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Summary

The interaction between neuronal cells can be identified as the computing mechanism of
the brain. Neurons are complex cells with a rich dynamics. However, they do not operate
in isolation, but constantly exchange information through modulation of the emission of
action potentials and formation of synchronous ensembles. By jointly increasing their fir-
ing rate, groups of neurons compute sensorial information more reliably than single cells
individually. However, there is strong evidence that also the precise timing (i.e. in the
millisecond scale) of action potentials emitted by different neurons plays a major role.
This mechanism has been shown to explain e.g. stimulus expectancy. Time dependencies
(referred to as correlations) between neurons seem to be a key mechanism for information
processing. This challenging hypothesis predicts that assemblies of synchronized neurons
may ultimately explain brain functions at all levels.

In order to answer the challenging question of how the brain computes, a fundamental
methodological step is constituted by recording large sets of single neurons in parallel.
Techniques that allow this task, such as arrays of extracellular electrodes, have become
available in the last couple of decades, and are meanwhile widely employed. They allow
the simultaneous recording of tens to hundreds of neurons. Such technological improve-
ments yet need to be accompanied by analogous advancements in the pre-processing of
the large volumes of acquired data and in data analysis techniques. Major issues in the
analysis of correlation between multiple parallel recordings involve the correct isolation
and identification of individual neurons –a procedure referred to as spike sorting. Spike
sorting is a fundamental step in the treatment of extracellular electrophysiological data,
however it is subject to errors whose effects are poorly studied. Another important issue is
the availability of distributions for assessing statistical significance. Making assumptions
on the statistics of spike trains requires long recordings and repeated measurements, but
neurophysiological data often do not fulfill these requirements. Algorithms are used for
creating surrogate distributions by selectively destroying some features of the data while
preserving their main structure. However the effectiveness of algorithms in generating
surrogates yet needs to be ultimately established.

In this dissertation I present my theoretical work that approaches these problems by
answering the following questions: how is the correlation analysis of multiple neuronal
processes affected by spike sorting errors? What kind of strategies can be followed to
reduce the drawbacks of spike sorting and obtain more reliable results? How effective are
methods for generating surrogate data in destroying correlations? The two complemen-
tary strategies I followed are both founded on the manipulation of point processes under
rigorous analytical control. In an extensive study I modeled the effect of spike sorting on
correlated spike trains by corrupting them with realistic failures. Analytical expressions
were derived to compare the outcomes of two different correlation analyses on the original
and on the corrupted processes. The statistical model of spike sorting errors I propose is
of general application, and can be used to evaluate and improve other data analysis meth-
ods. In another study I investigated the effectiveness of methods for creating surrogate
distributions for statistical significance. These methods destroy correlations in the data
by displacing coincident spikes around their original position (referred to as dithering).
I contrasted different strategies of spike dithering (namely dithering 1 or both neurons)



against two established methods of counting coincident patterns: by partitioning the tem-
poral axis in disjunct bins (Disjunct Binning), and by integrating the coincidence count
over multiple relative shifts of the spike trains (Multiple Shift).

My results show that coincidence patterns of multiple parallel spike trains are severely
affected by spike sorting. Synchronization analyses underestimate in most cases the under-
lying correlation due to spike sorting errors. This holds true even when only false positive
errors –i.e. spikes assigned to a neuron although they belong to other neurons or they
are noise artifacts– affect the data. However, false negative errors –i.e. erroneously un- or
mis-classified spikes– have a more severe impact on the significance than false positive er-
rors. This result suggests that sorting strategies characterized by classifying only “good”
spikes (conservative strategies) are prone to more inaccurate estimations than “tolerant”
strategies. Furthermore, the effectiveness of spike dithering in creating surrogate data
strongly depends on the dithering method and on the method of counting coincidences. I
provide analytical expressions of the probability of coincidence detection after dithering.
These expressions reduce to simple closed forms for the case where the dithering window
equals the coincidence detection window. Under these constraints I derived limit values
for the effectiveness of dithering in destroying correlations. The intuition that in such a
case the 50% of the coincidences are destroyed is confirmed only for the case of 1-neuron
dithering and disjunct binning. For 2-neuron dithering and the multiple shift method only
less than 25% of coincidences can be destroyed, while 2-neuron dithering with disjunct
binning achieves the best results with ∼ 60% of the coincidences destroyed.

This work provides new insights into the methodologies to identify correlations in large-
scale neuronal recordings and to evaluate their statistical significance. The rigorous con-
clusions of this work provide practical guidelines for the study of synchrony as a computing
mechanism of the brain.



Zusammenfassung

Die Informationsverarbeitung im Gehirn erfolgt maßgeblich durch interaktive Prozesse
von Nervenzellen. Nervenzellen zeigen eine komplexe Dynamik ihrer chemischen und elek-
trischen Eigenschaften. Die Informationsweiterleitung erfolgt jedoch nicht aufgrund des
Wirkens isolierter Neurone, sondern als Ergebnis der Interaktion vieler Neurone durch den
Austausch von elektrischen Aktionspotentialen, den sogenannten Spikes. Das Konzept
der Populationskodierung postuliert, dass Gruppen von Neuronen durch die simultane
Erhöhung ihrer Feuerraten sensorische Informationen mit weitaus höherer Geschwindigkeit
und Zuverlässigkeit übertragen und somit eine schnellere und tiefere Verarbeitung der In-
formationen ermöglichen. Es gibt aber auch deutliche Hinweise darauf, dass das Gehirn
eine zusätzliche Art der Informationskodierung nutzt. Nach der Theorie der zeitlich
präzisen Koordination von Aktionspotentialen unterschiedlicher Zellen im Gehirn formieren
sich funktionale Gruppen, sogenannte Zellverbände (cell assemblies), indem sie ihre Ak-
tionspotentiale mit einer sehr hohen zeitlichen Genauigkeit von nur wenigen Millisekunden
synchronisieren. So konnte z. B. empirisch gezeigt werden, dass dieser Mechanismus mit
dem Ereignis der einem Stimulus vorausgehende Erwartung in Zusammenhang steht. Die
zeitlich präzise Korrelation der Aktivität von Neuronen scheint also ein Schlüsselmecha-
nismus der Informationsverarbeitung zu sein. Aus diesem Befund lässt sich die Hypothese
ableiten, dass mit Hilfe von Gruppen synchronisierter Neurone letztlich die Funktionsweise
des Gehirns auf allen Ebenen erklärt werden kann.

Um die schwierige Frage nach der genauen Funktionsweise des Gehirns zu beantworten, ist
es daher notwendig, die Aktivität vieler Neuronen gleichzeitig zu messen. Die technischen
Voraussetzungen hierfür sind in den letzten Jahrzehnten geschaffen worden, insbesondere
durch die Entwicklung und Optimierung von elektrophysiologischen Meßmethoden, z. B.
Multielektrodensyteme, die heute eine breite Anwendung finden. Sie ermöglichen die
simultane extrazelluläre Ableitung von bis zu mehreren hunderten Kanälen. Diese tech-
nologischen Entwicklungen stellen aber auch neue Anforderungen an die Vorverarbeitung
der enorm gewachsenen Datenmengen und erfordern die Entwicklung völlig neuer Date-
nanalysetechniken. Die Voraussetzung für die Korrelationsanalyse von vielen parallelen
Messungen ist zunächst die korrekte Erkennung und Zuordnung der Aktionspotentiale
einzelner Neurone, sogenannter single units, ein Verfahren, das als Spikesortierung (spike
sorting) bezeichnet wird. Die Spikesortierung stellt einen fundamentalen Schritt der weit-
eren statistischen Datenauswertung dar. Gleichwohl sind die hierfür verwendeten Meth-
oden bekanntermassen anfällig für Fehler, deren Auswirkungen auf die Genauigkeit der
auf ihnen aufbauenden Korrelationsanalysen nur wenig untersucht sind. Eine weitere
Herausforderung ist die statistisch korrekte Bewertung von empirisch beobachteten Kor-
relationen. Für die Signfikanzabschätzung werden gute Modelle für die zufallsbasiert zu
erwartenden Verteilungen von Korrelationen benötigt. Hierzu werden künstliche Daten
erzeugt, sogenannte Surrogatdaten, in denen bestimmte statistische Eigenschaften gezielt
zerstört werden, während andere erhalten bleiben. Allerdings ist die Effektifität dieser
Methode bislang kaum untersucht.

Mit dieser Dissertationsschrift lege ich eine theoretische Arbeit vor, die sich der Vorver-
arbeitung der Daten durch Spikesortierung und ihrem Einfluss auf die Genauigkeit der
statistischen Auswertungsverfahren sowie der Effektivität zur Erstellung von Surrogar-



daten für die statistische Signifikanzabschätzung auf Korrelationen widmet. Insbesondere
stelle ich folgende Fragen: Wie wird die Korrelationsanalyse von multi-variaten neu-
ronalen Punktprozessen durch Spikesortierung beeinflusst? Welche Strategien können
zur Reduzierung der Nachteile von Spikesortierung aufgezeigt werden, um damit zu-
verlässligere Ergebnisse zu erhalten? Wie effektiv sind Surrogatmethoden zur geziel-
ten Zerstörung von Korrelationen? Ich verwende hier zwei komplementäre Strategien,
die beide auf der analytischen Berechnung von Punktprozessmanipulationen basieren.
In einer ausführlichen Studie haben ich den Effekt von Spikesortierung in mit realistis-
chen Fehlern behafteten korrelierten Spikefolgen modeliert. Zum Vergleich der Ergebnisse
zweier unterschiedlicher Methoden zur Korrelationsanalyse auf den gestörten, sowie auf
den ungestörten Prozessen, leitete ich die entsprechenden analytischen Formeln her. Ich
präsentiere ein statistisches Modell von Spikesortierungsfehlern, das zur generellen An-
wendung geeignet ist und daher auch zur Auswertung und Verbesserung von weiteren
Methoden der Datenanalyse genutzt werden kann. In einer weiteren Studie untersuchte
ich die Effektivität einer Surrogatmethode, das sogenannte Dithering, welches paarweise
Korrelationen zerstört, in dem es koinzidente Spikes von ihrer ursprünglichen Position
in einem kleinen Zeitfenster verrückt. Ich vergleiche hierzu zwei verschiedene Strategien
von Dithering: die sogenannte Ein-Neuron-Dithermethode, in dem nur die Spikes eines
der beiden Neurone zeitlich verschoben werden, und die Zwei-Neuronen-Dithermethode,
wobei die Spikefolgen beider Neurone manipuliert werden. Anschließend werden auf jede
der beiden Methoden zwei verschiedene Arten der Koinzidenzzählung angewendet: Bei der
ersten wird die zeitliche Achse in disjunkte Zeitsegmente unterteilt (Disjunct Binning).
Die zweite Methode (Multiple Shift Methode) basiert auf der Ermittlung der Anzahl der
Koinzidenzen über mehrfache relative Verschiebungen der Spikefolgen untereinander.

Meine Ergebnisse zeigen, dass koinzidente Aktivitätsmuster multipler Spikefolgen durch
Spikeklassifikation erheblich beeinflusst werden. Das ist der Fall, wenn Neuronen nur
fälschlicherweise Spikes zugeordnet werden, obwohl diese anderen Neuron zugehörig sind
oder Rauschartefakte sind (falsch positive Fehler). Jedoch haben falsch-negative Fehler
(fälschlicherweise nicht-klassifizierte oder missklassifizierte Spikes) einen weitaus grösseren
Einfluss auf die Signifikanz der Korrelationen. Dieses Ergebnis zeigt, dass eine konser-
vative Klassifizierung (hohe Signifikanzschwelle für eine Zuordnung zu einem Neuron)
zu einer ungenaueren Abschätzung führt als tolerante Strategien (niedrige Signifikanzss-
chwelle). Weiterhin zeige ich, dass die Effektivität von Spike-Dithering zur Erzeugung
von Surrogatdaten sowohl von der Dithermethode als auch von der Methode zur Koinzi-
denzzählung abhängt. Für die Wahrscheinlichkeit der Koinzidenzerkennung nach dem
Dithern stelle ich analytische Formeln zur Verfügung. Für den Spezialfall, in der die
Größe des Ditherfensters sich mit der des Koinzidenzdetektionsfensters deckt, reduzieren
sich die Gleichungen zu einfachen, geschlossenen Formen. Unter dieser Bedingung erhält
man Grenzwerte für die Effektivität des Ditherns zur Korrelationszerstörung. Die intu-
itive Annahme, dass dabei 50 % der Koinzidenzen zerstört werden, gilt auschließlich für
die Ein-Neuronen-Dither-Methode mit disjunkten Zeitsegmenten. Beim Zwei-Neuronen-
Dithern mit der Multiple Shift Methode können nur weniger als 25 % der Koinzidenzen
zerstört werden, wohingegend das Zwei-Neuronen-Dithern mit disjunkten Zeitsegmenten
das beste Ergebnis erzielte (∼ 60%).



Die vorliegende Arbeit bietet neue Einblicke in die Methoden zur Korrelationsanalyse
auf multi-variaten Punktprozessen mit einer genauen Untersuchung von unterschiedlichen
statistischen Einsflüssen auf die Signifikanzabschätzung. Für die praktische Anwendung
ergeben sich Leitlinien für den Umgang mit Daten zur Synchronizitätsanalyse.
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Roadmap

Here is a concise description of the content of each of the sections of this dissertation. Its
first part (Sections 1-5) is a review of the current status of theories and methodologies
that deal with the investigation of neuronal synchrony. The second part of this dissertation
(Sections 6-8) reproduce the publications that constitute my contribution to the topic.

In Section 1 the concept of neuronal correlation is introduced and embedded in the
framework of the experimental results. They show evidence of synchronization of neurons
in a millisecond time scale. Current hypotheses are discussed. It is concluded that in
order to test these hypotheses it is crucial to record the activity of large portions of the
network simultaneously.

Section 2 and 3 give an overview of the current status of the techniques for recording
multiple neurons in parallel (Sec. 2) and for extracting single units activity from the
recordings (referred to as spike sorting, Sec. 3). The most common approaches and
algorithms for spike sorting are reviewed, together with the related problems and the
type of errors that can affect their outcomes. It is concluded that current techniques
urgently need to be supported by advancements in the methods for handling the data
and for correlation analysis. Major issues are in particular the correct identification of
the activity of single neurons and the assessment of the significance of correlation.

Sections 4 and 5 introduce the statistical tools for spike train correlation analysis. The
mathematical formalism of point processes is presented (Sec. 4), and methods for mea-
suring correlations between multiple spike trains are explained (Sec. 5). Further methods
for assessing statistical significance based on surrogate distributions are introduced as well.

In Sections 6-8 two aspects in close relation are investigated: the relationship between
pre-processing of multi-unit recordings and measuring synchrony and the issue of estimat-
ing the statistical significance of the synchrony. My work on the modification of multiple
spike trains with a statistical model of sorting errors in order to study analytically the
effects on different correlation methods is presented in Sections 6 and 7. Section 8 is a
rigorous study of the effectiveness of different algorithms in creating appropriate surrogate
data for assessing statistical significance.



Antonio Pazienti 1 NEURONAL CORRELATIONS

1 Neuronal Correlations

A neuronal cell, or neuron, is the elementary computing unit of the central nervous system.
Neurons do not act in isolation, but rather it is the network composed by the neurons
which is responsible for information processing (Abeles, 1991; Eggermont, 1990; Buzsáki
and Draguhn, 2004). Communication exchange between neurons takes place by way of
emission of action potentials (or spikes) that travel through the network. Many functions
of neuronal networks are well known. They include e.g. the processing of sensory input,
the storing and accessing of memory, and the motor output control. However, structure
and dynamical properties of such networks need yet to be uncovered.

Groups of neurons are able to jointly increase their frequency of spike emission in
order to undertake a task. Mountcastle (1957) introduced after his observations in the
somato-sensory cortex the concept of cortical columns, i.e. vertically arranged and heavily
interconnected groups of cells spreading all six layers of cortex. Comparable observations
were made by Hubel and Wiesel (1968), who showed that in primary visual cortex a
large proportion of the neurons belonging to a cortical column increases its firing rate
in association with a particular property of the presented visual stimulus (referred to as
preferred stimulus), e.g. to the the angle of inclination of a bar in the receptive field.
Furthermore, spatially adjacent columns are tuned to complementary orientations, such
that within ∼ 1mm a complete representation of all orientations in the visual field is built
up (orientation map). Another example of the coding performed by groups of neurons
is the so-called population vector, introduced by Georgopoulos et al. (1986). Here single
neurons in motor cortex, whose spiking activity was shown to be broadly enhanced for
movements in different directions, when considered in combination, i.e. when the response
of the population is taken, “predict” the actual direction of movement with much higher
accuracy.

However, there is emerging evidence that populations of neurons are also able to
synchronize their activity in a millisecond time scale and that synchrony plays a role in
the information processing. In the work of Riehle et al. (1997) correlations between pairs
of simultaneously recorded neurons in primary motor cortex of monkeys were observed
to occur in a time scale of 1− 5 ms in relation with signal expectancy and during epochs
in which the firing rate did not show any significant modulation. As a consequence of
these and other results, synchrony was interpreted to be related to internal (i.e. not
behaviorally relevant) information computing (see e.g. Engel et al., 2001). It has also
been proposed that synchrony is a relevant mechanism for another computational task,
the so-called binding problem, i.e. the issue in vision theories of perceiving elementary
distinct parts as belonging to the same object. According to this assumption, neurons are
able to synchronize in a context-dependent way, such that subset of correlated neurons
represent different object features at different points in time (Singer et al., 1997; Shadlen
and Movshon, 1999). Since a neuron may participate in several correlated groups at once,
this mechanism offers the advantage to allow perceptual grouping of features in a very
time-efficient fashion.

However the role of neuronal correlations and whether they represent a complementary
computing mechanism independent of the modulation of the firing rate is still a matter of
debate (see discussion in Sec. 2 on the related topic of analyzing simultaneous recordings
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Antonio Pazienti 1 NEURONAL CORRELATIONS

of many neurons). Many authors debated the concept of cell assembly, postulated by D.
Hebb as a group of

[...] association-area cells which can act briefly as a closed system after stimu-
lation has ceased; this prolongs the time during which the structural changes
of learning can occur and constitutes the simplest instance of a representative
process (image or idea) (Hebb, 1949, Ch. 4. See also Harris, 2005; Gerstein
et al., 1989; Singer et al., 1997).

According to von der Malsburg (1981) “a cell assembly is a set of neurons cross-connected
such that the whole set is brought to become simultaneously active upon activation of
appropriate subsets which have to be sufficiently similar to the assembly to single it
out from overlapping others”. This idea implies that an assembly is constituted by a
population of neurons that can be “ignited” by some sufficient spatio-temporal input
and only then acts as a functional unit. Indeed, the common view of cell assemblies is
that, in contrast with the cortical columns in visual and neuronal populations in motor
cortex, where correlated populations are anatomically (i.e. topographically) well defined,
the neurons participating in an assembly are not necessarily spatially co-localized in the
brain. Instead, they join their activity in a function-dependent fashion to achieve the
required computational task (referred to as functional connectivity, Vaadia et al., 1995).

A broad scenario proposed by Abeles (1991) embeds the postulation of cell assembly in
the concept of synfire chains. Starting with the observation that neurons are connected
by converging and diverging pathways, the author proposed the existence of chains of
groups (sets) of neurons as a computing mechanism of the brain. Each set is composed
of serially connected neurons, and each neuron belonging to a set branch out its synapses
to a large number of neurons in the next set of the chain and receive many connections
from neurons in the previous set. When one set is ignited by an external stimulus, the
whole chain becomes active, processes the stimulus and eventually produces an outcome.

The compelling ideas discussed in this section are still matter of experimental and theo-
retical research in computational neuroscience. The central goal is to gain knowledge of
the brain mechanisms for information processing. The sections 2-5 of this dissertation are
devoted to illustrate how this task is being approached.

13
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2 Multi-unit recordings of neuronal activity

Recording from every neuron in the bran is an unreasonable goal. On the
other hand, recording from statistically representative samples of identified
neurons from several local areas while minimally interfering with brain activity
is feasible with currently available and emerging technologies and indeed is a
high-priority goal in system neuroscience (Buzsáki, 2004).

Neurons have shown to synchronize in the millisecond time scale in relation to ex-
perimental protocols (see e.g. Riehle et al., 1997). However, the actual mechanisms of
the synchronization of large neural networks have yet to be identified. The only way to
detect the signature of these mechanisms is to record simultaneously the activity of many
neurons. Indeed, environment and internal brain processes condition the brain status and
modify it in an uncontrollable way during experiments, making the traditional practice
of measuring a single cell and pooling over different trials unjustified.

The activity of a neuron can be exactly monitored by recording it intracellularly, i.e. by
inserting a glass micropipette into the cell soma and measuring differentially the potential
inside and outside the cell’s membrane. However, recording intracellularly is hard to
achieve in vivo (i.e. with awake animals) and for long recording sessions. Furthermore,
extending this technique for collecting the activity of populations of neurons is difficult,
and might even be not feasible. Extracellular recording techniques offer the advantage of
allowing i) more stable recordings in vivo without the risk of “losing” the signal and ii)
the simultaneous recording of several cells in the surroundings (multi-unit recordings).

Figure 1: Schematic representation of extracellular recordings setup (from Lewicki, 1998)

The extracellular electrode consist typically of an electrically isolated wire, ending with
a tip of variable size (of the order of tens of µm). When action potentials are generated
and/or traverse axons or dendrites, the electrical fields generated in the extracellular
medium are detected. Exact shape and size of the tip determine the volume the electrode
records from. Due to the high density of the neurons (especially in the neocortex, see e.g.
Abeles, 1991) up to tens of neurons can be “perceived” from a single electrode. When

14
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action potentials are emitted by cells located in the close vicinity of the electrode tip a
clear modulation of the field is observed, whereas the amplitude of spikes generated in
neurons more distant from the recording site decreases with their distance, eventually
contributing to the “noisiness” of the signal. This latter, due also to measurement noise
and amplification stages, appears indeed quite noisy and is characterized by a complex
frequency spectrum. The identification of individual neurons and the classification of the
spikes are a technical challenge that requires a first data processing step, referred to as
spike sorting (see Sec. 3).

