Conformations of semiflexible polymers
and filaments

Dissertation

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften (Dr. rer. nat)
in der Wissenschaftsdisziplin Theoretische Physik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultat der Universitat Potsdam

angefertigt in der
Abteilung Theorie & Bio-Systeme
des Max-Planck-Instituts fiir Kolloid- und Grenzflachenforschung in Golm

von

Petra Gutjahr

geboren am 18. Januar 1979 in Saarbriicken

Dezember 2007



Elektronisch veroffentlicht auf dem

Publikationsserver der Universitat Potsdam:
http://opus.kobv.de/ubp/volltexte/2008/1591/
urn:nbn:de:kobv:517-opus-15918
[http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15918]



Zusammenfassung

Die biologische Funktion und die technologischen Anwendungen semiflexibler Polymere,
wie DNA, Aktinfilamente und Nanorthren aus Kohlenstoff, werden wesentlich von
deren Biegesteifigkeit bestimmt. Semiflexible Polymere werden charakterisiert durch
ihre Persistenzlénge, mit deren Definition sich der erste Teil dieser Arbeit befasst.

Anziehende Wechselwirkungen, wie sie z.B. bei der Adsorption, der Kondensation
und der Biindelung von Filamenten auftreten, konnen die Konformation eines semi-
flexiblen Polymers verindern. Die Konformation ist dabei abhéangig von der relativen
Grofle der Materialparameter und kann durch diese gezielt beeinflusst werden. Im
Einzelnen werden hier die Morphologien semiflexibler Polymerringe, wie z.B. DNA oder
ringférmiger NanorShren, untersucht, die auf drei verschieden strukturierten Substraten
adsorbieren: (i) Ein topographischer Kanal, (ii) ein chemisch modifizierter Streifen und
(iii) ein periodisches Muster topographischer Oberflichenstufen. Die Ergebnisse werden
mit der Kondensation von Ringen durch anziehende Wechselwirkungen verglichen.

Des Weiteren wird die Biindelung zweier Aktinfilamente, deren Enden verankert
sind, untersucht. Diese Systemgeometrie liefert eine systematische Methode, um die
Stéarke der Anziehung zwischen den Filamenten aus experimentell beobachtbaren Kon-
formationen zu berechnen.

Abstract

The biological function and the technological applications of semiflexible polymers,
such as DNA, actin filaments and carbon nanotubes, strongly depend on their rigidity.
Semiflexible polymers are characterized by their persistence length, the definition of
which is the subject of the first part of this thesis.

Attractive interactions, that arise e.g. in the adsorption, the condensation and the
bundling of filaments, can change the conformation of a semiflexible polymer. The
conformation depends on the relative magnitude of the material parameters and can
be influenced by them in a systematic manner. In particular, the morphologies of
semiflexible polymer rings, such as circular nanotubes or DNA, which are adsorbed
onto substrates with three types of structures, are studied: (i) A topographical channel,
(ii) a chemically modified stripe and (iii) a periodic pattern of topographical steps. The
results are compared with the condensation of rings by attractive interactions.

Furthermore, the bundling of two individual actin filaments, whose ends are an-
chored, is analyzed. This system geometry is shown to provide a systematic and quan-
titative method to extract the magnitude of the attraction between the filaments from
experimentally observable conformations of the filaments.
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Chapter 1

Introduction

Biological and chemical systems offer a great variety of semiflexible polymers,
filaments and fibers. Their rigidity is essential for many biological functions in
cells and their applications in (bio-)nanotechnology. The aim of this chapter is
to give a brief review on semiflexible polymers. Therefore, we start with a few
well-known examples and illustrate why they are classified as semiflexible. The
notion of the persistence length is thereby explained. On length scales compa-
rable to this persistence length, the conformations of filaments are described
theoretically by the worm-like chain model, which is the basis for all calcu-
lations within this thesis. As this model comprises only the elastic behavior,
we briefly comment on some other properties, that may influence the shape
of semiflexible polymers. The main part of this thesis considers shape defor-
mations induced by attractive interactions responsible for adsorption, conden-
sation and bundling of filaments. The physical origin of these interactions is
explained and the resulting phenomena relevant for later chapters are intro-
duced. We also give a brief summary of the most common methods used in
related experimental studies. Biomembranes can be described as thin elastic
sheets and, thus, are the two-dimensional analogues of semiflexible polymers.
As the comparison between these systems is helpful in some cases, we also give
a short introduction to fluid membranes. At the end of this chapter, we give
an overview of this thesis.

1.1 Semiflexible Polymers and Filaments

Semiflexible polymers, filaments and fibers play a major role in biological and
chemical physics. The most important property that governs their behavior on
length scales relevant for their biological function in cells or for their applications
in (bio-)nanotechnology is their resistance to bending or bending rigidity. Despite
their considerable bending rigidity, however, they can still exhibit significant
thermal shape fluctuations. Such one-dimensional objects, which are neither
flexible, nor completely rigid, are called semifiexible.
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Nanotube F-actin  HbS fiber  Microtubule

2 nm 7 nm 21 nm 25 nm
50nm 10 pm ~0.2-1mm ~ 1-5 mm

Figure 1.1: Examples of semiflexible nanotubes, polymers, filaments and fibers:
Carbon nanotubes, double-stranded DNA, the cytoskeletal filaments F-actin and
microtubules, and HbS fibers associated with sickle cell anemia. The images and
the experimental values for the persistence lengths are taken from [1, 2, 3, 4, 3]
and [5, 6, 7, 8, 9], respectively. The values for the diameter and the persistence
length of nanotubes refer to the single-walled type.

1.1.1 Examples

Certainly, the most prominent example is double-stranded DNA as the carrier
of genetic information. It is composed of two polynucleotide chains that form
a right-handed double helical structure. While the core of the helix is occupied
by the basepairs, the backbones of the chains thereby wind around each other,
see Fig. 1.1.

Furthermore, the shape, motility and internal structure of cells is governed
by a sophisticated network of filaments called the cytoskeleton. Its mechanical
properties strongly depend on those of its three main filamentous building blocks:
F-actin (filamentous actin), microtubules and intermediate filaments. The former
two possess considerable bending rigidity and are semiflexible. Actin filaments
are made up of the protein G-actin (globular actin), which assembles into a two-
stranded helical structure. Microtubules, on the other hand, are hollow cylinders,
that typically consist of 13 protofilaments, which are themselves linear assemblies
of tubulin subunits.

