposes new approaches
for some of these extensions of classical ICA.

Beyond classical ICA

What is beyond classical ICA? Figure 1.1 shows the five main directions into which
we can depart from the classical setting.

Reliability analysis of independent components. In classical ICA the mixing model
is assumed to be linear, which is often correct in biomedical data analysis. The
examples mentioned above on extracting the ECG of a fetus or on decom-
posing the EEG of a human brain have approximately a linear and instanta-
neous mixture because electric fields propagate with the speed of light. Thus

3



1 Introduction

such signals are especially suited for the application of classical ICA methods
[100, 99, 101, 75]. However, after having applied an off-the-shelf ICA toolbox,
the next step is to let a medical expert interpret the hundreds of alleged sources
that were extracted from the multi-channel EEG. This is time-consuming and,
more importantly, there is the danger of over-interpretation, because hundreds
of sources can show a wide variety of shapes, some of which might match the
controlled stimuli by chance. To avoid this problem, we have to estimate the
error bars of the ICA directions. This allows us to sort out the directions with
large variance, because they were probably chosen by chance, and to keep the
direction with small variance, because those directions most likely reflect the
inherent statistical structure of the underlying data.

Bootstrap is a tool to assess the variance of arbitrary estimated quantities (in-
vented by Bradley Efron, see [29] for a detailed introduction to bootstrap or [102]
for a brief exposition). Bootstrap approximates the variance of possibly compli-
cated estimators by creating several surrogate samples which are resampled from
the given data with respect to the empirical distribution. This provides several
estimates of the unknown quantity and thus by the law of large numbers an
approximation of its variance via the sample variance.

Meinecke et al. [75, 70, 71, 67] apply bootstrap to estimate the error bars of
ICA directions. This is not straightforward because each run of ICA can result
in different mixing matrices which nonetheless represent the same ICA solution
due to the permutation and scaling invariance of ICA. The trick they propose is
to unmix the signals initially before doing the bootstrap-resampling. However,
the classical bootstrap-resampling is limited to ICA algorithms that ignore the
time structure of the signals. Meinecke et al. overcome this difficulty for ICA
algorithms that rely on time-shifted covariance matrices (such as TDSEP/SOBI,
[112, 12]) by carefully taking into account the structure of these matrices. This
approach can also be extended to define resampling schemes for other ICA algo-
rithms. However, different ICA algorithms require different resampling schemes
dependent on the statistical structure that guide the chosen ICA methods. This
makes the bootstrap-resampling approach difficult to apply for practitioners that
often prefer to view their ICA tool as a black box. Thus, we propose a new ap-
proach to reliability assessment which we introduce in Chapter 3 that can be
naturally applied to any ICA algorithm. Our approach is well motivated by the
fundamental assumptions of classical ICA, which we discuss in detail in Chap-
ter 2. Instead of resampling from the empirical distribution we show in Chapter 3
that carefully adding Gaussian noise to the estimated independent components
allows us to partially fade out their statistical structure in a controlled manner.
Applying the chosen ICA method (as a black box) again to the noise-corrupted
data, reveals the reliability of the initially estimated independent components.
We expect that reliable independent components reflecting pronounced under-
lying statistical structure of the sample are less affected by the noise, than un-
reliable components which were probably chosen by chance. Besides providing
estimates of the reliability of the independent components, this analysis shows
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1 Introduction

also the grouping structure of the unreliable components. Note further that our
approach is not limited to deterministic algorithms which transform small per-
turbations of the data into small perturbations of the mixing matrix. Instead we
introduce in Chapter 3 performance measures for assessing the reliability that
are by definition invariant to the usual invariances of ICA algorithms.

Himberg et al. [44] distinguish between statistical reliability, which is closely
related to our notion of reliability described above, and algorithmic reliability,
which reflects the fact that the results of stochastic ICA algorithm can depend
very much on the initial starting points. Running a stochastic ICA algorithm
several times with slightly different initial conditions on the same data set yields
a large number of possible ICA directions, that can be analyzed by clustering
methods. ICA directions that are algorithmically reliable form a dense cluster
and are easily identifiable. Algorithmic and statistical reliability differ mainly in
the way they are estimated, i.e. whether the initial conditions of the algorithms
are perturbed or the data itself. However, both algorithmic and statistical reli-
ability quantify how pronounced the statistical structure of the ICA directions
is, that is exploited by the chosen ICA algorithm.

The problem of multidimensional ICA (MICA) is closely related to reliability
assessment as pointed out by Meinecke et al. [67, 71, 75]. In MICA the assump-
tion of having statistically independent sources (one-dimensional subspaces) is
relaxed. MICA allows the sources to be multidimensional, so the assumption is
that there are statistically independent subspaces containing signals that could
be dependent on each other. In a situation where the estimated independent
components are unreliable, there might be still reliable multidimensional inde-
pendent subspaces. Several methods exist to describe such subspaces, for exam-
ples, by means of grouping matrices, that shows which estimated independent
components form a common subspace, or dependency graphs (see [9]). Meinecke
et al. (for example [71]) are able to estimate such a grouping matrix (they call
it separating matrix) as a result of their resampling approach. Similarly, we
propose in Chapter 3 a grouping matrix that integrates into our framework of
reliability assessment with noise-injection and demonstrate in experiments its
validity.

Robust ICA. The key innovation that allowed classical ICA algorithms to solve the
BSS problem for the linear model was its use of higher-order statistics. Therewith
ICA was able to resolve the signal subspace into independent components which
were invisible for PCA. However, higher-order methods are often extremely sen-
sitive to outliers. For example, ICA algorithms based on kurtosis might choose
a direction only because in that direction happens to be one single data point
with a very large norm (see also [46] for a statistical analysis of the robustness
of FastICA). ICA methods based on time structure are usually more robust be-
cause they mostly rely on second-order statistics. But also the estimation of
covariance matrices can be easily corrupted by outliers because the influence of
a single data point still grows quadratically with its norm.

5



1 Introduction

Real-world data is often contaminated by outliers. Thus there is the need to
design ICA methods that are particularly robust. In [35] we proposed an outlier
detection method based on nearest neighbors that allows to sort a data set from
very typical points to very untypical points. Despite the simplicity of these
sorting indices we were able to demonstrate empirically in [35] that they are
competitive with much more sophisticated outlier detection methods (see for
example [10]) and we showed that our outlier indices can robustify methods for
clustering and nonlinear dimensionality reduction. Thus, a simple strategy to
obtain robust ICA methods would be to robustify existing ICA algorithms by
employing these indices as a preprocessing step for outlier rejection.

We will approach the problem of robust ICA along a different path: instead of
using outlier indices to eliminate extreme points from the data set, we employ
these indices to identify the data points in the most concentrated regions. For
super-Gaussian sources, the points of these regions—which we call inliers—are
promising candidates for the columns of the mixing matrix. We use this idea in
Chapter 4 to construct a new ICA algorithm called IBICA for super-Gaussian
sources that is by definition robust against outliers.

Overcomplete ICA. A particularly difficult variant of the classical ICA is obtained
by assuming more sources than sensors. In that case the sources can not be
uniquely recovered even if the mixing matrix is known. Usually, approaches for
overcomplete ICA perform two two steps: (i) identification of the the mixing
matrix, and (ii) approximate reconstruction of the sources.

The approaches for the first step often assume that the source signals are super-
Gaussian (or even sparse). Intuitively speaking, this assumption reduces the
overlap between the data that is scattered along different ICA directions. The
overcomplete ICA problem, for example, has been solved by assuming a prob-
abilistic model [61, 81] or by performing k-means clustering of lines that go
through the origin. The lines corresponding to the estimated means represent
the columns of the mixing matrix [77, 78]. See also [49, 50] for an overview. Note
that the assumption of super-Gaussianity can often be enforced by sparsification
methods (for example [80, 50, 15]).

In the experiments presented in Chapter 4 we demonstrate that the IBICA al-
gorithm, conceived as an algorithm for robust ICA, also solves the overcomplete
ICA for super-Gaussian source signals. By construction it can effortlessly process
high-dimensional data sets as we will see later.

The second step, the reconstruction of the sources from the mixed signals given
the mixing matrix, is not trivial in the overcomplete setting. All single data
points have to be assigned to the different ICA directions, i.e. to the columns of
the mixing matrix. However, if the source signals are not extremely sparse this
assignment is not unique. There are different ways to approach this problem. For
example, the winner-takes-all strategy assigns a data point to the closest ICA
direction. [14] present a more sophisticated method that represents each data
point in the mixed signal as a linear combination of the n closest source directions

6



1 Introduction

(in the two-dimensional case of the two closest directions). This method can be
formulated as an linear optimization problem and it can be solved efficiently (see
[14] and also [50] for other approaches to recover the sources).

Nonlinear ICA. In the chemical plant example discussed earlier, the sensors record
various physical quantities. As shown in [97, 50], industrial process data can be
sometimes represented more compactly by a nonlinear model,

x[t] = f(s[t]), (1.5)

that generalizes classical ICA by replacing the mixing matrix by an arbitrary
invertible function f : <n → <n. Similarly to classical ICA, the goal is to re-
cover the sources s[t] from the observed signals x[t] without knowing the mixing
function f . An important property of nonlinear ICA, that emphasizes its dif-
ficulty, is that the solution to nonlinear ICA is non-unique and infinitely many
solutions exist, as pointed out by [52], if the space of possible mixing functions
is unlimited.

Nonlinear ICA is a challenging research task, and several methods have been pro-
posed in the literature. Existing algorithmic approaches of the general nonlinear
ICA problem have used, for example, self-organizing maps [82, 62], extensions
of generative topographic mapping (GTM [83]), neural networks [16, 65], or
Bayesian ensemble learning [97, 54, 58] to unfold the nonlinearity f (and many
others, for example [60, 106, 50, 56]). Also a kernel-based method was tried on
simplistic toy signals [32]. A neural net approach that can be seen as a nonlinear
generalization of the infomax principle [11] is MISEP which is presented in [2].

An important special case of the general nonlinear model is obtained by restrict-
ing the mixing function f in the mixing model to operate component-wise on a
linear mixture of s[t],

x[t] = f(As[t]). (1.6)

This is the so-called post-nonlinear model which has nice uniqueness properties
as discussed in [95]. This problem can be solved by simultaneously estimating
the inverse of the one-dimensional nonlinear functions and the mixing matrix (see
[95, 1] and also [50]). In [110] we presented another approach to post-nonlinear
mixtures that linearizes the post-nonlinearities via componentwise Gaussianiza-
tion.

In this thesis we consider the general nonlinear ICA problem. In Chapter 5
we propose an new algorithm for nonlinear ICA that finds solutions under the
assumption that the source signals s[t] have some time structure. Assuming
this additional structure in the signals allows us to unmix nonlinearly mixed
signals. This is related to slow feature analysis (SFA, [105]) which extracts slowly
varying signals from a nonlinear mixture. However, SFA uses fixed nonlinearities
to transform the data explicitly in some feature space. Our method, which we
explain in detail in Chapter 5, uses the kernel trick to employ a high-dimensional
(possibly infinite-dimensional) function space without explicitly working in that
space.
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Typically, a method for ICA consists of two parts: an objective function and an
optimization algorithm (see [50]). In this chapter, we will focus on the objective
functions, because we are interested in the question, what statistical structures in
the signals are relevant for ICA. We will derive the objective functions for different
ICA algorithms from the maximum likelihood principle, hereby clearly stating the
underlying assumptions of the statistical model. We note that this presentation is
based on and strongly influenced by Cardoso’s three easy routes [21] but also on and
by other works [50, 19, 22, 84, 86, 87]. Our exposition is not aimed to be exhaustive.
A more detailed and more complete overview can be found in the book of Hyvärinen,
Karhunen and Oja [50].

While trying to avoid letting the formulas fall out of the blue, we decided to transfer
most of the proofs to the appendix in order to keep a steady flow of ideas.

Chapter outline

After fixing some notations in Section 2.1, we introduce in Section 2.2 some basic
concepts from information geometry [4] which will help to keep the presentation brief.
We carefully define some manifolds in distribution space that characterize special sets
of distributions relevant for ICA. For clarity, we explicitly work out the projections
onto these manifolds. In Section 2.3 we formulate the non-property assumptions which
will be the key for the discussion of the maximum likelihood approach that follows
in the remaining sections: we will demonstrate that the objective functions of most
ICA algorithms are based on non-Gaussianity, non-stationarity or non-flatness. These
findings will motivate in Chapter 3 the noise-injection approach for estimating the
reliability of ICA components.

2.1 Basic notations

The methods considered in this thesis process data which is given by a real-valued
n× T -dimensional matrix,

X =











X11 X12 · · · X1T

X21 X22 X2T

...
. . .

...
Xn1 Xn2 · · · XnT











∈ <n×T . (2.1)

8



2 Objective functions of classical ICA

with < being the set of real numbers. We denote single rows or columns using the
colon notation (see [34]), i.e. we refer to the j-th row of X by

Xj: = [Xj1 Xj2 · · · XjT ] (2.2)

and to the t-th column of X by

X:t =











X1t

X2t

...
Xnt











. (2.3)

Alternatively, we use for columns x[t] := X:t and for column entries xj [t] := Xjt. The
rows of X are usually interpreted as instances of one-dimensional signals and thus X
itself as an instance of a multivariate signal.

The notations for the corresponding random variables match the notations of the
data instances as summarized in the following table:

matrix rows columns entries

data X Xj: X:t Xjt

(alternative) x[t] xj [t]

random variable X Xj: X:t Xjt

The probability density function (PDF) of the random variable X is denoted as pX .
The marginal distribution pXj:

, pX:t
and pXjt

corresponding to a row, a column and
an entry of X are obtained from pX by integrating out all but the indicated variables.
A column vector related to X is written as x (with PDF px), its entries as xj (with
PDF pxj ). pX refers to the true PDF of X and qX to a different PDF, usually the
PDF that is implied by the assumed model. We call qX the modeled PDF.

2.2 Tools from information geometry

Information geometry employs the sophisticated methods of differential geometry to
analyze spaces of probability distributions (see [4]). In the following discussion, some
basic notions of information geometry help us to be succinct and clear. Our ex-
planations are similar to (and motivated by) [21, 22]. We consider the space of all
distributions (represented by their PDFs) of n× T -matrices. Distances in that space
are measured by the Kullback-Leibler divergence (KLD), which is defined as

D(p‖q) :=
∫

p(X) log
p(X)

q(X)
dX. (2.4)

Note that the KLD is non-negative and equal to zero only if p = q, but not symmetric.
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2.2.1 Manifolds in distribution space

We define some submanifolds in distribution space that have special characteristics
which are important for ICA. We will call submanifolds for brevity simply manifold,
since the distinction is not important for our discussion. Let Z be an n × T -matrix
with PDF pZ :

• The manifold I contains all distributions that are statistically independent along
the columns, i.e. pZ ∈ I if and only if pZ can be factorized in the following way:

pZ(Z) =
n
∏

j=1

pZj:(Zj:). (2.5)

The distributions in I are also called spatially independent.

• The manifold G contains all distributions that are independent identically dis-
tributed (IID) in time, i.e. pZ ∈ G if and only if there exists a density pz such
that

pZ(Z) =

T
∏

t=1

pz(Z:t) =

T
∏

t=1

pz(z[t]). (2.6)

The distributions in G are also called temporally independent.

• The manifold S contains all distributions that are at each point in time mul-
tivariate Gaussian distributed with zero mean, i.e. pZ ∈ S if and only if there
exist covariance matrices ΣZ

1 , . . . ,Σ
Z
T such that

pZ(Z) =
T
∏

t=1

φ(Z:t; Σ
Z
t ) =

T
∏

t=1

φ(z[t]; ΣZ
t ), (2.7)

with φ(v; Σ) := exp(−v>Σ−1v/2)/
√

(2π)n detΣ being the multivariate Gaussian
density with zero mean and covariance matrix Σ (note that for complex variables
v the transpose > does a conjugate-complex transpose). In the intersection of S
and I the covariance matrices ΣZ

1 , . . . ,Σ
Z
T are diagonal.

• The coefficients of the discrete Fourier transform (DFT) of the rows of Z are
denoted by

z̃[l] =
1√
T

T
∑

t=1

z[t] exp(−2
√
−1πlt/T ) for l ∈ {1, . . . , T}. (2.8)

The manifold F contains all distributions such that the DFT coefficients of its
rows are independent and have a complex Gaussian distribution, i.e. pZ ∈ F if
and only if there exist covariance matrices ΓZ

1 , . . . ,Γ
Z
T (which could be complex-

valued, but must be hermitian) such that

pZ(Z) =

T
∏

l=1

φ(z̃[l]; ΓZ
l ). (2.9)

In the intersection of F and I the covariance matrices ΓZ
1 , . . . ,Γ

Z
T are diagonal.

10



2 Objective functions of classical ICA

2.2.2 Pythagoras in distribution space

LetM be a manifold in distribution space. The projection of p ontoM, denoted by
pM, is the distribution inM that is closest to p (in the KLD sense), i.e.

pM := arg min
q∈M

D(p‖q). (2.10)

These projections are especially useful for exponential (also called e-flat) manifolds
that we define next.

A manifoldM in distribution space is called exponential (or e-flat) if and only if it
contains the exponential segment between any two of its members, i.e. the implication

p(X), q(X) ∈M =⇒ p(X)(1−α)q(X)α exp(−ψ(α)) ∈M (2.11)

must hold for all 0 ≤ α ≤ 1 with ψ(α) being an appropriate normalizing factor. It can
be easily seen that I,G,S,F and their intersections (such as G ∩ I) are exponential
manifolds (for example, for p, q ∈ I write out the expression p(1−α)qα exp(−ψ(α))
to see that it is actually in I itself, similar for the other manifolds). This is quite
convenient because for an exponential manifoldM we have Pythagoras’ theorem:

D(p‖q) = D(p‖pM) +D(pM‖q) for all q ∈M (2.12)

(for a proof see [4]). Informally speaking, the KLD behaves (somewhat) like the
squared Euclidean distance. Suppose we have a hyperplaneM in <n. Let q be a point
on that plane and p another point. Denote by pM the orthogonal projection of p onto
M, then p, pM and q form a right-angled triangle and the squared lengths of its sides
respect Pythagoras’ theorem,

‖p− q‖2 = ‖p− pM‖2 + ‖pM − q‖2 (2.13)

(see Figure 2.1).

2.2.3 Projections in distribution space

For the previously defined manifolds I,G,F ,S it is instructive to write out the pro-
jections explicitly:

• Projection on I: the projected PDF pGZ is the product of the marginal PDFs
pZj: of pZ ,

pIZ(Z) =
n
∏

j=1

pZj:(Zj:). (2.14)

• Projection on G: let pz be the n-dimensional PDF obtained by averaging the
marginal PDFs pZ:t

, i.e.

pz(z) :=
1

T

T
∑

t=1

pZ:t
(z). (2.15)
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q

p

pM
M

Figure 2.1: Pythagoras’ theorem in distribution space: the squared distance of p to
q ∈M is equal to the sum of the squared distances between p and pM and
between pM and q.

