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Zusammenfassung

Die biologische Funktion und die technologischen Anwendungen semiflexibler Polymere,
wie DNA, Aktinfilamente und Nanoröhren aus Kohlenstoff, werden wesentlich von
deren Biegesteifigkeit bestimmt. Semiflexible Polymere werden charakterisiert durch
ihre Persistenzlänge, mit deren Definition sich der erste Teil dieser Arbeit befasst.

Anziehende Wechselwirkungen, wie sie z.B. bei der Adsorption, der Kondensation
und der Bündelung von Filamenten auftreten, können die Konformation eines semi-
flexiblen Polymers verändern. Die Konformation ist dabei abhängig von der relativen
Größe der Materialparameter und kann durch diese gezielt beeinflusst werden. Im
Einzelnen werden hier die Morphologien semiflexibler Polymerringe, wie z.B. DNA oder
ringförmiger Nanoröhren, untersucht, die auf drei verschieden strukturierten Substraten
adsorbieren: (i) Ein topographischer Kanal, (ii) ein chemisch modifizierter Streifen und
(iii) ein periodisches Muster topographischer Oberflächenstufen. Die Ergebnisse werden
mit der Kondensation von Ringen durch anziehende Wechselwirkungen verglichen.

Des Weiteren wird die Bündelung zweier Aktinfilamente, deren Enden verankert
sind, untersucht. Diese Systemgeometrie liefert eine systematische Methode, um die
Stärke der Anziehung zwischen den Filamenten aus experimentell beobachtbaren Kon-
formationen zu berechnen.

Abstract

The biological function and the technological applications of semiflexible polymers,
such as DNA, actin filaments and carbon nanotubes, strongly depend on their rigidity.
Semiflexible polymers are characterized by their persistence length, the definition of
which is the subject of the first part of this thesis.

Attractive interactions, that arise e.g. in the adsorption, the condensation and the
bundling of filaments, can change the conformation of a semiflexible polymer. The
conformation depends on the relative magnitude of the material parameters and can
be influenced by them in a systematic manner. In particular, the morphologies of
semiflexible polymer rings, such as circular nanotubes or DNA, which are adsorbed
onto substrates with three types of structures, are studied: (i) A topographical channel,
(ii) a chemically modified stripe and (iii) a periodic pattern of topographical steps. The
results are compared with the condensation of rings by attractive interactions.

Furthermore, the bundling of two individual actin filaments, whose ends are an-
chored, is analyzed. This system geometry is shown to provide a systematic and quan-
titative method to extract the magnitude of the attraction between the filaments from
experimentally observable conformations of the filaments.
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Chapter 1

Introduction

Biological and chemical systems offer a great variety of semiflexible polymers,
filaments and fibers. Their rigidity is essential for many biological functions in
cells and their applications in (bio-)nanotechnology. The aim of this chapter is
to give a brief review on semiflexible polymers. Therefore, we start with a few
well-known examples and illustrate why they are classified as semiflexible. The
notion of the persistence length is thereby explained. On length scales compa-
rable to this persistence length, the conformations of filaments are described
theoretically by the worm-like chain model, which is the basis for all calcu-
lations within this thesis. As this model comprises only the elastic behavior,
we briefly comment on some other properties, that may influence the shape
of semiflexible polymers. The main part of this thesis considers shape defor-
mations induced by attractive interactions responsible for adsorption, conden-
sation and bundling of filaments. The physical origin of these interactions is
explained and the resulting phenomena relevant for later chapters are intro-
duced. We also give a brief summary of the most common methods used in
related experimental studies. Biomembranes can be described as thin elastic
sheets and, thus, are the two-dimensional analogues of semiflexible polymers.
As the comparison between these systems is helpful in some cases, we also give
a short introduction to fluid membranes. At the end of this chapter, we give
an overview of this thesis.

1.1 Semiflexible Polymers and Filaments

Semiflexible polymers, filaments and fibers play a major role in biological and
chemical physics. The most important property that governs their behavior on
length scales relevant for their biological function in cells or for their applications
in (bio-)nanotechnology is their resistance to bending or bending rigidity. Despite
their considerable bending rigidity, however, they can still exhibit significant
thermal shape fluctuations. Such one-dimensional objects, which are neither
flexible, nor completely rigid, are called semiflexible.
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1. Introduction

Nanotube DNA F-actin HbS fiber Microtubule

D 1-2 nm 2 nm 7 nm 21 nm 25 nm
Lp 0.8 µm 50 nm 10 µm ∼ 0.2-1 mm ∼ 1-5 mm

Figure 1.1: Examples of semiflexible nanotubes, polymers, filaments and fibers:
Carbon nanotubes, double-stranded DNA, the cytoskeletal filaments F-actin and
microtubules, and HbS fibers associated with sickle cell anemia. The images and
the experimental values for the persistence lengths are taken from [1, 2, 3, 4, 3]
and [5, 6, 7, 8, 9], respectively. The values for the diameter and the persistence
length of nanotubes refer to the single-walled type.