Another extensively studied semiflexible biopolymer is connected to the sickle-
cell disease. Sickle cell anemia is a blood disorder caused by a genetic mutation,
which leads to the transcription of sickle hemoglobin (HbS) instead of normal
hemoglobin (HbA). At low oxygen conditions, HbS has the special ability to
polymerize into long, twisted fibers, which are usually composed of 7 double
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strands and have an elliptical cross section. These fibers evolve into a gel that
deforms and rigifies red blood cells, so that the blood circulation through narrow
blood vessels is obstructed causing a sickle cell crisis.

Moving on to synthetic macromolecules, carbon nanotubes are well-known for
their unique mechanical, optical and electronical properties, which promise a wide
range of technical applications. The molecular structure of nanotubes resembles a
single layer, that has been wrapped up into a seamless cylinder. In the same way,
nanotubes consisting of several concentric layers can be fabricated. Accordingly,
one speaks of single-walled and multi-walled nanotubes. Both structures are very
rigid and, thus, semiflexible. In Fig. 1.1, these different examples are ordered by
the size of their diameter.

Strictly speaking, of all these examples only the single strands of DNA are
polymers, if we define a polymer to be composed of repeating structural units or
monomers connected by covalent chemical bonds. By contrast, the two strands
of DNA are bound together by hydrogen bonds, while cytoskeletal filaments and
HbS fibers are supramolecular aggregates, whose structure is determined by the
hydrophobic effect and other non-covalent interactions. Carbon nanotubes are
not classified as polymers (although the bonds between carbon atoms within a
nanotube are covalent), but they belong to the fullerene structural family. For
simplicity, however, we will refer to all these objects as semiflexible polymers
meaning that they have similar elastic properties and, in this respect, are de-
scribed similarly.

The schematic images in Fig. 1.1 suggest that semiflexible polymers occur
only as open linear chains. But this is not true. In fact, various types of fila-
ments are found to self-assemble into closed loops, such as DNA minicircles [10]
and amyloid fibrils [11]. Particularly for DNA this closed form is important for
many biological processes. For example, the genetic material of prokaryotes is
stored in DNA rings. In other cases, the ring formation is achieved by chemical
bonds, such as for carbon nanotubes [12, 5], or by attractive interactions between
polymer segments, e.g. for filamentous actin [13] and DNA [14].

1.1.2 Why are polymers semiflexible?

A common starting point to answer this question is to identify structural differ-
ences between the above examples and a typical flexible polymer, say, polyethy-
lene. The backbone of polyethylene is a chain made up of carbon-carbon bonds
and has an effective diameter of a few Angstrom. The orientation of adjacent
bonds is (neglecting self-avoidance) uncorrelated. Therefore, the simplest model
for a flexible polymer is to interpret the conformation of bonds as the path of a
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random walker with fixed step size. At finite temperature, a flexible polymer as-
sumes a shape that maximizes the conformational entropy. For a rather complete
description of flexible polymers, see e.g. Refs. [15, 16, 17].

Compared to this simple picture of a flexible polymer, the semiflexible poly-
mers depicted in Fig. 1.1 have an elaborate internal structure. The relative posi-
tions of the monomer subunits within the structure are more or less fixed, which
restricts the displacement of individual monomers. In this sense, the semiflexible
polymers shown in Fig. 1.1 resemble solid rods. Furthermore, the diameters ex-
ceed those of flexible polymers by at least one order of magnitude, see Fig. 1.1.
In order to analyze the conformation of a semiflexible polymer, in the simplest
approximation, we neglect all structural details and represent the rigid architec-
ture of a semiflexible polymer by a homogeneous cylindrical rod, which is treated
by means of standard elasticity theory [18]. In particular, one can assign a meso-
scopic elastic bending modulus or bending rigidity s to each type of semiflexible
polymer.

According to [18], the bending rigidity & is the product of the Young’s modulus
FE and the inertia of the rod’s cross section I, i.e.

4
k= BT with T= [dSar?="(2) (1.1)
1\ 2

Here S, indicates the area of the cross section and r the distance of a point on
the cross section to the neutral axis. The last equality holds for a circular cross
section with a diameter D. The bending rigidity has units energy times length.
In biological and chemical systems, thermal fluctuations play an important role
so that energies are commonly measured in units of 7. Thus, x/T gives a length,
which is called the persistence length L,,. It indicates the length scale above which
thermal shape fluctuations influence the shape of a semiflexible polymer signifi-
cantly and is prevalently used to specify the stiffness of a semiflexible polymer.
Plugging in the values for the diameters given in Fig. 1.1 and a Young’s modu-
lus E of approximately 1 GPa for DNA and the cytoskeletal filaments, 0.1 GPa
for HbS fibers and 1 TPa for single-walled nanotubes lead to estimates for the
persistence length L, at room temperature, which roughly match the measured
values given in Fig. 1.1. As can be seen, the values for the persistence length
extend over several orders of magnitude, which can be attributed to the fourth
power of the diameter in the formula eq. (1.1) for I.

In summary, semiflexible polymers behave as homogenous elastic rods on
length scales comparable to their persistence length L,, which is significantly
bigger than their diameter. This separation of length scales implies that archi-
tectural details, such as individual monomers and helical structure, should indeed

!Note that throughout this thesis, kg = 1 and T is measured in energy units.
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x=0 x;Lx
(a) (b)

Figure 1.2: Schematic description of a semiflexible polymer in the worm-like chain
model in (a) the arc length and (b) the parametrization by displacement fields.

be negligible on the scale defined by L,. For instance, a helical turn of DNA en-
closes only 10 base pairs, whereas the persistence length is as long as 150 base
pairs. Obviously, L, is very important for the classification of semiflexible poly-
mers and, therefore, Chapter 2 is dedicated to define this quantity more carefully.