We call pz the average marginal PDF of Z. Then the projection of pZ onto G is

pGZ(Z) =
T
∏

t=1

pz(Z:t) =

T
∏

t=1

pz(z[t]). (2.16)

• Projection on S: let ΣZ
t be the covariance matrix of Z:t (or z[t]) according to its

marginal density pZ:t
. The projection of pZ onto S is the product of Gaussian

distributions with those covariance matrices,

pSZ(Z) =
T
∏

t=1

φ(Z:t; Σ
Z
t ) =

T
∏

t=1

φ(z[t]; ΣZ
t ). (2.17)

• Projection on F : let ΓZ
l be the covariance matrix of the l-th coefficient vector

z̃[l] of the DFT of the rows of Z (note that ΓZ
l is a hermitian matrix, see also the

definition of F above). The projection of pZ onto F is the product of Gaussian
distributions of z̃[l] with those covariance matrices,

pFZ (Z) =
T
∏

l=1

φ(z̃[l]; ΓZ
l ). (2.18)

Note that for example the sequence of the upper-left entries of the matrices
ΓZ
1 , . . . ,Γ

Z
T represent the power spectrum of the first signal. Similarly, other

entries of those matrices are power spectra of the other signals or cross power
spectra respectively.

Note that the projection pM is the only distribution inM that allows the decomposi-
tion by Pythagoras’ theorem. Thus to prove that the given expressions are the correct
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projections for I,G,F ,S, it suffices to show that they fulfill Pythagoras’ theorem,
which can be easily seen by writing out the involved terms and remembering Fubini’s
theorem.

2.3 Non-property assumptions

Most ICA algorithms are based on certain assumptions. For example algorithms that
search for non-Gaussian directions require that there is at most one Gaussian direction,
otherwise the source signals can not be recovered. Other ICA algorithms exploit the
time structure of the sources. They need some diversity in the spectra to separate the
signals, so their spectra should not be flat and different to each other. Alternatively,
the sources could be non-stationary with different variance profiles. Let us look at the
various assumptions in more detail.

In practical situations the observed signals are usually given as an n× T matrix,

X = [x[1] · · ·x[T ]] (2.19)

In matrix form the ICA model (introduced in Equation (1.3) can be written as

X = AS (2.20)

with S being an n×T matrix that contains the source signals along its rows. We assume
that all signals have zero mean. The assumption that the sources are statistically
independent means that the modeled PDF qS of S factorizes along the columns,

qS(S) =

n
∏

j=1

qSj:(Sj:) =

n
∏

j=1

qSj:(sj), (2.21)

which is equivalent to assuming qS ∈ I with I being one of the manifolds defined
above. This basic premise is included in the following three assumptions about the
non-properties of the source signals: absence of Gaussianity, absence of flatness and
absence of stationarity:

Non-Gaussianity. Assume that at most one of the sources is Gaussian distributed and
that the sources are independent identically distributed (IID) (independent in
time). Formally this is noted by qS ∈ G ∩ I or qS = qG∩IS , i.e. the (modeled)
PDF of S can be written as a double product of some one-dimensional PDFs
qs1 , . . . , qsn ,

qS(S) =

T
∏

t=1

n
∏

j=1

qsj (Sjt) =

T
∏

t=1

n
∏

j=1

qsj (sj [t]) (2.22)

and that at most one of the involved one-dimensional distributions qs1 . . . , qsn is
Gaussian.

Non-stationarity. The PDF of the sources S is assumed to be the product in time of
Gaussian distributions with varying diagonal covariance matrices. Formally this
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is noted by qS ∈ S ∩I or qS = qS∩IS , i.e. the (modeled) PDF of S can be written
as

qS(S) =

T
∏

t=1

φ(S:t; Σ
S
t ) =

T
∏

t=1

φ(s[t]; ΣS
t ) (2.23)

with ΣS
t := diag(σ21t, . . . , σ

2
nt) being a diagonal n×n matrix with local variances

σ21t, . . . , σ
2
nt along the diagonal. We call σ2j1, . . . , σ

2
jT the variance profile of the j-

th source signal. We assume furthermore that the variance profiles of the sources
are pairwise not proportional to each other.

Non-flatness. The PDF of the sources S is assumed to be the product of the Gaussian
distributions of the DFT coefficient vectors of the rows of S. Formally this is
noted by qS ∈ F ∩ I or qS = qF∩IS , i.e. the (modeled) PDF of S can be written
as

pS(S) =

T
∏

l=1

φ(s̃[l]; ΓS
l ). (2.24)

with s̃[l] being the aforementioned DFT coefficient vectors and ΓS
l := diag(g1l, . . . , gnl)

being the diagonal n× n matrix with the entries g1l, . . . , gnl along the diagonal.
Note that gj1, . . . , gjT is the power spectrum of the j-th signal. Because of the
independence of the sources the cross power spectra vanish, so ΓS

1 , . . . ,Γ
S
T are

diagonal. We assume furthermore that the power spectra of the sources are
pairwise not proportional to each other.

These assumption might seem to be very restrictive. Obviously, real-world sources sel-
dom fulfill one of these assumptions completely. However, they are merely a technical
vehicle. For example, assuming IID signals implies that only properties of the marginal
distribution are used and that time structure (non-flatness) and non-stationarity is ig-
nored. Or, assuming Gaussian distributions implies that only second-order information
is used.

The modeled PDF qS is characterized by certain parameters θ, which differ depen-
dent on the chosen assumption:

• Under the non-Gaussianity assumption, θ consists of the n one-dimensional PDFs
qs1 , . . . , qsn .

• Under the non-stationarity assumption, θ consists of the T diagonal covariance
matrices ΣS

1 , . . . ,Σ
S
T .

• Under the non-flatness assumption, θ consists of the T diagonal covariance ma-
trices ΓS

1 , . . . ,Γ
S
T .

Modeling the source signals S induces also a model for the observed signals X = AS.
In particular, the modeled PDF for X is:

qX(X;A, θ) =
qS(A

−1X)

|detA|T (2.25)
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which depends on the unknown mixing matrix A and θ. This equation is proven in
Appendix A.2. Note that T is the number of columns of X and not the transpose
operator >.

2.4 Maximizing the likelihood

In order to solve the ICA problem, we have to find the mixing matrix A. We will use
the following strategy which is common in statistics: find a matrix A and parameters
θ such that the modeled PDF of X is maximized. Hereby we hope to get the solution
that best fits the observed data. This approach is called Maximum Likelihood (ML)
estimation.

What is the likelihood of the data? Suppose X is fixed (which is the case in practice,
because we observe X only once), then qX(X;A, θ) can be viewed as a function of A
and θ. This function is called the likelihood of X for the parameters A and θ, denoted
by

L(A, θ) := qX(X;A, θ) =
qS(A

−1X)

|detA|T . (2.26)

Note that the likelihood is not a function of X but of the unknown mixing matrix A,
the parameter of interest, and θ, the nuisance parameter.

The expectation with respect to the true PDF of X of the negative logarithm of the
likelihood can be decomposed into two terms:

−EX logL(A, θ) = D(pX‖qX) + h(pX) (2.27)

(see Appendix A.3 for the proof). The first term is the KLD between the true PDF of
X and its modeled PDF. The second term is the entropy h(pX) := −EX log pX(X) =
−
∫

pX(X) log pX(X) dX of X (expectation with respect to its true density). Because
the entropy of X does not depend on the parameters A and θ, we see that maximizing
the likelihood (for an empirical distribution determined by X) leads to a minimization
of the mismatch between pX and qX , i.e. between the true and the modeled PDF.
With other word, maximizing the likelihood looks for a parameter setting such that
the model best fits the observed data. This is a general property of ML estimation.

Denote by Y = A−1X the demixed signals which should match the unknown source
S as close as possible (up to permutation and scaling). The KLD between pX and qX
can be written in terms of the demixed signals Y and the sources S,

D(pX‖qX) = D(pY ‖qS) (2.28)

(see Appendix A.3 for the proof). Therefore, the mismatch between pX and qX can
be measured as the KLD between the true PDF of Y and the modeled PDF of S.
Concluding, we have shown that maximizing the likelihood L(A, θ) corresponds to
minimizing the KLD between pY and qS which will be analyzed further under the
three non-property assumptions.
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2.5 Objective functions assuming non-Gaussianity

In this section we assume non-Gaussianity, i.e. the PDF of the sources is modeled as
qS ∈ G ∩ I. This implies for the likelihood (Equation (2.26)) that it factorizes (by
Equation (2.22),

L(A, θ) =
∏T

t=1

∏n
j=1 qsj ((A

−1)>:jx[t])

|detA|T (2.29)

with (A−1):j being the j-th column of the inverse of A, or equivalently for the logarithm
of the likelihood (log-likelihood)

logL(A, θ) =
T
∑

t=1

n
∑

j=1

log qsj ((A
−1)>:jx[t])− T |detA|. (2.30)

Many ICA algorithms use this expression as their objective function and maximize it
by gradient ascent (see [33, 88, 88]), natural gradient (see [6, 5]) or fixed-point algo-
rithms (FastICA, see [47]). The nuisance parameters, qs1 , . . . , qsn , are either previously
fixed (by choosing nonlinearities in form of score functions of the assumed densities)
or optimized simultaneously with the mixing matrix A (for example in FastICA). ICA
based on the infomax principle (by Bell and Sejnowski, see [11]) corresponds to max-
imizing the likelihood with a gradient ascent approach (as noted by several authors,
for example [18, 76]). The book of Hyvärinen, Karhunen and Oja [50] contains a more
detailed summary of the ramifications between these different approaches.

More objective functions for ICA can be obtained by decomposing the KLD between
pY and qS (the right-hand side expression of Equation (2.28)) using the information
geometric machinery defined above,

D(pY ‖qS) = D(pY ‖pGY ) +D(pGY ‖qS)
= D(pY ‖pGY ) +D(pGY ‖pG∩IY ) +D(pG∩IY ‖qS),

(2.31)

(see Figure 2.2). The first equality is based on Pythagoras’ theorem for manifold
G, the second on Pythagoras’ theorem for manifold I. Let us examine the resulting
terms. The first term, D(pY ‖pGY ), is equal to D(pX‖pGX), because the KLD is invariant
under transformations (prove see Appendix A.4). Because G is closed under linear
transformations, D(pX‖pGX) does not depend on A (and also not on θ). So we can
ignore the first term for the minimization of the initial expression D(pY ‖qS). Note
that the nuisance parameter θ has been isolated to the third term, D(pG∩IY ‖qS). By
choosing qS = pG∩IY the non-Gaussianity assumption is fulfilled (because qS ∈ G ∩ I)
and the third term vanishes. Hereby we minimized D(pY ‖qS) (because the KLD is
non-negative) and we eliminated the nuisance parameter θ. So, we are left with the
middle term D(pGY ‖pG∩IY ) which we inspect further. Writing out the involved PDFs,

1

T
D(pGY ‖pG∩IY ) =

1

T
D(

T
∏

t=1

py‖
T
∏

t=1

n
∏

j=1

pyj ) = D(py‖
n
∏

j=1

pyj ) = I(y1, . . . , yn), (2.32)
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I

G

pGY

pG∩IY

G ∩ I

qS

pY

Figure 2.2: Applying twice Pythagoras’ theorem in distribution space for the manifolds
G and G∩I: the divergence between pY and qS ∈ G∩I is decomposed. First
pY is projected onto G and from there onto G∩I. For the objective function
under the non-Gaussianity assumption only the divergence between pGY and
pG∩IY is relevant. Replacing G with F or S we get the corresponding picture
for the non-flatness and non-stationarity assumptions.
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reveals that the middle term is the mutual information. So, we have seen that maxi-
mizing the likelihood corresponds to minimizing the mutual information,

min
A,θ
−EX logL(A, θ) = min

A
T I(y1, . . . , yn). (2.33)

The mutual information can be minimized directly using a kernel approach (kernel
ICA, see [8]). In order to derive more objective functions for ICA we decompose it
further,

I(y1, . . . , yn) =





n
∑

j=1

h(pyj )



− h(px) + log |detA| (2.34)

(for the proof see Appendix A.5) with h(px) being the entropy of the average marginal
density of X (see Equation (2.15)). The entropy of px does not depend on A so we can
omit it. log |detA| can be eliminated under an additional assumption: suppose that
the observed data X has been whitened (see Appendix A.1), so the demixing matrix
A−1 (and also A itself) has to be a rotation matrix (see Appendix A.1 for a proof).
The logarithm of the determinant of a rotation matrix is zero. That means that for
whitened data the mutual information is equal to the sum of the entropies of the single
demixed signals,

I(y1, . . . , yn) =





n
∑

j=1

h(pyj )



 . (2.35)

So instead of minimizing the mutual information, we can equivalently minimize the
sum of single entropies of the demixed signals.

For fixed variance, the maximum entropy distribution is the Gaussian distribution.
Therefore minimizing entropy can be interpreted as non-Gaussianization. This idea
is implemented in several ICA algorithms, for example by maximizing the so-called
neg-entropy, which is the difference between the entropy of a Gaussian distribution and
the entropy of a demixed signal (for example [47]). Maximizing non-Gaussianity can
also be motivated by the central limit theorem: sums of random variables tend to be
Gaussian distributed, i.e. the mixing matrix makes the distributions more Gaussian.
There are other ways to exploit non-Gaussianity based on kurtosis or other higher-
order moments (for example approximating negentropy with cumulants [26]; see [50]
for a detailed summary). One of these algorithms, called JADE (joint-approximate
diagonalization of eigenmatrices, see [24]), will be used in subsequent chapters: it
whitens the data as a preprocessing step and then simultaneously diagonalizes several
matrices that contains some of the fourth order cross-cumulants.

2.6 Objective functions assuming non-stationarity

In this section we assume non-stationarity, i.e. the PDF of the sources is modeled as
qS ∈ S ∩ I. Analogously, to the previous section, we decompose the KLD between pY
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and qS (the right-hand side expression of Equation (2.28)),

D(pY ‖qS) = D(pY ‖pSY ) +D(pSY ‖qS)
= D(pY ‖pSY ) +D(pSY ‖pS∩IY ) +D(pS∩IY ‖qS). (2.36)

Again, both equalities are based on Pythagoras’ theorem for exponential manifolds
(for S and I). Since the first term D(pY ‖pSY ) equals D(pX‖pSX) and S is closed under
linear transformations, it can be ignored. Again, the nuisance parameter θ has been
isolated to the third term, D(pS∩IY ‖qS). By choosing qS = pS∩IY the non-stationarity
assumption is fulfilled and the third term vanishes, hereby eliminating the nuisance
parameter θ. We are left with the middle term D(pSY ‖pS∩IY ) which we inspect further.

First note that the KLD between two zero mean Gaussian can be expressed in terms
of their covariance matrices,

D(Σ‖Γ) := D(φ(x,Σ)‖φ(x,Γ)) = 1

2
(tr(Γ−1Σ)− log det(Γ−1Σ)− n). (2.37)

This suggests a natural measure for diagonality,

off(Σ) := D(Σ‖diag(Σ)). (2.38)

Let ΣY
1 , . . . ,Σ

Y
T be the covariance matrices for the different points in time for Y and

similarly ΣX
1 , . . . ,Σ

X
T for X (see the paragraph before Equation (2.17)). Then we have

ΣY
t = A−1ΣX

t A
−>. (2.39)

Using these expressions we write out the KLD between pSY and pS∩IY ,

D(pSY ‖pS∩IY ) =

T
∑

t=1

D(ΣY
t ‖diag(ΣY

t )) =

T
∑

t=1

off(ΣY
t ) =

T
∑

t=1

off(A−1ΣX
t A

−>). (2.40)

So, we have seen that minimizing the objective function based on ML estimation
under the non-stationarity assumption corresponds to a simultaneous diagonalization
problem of time-dependent covariance matrices of X. In practice these matrices can
be estimated by assuming block-wise stationarity and calculating their sample versions
(see [86]; also [66, 23, 48] for other methods exploiting non-stationarity). Besides using
the criterion in Equation (2.38) for simultaneous diagonalization (as done in [85]), other
diagonalization methods can be used as well ([57] or FFDIAG [111] and references
therein). In subsequent chapters we will use Pham’s implementation SEPAGAUS
as an example of an ICA algorithm working under the non-stationarity assumption
(because it can be easily restricted to take into account only non-stationarity).

2.7 Objective functions assuming non-flatness

In this section we assume non-flatness, i.e. the PDF of the sources is modeled as
qS ∈ F ∩I. Analogously to the previous sections we decompose the KLD between pY

19



2 Objective functions of classical ICA

and qS (the right-hand side expression of Equation (2.28)) using Pythagoras’ theorem
for F and I,

D(pY ‖qS) = D(pY ‖pFY ) +D(pFY ‖qS)
= D(pY ‖pFY ) +D(pFY ‖pF∩IY ) +D(pF∩IY ‖qS). (2.41)

Again the first term D(pY ‖pFY ) (being equal D(pX‖pFX) and noting that F is closed
under linear transformations) can be ignored, and the third term D(pF∩IY ‖qS) vanishes
by setting qS = pF∩IY , hereby eliminating the nuisance parameter θ. Again, the middle
term D(pFY ‖pF∩IY ) remains and, similarly to the previous section, we rewrite it as a
diagonalization problem.

Let ΓY
1 , . . . ,Γ

Y
T be the covariance matrices of the coefficient vectors z̃[1], . . . , z̃[T ] of

the DFT of the rows of Z and similarly ΓX
1 , . . . ,Γ

X
T for X. Then we have

ΓY
t = A−1ΓX

t A
−>. (2.42)

Using these expressions we write out the KLD between pFY and pF∩IY ,

D(pFY ‖pF∩IY ) =

T
∑

t=1

D(ΓY
t ‖diag(ΓY

t )) =

T
∑

t=1

off(ΓY
t ) =

T
∑

t=1

off(A−1ΓX
t A

−>). (2.43)

Analogously to the previous section, we see that minimizing the objective function
based on ML estimation under the non-flatness assumption corresponds to a simul-
taneous diagonalization problem of (possibly complex) covariance matrices (having
followed [84, 87]). There are different ways to solve this problem in practice. For
example, these matrices can be estimated as the Fourier transforms of time-shifted
covariance matrices, which are defined as

CX
τ :=

T−τ
∑

t=1

x[t]x[t+ τ ]> for τ ∈ {0, . . . , T − 1}. (2.44)

However, noting that the matrices ΓX
1 , . . . ,Γ

X
T are diagonal if and only if the time-

shifted covariance matrices are diagonal, we see that it is sufficient to simultaneously
diagonalize the latter. In practice, it is enough that only some of these matrices are
jointly diagonalized (often their symmetrized versions). This strategy is pursued by
several algorithms (for example by TDSEP [112] which is equivalent to SOBI [12]; see
also [57]). Early work along these lines was done in [96, 73]. Regarding the choice of the
joint diagonalization method care has to be taken, because in general the time-shifted
covariance matrices are not positive-definite. Therefore, algorithms like FFDIAG [111]
or ACDC [107] should be used. Alternatively, the observed dataX can be preprocessed
by whitening. This restricts the diagonalizing matrix to the set of rotation matrices.
In that case, a fast method based on Jacobi angles is the method of choice (see [25]).
In subsequent chapters we will use TDSEP (with whitening as preprocessing) as a
representative for methods based on non-flatness.
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2 Objective functions of classical ICA

2.8 Summary

Starting from the maximum likelihood principle we derived most of the objective func-
tions for classical ICA employing basic tools from information geometry. In particular,
we showed under the non-Gaussianity assumption that maximizing the likelihood cor-
responds to minimizing mutual information. For whitened data, we further proved
that minimizing the mutual information is equivalent to maximizing the sum of the
marginal negentropies. Furthermore, we have seen that under the non-flatness and
non-stationarity assumptions, maximizing the likelihood can be phrased as a simul-
taneous diagonalization problem of certain covariance matrices that express the time
structure of the signals.