1.1.1 Examples

Certainly, the most prominent example is double-stranded DNA as the carrier
of genetic information. It is composed of two polynucleotide chains that form
a right-handed double helical structure. While the core of the helix is occupied
by the basepairs, the backbones of the chains thereby wind around each other,
see Fig. 1.1.

Furthermore, the shape, motility and internal structure of cells is governed
by a sophisticated network of filaments called the cytoskeleton. Its mechanical
properties strongly depend on those of its three main filamentous building blocks:
F-actin (filamentous actin), microtubules and intermediate filaments. The former
two possess considerable bending rigidity and are semiflexible. Actin filaments
are made up of the protein G-actin (globular actin), which assembles into a two-
stranded helical structure. Microtubules, on the other hand, are hollow cylinders,
that typically consist of 13 protofilaments, which are themselves linear assemblies
of tubulin subunits.

Another extensively studied semiflexible biopolymer is connected to the sickle-
cell disease. Sickle cell anemia is a blood disorder caused by a genetic mutation,
which leads to the transcription of sickle hemoglobin (HbS) instead of normal
hemoglobin (HbA). At low oxygen conditions, HbS has the special ability to
polymerize into long, twisted fibers, which are usually composed of 7 double
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1.1. Semiflexible Polymers and Filaments

strands and have an elliptical cross section. These fibers evolve into a gel that
deforms and rigifies red blood cells, so that the blood circulation through narrow
blood vessels is obstructed causing a sickle cell crisis.

Moving on to synthetic macromolecules, carbon nanotubes are well-known for
their unique mechanical, optical and electronical properties, which promise a wide
range of technical applications. The molecular structure of nanotubes resembles a
single layer, that has been wrapped up into a seamless cylinder. In the same way,
nanotubes consisting of several concentric layers can be fabricated. Accordingly,
one speaks of single-walled and multi-walled nanotubes. Both structures are very
rigid and, thus, semiflexible. In Fig. 1.1, these different examples are ordered by
the size of their diameter.

Strictly speaking, of all these examples only the single strands of DNA are
polymers, if we define a polymer to be composed of repeating structural units or
monomers connected by covalent chemical bonds. By contrast, the two strands
of DNA are bound together by hydrogen bonds, while cytoskeletal filaments and
HbS fibers are supramolecular aggregates, whose structure is determined by the
hydrophobic effect and other non-covalent interactions. Carbon nanotubes are
not classified as polymers (although the bonds between carbon atoms within a
nanotube are covalent), but they belong to the fullerene structural family. For
simplicity, however, we will refer to all these objects as semiflexible polymers
meaning that they have similar elastic properties and, in this respect, are de-
scribed similarly.

The schematic images in Fig. 1.1 suggest that semiflexible polymers occur
only as open linear chains. But this is not true. In fact, various types of fila-
ments are found to self-assemble into closed loops, such as DNA minicircles [10]
and amyloid fibrils [11]. Particularly for DNA this closed form is important for
many biological processes. For example, the genetic material of prokaryotes is
stored in DNA rings. In other cases, the ring formation is achieved by chemical
bonds, such as for carbon nanotubes [12, 5], or by attractive interactions between
polymer segments, e.g. for filamentous actin [13] and DNA [14].

1.1.2 Why are polymers semiflexible?

A common starting point to answer this question is to identify structural differ-
ences between the above examples and a typical flexible polymer, say, polyethy-
lene. The backbone of polyethylene is a chain made up of carbon-carbon bonds
and has an effective diameter of a few Ångström. The orientation of adjacent
bonds is (neglecting self-avoidance) uncorrelated. Therefore, the simplest model
for a flexible polymer is to interpret the conformation of bonds as the path of a
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1. Introduction

random walker with fixed step size. At finite temperature, a flexible polymer as-
sumes a shape that maximizes the conformational entropy. For a rather complete
description of flexible polymers, see e.g. Refs. [15, 16, 17].