Another advantage offered by recording extracellularly is the possibility of using more
than one electrode at the same time, thus minimizing also damage of the tissue. Such
arrays of electrodes are meanwhile in use in many laboratories, and multi-unit recordings
of up to one hundred neurons can be relatively easily performed. In a typical experimental
setup the inter-electrode distance is of the order of ∼ 100µm. As the field generated by one
neuron is assumed, given typical tip impedances, not to be detectable by two different
electrodes located at this distance, individual wires of a multi-electrode array record
different (groups of) cells that can be as far as a few millimeters away from each other.
This technique allows to record e.g. a horizontal portion of the cortex (two dimensional
arrays), or at different depths spanning all cortical layers (laminar recordings).

An issue that arises when recording with extracellular electrodes, especially when a low
impedance allows to detect a large number of cells, is that spikes from different neurons
may have a similar shape. To alleviate this problem one may use electrodes composed of
several wires bundled together, referred to as multi-trodes. The most common examples
are stereo-trodes (two recording tips) and tetrodes (four tips). The advantage in this case
is that the different tips, being very close to each other, detect the fields of the same
neurons, however from slightly different spatial positions. The redundant information ob-
tained this way can be exploited for classifying spikes with similar shape more accurately.
Finally, it is also possible to distribute multi-trodes in arrays and combine the advantages
of multi-electrode recordings with good spike sorting performances.

We have seen in this section that it is now possible to record populations of neurons large
enough to constitute a representative sample of the entire network. The next section
describes the pre-processing stage needed to extract and store the activity of the different
neurons from the multi-unit recordings.

15
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3 Spike sorting

Spike sorting is a necessary step for those, who aim at reconstructing the activity of
multiple single neurons from multi-unit extracellular recordings (Lewicki, 1998). Due to
the difficulty of this task, the specificities of different brain areas, and although electrode
arrays provide recordings of large numbers of cells (see previous section) and big amounts
of data have to be processed per recording session, there is no standard way of perform-
ing spike sorting. Its outcomes are often sorter-dependent and hard to compare and/or
reproduce (Harris et al., 2000). In this section we will provide a brief overview of the
main approaches to spike sorting and comment on some of the issues experimenters have
to deal with.

3.1 Supervised spike sorting

Spike sorting typically consists of two stages: first, spike waveforms originating from differ-
ent neurons are identified and separated from the background extracellular noise; second,
spikes are classified, i.e. assigned to putative neurons. The fundamental assumptions in
spike sorting is that the shape of the spikes from a particular neuron is stationary (i.e.
does not change in time), and that spikes from different neurons have different shapes.
This is motivated by the fact that the spatial orientation and/or the distances of different
detected neurons are different. This task requires computer algorithms and visualization
software as well as human supervision. A variety of algorithms are meanwhile available
for spike sorting (see e.g. Lewicki (1998) for the most recent review). The choice of
the best algorithm for this problem depends on a number of factors, e.g. the electrode
type, the brain area, the cell type of interest, etc. Additional constraints for sorting
methods are reasonable computation time, available hard-disk space, compatibility with
the electrophysiological setup and software, and finally also the intended subsequent data
analysis.

i) Spike identification

Every electrode provides as output an analog signal, which is amplified, filtered and A/D
converted. The filtering stage separates spiking waveform from low-frequency activity
(referred to as local field potential), assumed to be the signature of sub-threshold mem-
brane activity of populations of cells. The high frequency signal (typically in the band
300-500 up to 5000-10000 Hz) is referred to as spike waveform. Spikes originating in neu-
rons located near the electrode are more likely to have a good signal-to-noise ratio. These
are detected by setting a (more or less) heuristic threshold and cutting a region of the
waveform around the point where the threshold is crossed. Methods for quality controls
of spike identification will be discussed in Sec. 3.3.2.

ii) Spike classification

The following sections will introduce the most common techniques for spike classification.
For seek of clarity we discussed them separately, however many algorithms consist actually
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of a combinations of algorithms. Sec. 3.2 is reserved to the illustration of the emerging
field of automatic spike sorting.

Template matching

An alternative method to thresholding algorithms is to define a spike template for each
neuron on the basis of the available data and to compare potential spikes with this tem-
plate, collecting the spikes whose shape is similar enough to the template (allowing some
uncertainty). Definition of several templates allows to simultaneously identify and classify
spikes to different putative neurons. This technique is quite computationally efficient, and
can be performed on-line for maximal time save. A popular package is provided by the
company Alpha Omega1 (see e.g. Bar-Gad et al., 2003).

Feature extraction and cluster analysis

The most basic signature of a spike is its amplitude. However, other shape features can be
measured and used for classification. Typical examples are the peak-to-trough distance
and the peak width. By collecting, say, K features for every identified spike, and plotting
them on the cartesian space where each axis represents one feature one obtains for every
spike a point in a K-dimensional space.

Figure 2: Schematic representation of feature extraction from a spike waveform. Blue: spike;
green: examples of features.

Similar spikes (i.e. from the same neuron) will result in neighboring clusters of dots,
and algorithms may then be used to i) identify the number of neurons (given by the
number of separable clusters) and ii) assign the spikes to the corresponding neuron class
(see e.g. Harris et al., 2000). For low-dimensional projections of the feature space, cluster
separation may be done by eye inspection, but typically better results are achieved by us-
ing the complete high-dimensionality and running algorithms. Indeed, cluster separation
analysis is a standard technique in statistics, and a variety of supervised or unsupervised
algorithms are available (Daley and Vere-Jones, 2003). Software packages containing
scripts and tools for analyzing neuronal data are e.g. MClust2, Klusters3 (Hazan et al.,

1www.alphaomega-eng.com
2web.ahc.umn.edu/∼redish/mclust/
3klusters.sourceforge.net. This is part of a bigger package containing also NeuroScope (neuro-

scope.sourceforge.net) and NDManager (ndmanager.sourceforge.net).
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2006), Wave Clus4 (Quian Quiroga et al., 2004). They are all available under the GNU
license and include spike pre-classification routines and the possibility of interaction by
the sorter for refining the results.

A drawback of sorting by feature classification techniques is that they are sensible to
outliers, in particular to overlapping spikes (see Sec. 3.3). Indeed the result of the overlap
of, say, two spikes contributes as only one point in the feature space, which in addition is
likely to be located outside of the clusters; thus it will either be discarded or –in the best
case– assigned to one neuron only (and not to both).

Principal component analysis

Principal component analysis (PCA) is an analysis of variance of a multi-dimensional set
of random variables. The analysis works in the following way. If time is divided into
consecutive bins each spike occupies, say, r bins5. Defining Ai as the spike amplitude
in bin i, PCA considers the r random variables A1, A2, ..., Ar. As spikes from different
neurons have different shapes, the variables A1, A2, ..., Ar will have some variability. PCA
calculates the variance of the data in the r-dimensional space of the variables, individuates
the directions of maximal variance, and organize them in a descending order; the first
PC is the direction where the data vary the most, whereas the last PC points in the
direction where data set shows the least variance. This basically corresponds to make a
linear transformation of the coordinates and project in the new axes given by the PCs.
Principal component analysis is useful to reduce the high dimensionality of the data to
few components that explains most of the spike shape variability. Practically only the first
couple of PCs are kept and used as features for clustering analyses. PCA is typically more
effective than using as features merely geometrical attributes of the spikes. Often PCA
and feature extraction are combined to provide clustering algorithms as much information
as possible.

3.2 Automatic spike sorting

Improvements of the standard (and time-consuming) methods of spike sorting were mo-
tivated e.g. to make unsupervised classification and to sort in real-time, i.e. during data
acquisition. This is particularly useful in case of huge amounts of data, when large arrays
of independent electrodes are used. Algorithms were proposed e.g. by Quian Quiroga
et al. (2004); Bar-Hillel et al. (2006); Horton et al. (2007).

Independent Component Analysis

Independent Component Analysis (ICA) is a statistical method originally introduced to
solve the so-called blind source separation problem. In the context of spike sorting it
is suitable to handle data recorded with tetrodes or multi-trodes (Hyvärinen and Oja,
2000). The assumption is that neurons are independent sources emitting signals that
(linearly) mix together into each of the electrode tips. Exploiting the information given

4vis.caltech.edu/∼rodri/Wave clus/Wave clus home.htm
5If the bin width was 1 ms the value of r would be given by the length of the spike in ms times the

sampling frequency.
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by the combination of the multiple tips, one can separate back the contribution of each
source. Let us say that the four tips of a tetrode record the signals x1(t), x2(t), x3(t), x4(t),
resulting from the linear superposition of four neurons (sources) s1(t), s2(t), s3(t), s4(t),

xi =
4∑
j=1

aijsj , i = 1, ..., 4 . (1)

ICA algorithms find the linear combination of the signals xi(t) that “de-correlates” the
most the signals si(t), de facto inverting (1). The outcomes of ICA are temporal traces that
should represent the activity of the individual neurons. Advantages of this analysis are i)
the efficiency in terms of time (being unsupervised) and ii) the possibility to discriminate
overlapping spikes. Limitations are on the other hand that i) no more neurons than tips
can be identified and ii) the assumption of neurons being statistically independent may
be considered unrealistic.

3.3 Major issues

One major problem in spike sorting is the overlap between spikes from different neurons.
In order to get a basic intuition of the problem, Fig. 3 shows an “exercise” where two real
spikes waveforms were summed up with all possible relative time delays. As it can be seen,
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Figure 3: Overlaps of two experimental spikes with different lags (data courtesy of Uli Eggert).
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in many cases the sum is again spike-shaped with very similar features; in other cases,
the overlap is a bimodal shape of small amplitude. Overlapping spikes are presumably
one of the major sources of spike sorting failures. Some attempts to specifically address
this problem were made by Pouzat et al. (2002); Zhang et al. (2004); Wang et al. (2006).

Another major issue is the variability of the spike shape over time (Fee et al., 1996;
Quirk and Wilson, 1999; Harris et al., 2000). This can be due to intrinsic signal variability,
during the occurrences of bursts of spikes, or because the electrode drifts in long recording
sessions. Efforts to cope with this problem were made e.g. by Pouzat et al. (2004) and
Bar-Hillel et al. (2006).

3.3.1 Spike sorting errors

In both spike sorting stages of spike identification and classification failures are committed.
Sorting errors can be categorized into two classes, false negative type (FN) and false
positive type (FP) errors. Taking the perspective of a particular neuron, a false positive
spike is a spike which is assigned to the neuron despite having originated in some other
neuron or being simply noise. Conversely, a false negative spike was actually emitted by
the neuron but successively unclassified (i.e. discarded) or misclassified. A few studies
have quantified the amount of errors introduced by sorting. Wehr et al. (1999) and Harris
et al. (2000) made use of simultaneous intracellular and extracellular recordings in vivo
(from adult locust and rat hippocampus, respectively) and compared the outcome of spike
sorting with the real activity of the neurons. They reported average error rates of 6.2%
for FPs and 15.9% for FNs (Harris et al., 2000), and 3.5% for FPs and 2.8% for FNs
(Wehr et al., 1999). In another study, Wood et al. (2004) estimated error rates of 23%
FPs and 30% FNs based on simulated data.

3.3.2 Sorting quality measures

Each experimenter develops his/her own criteria to defend himself from sorting errors.
However there are some standard tests that are commonly being done. One of them is to
look at the inter-spike interval (ISI) histogram of the sorted neurons (cf. Sec. 4.1), i.e.
at the distribution of interval lengths between successive spikes. Neurophysiology says
that the firing of a neuron is prevented immediately after the emission of a spike (referred
to as refractory period, typically 1 − 5 ms); this implies that if the neuron is correctly
identified each ISI histogram should display no spikes for very short intervals. If this is
not the case, a sorter may consider to review the spike classification. Another common
test is provided by the autocorrelation function, i.e. the cross-correlation of a spike train
with itself (see Sec. 5.1). If the the analysis of the autocorrelation shows that a spike
tends to be followed by another spike at a certain delay, the hypothesis is considered that
the spike train actually contains spikes from two different neurons (which have a delayed
correlation, e.g. they are synaptically connected) and possibly the spike sorting should
be reexamined.

Over the last years several more objective quality controls of spike sorting have been
proposed. Schmitzer-Torbert et al. (2005) have introduced two measures, Lratio and Iso-
lation Distance, with the aim of allowing comparability of results of spike sorting across
laboratories. According to their simulations and application to real data the value of the
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Lratio tends to correlate with FN errors, whereas the Isolation Distance value with FPs.
These measures may thus be useful to get hints about the amount of committed errors.
Pouzat et al. (2002) have proposed several tests for assessing the quality of sorting, espe-
cially in terms of the separation of different clusters. Another measure of the goodness
of clustering, the Figure of Merit, was recently introduced by Smith and Mtetwa (2007);
it depends on both FN and FP failures and allows an objective quality assessment under
controlled conditions.

In conclusion, the correct identification and classification of action potentials from extra-
cellular recordings is a fundamental stage of data pre-processing, however still subject to
failures that affect the outcomes. Improvements in spike sorting techniques and estima-
tion of the influence of errors on data analysis are still an open field of research. In the
next section we will introduce the mathematical formalism used to represent spike trains,
in order to prepare the ground for the correlation analysis of multiple neurons.
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4 Spike trains and point processes

Neurons convey information through trains of spikes. As we have seen in the previous
section, even spikes from the same neuron may display variability in shape; however, they
are typically assumed to be identical. In such a view, spike trains can be represented using
only the time of spike occurrence, i.e. as point processes. A train of n action potentials
occurring in a time window (0, T ] is thus defined by the the times ti with i = 1, ..., n. The
spike sequence can be seen as a sum of infinitesimally narrow Dirac δ functions (Dayan
and Abbott, 2001)

ρ(t) =
n∑
i=1

δ(t− ti) , (2)

where ρ(t) is the neural response function. The number of spikes occurring in the time
window (0, T ], also called spike count, is the integral of ρ(t) up to time T ,

T∫
0

ρ(τ)dτ = n . (3)

Because the neuronal response is not identical from trial to trial, it has to be treated
probabilistically. We will refer to the time varying firing rate λ(t) for some small time
window ∆t as the number of spikes occurring between the times t and t + ∆t averaged
over many trials (with identical stimulus) and divided by ∆t,

λ(t) =
1

∆t

t+∆t∫
t

〈ρ(τ)〉dτ , (4)

where 〈·〉 represents the trial average. λ(t) is therefore the average number of spikes
occurring within [t,∆t]. If this window is small enough so that at most one spike can occur,
λ(t) represents also the fraction of the trials containing a spike in this time interval. The
probability of firing in the time interval ∆t follows from (4) and is defined as p(t) = λ(t)∆t.
If the probability of firing at any instant of time is known the activity of the neuron is
then completely determined. However, often this probability cannot be exactly derived
experimentally, and needs to be estimated. When the spiking process can be reasonably
assumed to be stationary in time the average firing rate λ is used,

λ =
1

T

T∫
0

〈ρ(τ)〉dτ . (5)

We will refer to this quantity indifferently with the symbols λ or simply λ (without explicit
time dependence) and to the stationary probability of firing as λ∆t = p.

As we mentioned it is convenient to treat spike trains probabilistically, that is to
consider the firing activity of neurons a stochastic process with associated rate λ(t).
A point process is a stochastic process which generates series of events, such as action
potentials. In general the probability of occurrence of an event may depend on the history
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of the process - i.e. on the times of all preceding events. In such a case, in order to
characterize the process it is necessary to know the probability of occurrence of events for
all times between the origin of the process and its end.

However, it is often methodologically convenient to make hypotheses on the process
that, if finally accepted, would allow the use of well-known statistical tools. If for example
the occurrence of an event depends only on the timing from the preceding event, the
process is called renewal process (Cox and Lewis, 1966). If in addition the occurrence of
each event is statistically independent of the occurrence of any other events in the history,
the process is a Poisson process. Renewal –and in particular Poisson– processes are often
very reasonable approximations of the spike trains. We will review in the following sections
some of their properties.

4.1 Renewal processes

Consider the sequence of events xk, k = 0, ..., n and the corresponding times of occurrence
tk, ordered such that tk > tk−1 and t0 = 0. Let us call Ik the time interval between two
consecutive events xk and xk−1, Ik = tk − tk−1 where now k = 1, ..., n. The process is
called renewal if the random variables Ik are independently and identically distributed.
We also define the survivor function R(t) as the probability for an interval to last longer
than t,

R(t) = Prob(Ik > t) , (6)

whereas F (t) and f(t) are the probability distribution and density function of the intervals,
respectively. The following relations apply:

R(t) = 1− F (t) =

∞∫
t

f(τ)dτ (7)

f(t) =
dF

dt
=
dS

dt
. (8)

Thus f(t)dt represents the probability for the length of an interval to be within t and
t+ dt. Commonly used is also the so-called hazard function z(t), defined such that z(t)dt
is the conditional probability for an interval to be at the same time longer than t and
terminate between t and dt,

z(t) =
f(t)

R(t)
=

d

dt
[logR(t)] = − d

dt
{log [1− F (t)]} . (9)

Examples of stationary renewal processes

The Weibull, gamma and log normal distributions are defined respectively by
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z(t) = βλtβ−1 with R(t) = e−λt
β

(λ > 0, β > 0) (10)

f(t) =
λαtα−1e−λt

Γ(α)
with α, λ > 0 (11)

f(t) =
e−[(log t−µ)/σ]2/2

σt
√

2π
, (12)

where Γ(α) =
∫∞

0
tα−1e−tdt is the gamma function. Especially the class of gamma pro-

cesses is often used to model spike train intervals. In fact, the Poisson process (see next
section) is a special case of gamma process for α = 1. The parameters (λ, α) in (11) allow
to model the rate and also the regularity of the process. For α > 1 the process is more
regular than the Poisson process; that is by increasing α the intervals become more and
more of uniform length. On the contrary, for α < 1 the process increases its irregularity.
The mean and variance of the interval distribution are respectively

〈Ik〉 =

∞∫
0

t
λαtα−1e−λt

Γ(α)
dt =

α

λ
(13)

σ2
I =

∞∫
0

t2
λαtα−1e−λt

Γ(α)
dt− α2

λ2
=

α

λ2
, (14)

where 〈·〉 in this case the time average. One advantage of the gamma process (11) as
compared to Poisson in modeling neurons is that the parameters can be chosen such
that the probability of short intervals is almost zero; this is an elegant way to model the
refractory period of real neurons.

4.2 Homogeneous poisson process

As discussed, in renewal processes the intervals Ik between events are independently and
identically distributed. That is the occurrence of an event xk is dependent only on the time
since the previous (and only the previous) event xk−1. When in addition the occurrence
of an event is independent of the occurrence of any other previous events the process is
called Poisson process. We will consider here homogeneous Poisson processes. Survivor
function, probability distribution, probability density function and hazard function of the
intervals for a stationary Poisson process are respectively

R(t) = e−λt (15)

F (t) = 1− e−λt (16)

f(t) = λe−λt (17)

z(t) = λ , (18)
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where t > 0. In a Poisson process the inter-event intervals follow the exponential distri-
bution (16), and the hazard function is a constant. The mean and variance of the interval
distributions are respectively

〈Ik〉 =

∞∫
0

λte−λtdt =
1

λ
(19)

σ2
I =

∞∫
0

λt2e−λtdt− 1

λ2
=

1

λ2
, (20)

It can be shown that the distribution of number of events ni occurring in time windows
(ai, bi], i = 1, ..., K follows the Poisson distribution

P (ni) =
K∏
i=1

[λ(bi − ai)]ni

ni!
· e−λ(bi−ai) , (21)

where ai < bi ≤ ai+1, that is the time windows are disjoint. Eq. 21 is an alternative
definition of a Poisson process as counting process. It embodies also some important
features of Poisson processes:

i) the number of events in each finite interval (ai, bi] has a Poisson distribution;

ii) the number of events in disjoint intervals are independent random variables;

iii) the distribution of number of events is stationary and depends only on the length
of the intervals bi − ai.

Consequence of Eq. 21 is that the mean and the variance of the number of events n
occurring in an interval (a, b] are identical,

E[n] = λ(b− a) = Var(n) ; (22)

the parameter λ can be thus interpreted as the mean rate of the process. Another conse-
quence is that for the time window (0, t] the probability of having no events is P (0) = e−λt.
This can be seen as the probability of an interval between events to extend for a length
t, i.e. the survivor function of the process R(t) (cf. Eq. 15).

The inter-spike interval (ISI) probability density function (17) of a homogeneous Pois-
son process is a exponential function of time. That is the most likely intervals are short
ones, and long intervals have a probability that falls exponentially as a function of their
duration. Looking at the ISI distribution (of a stationary process) is a straightforward
test to determine if the Poisson hypothesis can be accepted.

A feature of Poisson processes is that their superposition is again a Poisson process
(Cox, 1962). The same holds true also when the inverse operation is performed, the so-
called thinning, consisting in randomly removing spikes from a Poisson process. However,
recent studies showed that the superposition of spike trains generally does not result in a
Poisson process (Lindner, 2006; Câteau and Reyes, 2006).
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4.3 Variability measures of point processes

We briefly introduce in the following two of the statistical measures that can be used
to characterize the variability of point processes. They can be used e.g. for evaluating
whether or not an experimental spike train can be modeled by the Poisson process.

The first measure is the index of dispersion, or Fano Factor FF (Fano, 1947). It is
defined as the ratio between the variance and the mean of the spike count,

FF =
Var(n)

E[n]
. (23)

For a homogeneous Poisson process this takes the value 1, independently of the counting
time T . For deviations of FF from the value 1 the process is either more regular or more
irregular than Poisson. Similar considerations, but for interval variability, apply to the
coefficient of variation CV defined as

C2
V =

σ2
I

〈Ik〉2
, (24)

where, again, for homogeneous Poisson processes C2
V = 1. The coefficient of variation C2

V

is a measure of the interval variability in the observation time T , and for non stationary
processes can capture the interval variability in short periods of time within the trial.
The Fano Factor instead quantifies the variability of the counts across trials. However,
these two measure are not independent: variability of intervals affects also variability of
counts. For stationary renewal processes and the limit of long observation time it holds
in particular

C2
V = FF (25)

A deviation from this equality indicates deviation from the hypothesis of stationary re-
newal processes (Nawrot et al., 2007).