Our discussion covered the objective functions of most classical ICA algorithms, so
we conclude that the statistical structure relevant for most ICA algorithms is captured
by the non-property assumptions, which are non-Gaussianity, non-stationarity and
non-flatness. These findings will motivate in the next chapter a general scheme for
reliability estimation of independent components that can be applied to any ICA
algorithm.
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3 Reliability and grouping of
independent components with
noise-injection

In order to apply successfully unsupervised learning algorithms such as ICA to real-
world problems, it is of fundamental importance to determine how trustworthy their
results are. For example, Figure 3.1 shows the results of applying ICA in two different
situations: the left panel shows a scatterplot of the mixture of sound signals. The direc-
tions obtained by the ICA algorithm accurately express the structure of the underlying
density, so the resulting decomposition accurately separates the sound signals. This is
in contrast to the right panel, which contains the scatterplot of two-dimensional ran-
dom noise. The chosen directions do not reflect any property of the data, because the
distribution of the noise is rotation-invariant. Thus, the ICA decomposition obtained
from the sample of the data is meaningless.

Meinecke et al. [71, 70, 67] proposed a bootstrap resampling method that can dis-
tinguish these two situations by estimating the reliability and grouping of independent
components found by ICA algorithms. It has been successfully applied to various real-
world problems, for example in biomedical data analysis to magnetoencephalograms
(MEG; see [67, 71, 75]). Their method profits from the well-developed theory of boot-

Figure 3.1: Can you trust your independent components? Left panel: the chosen direc-
tions reflect the underlying statistical structure of the data; right panel: the
data is rotation-invariant, so any other directions could have been chosen.
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3 Reliability and grouping of independent components with noise-injection

strap (see [30]). However, their approach is tailored to specific ICA algorithms and
it is sometimes not straightforward to define a resampling strategy that preserves the
statistical structure relevant to the considered ICA algorithm.

We will propose a different approach that views the chosen ICA algorithm as a
black box. Any ICA algorithm that refers to the inherent ideas of ICA can be plugged
into our procedure. As we have seen in Chapter 2 the statistical structure relevant
for ICA algorithms is non-Gaussianity, non-flatness and non-stationarity. Our method
partially destroys this structure by corrupting the data with stationary white Gaussian
noise. The motivation for this strategy is, that we expect reliable components to
be extracted even if they have forfeited some of their structure, whereas unreliable
projections (which were chosen by chance) will be lost in the process. The general
idea is to measure reliability as stability with respect to noise, i.e. to a fading-out of
the marginal non-properties: non-Gaussianity, non-flatness and non-stationarity.

Chapter outline

In Sections 3.1 and 3.2 we present our approach based on noise-injection: Section 3.1
introduces new performance functions for angle deviations and groupings that are
by definition invariant to permuted and scaled solutions of the applied ICA black
box. Furthermore, we expound some interesting theoretical interpretations of the
noise-injection method. For the implementation, care has to be taken with respect
to normalizations along the different steps of the algorithm. Section 3.2 explains step
by step our procedure. Finally, we validate the method in Section 3.3 on artificially
generated signals and real-world data from a fetal ECG.

3.1 Theoretical motivation

We first introduce some further notations that facilitate the following theoretical dis-
cussion. Also we define some performance measures that will be useful to evaluate the
reliability and grouping structure of independent components.

3.1.1 Preliminaries

Like in Chapter 2, we represent multivariate time-series x[t] consisting of n components
each of length T as an n× T matrix,

X = [x[1] · · ·x[T ]]. (3.1)

We assume that all signals, i.e. the rows of X, have zero mean. An ICA algorithm that
estimates the mixing matrix A from X determines implicitly also the demixing matrix
W = A−1. Thus we can view more formally the ICA algorithm under consideration
as a function

Θ : <n×T → <n×n

X 7→ W
(3.2)
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3 Reliability and grouping of independent components with noise-injection

that maps a data matrix X to a demixing matrix W . With this notation, the matrix
containing the demixed signals can be written as

Y = Θ(X)X. (3.3)

For simplicity, we often ignore in the following discussion the scaling and permutation
invariance of ICA algorithms.

The fact that Θ is an ICA algorithm implies some simple properties of this mapping,
which we will utilize below: the demixing matrix of already demixed signals, Θ(X)X,
is the identity matrix,

Θ(Θ(X)X) = I. (3.4)

Remixing the given data before demixing changes the demixing matrix by right-
multiplying it by the inverse of the remixing,

Θ(BX) = Θ(X)B−1. (3.5)

Both equalities hold up to permutation and scaling, the invariances of any ICA solu-
tion.

3.1.2 Injecting noise

In Chapter 2 we have seen that the statistical structures that most algorithms for ICA
exploit are non-Gaussianity, non-stationarity and non-flatness. In order to analyze
the reliability of the extracted components Y = Θ(X)X, we partially destroy their
statistical structure by adding noise N which is stationary Gaussian distributed and
independent in time, i.e. we look at the signals Y + σN with σ being a small constant
(that we discuss later). As a result, the latter signals are more Gaussian, more sta-
tionary and spectrally more flat. Inspired by the neural networks community, where
noise is injected to the data in order to achieve regularization effects (see [13]), we call
this idea noise-injection.

The next step examines how the noise-injection influences the demixing matrix,

C = Θ(Y + σN), (3.6)

which we get by applying again the ICA algorithm to the noise-injected signals. Since
C would be the identity matrix for the noiseless case (for σ = 0, see Equation (3.4)),
we consider measures of performance,

µ : <n×n → <
C 7→ µ(C),

(3.7)

that value (some aspect of) the deviation of C from the identity matrix:

Amari index. To measure how close the matrix C as a whole is to a scaled permutation
matrix, we define a slightly modified Amari-index (replacing | · | used in [6] by
(·)2 to ensure differentiability):

µ(C) =

n
∑

i=1





n
∑

j=1

C2
ij

maxk C2
ik

− 1



+

n
∑

j=1

(

n
∑

i=1

C2
ij

maxk C2
kj

− 1

)

. (3.8)
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3 Reliability and grouping of independent components with noise-injection

Note that C has to be row-wise normalized by left-multiplication with a diagonal
matrix, i.e. the norms of the rows of C are one. The first sum of the Amari index
is small if each column of C has exactly one dominating element. The second
sum becomes small if each row of C has exactly one dominating element. If both
sums are small, C is close to a permutation matrix. The Amari index is invariant
to left-multiplication by a permutation matrix.

Angle distance. Instead of calculating a single real number that considers the total
demixing matrix C at once (like the Amari index does), we can also focus on
the j-th column of C to obtain information solely about the j-th component of
Y , written as Yj:. Assume that the rows of C have been normalized to unit
norm and that the components of Y are normalized to unit variance. Further,
let Z = C(Y + σN) be the result of demixing the noise-injected signals. The
absolute values of the i-th row of C determine with what proportions of the
components Y1:, . . . , Yn: the signal Zi: is assembled. These proportions can be
interpreted as the cosines of certain angles given by arccos(|Cij |). These angles
characterize the relation between Zi: and Yj:. If |Cij | is one, we can infer due to
the row-normalization of C that only Yj: has contributed to Zi:, i.e. Zi: = ±Yj:.
Accordingly, the corresponding angle is zero, arccos(1) = 0. That means that
Yj: has been recovered without any distortions of other components. Thus we
say in that case that the angle deviation of Yj: is zero.

Note, that the j-th column could have several entries equal to one, implying that
Yj: is represented in Z by more than one signal with angle zero. If the angle is
π/2 = arccos(0) = arccos(|Cij |), the component Yj: does not appear in the i-th
component of Z.

In general, the j-th column of C characterizes to which components of Z the
signal Yj: contributes. The largest among the absolute values of the entries in
the j-th column of C determines the smallest angle that Yj: has with any of the
components of Zi:. This suggests the following definition: we call the smallest
angle between Yj: and the components of Z,

µj(C) = min
i

arccos |Cij |, (3.9)

the angle distance of the j-th component of Y (to the closest component of
Z). If this angle distance is small even after injecting noise, the corresponding
component was reliably estimated in the initial demixing, otherwise it is not
reliable. Note, that taking the absolute value of each entry ensures that the
orientation is ignored for the calculation of the angle.

Grouping matrix. The discussion on the angle distance in the previous item can be
extended to motivate the definition of the grouping matrix. Initially, we replace
all entries of C by their absolute values, since we are only interested in propor-
tions and the orientations should have no influence. If we assume further that
the norms of the rows of C are normalized to one, the column vectors indicate
with what proportions the components of Y represent the components of Z as ex-
plained in the previous item. If each component of Y is mapped by C to exactly
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3 Reliability and grouping of independent components with noise-injection

one component of Z, the columns of C are orthogonal to each other, i.e. their
inner products vanish. If one of Z’s components is a mixture of two components
of Y , the inner product of the corresponding columns does not vanish, because
both columns would contain non-zero entries in the corresponding row. We see
that the inner products between different columns of C quantify whether two
components of Y are part of a common subspace. The entries of the grouping
matrix collects the inner products between all column vectors of C,

µjk(C) = |C:j | |C:k| =
n
∑

i=1

|Cij | |Cik|. (3.10)

If µjk(C) is large, there is at least one component of Z in which both signals Yj:
and Yk: coincide with large proportions. If that is the case, Yj: and Yk: contribute
to the same subspace and are grouped together. A small value indicates that the
two corresponding components Yj: and Yk: are mapped to different subspaces, so
they are not grouped together.

Angle distance for subspaces. Simple methods from linear algebra, that calculate an-
gles between spaces, enable us to generalize the angles between vectors to angles
between subspaces allowing us to assess the reliability of subspaces.

Other performance measures being tailored to specific situations can be used in our
framework as well, as long as they have the following properties:

• µ is greater or equal to zero with equality for the identity matrix (and for per-
mutation matrices).

• µ is continuous and differentiable in a neighborhood around its minimum, i.e. around
a permutation matrix.

In the following theoretical discussion, we consider µ to be the Amari index. However,
all results are equally valid for other measures that fulfill the properties mentioned
above, i.e. also for the angle distance of a single component and for the entries of the
grouping matrix, because they have those properties.

Repeating the noise-injection for different instances of noise and averaging the re-
sulting indices, we are estimating the expected value of the Amari-index with respect
to the Gaussian noise, i.e. we are calculating

ENµ(Θ(Θ(X)X + σN)). (3.11)

This expression has a nice interpretation: define1 ϕ(X) = µ(Θ(X)). Then writing out
the Taylor expansion2 of ϕ around Θ(X)X, the expected Amari-index with respect to

1This seemingly unnecessary definition helps us to write down the matrix differentials as unambigu-
ously as possible.

2In the appendix, we briefly review the necessary definitions of matrix differentials.

26



3 Reliability and grouping of independent components with noise-injection

unstable
(large Hessian)

stable
(small Hessian)

Figure 3.2: The Hessian of ϕ reflects the curvature of ϕ. If it is at the solution Θ(X)X
small, the solution is stable; if it is large, the solution is unstable.

the noise,

ENµ(Θ(Θ(X)X + σN))

= ENϕ(Θ(X)X + σN)

≈ ϕ(Θ(X)X)

+σENDϕ(Θ(X)X) vecN

+σ2EN (vecN)>Hϕ(Θ(X)X) vecN

= σ2 trHϕ(Θ(X)X), (3.12)

surprisingly simplifies to the trace of the Hessian of ϕ at Θ(X)X. We assumed σ to
be small, such that the higher-order terms could be omitted. For the last equality, we
utilized:

• that ϕ(Θ(X)X) = µ(Θ(Θ(X)X)) = µ(I) = 0,

• that EN vecN is the null vector (or alternatively, that Dϕ(Θ(X)X) is the null
matrix, because Θ(X)X is a minimum of ϕ and ϕ is continuous and differentiable
in some neighborhood around Θ(X)X), and

• that EN (vecN)>G vecN = tr(G) for any squared matrix G, because the entries
of N are i.i.d. normally distributed.

Slightly rewriting this,

ENµ(Θ(Θ(X)X + σN))

σ2
≈ trHϕ(Θ(X)X), (3.13)

we see that the result of our noise-injection method can be interpreted as a stochastic
derivative of ϕ at Θ(X)X, or with other words, as a Monte-Carlo-style approxima-
tion of the curvature of the Hessian of ϕ at Θ(X)X, see Figure 3.2. Note, that for
this theoretical result it is not important how we choose σ > 0. Even for comparing
different algorithms (which result into different ϕ), this method is useful, since the es-
timate of our method does not depend on σ (as long as σ is small enough to allow us to
neglect higher-order terms, and σ is large enough to get a measurable variation). How-
ever, the next section will show that the right-hand side expression of Equation (3.13)
does not directly estimate the reliability measure based on the true distribution (see
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Equation (3.14)). Though we observe a monotonic relationship in that situation, the
estimated value depends on σ. Later in Section 3.3.1, we will present an experiment
that shows that σ can be chosen such that this relationship is even linear, and in
Section 3.3.4 we will use σ to fade in and out of the grouping matrix.

3.1.3 Measuring reliability based on the true distribution

The data matrix X represents one data point sampled from some unknown underlying
probability distribution P : <n×T → [0, 1]. In practical situations, we are only given
this single data pointX (yet this is usually enough to estimate a demixing matrix, since
the distribution of X is already determined by much lower-dimensional distributions;
for example, the marginal distributions for algorithms based on non-Gaussianity). A
measure of reliability based on the true distribution P has to refer to other data points
X ′, drawn from the same P (obviously, no other data sets are available in practice).
In order to compare the demixing matrix estimated from X, i.e. Θ(X), to some other
estimate Θ(X ′), we simply invert the later and multiply it to the former and measure
how close the result is to a permutation matrix. This, as before, can be achieved by
the Amari-index. Simple transformations (for the first equality use Equation (3.5))
imply for the mathematical description of this idea,

EX′µ(Θ(X)Θ(X ′)−1)

= EX′µ(Θ(Θ(X ′)X))

= EX′µ(Θ(Θ(X)X + (Θ(X ′)−Θ(X))X)) (3.14)

where the expectation is taken with respect to P (X ′). If the data sampled from P
contains some statistical information that can be exploited by the ICA algorithm, the
difference between the two estimated demixing matrices will be small, i.e. (Θ(X ′) −
Θ(X))X is also small compared to Θ(X)X. Furthermore, its rows are approximately
independent and, again compared to Θ(X)X, it does not contain much statistical
information (i.e. non-Gaussianity, non-flatness, non-stationarity, see [21]). Inspired by
ideas from perturbation theory, it is therefore plausible to replace (Θ(X ′)−Θ(X))X
by a small noise term and exchange the expectation over X ′ by an expectation over
the noise N , i.e.

ENµ(Θ(Θ(X)X + σN)), (3.15)

which is exactly our approach of noise injection. Note, that though we exchanged the
expectation over the unaccessible distribution of P by an expectation over noise, which
can easily be simulated, we did not replace X ′ by X+σN , but instead terms in which
X ′ has already been processed to a demixing matrix.

However, despite this interesting connection between our method and the truth, Ex-
pressions (3.14) and (3.15) are generally not equal. The reason is that Θ(X ′)−Θ(X)
depends on the reliability as well, which is ignored after substituting the noise. Yet, our
experience shows that there is a monotonic relationship between those two expressions,
which we can currently not describe in full mathematical rigor. In Section 3.3.1 how-
ever, we perform experiments that show that for the right choice of σ this relationship
can even become linear.
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3.1.4 Relation to bootstrap resampling

Standard bootstrap resampling (see [29]) requires that the column vectors of the data
matrix X are independent and identically distributed, which is not the case for non-
white or non-stationary signals. The latter need more sophisticated resampling tech-
niques (see[71]) that are specially tailored to the ICA algorithm under consideration.
However, the design of an appropriate resampling strategy is not always straightfor-
ward.

These bootstrap-type methods have in common that they approximate the true
underlying distribution P by some empirical estimate. How is our method approaching
the true distribution? Observing that

ENµ(Θ(Θ(X)X + σN))

= ENµ(Θ(X + σΘ(X)−1N)Θ(X)−1), (3.16)

(again, applying Equation (3.5)), we see that our method replaces the true unknown
distribution P by a kernel density estimate that is based solely on the single data point
X, and hereby mimicking the expression3

EX′µ(Θ(X ′)Θ(X)−1). (3.17)

However, in our situation this coarse density estimate is sufficient, since as men-
tioned above, we do not analyze the resampled data points themselves. For our
reliability analysis, we are only interested in the corresponding demixing matrices
Θ(X + σΘ(X)−1N). Note, that in Expression (3.16) the noise is added to the mixed
signals X (and not to the unmixed signals Θ(X)X, as in Expression (3.16)), and our
formalism (here in the shape of the correct application of Equation (3.5)) ensures that
the added noise is appropriately spatially colored by Θ(X)−1.

3.2 Algorithmic details

Instead of simply using the Amari-index to judge the whole demixing matrix at once,
in this section we will estimate the stability for each component separately (using
the angle distances) and try to detect potential block structures (using the grouping
matrix).

Step 1: Fixing the scaling indeterminacy

Bearing in mind the usual indeterminacies of ICA solutions, i.e. arbitrary scaling and
permutation, we can assume without loss of generality that the mixing matrix A, the
inverse of W = Θ(X), has unit-length columns, i.e.