Compared to this simple picture of a flexible polymer, the semiflexible poly-
mers depicted in Fig. 1.1 have an elaborate internal structure. The relative posi-
tions of the monomer subunits within the structure are more or less fixed, which
restricts the displacement of individual monomers. In this sense, the semiflexible
polymers shown in Fig. 1.1 resemble solid rods. Furthermore, the diameters ex-
ceed those of flexible polymers by at least one order of magnitude, see Fig. 1.1.
In order to analyze the conformation of a semiflexible polymer, in the simplest
approximation, we neglect all structural details and represent the rigid architec-
ture of a semiflexible polymer by a homogeneous cylindrical rod, which is treated
by means of standard elasticity theory [18]. In particular, one can assign a meso-
scopic elastic bending modulus or bending rigidity κ to each type of semiflexible
polymer.

According to [18], the bending rigidity κ is the product of the Young’s modulus
E and the inertia of the rod’s cross section I, i.e.

κ = EI with I ≡
∫

dScr r
2 =

π

4

(

D

2

)4

. (1.1)

Here Scr indicates the area of the cross section and r the distance of a point on
the cross section to the neutral axis. The last equality holds for a circular cross
section with a diameter D. The bending rigidity has units energy times length.
In biological and chemical systems, thermal fluctuations play an important role
so that energies are commonly measured in units of T 1. Thus, κ/T gives a length,
which is called the persistence length Lp. It indicates the length scale above which
thermal shape fluctuations influence the shape of a semiflexible polymer signifi-
cantly and is prevalently used to specify the stiffness of a semiflexible polymer.
Plugging in the values for the diameters given in Fig. 1.1 and a Young’s modu-
lus E of approximately 1 GPa for DNA and the cytoskeletal filaments, 0.1 GPa
for HbS fibers and 1 TPa for single-walled nanotubes lead to estimates for the
persistence length Lp at room temperature, which roughly match the measured
values given in Fig. 1.1. As can be seen, the values for the persistence length
extend over several orders of magnitude, which can be attributed to the fourth
power of the diameter in the formula eq. (1.1) for I.

In summary, semiflexible polymers behave as homogenous elastic rods on
length scales comparable to their persistence length Lp, which is significantly
bigger than their diameter. This separation of length scales implies that archi-
tectural details, such as individual monomers and helical structure, should indeed

1Note that throughout this thesis, kB ≡ 1 and T is measured in energy units.
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1.1. Semiflexible Polymers and Filaments

(s)r

(s)t
s = 0 s = L

x = 0 x = L

(x)z 

x

(a) (b)

Figure 1.2: Schematic description of a semiflexible polymer in the worm-like chain
model in (a) the arc length and (b) the parametrization by displacement fields.

be negligible on the scale defined by Lp. For instance, a helical turn of DNA en-
closes only 10 base pairs, whereas the persistence length is as long as 150 base
pairs. Obviously, Lp is very important for the classification of semiflexible poly-
mers and, therefore, Chapter 2 is dedicated to define this quantity more carefully.

1.1.3 The worm-like chain model

A powerful theoretical description comprising these notions is the worm-like chain
(WLC) model that was suggested by Kratky and Porod in 1949 [19]. In this frame-
work, the neutral axis of the semiflexible polymer is represented by a smooth
space curve r(s) parametrized by the arc length s, which is schematically shown
in Fig. 1.2(a). The endpoints of the semiflexible polymer are at s = 0 and s = L,
where L denotes the contour length of the polymer. For filament rings, the two
end points coincide with a single point on the contour that can be chosen arbitrar-
ily. The arc length parametrization automatically implies that the tangent vector
t(s) ≡ ∂sr(s), with ∂s ≡ ∂

∂s
, has unit length. Thus, in d dimensions, each orienta-

tion of the tangent vector t(s) corresponds to a certain point of the hypersphere
Sd−1. The bending energy is then proportional to the square of the curvature of
the space curve r(s) integrated over the contour length and the Hamiltonian of
the WLC model is given by

Hwlc{t(s)} =

∫ L

0

ds
κ

2
(∂st)

2, with t2(s) = 1. (1.2)

The condition on the length of the tangent vector t2(s) = 1 enforces the local (and
global) inextensibility of semiflexible polymers within the WLC model. Further-
more, it implies that only d− 1 components of the d-dimensional tangent vector
are independent. In particular, in two dimensions the tangent vector can simply
be expressed in terms of tangent angles θ(s) so that the Hamiltonian depends
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1. Introduction

only on a single scalar function

Hwlc{θ(s)} =

∫ L

0

ds
κ

2
(∂sθ)

2 . (1.3)