1.1.3 The worm-like chain model

A powerful theoretical description comprising these notions is the worm-Ilike chain
(WLC) model that was suggested by Kratky and Porod in 1949 [19]. In this frame-
work, the neutral axis of the semiflexible polymer is represented by a smooth
space curve r(s) parametrized by the arc length s, which is schematically shown
in Fig. 1.2(a). The endpoints of the semiflexible polymer are at s = 0 and s = L,
where L denotes the contour length of the polymer. For filament rings, the two
end points coincide with a single point on the contour that can be chosen arbitrar-
ily. The arc length parametrization automatically implies that the tangent vector
t(s) = d,r(s), with 9, = £, has unit length. Thus, in d dimensions, each orienta-
tion of the tangent vector t(s) corresponds to a certain point of the hypersphere
Sq—1. The bending energy is then proportional to the square of the curvature of
the space curve r(s) integrated over the contour length and the Hamiltonian of
the WLC model is given by

lec{t(s)}:/o dsg(ast)Q, with t2(s) = 1. (1.2)

The condition on the length of the tangent vector t2(s) = 1 enforces the local (and
global) inextensibility of semiflexible polymers within the WLC model. Further-
more, it implies that only d — 1 components of the d-dimensional tangent vector
are independent. In particular, in two dimensions the tangent vector can simply
be expressed in terms of tangent angles 6(s) so that the Hamiltonian depends

5
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only on a single scalar function

L

Hare{0(s)} = /0 ds(0.6)" (1.3)

External forces or geometric constraints, such as walls, can give rise to a
preferred orientation of a semiflexible polymer. If the conformation deviates only
weakly from the straight conformation, which we define to be parallel to the x-
axis, it is often more convenient to use the parametrization by displacement fields,
see Fig. 1.2(b). Then the space curve describing the semiflexible polymer can be
written as r(x) = (x,z(x)), where z(x) is the (d — 1)-dimensional displacement
field. It measures the displacement of the rod from the straight conformation
at a certain position x on the preferred axis and is obviously only well-defined,
if the conformation does not contain any overhangs. The ends of the polymer
are located at + = 0 and x = L,. Consequently, in the parametrization by
displacement fields, the projected length L, rather than the contour length L of a
semiflexible polymer is automatically fixed during calculations. L is then obtained
by integrating the length of the corresponding tangent vector t(z) = (1, 0,z(z)).
An approximate version of the WLC Hamiltonian is obtained by expanding (1.2)
in the displacement field z(x) up to second order

Hue{z(z)} = /0 z A’ (0Pa), (1.4)

where the gradients of z(z) are assumed to be small.

Whatever parametrization is chosen, semiflexible polymers assume a confor-
mation of minimal bending energy with respect to appropriate boundary condi-
tions, provided that the system is equilibrated and thermal fluctuations are small
compared to the stiffness of the semiflexible polymer. The stationary shapes of
semiflexible polymers are found by solving the respective Euler-Lagrange equa-
tion, i.e. the first variation of Hy. has to vanish. Therefore, without further
constraints, an open polymer acquires a straight conformation, while a closed
polymer ring forms a circle.

On the basis of the WLC Hamiltonian (1.2), the persistence length L, is usu-
ally defined as the length scale over which the correlation of tangent orientation
decays [19, 20, 21]. The corresponding correlation function is given by

. \sfs/\

(t(s) t(s)) = e T . (1.5)

But also other quantities, that help to distinguish the behavior of semiflexible
from flexible polymers experimentally, can be obtained as functions of the contour
length and the persistence length: The mean square end-to-end distance of a
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semiflexible polymer subject to thermal fluctuations [19] and the force-extension
relation [22], which reflects how a semiflexible polymer resists stretching with an
entropic force, are probably the most prominent examples for such quantities.

1.1.4 Extensions of the worm-like chain model

If very large forces are applied to the ends of a semiflexible polymer, end-to-
end distances that slightly exceed the contour length have been observed for
DNA [23], F-actin [24] and polyelectrolytes (see below) [25]. Obviously, these
results cannot be explained by the WLC model, in which semiflexible polymers
are assumed to be inextensible. One way to solve this problem is to add a
corrective term, that accounts for the overall extension of a semiflexible polymer,
to the WLC model [26, 27, 28, 29]. Alternatively, the polymer can be described
by a discretized version of the WLC Hamiltonian using microscopic bonds with
a finite extensibility [30, 31, 32]. For F-actin, forces above 50 pN are needed
to stretch a filament beyond its contour length, which is well above the forces
considered in this thesis, cf. Chapter 4.

Furthermore, most biopolymers carry ionizable groups along their backbone
and dissociate in solution into charged polymers and counterions. Such polymers
are so-called polyelectrolytes. The theoretical description of polyelectrolytes, see
e.g. Ref. [33], is much more complicated than that of neutral polymers, because
of the long-ranged (Coulombic) interactions between polymer segments. In ionic
solutions these repulsive interactions are screened by the formation of counterion
clouds around the polymer backbone. If the solution is dilute, one can use the
Debye-Hiickel approximation, in which the interaction between two monomers is
assumed to decay exponentially on the scale of the screening length

Ipn = (87¢2lpcs) V2. (1.6)
Here ¢, and ¢, are the valency and the concentration of the salt ions and

€
dmeged

is the Bjerrum length denoting the distance, at which the Coulombic interaction
between two elementary charges eq is equal to T'. Due to screening one might
expect that the effect of electrostatic interactions should no longer be noticeable
on length scales well above [py. By contrast, Odijk, Skolnick and Fixman [34, 35]
showed that a polymer bearing evenly distributed charges along its backbone at
distances r exhibits an electrostatic stiffening, which is effectively described by
an additive correction to the persistence length, namely

ZBE

(1.7)

* . Ipl?
Lp = Lp + LOSF with LOSF ~ BTI;H. (18)
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In biological systems, Ipy and, thus, Logr becomes small, so that this correction
will be neglected here.

Another phenomenon, which is beyond the scope of the worm-like chain model
and likewise beyond the scope of this thesis, is the supercoiling known for DNA. If
a twist strain is imposed, e.g. by an enzyme, to a DNA molecule, this strain can
be relaxed by allowing the DNA to wrap around itself, which is mathematically
denoted as a writhe. In everyday life, the knotted configurations of telephone
cables are an intuitive example for supercoiling. For closed DNA and for the case
where the ends are fixed, the sum of the number of twists of the double helix and
the number of writhes is conserved. This conservation law has to be included
into calculations, for details see e.g. [36].