A>:jA:j = 1 for j ∈ {1, . . . , n}. (3.18)

3Note, that in general Expressions (3.17) and (3.14) are not perfectly equal, yet for most µ they are
closely related.
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This ensures that the energy of each component Yj: is equal to the sum of the energies
of the proportions of Yj: in the components of X, which can be written as A:jYj:,
mathematically speaking

1

T
tr(A:jYj:Y

>
j: A

>
:j ) =

1

T
tr(A>:jA:jYj:Y

>
j: )

=
1

T
tr(Yj:Y

>
j: )

=
1

T
Yj:Y

>
j: , (3.19)

using for the first equality tr(CD) = tr(DC), for the second the fact that the columns
of A have unit length and for the third that Yj:Y

>
j: is a scalar.

Step 2: Adjusting the noise levels to the signal energies

Note, that the noise level has to be adjusted for each component separately: otherwise
some components—the weak ones—might loose all their statistical structure while
others—the strong ones—are not affected at all, which would be undesirable since
such a procedure would favor strong components over weak components.4

Let E be the matrix that contains the square roots of the energies of the extracted
components on the diagonal or, equivalently speaking, their standard deviations,

E =











√

1
T Y1:Y

>
1: 0

. . .

0
√

1
T Yn:Y

>
n:











. (3.20)

Being aware of the fact that this matrix contains not exactly energies, we call it
nonetheless for simplicity “energy matrix”.

Adding R instances of Gaussian white noise, written as n × T matrices N (1), . . . ,
N (R), that have been adjusted by the energy matrix E, to the extracted components Y
provides us with R versions of Y , the statistical structure of which has been partially
destroyed:

Ỹ (1) = cos(χ)Y + sin(χ)EN (1)

...

Ỹ (R) = cos(χ)Y + sin(χ)EN (R). (3.21)

0 ≤ χ ≤ π/2 is a parameter that can be visualized as a turning knob: χ = 0 adds
no noise, i.e. all statistical structure is preserved, χ = π/2 produces only noise, i.e. all

4Equivalently, we could normalize the extracted signals to variance one and add noise with the same
noise level for each of the signals. We pursue the slightly more complicated way that preserves
the true variances in order to avoid further alterations of the statistical structure.
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statistical structure is destroyed and in between some structure is kept, some is de-
stroyed. Since cos2(χ) + sin2(χ) = 1 it is guaranteed that the noisy versions have in
each component the same energy as their colleagues in Y .

Note, that choosing χ corresponds to choosing σ which was used in the theoretical
motivation. In the experiments, we fix χ = π/8 using empirical evidence: a simulation
in Section 3.3.1 will show that for this particular value the estimated index corresponds
to the true index. Additionally, we use in Section 3.3.4 the full range of χ to fade into
the grouping matrix.

Step 3: Demixing again

The versions with the damaged statistical structure are mixed by randomly generated
mixing matrices B(1), . . . , B(R), which have unit-length columns. Hereby, we obtain
mixtures in which the initially extracted components keep their energy. The additional
mixing is important for algorithms, the performance of which might depend on the
starting conditions. Since the remixing matrices are known, they can be taking into
account in the later analysis.5

By applying the chosen ICA algorithm to the remixed versionsB(1)Ỹ (1), . . . , B(R)Ỹ (R),
we obtain demixing matrices V (1), . . . , V (R) and hereby demixed signals,

Z(1) = V (1)B(1)Ỹ (1)

...

Z(R) = V (R)B(R)Ỹ (R). (3.22)

Step 4: Constructing the relevant transformation

Transforming the remixed noisy versions B(r)Ỹ (r) to Z(r) can be seen as demixing the
remixed, initially extracted components B(r)Y , but ignoring the part of the statistical
structure, that has been destroyed by injecting the noise.

Instead of computing the Amari-index, as we did for simplicity in the theoretical
discussion of Section 3.1, for the angle distances and the grouping matrix we have to

calculate the angle between a new component Z
(r)
i: and an initially extracted compo-

nent Yj:. These angles allow us to evaluate each component separately and to find
groupings, as we will see below. For this purpose, two things have to be ensured:

1. We need to consider the transformation with respect to the normalized signals

Y normalized = E−1Y (3.23)

each having variance one. Due to

Z = V (r)B(r)Y

= V (r)B(r)EY normalized (3.24)

5Note, that this remixing has no effect for equivariant algorithms.
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3 Reliability and grouping of independent components with noise-injection

the transformation to proceed with is

V (r)B(r)E. (3.25)

2. The transformed signals must be normalized as well, i.e. we have to left-multiply
V (r)B(r)E by a diagonal matrix D(r) such that the rows of

U (r) = D(r)V (r)B(r)E (3.26)

have unit-norm. We refer to this matrix as U (r).

The latter matrix describes the relevant transformation: the angle between Z
(r)
i: and

Yj: is the arcus cosine of the absolute value of the ij-th entry of that matrix,

α
(r)
ij = arccos(|U (r)|ij), (3.27)

which is some number between 0 and π/2. Note, that we have to take the absolute
value of each matrix entry, since orientation should not influence the calculation of the
angle.

Step 5: Estimating reliability and grouping structure

Using these angles, we compute the statistics regarding the initially extracted compo-
nents Y . To begin with, we calculate for each component the root mean-squared angle
distance (RMSAD) to Yj::

vj =

√

√

√

√

1

R

R
∑

r=1

(min
i
α
(r)
ij )2

=

√

√

√

√

1

R

R
∑

r=1

(µj(U (r)))2, (3.28)

using for the expression in the second line the notation from Section 3.1. These
values estimate the uncertainty of the extracted components Y , as we will see in
the experiments section. A large RMSAD means unreliable, a small RMSAD means
the corresponding component is reliable.

Furthermore, we calculate a matrix that displays the grouping structure of the ex-
tracted signals, which is called the mean grouping matrix (or simply grouping matrix):

Sjk =
1

R

R
∑

r=1

|U (r)
:j |>|U

(r)
:k |

=
1

R

R
∑

r=1

n
∑

i=1

|U (r)
ij ||U

(r)
ik |

=
1

R

R
∑

r=1

µjk(U
(r)) (3.29)
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X

Y = WX

· · · Ỹ (R)Ỹ (1)

U (1) · · · U (R)

v and S

mixed signals

demix

est. source signals

inject noise

noisy versions

demix and
normalize

calc. angles,
estimate

RMSAD, grouping matrix

relevant transformation

Figure 3.3: This schematic view shows our method at a glance.

employing for the expression in the third line the notation of Section 3.1. Note, that
the possible block-structure of S can be automatically obtained by repeatedly sorting
its submatrices.

3.3 Experiments

In order to further validate our approach, we show empirically that for a particular
choice of χ our noise-injection method approximates the true angle deviations. Next,
we examine a toy data set, where we are able to compare the results to the ground
truth. After that, we explore some biomedical data. Finally, we compare the grouping
matrices resulting from different amounts of noise, i.e. different values of χ.

For all experiments, we use the same three algorithms, each going exclusively one
of the easy routes to ICA: as an example of an algorithm that exploits only non-
Gaussianity we use JADE (see [24]), for non-flatness TDSEP (see [112] and also [12])
and for non-stationarity a simplistic variant of SEPAGAUS (see [84]), which we forced
to ignore all statistical information but non-stationarity6.

6The input parameters of SEPAGAUS allow us to specify that only one positive frequency channel
will be used.
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3 Reliability and grouping of independent components with noise-injection

3.3.1 True versus estimated RMSAD

Transferring the results of Section 3.1 to the RMSAD, we see that our method ap-
proximates the trace of the Hessian of the angle distance, independent of the choice of
χ > 0. This is already enough to compare different algorithms. However, fine-tuning
this parameter allows us to obtain an estimate of the true RMSAD.

For the simulation in this section, we use two sound sequences, that represent two
processes. Adding noise creates processes that contain different amounts of statistical
information. By taking parts of the whole sequence we can get different instances
of the same process, that we randomly mix with a known matrix. To calculate the
true RMSAD, we estimate the projection directions (rows of the demixing matrix) for
100 different mixed instances. To obtain our estimated RMSAD, we considered one
instance. We apply noise-injection to this instance to get different noisy versions from
which we can calculate our estimate of the RMSAD (using Equation (3.28)). Note,
that we have used noise in two ways:

1. In order to create signals with differently strong pronounced statistical structures,
we added noise to some given sound signals. This noise influences both their
true and their estimated RMSAD. However, it has nothing to do with the noise-
injection method.

2. The other noise process is essential for our noise-injection method to produce
the noisy version of one instance of the process. This enables us to estimate the
true RMSAD.

The coordinates of each point in Figure 3.4 show the true and estimated RMSAD
for one particular process (i.e. one level of noise on the initial sound sequences). In all
three plots we observe that these values are correlated. This means that our estimate
of the RMSAD for one particular instance is with high probability close to the true
one. Therefore for this setting of χ the estimated RMSAD approximates the true
RMSAD. Note, that this finding depends very much on the choice of χ which controls
the signal to noise ratio. In all experiments reported in this section, χ has been fixed
to π/8.

3.3.2 Toy data

Running our method in a completely controlled environment enables us to easily evalu-
ate our results. We consider seven signals that show different combinations of statistical
structure (see [71]):
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Figure 3.4: The estimated RMSAD correlates in all three cases with the true RMSAD.
Note, that these scatterplots depend on the choice of the noise parameter
χ. All experiments have been carried out with χ = π/8.

non- non- non-
7 signals Gaussianity flatness stationarity
Speech + + +
Music + + +
Cosine + + -
Sine + + -
Uniform noise + - -
Gaussian noise - - -
Gaussian noise - - -

These signals are mixed by a randomly chosen matrix and analyzed with the three
ICA algorithms mentioned above. The results are visualized in Figure 3.5:

• The RMSAD—depicted in the right-most column—reveals which components
have been recovered reliably: all three algorithms are able to find the two sound
sources (RMSAD ≤ 0.0002), since these signals have a rich statistical structure
(a combination of non-Gaussianity, non-flatness and non-stationarity). Because
the signal consisting of uniform noise (signal 5) has neither non-flatness nor
non-stationarity (time structure), only the algorithm exploiting non-Gaussianity
(first row) detects that source.

• However, the grouping structure can not be directly infered from the RMSAD:
the RMSAD bar-plot for the non-flatness-based algorithm (second row) resembles
the bar-plot for the non-stationarity-based algorithm (third row). But the cor-
responding grouping matrices exhibit the underlying grouping structure, which
is very different: signals 3 to 7 are for the non-stationarity-based algorithm one
five-dimensional subspace, but for the non-flatness-based algorithm there are two
independent subspaces: one two-dimensional space for the sine and cosine (which
contain time structure, i.e. non-flatness), and a three-dimensional space for the
noise signals that have no time structure. This matches exactly what we expect
from the statistical properties of the signals (see the table above).
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Figure 3.5: Shown are the results for the toy data. The structure revealed by the
grouping matrix and by the RMSADs fits the table in the explaining text.
For the first row we used JADE, for the second row we used TDSEP with
time-lags 0, . . . , 20, for the third we used SEPAGAUS being restricted to
one positive frequency channel.
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• The grouping matrix for non-Gaussianity shows five blocks that correspond to
five subspaces. The two-dimensional subspaces—sine versus cosine and Gaussian
noise versus Gaussian noise—are examples with rotation-invariant distributions,
which have no preferred ICA basis (that is the reason why none of the three
algorithms was able to find one, see their grouping matrices).

• For subspaces, we can also calculate angles to the rest of the signals (RMSAD
for subspaces). For the algorithm based on non-Gaussianity, we plotted the
RMSAD for the sine/cosine subspace (signals 3 and 4) and for the Gaussian
noise subspace (signals 6 and 7) as dark bars behind the corresponding light
bars. We see that the RMSAD for the subspaces is much smaller than the
RMSAD for the corresponding signals (for signals 6 and 7 the bar is too small
to be visible). Similar, for the non-flatness-based algorithm the RMSAD of the
subspace spanned by signals 3 and 4 and the space spanned by signals 5, 6 and 7
is much smaller than the RMSADs of the corresponding signals. The same holds
for the subspace spanned by signals 3, 4, 5, 6 and 7 in the third row. We see,
that unreliable components might be part of a very reliable subspace.

Note, that this finding does not rank the three non-properties: it reflects only the
statistical properties of the investigated signals, which is exactly what our method is
intended to do.

3.3.3 Fetal ECG

As an example of a real-world data set, we present results on fetal ECG data (from
[59]) which contains 2500 data points sampled at 500Hz with 8 electrodes located at
abdomen and thorax of a pregnant woman. The goal of applying ICA algorithms to
this data is to separate the fetal heartbeat from the heartbeat of the mother. However,
the practitioner might ask: which ICA algorithm should be used? The uncertainty,
shown as the RMSAD in the right-most column of Figure 3.6, reveals that the non-
Gaussianity based algorithm (JADE, see [24]) is the method of choice for this data
set, which is in agreement with Meinecke et al. [71]. The grouping matrices underline
this, because they clearly show that six independent signals have been found. Finally,
looking at the estimated waveforms in the first row of the figure, we see that channels
1, 2, 3 and 4 contain the mother’s heartbeat and channels 7 and 8 the fetal’s heartbeat.
The other algorithms did not extract those signals reliably.

3.3.4 Fading into the grouping structure

In order to illustrate the influence of the amount of added noise, we run the noise-
injection procedure for varying noise parameters χ. Figure 3.7 shows the grouping
matrices (left columns for the earlier used toy data; right columns for the fetal ECG
data) as a function of the amount of noise (top to bottom).

Without adding noise (first row) we would expect diagonal grouping matrices. How-
ever, for the chosen ICA algorithm based on non-stationarity (SEPAGAUS), we obtain
by repeated application different solutions for entries of the stationary signals which is
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Figure 3.6: Shown are the results for the fetal ECG. As explained in the text, the
extracted components from the ICA algorithm based on non-Gaussianity
are the most reliable. For the first row we used JADE, for the second row
we used TDSEP with time-lags 0, . . . , 20, for the third we used SEPAGAUS
being restricted to one positive frequency channel.
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Figure 3.7: Fading into the grouping structure: top to bottom rows increases the
amount of noise-injection from no noise (first row) to only noise (bottom
row).
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due to the fact that SEPAGAUS uses random initial matrices. Destroying the whole
signal and keeping only the noise (last row), we observe as expected black matrices,
i.e. the no structure can be found by the ICA algorithms. From top to bottom we see
how the grouping structures (shown for χ = π/8 earlier in Figures 3.5 and 3.6) fades
in for smaller χ < π/8 and fades out for larger χ > π/8.

It is important to note that all entries of the grouping matrix increase monotonically
from top to bottom. We see further that the grouping structure is visible for a large
range of χ, suggesting that the choice of χ is not critical for the structure of the
grouping matrix.

3.4 Summary

In this chapter we presented a new method to assess the reliability of independent
components that can be easily applied to any ICA algorithm. Our approach has some
nice theoretical interpretations and is thus well motivated. Furthermore, we showed
empirically that our estimate approximates the true RMSAD. The noise-injection pro-
cedure can be seen as an alternative to the bootstrap resampling approach described
in [71] with a similar complexity. However, our new method is easier to apply because
it does not have to be adjusted to the ICA algorithm under consideration. Controlled
toy experiments and experiments with fetal ECG data underline the usefulness of this
approach.
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4 Robust and overcomplete ICA with
inlier detection

The objective functions of typical ICA algorithms (see Chapter 2) are often sensitive
to outliers (especially algorithms based on kurtosis). A simple strategy to robustify
existing algorithms is to apply outlier detection as a preprocessing step. In this chapter,
we will follow a different idea: we show that a simple outlier index can be used directly
to solve the ICA problem for super-Gaussian (or sparse) source signals. The key idea is
that data points in very dense regions characterize the mixing matrix. We use outlier
indices to find the points in the most concentrated areas. We call these points inliers.
Those inliers directly determine the sought-after ICA directions.

For example, the left panel of Figure 4.1 shows a scatterplot of a two-dimensional
mixture of four super-Gaussian source signals. The true directions are indicated by
small lines on the circle. In the scatterplot they are also visible as the directions with
higher density. This is in unison with the circular histogram (with 180 bins) of the
distribution of the angles of the data points shown in the right panel. The directions of
highest density correspond to the columns of the mixing matrix. To automatically find
these directions, we apply simple outlier indices to the data points (after projecting
them onto the unit sphere) in order to sort the data from points in dense regions—the
inliers—to points in sparse regions—the outliers. The columns of the mixing matrix
are identified by simply selecting points among the inliers which are the points of
highest density. We call this new ICA algorithm inlier-based ICA (IBICA).

IBICA is not restricted to the classical setting with equal number of sources signals

Figure 4.1: The left panel shows a scatterplot of a two-dimensional mixture of four
super-Gaussian source signals. The little lines on the circle indicate the
true ICA directions. The right panel shows a circular histogram (with 180
bins) of the distribution of the angles of the data. The directions of highest
density correspond to the columns of the mixing matrix.
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and mixed signals. Instead, IBICA applies naturally to the overcomplete setting and
it is able to unmix strongly overcomplete mixtures (such as the mixture in Figure 4.1)
as we will study in detail in the experiment section.

Since we use in this chapter outlier indices only to find inliers, we call them for
simplicity inlier indices.

Chapter outline

In Section 4.1 we introduce simple, but powerful inlier indices based on nearest neigh-
bors methods. In Section 4.2 we explain step by step how these inlier indices are
employed by IBICA. In Section 4.3 we compare IBICA in the classical setting with
other standard ICA algorithms with respect to robustness against kurtotic noise and
outliers. Next, we empirically study IBICA for the overcomplete case and examine its
performance with respect to the number of sources, the number of data points, the
dimensionality of the data and the number of nearest neighbors (the only parameter
of IBICA). Finally, we apply IBICA to an artificial image separation task for complete
and overcomplete mixtures.

4.1 Inlier indices

Let dist : <n×<n → < be a distance measure for the data points z[1], z[2], . . . , z[T ] ∈
<n. We denote the k nearest neighbors of a data point z ∈ <n among z[1], z[2], . . . , z[T ]
by

nn1(z), . . . ,nnk(z) ∈ {z[1], z[2], . . . , z[T ]} ⊂ <n. (4.1)

so we have:

dist(z,nn1(z)) ≤ dist(z,nn2(z)) ≤ . . . ≤ dist(z,nnk(z)). (4.2)

If there are several points that have the same distance to z (with respect to dist), we
order them arbitrarily, to have the nearest neighbors well-defined. Using the nearest
neighbors, we define two indices for each point z ∈ <n. These will be the essential
ingredients for the IBICA algorithm.

4.1.1 Kappa

The k-nearest neighbor density estimator assesses the density at a particular point by
calculating the volume of the smallest ball centered at that point which contains its
k nearest neighbors and relating it to the quotient k/T . It can be proven that this
density estimator is L2-consistent (see [63]). The first index represents the essence
of the k nearest neighbor density estimator: κ(z) is the radius of the smallest ball
centered at z containing its k nearest neighbors, i.e. the distance between z and its
k-th nearest neighbor,

κ(z) = dist(z,nnk(z)). (4.3)

In dense regions κ is small and in sparse regions κ is large.
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Figure 4.2: Because γ takes into account all k nearest neighbors and not only the k-th
like κ does, γ can distinguish better between sparse and dense regions than
κ for k = 5.