External forces or geometric constraints, such as walls, can give rise to a
preferred orientation of a semiflexible polymer. If the conformation deviates only
weakly from the straight conformation, which we define to be parallel to the x-
axis, it is often more convenient to use the parametrization by displacement fields,
see Fig. 1.2(b). Then the space curve describing the semiflexible polymer can be
written as r(x) = (x, z(x)), where z(x) is the (d − 1)-dimensional displacement
field. It measures the displacement of the rod from the straight conformation
at a certain position x on the preferred axis and is obviously only well-defined,
if the conformation does not contain any overhangs. The ends of the polymer
are located at x = 0 and x = Lx. Consequently, in the parametrization by
displacement fields, the projected length Lx rather than the contour length L of a
semiflexible polymer is automatically fixed during calculations. L is then obtained
by integrating the length of the corresponding tangent vector t(x) = (1, ∂xz(x)).
An approximate version of the WLC Hamiltonian is obtained by expanding (1.2)
in the displacement field z(x) up to second order

Hwlc{z(x)} '
∫ Lx

0

dx
κ

2
(∂2

xz)
2, (1.4)

where the gradients of z(x) are assumed to be small.
Whatever parametrization is chosen, semiflexible polymers assume a confor-

mation of minimal bending energy with respect to appropriate boundary condi-
tions, provided that the system is equilibrated and thermal fluctuations are small
compared to the stiffness of the semiflexible polymer. The stationary shapes of
semiflexible polymers are found by solving the respective Euler-Lagrange equa-
tion, i.e. the first variation of Hwlc has to vanish. Therefore, without further
constraints, an open polymer acquires a straight conformation, while a closed
polymer ring forms a circle.

On the basis of the WLC Hamiltonian (1.2), the persistence length Lp is usu-
ally defined as the length scale over which the correlation of tangent orientation
decays [19, 20, 21]. The corresponding correlation function is given by

〈t(s) · t(s′)〉 = e
−

|s−s′|
Lp . (1.5)

But also other quantities, that help to distinguish the behavior of semiflexible
from flexible polymers experimentally, can be obtained as functions of the contour
length and the persistence length: The mean square end-to-end distance of a
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1.1. Semiflexible Polymers and Filaments

semiflexible polymer subject to thermal fluctuations [19] and the force-extension
relation [22], which reflects how a semiflexible polymer resists stretching with an
entropic force, are probably the most prominent examples for such quantities.

1.1.4 Extensions of the worm-like chain model

If very large forces are applied to the ends of a semiflexible polymer, end-to-
end distances that slightly exceed the contour length have been observed for
DNA [23], F-actin [24] and polyelectrolytes (see below) [25]. Obviously, these
results cannot be explained by the WLC model, in which semiflexible polymers
are assumed to be inextensible. One way to solve this problem is to add a
corrective term, that accounts for the overall extension of a semiflexible polymer,
to the WLC model [26, 27, 28, 29]. Alternatively, the polymer can be described
by a discretized version of the WLC Hamiltonian using microscopic bonds with
a finite extensibility [30, 31, 32]. For F-actin, forces above 50 pN are needed
to stretch a filament beyond its contour length, which is well above the forces
considered in this thesis, cf. Chapter 4.

Furthermore, most biopolymers carry ionizable groups along their backbone
and dissociate in solution into charged polymers and counterions. Such polymers
are so-called polyelectrolytes. The theoretical description of polyelectrolytes, see
e.g. Ref. [33], is much more complicated than that of neutral polymers, because
of the long-ranged (Coulombic) interactions between polymer segments. In ionic
solutions these repulsive interactions are screened by the formation of counterion
clouds around the polymer backbone. If the solution is dilute, one can use the
Debye-Hückel approximation, in which the interaction between two monomers is
assumed to decay exponentially on the scale of the screening length

lDH ≡ (8πq2
s lBcs)

−1/2. (1.6)

Here qs and cs are the valency and the concentration of the salt ions and

lB ≡ e20
4πε0εT

(1.7)

is the Bjerrum length denoting the distance, at which the Coulombic interaction
between two elementary charges e0 is equal to T . Due to screening one might
expect that the effect of electrostatic interactions should no longer be noticeable
on length scales well above lDH . By contrast, Odijk, Skolnick and Fixman [34, 35]
showed that a polymer bearing evenly distributed charges along its backbone at
distances r exhibits an electrostatic stiffening, which is effectively described by
an additive correction to the persistence length, namely

L∗
p = Lp + LOSF with LOSF ∼ lBl

2
DH

r2
. (1.8)
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1. Introduction

In biological systems, lDH and, thus, LOSF becomes small, so that this correction
will be neglected here.

Another phenomenon, which is beyond the scope of the worm-like chain model
and likewise beyond the scope of this thesis, is the supercoiling known for DNA. If
a twist strain is imposed, e.g. by an enzyme, to a DNA molecule, this strain can
be relaxed by allowing the DNA to wrap around itself, which is mathematically
denoted as a writhe. In everyday life, the knotted configurations of telephone
cables are an intuitive example for supercoiling. For closed DNA and for the case
where the ends are fixed, the sum of the number of twists of the double helix and
the number of writhes is conserved. This conservation law has to be included
into calculations, for details see e.g. [36].