1.1.5 Interacting semiflexible polymers

So far, only the properties of individual semiflexible polymers were considered.
However, in most biological and chemical systems, semiflexible polymers are not
isolated and self-assemble into larger structures, as in the cytoskeleton. The
smallest structures made of semiflexible polymers are condensates consisting of a
single semiflexible polymer, considered at the end of Chapter 3, and bundles of
two filaments, which are the topic of Chapter 4. On the other hand, in experi-
ments it is often beneficial to adsorb polymers to surfaces, e.g. to control their
shape as in Chapter 3. This is certainly only possible, if the attraction between
polymer and substrate is strong enough to render the adsorbed state energetically
favorable.

In the simplest case, semiflexible polymers adhere to each other due to van der
Waals forces. Especially for carbon nanotubes this attraction is rather strong and
suffices to stabilize highly strained rings formed by coiling [12]. In comparison,
the mechanisms that lead to an effective attraction between biopolymers are much
more complex usually being a combination of many different effects [37, 38]. Here
we concentrate on the bundling induced by multivalent cations. As we learned in
the last paragraph, most biopolymers are negatively charged and, consequently,
repel each other. At the same time, a polyelectrolyte attracts counterions from the
buffer solution, which form a cloud around the polymer. This process is known as
counterion condensation [39, 40]. The sheath of counterions is polarizable, which,
in fact, can lead to an effective attraction between polyelectrolytes via so-called
‘salt bridges’.

The resulting attraction is surprisingly strong. In vitro, multivalent cations
cause DNA — despite their rigidity — to collapse into compact, highly ordered
configurations, mostly rod-like condensates or toroids [37], see Fig. 1.3(a) and
Chapter 3. These condensates show great similarities to DNA packaged into
virus capsids and, in addition, are interesting for gene transfer in gene therapy.
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Figure 1.3: (a) Micrograph of a toroidal condensate of A phage DNA [41]. The
scale bar is 50 nm. (b) Image of the eukaryotic cytoskeleton [42]. Microtubules,
actin filaments and the cell nucleus are shown in green, red and blue, respectively.

Analogous to DNA condensation, also actin filaments have been observed to form
bundles [38] and toroidal condensates [13], which are, due to the greater bending
rigidity, much bigger than those made of DNA.

In the cytoskeleton, see Fig. 1.3(b), the filaments are linked together by var-
ious types of proteins with typically two binding domains. We focus only on
crosslinker proteins binding actin filaments, which are relevant for the experi-
ments we will consider in Chapter 4. For further details of the cytoskeleton see
e.g. Ref. [3]. Many of these crosslinkers are found in the actin cortex — a thin
layer just beneath the cell membrane — which is to a large extend responsible
for the mechanical support and the motility of animal cells. The arising struc-
tures within the actin cortex strongly depend on the properties of the crosslinking
proteins [43, 44]: Whereas some proteins, such as filamin, generate gel-like net-
works with orthogonal interconnections, bundles of parallel filaments, as found
in filopodia and in stress fibers, are produced by e.g. fimbrin, a-actinin and the
motor protein myosin II. The latter protein is, in contrast to the other mentioned
crosslinkers, an example of an active binding protein, which can convert chemical
energy into mechanical work and move along a filament.

Semiflexible polymers can not only interact with each other, but also with
other objects, in particular, with surfaces [45]. The adsorption to substrate sur-
faces exhibits great advantages for the direct observation of individual polymers,
see the next paragraph, and plays an important role for applications in (bio-
Jnanotechnology, cf. Chapter 3. A typical experimental system to study adsorbed
semiflexible polymers is DNA deposited on mica [46]. Both materials — mica and
DNA — are negatively charged. Using essentially the mechanisms as mentioned

9
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above, adsorption can be achieved by adding divalent cations. The cations con-
stituting the ion cloud can freely diffuse along the surface so that the adsorbed
DNA can be treated as a free worm-like chain in two dimensions. Similar to the
attraction between nanotubes, also the adsorption of nanotubes is governed by
van der Waals interactions [47]. Alternatively, the nanotubes are coated with
surfactants, which enhances the binding to hydrophobic substrate domains, see
e.g. Ref. [48].

In this thesis, all interactions introduced above will be described by the same
simplified theoretical model. For attractions between two filaments, it consists
of a spherical potential well of radius [ and an effective strength W, W < 0 [49].
For the case of a semiflexible polymer adsorbing to a substrate, the spherical
potential is replaced by a planar square well potential. The potential range [
depends on the type of interaction and is usually taken to be small compared
to other relevant length scales. For van der Waals and screened electrostatic in-
teractions [ is comparable to the polymer diameter D and the screening length
Ipm, respectively. On the other hand, for crosslinkers, the potential range [ is
determined by the distance between the two binding domains and, in addition,
the binding to filaments may exhibit a preferred angle. The details can be found
in Sections 3.2.1, 3.3.1, 3.5 and 4.3, respectively. In either case, interactions be-
tween crosslinking proteins or cations as well as dynamic effects are essentially
neglected.

1.1.6 Experimental methods

In the last decades, the properties of semiflexible polymers have been extensively
probed in experiments. At the same time sophisticated techniques have been de-
veloped, that allow to visualize the conformation of a single semiflexible polymer
and its pointwise manipulation in a highly controlled fashion. Most commonly
used are magnetic [50] or optical tweezers [51] and scanning probe techniques,
such as atomic force microscopy (AFM) [52], that reach sensitivities in the pi-
conewton range and spatial resolutions down to the nanometer scale.