4.1.2 Gamma

The index κ is somewhat wasteful: it considers the distance to the k-th nearest neigh-
bor, but it ignores the distances to the closer neighbors. This suggests a refined index
that considers all k nearest neighbors: γ(z) is z’s average distance to its k nearest
neighbors,

γ(z) =
1

k

k
∑

j=1

dist(z,nnj(z)). (4.4)

This index enables us to distinguish the two situations depicted in Figure 4.2: the
value of κ is in both situations the same, because the 5th nearest neighbor of a has
both times the same distance to a, although the neighborhood on the right is denser.
By exploiting all distances, γ can distinguish both situations.

4.1.3 Simple properties of κ and γ

Observing that the average of k distances d1, . . . , dk is bounded by their maximum,
i.e. (d1 + . . .+ dk)/k ≤ max(d1, . . . , dk), we see that γ is bounded by κ,

0 ≤ γ(z) ≤ κ(z), (4.5)

This means that if γ(z) is large (implying that z is probably an outlier) also κ(z) is
large. On the contrary, if γ(z) is small, then κ(z) needs not to be small, since it might
have ignored some relevant information. κ might misjudge a point from a denser region
to be an outlier because it considers only the k-th nearest neighbor which might be far.
With other words, κ might miss an inlier—a point in a dense region—that γ might be
able to find. Note that the scales of these indices depend on the total number of data
points that are considered for the k nearest neighbors. The more points are taken into
account, the closer will be the neighbors and thus the smaller will be the indices.

We have extensively studied these indices for outlier detection and for robustification
of algorithms (see [35]). Along these lines, we could calculate κ and γ for the given data
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Figure 4.3: Since −b is closer to a than c and −c, we have dist(a, b) < dist(a, c).

x[1], . . . , x[T ] with the Euclidean distance. This would allow us to remove outliers as
a preprocessing step, hereby robustifying standard ICA algorithms that are sensitive
to outliers. This idea will not be discussed in this chapter. Instead we used κ and
γ directly to solve the ICA problem: the columns of the mixing matrix A are for
super-Gaussian sources the inliers among the given data points with respect to some
distance function specifically taylored to the ICA setting.

4.2 Inlier-based ICA

Due to ICA’s scaling invariance, the orientations and norms of the column vectors of
the mixing matrix A are irrelevant: a column vector of A is solely characterized by
the one-dimensional subspace that it spans. Since we want to choose the columns of A
among the one-dimensional subspaces spanned by the given data points x[1], . . . , x[T ],
the distance function, that we want to plug into the inlier indices, should not depend
on their orientations and norms.

Step 1: project the data points onto the unit sphere

To eliminate the influence of the norms, we project all data points x[1], . . . , x[T ] onto
the unit sphere,

z[t] =
x[t]

√

x[t]>x[t]
=

x[t]

|x[t]| (4.6)

(we assume zero mean). Prior to this normalization step we remove points that are
very close to the origin, because in noisy settings the directions of these points do
not contain much information about the true ICA directions. Furthermore, we avoid
division by zero for points located exactly at the origin.

Step 2: calculate the inlier index for all data points

The Euclidean distance between the normalized points depends only on the directions
of the original points x[1], . . . , x[T ]. For the ICA setting we further require an invari-
ance with respect to their orientations: for example, the distance between a and −a
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should be zero. This suggests to define the distance of two points a and b on the unit
sphere as,

dist(a, b) := min(|a− b|, |a− (−b)|) = min(|a− b|, |a+ b|), (4.7)

see Figure 4.3. This distance function does not depend on the orientation of the
involved vectors, i.e.

dist(a, b) = dist(−a, b) = dist(a,−b) = dist(−a,−b), (4.8)

thus being the natural distance for the ICA problem1.
Having established the distance function, we apply the inlier indices introduced in

the previous section. We define the κ and γ values of z ∈ Z := {z[1], . . . , z[T ]} to be

κ(z) = dist(z,nnk(z)) (4.9)

γ(z) =
1

k

k
∑

j=1

dist(z,nnj(z)). (4.10)

Intuitively speaking, γ(z) is large if there are only a few other points close to the
subspace spanned by z. With other words, z lies on the unit sphere in a sparse region,
implying that z might be an outlier. If γ(z) is small, then there are many points
scattered along the subspace spanned by z. With other words, z lies in a dense region,
implying that z is an inlier. The data points with the small γ are good candidates for
the columns of A. A similar reasoning holds for κ with the differences pointed out in
Section 4.1.

Step 3: pick the columns of the mixing matrix

In order to form the mixing matrix A, we could pick those m data points with the
smallest γ values (respectively κ values) and stack them together. This approach will
correctly provide only the first direction. However, the remaining m− 1 columns of A
might originate all from the same direction, which by chance happened to be located in
a very dense cluster on the unit sphere. This problem is solved by iteratively defining
several indices ζ(1), ζ(2), . . . based on γ (respectively based on κ) that avoid picking
directions similar to directions already chosen.

Denote the columns of A by a1, . . . , am ∈ <n. The first column of A is the vector
z ∈ Z with the smallest γ. Thus defining for z ∈ Z

ζ(1)(z) := γ(z), (4.11)

1Note that dist is based on the Euclidean distance which is closely related to the geodesic distance:
for two points a and b on the unit sphere, the geodesic distance is the angle between those vectors,
i.e. arccos(a>b). For small angles this distance is proportional to the Euclidean distance and in
general the relationship is monotonic, i.e. arccos(a>b) < arccos(a>c) if and only if |a− b| < |a− c|
with c being another point on the unit sphere. We could also base dist on the geodesic distance.
However, since for the inlier indices we are particularly interested in small distances, we would
obtain similar results.
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the first column vector of A is

a1 := argmin
z∈Z

ζ(1)(z). (4.12)

To avoid choosing a direction similar to a1, we define a new index ζ(2) that penalizes
directions close to a1,

ζ(2)(z) :=
γ(z)

dist(a1, z)
. (4.13)

Accordingly, the second column of A is

a2 := argmin
z∈Z

ζ(2)(z). (4.14)

Next, we want to avoid the directions of a1 and a2 simultaneously, so we define

ζ(j)(z) :=
γ(z)

mini<j dist(ai, z)
(4.15)

which is the general definition of ζ(j) for j > 1. Similarly, we define the j-th column
of A to be

aj := argmin
z∈Z

ζ(j)(z). (4.16)

Following this recipe, we iteratively determine the columns of A. Note that for j > 1
we have

ζ(j)(z) ≤ max

(

ζ(j)(z),
γ(z)

dist(aj , z)

)

= ζ(j+1)(z) (4.17)

and thus
min
z∈Z

ζ(j)(z) ≤ min
z∈Z

ζ(j+1)(z). (4.18)

Denoting the smallest value of each iteration by

ζj := min
z∈Z

ζ(j)(z) = ζ(j)(aj), (4.19)

we see that for j > 1 these values increase monotonically2,

ζ2 ≤ ζ3 ≤ . . . (4.20)

If all true source directions have been picked—say m directions—we can expect that
ζm+1 is much larger than ζm, because for all data points with small γ (respectively
small κ) a direction close to them has been already chosen. Therefore, a large step
in ζ2, ζ3, . . . determines the number of sources. In practice this works well if there are
enough data points as we will see in the experiments section.

2Note that ζ1 is not necessarily smaller than ζ2: suppose for some z ∈ Z we have ζ1 = γ(a1) <
ργ(a1) = γ(z) with 1 < ρ <

√
2. Assume further that z has maximal distance to a1 on the unit

sphere with respect to dist, i.e. dist(a1, z) =
√
2. Then we have ζ(2)(z) = ρ γ(a1)/

√
2 < γ(a1) = ζ1

and thus ζ2 < ζ1.
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4 Robust and overcomplete ICA with inlier detection

Computational costs

Step 1 of IBICA—the normalization step—costs O(nT ) with n being the dimension-
ality of the observed data and T the number of data points. For step 2, the whole
distance matrix needs to be calculated, costing O(nT 2). Finding the k-th nearest
neighbor of one point can be done in linear time (selection in expected linear time,
see [27]). For κ we have to do this for each point, i.e. O(T 2). So, the total time
complexity for κ is O(T 2n). γ requires all k nearest neighbors, which can be found
(using k times selection in expected linear time) in O(kT ) for each point, i.e. in total
O(T 2n+ T 2k) for all points. For large k, we can also sort all neighbors of a point (in
O(T log T )), i.e. in total O(T 2n+ T 2 log T ) for all points. Summarizing, step 2 with κ
requires O(T 2n) and with γ we need O(T 2n+ T 2max(k, log T )). To simplify, we can
say that the time complexity of step 2 is O(T 2 log T ). Picking one direction in step 3
requires to sort the current index (in O(T log T )), to calculate the distances to the last
chosen direction (in O(nT )) and to update the indices (in O(T )). So, in total IBICA
requires O(T 2 log T ).

The computational costs of step 2 can be dramatically reduced by randomly par-
titioning the data into smaller disjoint subsets of approximately equal size and cal-
culating for each subset the requested index. The scale of the indices changes with
the number of data points, i.e. limiting the calculation to a subset, increases the scale
compared to considering all data points. However, since all subsets have equal size,
the resulting indices are comparable. Note that the smaller the subsets are chosen,
the coarser the indices will be.

4.3 Experiments

The following experiments systematically study the properties of IBICA. First we
compare IBICA in the classical setting to the standard ICA algorithms JADE [24] and
FastICA [51] with respect to kurtotic noise and outliers. After that we examine the
performance of IBICA in the classical and the overcomplete case with respect to the
number of sources, its dimensionality, the choice of k, the number of data points.

Throughout the experiments we partitioned data sets with more than 1000 points
into partitions of size approximately 1000 in order to speed-up the simulations. For
simplicity, we fixed k, number of nearest neighbors, to 50 for all experiments (not in
the study on the choice of k).

If not stated otherwise, all simulations use m-dimensional artificially generated
sources s[t], which are super-Gaussian signals that are obtained in three steps: (i)
start with an m×T matrix of Gaussian noise; (ii) take its entries to the power of five;
(iii) normalize such that each row has unit variance. The n ×m-dimensional mixing
matrices A are also randomly generated in two steps: (i) start with an n×m matrix
of Gaussian noise; (ii) normalize such that each column has unit variance. All curves
show the median over 100 repetitions because the actual performance can depend on
the actual realization of the involved data. In all comparisons all algorithms were
applied to the same randomly created signals.
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Figure 4.4: IBICA is more robust with respect to kurtotic noise than JADE and Fast-
ICA (left panel: two dimensions; right panel: 10 dimensions).

4.3.1 Performance measures

To investigate the performance of IBICA, we define a performance measure that com-
pares the directions of the columns of two mixing matrices that are not necessarily
square. Let A and B be two column-normalized n × m matrices, i.e. their columns
have unit norms. We define a performance measure that compares the directions of
the columns of A and B,

pm(A,B) = 1−





1

2n

n
∑

i=1

max
j
|A>B|ij +

1

2n

n
∑

j=1

max
i
|A>B|ij



 (4.21)

with |A>B|ij being the ij-th entry of the matrix A>B. The absolute value ensures
that the orientation of the columns is ignored. The performance measure is symmetric
and bounded between zero and one. pm(A,B) = 0 implies that the columns of A span
the same one-dimensional subspaces as B and vice versa, or more precisely, for each
column in A there is exactly one column in B that spans the same one-dimensional
subspace. Thus, A and B perform the same mixing up to permutation of the source
signals.

4.3.2 Robustness against kurtotic noise and outliers

In the classical ICA setting (i.e. m = n) we compare IBICA with JADE and FastICA.
To show the robustness of IBICA we first consider the case where the mixed signals
have been contaminated with kurtotic noise,

x[t] = As[t] + ση[t], (4.22)
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Figure 4.5: IBICA is very robust with respect to outliers: replacing a significant
amount of the data with outliers does not change the result of IBICA
(left panel: two dimensions; right panel: 10 dimensions).

with A being a square matrix. The kurtotic noise η[t] is created in three steps: (i)
start with an n× T matrix of Gaussian noise; (ii) transform its entries such that the
column norms are taken to the power of nine; (iii) normalize such that each row has
unit variance. We plot the performance measure pm as a function of the noise level σ
for the kurtotic noise. Figure 4.4 shows that JADE and FastICA fail for smaller noise
levels than IBICA for two-dimensional (left panel) and 10-dimensional data (right
panel). In the two-dimensional case this difference is more pronounced than in 10
dimensions. We can also observe that IBICA based on γ is superior to IBICA based
on κ for the 10-dimensional data.

To demonstrate the robustness of IBICA with respect to outliers, we replaced a
certain percentage of the data points of the mixed signals, x[t] = As[t], with A being
a square matrix, by Gaussian noise with standard deviation 100. Figure 4.5 shows
the performance measure pm as a function of the percentage of outliers. Adding only
a few outliers spoils the solutions of JADE and FastICA. This is in contrast to the
performance of IBICA: in two dimensions one fifth of the data points (20 percent)
can be replaced by outliers without any performance loss. This shows the exceptional
stability of IBICA which is due to the fact, that the columns of the mixing matrix are
chosen among the data points in dense regions. Hereby, outliers are ignored and are
not relevant for the process of determining A. Also in 10 dimension, up to 15 percent
outliers do not influence the result of IBICA based on γ. Though IBICA with κ is
stable up to 10 percent outliers, we see again that it is inferior to IBICA with γ.

4.3.3 Overcomplete mixtures in two dimensions

Figure 4.6 shows several results of applying IBICA based on γ with k = 50 to 15
randomly generated overcomplete mixtures in two dimensions with varying number
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4 Robust and overcomplete ICA with inlier detection

Figure 4.6: IBICA based on γ with k = 50 applied to 15 randomly generated overcom-
plete mixtures in two dimensions with varying number of sources. Each
example consists of only 1000 data points. The short lines indicate the
true directions, the little circle the estimated directions.
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4 Robust and overcomplete ICA with inlier detection

of sources (left column four sources, middle column six sources, right column eight
sources). Each large circle contains the center of the scatterplot of the mixed data.
The short lines on the large circle indicate the true signal directions, the little circles
on the large circle the directions chosen by IBICA. We plot as many directions of
IBICA as there are true directions.

The mixtures with four sources (left column) are perfectly identified by IBICA which
is a good result especially by considering the examples in the fourth and fifth rows
which contain directions that are very close to each other.

The mixtures with six sources (middle column) are sometimes recovered perfectly
(first and fourth row). However, in the second row IBICA misses one source direction,
probably because two true direction are very close to each other. Though in the third
row there are three true directions close together, IBICA missed only one. In the fifth
example, IBICA did not find one of the directions that was very close to a direction
already chosen.

In the mixtures with eight sources (right column) usually one or two of the true direc-
tions are missed and the other directions are sometimes not precisely found. However,
the setting for these randomly generated experiments is chosen such that we can see
how the performance of IBICA breaks down. Since all examples in Figure 4.6 consist
only of 1000 data points, the results are quite remarkable. Note further, that increasing
the number of data points improves the accuracy (see Figure 4.8).

Suppose next that the correct number of sources is not known. Figure 4.7 shows
stairs plots of ζ1, . . . , ζ12 for the examples in Figure 4.6. The arrows indicate the true
number of sources (left column four sources, middle column six sources, right column
eight sources). In the left column (four sources) a gap is clearly visible in all stairs
plots indicating the number of sources correctly to be four.

In the middle column (six columns) the gap is correct only for the first row. In
this example also the directions were chosen correctly by inspecting Figure 4.6. The
performance was also good for identifying six directions in the fourth row. However,
the corresponding stairs plot shows a gap at the fifth step (and not at the sixth).
This can be understood by looking at the corresponding scatterplot in Figure 4.6
which shows that there are two close directions. One of them is probably the sixth
chosen direction. However, since already a similar direction has been chosen earlier,
the indices do not show a large gap.

In the right column (eight sources) there are no clear gaps indicating the correct
number of sources. However, increasing the number of data points, the gaps become
more pronounced as we see in Figure 4.8. For the example with 5000 data points
(right panels) we did not partition the data, because otherwise we would not profit
from the larger data set for the determination of the nearest neighbors. Also note that
ζ1, . . . , ζ12 is on a smaller scale for 5000 data points (lower right panel) than for 1000
data points (lower left panel). γ scales down for larger data sets, because the nearest
neighbors are closer. Note that we used for both examples k = 50. As the circle plots
show (upper panels), IBICA determined also the true directions more precisely with
more data points.
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Figure 4.7: If the number of sources is not known, large gaps in the stairs plots of
ζ1, . . . , ζ12 can help. Shown are the stairs plot for the examples in Fig-
ure 4.6. Up to four sources the true number of sources can be identified,
see also Figure 4.8.
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Figure 4.8: The gap in the stairs plot of ζ1, . . . , ζ12 becomes more pronounced if we
increase the number of data points.

4.3.4 Performance as a function of the number of sources

In another series of simulations we studied the performance of IBICA as a function of
the number of sources as shown in Figure 4.9 for four-dimensional data. We increase
the number of sources up to 40 sources. Since the performance also depends on the
number of data points we run the experiments for 1000 and 3000 data points (left and
right panels). As a baseline we also show the performance for a random solution (lower
panel). Note that the performance function decreases with the number of sources. This
effect is due to the fact, that the more random directions we pick in four dimensions
the more might match by chance. Note that the performance of the random solution
does not depend on the number of data points.

First of all, we see that the performance measure for less than 15 sources is much
smaller than the baseline (lower panel). IBICA with γ degrades later than IBICA
with κ for both situations (left and right panels). In general, we see that with more
data points more sources can be found (left versus right panel). For 1000 data points,
it is curious that the performance of IBICA with κ seems to decrease for more than
20 sources (left panel). However, in the lower panel we see a similar effect as noted
above. So, the reason for the performance decrease of IBICA with κ is that it is not
able to find a reasonable mixing matrix for more than 20 sources, and so, the more
sources we have, more columns are correctly found by chance. We also observe, that
the performance measure of IBICA with γ for 40 sources in four dimensions is still
well below the baseline.