In conclusion, the theory of point processes provides a rigorous framework to model neu-
ral activity. In the next section I will introduce statistical measures that, using this
framework, allow to quantify the correlations between neurons.
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5 Characterizing neuronal correlations

The signature of the activity of single neurons is the sequence of the spike waveforms. To
conveniently visualize the activity of multiple units recorded in parallel the dot display is
widely used (Fig. 4, see Eggermont, 1990). In this representation each row contains the
activity of one neuron, and for each spike a tick mark indicates the point in time at which
the spike occurred. Thus, the shape information of individual spikes is discarded (cf. Sec.
3.3) and the neuronal activity is treated as the outcome of a point process (cf. Sec. 4).
The dot display gives a convenient overview of the firing rate modulations and of the

Figure 4: Dot display (courtesy from Nawrot, 2003).

synchronous activity of the whole set of neurons. Although the identification of trends in
the joint activity involving several cells is in principle possible by visual inspection, this
is often a hard task. Indeed, patterns of coincidences can be “hidden” in the dot display,
especially when the units involved are not graphically adjacent. Therefore, to identify
the correlated activity of multiple neurons a number of methods were developed. In this
section we will briefly review some of the relevant ones (Brown et al., 2004).

5.1 Cross-correlation function

If ρi,j(t) is the neural response function of neurons i, j = 1, ..., n (Eq. 2), the raw cross-
correlation function (Perkel et al., 1967a,b) is defined as

CCF raw
i,j (τ) =

1

T

T∫
0

ρi(t) · ρj(t− τ)dt , (26)

and is a function of the time delay τ between the occurrence of spikes on the first and on
the second spike train. Let us now discretize the time axis into disjoint bins and represent
each spike train as a sequence of zeros (no spike in the bin) and ones (one or more
spikes in the bin). The raw CCF can be then computed by counting the synchronous
spikes between neurons i and j (delay τ = 0), then shift the spike train j of one bin
with respect of the spike train i and count again all synchronous spikes (τ = 1) and
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so on, for positive and negative values of τ up to a certain maximal value. The cross-
correlation histogram, obtained by plotting the number of spikes occurring for each value
of τ , provides information about the exact as well as the delayed joint-firing between
two neurons. If the two processes are firing in an uncorrelated manner the histogram
will result flat. Copious epochs of coincident firing will result instead in the central peak
(τ = 0). If neuron j tends to fire t? ms after neuron i the cross-correlation histogram will
present a peak at the bin that includes the time t?.

It is possible to correct the raw CCF for the individual activity of the neurons by
subtracting the product of the average firing rates. For stationary processes

CCFi,j(τ) = CCF raw
i,j (τ)− λi · λj

=
1

T

T∫
0

(ρi(t)− λi)(ρj(t− τ)− λj)dt , (27)

which also corresponds to the covariance of the processes. Thus, if the processes are
statistically independent the CCF will be randomly distributed around zero. By dividing
the value of the CCF at lag τ = 0 by the product of the standard deviations of the
processes one obtains the cross-correlation coefficient,

CCi,j =
CCFi,j(0)

σi · σj
, (28)

a standard measure of the deviation of the covariation from the null-hypothesis of inde-
pendence.

5.2 Joint Peri-Stimulus Time Histogram

The cross-correlation function does not allow investigation of the time dynamics of corre-
lated firing during the experimental task. For this purpose the JointPSTH was proposed
(Aertsen et al., 1989). The basic idea is to combine cross-correlation and Peri Stimulus
Time Histogram (PSTH), a standard tool that estimates the average firing rate of one
neuron. The PSTH is constructed by counting and summing up the spikes occurring at
each instant of time over different trials of the same experiment. Indeed it is commonly
assumed that by repeating an experiment with identical external stimulus the response
of the neurons can be averaged.

The JointPSTH is a scatter diagram, in which the position of each dot (x, y) displays
the joint spike count at time x from stimulus onset for neuron 1 and y for neuron 2.
The JointPSTH appears thus as a two dimensional “matrix” and contains information
about joint firing between the neurons at any delay. Various ways of normalizing the
JointPSTH were proposed (Aertsen et al., 1989; Ventura et al., 2005), e.g. by subtracting
the product of the average firing rate and divide the result by the standard deviations
of the processes. This avoids artifactual peaks of correlation due to the individual firing
rates, and represents a test of the null-hypothesis of independent firing.
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5.3 Unitary events

Unitary event analysis (UE) measures the significance of joint-spike events occurring
amongst multiple, simultaneously recorded neurons (Grün et al., 2002a,b). When their
synchronization exceeds the chance level by a significant amount, the coincident pat-
terns are called unitary events. UE analysis evaluates the significance based on the
null-hypothesis of independent firing. Having N binned processes, a pattern vξ(t) of
complexity degree ξ is defined as the N -dimensional vector of zeros and ones representing
the firing/not firing activity at time t. The complexity ξ refers to the number of syn-
chronous spikes, and for the ith neuron vξi = 1 for a spike and vξi = 0 for no spike. In the
case of Poisson and statistically independent spike trains, the probability distribution of
the number of patterns can be analytically derived and equals the binomial distribution.
For spike trains deviating from Poisson or non-stationary methods for correction have
been suggested (Grün et al., 2003b; Pipa et al., 2003; Pipa and Grün, 2003). Here we
briefly introduce UE analysis for stationary and Poissonian spike trains, i.e. the situation
described in (Grün et al., 2002a,b). Under the null-hypothesis of statistically independent
firing of the neurons, the probability of a pattern vξ is

Pvξ =
N∏
i=1

P (vξi ) (29)

P (vξi ) =

{
P (vξi = 1) if vξi = 1

1− P (vξi = 1) if vξi = 0

The probability distribution for the pattern vξ to occur exactly m times can be approxi-
mated, for number of bins T and Pvξ such that Pvξ ·T stays finite, by a Poisson distribution
(for a derivation see Grün et al., 2002a):

ψ(n;Pvξ ;T ) =
(PvξT )n

n!
· e−PvξT . (30)

The mean defines the expected number of coincidences x(ξ,N) = Pvξ ·T . Methodologically,
the empirical number of coincidences n(ξ,N) is compared to the corresponding predicted
value x(ξ,N) using the distribution (30). Significant deviations from the expected value
are estimated by the joint-p-value, obtained through the cumulative probability of having
n(ξ,N) or more coincident events (see Grün et al., 2002a for details) The significance
is expressed as a non-linear (log-)transformation of the joint-p-value Ψ, resulting in the
significance measure given by the joint surprise

js(Ψξ) = jsξ (n(ξ,N)|x(ξ,N)) = log
1−Ψξ

Ψξ

, (31)

with

Ψξ (n(ξ,N)|x(ξ,N)) =
∞∑

m=n(ξ,N)

[x(ξ,N)]m

m!
e−x(ξ,N) . (32)

When the value of jsξ exceeds an a priori threshold jsα the synchronization is considered
significant.
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Unlike the cross-correlation function and the JointPSTH, unitary event analysis allows
study of correlation of complexity higher than two. However, a critic to this method is that
the null-hypothesis of statistical independence is not necessarily justified when estimating
higher-order correlations (see e.g. discussion in Brown et al., 2004).

5.4 Likelihood methods

Likelihood methods aim to estimate unknown parameters of the processes based on the
observed outcomes. These methods are based on maximum likelihood estimation of the
free parameters of experimental neuronal activities based on a probability model. If the
probability model is a good approximation of the processes, likelihood methods represent
the optimal way of solving the problem (Brown et al., 2004). Examples of use of these
methods to analyze neuronal data are available in the literature (Brillinger, 1988; Kass
and Ventura, 2001). The key point of this approach is to define a model that accurately
represents the spike trains, and to design efficient algorithms for fitting.

5.5 Information theory

We briefly mention that measures like entropy and mutual information, which offer the
chance to investigate the information processing of the brain and are used in analysis of
neuronal data. One example is the study by Reich et al. (2001).

5.6 Significance estimation through surrogate data

Statistical measures of neuronal data require hypotheses for assessing significance that
are often hard to formulate without knowledge of the underlying processes. One widely
used approach to circumvent this difficulty is to create distributions of “surrogate data”
obtained with the method of the bootstrap (Efron and Tibshirami, 1993). Let us say that
we have n independent observations (x1, x2, ..., xn) = x originating from the unknown
distribution F : F → x and want to estimate a statistic of the distribution η = s(F ). An
estimate of the statistic η is obtained by applying it on the observations x1, x2, ..., xn, i.e.
η̂ = s(x). A bootstrap sample x? = (x?1, x

?
2, ..., x

?
n) is obtained by randomly sampling n

times, with replacement, from the original data points x1, x2, ..., xn. If F̂ is the empirical
distribution of F , the bootstrap sample x? is defined as a random sample drawn from F̂ ,
F → x?. The bootstrap replication of the statistic η is obtained from the bootstrap sample,
η̂? = s(x?). The bootstrap algorithm generates a large set of independent bootstrap
samples x?1, x

?
2, ..., x

?
B, each of size n, where B is typically of the order of hundreds to

thousands. This procedure allows to obtain the estimate F̂ of the true distribution F .
Bootstrap methods are made possible via the use of computers, and have the advantage
to be very easy to implement.

In the handling of neuronal data, these methods are very useful for assessing confidence
intervals to the experimental estimate η̂, that is to associate to η̂ an estimate of its stan-
dard error σ̂ without having to make hypotheses about the true distribution. Bootstrap
methods can be useful for example for assessing the significance of the synchronization
between the neurons when the data can not be reasonably assumed to follow a Poisson
distribution (Ventura et al., 2005).
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5.6.1 Permutation tests and spike dithering

A subclass of the bootstrap methods is the family of the permutation tests, introduced
in their theoretical form well before the modern computers by Sir Ronald Fisher in the
early 1920’s. Permutation tests are typically used for addressing the so-called two-sample
problem. Two independent sets of observations y1, y2, ..., yn and z1, z2, ..., zm are drawn
from different probability distributions F and G,

F → y = (y1, y2, ..., yn)

G → z = (z1, z2, ..., zn) .

We wish to test the null-hypothesis H0 of no difference between F and G,

H0 : F = G . (33)

If the hypothesis H0 is accepted the two distributions are identical, whereas if it is rejected
one can say that the two sets of observations y and z originate from two independent
distributions. This is a formal way of deciding whether or not the data decisively reject H0.
The permutation test takes a sample m and a sample n randomly from the combination
of the m+ n observations and compare the two novel sets. By repeating this many times
one infers about the difference between the two distributions.

To test the correlation between neurons the null-hypothesis H0 is that the observations
y arise from the activity of independent neurons. If one had then a set of observations
z that are known to be independent, a test of H0 would serve to accept or reject the
hypothesis of synchronization between the processes. An example for obtaining a distri-
bution like this is given by spike dithering. With this method the correlation structure
of the processes is destroyed while other features, like the rate profile, are maintained.
Dithering methods will be introduced in Sec. 8 (see also Gerstein, 2004).
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On the approach of manipulating

the spike train statistics

We have reviewed in the previous sections the state-of-the-art of theories and methodolo-
gies of investigation of neuronal correlations as the computing mechanism of the brain.
The remaining sections of this dissertation present my contribution to the topics. Two
studies address the issue of the influence of spike sorting on correlation methods. They
constitute the Sections 6 and 7. A third study deals with tools for statistical significance
evaluation in correlation analysis, and is reproduced in Section 8.

The common point of these studies is the approach of challenging established methods
of investigation with spike trains whose statistics was manipulated. Working in an ana-
lytical framework allowed me to rigorously test the methods with respect to their power,
their robustness and their limitations.

Note about section and equation numbering

In the following sections, for maximal conformity with both the published version of the manuscripts
and the structure and readability of this dissertation, I use a slightly different notation for numbering
subsections and formulae.

For subsection titles, the section number (assigned in this dissertation) is shown in square parentheses
and is followed by the number found in the published version of the manuscript. For example Sec. [6].2 is
the second section as found in the scientific journal, but belongs to the sixth section of this dissertation.
Similarly, for formulae the number as in the published version of the manuscript follows the section
number, i.e. Eq. 6.27.
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6 Robustness of the significance of spike synchrony

with respect to sorting errors

Antonio Pazienti and Sonja Grün

This section is published as

Pazienti A, Grün S (2006)

Robustness of the significance of spike synchrony with respect to sorting errors.

J Comput Neurosci 21(3): 329-342.

Abstract

The aim of spike sorting is to reconstruct single unit spike times from extracellu-
lar multi-unit recordings. Failure in the identification of a spike (false negative) or
assignment of a spike to a wrong unit (false positive) are typical examples of sorting
errors. Their influence on cross-correlation measures has been addressed and it has
been shown that correlation analysis of multi-unit signals may lead to incorrect
interpretations. We formulate a model to study the influence of sorting errors on
the significance of synchronized spikes, and thus are able to study if and how the
significance changes in case of imperfect sorting. Here we explore the case of two
simultaneously recorded neurons. Interestingly, a decrease in the significance is ob-
served in the presence of false positives, as well as for false negatives. Furthermore,
false negative errors reduce the significance of synchronized spikes more strongly
than false positives. Thus, conservative sorting strategies have a stronger tendency
to lead to a loss of the significance of synchronization. We demonstrate that a de-
tailed understanding of sorting techniques and their possible effects on subsequent
data analyses is important in order to rule out inconsistencies in the interpretation
of results.

[6].1 Introduction

In the field of electrophysiology, spike sorting is the procedure of extracting single unit
activity from a recorded extracellular “multi-unit” signal. Multiple single-unit recordings
offer the chance to detect assembly activities, and to identify the network composition
and functions. The spike sorting procedure typically consists of two stages: first, spike
waveforms originating from different neurons are identified and separated from the back-
ground “extra-cellular noise”, which is presumably composed of weaker neural signals
and measurement noise (Lewicki, 1998); second, spikes are then classified, i.e. assigned,
to putative neurons. Spike sorting failures may occur in any of these two stages.

A variety of techniques and algorithms are meanwhile available for spike sorting (see
e.g. Lewicki (1998) for the most recent review). The choice of the best algorithm for
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this problem depends on a number of factors, like e.g. the type electrode, the brain area,
the cell type of interest, etc. Additional constraints for sorting methods are reasonable
computation time, available hard-disk space, compatibility with the recording setup and
software, and finally also the intended subsequent data analysis. For offline sorting, stan-
dard approaches to the classification problem are cluster cutting in a feature space (see
e.g. Harris et al., 2000). Unsupervised (at least partially) statistical algorithms are avail-
able, such as independent component analysis (ICA, Hyvärinen and Oja, 2000) for multi-
trode (stereotrodes, tetrodes, etc) recordings, and superparamagnetic clustering (Quian
Quiroga et al., 2004) for independent multi-electrode recordings. For resolving more neu-
rons than available electrodes in the multi-trode, Takahashi et al. (2003a) suggested to
combine ICA and k-means clustering. However, also less sophisticated techniques, but
with the advantage of online applicability, like threshold crossing, window discrimination,
or multiple-point template-matching procedures are in use. Major problems in spike sort-
ing are the difficulty to resolve spikes from different neurons which overlap in time, and
the variability of the spike waveform (Fee et al., 1996; Quirk and Wilson, 1999; Harris
et al., 2000). A solution for spike sorting for the latter problem was suggested by Pouzat
et al. (2004), solutions for the problem of overlapping spikes had been suggested by Pouzat
et al. (2002) and Zhang et al. (2004).

As this wide interest in finding the “ultimate” algorithm suggests, there is not a
unique solution and all existing ones are subject to errors. Objective controls for sorting
quality have been proposed by Pouzat et al. (2002) and recently by Schmitzer-Torbert
et al. (2005), with the aim to allow for comparability of sorting results from the different
methods.

Sorting errors appear either as failures in the identification of spikes, or as assignments
of spikes to wrong units, referred to as false negative errors (FN) or false positive errors
(FP), respectively. Taking the perspective of a particular neuron, a false positive spike is
a spike which is assigned to that neuron despite having originated from another neuron or
from extra-cellular noise. Conversely, a false negative spike was emitted by the neuron and
successively unclassified or assigned to another neuron. A few studies have quantitatively
shown the amount of errors introduced by sorting. Wehr et al. (1999) and Harris et al.
(2000) made use of simultaneous intracellular and extracellular recordings in vivo (from
adult locust and rat hippocampus, respectively). They reported average error rates of
6.2% for FPs and 15.9% for FNs (Harris et al., 2000), and 3.5% for FPs and 2.8% for FNs
(Wehr et al., 1999). Wood et al. (2004) estimated average error rates of 23% FP and 30%
FN based on simulated data.

However, studies on how such errors affect subsequent analyses of these data are
surprisingly lacking. Bedenbaugh and Gerstein (1997) and Gerstein (2000) investigated
the consequences of unresolved spike trains on cross-correlation analysis, and found that
the correlation coefficients calculated between spike trains that contain wrongly assigned
spikes can be strongly biased, depending on the degree of mixing spike trains and also
depending on correlation structures between local and/or remote groups of neurons. In
contrast, Bar-Gad et al. (2001b) concentrated on the influence of correlated false negative
spikes on the cross-correlation analysis. They also found that the cross-correlation func-
tion can be heavily biased due to the errors. Quirk and Wilson (1999) showed for the case
of neuronal bursting activity that spikes occurring later in the burst may be assigned to
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another neuron due a change in its spike shapes. The cross-correlation analysis between
such neurons also revealed a strong bias by indicating artificial delayed coincidences.

Here we present a study that combines the occurrence of FN and FP sorting errors
and that evaluates their influence on unitary events (UE; Grün et al., 1999; Grün et al.,
2002a,b). UE analysis detects the presence of conspicuous spike coincidences in multiple
parallel spike recordings and evaluates their statistical significance. The UE method
enabled to study the relation between spike synchronization and behavioral events (Riehle
et al., 1997, 2000; Grün et al., 2002b) for the case of two simultaneously recorded neurons.

A brief introduction to the method is provided in Section [6].2.1. In Section [6].2.2
we introduce a simple statistical model for spike sorting errors, which allows us to study
how FP and FN errors influence the significance of joint-spike events, as well as the
measures entering the significance estimation (Section [6].3.1). On the basis of the derived
analytical expressions and numerical simulations, we demonstrate that the firing rates and
the number of coincidences (empirical as well as expected) may be increased or decreased
depending on the error rate combination, but the resulting significance is always reduced
irrespective of the error type. A rigorous analysis reveals that the origin of significance
reduction is different for the two error types. In Section [6].3.2 we illustrate that variation
of physiological parameters, such as firing rates of the neurons and their coincidence rate,
influence the resulting significance only weakly as compared to the error rates. Finally
we discuss our results and further steps (Section [6].4).

[6].2 Methods

[6].2.1 Unitary event analysis

Unitary event analysis, introduced by Grün et al. (2002a), measures the significance of
joint-spike events occurring amongst multiple, simultaneously recorded neurons. When
their synchronization exceeds the chance level by a significant amount, the coincident
patterns are called unitary events. UE analysis evaluates the significance based on the null-
hypothesis of independent firing. In the case of Poissonian spike trains, the probability
distribution of the number of coincident patterns can be analytically derived. For the case
of spike trains deviating from Poisson or non-stationary data we suggested methods for
correction (Grün et al., 2003b; Pipa et al., 2003; Pipa and Grün, 2003). Here we restrict
ourselves to the assumptions of stationary and Poissonian spike trains, i.e. the situation
described in Grün et al. (2002a), which we briefly introduce below.

Let us consider a stationary process (of rate λ) in the observed time window T con-
taining N = T/δ bins (with δ the bin width in seconds). The probability of neuron i to
fire within the time interval of bin size δ is

pi = λiδ , (6.1)

here for neurons i = 1, 2. Under the null-hypothesis of statistically independent firing of
the neurons, we derive the probability of joint-firing in one bin as P = p1 · p2. The proba-
bility distribution of the coincident events can be approximated by a Poisson distribution
(for a derivation see Grün et al., 2002a):
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ψ(n; pi;N) =
(npred)n

n!
· enpred , (6.2)

with npred being the expected number of coincidences, given the firing rates:

npred = p1p2N = λ1λ2δ
2N . (6.3)

The empirically found number of coincidences nemp is then compared to the predicted value
npred using the Poisson distribution (Eq. 7.31). Significant deviation from the expected
value is estimated by the joint-p-value, i.e. the cumulative probability of having nemp

or even more coincident events (gray area from nemp to ∞ under the probability density
curve in Fig. 5a, middle distribution). For better visibility of the relevant significance
values we express the significance as a non-linear (log-)transformation of the joint-p-value
Ψ, resulting in the significance measure ’joint-surprise’ js:

js(Ψ) = log
1−Ψ

Ψ
, (6.4)

with

Ψ (nemp|npred) =
∞∑

n=nemp

(npred)n

n!
e−npred . (6.5)

When the value of js exceeds an a priori threshold, e.g. 1% or 5%, the synchrony is
classified as significant.

[6].2.2 Statistical model of spike sorting errors

We shall now formulate a statistical model on how spike sorting errors may affect neuronal
spike trains. Given simultaneous spike trains of two neurons (Fig. 5b, top), we assume
a uniformly distributed probability for spikes to be missed as false negatives, or that
spikes may be added with uniform probability as false positives to the spike trains (for
illustration see Fig. 5b, bottom). Both error types are applied independently to each
neuron. Effectively we assume the neurons to be recorded from different electrodes, such
that neuronal activity of one neuron may only be registered at one electrode, and that
errors do not interact across electrodes. Thus, for a single neuron the different errors
are assumed to be applied independently, however excluding the unrealistic case that an
introduced FP spike is considered as FN.