1.1.5 Interacting semiflexible polymers

So far, only the properties of individual semiflexible polymers were considered.
However, in most biological and chemical systems, semiflexible polymers are not
isolated and self-assemble into larger structures, as in the cytoskeleton. The
smallest structures made of semiflexible polymers are condensates consisting of a
single semiflexible polymer, considered at the end of Chapter 3, and bundles of
two filaments, which are the topic of Chapter 4. On the other hand, in experi-
ments it is often beneficial to adsorb polymers to surfaces, e.g. to control their
shape as in Chapter 3. This is certainly only possible, if the attraction between
polymer and substrate is strong enough to render the adsorbed state energetically
favorable.

In the simplest case, semiflexible polymers adhere to each other due to van der
Waals forces. Especially for carbon nanotubes this attraction is rather strong and
suffices to stabilize highly strained rings formed by coiling [12]. In comparison,
the mechanisms that lead to an effective attraction between biopolymers are much
more complex usually being a combination of many different effects [37, 38]. Here
we concentrate on the bundling induced by multivalent cations. As we learned in
the last paragraph, most biopolymers are negatively charged and, consequently,
repel each other. At the same time, a polyelectrolyte attracts counterions from the
buffer solution, which form a cloud around the polymer. This process is known as
counterion condensation [39, 40]. The sheath of counterions is polarizable, which,
in fact, can lead to an effective attraction between polyelectrolytes via so-called
‘salt bridges’.

The resulting attraction is surprisingly strong. In vitro, multivalent cations
cause DNA – despite their rigidity – to collapse into compact, highly ordered
configurations, mostly rod-like condensates or toroids [37], see Fig. 1.3(a) and
Chapter 3. These condensates show great similarities to DNA packaged into
virus capsids and, in addition, are interesting for gene transfer in gene therapy.

8



1.1. Semiflexible Polymers and Filaments

(a) (b)

Figure 1.3: (a) Micrograph of a toroidal condensate of λ phage DNA [41]. The
scale bar is 50 nm. (b) Image of the eukaryotic cytoskeleton [42]. Microtubules,
actin filaments and the cell nucleus are shown in green, red and blue, respectively.

Analogous to DNA condensation, also actin filaments have been observed to form
bundles [38] and toroidal condensates [13], which are, due to the greater bending
rigidity, much bigger than those made of DNA.

In the cytoskeleton, see Fig. 1.3(b), the filaments are linked together by var-
ious types of proteins with typically two binding domains. We focus only on
crosslinker proteins binding actin filaments, which are relevant for the experi-
ments we will consider in Chapter 4. For further details of the cytoskeleton see
e.g. Ref. [3]. Many of these crosslinkers are found in the actin cortex – a thin
layer just beneath the cell membrane – which is to a large extend responsible
for the mechanical support and the motility of animal cells. The arising struc-
tures within the actin cortex strongly depend on the properties of the crosslinking
proteins [43, 44]: Whereas some proteins, such as filamin, generate gel-like net-
works with orthogonal interconnections, bundles of parallel filaments, as found
in filopodia and in stress fibers, are produced by e.g. fimbrin, α-actinin and the
motor protein myosin II. The latter protein is, in contrast to the other mentioned
crosslinkers, an example of an active binding protein, which can convert chemical
energy into mechanical work and move along a filament.

Semiflexible polymers can not only interact with each other, but also with
other objects, in particular, with surfaces [45]. The adsorption to substrate sur-
faces exhibits great advantages for the direct observation of individual polymers,
see the next paragraph, and plays an important role for applications in (bio-
)nanotechnology, cf. Chapter 3. A typical experimental system to study adsorbed
semiflexible polymers is DNA deposited on mica [46]. Both materials – mica and
DNA – are negatively charged. Using essentially the mechanisms as mentioned
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1. Introduction

above, adsorption can be achieved by adding divalent cations. The cations con-
stituting the ion cloud can freely diffuse along the surface so that the adsorbed
DNA can be treated as a free worm-like chain in two dimensions. Similar to the
attraction between nanotubes, also the adsorption of nanotubes is governed by
van der Waals interactions [47]. Alternatively, the nanotubes are coated with
surfactants, which enhances the binding to hydrophobic substrate domains, see
e.g. Ref. [48].