How is the performance of IBICA affected by the dimensionality of the mixed sig-
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Figure 4.9: How is the performance of IBICA affected by the number of sources and
the number of data points (left versus right panel)? As a baseline, the
lower panel shows the performance measure applied to a random solution.
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Figure 4.10: How is IBICA affected by the number of dimensions? The pm scales are
not comparable between different dimensionalities (lower panels).
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nals? Figure 4.10 shows the performance measure as a function of the number of
sources for 10 dimensions (left panels) and 100 dimensions (right panels) using 5000
data points. First of all, we note that it is difficult to compare the performance between
different dimensionalities as we see in the lower panels, that show the performance val-
ues for randomly generated solutions in 10 and 100 dimensions (similar to the lower
panel in Figure 4.9). The performance measure has larger values for higher dimensions,
which is also consistent with the lower panel in Figure 4.9 that shows performance val-
ues for four dimensions that are smaller than the values for 10 dimensions (lower left
panel). The reason for these differences is that in higher dimensions, two randomly
chosen vectors are more likely to be orthogonal to each other. Also we observe that the
performance values decrease with increasing number of sources, which is in agreement
with the lower panel of Figure 4.9 and due to the fact that with more source directions
more randomly chosen directions can match as discussed already above.

For almost up to 10 sources we do not see a difference between the curves in the
upper panels of Figure 4.10 for the different dimensions. With more then 10 sources the
mixture becomes overcomplete in 10 dimensions and the performance of IBICA with κ
gradually decreases getting closer to the baseline (lower left panel). The performance
values of IBICA with γ stay longer very small and only increase slightly. In 100
dimensions, there is more space for an increasing number of sources, so the performance
values (upper right panel) do not comes close to the baseline shown in the lower right
panel. However, again we see that IBICA with γ is superior to IBICA with κ.

It is interesting to note, that by construction, very large dimensions are no problem
for IBICA, because the algorithm considers only the distance matrix of the data which
does not change if we embed the data into a higher-dimensional space. Therefore,
running similar experiments in 1000 dimensions will lead to a similar performance as
shown in the upper right panel.

4.3.5 Performance as a function of the number of nearest neighbors

All experiments presented so far set the number of nearest neighbors k to be 5 percent
of the size of the largest possible partition which is 1000. So, k was always fixed to
50. Figure 4.11 plots the performance measure as a function of k for two situations:
(i) in the left panel for 16 sources mixed in four dimensions with 1000 data points,
(ii) in the right panel for 20 sources mixed in 10 dimensions also with 1000 data
points. As a baseline we recorded simultaneously to running IBICA with γ and κ the
performance measure for random solutions. Both panels show that the performance
of IBICA depends on the choice of k. However, IBICA with γ depends less on k than
IBICA with κ. We conclude that it would be promising to optimize k in the former
simulations instead of fixing it to be 50. However, in order to cancel out the effect of
k we have fixed it to one value.

4.3.6 Toy problems with images

In order to visually judge the performance of IBICA we mixed three images of size
640 by 480 pixels. In a first experiment we created three mixed images with a square
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Figure 4.11: How does IBICA depend on the choice of k?

mixing matrix (see left column of Figure 4.12). To test the robustness of IBICA (with
γ) we replaced 200 pixels by outliers (Gaussian noise with 10 times greater standard
deviation than the original points). These outliers can be seen as the black pixels in
the images in the left column.

Because the signals of the source images are neither sparse nor super-Gaussian, we
initially sparsify the mixed data by a Haar wavelet transformation. The ICA problem
is solved for the wavelet coefficients and the inverse wavelet transformation yields the
sources. The second column of Figure 4.12 shows that IBICA is able to recover the
correct source images. JADE and Fast ICA, right columns, are not able to unmix the
images due to the outliers.

The sparsification step of the previous experiment allows also to separate overcom-
plete mixtures of images (three images in two mixtures). The left column of Fig-
ure 4.13 shows the mixed images and a scatterplot of the coefficients obtained by a
Haar wavelet transformation. Applying IBICA (with γ) to these coefficients yields the
2× 3-dimensional mixing matrix.

Given the mixing matrix, the reconstruction of the sources from the mixed signals
is not trivial in the overcomplete setting as discussed in the introduction. The wavelet
coefficients, shown as a scatterplot in the lower left panel of Figure 4.13 are assigned
to the different ICA directions, i.e. to the columns of the mixing matrix using the
method described in [14]. The reconstructed sources are shown in the middle column
of Figure 4.13. While the images are well separated, the reconstruction loss is visible
as artifacts due to miss-assigned wavelet coefficients.

4.4 Summary

Robustness is an important feature for algorithms intended for the real world. We
showed how to employ simple outlier indices to obtain the inliers of the given data.
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Figure 4.12: IBICA is able to separate mixed images (first column) that have been
contaminated with outliers (black pixels in the images of the first columns)
after sparsifying the data with a wavelet transformation as the images
in the middle column show. JADE and FastICA fail (third and fourth
column).
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Figure 4.13: Three images have been linearly mixed into two images. Note that the
signals of the source images are not super-Gaussian. After sparsifying
the mixed signals (lower left scatterplot), IBICA is able to approximately
recover the original images (middle versus right column). The block arti-
facts are due to wavelet coefficients that have been assigned to the wrong
source.
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These inliers directly characterize the columns of the mixing matrix. Hereby, we obtain
a particularly robust approach to ICA for super-Gaussian sources that also solves the
overcomplete ICA problem as we have seen in the experiments.

Note that some of the presented ideas appeared earlier in other geometrical algo-
rithms (for example [14, 89]). The main difference of IBICA to these other methods is
its usage of outlier indices which makes it particularly robust and which allows its use
even in high dimensions because the used outlier indices are based solely on distances.

Furthermore, IBICA does not minimize any objective function. Instead, it uniquely
defines the columns of the mixing matrix in terms of indices derived from the outlier
indices. This has the advantage that by construction IBICA can not get stuck in local
minima.
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5 Nonlinear ICA with kernel methods

In the nonlinear ICA model, x[t] = f(s[t]), the mixing matrix of the linear ICA model,
x[t] = As[t], is replaced by a general nonlinear invertible function f : <n → <n. For
example, the components x1 and x2 of the mixture

x1[t] = −(s2[t] + 1) cos(πs1[t])

x2[t] = (s2[t] + 1) sin(πs1[t]), (5.1)

are nonlinear mixtures of the sources s1 and s2. Figure 5.1 shows a scatterplot of x1
and x2 (right panel) next to a scatterplot of linearly mixed data (left panel). In the
linear mixture the data is scattered along straight lines which are the ICA directions.
In the nonlinear mixing the data is scattered along curves. Kernel-based learning maps
the data shown in the scatterplots from the input space to some higher-dimensional
feature space, such that the curves become straight lines. This idea is illustrated in
Figure 5.2. Thus we transformed the nonlinear problem to a linear one which can be
solved in principle with linear methods.

Kernel-based learning has become a popular technique recently (for example [98,
28, 92, 17, 93, 74]). The idea of kernelizing [93] allows to construct powerful nonlinear
variants of existing linear algorithms—based on the scalar product—by mapping the
data x[1], . . . , x[T ] ∈ <n implicitly into some kernel feature space F through some
mapping Φ : <n → F . Performing a linear algorithm in F corresponds to a nonlinear
algorithm in input space: in other words, linear BSS in F would give rise to a non-
linear BSS algorithm in input space. This can be done efficiently and never directly

Figure 5.1: In a linear mixture (left panel), the signals are scattered along straight
lines, which represent the ICA directions. In a nonlinear mixture (right
panel), the signals are scattered along curves.
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input space

<n

F
feature space

is transformed to

Figure 5.2: Kernel methods transform curves in input space (left) to straight lines in
a higher-dimensional feature space (right).

but only implicitly in F by using the kernel trick k(a, b) = Φ(a) · Φ(b). However, a
straight forward application of the kernel trick to ICA has so far failed for two reasons:
(i) applying a linear ICA algorithm in feature space will not necessarily identify the
sought-after signals, since there are very likely directions that are also independent but
higher-order versions of the original signals, and (ii), in principle, the ICA algorithm
has to be applied, after kernelizing, to a T -dimensional1 problem which is numerically
neither stable nor tractable.

We solve these problems by applying a dimension reduction step in feature space
before using ICA. This is possible because typically the data forms a lower-dimensional
subspace in F , even much lower than T -dimensional. We therefore propose a math-
ematical construction—very much inspired by reduced set methods [91]—that allows
us to adapt to the intrinsic data dimension. In the next step an orthonormal basis
of this low-dimensional submanifold is constructed which eventually makes the com-
putations of a subsequent ICA algorithm tractable. The subtle difference to reduced
set techniques is that we do not aim at constructing a low-dimensional basis for a
good classification, rather we aim for an efficient, i.e. low-dimensional description of
the data in F .

As pointed out in [52], in general there are no unique solutions to the nonlinear
ICA problem. However, employing kernel feature spaces and dimension reduction
we are able to restrict the space of possible functions used to invert the nonlinearity.
Furthermore, exploiting the time structure of the unknown sources allows us to recover
the sources s. Figure 5.3 gives an overview of the proposed method.

Chapter outline

In Section 5.1 we explain how to reduce the dimension of the kernel feature space that
contains the mapped input space data. In Section 5.2 we apply a linear ICA algorithm
based on time structure to the signals in the reduced space. This results in several

1Note that even though F might be infinite-dimensional the subspace of F where the data lies is at
most T -dimensional.
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F <d

Nonlinear Mixture

Φ W

Ξ>

in Input Space
Extracted

Source Signals

Feature Space Parameter Space

(b)

(c) and (d)(a)

Figure 5.3: The nonlinear ICA problem is solved in four steps: (a) The data is mapped
from input space to feature space, (b) the dimensionality is reduced, (c)
second order temporal decorrelation ICA and (d) an automatic selection
procedure is applied.
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nonlinearly transformed signals (usually more than input dimensions) from which we
select automatically the sources, see Section 5.3. In Section 5.4 we validate our method
on nonlinearly mixtures of artificially generated signals and various sound signals.

5.1 Constructing kernel feature spaces of reduced

dimension

In order to establish a linear problem in feature space that corresponds to some nonlin-
ear problem in input space we need to specify how to map inputs x[1], . . . , x[T ] ∈ <n

into feature space F and how to handle its possibly high-dimensionality. Note that
x[t] is scaled down such that its absolute maximum is one. Hereby we force the signals
between -1 and 1 before mapping to F . This will become important for the selection
procedure (see Section 5.2).

In the following, we describe two methods that obtain an orthogonal basis in feature
space with reduced dimension and we explain how to project the data onto this finite-
dimensional basis such that ICA techniques can be applied.

There exist a variety of other dimensionality reduction methods for the kernel set-
ting: In [94] the kernel matrix is approximated by iteratively picking columns of that
matrix in a greedy manner. [31] uses the Sherman-Morrison-Woodbury method and
the product-form Cholesky factorization to obtain low-rank kernel representations.
[104] employs the Nyström method to a randomly sampled subset of the data which
is very similar to the first of our proposed methods (see Section 5.1.1). However, we
perform the resampling several times and use additionally the condition numbers of
the corresponding kernel matrices to pick a particular subset.

5.1.1 Finding a basis via random sampling/clustering

In addition to the input points, consider some further points v1, . . . , vd ∈ <n from the
same space, that will later generate a basis in F . Let us denote the mapped points2 by
Φx := [Φ(x[1]) · · ·Φ(x[T ])] and Φv := [Φ(v1) · · ·Φ(vd)]. We assume that the columns
of Φv constitute a basis of the column space3 of Φx, formally expressed as

span(Φv) = span(Φx) and rank(Φv) = d. (5.2)

Below, we will explain how and to what degree this assumption can be fulfilled. More-
over, Φv being a basis implies that the matrix4 Φ>v Φv has full rank and its inverse
exists. So, now we can define an orthonormal basis (called empirical kernel map in
[91])

Ξ := Φv(Φ
>
v Φv)

−1/2 (5.3)

2We denote the points of the time series with square brackets, for example x[t], and other points of
the input space with subscripts, for example vd.

3The column space of Φx is the space that is spanned by the column vectors of Φx, written span(Φx).
4The ij-th entry of the matrix Φ>v Φv is Φ(vi)

>Φ(vj).
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parameter space
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feature space

<d
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F
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(Ξ
)

Figure 5.4: Input data are mapped to some submanifold of F which is in the span of a
d-dimensional orthonormal basis Ξ. Therefore these mapped points can be
parameterized in <d. The linear directions in parameter space correspond
to nonlinear directions in input space.

the column space of which is identical to the column space of Φv. Consequently, this
basis Ξ enables us to parameterize all vectors that lie in the column space of Φx by
some vectors in <d. For instance for vectors

∑T
t=1 αΦiΦ(x[t]), which we write more

compactly as ΦxαΦ, and ΦxβΦ in the column space of Φx with αΦ and βΦ in <T there
exist αΞ and βΞ in <d such that ΦxαΦ = ΞαΞ and ΦxβΦ = ΞβΞ. The orthonormality
implies

α>ΦΦ
>
x ΦxβΦ = α>ΞΞ

>ΞβΞ = α>ΞβΞ (5.4)

which states the remarkable property that the dot product of two linear combinations
of the columns of Φx in F coincides with the dot product in <d. By construction of
Ξ (see Equation (5.3)) the column space of Φx is naturally isomorphic (as a vector
space) to the <d. Moreover, this isomorphism is compatible with the two involved dot
products as was shown in Equation (5.4). This implies that all properties regarding
angles and lengths can be taken back and fourth between the column space of Φx and
<d. The space that is spanned by Ξ is called parameter space. Figure 5.4 pictures
our intuition: usually kernel methods parameterize the column space of Φx in terms
of the mapped patterns {Φ(x[i])} which effectively corresponds to vectors in <T . The
orthonormal basis from Equation (5.3), however enables us to work in <d i.e. in the
span of Ξ.

Projecting the input data onto an orthonormal basis

By employing the kernel trick we can directly map the input data onto the subspace
of feature space that is spanned by the orthonormal basis. The expressions

(Φ>v Φv)ij = Φ(vi)
>Φ(vj) = k(vi, vj) with i, j = 1 . . . d (5.5)
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are the entries of a real valued d × d matrix Φ>v Φv that can be effectively calculated
using the kernel trick. By construction of v1, . . . , vd, it has full rank and is thus
invertible. Similarly we get

(Φ>v Φx)ij = Φ(vi)
>Φ(x[j]) = k(vi, x[j]) with i = 1 . . . d, j = 1 . . . T , (5.6)

which are the entries of the real valued d× T matrix Φ>v Φx. Using both matrices we
compute finally

Ψx[t] := Ξ>Φ(x[t]) = (Φ>v Φv)
−1/2Φ>v Φ(x[t])

=







k(v1, v1) · · · k(v1, vd)
...

...
k(vd, v1) · · · k(vd, vd)







− 1

2






k(v1, x[t])
...

k(vd, x[t])







(5.7)

which is a real valued d × 1 vector representing a projected data point. Note that
(Φ>v Φv)

−1/2 can be omitted if the subsequent ICA procedure contains a whitening
step.

Regarding the computational costs of this projection, we have to evaluate the kernel
function O(d2n) + O(dTn) times and Equation (5.7) requires O(d3) multiplications
where n denotes the dimension of the input space. Again, note that d is much smaller
than T . Furthermore, after projection the storage requirements are reduced since we
do not have to hold the full T × T kernel matrix but only a d× T matrix.

Choosing vectors for the basis in F
So far, we have assumed to be given some points v1, . . . , vd that fulfill Equation (5.2)
and we presented the beneficial properties of our construction. In fact, the vectors
v1, . . . , vd are roughly analogous to a reduced set in the support vector world [91].
Note however that often we can only approximately fulfill Equation (5.2), i.e.

span(Φv) ≈ span(Φx), (5.8)

for example for an RBF kernel span(Φx) is T -dimensional, but span(Φv) is by definition
d-dimensional (see Appendix A.7; for further discussion [103, 8]). Several options exist
to achieve this approximation.

The points v1, . . . , vd have to be chosen, such that in Equation (5.7) the inversion
of the kernel matrix Kv, whose entries are

(Kv)ij := (Φ>v Φv)ij = k(vi, vj), (5.9)

is numerically stable. We try to find a set of points such that the condition number5

of its corresponding kernel matrix is below a certain threshold and if we add one more
point the condition number is above. Since we can not check all possible combina-
tions, we randomly sample d points (for fixed d) repeatedly, say r, for example, 100

5The condition number of a matrix is the ratio between the largest and the smallest singular value.
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times. Roughly speaking, we perform this sampling for different d until we find d
points, v1, . . . , vd, that are linearly independent in feature space (more precisely: the
corresponding condition number is below the threshold), but we can not find d + 1
points with the same property (i.e. the condition number for those points is above the
threshold). This is done by computing the kernel matrix in O(d2n) time, yielding an
overall cost of O(dr)[O(d) +O(d2n)] = O(d3rn) where n denotes the dimension of the
input space.

This procedure determines d and points v1, . . . , vd. Running k-means clustering
(with k = d), costing O(Tdn), in input space is another way to pick such points. Our
experience shows that both approaches work well as long as d is chosen large enough.

5.1.2 Finding a basis via kernel PCA

Another more direct method to obtain the low-dimensional subspace is Kernel PCA
[93]. Such a subspace is optimal with respect to the reconstruction error in feature
space, however computational costs are slightly increased (see Figure 5.15 in Sec-
tion 5.4.5). For simplicity, we assume that the data is centered in feature space6. To
perform kernel PCA, we need to find eigenvectors and eigenvalues of the covariance
matrix 1

T ΦXΦ>X . Denoting the diagonal matrix with eigenvalues λ1 ≥ . . . ≥ λT along
the diagonal as Λ, the eigenvectors E = [e1 · · · eT ] of the covariance matrix 1

T ΦXΦ>X
fulfill

(
1

T
Φ>XΦX)E = EΛ (5.10)

which immediately implies

(
1

T
ΦXΦ>X)(ΦXE) = (ΦXE)Λ. (5.11)

So, λ1, . . . , λT are the eigenvalues of 1
T ΦXΦ>X with corresponding eigenvectors ΦXE.

Normalizing the first d eigenvectors yields a d-dimensional orthonormal basis,

Ξ := ΦXEd(TΛd)
−1/2 (5.12)

with Ed := [e1 · · · ed], Λd being the diagonal matrix with λ1, . . . , λd along the diagonal
and (TΛd)

−1/2 ensuring orthonormality. This basis enables us to parameterize the
signals Φ(x[t]) in feature space as real valued d-dimensional signals

Ψx[t] := Ξ>Φ(x[t]) = (TΛd)
−1/2E>d Φ>XΦ(x[t]),

= 1√
T







1√
λ1

0

. . .

0 1√
λd













e>1
...
e>d













k(x[1], x[t])
...

k(x[T ], x[t])







(5.13)

that are calculated conveniently using the kernel trick.

6The kernel matrix K with entries k(x[i], x[j]) can be easily centered (see also [93]) by K 7→ K −
1TK −K1T + 1TK1T with 1T being the T × T matrix with all entries equal to 1/T .
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Since kernel PCA involves solving the eigenvalue problem for a large matrix, whose
size depends on the amount of data, O(T 3), we typically apply kernel PCA to a subset
of the original data set if T becomes large (similar to [72, 91]).