Errors are expressed as fractions σ+
i for FPs and σ−i for FNs of the original firing rates

of neuron i = 1, 2. As a result, the firing rate of neuron i after sorting (λσi ) is the sum of
three terms, i.e. the original rate (λi), the FP rate and the FN rate:

λi −→ λσi = λi + λi · σ+
i − λi · σ−i = λi ·

(
1 + σ+

i − σ−i
)

. (6.6)

Thus sorting errors alter the original firing rates λi by contaminating the spike trains.
False negatives reduce the rate, whereas false positives enhance the rate, and they may
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Figure 5: (a) Probability density function of number of coincident events before and after spike
sorting. The distribution in the middle illustrates the density function for the original case
before sorting. Its mean npred is the expected number of coincidences based on the firing rates
of the original spike trains. The empirical number of coincidences nemp is shown to be higher
than expected, i.e. on the tail of the distribution. The black area represents the p-value for
significance estimation. The two gray distributions to the left and to the right, show examples
of coincidence distributions, whose mean nσpred is derived from the firing rates after sorting. The
distribution on the left mimicks the case of more FN errors than FP (σ+ < σ−), and the one on
the right the case for more FP than FN (σ+ > σ−). The number of coincidences after sorting
(nσemp) does not necessarily generate the same p-value (gray area) as nemp. (b) Sketch of the
spike sorting model. (Top) Original spiking activity of two neurons before sorting. Each time
a spike occurred is marked by a black line. (Bottom) The spike trains after having experienced
sorting errors. Black solid lines show the original and correctly classified spikes. Black dashed
spikes are missed (FNs), whereas gray spikes are falsely assigned (FPs). Marked coincidences
indicate all possible coincidence error types (FN and FP coincidences) entering the number of
coincidences after sorting (nσemp).
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compensate for equal error rates. Thus, the resulting firing rate after sorting may be
larger or smaller than the original rate depending on the relative contributions of errors.

In the following, the index σ will indicate a variable after sorting. For simplifying
reasons we define the variable σi for the combined influence of errors as:

σi = σ−i − σ+
i . (6.7)

Inserting Eq. 6.6 and using Eq. 6.7 in Eq. 6.1, we similarly get new values for the firing
probability per time bin:

pi −→ pσi = pi · (1 + σ+
i − σ−i ) = pi · (1− σi) . (6.8)

[6].2.3 Simulations

For understanding the influence of spike sorting errors on significance estimation by the
unitary events method, we make use of two approaches: analytical derivation and numer-
ical simulations. For the simulations we follow the approach introduced in Grün et al.
(1999). Neuronal spiking activities are realized as a combination of independent back-
ground activity and correlated spiking activities. The background activity is generated
as realizations of stationary Poisson processes with rate λ′i for each neuron i = 1, 2. Cor-
relations between the neurons are introduced by inserting coincident events of rate λc
simultaneously to both processes. Then the total rate of the neurons reads

λi = λc + λ′i, i = 1, 2 . (6.9)

As a result, each of the simultaneous spike trains contain intermixed independent
background spikes and correlated spikes. The consecutively applied sorting errors affect
spikes irrespective of their origin.

[6].3 Results

This section presents results for the expected and empirical number of coincidences after
sorting as functions of the unperturbed (“original”) values and of the error rates (Sections
[6].3.1.1 and [6].3.1.2) and under variation of physiological parameters, i.e. firing rates of
the neurons and degree of correlation (Sections [6].3.2.1 and [6].3.2.2). These results find
entry in the evaluation of the significance of joint-spike events. The influence of sorting
onto the latter is explored in Sections [6].3.1.3 and [6].3.2.3.

Analytical descriptions serve to derive the expected and empirical number of coinci-
dences after sorting given the original values and to evaluate their effects on the signifi-
cance. In addition, numerical simulations of simultaneous spike trains of controllable firing
rates and degree of correlation allow to study the influence of physiological parameters
on the various measures under sorting errors.
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Figure 6: Number of coincidences and resulting significance as a function of various combina-
tions of error rates. Number of expected (top row) and empirical (middle row) coincidences after
sorting and joint-surprise after sorting (bottom row), as a function of errors applied to neuron
1 (either FPs (σ+

1 ) or FNs (σ−1 )) in combination with different error types and rates applied
to neuron 2 (a-d, either FPs (σ+

2 ) or FNs (σ−2 )). (e) neuron 1 experiences the two different
types of errors, while neuron 2 is perfectly sorted (no errors). For each curve the second error
rate is constant. Curves for nσpred (top), nσemp (middle) and jsσ (bottom) with the same gray
level correspond to the same parameters. In each of the cases, only two error types (out of four
possible) are applied, the other two are set to zero. Crosses show the symmetrical cases where
the two applied errors are of equal absolute amount. Additional parameters are the same for all
cases and set to λ′1 = λ′2 = 20 Hz, λc = 2 Hz, T = 100 seconds, bin size δ = 1 ms.
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[6].3.1 Dependence on error rates

[6].3.1.1 Number of expected coincidences

In the following we derive the relation between the expected number of coincidences
before (npred, original value) and after sorting (nσpred). Their relation results directly
from the sorting model introduced in Section [6].2.2. By substituting in the expression
for the original expected number of coincidences (Eq. 7.15) the expression for the firing
probabilities after sorting (Eq. 6.8), we obtain for the expected number of coincidences
after sorting:

npred −→ nσpred = (1−σ1)p1 · (1−σ2)p2 ·N = npred ·
(
1 + σ+

1 − σ−1
)
·
(
1 + σ+

2 − σ−2
)

.
(6.10)

The expected number of coincidences after sorting nσpred is proportional to the expected
number of coincidences before sorting, multiplied by scaling factors that contains the error
rates σ+

i and σ−i . In Fig. 6 (top) it can be seen that the predicted number of coincidences
after sorting nσpred is an increasing function of σ+

1 and σ+
2 and a decreasing function of σ−1

and σ−2 . Thus, depending on their relative amounts, nσpred may be larger (for σ+
i > σ−i ,

i = 1, 2) or smaller than npred (for σ+
i < σ−i , i = 1, 2) as a direct consequence of the

sorting errors onto the firing rates (Eq. 6.6). This in turn leads to a different position of
the probability distribution used for significance estimation (cf. Fig. 5a).

[6].3.1.2 Number of empirical coincidences

The empirical number of coincidences after sorting is not a mere function of altered firing
rates as the expected number of coincidences, but is also a function of changes in the
number of joint-events across neurons. New coincidences may be created and/or deleted
by sorting:

nemp −→ nσemp = nemp − nFN + nFP . (6.11)

As illustrated in Fig. 5b (bottom) the number of coincidences deleted by false negative
spikes (nFN) may be composed by three contributions: spikes originally involved in coin-
cidences may be deleted from neuron 1, or from neuron 2, or simultaneously from both
neurons. This is expressed as:

nFN = nemp ·
[
σ−1
(
1− σ−2

)
+ σ−2

(
1− σ−1

)
+ σ−1 · σ−2

]
. (6.12)

On the other hand, wrongly assigned spikes may lead to false positive coincidences (nFP).
By inserting spikes either in one or in the other neuron at the very same time when
the corresponding other neuron contributes with an original spike, or inserting two false
positive spikes in the two neurons coincidently in time, new coincidences are created:

nFP = npred ·
[
σ+

1

(
1− σ−2

)
+ σ+

2

(
1− σ−1

)
+ σ+

1 · σ+
2

]
, (6.13)

(see appendix for a formal derivation of Equations 6.12 and 6.13). Inserting these ex-
pressions in Eq. 6.11 and rearranging the terms, leads to the following relation for the
empirical number of coincidences after sorting:

nσemp =
(
1− σ−1

) (
1− σ−2

)
· [nemp − npred]+

(
1 + σ+

1 − σ−1
) (

1 + σ+
2 − σ−2

)
·npred . (6.14)
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As a result, the empirical number of coincidences nσemp after sorting can be expressed
as a function of the original expected and empirical number of coincidences, multiplied
by factors containing the error rates. The first term consists of the difference of the
empirical and the expected number of coincidences, i.e. the original “excess” coincidences,
multiplied by a factor consisting of false negative errors only. The more false negatives
occur, the more the factor is deviating from 1 to smaller values in a nonlinear fashion.
Thus, excess coincidences may only be reduced due to sorting errors. The second term is
actually the expected number after sorting (cf. Eq. 6.10). Interestingly, only here false
positive errors enter the expression for the empirical number of coincidences after sorting.
As discussed in Section [6].3.1.1, the errors may –depending on the relation of the errors
rates– compensate to 0, or may lead to a factor larger or smaller than 1.

Two important results may be extracted from this discussion of Eq. 6.14 and are
depicted in Fig. 6 (middle row):

• False positive spikes contribute to chance coincidences only and increase them.

• False negatives are the only error type that affects excess coincidences and may only
lead to a reduction of their number.

[6].3.1.3 Significance

In the previous two sections we learned that the empirical as well as the expected number
of coincidences are affected by both types of sorting errors. These two measures enter the
significance estimation of the empirically found number of coincidences given the number
of coincidences expected by chance (Eq. 7.33), i.e. we obtain now a value jsσ, as a function
of nσemp and nσpred :

jsσ = js(nσemp, n
σ
pred) , (6.15)

where nσpred defines the mean of the distribution that enters the significance measure
(Eq. 7.31). In addition, this number also affects the shape of the distribution: the larger
the mean, the wider the distribution (a feature of the Poisson distribution, Fig. 5a),
and thus the larger the empirical number of coincidences required for significance. Since
the errors enter both the empirical and the expected number, it is not obvious how the
significance measure is affected.

Fig. 6 (bottom row) shows that the value of the joint-surprise after sorting jsσ is always
decreasing, irrespective of the combination of error types applied to the two neurons. If
only one error rate is modified, the offset of the decreasing joint-surprise is higher (light
gray lines) than if another error is also applied (darker lines). Identical levels of the error
rates are marked additionally by crosses. Their slope is always steeper than for non-
identical levels (i.e. when one neuron experiences less errors), indicating an even stronger
effect for identical error levels. Therefore we restrict ourselves in the following to the
worst case scenario, i.e. to the case σ−1 = σ−2 = σ− and σ+

1 = σ+
2 = σ+, without loss of

generality but thereby lightening the formalism.
In order to investigate more deeply where the overall decrease of significance originates

from, we jointly observe nσpred, nσemp and jsσ as functions of (symmetrical) false negatives
and false positives error rates (Fig. 7). As expected (Eq. 6.14 and Eq. 6.10 and Fig. 6
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Figure 7: Number of coincidences and resulting significance as a function of error rates. Two
situations: increase of σ− while σ+ = 0 (solid lines), and increase of σ+ while σ− = 0 (dashed
lines). For each of the situations, the empirical (nσemp, dark gray) and the expected number of
coincidences (nσpred, light gray), as well as the resulting joint-surprise (jsσ, black) are shown.
Both jsσ(σ−) and jsσ(σ+) decrease with error increase, although for increasing σ+ the underly-
ing number of coincidences increases. Parameters: λ′1 = λ′2 = 20 Hz, λc = 0.15 Hz, 100 seconds,
bin size 1 ms.

(bottom)), both measures decrease with σ−, however nσemp reduces more rapidly with
increasing σ− than nσpred (solid gray lines). As a result, the significance also decreases
with increasing σ− (solid black line). For FPs only (σ− = 0 and increasing σ+), i.e.
adding chance coincidences only, nσemp and nσpred increase in parallel (dashed gray lines).
Again, the joint-surprise decreases with increasing errors (dashed black line), however for
a different reason. Although the difference of the empirical and the expected number
stays constant, due to increasing the mean and thus the width of the distribution the
empirical number becomes less significant. As a consequence, both types of errors tend to
reduce the significance of the observed coincidences after sorting, although the absolute
number of coincidences may even increase with false positive errors.

Fig. 8a illustrates the relation of the joint-suprise after sorting in relation to the orig-
inal value. Interestingly, this ratio (jsσ/js) is always smaller than 1, and decreases with
increasing sorting errors, irrespective of error type. For false positive errors only (dashed
line), the significance is less drastically reduced than for the same amount of false neg-
ative errors (solid line). This is particularly surprising, since in case of FP errors new
coincidences are created and no coincidences are deleted.

Fig. 8b shows the same curves as in panel a) but for different combinations of error
rates: instead of the respective other error to be set to 0, here it is set to 0.08. Now both
curves start at values lower than 1, and cross each other. The crossing point is exactly
at σ− = σ+. It is worth noticing that although the case σ− = σ+ balances the effect
of errors on the firing rates (Eq. 6.6), it still affects (and reduces) the significance after
sorting. The inset shows that for the part of the curves always being largest (black line)
holds the condition σ+ > σ−, again indicating that FNs reduce the joint-surprise more
strongly than FPs do.
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Figure 8: Underestimation of significance of synchronization after spike sorting. The ratio
between the joint-surprise after sorting jsσ and the original significance js is shown under
variation of σ+ for fixed values of σ− (dashed lines) and under variation of σ− while σ+ has a
fixed value (solid lines). (a) σ− = 0 (dashed) and σ+ = 0 (solid); (b) σ− = 0.08 (dashed) and
σ+ = 0.08 (solid). (b, inset) Same data and parameters as in b), but now colored according to
the relation of the error rates. Portions of the curves for which holds σ+ < σ− are marked in
light gray, for the condition σ+ > σ− they are marked in dark gray.

[6].3.2 Dependence on Physiological Parameters

In this section we evaluate the dependencies of the various measures on physiological
parameters, such as background rates λ′i of the neurons i = 1, 2 and injected coincidence
rate λc. We shall make use of simulations as introduced in Section [6].2.3. Since we are
interested in the change of the coincidence numbers after sorting in relation to before
sorting, we again express them as ratios. Also here, we only consider symmetrical error
rates and use now Eq. 6.10 and Eq. 6.14 in which we have replaced σ−1 = σ−2 by σ− and
σ+

1 = σ+
2 by σ+.

[6].3.2.1 Expected Coincidences

The relation of the expected number of coincidences after sorting in relation to before
sorting is given by Eq. 6.10 divided by npred:

nσpred

npred

=
(
1 + σ+ − σ−

)2
. (6.16)

Thus, nσpred/npred does not show any dependence on rates, but only a quadratic dependence
on error rates.

[6].3.2.2 Empirical Coincidences

We analyse here the ratio between nσemp (Eq. 6.14) and nemp. As introduced by Grün
et al. (2002b) the latter can be expressed as the expected number given the uncorrelated
neuronal activity plus the additionally injected coincidences (of rate λc):
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Figure 9: Influence of firing, coincidence and error rates on the number of coincidences. (a)
Empirical number of coincidences before (nemp, dashed-dotted line) and after sorting (nσemp,
dashed line) and their relation nσemp/nemp (solid line; corresponding axis on the right) as a
function of backgound firing rate λ

′
2 (top) and of injected coincidence rate λc (bottom). Values

of error rates: σ+ = 0.08, σ− = 0.16. (b,c) nσemp/nemp as a function of error rates, in b) as a
function of σ+, and in c) as a function of σ−. In the top row, the background rate of neuron
2 is varied (see legend) while λc = 2 Hz. In the bottom row, the coincidence rate is varied
(see legend) while λ

′
2 = 20 Hz. In all plots (a,b,c) λ

′
1 = 20 Hz. The thin black line depicts for

reference the identity relation nσemp

nemp
= 1. The dashed thin lines mark the parameters used in a).

The values chosen for σ+ and σ− in a) are (about) the average error rates extracted by Harris
et al. (2000).
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nemp = (λcδ + λ′1δ · λ′2δ) ·N . (6.17)

For the expression of the expected number of coincidences we replace in Eq. 7.15 the rates
by Eq. 6.9:

npred = (λc + λ′1) δ · (λc + λ′2δ) ·N . (6.18)

Inserting Eq. 6.17 and Eq. 6.18 into Eq. 6.14 and rearranging leads to:

nσemp

nemp

= (1− σ−)2 + (2σ+ − 2σ−σ+ + σ+2
)
npred

nemp

(6.19)

= (1− σ−)2 + (2σ+ − 2σ−σ+ + σ+2
)
(λ2

c + λ′1λc + λ′2λc + λ′1λ
′
2)δ2

(λcδ + λ′1λ
′
2δ

2)
. (6.20)

Fig. 9a illustrates the two variables and their relation (nσemp/nemp) as a function of
firing rate (top) and as a function of coincident firing rate (bottom) for fixed error rates.
The graph shows that both, nσemp and nemp, increase with coincidence rate as well as
with firing rate, with nσemp always being lower than nemp. For increasing λc (bottom),
nσemp increases with smaller slope than nemp. As a consequence, the relation nσemp/nemp

decreases rapidly with λc. An increase in firing rate (top) leads to a slightly smaller
increase of nσemp as compared to nemp, such that nσemp/nemp grows rather slowly.

Fig. 9b shows the dependence on error rates. nσemp/nemp increases with σ+ approx-
imately linearly, with changes in firing and coincidence rates. Increasing firing rate in-
creases the slope (top), whereas increasing coincidence rate decreases it (bottom). Taking
the dashed line (corresponding to the parameters used in (a)) as a reference, we notice
that the slope varies non-linearly with firing and coincidence rates. nσemp/nemp decreases
approximately linearly with σ− (Fig. 9c). Here, changes in rate or coincidence rate do not
influence the slope of the relation but rather the intersection with the vertical axis, again
in a non-linear way. With increase in rate the vertical offset of nσemp/nemp slightly in-
creases, with increasing coincidence rate it slightly decreases. Note that the ratio may be
larger than 1 for high firing rates or low coincidence rates, i.e. after sorting the empirical
number of coincidences may be increased.

[6].3.2.3 Significance

Here we analyze how the significance of synchronized spikes changes due to sorting errors
in combination with the changes of physiological parameters explored in the forgoing sub-
sections. We have seen above that the empirical number of coincidences may increase or
decrease depending on the specific parameter combinations. The change of the predicted
numbers depends only on the error rates, i.e. no dependence on firing and coincidence rate
is present. Now it needs to be evaluated how the significance of empirical coincidences
given the predicted numbers changes with sorting. Fig. 10a illustrates the changes of the
joint-suprise relation jsσ/js as a function of firing rate (top) and coincidence rate (bot-
tom). With increasing λ

′
2, both components decrease. jsσ is always smaller than js, but

js decreases faster and thus the relation of the two decreases. Although both components
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Figure 10: Significance of synchronization: before and after spike sorting and their relation.
Same parameters as in Fig. 9. (a) Joint-surprise before (js, dashed-dotted line) and after sorting
(jsσ, dashed line) and their ratio (jsσ/js, axis on the right) as a function of backgound firing
rate λ

′
2 (top) and of injected coincidence rate λc (bottom). (b) jsσ/js as a function of σ+ and

(c) as a function of σ−, both for different λ
′
2 (top) and λc (bottom).
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Figure 11: Example of loss of significance due to sorting errors. Two simultaneous spike trains
are simulated with background rates λ′1 = λ′2 = 20 Hz and a coincident rate of λc = 0.15 Hz.
Duration of the simulation T = 105 ms, time resolution δ = 1 ms and 50 repetitions for each
parameter setting of the error rates. Each bin in the matrix corresponds to a set of parameters
σ− (horizontal axis) and σ+ (vertical axis), both varied from 0 to 0.3 in steps of 0.01. The
original joint-surprise value without any sorting errors (bottom left corner) is j̄s = 1.9 ± 1.2,
i.e. well above the 5% level which corresponds to a value of js = 1.28 (switch dark to light in
color bar). Increasing levels of sorting errors cause the significance jsσ to progressively decrease
(from left to right and bottom to top). Light values represent jsσ above, dark values below
significance threshold of 5%.

increase with increasing λc, the ratio also decreases, since jsσ is always smaller than js
and does not increase as much as js.

Fig. 10b,c shows the dependence of the ratio jsσ/js on the error rates (in b) for σ+,
in c) for σ−) under variation of the firing rate (top) and variation of the coincidence rate
(bottom). As already shown in Fig. 8, the relation decreases with error rates, and we
see here that the firing and coincidence rates are only slightly modifying the slopes. The
dominating parameters are the error rates.

In summary, as a general result we observe that sorting errors always reduce the
significance, irrespective of the error type, and mostly independent of the physiological
parameters. Fig. 11 shows an example where the originally significant synchronization is
changed due to the sorting errors to an unsignificant result.

[6].4 Discussion

[6].4.1 Sorting errors reduce significance of spike synchrony

We studied the influence of spike sorting errors on the analysis of unitary events. Our
statistical model of spike sorting is based on the assumptions that false positive and false
negative errors are likely to occur at any instant in time and independently for the two
neurons. As a consequence, sorting errors lead to erroneous statistical rate estimations, as
well as to erroneous coincidence counts and erroneous significance of the latter. In order
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to understand the influence of these errors on the significance estimation of coincident
spikes, we derived analytically the predicted and the empirical number of coincidences
after sorting as compared to their original values before sorting. In addition we also tested,
both analytically and through simulations, the influence of physiological parameters like
the firing rate of the neurons and the coincidence rate. We showed that the joint-surprise
reduces with error rates, finally leading to a loss of significance of originally significant
spike synchronization. It turned out, that the significance of spike synchronization is
always reduced by sorting errors irrespective of the error type. This also holds for non-
symmetrical combinations of error rates experienced by the two neurons, however with less
strong reduction of the significance as compared to the symmetrical case. The reduction
of significance is mainly due to the “normalization” of the observed coincidence counts
by comparison to their expected number. However, the reason for significance reduction
is different for the different error types.

False positive spikes lead to an increase of the empirical as well as of the expected
number of coincidences. Most interestingly they even increase by the same absolute
amount, which is due to additional chance coincidences only. The difference between the
two measures are the “excess coincidences”, whose relative amount reduces, thus leading
to a decrease in significance.

Missing spikes (FNs) reduce the number of expected coincidences as well as the em-
pirical number. The expected number is reduced due to decreased firing rates. The
empirical number in addition experiences a reduction of the excess coincidences (first
term in Eq. 6.14). Therefore the significance reduces (Fig. 7, solid lines). The impact of
FNs on synchronized spikes is strong (for error rates found by Harris et al. (2000) the
joint-surprise may be reduced by 40%, cf. also Fig. 8), which is explained by the fact
that the loss of only one spike of a synchronized event already leads to the loss of the
coincidence. Furthermore, the higher the coincidence rate, the larger the chance to miss
a spike, and thus the larger the reduction of the empirical coincidences (see Fig. 9a,b,
bottom). In summary, a conservative sorting strategy, i.e. rather missing a spike than
capturing a wrong one, might lead to a stronger loss of detectability of originally existing
significant synchronization.