Magnetic or optical tweezers work via the control or trapping of single objects,
such as beads, that can be attached to one end of a semiflexible polymer. In this
way, the force-extension relation of DNA was measured for the first time [50, 53].
On the other hand, AFM provides a powerful tool to deal with semiflexible poly-
mers adsorbed to solid surfaces. A cantilever with a sharp tip senses the to-
pography and the local mechanical properties of a surface with very high spatial
resolution. In this type of experiment, one can extract information directly from
the polymer’s shape. For instance, the persistence length can be determined by
measuring tangent correlations or end-to-end distances, see e.g. Ref. [46]. The

10
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disadvantages of this method are the temporal resolution limited by relatively
long scanning times and the necessity to confine the probed semiflexible poly-
mers to a solid surface, which might alter their physical properties. But then
the interplay between a semiflexible polymer and a substrate surface can also be
exploited for the immobilization and controlled manipulation of DNA and other
semiflexible polymers required in bionanotechnology. For this purpose, the pos-
sibility to achieve such shape control for semiflexible polymer rings using simple
striped surface structures is explored in Chapter 3.

Moreover, in Chapter 4, we consider experiments that create a biomimetic
model of the actin cortex. These experiments use an alternative approach, that
provides well-defined boundary conditions for the quantitative analysis of fila-
ment conformations, but does not rely on the adsorption of filaments. There,
the filaments are locally attached to so-called microscopic pillars [54], but are
otherwise unconstrained. To avoid interactions with the underlying substrate
the height of the pillars is chosen to be comparable or bigger than the contour
length of the filaments. Further details concerning these experiments are given
in Section 4.2.

1.2 Fluid membranes

Membranes, such as the cell membrane, act as enclosing or separating elements
in biological systems [3] and constitute a wide field of research for many years
already. Their detailed composition might be manifold and very complicated, but
the basic component of all biological membranes are lipid molecules, see Fig. 1.4.
Lipids are typically amphiphilic — that is, they have a hydrophilic (water soluble)
head and a hydrophobic (water insoluble) tail — and as a result, spontaneously
form thin bilayers in water. In order to avoid boundaries, where hydrophobic
tails are exposed to water, fluid membranes form closed bags or wvesicles. If the
lipids can diffuse freely within the two layers, the two-dimensional membrane is
fluid.

Similar to semiflexible polymers, the shapes of fluid membranes can be de-
scribed by means of elasticity theory. On length scales large compared to the
size of the lipids, they can be modelled as thin elastic sheets. Their conformation
in three-dimensional space is governed by the bending rigidity [56, 57, 58], while
other elastic moduli play only a minor role. From this point of view, fluid mem-
branes are the two-dimensional analogue of semiflexible polymers. For a review
of the conformation of membranes, see e.g. [59].

The shape of a membrane is represented by a three-dimensional vector field
R(s1, $2) depending on the coordinates s; and s, that parametrize the mem-
brane surface. If the shape deviates only weakly from a flat plane, say, the
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1. Introduction

Figure 1.4: Schematic image of a biomembrane [55] consisting of a bilayer of
lipids (heads: light blue, tails: yellow), which is decorated with proteins (green
and blue) and anchored polymers (red). The thickness of the phospholipid bilayer
is approximately 5 nm.

xy-plane, it is common to parametrize the membrane by displacement fields.
Similar to the one-dimensional case, the embedding functions are then expressed
as R(z,y) = (x,y, 2(z,y)), where z(x, y) denotes the height function with respect
to the reference plane. The corresponding Hamiltonian was first introduced by
Canham [56] and Helfrich [57] and can be written in a rather compact form

Honem = /dA{g(2M)2 + RG} . (1.9)

In principle, this Hamiltonian is the two-dimensional generalization of eq. (1.2).
Here, the integral extends over the membrane surface, dA indicating the infinitesi-
mal area element of the membrane surface. The curvature of a surface is described
by the curvature tensor, which can be diagonalized at every point. Its eigenvalues
C7 and (Y are the principle curvatures, which specify the largest and the smallest
local curvature. As the only quantities allowed to appear in the Hamiltonian are
scalars, only the trace and the determinant of the curvature tensor, namely

M = % and G = 10y, (1.10)
occur in eq. (1.9). M and G are called the mean and the Gaussian curvature, re-
spectively. According to the Gauss-Bonnet theorem, the integral [dA G depends
only on the topology of the surface. Hence, as long as the membrane surface
does not undergo topological changes, the second term yields only a constant
contribution and the first term can be identified with (1.2). The bending rigid-
ity is denoted by x analogous to the last section, whereas the new parameter k
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1.3. Overview

is the bending modulus associated with the Gaussian curvature. It should be
noted, that in this case x and likewise k& have units of energy. The mathematical
definitions of the above quantities can be found in App. A.

The stationary shapes of vesicles are obtained by minimizing H,,en supple-
mented by additional constraints, such as a prescribed membrane area or a fixed
enclosed volume. One of the key simplifications often needed to make explicit
calculations feasible, is to assume an axisymmetric conformation. The computa-
tional problem is then reduced to find the one-dimensional contour of the vesicle
shape in the plane. It is therefore not surprising, that in some cases the treatment
of vesicles and adsorbed ring polymers displays great similarities, which will also
be encountered in Chapter 3.

For phospholipid bilayers, the bending rigidity is deduced from experiments to
be of the order of 10 - 20 7' [60, 61]. Consequently, thermal shape fluctuations are
also relevant for fluid membranes. For membranes, the notion of a persistence
length was introduced by de Gennes and Taupin [62], but the details of this
definition and how it can be compared to the persistence length of semiflexible
polymers will be postponed to the next chapter.

The Canham-Helfrich model has proven to provide the theoretical framework
to explain various phenomena. In particular, it is suitable to describe the elastic
behavior of vesicles, which have become a popular model system to investigate
properties of biological membranes over the years. Among the major achieve-
ments in this context, see e.g. Ref. [63, 64] for a review, are the correct description
of non-trivial equilibrium shapes of vesicles, which are similar to shapes observed
for red blood cells, and the adhesion of vesicles, which is important for many
biological applications [3].