5.2 Nonlinear ICA with time structure

Clearly, ICA algorithms can not be applied directly in full feature space without the
proposed reduction step: they would need to solve a T -dimensional ICA problem
which is intractable. A further problem is that manipulating such a T × T matrix
can easily become numerically unstable and even overfitting might occur [53]. In the
previous section we have mapped the signals x[t] from input space onto signals Ψx[t]
in a d (¿ T )-dimensional parameter space (see Figure 5.3). This was done either by
random sampling or k-means clustering using Equation (5.7) or by applying kernel
PCA together with Equation (5.13). Now we are in a situation in which the nonlinear
problem in input space has been transformed to a linear problem in parameter space
where we can apply linear ICA methods. In particular, we propose to use TDSEP,
a second order ICA technique that relies on time-shifted covariance matrices of the
mapped signals Ψx[t], hereby exploiting the assumed time structure of the unknown
sources (in the appendix of [41] we discuss why not to use kurtosis-based techniques).

We briefly describe the TDSEP algorithm (details can be found in [112], see also[12]).
For the signals in parameter space

Ψx[t] := Ξ>Φ(x[t]) ∈ <d (5.14)

we define symmetrized time-shifted covariance matrices:

Rτ :=
1

2(T − τ)

T−τ
∑

t=1

((Ψx[t]− µΨ)(Ψx[t+ τ ]− µΨ)> + (Ψx[t+ τ ]− µΨ)(Ψx[t]− µΨ)>),

(5.15)

with µΨ := 1
T

∑T
t=1Ψx[t]. Then we find a matrixW that simultaneously diagonalizes7

several of these matrices Rτi , i.e. the matrices

WRτiW
> i = 1, . . . ,m (5.16)

should become approximately diagonal. W is the sought-after demixing matrix. The
extracted d nonlinear components are

y[t] :=WΨx[t] ∈ <d. (5.17)

5.3 Selecting from the extracted components

Among the extracted components y[t] are besides the sought-after sources, also signals
that we are not interested in. Empirically, these other signals can be explained by

7We use the algorithm described in [25], see also [20].
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higher-order monomials of the sources as we will see next (with ideas from [39]).
These monomials are well-motivated for polynomial kernels but are also useful to
analyze signals that have been extracted using a Gaussian kernel.

5.3.1 Reconstructing the extracted components

For two source signals s1 and s2, we call the monomials of these sources up to a certain
degree “quasi sources”. For example, the quasi sources up to degree 2, i.e. where each
variable appears up to degree 2, are

q2 := (s21s
2
2, s

2
1s2, s

2
1, s1s

2
2, s1s2, s1, s

2
2, s2)

>. (5.18)

Note that for brevity, we write s1 instead of s1[t], i.e. s1 is a signal. In general, the quasi
sources up to degree m are all monomials of the form sm1

1 sm2

2 for 0 ≤ m1,m2 < m.
Accordingly, qm is the vector containing all those monomials.

Most quasi sources are pairwise correlated: for two independent signals s1 and s2
the correlation between arbitrary monomials in s1 and s2 is

corr(sk1

1 s
m1

2 , sk2

1 s
m2

2 ) =
cov(sk1

1 s
m1

2 , sk2

1 s
m2

2 )
∏

i=1,2

√

var(ski1 s
mi

2 )

=
E{sk1+k2

1 }E{sm1+m2

2 } − E{sk1

1 }E{sk2

1 }E{sm1

2 }E{sm2

2 }
∏

i=1,2

√

E{s2ki1 }E{s2mi

2 } − (E{ski1 }E{smi

2 })2
. (5.19)

Since for symmetrically distributed signals s1 and s2 (with zero mean and variance
one) the odd moments are zero,

E{sk1} = 0 if k is odd, (5.20)

two quasi sources sk1

1 s
m1

2 and sk2

1 s
m2

2 are uncorrelated in most cases:

corr(sk1

1 s
m1

2 , sk2

1 s
m2

2 ) = 0 if k1 + k2 is odd or m1 +m2 is odd. (5.21)

This is easily implied from above equation using the fact, that if the sum of two integers
is odd then one of the summands must be odd as well. Therefore the quasi sources for
two signals can be divided into four groups with no correlations between the groups;
for example, for the quasi sources up to degree 2 the four groups are (see Figure 5.5),

{s21s22, s21, s22}, {s21s2, s2}, {s1s22, s1}, {s1s2}. (5.22)

Now we will use these findings to reconstruct the extracted components for an easy ex-
ample. Consider two sinusoidal source signals s[t] = [s1[t], s2[t]]

> that are nonlinearly
mixed by

x[t] = A(s1[t], s2[t])
> + cs1[t]s2[t] (5.23)

with

A =

[

−1.2173 −1.1283
−0.0412 −1.3493

]

and c =

[

−0.2611
0.9535

]

(5.24)
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Figure 5.5: Most quasi sources are pairwise correlated; the right panel shows the co-
variance matrix of the quasi sources up to degree 2, the lower left panel up
to degree degree 4 and the upper left panel up to degree 8. Note, that the
quasi sources can always be divided into four groups.

(mixture taken from [73]). Running our algorithm with a polynomial kernel of degree
4,

k(a, b) = (a>b+ 1)4, (5.25)

we have to consider the quasi sources up to degree 4: all possible products of s1, s
2
1,

s31, s
4
1 and their counterparts in s2. Using Equation (5.21) these quasi sources can also

be arranged into four groups with no correlations between the groups. As examples,
we explain four of the extracted signals using these quasi sources, i.e. y7, y4, y1, y9,
shown in the left panels of Figure 5.6. The middle panels show the best matching
quasi sources. Note, that the true sources, s1 and s2, have a very high correlation to
their left neighbors, y7 and y4, respectively. The other extracted signals, y1 and y9,
do not have a very high correlation to any of the quasi source signals: the best fits,
s41s2 and s41s

4
2, are plotted in the two lower middle panels. The extracted signals can

better be explained with linear combinations of subsets of mutually correlated quasi
sources. Therefore, we combined all quasi sources that are correlated with s41s

4
2 to

reconstruct y9. The result is shown in the lower right panel which reaches a good fit
(corr = 0.960), similarly for y1 and the other not shown extracted signals. Note, that
for y7 and y4 that matched s1 and s2 already reasonably well, more quasi sources do
not improve the result notably.

Empirically, we have seen that the extracted components can be explained by linear
combinations of higher-order monomials of the sources. Using this knowledge several
options to select the signals of interest suggest themselves: the signals built by higher-
order monomials are very peaky and therefore have after proper normalization a lower
variance and also a lower description length [90] than the signals of interest. However,
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Figure 5.6: The extracted signals in the left panels (only four shown) are tried to be
matched with single quasi sources in the middle panels and combinations
of subgroups of quasi sources (right panels).

whether methods based on these intuitions work in practice depends very much on the
considered signals. The goal is to identify the sought-after signals s1 and s2 among
the other extracted signals. If, for example, s1 has a much higher description length
than s2, there might be a problem: probably s21 will have a large description length as
well, and therefore it is more likely that a method based on these principles will prefer
s21, instead of s2. This explains why these selection procedures can fail easily, which is
in accordance with our experience of running a number of experiments with different
signals.

5.3.2 Selection by rerunning the algorithm

An algorithmic trick that worked well in all our experiments is to apply the algorithm
twice. This trick is motivated by work on assessing reliability [70, 71, 75]. Intuitively,
the idea is to look for the most reliable components among the extracted signals,
i.e. components that appear again after re-iteration of the algorithm. For this we
repeat the algorithm with the same parameters (kernel choice, d, τ , . . . ), but instead of
sending x[t] into the feature space we start with the d-dimensional demixed results y[t],
map them to the feature space, reduce the dimensionality8 and demix with TDSEP,
which yields y′[t]. The sought-after components of y[t] are the ones that are matched

8The kernel function can be used with signals of arbitrary dimension.
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best by the components y′[t] of the second run of TDSEP in feature space.
Why does this selection process find the right signals? As we have seen in the

previous section most of the undesired signals are linear combinations of peaky higher-
order monomials of the source signals, which can have very large values. Before the
signals get mapped to feature space they are scaled, such that their absolute maximum
is one (see first paragraph of Section 5.1). This is done by dividing each signal by its
absolute maximum. The effect of this rescaling is that very large peaky signals are
penalized, i.e. their variance is decreased more than the variance of signals that are less
peaky. By doing so, we bias the desired signals to appear again with high correlations
after another nonlinear demixing. This method works very well. All experiments
documented in this article successfully used this selection method. Our experience
shows that this selection fails only in cases where the sources are not recovered at all,
i.e. where the demixing failed, which means that actually there is nothing to select
from.

5.4 Experiments

Nonlinearities appear in different contexts; for example, amplifier saturation results
in difficult nonlinearities. Also sensors can have nonlinearities which have a disad-
vantageous influence on the recorded signals. However, real-world signals have the
drawback that the ground truth—i.e. the true source signals—is not known. Since we
want to demonstrate the performance of our algorithm, we consider in this chapter
well-defined, controlled situations where we can compare the results of the algorithm
to the true sources.

5.4.1 Deterministic artificial data

In the first experiment we generate 2,000 data points from two sinusoidal signals s[t] =
[s1[t], s2[t]]

> that have different frequencies (s1[t] = sin(0.05πt), s2[t] = sin(0.021πt)
with t = 1, . . . , 2000). These source signals are nonlinearly mixed (see left panel in the
first row of Figure 5.7) by

x1[t] = es1[t] − es2[t]

x2[t] = e−s1[t] + e−s2[t]. (5.26)

We use a polynomial kernel of degree 9,

k(a, b) = (a>b+ 1)9, (5.27)

which induces a feature space of all monomials up to degree 9. Applying k-means clus-
tering to 500 randomly chosen input vectors we determine vectors v1, . . . , v20 in input
space, shown as “+” in the left panel in the first row of Figure 5.7. Projecting onto the
feature space images of these vectors reduces the dimension to 20. As the second step
we apply TDSEP (with time-shifts τ = 0 . . . 7) to those 20-dimensional mapped signals
Ψx[t]. We obtain 20 components among which we select two components as described
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Figure 5.7: Deterministic artificial data: scatterplots and waveforms of the nonlinear
mixture and the nonlinear demixing (first and third row) and of linear
demixing and the true source signals (second and fourth row).
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in Section 5.3.2. Their scatterplots and their waveforms are shown in the right panels
in the first and third row of Figure 5.7. For comparison, we plot in the left panels
of the second and fourth row the results of applying linear TDSEP directly to the
nonlinearly mixed signals x[t]. In this simple example linear TDSEP reaches already
a high correlation (corr(ylin1 , s1) = 0.9716, corr(ylin2 , s2) = 0.9716) to the true sources,
but as we can see in the scatterplots shown in Figure 5.7, linear ICA fails to recover
the right shape, in contrast to our nonlinear method which recovers the shape of the
scatterplot almost perfectly (corr(y20, s1) = 0.9998, corr(y5, s2) = 0.9999). We study
the same mixture with two sinusoidal signals that have almost the same frequencies
(s1[t] = sin(0.0045πt), s2[t] = sin(0.005πt) with t = 1, . . . , 2000). Figure 5.8 shows the
results after running our algorithm with the same parameters as in the previous case.
We see that even two signals that have almost the same frequencies are separated.

5.4.2 Speech data—bended

In another experiment we nonlinearly mix two speech signals s[t] = [s1[t], s2[t]]
> (each

with 20,000 data points, sampling rate 8 kHz, each ranging between −1 and +1) by

x1[t] = −(s2[t] + 1) cos(πs1[t])

x2[t] = 1.5 (s2[t] + 1) sin(πs1[t]). (5.28)

We employ a Gaussian RBF kernel,

k(a, b) = e−
‖a−b‖2

2σ2 , (5.29)

which induces a feature space where each direction measures the similarity to one of
the training points. We can set σ2 = 1

2 and use

k(a, b) = e−‖a−b‖2 , (5.30)

without loss of generality, if signals are scaled in an appropriate way. Projecting onto
feature space images of the vectors v1, . . . , v20 ∈ <2 (depicted as “+” in the left panel in
the first row of Figure 5.9) that are determined by repeated random sampling, reduces
the dimensionality to d = 20. Among the 20 signals that we obtain by TDSEP (with
time-shifts τ = 0 . . . 7) we automatically choose with the selection method described in
Section 5.3.2 two signals that turn out to reach very high correlations (corr(y9, s1) =
0.9768, corr(y4, s2) = 0.9923) with the original source signals. Since the linear method
can only shear and rotate the data it fails to recover the two signals (corr(ylin2 , s1) =
0.8811, corr(ylin1 , s2) = 0.4091).

5.4.3 Speech data—twisted

For an even more difficult experiment we mix the two sound signals from the previous
example by

x1[t] = (s2[t] + 3s1[t] + 6) cos(1.5πs1[t])

x2[t] = (s2[t] + 3s1[t] + 6) sin(1.5πs1[t]), (5.31)
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Figure 5.8: Deterministic artificial data with very close frequencies: Scatterplots and
waveforms of the nonlinear mixture and the nonlinear demixing (first and
third row) and of linear demixing and the true source signals (second and
fourth row).
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Figure 5.9: Speech data—bended: Scatterplots and waveforms of the nonlinear mix-
ture and the nonlinear demixing (first and third row) and of linear demixing
and the true source signals (second and fourth row).
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which twists the sources. The first source is mapped along a spiral around the center.
The second controls the deviation from that spiral. Note, that the second source
contributes much less to the mixture than the first source. We map the data to a
feature space induced by a Gaussian RBF kernel, k(a, b) = e−‖a−b‖2 , and apply kernel
PCA to 500 randomly chosen input vectors. We obtain a 25-dimensional subspace of
feature space that approximates the high-dimensional manifold in feature space very
well. Projecting the mixed signals into that space we obtain Ψx[t] and finally applying
TDSEP (with time-shifts τ = 0 . . . 7) we recover 25 signals among which we select the
signals of interest automatically (see Section 5.3.2). Again, these signals have very
high correlations with the true sources (corr(y2, s1) = 0.9900, corr(y9, s2) = 0.9466),
whereas the linear ones do not (corr(ylin2 , s1) = 0.5703, corr(ylin1 , s2) = 0.0483). Also
their scatterplot and their waveforms represented in the right panels in the first and
third row of Figure 5.10 show how well even the second source is found that is hidden
as the amplitude of the spiral.

5.4.4 Analysis of the cross correlations through time

To analyze the found signals y more careful, we calculated the cross correlations with
quasi sources for different time-lagged versions of the signals.

Figure 5.11 shows the cross correlations of the quasi sources up to degree 3 (see
Section 5.3.1) and y2[t− τ ] and s1[t− τ ] for different τ (with τ = 0 . . . 7). On the right
panel, we see that s1 is correlated to s1s

2
2, s

3
1, and s31s

2
2 as was already discussed in

Section 5.3.1. Furthermore, there are also correlations with the time-shifted versions
of those quasi-sources. Exactly the same holds for y2 as we see in the left panel, i.e. y2
recovers s1 including its time structure. Corresponding results apply to y9 and s2 (see
Figure 5.12).

To give some clue what the other signals that TDSEP extracted are, we analyzed y1,
. . . , y25 in a similar way. The upper panel of Figure 5.13 shows the cross correlations of
these signals with the quasi sources. For example, we see that y1 is strongly correlated
with s21 or that y16 is correlated with s1s2, s1s

3
2, s

3
1s2 and s31s

3
2. Most signals have

close connections to certain quasi sources. The lower panel of the same figure shows
the corresponding cross correlations for time-shifted signals y[t−τ ]. Through time the
correlations are less pronounced.

5.4.5 Kernel PCA versus random sampling versus clustering

In this section we compare the three proposed dimensionality reduction methods and
discuss the trade-off in choosing the dimensionality of the subspace. We repeat the
experiment of the previous section (“Speech Data—twisted”) using different methods
for dimensionality reduction (Kernel PCA versus Random Sampling versus Clustering)
and for different subspace dimensionalities d. The results are shown in Figure 5.14:
overall, it turns out that it does not matter too much for the separation result (mea-
sured here as the correlation to the true sources) which of the three reduction methods
is used. Kernel PCA has slightly more difficulties to find the second source for small
d. This might look surprising because Kernel PCA is optimal in finding a subspace
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Figure 5.10: Speech data—twisted: Scatterplots and waveforms of the nonlinear mix-
ture and the nonlinear demixing (first and third row) and of linear demix-
ing and the true source signals (second and fourth row).
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Figure 5.11: Cross correlations between (left) the quasi sources and y2[t − τ ] and be-
tween (right) the quasi sources and s1[t− τ ] for different τ .
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Figure 5.13: Cross correlations between the quasi sources and y[t− τ ] for (top) τ = 0
and (bottom) τ = 2 for different τ .
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of the feature space that contains most of the variance of the projected data, so one
would expect better performance. The reason is, of course, that the PCA criterion
does not necessarily optimize for good separation performance.

Furthermore, we see from the plots that increasing d generally improves the sepa-
ration performance. But since the running time of TDSEP increases9 for larger and
larger d (see Figure 5.15), one should try to choose d such that the running time of
TDSEP is still tolerable while the subspace is complex enough to demix.

The lower panel shows some interesting behavior: for small d the second signal can
not be reconstructed very well. But increasing d to 10 and larger the subspace has
enough complexity to unfold and thus to recover the second source.

The third column of Figure 5.16 validates this finding: shown are the scatterplots
for the same experiment and we see that the biggest improvement happens between
d = 9 and d = 12. The other columns show scatterplots for the two other experiments.
Interestingly, the second mixture (second column) does not require a very large d.
Already d = 6 is enough to recover the sources reasonably well.

5.4.6 Stochastic artificial data

For completeness, we test our method also for stochastic data with short correlation
length: we generate 2,000 data points from two auto-regressive processes of order 3
and mix them using the twisting mixture from the previous example:

x1[t] = (s2[t] + 3s1[t] + 6) cos(1.5πs1[t])

x2[t] = (s2[t] + 3s1[t] + 6) sin(1.5πs1[t]). (5.32)

We applied kTDSEP with the same parameters as in the previous experiment (kernel
PCA applied to 500 randomly chosen input vectors, subspace dimensionality d =
25). As in the experiments before the linear method is not able to uncover the
sources (corr(ylin2 , s1) = 0.7893, corr(ylin1 , s2) = 0.0080), but our nonlinear method
is (corr(y1, s1) = 0.9917, corr(y10, s2) = 0.9370), as can be also seen in Figure 5.17.

5.4.7 More than two sources

In the experiments so far, we confined ourselves to mixtures of two sources because
they can be nicely visualized. The next experiment demonstrates that our algorithm
works also well with more than two sources:

We nonlinearly mix 7 audio sources s[t] = [s1[t], . . . , s7[t]]
> (piano music, scientific

utterance, cembalo music, street noise, cello music, funk music, political speech, each
with 20,000 data points, sampling rate 8 kHz) by two steps:

1. Scale the signals between -1 and 1, i.e. they are contained inside the centered
hypercube with side length 2. Rotate that cube such that its main diagonal
(which has length 2

√
7) is aligned with the first axis. This operation can be

done by some orthogonal 7× 7 matrix A.