Co-occurrence of both error types may lead to partial (for σ− 6= σ+) or even to
full cancellation (for σ− = σ+) of change of the expected number of coincidences after
sorting. Depending on the net excess of errors the expected number may be increased
(for σ− < σ+) or decreased (for σ− > σ+). For the empirical number, the errors may
not cancel in respect to the number of excess coincidences. Excess coincidences may be
deleted by FNs, but cannot be created by FPs, since newly created coincidences enter as
chance coincidences only. In addition, the probability for generating chance coincidences
is much smaller than the impact of injected coincidences (cf. Eq. 6.17 and 6.18), and
thus the effects on the significance are not canceled in case σ− = σ+ (see also Fig. 8).
Interestingly, the available literature on the relative amounts of both errors documented
a tendency towards higher values of FNs as compared to FPs (Harris et al., 2000; Wood
et al., 2004), indicating a preference for conservative strategies. Thus one may conclude
that neural synchronization is typically underestimated.
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[6].4.2 Relation to cross-correlation

The cross-correlogram is a widely used method for estimating the correlation between
the spiking activities of two neurons (Perkel et al., 1967b). The method allows to study
zero-lag and delayed coincidences. The unitary event analysis method concentrates on
zero-lag (or near-coincident) events and may be directly compared to the zero-lag (or
near-by) bins of the cross-correlogram. Cross-correlograms are often used without any
normalization and just provide the empirical coincidence counts (raw cross-correlation).
In addition, normalization procedures are availabe, that account for the expected number
of coincidences given the firing rates of the neurons (cross-covariance) by subtracting the
latter from the empirical counts. Normalizing this number to the product of the variances
of the single processes yields the correlation coefficient (for an extensive discussion and
comparison of such measures see Aertsen et al., 1989). Thus, the zero-bin correlation
coefficient in our variables reads r =

nemp−npred√
δ·λ1
√
δ·λ2

. This measure behaves very similarly to
the joint-surprise, however with different abolute numbers.

Let us emphasize that correlation analyses which only consider the raw (i.e. empirical)
coincidence counts, e.g. like in an uncorrected cross-correlogram, would find increased
synchronization in the case of FPs. However relating the observed number of coincidences
to the expected ones, as done in the UE analysis (Grün et al., 2002a,b; Grün et al., 1999)
or by the correlation coefficient, corrects for that.

[6].4.3 Experimental situations that violate UE assumptions

Inherent assumptions of the unitary event analysis are stationary Poisson processes. How-
ever, experimental data typically do not fulfill these assumptions and methods to account
for non-stationary (Grün et al., 2002b; Grün et al., 2003b) and non-Poisson processes
(Pipa et al., 2003; Pipa and Grün, 2003; Pipa, 2001, 2006) have been worked out.

In case of non-stationary processes in time the solution to avoid false positives is to
perform the analysis in sliding window fashion to account for the change in rate (Grün
et al., 2002b). In case of non-stationarity across trials, the expected number of coinci-
dences is calculated within the sliding window in a trial-by-trial manner and then summed
yields the correct estimate for the expected number of coincidences (Grün et al., 2003b).
By doing that we account for non-stationary firing rates. A change in brain state or
different behavioral variables could lead to coherent change of neuronal firing rates, e.g.
by a common increase in the membrane potentials as discussed in Brody (1998). In the
same way as the firing rates co-vary the amount of chance coincidences do: the larger the
firing rates the more chance coincidences. As discussed before such a case is well treated
by the unitary event method which is specifically designed to evaluate the degree of excess
synchrony as compared to chance synchrony and to estimate its significance, also under
non-stationary conditions.

Sorting errors like the loss of coincident spikes due to an overlap of the spike wave-
forms, would trivially covary with covariation of the rates. However, treating the data in
segments of stationary firing rates, we are per segment in a stationary situation which is
discussed below (Section [6].4.4.2).

In Grün et al. (2002a) we have shown that the unitary event analysis method re-
acts robustly to non-Poissonian point processes that were simulated as Gamma processes.
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Figure 12: Experimentally relevant cases of spike sorting. Sketch of possible origins of spike
sorting errors due to specific cluster configurations in the space of two spike-waveform features.
Triangles, squares and circles represent spikes, contours represent putative clusters, and dashed
lines indicate the two neurons whose correlation is analyzed. a) Due to the presence of other
neurons they may erroneously provide (FP error; circles in upper left cluster) or “steal” (FN
error; triangles in lower right cluster) spikes to/from the neurons under consideration. b) Ghost
cluster. A significant amount of overlapping spikes originating from the two neurons under
consideration for correlation analysis, gives rise to a ghost cluster (middle cluster containing
circles), which “steals” coincident spikes from the two neurons. c) Correlated errors. The
neurons being analyzed are recorded from the same electrode and their cluster separation is
poor, indicated by squares from the left cluster mixing with triangles in the right cluster, and
vice versa. Therefore a number of spikes are assigned from one neuron to the other and vice
versa, resulting in false negatives of one neuron that become false positives in the other.

Although the auto-correlation structure of the spike trains affects the shape of the coin-
cidence distribution, it turned out that assuming a Poisson distribution -as analytically
derived for Poisson spike trains (Grün et al., 2002a)- leads to conservative estimates for
experimentally found ranges of the shape factor (Pipa, 2001, 2006).

We also performed the analysis for the dependence of FN and FP sorting errors for
the case of Gamma processes (not shown here) and found no differences in the results.
FN and FP errors applied to Gamma processes also lead to a reduction of the sigificance
as in the case of Poisson spike trains.

[6].4.4 Typical errors in sorting

Now we shall relate our considerations to typical experimental cases, thus eventually aban-
doning the model hypotheses of independent errors and neurons recorded from different
electrodes. Furthermore we will also discuss this in the framework of cluster analysis in
spike-waveform feature space.

[6].4.4.1 Independent sorting errors

Here we investigate the correlation between two neurons, each of which experiences FN or
FP errors from other, unrelated neurons. This is the case if we consider two neurons that
were recorded and sorted from two different electrodes. It may also be the case for two
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neurons that are recorded from the same electrode and are well sorted, but one or both
neurons experience errors due to yet other neurons (see Fig. 12a). This is actually the case
we studied in the framework of our statistical sorting model, and learned that irrespective
of the error type the resulting significance is reduced. The reduction is strongest for the
case that both neurons experience the same degree of errors, but not as pronounced if
one of the neurons experiences a smaller amount of errors than the other. If only one
neuron is exposed to errors, the reduction of significance is even smaller (Fig. 6, all upper
joint-surprise curves).

In the case of a rather conservative sorting strategy, i.e. if one tries to catch as little
FPs as possible thereby accepting the danger of loosing spikes (i.e. having more FNs),
the significance is more reduced than for the case of a rather tolerant sorting strategy.
The latter would represent the case if one tries to catch as many spikes as possible while
accepting false positives. In the cluster space of a given sorting algorithm, a conservative
sorting strategy would correspond to accepting only spikes from within a radius smaller
than the outer bound of the cluster of points, whereas a tolerant sorting strategy would
take spikes from a radius catching all the points in the cluster of points. Schmitzer-Torbert
et al. (2005) suggested measures for cluster quality. The Lratio measures the amount of
noise observed in the vicinity of the cluster. The authors showed that a high value of the
Lratio correlates with a high number of FNs, the case we would call conservative sorting.

Directly related to our study is the work by Bedenbaugh and Gerstein (1997) and
Gerstein (2000) who evaluated the correlation coefficient as a measure for synchrony
between unresolved multi-neuron recordings. They assumed the activities recorded on
each of the two electrodes to be mixtures of spiking activities of up to three neurons which
may fire independently or include correlations. The focus is on the resulting correlation
between the multi-neuron recordings from two electrodes as functions of the original
correlation of neurons across electrodes and as functions of correlations between neurons at
a single electrode. Thus mixtures of spikes trains are studied which in our scenario may be
interpreted as false positives, but the framework neglects the problem of missing spikes.
Under specific parameter settings, Gerstein’s (2000) results are directly comparable to
ours. He also found that the resulting correlation between spike trains that experienced
contamination with uncorrelated spikes is reduced as compared to the original, distant
correlation between two neurons.

[6].4.4.2 Overlapping spikes

Another relevant situation in spike sorting is that coincident spikes of two neurons recorded
at the same electrode may overlap in time such that the resulting waveform may result
in the formation of a ghost cluster (Fig. 12b, cluster that includes circles). As a re-
sult, the simultaneous spikes are systematically removed from the two spike trains under
consideration.

The work by Bar-Gad et al. (2001b) studied the influence of missing coincident spikes
onto the cross-correlation measure, under the specific condition that a spike is followed
by a noticable dead time, and neurons have high firing rates. Under these conditions
they found that the shape of the cross-correlation function alters: zero-delay coincidences
were lacking, but close delayed coincidences were enhanced as compared to background.
Corrections for expectancy were not performed. Thus, in our words, they studied the
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influence of false negative coincidences and found for the case of zero-delayed coincidences
a reduction in their numbers.

In our framework this case can be represented as a specific deletion of coincident
spikes. As a consequence, the empirical number of coincidences is reduced by a fraction
σ−coinc: n

σ
emp =

(
1− σ−coinc

)
·nemp. Compared to the case where FN errors are independently

applied to both neurons, case which leads to quadratic dependence on σ−coinc (substitute
in Eq. 6.14 σ−i by σ−coinc and set σ+

i = 0, i = 1, 2), here the deletion of coincident events
leads also to a reduction of the empirical coincidences, but with a slope that is less steep.
On the other hand, with increasing σ−coinc the expected number is also decreased, however
by a smaller amount as compared to independently applied FN errors (Eq. 6.10), since
here only spikes that are involved in coincidences may be deleted. The expected number

of coincidences then reads: nσpred = (λ1−λdel) · (λ2−λdel) ·δ2 ·N , with λdel =
nemp·σ−coinc

T
the

spike reduction rate. As a result, also in the case of a joint deletion of coincident spikes,
the joint-surprise decreases, even with a similar slope as for the case of independent FN
errors.

[6].4.4.3 Overlapping clusters

Another problem that may arise if different neurons are recorded and sorted from the
same electrode is, that spikes from one neuron may be assigned to another neuron. Quirk
and Wilson (1999) discussed such a case for bursting neurons, where late spikes in a burst
were different in shape and thus were wrongly assigned to the other neuron. Using cross-
correlation analysis for the identification of correlation between the spiking activities of
the two neurons, they found artificially increased delayed coincidences. Although their
case does not apply to zero-bin correlations, the case that spikes of one neuron are assigned
to another is of general interest.

This type of correlation errors can be expressed in our framework as FNs of one neuron
become FPs of the other. The empirical number of the coincidences will stay the same,
since coincidences will not be created by moving spikes to the other spike train, nor
will spikes of coincidences be moved to the other neuron since that would correspond to
another waveform (overlapping spikes). Thus, only the expected number of coincidences
is influenced: nσpred = (1− σ1)λ1 · (1 + σ1)λ2 · δ2 ·N , with σ1 the probability of assigning
spikes to a wrong cluster. This leads to a decrease of the expected number of coincidences,
and consequently the significance of the empirical coincidences increases with error rate.

A related case is if waveforms lead to overlapping clusters of entries in the feature
space (Fig. 12c), a case indicated as of bad separation of clusters using the isolation
distance measure suggested by Schmitzer-Torbert et al. (2005). If anyway spikes are
assigned to distinct clusters, there is a high likelyhood to get false negative and false
positive errors. Spikes from one cluster may be assigned to the other, i.e. FNs of the first
become FPs of the other, and also vice versa. Thus errors will occur in both directions.
The empirical number of coincidences will not be affected by that, for the same reasons as
discussed for the one-way case above. However, the expression for the expected number of
coincidences will get additional terms expressing the probability for FNs from the second
cluster becoming FPs in the first (via σ2): nσpred = (1−σ1 +σ2)λ1 · (1 +σ1−σ2)λ2 · δ2 ·N .
As a result the error rates may partly compensate each other and thereby leading to a
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less strong increase of the resulting joint-surprise as compared to the one-way case.
In summary, correlated errors specifically may occur if different neurons are recorded

and sorted from a single electrode. Overlapping spikes may be assigned to a third clus-
ter, thereby leading to a loss of empirical coincidences. As a consequence the measured
significance is reduced and the underlying existing correlation between neurons may be
overseen. Correlation analysis of the activities of two neurons that experienced wrong
assignments of spikes from one neuron to the other (and/or vice versa) is dangerous. The
detected significance is prone to indicate false positive correlation. Specifically the case
when only one of the neurons is giving spikes to other.

[6].4.5 Conclusions

Spike sorting introduces two types of errors into the coincidence count: false positive and
false negatives. If errors were experienced independently, they both lead to a reduction
of the measured significance as compared to the original correlation between the two
neurons. The reason for the reduction is different for the two cases. False negatives simply
partly delete correlated spikes. However, false positives may increase the correlation, and
correlation measures that do not correct for expectation by chance may conclude false
positive correlation.

If spike trains are sorted from a single electrode, also correlated sorting errors may
occur, e.g. coincident spikes that are ignored due to overlapping waveforms, or spikes that
are assigned from one neuron to another. In particular the latter is problematic if one
is interested to detect spike correlation between the two neurons involved, since there is
the danger of detecting false positive correlation. Therefore we rather suggest to avoid
correlating neuronal spiking activity recorded from the same electrode combined with low
quality of cluster separation. However, for errors resulting from a neuron not considered,
this scenario leads to a reduction of significance and thus rather to an underestimation of
the underlying correlation.

One main aspect is guiding our future work in this context. The unitary event analysis
was designed to allow for the detection of neuronal assemblies and thus for correlation
analysis of more than two neurons at a time. As a consequence we aim to understand
how spike sorting errors influence the analysis of higher-order spike patterns. This in-
cludes to evaluate systems with more than two simultaneous recordings, which involves a
combinatorial increase of cases to consider.

In conclusion, if one is interested in neuronal interaction in the brain, the activities
of single units need to be simultaneously observed and analyzed for correlated activity.
Therefore spike sorting is an important, intermediate statistical analysis for extracting
the single unit activities. Subsequent analysis may be considerably influenced by sorting
errors, and may arrive at wrong conclusions. In this work we have shown that for the
unitary event analysis, independent sorting errors lead to reduced significance, but not to
artificial correlation.
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Appendix

Rewriting Eq. 6.14 yields:

nσemp =
(
1− σ−1

) (
1− σ−2

)
· [nemp − npred]+

(
1 + σ+

1 − σ−1
) (

1 + σ+
2 − σ−2

)
·npred . (6.14)

After sorting, the experimental spike trains contain FP and miss FN spikes (cf. Fig. 5b,
bottom). The former occupy bins that were empty, whereas a fraction of currently empty
bins was previously occupied by the latter. We introduce the probability pi(+) to find a
FP spike in a bin and the joint probability pi(−, spike) to miss a spike as FN:

pi(+) = σ+
i · λiδ

pi(−, spike) = σ−i · λiδ ,

where λi are the original firing rates of neuron i and δ the bin width. We will refer to the
two neurons through the indices i, j, where i 6= j. These expressions are not symmetrical
because they refer to intrinsically different generating processes: insertion of new spikes
(FPs) versus deletion of already existing spikes (FNs). In the following we also need the
expression for the conditional probability of missing a given spike pi(−|spike). Using

Bayes theorem we obtain pi(−|spike) = pi(−,spike)
pi(spike)

= σ−i . It follows that the probability for

a (given) spike not to be missed equals (1− pi(−|spike)) = 1− σ−i .
The number of coincidences after sorting can be expressed as the sum of the original

number of coincidences plus two additional terms, which correct for the erroneously missed
and produced coincidences due to sorting:

nσemp = nemp − nFN + nFP . (6.A1)

The first of these additional terms is composed of three contributions. The first two are
given by the probability that either one of the two coincident spikes is missed: pi(−|spike)·
(1− pj(−|spike)) = σ−i

(
1− σ−j

)
. The last term is the probability that both spikes are

missed as FNs: pi(−|spike)pj(−|spike) = σ−i σ
−
j . This results in:

nFN = nemp ·
[
σ−i
(
1− σ−j

)
+ σ−j

(
1− σ−i

)
+ σ−i · σ−j

]
. (6.A2)

Similarly, the number of false coincidences introduced by sorting errors (nFP) receives
contributions from three terms. Again, the first two terms are given by the probability
that a FP is synchronous to an already existing spike, i.e. the product of the probability
of a false positive in neuron i (pi(+)) and the probability that in neuron j an original
spike existed and survived

pσ
−

j = pj (1− pj(−|spike)) = λjδ(1− σ−j ) ,

with pi defined in Eq. 6.1. This yields: pi(+)pσ
−
j = λiλjδ

2σ+
i

(
1− σ−j

)
. The last term

consists of the probability of a coincidence of FP spikes: pi(+)pj(+) = λiλjδ
2σ+

i σ
+
j . In

total we obtain:
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nFP = npred ·
[
σ+
i

(
1− σ−j

)
+ σ+

j

(
1− σ−i

)
+ σ+

i · σ+
j

]
, (6.A3)

We notice here that λiλjδ
2N = npred (Eq. 7.15) and that the factor at the right-hand side

of Eq. 6.A3 can be expressed as:

σ+
i σ

+
j + σ+

i

(
1− σ−j

)
+ σ+

j

(
1− σ−i

)
= (1− σi) (1− σj)−

(
1− σ−i

) (
1− σ−j

)
, (6.A4)

where we used again σi = σ−i − σ+
i . After substituting Equations 6.A2 and 6.A3 in

Eq. 6.A1 and rearranging we obtain the relation for nσemp in Eq. 6.14.
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7 Transition between spike patterns induced by spike

sorting errors in multi-unit recordings

Antonio Pazienti and Sonja Grün

The manuscript constituting this section is going to be submitted for publication.

[7].1 Introduction

In neurophysiological multi-unit recordings the activity of a set of neurons is recorded
by means of arrays of electrodes. This technique has become widely utilized over the
last decade. Indeed, it has become clear that in order to identify the brain’s network
composition and its functions multiple cells have to be recorded in parallel, to detect
temporal features of the signals and dependences between neurons (Buzsáki, 2004).

Spike sorting is a necessary intermediate step for those, who aim at identifying the
single-unit activity, i.e. the activity of single cells (Lewicki, 1998). The spike activity is
embedded in a large noise-like signal of rich and complex frequency content, presumably
consisting of the activity of more distant cells and of extracellular- and measurement-
noise (Lewicki, 1998). Spike sorting typically consists of two stages: first, spike waveforms
originating from different neurons are identified and separated from the background ex-
tracellular noise; second, spikes are classified, i.e. assigned to putative neurons. In both
these stages, due to the intrinsic difficulty of the task, imperfect identification and/or
classification of the original spikes emitted by the neurons may occur. Failures are of
two types: false negative (FN) and false positive (FP) errors. Taking the perspective
of a particular neuron, a false positive spike is a spike which is assigned to that neuron
despite having originated in another neuron or being extracellular noise. Conversely, a
false negative spike was emitted by the neuron and successively unclassified or misclas-
sified. Furthermore, due also to the specificities of different brain tissues, and although
current electrode arrays provide recordings from tens to hundreds of cells, and thus big
amounts of data have to be processed per recording’s day, there is no standard way of
performing spike sorting. The results are often sorter-dependent and hard to compare
and/or reproduce (Harris et al., 2000).

A variety of techniques and algorithms are available for spike sorting (see e.g. Lewicki
(1998) for the most recent review). They range from traditional (partly) supervised
methods (Harris et al., 2000; Takahashi et al., 2003b,a, 2002) to fully automatic algorithms
(Bar-Hillel et al., 2006; Horton et al., 2007; Hyvärinen and Oja, 2000; Quian Quiroga et al.,
2004). The choice of the best algorithm for this task depends on a number of factors,
like e.g. the electrode, the brain area, cell type of interest, etc. Additional constraints for
sorting methods are reasonable computation time, available hard-disk space, compatibility
with the recording setup and software, and finally also the intended subsequent data
analysis. Major problems in spike sorting are e.g. the difficulty to resolve overlapping
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spikes and the variability of the spike waveform (Fee et al., 1996; Quirk and Wilson, 1999;
Harris et al., 2000). Attempts to solve some of them have been documented in the recent
literature (Pouzat et al., 2002; Zhang et al., 2004; Pouzat et al., 2004; Bar-Hillel et al.,
2006; Wang et al., 2006). A few studies have quantitatively shown the amount of FN and
FP errors introduced by sorting (Wehr et al., 1999; Harris et al., 2000). Average error
rates of 6.2% for FPs and 15.9% for FNs (Harris et al., 2000), and 3.5% for FPs and 2.8%
for FNs (Wehr et al., 1999) were reported. Wood et al. estimated average error rates
of 23% FPs and 30% FNs based on simulated data (Wood et al., 2004). To address the
problem of the comparability of the results, a number of objective controls of the spike
sorting have been proposed over the last years (Pouzat et al., 2002; Schmitzer-Torbert
et al., 2005; Smith and Mtetwa, 2007).

The aim of this work is to evaluate the effect of spike sorting errors on spike correlation
measures. The question we will answer is: how robustly and reliably is the significance of
correlated neuronal activity estimated when spike sorting errors are affecting the data?
For this purpose we developed a model that introduces FN and FP failures in a realistic
fashion into multiple point processes containing correlations, thus mimicking the effect of
spike sorting on simultaneously recorded spike trains. In our study we distinguish between
the order ω of the correlations and their complexity ξ. The order of the correlation refers
to the size of the subset of neurons containing a priori known correlated activity. In
particular, the processes are modeled in the following way: 1) in a subset of ω out of the
N neurons we inserted exactly coincident spikes (patterns of order ω); 2) the remaining
N−ω processes are statistically independent; 3) all processes follow a Poisson distribution
of same firing rate. An example is sketched in Fig. 13A depicting the original activity
of N processes containing correlations of order ω = 3 (gray processes). The measures of
synchronization we study here are two standard methods for establishing the significance
of synchronous firing –the normalized correlation coefficient (CC) and the unitary event
(UE) analysis (Perkel et al., 1967a,b; Grün et al., 2002a,b). Both these measures rely on
the count of the number of coincidences occurring among subsets of neurons. However,
by looking at Fig. 13A it is visible that inserted triplets are undistinguishable from other
spikes. A pattern of activity involving ξ neurons synchronously firing and N − ξ not
firing is said to have complexity ξ. This variable is therefore “experimental”, i.e. lacking
knowledge of the model that was used to generate the patterns. In the example of Fig.
13A, three patterns of complexity ξ = 2, 3, 4 respectively (right), and their occurrence in
the processes (bottom) are shown.