1.3 Overview

This thesis is organized as follows. The topic of the next chapter is the relation
between the persistence length of semiflexible polymers and the renormalization
of the bending rigidity. First, we review existing definitions for the persistence
length based on tangent correlations for semiflexible polymers and on the renor-
malized bending rigidity for membranes. Applying both definitions to polymers
shows that they are, in fact, incompatible. In order to clarify this issue, we
calculate the renormalization of the bending rigidity of a semiflexible polymer
by a real-space renormalization analysis as is commonly used for Ising-like spin
systems. From the asymptotic behavior of the renormalized bending rigidity, we
deduce a new definition for the persistence length, which generalizes the conven-
tional definition, but gives identical results. The content of this chapter has been
published previously in Refs. [65, 66].
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Chapter 3 considers the controlled adsorption of semiflexible polymer rings
on surfaces containing chemically or topographically modified stripes. For either
type of structure, we study the equilibrium morphologies by calculating a pro-
jection of the energy landscape, determining its local minima and their stability.
The results are summarized in morphological diagrams, and the influence of ther-
mal fluctuations is discussed. As an example of more complicated structures, we
also consider a substrate with a periodic topographical pattern. Finally, we com-
pare our findings to the morphological transitions related to the condensation of
a semiflexible ring by attractive polymer-polymer interactions.

In Chapter 4, we present a theoretical analysis based on experiments, which
study the partial zipping of actin filaments with anchored ends. First, we de-
scribe the experimental setup to motivate our theoretical model. We distinguish
between two regimes, namely, the case of strong and weak attraction between
the filaments. For either case, the resulting conformations are discussed at zero
temperature and in the presence of thermal fluctuations in order to reveal how
the attraction strength can be extracted from experimentally observed data.

Finally, we end with a summary of all three topics and an outlook on possible
extensions and open questions for future work.
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Chapter 2

Persistence length of semiflexible polymers and
bending rigidity renormalization

The persistence length of semiflexible polymers (and one-dimensional fluid
membranes) is obtained from the renormalization of their bending rigidity.
The renormalized bending rigidity is calculated using an exact real-space func-
tional renormalization group transformation based on a mapping to the one-
dimensional Heisenberg model. The renormalized bending rigidity vanishes
exponentially at large length scales and its asymptotic behavior is used to de-
fine the persistence length. For semiflexible polymers, our results agree with
definitions based on the asymptotic behavior of tangent correlation functions.
Our definition differs from the one commonly used for fluid membranes, which
is based on a perturbative renormalization of the bending rigidity.

2.1 Introduction

Thermal fluctuations of two-dimensional fluid membranes and one-dimensional
semiflexible polymers or filaments are governed by their bending energy and can
be characterized using the concept of a persistence length L, which is illustrated
in Fig. 2.1. In the absence of thermal fluctuations at zero temperature, fluid
membranes are planar and (open) semiflexible polymers are straight because of
their bending rigidity. Sufficiently large and thermally fluctuating membranes
or semiflexible polymers lose their planar or straight conformation. Only sub-
systems of size ¢ < L,, appear rigid and maintain an average planar or straight
conformation with a preferred normal or tangent direction, respectively. Mem-
brane patches or polymer segments of sizes ¢ > L,, on the other hand, appear
flexible. In the “semiflexible” regime ¢ ~ L, the statistical mechanics is gov-
erned by the competition of the thermal energy 7" and the bending rigidity k.
Experimental values for the persistence length of one-dimensional semiflexible
biopolymers vary from 50 nm for double-stranded DNA [6], up to the mm-range
for microtubules [9], cf. Fig. 1.1. The persistence lengths of two-dimensional fluid
membranes are typically much larger than experimental length scales.

Although the qualitative idea of the persistence length is simple, it poses a
rather complex problem to give a systematic definition of L,, which is applicable
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Figure 2.1: Schematic contour of a thermally fluctuating semiflexible polymer on
different length scales £. On very short length scales ¢ < L,, the thermal energy
is not sufficient to introduce a bend in the contour of the semiflexible polymer
(right), whereas on large scales ¢ > L, the conformational entropy dominates,
so that the orientational order is completely destroyed (left). The intermediate
regime ¢ ~ L, is characterized by the balance between thermal fluctuations and
the stiffness of the semiflexible polymer (middle).

to semiflexible polymers and their higher dimensional counterparts, membranes
and interfaces. In fact, there exists no universal definition of L, so far, but
instead, several definitions are used either for one- or two-dimensional objects.
All definitions are based on the same concept, namely, to identify a parameter
that allows to differentiate between the three different regimes, illustrated in
Fig. 2.1, and, thus, to establish a criterion that determines, if some elastic object
can be treated as semiflexible. But whether the resulting definitions are really
equivalent can not be taken for granted.

Two widespread definitions are reviewed in the next section. The first is
prevalently used for polymers and defines the persistence length as the length
scale above which the orientation of the tangent vectors along the semiflexible
polymer is lost and the shape can be decomposed into approximately indepen-
dent segments of size L,, see eq. (1.5) in Chapter 1. For the second definition,
which is well-established in the context of membranes, a scale dependent bending
rigidity is introduced reflecting the influence of thermal fluctuations on the elastic
behavior on large length scales. One possible definition of L, is then to identify
L, with the length scale where the (perturbatively) renormalized bending rigidity
vanishes. A comparison of these definitions is only feasible for semiflexible poly-
mers and yields disagreeing results for L,. This discrepancy can be attributed
to two reasons: Firstly, the persistence length derived from k-renormalization re-
lies on perturbative calculations limited to rather small scales, and, hence, might
not be significant for the long range behavior. Secondly, the two definitions are
indeed not equivalent, which brings back the issue of a universal definition of L,.

16



2.2. Various definitions of L,

In this chapter, we concentrate on a discrete description for semiflexible poly-
mers, which is equivalent to the one-dimensional classical Heisenberg model. The
advantage of this model is that the k-renormalization as well as the tangent corre-
lation function are exactly computable in arbitrary dimensions d. Consequently,
a direct comparison of the persistence length determined via k-renormalization
and via the tangent correlation function is possible. We introduce this model in
Section 2.3. The k-renormalization is carried out in a similar fashion as is com-
monly used for Ising-like spin systems. In contrast to the nonlinear o-model, we
find nontrivial results for x(¢) both in two and in three dimensions. As expected
for an exact result, x(¢) is always positive and approaches zero only asymptot-
ically. We analyze the large scale behavior of k(¢) leading to a power series of
exponentials with the same decay length as obtained for the tangent correlations.
We define this length scale to be the persistence length of the polymer.