In this thesis, all interactions introduced above will be described by the same
simplified theoretical model. For attractions between two filaments, it consists
of a spherical potential well of radius l and an effective strength W , W < 0 [49].
For the case of a semiflexible polymer adsorbing to a substrate, the spherical
potential is replaced by a planar square well potential. The potential range l
depends on the type of interaction and is usually taken to be small compared
to other relevant length scales. For van der Waals and screened electrostatic in-
teractions l is comparable to the polymer diameter D and the screening length
lDH , respectively. On the other hand, for crosslinkers, the potential range l is
determined by the distance between the two binding domains and, in addition,
the binding to filaments may exhibit a preferred angle. The details can be found
in Sections 3.2.1, 3.3.1, 3.5 and 4.3, respectively. In either case, interactions be-
tween crosslinking proteins or cations as well as dynamic effects are essentially
neglected.

1.1.6 Experimental methods

In the last decades, the properties of semiflexible polymers have been extensively
probed in experiments. At the same time sophisticated techniques have been de-
veloped, that allow to visualize the conformation of a single semiflexible polymer
and its pointwise manipulation in a highly controlled fashion. Most commonly
used are magnetic [50] or optical tweezers [51] and scanning probe techniques,
such as atomic force microscopy (AFM) [52], that reach sensitivities in the pi-
conewton range and spatial resolutions down to the nanometer scale.

Magnetic or optical tweezers work via the control or trapping of single objects,
such as beads, that can be attached to one end of a semiflexible polymer. In this
way, the force-extension relation of DNA was measured for the first time [50, 53].
On the other hand, AFM provides a powerful tool to deal with semiflexible poly-
mers adsorbed to solid surfaces. A cantilever with a sharp tip senses the to-
pography and the local mechanical properties of a surface with very high spatial
resolution. In this type of experiment, one can extract information directly from
the polymer’s shape. For instance, the persistence length can be determined by
measuring tangent correlations or end-to-end distances, see e.g. Ref. [46]. The
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1.2. Fluid membranes

disadvantages of this method are the temporal resolution limited by relatively
long scanning times and the necessity to confine the probed semiflexible poly-
mers to a solid surface, which might alter their physical properties. But then
the interplay between a semiflexible polymer and a substrate surface can also be
exploited for the immobilization and controlled manipulation of DNA and other
semiflexible polymers required in bionanotechnology. For this purpose, the pos-
sibility to achieve such shape control for semiflexible polymer rings using simple
striped surface structures is explored in Chapter 3.

Moreover, in Chapter 4, we consider experiments that create a biomimetic
model of the actin cortex. These experiments use an alternative approach, that
provides well-defined boundary conditions for the quantitative analysis of fila-
ment conformations, but does not rely on the adsorption of filaments. There,
the filaments are locally attached to so-called microscopic pillars [54], but are
otherwise unconstrained. To avoid interactions with the underlying substrate
the height of the pillars is chosen to be comparable or bigger than the contour
length of the filaments. Further details concerning these experiments are given
in Section 4.2.

1.2 Fluid membranes

Membranes, such as the cell membrane, act as enclosing or separating elements
in biological systems [3] and constitute a wide field of research for many years
already. Their detailed composition might be manifold and very complicated, but
the basic component of all biological membranes are lipid molecules, see Fig. 1.4.
Lipids are typically amphiphilic – that is, they have a hydrophilic (water soluble)
head and a hydrophobic (water insoluble) tail – and as a result, spontaneously
form thin bilayers in water. In order to avoid boundaries, where hydrophobic
tails are exposed to water, fluid membranes form closed bags or vesicles. If the
lipids can diffuse freely within the two layers, the two-dimensional membrane is
fluid.

Similar to semiflexible polymers, the shapes of fluid membranes can be de-
scribed by means of elasticity theory. On length scales large compared to the
size of the lipids, they can be modelled as thin elastic sheets. Their conformation
in three-dimensional space is governed by the bending rigidity [56, 57, 58], while
other elastic moduli play only a minor role. From this point of view, fluid mem-
branes are the two-dimensional analogue of semiflexible polymers. For a review
of the conformation of membranes, see e.g. [59].