We will show an analytical derivation of the number of predicted and empirical co-
incidences after sorting, as well as for the CC, and their relation to the original values
(i.e. before sorting). Our results offer an analytical framework of the impact of sorting
errors, that can be utilized for other data analysis measures as well. Furthermore, we
show that sorting failures alter the processes’ statistics, and affect not only the signif-
icance of the underlying correlations, but also of the correlations of other complexities
and can strongly bias the results. Higher-order effects may come into play when studying
correlation involving more than two neurons.

This article is organized as follows. Sections [7].2 and [7].3 introduces statistical models
for sorting errors and for generation of correlated processes. In Section [7].4 we will
introduce the expected and empirical number of coincidences as are the relevant measures
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Figure 13: Activity of N simultaneous spike trains with correlation of order ω = 3 inserted. A
original activity; shadowed processes are correlated through inserted triplets, white processes are
independent and colored squares represent spikes. Right, three patterns are shown of complexity
ξ = 2, 3, 4 respectively. Bottom, the counting procedure of the patterns along the spike trains.
B activity after spike sorting. The same processes as in A are distorted with insertion (FP, small
squares) and deletion of spikes (FN, striped squares). Bottom, count of the same patterns as in A,
now after spike sorting.

for our study, and derive their analytical expressions after having applied sorting failures.
Cross-correlation function and unitary event analysis will be briefly introduced in Section
[7].5. Results on the effects of spike sorting will then be discussed in detail in Secs. [7].5.1
and [7].5.2. Finally, Section [7].6 is dedicated to the discussion.

[7].2 Model of correlated point processes

Given a set of N simultaneously recorded neurons, we depict their firing activities in a
certain time epoch as sequences of T time bins of length δ either containing a spike or
being empty. We will assume in all of the following the time epoch to be short enough
for the activity to be considered stationary. The probability of firing pi, i = 1, . . . , N ,
i.e. the bin occupation probability is defined as pi = Probi(spike). Conversely, 1 − pi =
Probi(no spike) is the probability that the bin contains no spike. Let us also define
nvξ(ξ,N) as the number of coincidences of complexity ξ ∈ {2, ..., N} of the pattern vξ.
The latter is composed of ξ neurons firing and the remaining N − ξ not firing. More

specifically, vξ is one specific of the
(

N
ξ

)
possible patterns obtained by permutations of

the symbols spike and no spike. For example, on the bottom of Fig. 13A the counting
procedure is shown for the three patterns v2,3,4 (these are shown on the right). We will
refer to nvξ(ξ,N) also as the empirical number of coincidences and often drop the index
vξ. However it should be clear that we always refer to specific patterns of that complexity.

In order to construct processes containing correlations of order ω we firstly insert
simultaneous spikes (i.e. in the very same time bin) into a subset of ω processes according
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to a Poisson process with rate pc. In the example shown in Fig. 13A correlations of
order ω = 3 are inserted, and the processes {2,3,4} contain six of such coincident triplets.
Secondly, we also insert random spikes into the correlated processes, as “background”
spikes, which occur also according to Poisson processes with rate p′′i . Thus these processes
have total rate pi = p′′i + pc (where i ∈ {correlated processes}, i = 2, 3, 4 in the example
shown in Fig. 13A). The remaining N − ω processes are independent realizations of
Poisson processes of rate p′i, i.e. here the total rate is the background rate (pi = p′i,
where i ∈ {independent processes}, i 6= 2, 3, 4 in the example of Fig. 13A). Our example
illustrates that even if we would count the occurrences of the pattern vξ for which 1)
ξ = ω and 2) neurons i, i ∈ {correlated processes}, the number of patterns will not match
the number of inserted coincidences. Due to random firing of the independent neurons
some of the inserted coincidences might end up in patterns of higher complexity (and thus
be counted as different patterns). On the other hand the independent background firing
in the correlated neurons might produce some ω-coincidences, which are indistinguishable
from the inserted ones.

After spike sorting failures occur as FN and FP errors (see next section), a scenario
as depicted in Fig. 13B results. Here, missed spikes (FN, striped) and falsely assigned
spikes (FP, small squares) modify the processes. Furthermore, some of the coincidence
patterns may thereby be modified, and as a consequence the number of patterns of a given
complexity n(ξ,N) may be affected. We define as nσ

vξ
σ (ξ

σ
, N), or simply nσ(ξ

σ
, N), the

number of coincidences of complexity after sorting ξ
σ
. The relationship between nσ(ξ

σ
, N)

and n(ξ,N) will be derived in Sec. [7].4.1.1.

[7].3 Model of spike sorting errors

Here we formulate a stochastic model of spike sorting. Two basic assumptions are made
in our model: 1) errors occur homogeneously along a spike train and 2) independently for
each neuron. The latter assumption corresponds to saying that neurons whose correlations
are analyzed are recorded on different electrodes, which is typically the case. Indeed, due
to the difficulties to correctly identify and classify overlapping spikes, correlations between
neurons recorded on the same electrode are often missed or strongly reduced.

The effect of applying our model is depicted on a single bin in Fig. 14. Here we
see a tree view of the occupation (from top to bottom) of a bin belonging to neuron
i, i ∈ {1, ..., N}. The initial state is an empty bin (top). An emitted spike (filled bin)
has a chance to be missed as false negative (striped bin) or can “survive” spike sorting
errors, i.e. be correctly classified. Conversely, a false positive (small square) may occur
and occupy an empty bin. In our model, both error types can not occur at the same
bin. Each arrow connecting two neuron states in Fig. 14 comes along with its transition
probability. Thus the possible bin states are:

• the bin contains a spike, which was correctly detected and classified to neuron i
(referred to as spike);

• the bin doesn’t contain any spike, but it used to contain one. The spike is a false neg-
ative, i.e. a spike that was not assigned correctly to the neuron under consideration,
but either to another neuron or discarded as noise (FN);
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Figure 14: Statistical model of spike sorting errors. Flowchart of occupation process of a single bin
i and effects of sorting errors on the bin. Arrows are associated with the corresponding conditional
probability of transition from source to target bin. Top row: initially empty bin. Middle row: original
activity; bin is occupied by a spike (with probability of firing pi) or is empty (1 − pi). Bottom row:
possible experimental states of the bin; given a spike, it is missed as FN (correctly classified) with
probability p−i ·(1−p

−
i ). Given no spike, a FP occurs with probability p+

i and the bin stays empty with
probability (p+

i ). The probabilities of the four experimental states can be calcutated by multiplying
the conditional probabilities from top to bottom (see also text).

• the bin contains a spike, however not an original spike from neuron i, but a false
positive spike (FP);

• the bin does not contain any spike because neuron i did not emit a spike, nor a FP
spike is found here (no spike).

As introduced above, pi is the original probability of firing of neuron i in a bin. We define
pσi , i = 1, ..., N as the firing rates after sorting. To derive it we now introduce two further
conditional probabilities: the probability p+

i that given an originally empty bin is now
occupied by a FP, and the probability p−i that given a spike it is now missed as FN. More
formally:

Pi(FP|no spike) = p+
i , (7.1)

Pi(FN|spike) = p−i , (7.2)

where i = 1, ..., N are the neuron ids. From here follow the conditional probabilities of
firing (not being missed as FN) or not firing (nor being FP), respectively:

Pi(no FN|spike) = 1− p−i , (7.3)

Pi(no FP|no spike) = 1− p+
i . (7.4)

To obtain now the total probabilities to obtain one of the final states, we simply multiply
the branches shown in Fig. 14 that lead to that specific state. We obtain:

Pi(spike) = Pi(no FN, spike) = Pi(no FN|spike) · pi = (1− p−i ) · pi, (7.5)
Pi(FN) = Pi(FN, spike) = Pi(FN|spike) · pi = p−i · pi (7.6)
Pi(FP) = Pi(FP,no spike) = Pi(FP|no spike) · (1− pi) = p+

i · (1− pi) (7.7)
Pi(no spike) = (no FP,no spike) = Pi(no FP|no spike) · (1− pi) = (1− p+

i ) · (1− pi) (7.8)
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The firing rate of neuron i after sorting pσi is given by the probability of firing on the basis
of the bin occupation after sorting. To obtain this we introduce the error rates for FN σ+

i

and for FP errors σ−i , where σ+
i = p+

i
1−pi
pi

and σ−i = p−i . Substituting these variables in
Eqs. 7.5-7.8, we finally obtain:

Pi(spike) = (1− σ−i ) · pi, (7.9)

Pi(FN) = σ−i · pi (7.10)

Pi(FP) = σ+
i · pi (7.11)

Pi(no spike) = 1− (1 + σ+
i ) · pi (7.12)

Using Eqs. 7.9-7.12, we finally obtain for the rate after sorting:

pσi = Pi(spike) + Pi(FP) = (1− σ−i ) · pi + σ+
i · pi = pi − σ−pi + σ+pi

= (1− σ− + σ+) · pi. (7.13)

[7].4 Analytical Results

We will assume in the following all processes to have the same original probability of
firing, pi = p ∀i, and the same error rates σ−i = σ−, σ+

i = σ+. The purpose is to
keep the mathematical formalism more readable, burt can easily be extended to the non-
homogeneous case. As prescribed by our correlation model, let us say that a correlation
of order ω involves neurons i1, i2, ..., iω. Thus, pi1,...,ω = p′′ + pc = p for the correlated
processes, and pi6=i1,...,ω = p′ = p for the independent processes (cf. Sec. [7].2). This
implies also that p′′ < p′, due to the constraint that the processes have the same total
rate p.

We are interested in the number of occurrences of patterns involving ξ neurons, for
pattern complexities degree ξ that are equal or differ from the correlation degree ω,
i.e. ξ R ω. For ξ = ω, using the knowledge of our correlation model, we consider
among the possible patterns of complexity ξ the jointly firing of neurons i = i1, ..., iω,
that is the pattern vξ=ω for which the correlated neurons fire and the others do not,
vξ=ω = i = i1,...,ω = 1, i 6= i1,...,ω = 0. For ξ > ω the patterns of interest involve the syn-
chronous firing of neurons i = i1, ..., iω and ξ − ω independent neurons (that are sta-
tistically identical). For ξ < ω, the ξ-patterns will involve spikes from a subset of the
correlated neurons, that is with i ∈ {i1, ..., iω}. These are depicted on the right side of
Fig. 13A for the case ω = 3 and ξ = 2, ..., 4.

Let us define x(ξ,N) as the number of coincidences of complexity ξ to be expected
based on the hypothesis that the neurons are firing independently, also referred to as pre-
dicted number of coincidences. Assuming the processes to be independent, the probability
of a coincidence pattern composed of ξ spike and N − ξ no spike is:

Pξ = pξ · (1− p)N−ξ. (7.14)

Given the assumption of stationarity in the time window under consideration containing
T bins, the original predicted number of coincidences in this window is:
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x(ξ,N) = Pξ · T = pξ · (1− p)N−ξ · T , ξ = 2, ..., N . (7.15)

Application of the model of spike sorting errors introduced in Sec. [7].3 gives us the
predicted number of coincidences for a specific pattern of complexity after sorting ξ

σ
as

a function of the original firing and the sorting error rates:

xσ(ξ
σ
, N) = (pσ)ξ

σ

· (1− pσ)N−ξ
σ

· T =

=
[
(1− σ− + σ+)p

]ξσ · [1− (1− σ− + σ+)p
]N−ξσ · T ; ξ

σ
= 2, ..., N .(7.16)

We notice that the predicted number of coincidences is affected by FN and FP errors
in a symmetric way. Indeed, the two variables σ− and σ+ compensate each other in the
right-hand side of Eq. 7.16, thereby partly canceling their individual effects.

[7].4.1 Empirical number of coincidences

If some correlation is present among the ξ neurons, the empirical count n(ξ,N) of occur-
rence of ξ-patterns will differ from the predicted number of coincidences x(ξ,N). Indeed,
the empirical number of coincidences n(ξ,N) is the result of two separated contributions.
A first term is the number of chance coincidences due to background spikes nchance(ξ,N),
corresponding to the predicted number of coincidences x(ξ,N). The second is given by
the correlated patterns ncorrelated(ξ,N). To compute the term nchance(ξ,N) we have to take
ξ times the probability of spike multiplied by N−ξ times the probability of no spike and
by the number of bins, thus

nchance(ξ,N) =


(p′′)ω(p′)ξ−ω(1− p′)N−ξT if ξ ≥ ω

(p′′)ξ(1− p′′)ω−ξ(1− p′)N−ωT if ξ < ω ,
(7.17)

where the correlated neurons have background rate p′′ and the others p′ and ξ = 2, ..., N .
nchance(ξ,N) differs from x(ξ,N) because now not just the total rate p, but the background
rates p′′ and p′ need to be considered. The second contribution ncorrelated(ξ,N) is given
by the coincidence rate of neurons i = i1,...,ω times the rate of ξ−ω independent neurons,
times the probability that the remaining N − ξ neurons are silent in that instant of time,

ncorrelated(ξ,N) =


pc · (p′)ξ−ω(1− p′)N−ξT if ξ ≥ ω

0 if ξ < ω ,
(7.18)

Obviously, for complexity ξ < ω no additional patterns than those due to chance occur.
Summing these two terms yields the original number of patterns of complexity ξ,

n(ξ,N) = nchance(ξ,N) + ncorrelated(ξ,N) =

=


((p′′)ω + pc) (p′)ξ−ω(1− p′)N−ξT if N ≥ ξ ≥ ω

(p′′)ξ(1− p′′)ω−ξ(1− p′)N−ωT if 2 ≤ ξ < ω .
(7.19)
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[7].4.1.1 Effect of spike sorting failures

The co-occurrence of background spikes –some of which are missed as FNs– and of FP
spikes gives rise to combinatorial factors contributing to the empirical number of coinci-
dences after sorting nσ(ξ

σ
, N). For example, a coincidence after sorting of complexity ξ

σ

may be formed, say, by an amount A of original spikes of rate p′′, B spikes of rate p′, C
FPs, such that A+B+C = ξ

σ
. The complexity degree of an original pattern corresponds

to the simultaneous occurrence of spike and FN, to which we associate the indices ξ and
ξ′ respectively. Thus ξ + ξ′ is the original complexity value of a pattern. The complexity
degree of a pattern after sorting is given by spike and by FP: these will be represented
by the indices ξ and ξ

σ − ξ respectively (cf. Eq. 7.22 below). For a pattern of complexity
ξ + ξ′ with i spikes from correlated neurons and ξ + ξ′ − i spikes from the remaining,
independent neurons and {ξσ , ω,N} the complexity after sorting, the correlation order
and the number of neurons respectively, we define the factor Φi as the product of the
binomial factors to be considered,

Φi = Φi

(
ξ, ξ′, ξ

σ

, ω,N
)

=


(

ω
i

)(
ξ

σ − ω
ξ − i

)(
N − ξσ

ξ′

)
if N ≥ ξ

σ ≥ ω

(
ξ

σ

ξ

)(
ω − ξσ

i− ξ

)(
N − ω
ξ + ξ′ − i

)
if 2 ≤ ξ

σ
< ω .

(7.20)

The interpretation of Φi is quite straightforward, deriving for ξ
σ ≥ ω from the obvious

constraint for the correlated processes i ∈ {i1, ..., iω} ⇒ i < ω. The remaining ξ − i
original spikes are recruited among ξ

σ − ω choices, and the FNs can be in any of the
N − ξσ positions. For ξ

σ
< ω the considerations are analogous.

The spike sorting errors model yield to further combinatorial effects and to a more
complex formalism for the original number of chance coincidences nchance(ξ,N), which
simplify to Eq. 7.17 for σ− = σ+ = 0. In order to avoid confusion, we term this value
Xξ+ξ′ · T in this Section. In addition we define the new variable n?ξ+ξ′ , that represents
the original number of coincidences n(ξ,N) but also includes a further factor, therefore
simplifying the formalism. The first of these new variables is given by

Xξ+ξ′ =
imax∑
i=imin

Φi · (p′′)i(p′)ξ+ξ
′−i(1− p′′)ω−i(1− p′)N−ω−(ξ+ξ′−i) =

=
imax∑
i=imin

Φi · (p′′)i(1− p′′)ω−i(p′)ξ+ξ
′−i(1− p′)N−ω−(ξ+ξ′−i) =

=
imax∑
i=imin

Φi · B(p′′; i, ω)B(p′; ξ + ξ′ − i, N − ω) , (7.21)

where the constraints given by the complexity after sorting ξ
σ

for N neurons give imin =
max(ξ, ξ+ξ′−(N−ω)) if ξ

σ
< ω and imin = max(0, ξ−(ξ

σ−ω)) if ξ
σ ≥ ω, imax = min(ξ, ω).

The number of coincidences after sorting nσ(ξ
σ
, N) is composed of patterns of ξ original

and well sorted spikes (having probability (1−σ−)ξ), ξ′ FNs (probability (σ−)ξ
′
), and ξ

σ−ξ

64



Antonio Pazienti [7].4 ANALYTICAL RESULTS

FPs (probability (σ+)ξ
σ−ξ). The original complexity ξ + ξ′, is therefore partly decreased

because of the ξ′ FNs and then increased by ξ
σ − ξ FPs, resulting in the correct value for

the total complexity after sorting (ξ + ξ′)− ξ′ + (ξ
σ − ξ) = ξ

σ
. The above considerations

yield the set of equations (for ξ
σ

= 2, ..., N)

nσ(ξ
σ
, N) =

ξ
σ∑

ξ=0

τ ξ−(σ+)ξ
σ−ξ

N−ξσ∑
ξ′=0

(σ−)ξ
′
εN−ξ

σ−ξ′
ξ+ξ′ πξ

σ−ξ
ξ+ξ′ · n

?
ξ+ξ′ (7.22)

n?ξ+ξ′ =


pξ
σ

T if ξ + ξ′ = 0, 1

Xξ+ξ′T if ξ + ξ′ = 2, ..., ω − 1

Xξ+ξ′T + pc · (p′)ξ+ξ
′−ω(1− p′)N−(ξ+ξ′)T if ξ + ξ′ = ω, ..., N ,

(7.23)

τ− = 1− σ−

πξ+ξ′ =


1 if ξ + ξ′ = 0

ξ + ξ′ · p1/ξ
σ

if ξ + ξ′ = 1
p/(1− p) if ξ + ξ′ = 2, ..., N

(7.24)

εξ+ξ′ =

{
(1− p+)(1− p) if ξ + ξ′ = 0, 1

(1− p+) if ξ + ξ′ = 2, ..., N .
(7.25)

For no errors, i.e. σ− = σ+ = 0, nσ(ξ
σ
, N) equals the original number of coincidences

of complexity ξ, n(ξ,N), as it can be easily derived from Eqs. 7.21-7.25 by setting
σ− = σ+ = 0, ξ = ξ

σ
, ξ′ = 0, and i = min(ξ, ω).

Let us examine in more details the effect of the different contributions in nσ(ξ
σ
, N). For

this purpose, in all the following we will consider the case (ω = 3, i1,...,ω = i1,2,3) evaluating

the following patterns: vξ
σ

=3 = {i = i1,2,3 = 1, i 6= i1,2,3 = 0} (“direct case”), vξ
σ

=2 = {i =

i1,2 = 1, i 6= i1,2 = 0} and vξ
σ

=4 = {i = i1,2,3, i
∗ = 1, i 6= i1,2,3, i

∗ = 0}, i∗ /∈ {i1,...,ω} (“cross-
cases”). Figs. 15A-C depict the empirical number of coincidences of patterns of different
complexities as a function and for different levels of FNs and FPs. Increasing the FP error
rate and keeping the FN rate constant leads not surprisingly to an increase of the number
of coincidences (light gray solid lines). As a FP spike occupies a formerly empty bin, the
complexity of the pattern occurring amongst the neuron at that time step is increased,
and this holds for each complexity degree. Therefore FPs affect the coincidence count by
adding chance coincident patterns. On the other hand, keeping the FP rate fixed and
increasing the number of false negative spikes (dark gray solid lines) destroys both, chance
coincidences and synchronous patterns of complexity ξ

σ
. One (or more) FNs occurring

in a bin cause a pattern to decrease the value of its complexity degree by one (or more).
As a counter-effect patterns of complexity higher than ξ

σ
contribute to the complexity ξ

σ

after sorting because of FNs and thus increase them. However, this phenomenon does not
dominate as 1) it occurs at every complexity and 2) higher complexity patterns are more
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Figure 15: Empirical number of coincidences, number of excess coincidences and joint-surprise as
a function of sorting errors. A-C: empirical number of coincidences; D-F: excess coincidences; G-H:
joint-surprise. Left column: patterns of complexity ξ

σ

= 2; middle column: ξ
σ

= 3; right column:
ξ

σ

= 4. Black: original; dark gray: as a function of FNs for no FPs (solid), 20% FPs (dashed), 40%
FPs (dotted); light gray: as a function of FPs for no FNs (solid), 20% FNs (dashed), 40% FNs
(dotted). Parameters: N = 8, T = 107, ω = 3, p = 0.03, pc = 5 · 10−5, δ = 1 ms.

uncommon than lower complexity patterns. However, the simultaneous occurrence of FN
and FP spikes counterbalances their individual effects in a non-linear fashion (dashed and
dotted curves in Figures 15A-C). In general, the impact of false negatives is stronger in
destroying coincidences than that of false positives in creating them.