2.2  Various definitions of L,

2.2.1 Decay of conformational orientation

Consider the schematic shape of a freely fluctuating semiflexible polymer in
Fig. 2.1. On small length scales (right), it is perfectly straight so that all its
tangent vectors point to the same direction. By contrast, this tangential orien-
tation is lost on very large length scales (left). The physical quantity measuring
this behavior is the tangent correlation function. Accordingly, for semiflexible
polymers with one internal dimension, L, is usually defined by the characteris-
tic length scale for the exponential decay of the two-point correlation function
between unit tangent vectors t along the polymer.

In Chapter 1, the worm-like chain model [19] was presented as a continuous
model for an inextensible semiflexible polymer of contour length L. The Hamilto-
nian is given by the bending energy, eq. (1.2). For a WLC embedded in d spatial
dimensions, the tangent correlation function is found to be [20, 21]

() = e with L. — 210
(t(s)-t(s'))y =e : Wltth—d_lT
where £ is the (unrenormalized) bending rigidity of the model'. The thermal
average (.) is taken by summing over all possible polymer shapes weighted by
the Boltzmann factor containing the bending energy (1.2). The polymer contour
is completely determined by the field t(s) of unit tangent vectors so that, in
practice, the sum over all conformations is achieved by functional integration
over t(s), as will be seen in detail in the next section.

(2.1)

'In this chapter, the mesoscopic bending rigidity & is labeled with an index 0 to distinguish
between ‘bare’ and renormalized quantities. In subsequent chapters, this distinction will become
redundant and the index will be omitted again.
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Persistence length of semiflexible polymers

For fluid membranes with two internal dimensions, the quantity analogous
to (2.1) is the correlation function of unit normal vectors, since the normal vec-
tors measure the local orientation of a surface. An approximate result for the
correlation function of normals has been given in Ref. [15], but a rigorous treat-
ment is missing because of the more involved differential geometry, which gives
rise to a number of complications discussed in the following.

Surfaces cannot be fully determined by specifying an arbitrary set of normal
vectors, because they have to fulfill additional compatibility conditions in terms of
the metric and curvature tensors, the equations of Gauss, Mainardi and Codazzi,
which ensure their continuity, cf. App. A. Implementations of these constraints
lead to a considerably more complicated field theory than (1.2) describing a two-
dimensional fluid membrane in terms of its normal vector field [67].

Not only the Hamiltonian itself becomes much more complicated. Even the
definition of thermal averages (.) is far from obvious for membranes. As men-
tioned earlier, it involves a summation over all possible surfaces, but each physi-
cal conformation should be counted only once. A particular surface shape can be
parametrized in many different ways, so in order to avoid overcounting, one has to
choose a parametrization. At the same time, one has to assure that the obtained
results do not depend on this choice (reparametrization invariance). The Fadeev-
Popov procedure [68, 69, 70] implements this issue by means of an additional fac-
tor in the path integral measure. For semiflexible polymers, the parametrization
via arc length guarantees the correct counting and reparametrization invariance
automatically. The respective Fadeev-Popov factor is thus equal to one. Further-
more, in the arc length parametrization, the degrees of freedom are equidistantly
distributed along the contour of the polymer and their total number is preserved
automatically. Such a favorable parametrization as the arc length does not exist
for membranes. In order to fix the number of degrees of freedom of a membrane
patch, another factor has to be included, which is known as the Liouville fac-
tor [71, 72]. The even distribution of the degrees of freedom cannot be assured,
since, for membranes with arbitrary shape, it is merely possible to find a local
coordinate system, which defines a metric proportional to the Euclidean met-
ric. The proportionality factor, however, may vary along the membrane. This
particular choice is known as the conformal gauge.

In most cases, one is only interested in the limit of very rigid membranes,
where the partition sum can approximately be truncated to surface shapes that
deviate only weakly from the flat plane. Then the parametrization by displace-
ment fields is adequate and corrections arising from the Fadeev-Popov and the
Liouville factor do not emerge below second order in T'/kq. Nevertheless, the dif-
ficulties described above strongly indicate that exact calculations in this context
are rarely manageable.
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2.2. Various definitions of L,

2.2.2 Thermal softening and stiffening

For fluid membranes, an alternative definition of the persistence length L, has
been given, which is linked to the effect of k-renormalization. The mode coupling
between thermal shape fluctuations of different wave lengths modifies the large
scale bending behavior, which can be described by an effective or renormalized
bending rigidity . Transferring this notion to Fig. 2.1 would lead to a different
value for the effective bending rigidity «(¢) in each regime. In particular, this
schematic case exemplifies the thermal softening of a polymer, that is, x(¢)/T
decreases from right to left.

The renormalized  has been calculated using different perturbative renormal-
ization group (RG) approaches [73, 74, 75, 76, 77, 78, 70, 79, 80], which are limited
to the first order in T'/ky due to the reasons presented in the previous subsection.
The results are still controversial: Several authors [73, 74, 75, 76, 77, 78, 70]
find a thermal softening of the membrane with increasing length scales, but dif-
fering prefactors, whereas Pinnow and Helfrich [79, 80] obtained the opposite
result. Furthermore, different definitions of the persistence length are considered
in these approaches: In Refs. [76, 77, 78, 70], L, is identified with the length scale,
where the renormalized bending rigidity « vanishes, while Helfrich and Pinnow
defined L, via the averaged absorbed area [73, 74, 75, 79, 80].

Even though a lot of effort was made to find the s-renormalization for the
membrane, it has never been calculated for the simpler case of the semiflexible
polymer. In this chapter, we obtain an exact real-space RG scheme for the
bending rigidity of a semiflexible polymer or a one-dimensional fluid membrane,
which allows us to define the persistence length as the characteristic decay length
of the renormalized bending rigidity.