The shape of a membrane is represented by a three-dimensional vector field
R(s1, s2) depending on the coordinates s1 and s2 that parametrize the mem-
brane surface. If the shape deviates only weakly from a flat plane, say, the
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1. Introduction

Figure 1.4: Schematic image of a biomembrane [55] consisting of a bilayer of
lipids (heads: light blue, tails: yellow), which is decorated with proteins (green
and blue) and anchored polymers (red). The thickness of the phospholipid bilayer
is approximately 5 nm.

xy-plane, it is common to parametrize the membrane by displacement fields.
Similar to the one-dimensional case, the embedding functions are then expressed
as R(x, y) = (x, y, z(x, y)), where z(x, y) denotes the height function with respect
to the reference plane. The corresponding Hamiltonian was first introduced by
Canham [56] and Helfrich [57] and can be written in a rather compact form

Hmem =

∫

dA
{κ

2
(2M)2 + κ̄G

}

. (1.9)

In principle, this Hamiltonian is the two-dimensional generalization of eq. (1.2).
Here, the integral extends over the membrane surface, dA indicating the infinitesi-
mal area element of the membrane surface. The curvature of a surface is described
by the curvature tensor, which can be diagonalized at every point. Its eigenvalues
C1 and C2 are the principle curvatures, which specify the largest and the smallest
local curvature. As the only quantities allowed to appear in the Hamiltonian are
scalars, only the trace and the determinant of the curvature tensor, namely

M ≡ C1 + C2

2
and G ≡ C1C2, (1.10)

occur in eq. (1.9). M and G are called the mean and the Gaussian curvature, re-
spectively. According to the Gauss-Bonnet theorem, the integral

∫

dAG depends
only on the topology of the surface. Hence, as long as the membrane surface
does not undergo topological changes, the second term yields only a constant
contribution and the first term can be identified with (1.2). The bending rigid-
ity is denoted by κ analogous to the last section, whereas the new parameter κ̄
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is the bending modulus associated with the Gaussian curvature. It should be
noted, that in this case κ and likewise κ̄ have units of energy. The mathematical
definitions of the above quantities can be found in App. A.

The stationary shapes of vesicles are obtained by minimizing Hmem supple-
mented by additional constraints, such as a prescribed membrane area or a fixed
enclosed volume. One of the key simplifications often needed to make explicit
calculations feasible, is to assume an axisymmetric conformation. The computa-
tional problem is then reduced to find the one-dimensional contour of the vesicle
shape in the plane. It is therefore not surprising, that in some cases the treatment
of vesicles and adsorbed ring polymers displays great similarities, which will also
be encountered in Chapter 3.

For phospholipid bilayers, the bending rigidity is deduced from experiments to
be of the order of 10 - 20 T [60, 61]. Consequently, thermal shape fluctuations are
also relevant for fluid membranes. For membranes, the notion of a persistence
length was introduced by de Gennes and Taupin [62], but the details of this
definition and how it can be compared to the persistence length of semiflexible
polymers will be postponed to the next chapter.

The Canham-Helfrich model has proven to provide the theoretical framework
to explain various phenomena. In particular, it is suitable to describe the elastic
behavior of vesicles, which have become a popular model system to investigate
properties of biological membranes over the years. Among the major achieve-
ments in this context, see e.g. Ref. [63, 64] for a review, are the correct description
of non-trivial equilibrium shapes of vesicles, which are similar to shapes observed
for red blood cells, and the adhesion of vesicles, which is important for many
biological applications [3].

1.3 Overview

This thesis is organized as follows. The topic of the next chapter is the relation
between the persistence length of semiflexible polymers and the renormalization
of the bending rigidity. First, we review existing definitions for the persistence
length based on tangent correlations for semiflexible polymers and on the renor-
malized bending rigidity for membranes. Applying both definitions to polymers
shows that they are, in fact, incompatible. In order to clarify this issue, we
calculate the renormalization of the bending rigidity of a semiflexible polymer
by a real-space renormalization analysis as is commonly used for Ising-like spin
systems. From the asymptotic behavior of the renormalized bending rigidity, we
deduce a new definition for the persistence length, which generalizes the conven-
tional definition, but gives identical results. The content of this chapter has been
published previously in Refs. [65, 66].
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Chapter 3 considers the controlled adsorption of semiflexible polymer rings
on surfaces containing chemically or topographically modified stripes. For either
type of structure, we study the equilibrium morphologies by calculating a pro-
jection of the energy landscape, determining its local minima and their stability.
The results are summarized in morphological diagrams, and the influence of ther-
mal fluctuations is discussed. As an example of more complicated structures, we
also consider a substrate with a periodic topographical pattern. Finally, we com-
pare our findings to the morphological transitions related to the condensation of
a semiflexible ring by attractive polymer-polymer interactions.

In Chapter 4, we present a theoretical analysis based on experiments, which
study the partial zipping of actin filaments with anchored ends. First, we de-
scribe the experimental setup to motivate our theoretical model. We distinguish
between two regimes, namely, the case of strong and weak attraction between
the filaments. For either case, the resulting conformations are discussed at zero
temperature and in the presence of thermal fluctuations in order to reveal how
the attraction strength can be extracted from experimentally observed data.