In order to compare the empirical and predicted number of coincidences (Eqs. 7.16
and 7.22) we plotted in Fig. 15D-F their difference nσ(ξ

σ
, N) − xσ(ξ

σ
, N) for different

values of complexity after sorting ξ
σ
, that is the “excess coincidences”. For pairs of

neurons (Fig. 15D) the excess coincidences increase when FN errors only are applied
(dark gray solid line). The reason why the initial value is negative is that no injected
coincidences were inserted with order ω = 2, and therefore with no errors the computed
number of patterns is smaller than expected due to the smaller background rate p′′ as
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compared to p′. However, deletion of spikes due to FN errors leads to an increase of
pairs, as some of the inserted triplets become pairs. When FPs only are applied, we
notice a small increase of excess coincidences; indeed, in this case both nσ(ξ

σ
, N) and

xσ(ξ
σ
, N) increase (light gray solid line). Interestingly, when both errors are applied

(dashed and dotted lines) depending on their relative amount even a decrease of excess
coincidences may be observed. In particular, for fixed but positive values of FNs the
excess coincidences decrease with increasing FPs (light gray dashed and dotted lines).
However, for fixed and non-zero values of FPs, the behavior of nσ(ξ

σ
, N) − xσ(ξ

σ
, N) is

parabolic with negative convexity, and decreasing absolute amounts with more and more
FPs (dark gray lines). The explanation for this behavior can be seen in the opposite and
conter-intuitive effects of errors on pairs: FNs make higher-order patterns degrade to pairs,
whereas FPs contaminate the patterns of complexity 2 with spurious spikes, thus making
them to get missed. FPs errors have small impact on excess coincidences of complexity 3,
as shown in Fig. 15E (cf. slope of light gray lines). The reason for this is that although
the empirical coincidences are increased by FPs (cf. Fig. 15B), a stronger increase is
expected based on the rates, which are obviously also affected by FPs. Although this
type of error leads thus to a small decrease of excess coincidences, on the contrary the
deletion of spikes caused by FNs results in the correlation to be strongly reduced. This
effect can be seen both in the dependence of nσ(ξ

σ
, N)−xσ(ξ

σ
, N) on FNs with no or fixed

FPs (dark gray lines) and in the progressively negative shift introduced by the fixed value
of σ− on the FP-dependence (cf. zero-value of light gray lines) in Fig. 15E. As a result,
overall sorting failures result in a reduction of excess coincidences of complexity matching
the initially inserted correlation (direct case). Fig. 15F shows how for complexity degrees
higher than the order of injected correlation the excess coincidences reflect the behavior
of both, the empirical and the predicted number of coincidences (cf. Fig. 15C and Eq.
7.16 respectively). Thus here FPs lead to an increase of excess coincidences and FNs to
a decrease (see also discussion relative to Fig. 15C).

The dependence of the number of coincidences n(ξ,N) before and after errors nσ(ξ
σ
, N)

as a function of the number of neurons N is shown in Fig. 16A,B. Black lines represent the
original number of coincidences n(ξ,N), dashed curves show cases where sorting errors
were injected. All curves show a slight decrease for increasing N . The reason for that can
be understood by looking at Eq. 7.19. For a fixed value of the probabilities of firing and
the complexity degree ξ, the original empirical number of coincidences n(ξ,N) decreases
with N because of the term (1− p′)N−ξ (or (1− p′)N−ω) in Eq. 7.19. That is the pattern
composed by ξ neurons firing and N − ξ (N − ω) neurons not firing becomes more and
more unlikely with increasing N . As expected adding FPs results in an increase of the
coincidence count (light gray lines), whereas FNs lead to a decrease of nσ(ξ

σ
, N) (dark

gray lines). For complexities higher than 2, the effects of sorting errors are stronger than
the negative trend with N . Overall, the results discussed above for the case N = 8 are
confirmed for populations of different numbers of neurons.

In Fig. 17A-C the dependance of nσ(ξ
σ
, N) on the firing rate p/δ (in Hz) is shown

for complexity after sorting ξ
σ

= 2 (Fig. 17A), ξ
σ

= 3 (Fig. 17B) and ξ
σ

= 4 (Fig.
17C) and inserted triplets. In all cases nσ(ξ

σ
, N) does not decrease with increasing firing

rate, but it is either almost constant or increases. For complexity after sorting ξ
σ

= 3 the
number of coincidences nσ(3, 8) the correlated patterns dominate up to values of about
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Figure 16: Empirical number of coincidences and joint-surprise as a function of the number of
neurons. A,B: empirical number of coincidences; C,D: joint-surprise. Left: patterns of complexity
ξ

σ

= 2; right: patterns of complexity ξ
σ

= 3 (top curves), ξ
σ

= 4 (bottom curves). Black: original;
dark gray: for 20% FNs (dashed) and 40% FNs (dotted); light gray: for 20% FPs (dashed) and
40% FPs (dotted). For N = 2 correlation order ω = 2. Otherwise parameters as in Fig. 15.

p/δ ∼ 1 Hz (Fig. 17B). The effect of FPs is in this range negligible, whereas moderate
levels of FNs destroy many of the 3-patterns. For higher rates the number of coincidences
increase exponentially with the background rate, and the errors have the usual effect of
(slightly) increasing the pattern count with FPs and decreasing with FNs. Indeed, for
high-firing rates the effects of errors are “diluted”. For ξ

σ
= 2 the original number of

coincidences increases exponentially with the rate (Fig. 17A, black). However, we can
notice an interesting effect in the presence of FNs (Fig. 17A, dark gray). Here, for low
rates nσ(2, 8) is much higher than the original value (solid curve). This is due to the fact
that the triplets are partially destroyed by FNs, and “become” pairs. However, for higher
rates, the value of the number of coincidences after FNs is fairly quickly back to below the
original value. For complexity after sorting ξ

σ
= 4 (Fig. 17C) the increase of the number

of patterns seems to have two distinct exponential regimes, i.e. at low and at high rates.
Here only the effect of FNs is pronounced in the low rate regime.

[7].5 Perturbation of the Significance of Correlation

Measures

In the following sections we will briefly discuss the cross-correlation function (Perkel et al.,
1967a,b; Aertsen et al., 1989) and the unitary event analysis (Grün et al., 2002a,b) since we
want to evaluate the impact of spike sorting on the analysis results using these methods..
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Figure 17: Empirical number of coincidences and joint-surprise as a function of the rate of the
processes p/δ = [Hz]. A-C: empirical number of coincidences; D-F: joint-surprise. Left column:
patterns of complexity ξ

σ

= 2; middle column: ξ
σ

= 3; right column: ξ
σ

= 4. Black: original; dark
gray: for 20% FNs (dashed) and 40% FNs (dotted); light gray: for 20% FPs (dashed) and 40%
FPs (dotted). Parameters as in Fig. 15.

For details please refer to the respective original works.

[7].5.1 Cross-correlation

The cross-correlation analysis enables to measure the correlations between two point pro-
cesses ri and rj, i, j = 1, . . . , N , where the expected value of the single processes corre-
sponds to their rates, i.e. E[ri] = pi, E[rj] = pj. The raw cross-correlation function for
stationary processes is defined as:

CCF raw
i,j (τ) = E[ri(t), rj(t− τ)] . (7.26)

It yields the number of empirical coincidences as a function of delay τ . To obtain the
covariance function, i.e. a measure corrected for the mean firing rates of the processes,
one has to subtract the “Predictor”, i.e. the product of the mean probabilities of firing
E[ri(t)] · E[rj(t − τ)] = pi · pj. Because we are interested here in exact coincidences (i.e.
synchronous spikes occurring in the very same bin) we focus on the central peak of these
functions.

In our framework, the value on the right-hand side of Eq. 7.26 corresponds to the
original empirical number of coincident patterns involving neurons i and j, n(2, 2) (Eq.
7.19). As in the previous sections we assume homogeneity across neurons,i.e. pi = pj = p.
This yields for the covariance
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CCFi,j(τ) = CCF raw
i,j (τ)− E[ri(t)] · E[rj(t− τ)] =

= Cov[ri(t), rj(t− τ)] =

{
n(2, 2)/T − p2 |τ | ≤ 1 bin

0 |τ | > 1 bin
(7.27)

Clearly, the result of Eq. 7.27 will be influenced by spike sorting errors. According to our
model, the probabilities of firing and the number of coincidences after sorting are for the
two neurons pσ and nσ(2, 2)/T , respectively (see Sections [7].3 and [7].4). This leads for
the covariance to:

CCF σ
i,j(τ) =

{
nσ(2, 2)/T − (pσ)2 |τ | ≤ 1 bin

0 |τ | > 1 bin
(7.28)

where nσ(2, 2) is the empirical number of coincidences of complexity after sorting ξ
σ

= 2
for the two specific neurons i, j. The value on the right-hand side of Eq. 7.28 is non-zero
for time shift τ = 0, i.e. in correspondence to the central peak of the cross-correlation
function. If we substitute N = ξ

σ
= 2 in Eq. 7.22 we obtain:

nσ(2, 2) =
(
1− σ−

)2 · n2 +
[
2σ+(1− σ−) + (σ+)2

]
· x2 . (7.29)

Using Eqs. 7.15 and 7.16 gives for the central peak of the cross-correlation function after
sorting:

CCF σ
i,j(0) = nσ(2, 2) =

(
1− σ−

)2 · [n2 − x2] . (7.30)

The cross-correlation coefficient CCσ equals CCF σ
i,j(0) divided by the standard deviation

of the processes6. As shown in Fig. 18 spike sorting errors lead to an underestimation of
the cross-correlation coefficient. Indeed, increasing both error types leads to a decrease
of the cross-correlation coeffient, which is more pronounced for FP errors (dark gray line)
than for FPs (light gray). This is due to the fact that sorting errors lead to a variation
of the estimated rate pσ, but do not explicitly introduce any correlations. Intuitively,
in Eq. 7.28 above, the coincidences introduced by sorting errors in the term nσ(2, 2)
are exclusively due to chance (FPs spikes occurring synchronously to original spikes or
to other FPs), and the second term (pσ)2 takes care of this already. Therefore, the
increased empirical firing probability measured after FP errors is not accompanied by
a corresponding amount of novel coincidences, and the correlation coefficient CCσ is
weakened.

On the other hand, FNs delete original spikes (and thus coincidences) in a systematic
way, i.e. both from nσ(2, 2) and (pσ)2 in a (statistically) identical amount. This fact, due
to the properties of the Poisson distribution (but this holds for more regular processes
as well, see Pazienti and Grün, 2006) leads to a stronger decrease of CCσ as compared
to FPs. Summarizing, in case of false negative spikes some of the correlated spikes are
deleted; in case of false positives no additional coincidences are created than expected by
the predictor (Pazienti and Grün, 2006).

6In case of Poisson processes these would be simply
√
pσ.
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Figure 18: Correlation coefficient before and after spike sorting. A: CC and CCσ as a function of
sorting errors. Black: original; dark gray: as a function of FNs for no FPs (solid), 20% FPs (dashed),
40% FPs (dotted); light gray: as a function of FPs for no FNs (solid), 20% FNs (dashed), 40% FNs
(dotted). B: as a function of the rate of the processes (in Hz). Black: original; dark gray: for 20%
FNs (dashed) and 40% FNs (dotted); light gray: for 20% FPs (dashed) and 40% FPs (dotted).
Parameters as in Fig. 15 with ξ

σ

= 2.

Fig. 18B depicts the behavior of the correlation coefficient CCσ for a wide range of
firing rates p/δ = [Hz]. Here the total number of spikes increase with the rates but the
coincidence rate was kept constant. Therefore the coincident patterns are “diluted” in the
firing activity of the neurons, and the cross-correlation coefficient decrease exponentially.
The results shown in Fig. 18A are manifestly not affected by changes in the rates. Indeed,
the curves of CCσ, shown for different amount of errors, follow the decaying of the original
cross-correlation coefficient in the whole range of rates, and always underestimate it.

[7].5.2 Unitary events

Unitary event analysis measures the significance of joint-spike events occurring amongst
multiple, simultaneously recorded neurons (Grün et al., 2002a,b). When their synchro-
nization exceeds the chance level by a significant amount, the coincident patterns are
called unitary events. UE analysis evaluates the significance based on the null-hypothesis
of independent firing. In the case of poissonian spike trains, the probability distribution
of the number of coincident patterns can be analytically derived. For spike trains de-
viating from Poisson or non-stationary data we suggested methods for correction (Grün
et al., 2003b; Pipa et al., 2003; Pipa and Grün, 2003). Here we restrict ourselves to
the assumptions of stationary and Poissonian spike trains, i.e. the situation described in
(Grün et al., 2002a,b), which we briefly introduce below. Under the null-hypothesis of
statistically independent firing of the neurons, the probability of a pattern of complexity
ξ amongst the N neurons to occur is Pξ = pξ(1 − p)N−ξ (cf. Eq. 7.14). The probability
for such a high dimensional pattern to occur exactly n times can be approximated by a
Poisson distribution (for a derivation see (Grün et al., 2002a)):

ψ(n;Pξ;T ) =
(PξT )n

n!
· e−PξT . (7.31)

Here, Pξ ·T is the rate parameter of the Poisson distribution, that is the expected number
of coincidences given the firing rates x(ξ,N) already derived in Sec. [7].4:

71



Antonio Pazienti [7].5 PERTURBATION OF THE SIGNIFICANCE OF CORRELATION MEASURES

x(ξ,N) = Pξ · T = pξ · (1− p)N−ξ · T. (7.32)

The empirical number of coincidences of complexity ξ, n(ξ,N), is then compared to the
predicted value x(ξ,N) using the Poisson distribution (Eq. 7.31). Significant deviation
from the expected value is estimated by the joint-p-value, i.e. the cumulative probability
of having n(ξ,N) or more coincident events (see Grün et al., 2002a for details) The signif-
icance is expressed as a non-linear (log-)transformation of the joint-p-value Ψ, resulting
in the significance measure joint-surprise js(Ψξ):

js(Ψξ) = jsξ (n(ξ,N)|x(ξ,N)) = log
1−Ψξ

Ψξ

, (7.33)

with

Ψξ (n(ξ,N)|x(ξ,N)) =
∞∑

n=n(ξ,N)

[x(ξ,N)]n

n!
e−x(ξ,N) . (7.34)

When the value of jsξ exceeds an a priori threshold, i.e. jsξ(n(ξ,N)|x(ξ,N)) ≥ jsα, the
synchrony is considered significant.

If we now use xσ and nσ (Eqs. 7.16 and 7.22 respectively) instead of x(ξ,N) and
n(ξ,N) we obtain the joint-surprise after sorting for complexity ξ

σ
, defined as jsσ

ξσ
≡

jsξσ (nσ(ξ
σ
, N)|xσ(ξ

σ
, N)). Figs. 15G,H,I show the typical dependance of the significance

measure on the error rates σ− and σ+. Here triplets were inserted into a subset of three
out of N = 8 neurons (cf. Sec. [7].4) and the complexities after sorting ξ

σ
= 2 − 4

are investigated. For the “direct case” (ω = 3, ξ
σ

= 3) (Fig. 15H) the significance after
sorting (gray lines) is lower than the original (black line) for any error types, i.e. the
correlation is always underestimated. When only one kind of errors is applied (solid gray
lines) the joint-surprise equals for no errors the original value js, and then decreases with
opposite curvature with σ− (dark gray) and σ+ (light gray). FP errors have therefore
a smaller impact on the significance in this case, leading to a less pronounced loss of
significance. Increasing errors leads to a further reduction of significance (dashed lines).
These reduction of the joint-surprise exceeds the effects on the excess coincidences shown
in Fig. 15E.

For the “cross-case” ξ
σ
< ω (Fig. 15G) we observe a very different phenomenon, now

leading to an overestimation of the significance. For σ− > 0 (dark gray solid line) the
significance measure increases with the FN rate. The reason for that is that introducing
FNs (i.e. deleting spikes) causes some of the triplets to change their complexity to the
value ξ

σ
= 2. The resulting excess coincidences (cf. Fig. 15D) may lead to a overesti-

mation of the significance for experimental data where a consistent amount of FN errors
were made (for example by too “conservative” spike sorting). We also observe a slight
increase in significance when applying FPs spikes only (solid light gray line), explainable
again by the effects on the excess coincidences. For ξ

σ
> ω (Fig. 17C) instead, in contrast

with what was observed for the excess coincidences (Fig. 15F), the significance is always
underestimated as compared with the original (shown in black). In this case FNs errors
have again a stronger effect than FPs. We would like to notice here, that the correlation of
the quadruplets is significant for low or no errors, due to inserted triplets and background
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firing. However, the effect of errors (more strongly of FNs) leads eventually to a loss of
the significance.

Fig. 16C,D show the value for the joint-surprise as a function of the number of
processes. For ξ

σ
< ω the significance is overestimated in case of FNs for any N above 2

(Fig. 16C). Here higher-order effects of spike sorting are therefore especially noticeable.
Indeed, for N = 2 the significance after sorting jsσ underestimates the original (black
line), but as soon as N > 2 the overestimation of the significance already discussed in
Fig. 15G comes into play. FP errors (light gray lines) do not have a strong effect and lead
forN > 2 to a value of js fairly similar to the original one. For complexities equal or higher
than 3 underestimation of the synchronization is observed for any N (Fig. 16D), and the
errors have a stronger impact than the number of processes. Overall, the dependance of
the joint-surprise on the number of processes confirms the results discussed above for the
case N = 8 (Figs. 15G-I, cf. also (Pazienti and Grün, 2006)).

The dependance of the joint-surprise measure on the firing rate (p/δ, in Hz) of the
neurons is shown in Fig. 17D-F for different levels of sorting errors and complexities
after sorting ξ

σ
= 2 (Fig. 17D), ξ

σ
= 3 (Fig. 17E) and ξ

σ
= 4 (Fig. 17F). For ξ

σ
= 2

the effect of FN errors discussed above is very prominent. Here, the insterted triplets
are turned into pairs by FN errors, leading the joint-surprise to high significance values.
However, for increasing rate the joint-surprise tends to the original value, that is the effect
of errors is progressively reduced, as the correlated spikes are more and more diluted in
the background. FP errors do not introduce any strong rate-dependent effect. For the
direct case ξ

σ
= ω = 3 the significance after sorting is always underestimated (Fig. 17E).

For complexity 4 the reduction due to FN spikes is very pronounced (Fig. 17F, dark
gray lines). This is the case for complexity higher than 4 as well: the more we get far
from the order of original correlation (ω = 3 in this case), the more the significance is
underestimated with FN errors. However for FPs we observe an interesting phenomenon.
For rates up to about 10 Hz false positive errors elicit an overestimation of the joint-
surprise, although too small to produce erroneously significant results for the correlation
of quadruplets. However, for higher firing rate the trend changes and the significance is
underestimated. Thus, this higher-order effect is firing rate-dependent.

[7].6 Discussion

We studied the effects of imperfect spike sorting on two correlation methods: cross-
correlation function and unitary event analysis. These methods are designed to estimate
the correlation structure of multiple single-unit neuronal processes from multi-site record-
ings. The central peak of the cross-correlation function measures correlation between
neuron pairs, whereas the joint-surprise measure can deal with N -dimensional patterns.
Both methods correct for random coincidences due to independent firing. However, the
influence of manipulated spike trains on these methods is still uncertain.

We presented a model that introduces “failures” (i.e. false negatives and false positive
spikes) into point processes. Our model does neither modify the higher-order correlation
structure nor the working hypotheses of the analysis methods investigated. No higher-
order patterns are systematically introduced and their timing is unaffected. We only
assume that each neuron suffers errors independently of others, i.e. we concentrate on the
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study of the synchronization of neurons recorded on different electrodes.
Our approach is general in two respects. On the one hand our model of sorting

errors can be seen as a simple way of modifying point processes (not only spike trains) by
introducing failures and therefore modifying their statistics. Thus, the model is applicable
in other contexts than electro-physiological data as well, i.e. in any analysis of point
processes. On the other hand, the model can be applied to other neuro-physiological
data measures other than cross-correlation function and unitary event analysis. Indeed,
the simplicity of the model together with its analytical description would easily allow to
gain insights into the effects of sorting on any methods of data analysis. This may give
hints about the robustness of the results against spike sorting errors and possibly lead
to adjustments of the spike sorting algorithms and strategies. This work is intended as
an illustrative approach to the study of the effects of spike sorting algorithms on data
analysis.

Effects of sorting errors on correlation analyses

For both analysis measures the effect of sorting errors leads in most of the cases to a
reduction of the significance (cf. Figure 17). False negative errors have in general a
more severe influence on the significance estimation of sorted data than false positives.
The reason is that unlike false positives, which may generate “chance” coincidences only,
FNs directly affect the correlated firing of the neurons by destroying a fraction of the
higher-order correlation patterns. This suggests that too conservative sorting strategies
(not classifying spikes located at the “outer regions” of the clusters in the feature space
for example) not only lead (locally, at the level of the nearby neurons) to missing over-
lapping spikes, but also negatively affect (globally, at the assembly level) the measured
synchronization among neurons located further away (i.e. 100µm or more, minimal
inter-electrode distance for most setups).

For the central peak of the normalized cross-correlation function, both error types
always lead to an underestimation, the effect being stronger in case of FNs. Let us
mention that the central peak of the cross-correlation function may overestimate the
synchronization, reflecting an underlying correlation of higher-order. This happens e.g.
when a correlation is present among a population of neurons that involves the considered
pair. Previous studies about the effect of imperfect sorting on cross-correlation measures
showed that the results may be strongly biased by spurious spike trains (Bedenbaugh
and Gerstein, 1997; Gerstein, 2000; Bar-Gad et al., 2001a,b). This overestimation of the
significance is unavoidable when using the cross-correlation function, which is not designed
to measure higher-order correlations. Here, we showed that sorting errors do not worsen
further this effect. In case of the unitary event analysis, in some cases higher-order
effects due to sorting play a role. We distinguished between direct cases (in which the
complexity degree equals the order of correlation, ξ

σ
= ω) and cross-cases (ξ

σ 6= ω) and
presented analytical results and a case study (Figs. 15G-I, 16C,D and 17D-F). The effects
of sorting is for direct cases an underestimation of the joint-surprise. In this domain the
unitary event analysis appears robust against sorting errors, confirming previous results
(Pazienti and Grün, 2006). For cross-cases there is under some circumstances erroneous
overestimation of the significance, e.g. with false negative errors for ξ

σ
< ω (Fig. 15G)
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and with false positive errors for ξ
σ
> ω (Fig. 15H). However, the latter effect is rather

small and belongs to fairly extreme ranges of physiological parameters. The documented
effects occur for amount of errors in the range of the ones documented in the literature
(see Introduction).