In principle, a perturbative result for the effective x of a semiflexible poly-
mer can be deduced from the RG analysis of the one-dimensional nonlinear o-
model, which is equivalent to the WLC Hamiltonian (1.2). After a Wilson-type
momentum-shell RG analysis, one obtains the effective rigidity, see e.g. Refs. [81],

k(A) Ko 1_£d—2{1 1
T T

- }rors), (22

Rg T

which depends on the momentum A. The parameter Ky = k(/Ag) is the ‘bare’
coupling taken at the high momentum cut-off Ay = 7/by, which is given by a
"lattice spacing’ or bond length by. Using also A = 7 /¢ we obtain the renormalized
k = k(L) as a function of the length scale ¢. Following the procedure previously
used for membranes, the persistence length can be defined via

7T2 Ko

k(L,) =0 and, thus, L, ~ T 9T (2.3)
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For the case of the polymer in the plane (d = 2), the Hamiltonian simplifies to a
free or Gaussian field theory such that x = kg is unrenormalized to all orders in
ko/T and, therefore, L, as defined via k(L,) = 0 would become infinitely large.

A similar perturbative momentum-shell RG procedure is possible in the para-
metrization of a weakly bent semiflexible polymer by displacement fields, analo-
gous to the RG analysis for two-dimensional membranes [76]. There the polymer
is parametrized by its projected length x with 0 < x < L,, where L, is the fixed
projected length of the semiflexible polymer while its contour length becomes
a fluctuating quantity. The renormalized x = k({,) becomes a function of the
projected length scale ¢,, which complicates a comparison with the result (2.2),
which was derived in an ensemble of fixed contour length. Using the analogous
criterion x(L,) = 0 we obtain

L, ~ 2m° o

3d—1T
within the parametrization by displacement fields.
A comparison of the RG results from the non-linear o-model, see eq. (2.3),
and the one obtained in the parametrization by displacement fields, see eq. (2.4)
with eq. (2.1) shows that the RG results for the persistence length L, are not
compatible with the definition using the tangent correlation function. This raises

the general question which of the definitions should be preferred.

(2.4)

2.3 Model

A discretization of the WLC Hamiltonian (1.2) should preserve its local inexten-
sibility. In addition, we want to use a discretized Hamiltonian which is locally
invariant with respect to full rotations of single tangent vectors t, i.e. to a trans-
lation of any angular coordinate of the corresponding hypersphere by 27 — in
addition to the global rotational symmetry of the polymer as a whole. A suitable
discrete model is an inextensible semiflexible chain model as given by [82, 32]

i=1

M
Hawe{t:} = ? Y (Lt ti), with t2 =1, (2.5)
0

with M bonds or chain segments of fixed length by. The semiflexible chain model
is equivalent to the one-dimensional classical Heisenberg model (except for the
first term, which represents a constant energy term) describing a one-dimensional
chain of classical spins, cf. Fig. 2.2.

The partition sum reads

Zy = (H/dt ) exp[—Hawie{t; }/T] = (

H/dt]) Hﬂil Tiii, (2:6)

Jj=0
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where we have introduced the transfer matrix
7}72‘_1 = exp [—Ko(l — tz . ti—l)] = exp [h(o) (tz . ti—la KQ)} s (27)

with Ko = ko/byT and [ dt; = 1. Equation (2.7) defines the interaction function
h®(z) between neighboring tangents. For the following calculations it proves
very advantageous that the transfer matrix (2.7) can be expanded in terms of the
complete set of its eigenfunctions 1% (t;). In order to find these eigenfunctions 1)
and the corresponding eigenvalues A\, one has to solve the integral equation

/dtiTi,i—ﬂ/)k(ti) = AW (tiz1). (2.8)

We can parametrize the tangent vectors via the polar/spherical coordinates 6;
and ¢; and express the scalar product of unit tangent vectors in the interaction
hO(t; - t;,_1, Ky) using the azimuthal angle difference as

ti . ti—l = COS(@LZ‘_l) = COS(QZ' - 02‘_1) s

2.9
tl' . tifl = COS(@i,Z‘,l) = COS (9@ COS 02‘,1 + sin 09@ sin ‘91',1 COS(¢¢ — (bifl) ( )

for the semiflexible polymer in the plane and in three-dimensional space, respec-
tively. Then the left-hand side of (2.8) can be rewritten with the help of the

expansions
o

eHocosbii1 Z I (K) emPiimt (2.10)

m=—0oQ

in two dimensions and

o [ T =
eKo cosO;i—1 _ 2—[(0 ; <2l + 1) Il+1/2<KO) PZ(COS @i,ifl) (211)

in three dimensions, where I;(z) denotes the modified Bessel function of the first
kind and P;(x) the Legendre polynomials [83]. For d = 2, one immediately sees
that the eigenfunctions are simply exponentials e whereas, by making use of
the addition theorem
4m : .
P(cos©; ;1) = Y] Z Y (0i, i) Vi (01, i) (2.12)

m=—I

and the orthogonality condition

2T ™
[ [ a0766.0) Yoo 6.6) = it 213
0 0
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of spherical harmonics Y}, (0, ¢), the eigenfunctions for d = 3 are found to be
VATY,,(0;, ¢;). In total, the transfer matrix can be expanded as

Tii= Yy ADembuit \O(Kg) = e 501, (K) (2.14a)

m=—0oQ

in two dimensions and

0o ps -
,I‘i,i—l = Z(2l + 1))\1(0)P1(COS @i7i—1)7 )\l(o)(KQ) = / 2—](0 e KOIH_l/Q(Ko)
=0
(2.14b)

in three dimensions. In the remainder of this chapter, the sums >~ ford = 2
and ), (20 + 1) for d = 3 are abbreviated by S,

For simplicity, we restricted our analysis to d = 2 and d = 3 spatial dimen-
sions, but our results can easily be generalized to arbitrary dimensions d: The
transfer matrix is then expanded in Gegenbauer polynomials and the eigenvalues
)\g]) are proportional to modified Bessel functions I 4 /2,1(K0). It should also be
mentioned, that for an arbitrary interaction function h(t; - t;_;, K') depending on
an arbitrary parameter K we can expand the transfer matrix in the same sets
of functions as in (2.14), which defines eigenvalues e.g. \,, = \,,(K) in 2d and
>\l = )\l(K) in 3d.

The partition sum and tangent-tangent correlations may be calculated ex-
actly for open and periodic boundary conditions as was done, e.g., in d = 3
by Fisher [84] and Joyce [85]. For arbitrary dimension d the tangent-tangent
correlation for open boundary conditions is simply given by

L/bo

(t(0) - t