9TDSEP involves simultaneous diagonalization of several d× d matrices, i.e. O(d3).
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Figure 5.14: Correlations of the two source signals (upper and lower panel) to the
best-matching extracted signals for Kernel PCA versus random sampling
versus clustering and for different subspace dimensionalities d.
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Figure 5.15: Computing times in seconds for the various runs of the experiment shown
in Figure 5.14.

2. Rotate around different planes by an angle that depends on the first component
of the vector s̄[t] = As[t], which we denote by s̄1[t]. More precisely, for a vector
s̄[t] we define a 7× 7 matrix

B(s̄[t]) =





















0 0 0 0 0 0 0
0 0 s̄1[t] 0 0 0 0
0 −s̄1[t] 0 0 0 0 0
0 0 0 0 s̄1[t] 0 0
0 0 0 −s̄1[t] 0 0 0
0 0 0 0 0 0 s̄1[t]
0 0 0 0 0 −s̄1[t] 0





















(5.33)

and use it to define a rotation matrix (employing the matrix exponential)

C(s̄[t]) = eπB(s̄[t]) (5.34)

that rotates along the 2nd and 3rd plane, along the 4th and 5th plane and along
the 6th and 7th plane by the angle πs̄1[t]. Note that C(s̄[t]) is an orthogonal
matrix that is continuous in s̄[t].

The complete mixture reads then

x[t] = C(As[t])As[t]. (5.35)

This nonlinear mixture is invertible because of the orthogonality and continuity of the
matrices involved. Linear TDSEP is not able to demix x[t]: listening to the linearly
demixed signals reveals that each component contains at least contributions of two
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Figure 5.16: Scatterplots for different values of d: (left) artificial data, (middle) speech
data—bended”, (right) “speech data—twisted”.
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Figure 5.17: Stochastic artificial data: Scatterplots and waveforms of the nonlinear
mixture and the nonlinear demixing (first and third row) and of linear
demixing and the true source signals (second and fourth row).
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Figure 5.18: More than two sources: The 17 largest correlations between the demixed
signals y[t] and the signals that we obtain after applying kTDSEP again
to y[t]. The numbers at the foot of the bars are the indices of the corre-
sponding signals in y[t]. The seven left-most bars indicate the sought-after
sources.

sources (and they are distorted as well). Their correlations with the true sources are
below 0.82 (corr(ylin2 , s1) = 0.7805, corr(ylin1 , s2) = 0.7415, corr(ylin3 , s3) = 0.6663,
corr(ylin4 , s4) = 0.7481, corr(ylin5 , s5) = 0.7550, corr(ylin6 , s6) = 0.5929, corr(ylin7 , s7) =
0.8130).

For kTDSEP, we apply k-means clustering to 500 randomly chosen input vectors
and obtain d = 40 vectors v1, . . . , v40. The mapped signals Φ(x[t]) in the feature space
(induced by a Gaussian RBF kernel k(a, b) = exp(−‖a− b‖2)) are projected onto the
images of those 40 vectors. Applying TDSEP (with time-shifts τ = 0 . . . 30) to those re-
sulting 40 signals Ψx[t] and using the selection procedure described in Section 5.3.2 (see
Figure 5.18), we find the seven sought-after sources. Those seven nonlinearly demixed
signals not only have high correlations with the true sources (corr(y1, s1) = 0.9432,
corr(y6, s2) = 0.9496, corr(y24, s1) = 0.9394, corr(y16, s2) = 0.9218, corr(y5, s1) =
0.9508, corr(y22, s2) = 0.9142, corr(y4, s1) = 0.9402), also their waveforms match the
true sources very well (see right panels of Figure 5.19).

Note that the complexity of the algorithm depends mostly on the choice of d.
I.e. even to demix seven nonlinearly mixed sources the most time-consuming part
of the algorithm is to simultaneously diagonalize 31 time-shifted covariance matrices
of size 40× 40 which can be done very fast [25]. On a 600 MHz Pentium Laptop the
Matlab calculation for this experiment with seven sources took less than 6 minutes.
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Figure 5.19: More than two sources: Waveforms of (upper left and right) the nonlinear
mixture and the nonlinear demixing and of (lower left and right) linear
demixing and the true source signals.
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5.5 Summary

Our approach to the nonlinear ICA problem presented in this chapter combines three
interesting ideas: kernel feature spaces, techniques for dimensionality reduction and
blind source separation. The first two enable us to construct an orthonormal basis
of the low-dimensional subspace in kernel feature space F where the data lies. This
technique establishes a isomorphism (that preserves the scalar product) between the
image of the data points in F and a d-dimensional space <d. Moreover, we can acquire
knowledge about the intrinsic dimension of the data manifold in F from the learning
process.

In our formulation we approach the problem of nonlinear ICA from the viewpoint
of kernel-based learning. The proposed kTDSEP algorithm allows to unmix arbitrary
invertible nonlinear mixtures at low computational costs. The key to unmix difficult
nonlinearities are the time correlations exploited by our algorithm via TDSEP. Intu-
itively speaking, the time structure provides the glue that yields the coherence for the
separated signals.

[8] considered recently a further interesting application of kernel-based methods.
However, in contrast to our algorithm that provides a nonlinear separation, Bach and
Jordan’s work is dealing with linear ICA and use the kernel trick in order to obtain a
clever approximation of the mutual information.

Experiments on artificially generated signals and various audio signals, also with
more than two sources, show the validity of our approach.
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6 Synopsis

In this thesis we present new algorithms for extensions of classical ICA: for reliability
assessment and grouping of independent components, for robust and overcomplete
ICA, and for nonlinear ICA.

Reliability assessment of independent components is a concept that helps practition-
ers to interpret their results obtained from off-the-shelf ICA toolboxes. The important
question is whether the calculated independent components reflect some meaningful
underlying statistical structure of the data set or whether they are purely random.
For certain ICA implementations this question has been answered by methods for re-
liability assessment based on bootstrap-resampling [71, 70, 67]. We have generalized
these concepts based on the fundamental assumptions of classical ICA (Chapter 2
and designed a new method that applies to any ICA algorithm, because we view the
chosen ICA method simply as a black box that is plugged into our noise-injection
scheme (Chapter 3). The key idea of noise injection is to partially destroy the statis-
tical structure of the extracted independent components by carefully adding Gaussian
noise. Hereby we fade out the statistical structure in a controlled manner that allows
us to analyze how the initial independent components are affected. This way we can
estimate their reliability and also their grouping behavior.

Classical ICA algorithms are often sensitive to outliers. We presented a new ICA
algorithm for super-Gaussian sources that is based on an index for outlier detection
that uses nearest neighbor methods. The crucial idea is that the outlier index is
not employed to remove outliers but instead directly to find inliers—the data points in
the most concentrated regions—which represent the ICA directions for super-Gaussian
source signals. Our inlier-based approach is by construction robust against outliers and
applies naturally to the overcomplete ICA problem, in which there are more sources
than sensors. In particular, our algorithm has the advantage that it does not optimize
some cost function but instead it defines the columns of the mixing matrix in terms
of some derived indices. Thus it can not get stuck into local minima and it has a
fixed running time. A comparison of our new method with classical ICA algorithms
in terms of robustness and a comprehensive empirical analysis of its performance with
respect to dimensionality, number of sources and number of data points—underlines
its key advantages.

Nonlinear ICA tries to unmix nonlinearly mixed signals, hereby finding a simple rep-
resentation. We presented a kernel-based algorithm for nonlinear ICA that uses kernel
feature spaces to approximate the nonlinearities. We empirically showed that apply-
ing linear ICA based on time structure implicitly in the resulting high-dimensional
spaces can unmix strongly nonlinear mixtures. The main ingredient was a dimension-
ality reduction technique that made the application of ICA methods computationally
and numerically tractable. Experiments demonstrated the excellent performance and
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6 Synopsis

efficiency of our algorithm for several problems of nonlinear ICA.
Besides the representation of complicated time-series like industrial process data

(see [97, 50]) there are more applications of nonlinear ICA conceivable, for example in
the fields of telecommunications, array processing, vision and biomedical data analysis
if the linear model does not hold. A particular interesting application of nonlinear
ICA is the separation of nonlinearly mixed images which is a practical problem since
it can appear in modern copy machines with thin paper [3].

An important direction for future research is to extend the kernel-approach to non-
linear ICA that is applicable to data without time structure. Such a method would
allow us to perform density estimation in high dimensions because it would reduce
the high-dimensional density estimation problem to several one-dimensional density
estimation problems.
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A Appendix: omitted proofs and
lemmata

A.1 Whitening (also called sphering)

Let x be an n-dimensional random vector with PDF px and zero mean,

Ex x =

∫

x p(x) dx = 0. (A.1)

If the entries of x are uncorrelated and have variance one, the covariance matrix of x
equals the identity matrix I,

Cx := Ex xx
> =

∫

xx>p(x) dx = I. (A.2)

In that case we call x white.
Suppose x is not white. The problem of whitening is to find a matrix B, such that

the linearly transformed random variable Bx is white. In practice we are given T data
points x[1], . . . , x[T ] that are IID according to px. View this data as an n× T matrix
X = [x[1], . . . , x[T ]]. The sample covariance matrix is obtained from the covariance
matrix above by replacing the integration by a finite sum,

Ĉx :=
1

T − 1

T
∑

t=1

x[t]x[t]> =
1

T − 1
XX>. (A.3)

For non-white data, this matrix is not the identity, usually not even diagonal. In
order to whiten we have to find a matrix B such the transformed data is white, i.e. its
covariance matrix is the identity,

ĈBx =
1

T − 1
BX (BX)> = BĈxB

> = I. (A.4)

This problem can be solved with the eigendecomposition of Ĉx,

ĈxV = V Λ, (A.5)

with V being an orthonormal matrix (i.e. V >V = V V > = I) of the eigenvectors (as
columns) and Λ = diag(λ1, . . . , λn) being a diagonal matrix with the corresponding
eigenvalues along the diagonal. Then we can show that the matrix

B := Λ−1/2V >, (A.6)
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whitens x,

ĈBx = B ĈxB
> = Λ−1/2V >Ĉx V Λ−1/2 = Λ−1/2 V >V ΛΛ−1/2 = I (A.7)

(for the third equality use Equation (A.5)). This whitening method is called principal
component analysis (PCA). However, there are many other whitening matrices: let R
be an orthonormal matrix (also called a rotation matrix; as before RR> = R>R = I).
Then also the matrix RB whitens the data,

ĈRBx = RB ĈxB
>R> = RIR> = I. (A.8)

We see that whitened data stays white under orthonormal transformations. Also the
converse is true: suppose x is white and R is any matrix, such that also Rx is white,

R ĈxR
> = RIR> = RR> = I = R>R (A.9)

(for the last equation recall that the right-inverse of squared matrices is also the left-
inverse). We see that R must be a rotation (an orthonormal matrix). This is important
for the ICA problem: the sources S are uncorrelated since they are statistically inde-
pendent. Because of the scaling und permutation invariance of ICA we can assume
without loss of generality that the sources are white. So we see that after whitening the
observed data X, the remaining transformation to recover the sources remains a rota-
tion. This fact is used by many ICA algorithms that use whitening as a preprocessing
step.

Note that whitening uses only properties of the PDF pX of the data matrix that
are also present in the average marginal PDF px. For example time structure is not
relevant for whitening. Nonetheless we call X white if the corresponding average
marginal x is white.

A.2 Density of a transformation

Let x be a n-dimensional vector distributed according to px and A be an n×n-matrix.
The linearly transformed vector y = Ax is then distributed according to

py(y) = |detA| px(Ax). (A.10)

This can be proved using the substitution rule for integrals (see for example [102]).
In the case of X and Y being n × T matrices the situation is slightly different.

Assume X is distributed according to pX . Let vecX be the nT -dimensional vector
that contains the stacked columns ofX, analogously vecY . For the vectorized matrices
the relation X = AY can be written as

vecX =







A 0
. . .

0 A






vecY. (A.11)
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Noting pX(X) = pvecX(vecX), analogously for Y , Equation (A.10) implies

pY (Y ) = pvecY (vecY ) = |detA|T pvecX(vecAY ) = |detA|T pY (AY ). (A.12)

Note that T is the number of columns of X and Y and not the transpose operator,
which is >.

A.3 Connection between likelihood and KLD

The connection between the likelihood L(A, θ) = qX(X;A, θ) and the KLD between
the true PDF of X and the PDF implied by the model can be seen by taking the ex-
pectation with respect to the true PDF of X, denoted by pX , of the negative logarithm
of the likelihood:

−EX logL(A, θ) =

∫

pX(X) log
1

qX(X;A, θ)
dX

=

∫

pX(X) log
pX(X)

qX(X;A, θ)pX(X)
dX

=

∫

pX(X) log
pX(X)

qX(X;A, θ)
dX + h(pX)

= D(pX‖qX) + h(pX). (A.13)

The third equality uses the differential entropy of X with respect to its true density
function pX , defined as h(pX) := −

∫

pX(X) log pX(X) dX. Finally, the fourth equal-
ity uses the definition of the KLD, D(p‖q) :=

∫

p(X) log(p(X)/q(X)) dX. We see that
maximizing the likelihood is equivalent to minimizing the mismatch between the true
and the modeled PDF.

The KLD between pX and qX can be rewritten as the KLD between the true PDF
of Y = A−1X and qS :

D(pX‖qX) =

∫

pX(X) log
pX(X)

qX(X;A, θ)
dX

=

∫

pX(AY ) log
pX(AY )

qX(AY ;A, θ)
|detA|T dY

=

∫

pY (Y )

|detA|T log
pY (Y ) |detA|T
|detA|T qS(Y )

|detA|T dY

=

∫

pY (Y ) log
pY (Y )

qS(Y )
dY

= D(pY ‖qS). (A.14)

The second equality substitutes X = AY using the substitution rule for integrals.
The third equality employs pX(X) = pY (Y )/|detA|T (see Equation (A.12)) and the
definition of the likelihood.
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A.4 Invariance of the KLD under invertible
transformations

Let pX and qX be two (possibly different) distributions of X. Let T be some linear
transformation, X = T (Y ) = AY , then we have pY (Y ) = |detA|T pX(AY ) and
qY (Y ) = |detA|T qX(AY ). These identities imply

D(pX‖qX) =

∫

pX(X) log
pX(X)

qX(X)
dX

=

∫

pX(AY ) log
pX(AY )

qX(AY )
|detA|T dX

=

∫

pY (Y )

|detA|T log
pY (Y )|detA|T
|detA|T qY (Y )

|detA|T dY

=

∫

pY (Y ) log
pY (Y )

qY (Y )
dY

= D(pY ‖qY ). (A.15)

which is almost identical to the second derivation in the last section. For general
invertible transformation X = T (Y ) replace |detA|T with the determinant of the
Jacobian of T at T−1(X).

A.5 Decomposing the mutual information

The mutual information can be decomposed as follows:

I(y1, . . . , yn) =
1

T
D(pGY ‖pG∩IY )

=
1

T

∫

pGY (Y ) log
pGY (Y )

pG∩IY (Y )
dY

= − 1

T

∫

pGY (Y ) log pG∩IY (Y ) dY +
1

T

∫

pGY (Y ) log pGY (Y ) dY

= − 1

T

∫ T
∏

t′=1

py(Y:t′) log
T
∏

t=1

n
∏

j=1

pyj (Yjt) dY −
1

T
h(pGY )

= − 1

T

T
∑

t=1

n
∑

j=1

∫ T
∏

t′=1

py(Y:t′) log pyj (Yjt) dY −
1

T

(

h(pGX)− log |detA|T
)

= −
n
∑

j=1

∫

py(Y:t) log pyj (Yjt) dY −
1

T
h

(

T
∏

t=1

px

)

+ log |detA|

=





n
∑

j=1

h(pyj )



− h(px) + log |detA| (A.16)
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with h(px) being the entropy of the PDF of the columns of X (averaged along the
rows, see Equation (2.15)).

A.6 Jacobian and Hessian matrices of a matrix-valued
matrix function

We follow the notation of [64]: for an m×p matrix-valued function that takes an n×q
matrix argument,

φ : <n×q → <m×p (A.17)

the Jacobian matrix of φ at X is the mp× nq matrix

Dφ(X) =
∂ vecφ(X)

∂(vecX)>
, (A.18)

with vecX being the vectorized matrix X, i.e. an nq× 1 column vector containing the
stacked columns of X. The Hessian matrix of φ at X is the mnpq × nq matrix

Hφ(X) = D(Dφ(X))> =
∂ vecDφ(X)

∂(vecX)>
. (A.19)

Applying these notions to a real-valued function that takes an n × T matrix as its
argument,

φ : <n×T → <, (A.20)

the Taylor expansion (assuming that Z has small entries, and therefore omitting higher-
order terms) reads

φ(X + Z) ≈ φ(X) + Dφ(X) vec(Z) + (vec(Z))>Hφ(X) vec(Z), (A.21)

where the Jacobian matrix Dφ(X) is an 1 × nT matrix (i.e. a row vector) and the
Hessian matrix Hφ(X) is an nT × nT matrix.

A.7 Approximating the data manifold in feature space

For a polynomial kernel,
k(a, b) = (a>b+ c)p, (A.22)

the feature space is finite-dimensional. For example, for homogeneous kernels, i.e. c =
0, the dimensionality can be calculated by the formula

(n+ p− 1)!

p!(n− 1)!
(A.23)

with n being the dimensionality of the mixed signals (taken from [72]). For instance at
n = 3 and for a polynomial kernel of degree p = 5 the feature space is 21-dimensional
which can also be seen by plotting the largest eigenvalues of the corresponding kernel
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Figure A.1: The largest eigenvalues of the kernel matrix on a logarithmic scale: on
the left for polynomial kernel of degree 5, on the right for Gaussian RBF
kernel.

matrix (see Figure A.1, left panel). We clearly see the gap between the 21st and the
remaining eigenvalues which should actually be zero1. Obviously, in this case we can
fulfill Equation (5.2) with d = 21. For a Gaussian RBF kernel,

k(a, b) = e−‖a−b‖2 , (A.24)

the feature space is infinite-dimensional. However, T data points are always contained
in a T -dimensional subspace—the one spanned by the mapped points themselves—but
since the corresponding eigenvalues are decaying exponentially fast (see Figure A.1,
right panel), the data in feature space can be approximated very well with a much
lower-dimensional subspace (for more detailed discussions on this issue see [103, 8]).
Therefore, we can approximate Equation (5.2) for suitable d.

1Those eigenvalues occur non-zero for numerical reasons.
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