There is another fundamental difference of approach between cross-correlation func-
tion and unitary event analysis. In the first method the correlation of a single pair of
neural signal is analyzed, and the activity of other neurons is discarded7. The latter
method, on the other hand, while allowing for higher complexities, is restricted to exact
patterns of firing/not firing, i.e. N -dimensional strings of zeros and ones8. The draw-
back in this case is that if e.g. within a neuron population some neurons fail to fire the
–strictly spaking– new pattern will be classified as different. This is reflected in our results,
where we observed a certain sensibility of the UE analysis to complexity “migration” of
synchronization patterns.

On the assumption of Poisson processes

Our results do not depend on the assumption of using Poisson processes. Simulations using
processes with different statistical properties (such as more regularity than for Poisson
processes, not shown here) confirmed the validity of our results and our conclusions. The
motivation for our model of correlation (Sec. [7].2) is exclusively to allow an analytical
study of the effects of spike sorting errors. This choice allowed us to present closed form
relations for the firing rates and the pattern counts after spike sorting (pσ, xσ and nσ,
see Eqs. 7.13, 7.16 and 7.22 respectively) and to make theoretical predictions about the
effects of spike sorting. We believe that this choice makes our analysis and the results
more robust and, as already mentioned, easily extendable to other possible applications.

To summarize, the effect of spike sorting can strongly bias the results of correlation anal-
ysis, even under realistic parameter settings (firing rate, analysis time window, etc.) and
with previously reported amount of sorting errors. Furthermore, in case of many simul-
taneous recordings higher-order effects come into play and may affect the results. The
choice of the appropriate spike sorting technique and strategy appear as a crucial step
and it is too often an underestimated and undocumented step. It is of pressing impor-
tance to document more extensively the spike sorting methods utilized and to incorporate
objective quality controls of the outcomes. Furthermore, detailed investigations on the
employed analysis method would allow the disentanglement of wrong interpretations and
the comparability of the results.
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Abstract

Correlation analysis of neuronal spiking activity relies on the availability of dis-
tributions for assessing significance. At present, these distributions can only be
created by surrogate data. A widely used surrogate, termed dithering, adds a small
random offset to all spikes. Due to the biological noise, simultaneous spike emission
is registered within a finite coincidence window. Established methods of counting
are: (i) partitioning the temporal axis into disjunct bins and (ii) integrating the
counts of precise coincidences over multiple relative temporal shifts of the two spike
trains. Here, we rigorously analyze for both methods the effectiveness of dithering
in destroying precise coincidences. Closed form expressions and bounds are derived
for the case where the dither range equals the coincidence window. In this situation
disjunct binning detects half of the original coincidences, the multiple shift method
recovers three quarters. Thus, only a dither range much larger than the detection
window qualifies as a generator of suitable surrogates.

[8].1 Introduction

The only way to identify information processing in biological neuronal networks is to
simultaneously record from many neurons at a time. Nowadays multi-channel record-
ings are a standard technique in electrophysiological laboratories. Correlation analysis
of such data has demonstrated that neurons exhibit correlated spiking activity on a fine
temporal scale (ms precision) and in relation to the experimental protocol (Riehle et al.,
1997; Nowak et al., 1995). This has been interpreted as indicative for an involvement of
correlated spiking activity in brain processing.

However, the presence of correlated spiking activity is not obvious from visual inspec-
tion. At first sight, the data appear to originate from a stochastic process with large
variability in the number and the timing of spikes in responses to an identical stimulus.
Furthermore, the rate of spike emission typically exhibits a complex temporal profile.
Clearly, spike coincidences with millisecond precision can also occur as chance events.
Thus, the empirical number of joint-spike events needs to be compared to the distribution
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Figure 19: Spike dithering and two methods of coincidence detection. Filled bins indicate spike
occurrence, the width of the bins indicates the time resolution δ (typically 1 ms). Top: Generation
of surrogate data. Original simultaneous spike data (grey bins) of neuron 1 and 2. Coincidences are
assumed to be precise (within the same bin). In surrogate spike trains (black bins) all original spikes
are independently dithered with uniform probability in the range ±s (in units of δ). Middle: In the
disjunct binning (DB) method coincidences are detected in exclusive windows of width w to allow
a temporal jitter of the spikes. Only spikes within the same window (between thick vertical lines)
are counted as a coincidence. Bottom: In the multiple shift (MS) method spike coincidences are
detected if the distance between spikes is smaller than or equal to an a-priori parameter (see Sec.
[8].3).

of coincidence counts resulting from independent spike trains. This distribution can only
be derived using strong assumptions about the statistics of the spike trains (Grün et al.,
2002a) typically not fulfilled by electrophysiological data. Therefore, Monte-Carlo meth-
ods are widely used to construct the distribution of coincidence counts from surrogate
data (Pipa and Grün, 2003) that maintain certain statistical properties of the original
data but do not include correlations (Ikegaya et al., 2004).

Various methods are in use for the generation of surrogate data (Hatsopoulos et al.,
2003; Pipa et al., 2003; Pipa and Grün, 2003; Grün et al., 2003a; Pipa et al., 2007). All
of them fulfill the condition to destroy the correlation, but also have the drawback to
simultaneously destroy one or the other statistical feature of the data (Grün et al., 2003b;
Davies et al., 2006), e.g. the Poissonian nature or the exact spike counts. Date and
colleagues proposed the method of spike dithering to generate surrogates which currently
best meets the criterion to destroy the correlation between spike trains and simultaneously
to maintain as many statistical properties of the data as possible (Date et al., 1998).
The approach is to randomly re-place each spike within a small time window around its
original position, thereby almost perfectly preserving the other statistical features of the
single neuron data. Meanwhile, the method is in routinely use in the correlation analysis
of neuronal spike trains (Abeles and Gat, 2001; Maldonado et al., 2005). Strategies
have been developed to reduce the perturbation of the inter-spike interval statistics for
moderate dithers (Davies et al., 2006; Gerstein, 2004).

However, it is not well understood how much dither is required to destroy the spike
correlation, in particular if joint-spike events are allowed to have a temporal jitter. Here
we study the decay rate of the number of coincidences as a function of the dither width
and as a function of allowed temporal jitter of the coincidences. In particular we answer
the question to which degree coincidences are destroyed, if the dither width corresponds
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to the allowed temporal jitter of the joint-spike events. Intuition says that coincidences
should then be reduced by 50%. This needs to be analyzed in the context of the chosen
method of coincidence detection since it critically influences the result: we concentrate
on the disjunct binning method (DB) and the multiple shift method (MS) of coincidence
detection (Grün et al., 1999) (cf. Fig. 19 middle and bottom, respectively).

In the following we treat the two methods in two subsequent sections, in each of which
we briefly introduce the respective method, and derive analytically the probability of
detecting coincidences given originally precise coincidences as a function of dither and
of the allowed coincidence width. The results section compares the two methods for the
particular case of the applied dither being equal to the allowed coincidence width. We
show that the probability of detection decays with increasing dither, however much faster
for DB as compared to the MS method. We also compare to the case where only one
spike train is dithered.

[8].2 Disjunct Binning

The original spike data are discretized into bins of width δ, such that the total duration
T of the recording is divided into N bins (T = δ ·N). Each bin is assumed to contain at
most one spike. As a result the activity of each neuron is represented by a binary sequence
(Fig. 19) of zeros (no spikes) and ones (spikes). We define coincident events (or simply
coincidences) as the joint firing of the two neurons within a coincidence window of w bins,
thereby allowing coincidences to have a certain temporal jitter. In order to detect the
total number of coincident events, the DB method sections T into disjunct, adjacent time
segments (coincidence windows) Wk, k = 1, ..., dN/we each containing w bins of width δ.
With bins numbered from 1 to N , the first coincidence window W1 is composed of bins
{1, 2, ..., w}, the second W2 of {w + 1, w + 2, ..., 2w}, and so on.

We assume the original coincidences (i.e., before dithering) to be perfectly synchronous
joint-events, i.e., both neurons have a spike in the very same bin. Due to an applied dither
in the range of [−s, s] bins a spike may trespass the border of a coincidence window and
fall into another coincidence window. The dither factor D = d s

w
e, i.e., the next integer

larger than (or equal to) s
w

, defines in how many coincidence windows the spike may fall
and thus how many borders it might cross.

Next we are interested in the probability to detect a coincidence after dithering. The
result depends on whether dithering is applied to both neurons (2-neuron dithering) or
only one neuron (1-neuron dithering). The approaches are treated separately in the next
two sections.

[8].2.1 2-neuron dithering

In 2-neuron dithering each spike of both spikes trains is randomly displaced in the range
of [−s, s] bins with uniform probability.

In order to calculate the probability that a coincidence after dithering is still detected
as a coincidence, we need to consider all coincidence windows Wk into which the dithered
spikes may be scattered. The number of windows is given by the dither factor D. If
we assume the original coincidence to be in window W0, spikes may be dithered into
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coincidence windows Wk with k = 0,±1,±2, ...,±D. Therefore, the probability is the
sum of the probabilities that the spikes fall into the same window Wk.

The probability to detect a coincidence within a particular coincidence window Wk

depends on the number of bins that may be reached from the original coincidence po-
sition given a particular dither s. The probability to fall in a single bin δ within the
dither interval [−s,+s] is 1/(2s+ 1). Depending on the initial position α = 1, 2, ..., w of a
spike in the coincidence window, a different number of bins is reachable in the surround-
ing coincidence windows. In the coincidence windows where all w bins can be reached
(k ∈ [−D+ 2, . . . , D− 2]), the probability of a spike to fall into the window is ∆wαk · 1

2s+1
,

with ∆wαk = w. In the remote windows {W−D,W−D+1,WD−1,WD}, the probability corre-
sponds to the number of reachable bins, i.e., ∆wαk′ · 1

(2s+1)
with k′ = −D,−D+1, D−1, D,

respectively.
Because the two coincident spikes are dithered independently, the joint probability of

both spikes being in window Wk is the product of the probabilities (∆wαk · 1
2s+1

) for the
individual spikes. Then the total probability to detect the coincidence after dithering is
given by the sum of the joint probabilities across all reachable coincidence windows:

P [2−n]
α (w, s) =

k=D∑
k=−D

(
∆wαk

2s+ 1

)2

. (8.1)

The closure relation is given by the condition that the total dither involves 2s+ 1 bins:

k=D∑
k=−D

∆wαk = 2s+ 1 ⇒
k=D∑
k=−D

∆wαk
2s+ 1

= 1 . (8.2)

Fig. 20A,B show the coincidence detection probability P
[2−n]
α (w, s) as a function of

the initial position α of the spikes in the coincidence window, for different values of the
dither s. Surprisingly, the probability of detection P

[2−n]
α (w, s) depends on the distance

of the initial coincidence from the borders of the coincidence window. For s = w (Fig.

20A) the probability P
[2−n]
α (w, s) reaches its minimum if the initial coincidence is in the

center of the window, and is maximal when the initial coincidence is just at the window
border. This counterintuitive result holds true for all values of w. However, it can be
understood by considering that if spikes were originally in the proximity of the border of
the coincidence window the number of destination windows is generally smaller than for
originally centered spikes. As a consequence, spikes fall in larger stretches of successive
bins, and thus the probability for the fission of coincidences by the borders of the coin-
cidence windows is reduced. The total probability P

[2−n]
α (w, s), which is constrained by

Eq. 8.2, is maximized if few increments ∆wαk are large and is minimal if all increments
have intermediate values. In other words, the number of ways of arranging the two spikes
in a destination window increases quadratically with the number of involved bins (cf.
Eq. 8.1), hence the α-dependance observed in Fig. 20A.

As shown in Fig. 20B, the overall probability P
[2−n]
α (w, s) progressively increases with

decreasing s from s > w to s < w, shown here for a fixed w. For decreasing s the spikes
have a decreasing chance to trespass the window border and to escape from their original
window. In extreme, for s � w the spikes may not reach any other windows and thus
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Figure 20: Probability of detecting coincidences after dithering for DB as a function of the
position α of the original coincidences measured from the center of the coincidence window W0.
A,B: For 2-neuron dithering. C: For 1-neuron dithering. Black curves: case w = s (enlarged ordinate
in A), solid grey curves: w < s, dashed grey curves: w > s. Parameter values: w = 10, s = 15 (solid,
dark grey), s = 21 (solid, light grey), s = 7 (dashed, dark grey), and s = 4 (dashed, light grey).

stay coincident. In contrast, for s > w the coincidence has an increasing probability to be
destroyed because of the large number of potential destination windows. The probability
P

[2−n]
α (w, s) shows different shapes depending on the exact relationship between s and w.

[8].2.2 1-neuron dithering

In case only the spikes of one spike train are dithered (e.g. only the spikes of neuron 2,
(Hatsopoulos et al., 2003)) the probability of detecting the coincidences after dithering
only depends on the new positions of the spikes of train 2. This method leads to a total
probability

P [1−n]
α (w, s) =

{
w/(2s+ 1) if s ≥ w − 1
∆wαk /(2s+ 1) if s < w − 1 ,

(8.3)

where we assumed the initial coincidence window to be Wk and ∆wαk to be the associated
number of bins reachable by a spike from neuron 2. Again, this number depends on the
initial position α of the spike.

For s ≥ w − 1 both sides of the dither window [−s, s] are larger than the coincident
window Wk and thus the probability for the two original spikes to stay coincident after
dithering depends on the probability for the dithered spike to stay in that window. Its
probability is given by the number of bins in the window w relative to the total number
of possible bins, i.e., 2s + 1, the spike may be dithered into (upper relation in Eq. 8.3).
This obviously does not depend on the initial position α of the coincidence.

If both sides of the dither window are smaller than the coincident window (s < w−1),
only a fraction of the bins may receive a spike after dithering and depends on the original
position α of the spike (Fig. 20C). For s < w−1 the probability of detecting the coincidence
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after dithering increases progressively as s decreases, with a maximum at the central bins
of the window. The maximal detection probability w/(2s + 1) is attained if the whole
dither window [−s, s] is included in the coincidence window Wk.

[8].3 Multiple Shift

This method provides a different way of counting coincident spikes of two neurons, avoid-
ing the arbitrarily located “hard” borders. The multiple shift method defines a maximum
allowed shift b. Assuming again the spike trains to have resolution δ, the procedure begins
with counting all precise coincidences. Then spike train 2 is shifted with respect to spike
train 1 by δ and again all precise coincidences are counted. The procedure continues for
all positive shifts 2δ, 3δ, .., bδ and for the negative shifts −δ,−2δ, ...,−bδ. Consequently,
spikes with a distance of up to ±b bins are counted as coincident. The parameter b is
analogous to the coincident width w, however with the substantial difference that there
are no fixed borders and the initial position of the coincidence α is meaningless.

Consider both spikes constituting a coincidence to be dithered in the range ±s and
the origin of the temporal axis to be located at the position of the initial coincidence.
After dithering the probability to find spike 2 at distance k from spike 1 is given by the
probability to find 1 at i times the probability to find 2 at k+ i summed over all possible
positions i:

J(k, s) =
1

2s+ 1

s∑
i=−s

p(k + i) . (8.4)

However, p(k + i) is subject to further constraints. If e.g. spike 1 is at −s, spike 2 can
only be coincident or to the right of spike 1, requiring p(k − s) to vanish for negative k.
Therefore, the effective limits of the sum also depend on k, collapsing Eq. 8.4 to

J(k, s) =


1/(2s+ 1) for k = 0

2s+1−|k|
(2s+1)2

for |k| ≤ 2s

0 for |k| > 2s .

(8.5)

The probability of dithering two initially coincident spikes to a distance |k| reaches its
maximum at zero offset and decreases linearly with |k| before it drops to zero at ±2s.

In the MS method all spikes dithered up to a distance k = ±b are classified as coin-
cident. To obtain the probability to detect an initially coincident event after dithering
P [MS](b, s) we have to sum the probabilities J(k, s) of all possible dithering results for k
in the range −b, ..., b

P [MS](b, s) =


1/(2s+ 1) for b = 0

1
2s+1

+
∑b

k=−b
2s+1−|k|
(2s+1)2

for b ≤ 2s

1 for b > 2s

=

{
2b+1
2s+1
− b(b+1)

(2s+1)2
for b ≤ 2s

1 for b > 2s .

(8.6)
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[8].4 Results

In this section we will derive the expected probability of detecting a coincidence after
dithering given a large number of coincidences occurring in the spike trains at random
times.

In the disjunct binning framework the assumption of many coincidences occurring at
random times implies that the original coincident events will cover, in expectation, all
possible initial positions α ∈ [1, ..., w]. Therefore we have to average the results of Secs.
[8].2.1 and [8].2.2 (Eqs. 8.1, 8.3) over α. For 2-neuron dithering this yields

〈P [2−n]
α (w, s)〉α =

1

w

w∑
α=1

k=D∑
k=−D

(
∆wαk

2s+ 1

)2

. (8.7)

Using similar arguments we derive the expected probability for the case of DB after 1-
neuron dithering utilizing Eq. 8.3:

〈P [1−n]
α (w, s)〉α =

{
w/(2s+ 1) if s ≥ w − 1
∆wαk /(2s+ 1) if s < w − 1 ,

(8.8)

whereas in the case of the MS method there is no α-dependence of the probability. For
convenience however we also rewrite Eq. 8.6:

〈P [MS](b, s)〉 =

{
2b+1
2s+1
− b(b+1)

(2s+1)2
for b ≤ 2s

1 for b > 2s .
(8.9)

Fig. 21A shows 〈P [2−n]
α (w, s)〉α, 〈P [1−n]

α (w, s)〉α and 〈P [MS](b, s)〉 as functions of the
dither s and for three different values of allowed coincidence width. The expected prob-
ability declines with increasing dither in all cases. Detecting only precise coincidences
(w = 1 or b = 0, respectively) the dither has a strong effect and destroys coincidences
already at small values of s.

With increasing coincidence width the different cases deviate from each other, the 2-
neuron dithering being the more effective way of destroying coincidences. For w = b = 10
the 2-neuron dithering destroys about 80% of the original coincidences for dither values
of about s = 20. In this situation, the 1-neuron dithering leads to similar but slightly
higher probabilities of detection, whereas for a similar loss of detected coincidences with
the MS method a dither of about s = 50 is required.

Let us now investigate the special case in which the dither equals the coincidence
width, i.e., s = w, in order to obtain closed form expressions and limits. For the 2-neuron
dithering setting w = s and dither factor D = 1 reduces Eq. 8.7 to

〈P [2−n]
α (w = s)〉α =

1

w

w∑
α=1

k=1∑
k=−1

(
∆wαk

2s+ 1

)2

=
1

3
+

s(s− 1)

3(2s+ 1)2
. (8.10)

For non-zero values of dithering Eq. 8.10 assumes values between 1/3 (for s, w = 1) and
1
3

+ 1
12

(for s, w � 1), that is 1
3
≤ 〈P [2−n]

α (w = s)〉α < 0.416̄ = P
[2−n]
lim . Therefore P

[2−n]
lim is
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Figure 21: Expected probability of detecting coincidences with DB and MS as a function of

dither range. 〈P [MS](b, s)〉 (light grey), 〈P [1−n]
α (w, s)〉α (dark grey), 〈P [2−n]

α (w, s)〉α (black). A: Three
values of constant coincidence width. Thin curve: b = 0, w = 1 (MS and 1-/2-neuron, respectively),
thick curves with knobs: w = b = 5, thick curves: w = b = 10. B: Bounds for coincidence width
corresponding to dither width, w = s and b = s respectively.

the maximum probability of detecting a 2-neuron dithered coincidence with the disjunct
binning method when the dither equals the coincidence width.

For 1-neuron dithering Eq. 8.8 with w = s is just

〈P [1−n]
α (w = s)〉α =

s

2s+ 1
, (8.11)

where the probability is larger than 1/3 (s, w = 1) and tends to P
[1−n]
lim = 0.5 for s, w � 1.

Finally for the MS method replacing b = s in Eq. 8.9 yields

〈P [MS](b = s)〉 = 1− s(s+ 1)

(2s+ 1)2
, (8.12)

bounded between 1− 2/9 = 0.7̄ (b, w = 1) and P
[MS]
lim = 0.75 (for b, s� 1), the difference

being only about 4%. The above results are visualized in Fig. 21B.

[8].5 Discussion

In this contribution we have rigorously analyzed the effectiveness of 2-neuron dithering for
the disjunct binning and the multiple shift detection methods and for comparison also 1-
neuron dithering for DB. The analysis is restricted to precise coincidences. Further studies
are required to investigate the biologically more relevant case of jittered (i.e., imprecise)
coincidences (Grün et al., 1999), the presence of background activity, and processes with
a biologically realistic inter-spike interval statistics (Davies et al., 2006). Nevertheless,
the present study provides detailed new insight in the dithering process. After uniform 2-
neuron dithering of coincident spikes, the distribution of spike distances |k| is not uniform,
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favoring the survival of coincidences. Furthermore, in DB the probability of detection after
dithering depends on the initial location of the coincidence in a complex manner.

We provide analytic expressions for the expected probability of detection in the dif-
ferent scenarios. In DB and MS the expressions reduce to simple closed forms for w = s
and b = s, respectively. Under these constraints we obtain in the limit s→∞ the bounds
P

[2−n]
lim = 0.416̄, P

[1−n]
lim = 0.5, and P

[MS]
lim = 0.75. These asymptotic values are monotoni-

cally approached. Thus, for 1-neuron dithering analyzed by DB the intuition that a dither
width equal to the coincidence window destroys 50% of the coincidences is confirmed. For
2-neuron dithering the rate of destruction is slightly larger. Counter to intuition, for MS
the effect is much less pronounced. At b = s still 3/4 of the coincidences survive. For
example, with b = 10 and s = 50 the probability of detection still is at P [MS](b, s) ' 0.2.
Thus, for detection methods like MS which essentially evaluate the central peak of the
cross-correlation, a dither width much larger than the detection window is required to
destroy a relevant fraction of the coincidences.
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