Finally, we end with a summary of all three topics and an outlook on possible
extensions and open questions for future work.
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Chapter 2

Persistence length of semiflexible polymers and

bending rigidity renormalization

The persistence length of semiflexible polymers (and one-dimensional fluid
membranes) is obtained from the renormalization of their bending rigidity.
The renormalized bending rigidity is calculated using an exact real-space func-
tional renormalization group transformation based on a mapping to the one-
dimensional Heisenberg model. The renormalized bending rigidity vanishes
exponentially at large length scales and its asymptotic behavior is used to de-
fine the persistence length. For semiflexible polymers, our results agree with
definitions based on the asymptotic behavior of tangent correlation functions.
Our definition differs from the one commonly used for fluid membranes, which
is based on a perturbative renormalization of the bending rigidity.

2.1 Introduction

Thermal fluctuations of two-dimensional fluid membranes and one-dimensional
semiflexible polymers or filaments are governed by their bending energy and can
be characterized using the concept of a persistence length Lp, which is illustrated
in Fig. 2.1. In the absence of thermal fluctuations at zero temperature, fluid
membranes are planar and (open) semiflexible polymers are straight because of
their bending rigidity. Sufficiently large and thermally fluctuating membranes
or semiflexible polymers lose their planar or straight conformation. Only sub-
systems of size ` � Lp appear rigid and maintain an average planar or straight
conformation with a preferred normal or tangent direction, respectively. Mem-
brane patches or polymer segments of sizes ` � Lp, on the other hand, appear
flexible. In the “semiflexible” regime ` ∼ Lp the statistical mechanics is gov-
erned by the competition of the thermal energy T and the bending rigidity κ.
Experimental values for the persistence length of one-dimensional semiflexible
biopolymers vary from 50 nm for double-stranded DNA [6], up to the mm-range
for microtubules [9], cf. Fig. 1.1. The persistence lengths of two-dimensional fluid
membranes are typically much larger than experimental length scales.

Although the qualitative idea of the persistence length is simple, it poses a
rather complex problem to give a systematic definition of Lp, which is applicable
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`� Lp ` ∼ Lp `� Lp

flexible semiflexible rigid

Figure 2.1: Schematic contour of a thermally fluctuating semiflexible polymer on
different length scales `. On very short length scales ` � Lp the thermal energy
is not sufficient to introduce a bend in the contour of the semiflexible polymer
(right), whereas on large scales ` � Lp the conformational entropy dominates,
so that the orientational order is completely destroyed (left). The intermediate
regime ` ∼ Lp is characterized by the balance between thermal fluctuations and
the stiffness of the semiflexible polymer (middle).

to semiflexible polymers and their higher dimensional counterparts, membranes
and interfaces. In fact, there exists no universal definition of Lp so far, but
instead, several definitions are used either for one- or two-dimensional objects.
All definitions are based on the same concept, namely, to identify a parameter
that allows to differentiate between the three different regimes, illustrated in
Fig. 2.1, and, thus, to establish a criterion that determines, if some elastic object
can be treated as semiflexible. But whether the resulting definitions are really
equivalent can not be taken for granted.

Two widespread definitions are reviewed in the next section. The first is
prevalently used for polymers and defines the persistence length as the length
scale above which the orientation of the tangent vectors along the semiflexible
polymer is lost and the shape can be decomposed into approximately indepen-
dent segments of size Lp, see eq. (1.5) in Chapter 1. For the second definition,
which is well-established in the context of membranes, a scale dependent bending
rigidity is introduced reflecting the influence of thermal fluctuations on the elastic
behavior on large length scales. One possible definition of Lp is then to identify
Lp with the length scale where the (perturbatively) renormalized bending rigidity
vanishes. A comparison of these definitions is only feasible for semiflexible poly-
mers and yields disagreeing results for Lp. This discrepancy can be attributed
to two reasons: Firstly, the persistence length derived from κ-renormalization re-
lies on perturbative calculations limited to rather small scales, and, hence, might
not be significant for the long range behavior. Secondly, the two definitions are
indeed not equivalent, which brings back the issue of a universal definition of Lp.
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In this chapter, we concentrate on a discrete description for semiflexible poly-
mers, which is equivalent to the one-dimensional classical Heisenberg model. The
advantage of this model is that the κ-renormalization as well as the tangent corre-
lation function are exactly computable in arbitrary dimensions d. Consequently,
a direct comparison of the persistence length determined via κ-renormalization
and via the tangent correlation function is possible. We introduce this model in
Section 2.3. The κ-renormalization is carried out in a similar fashion as is com-
monly used for Ising-like spin systems. In contrast to the nonlinear σ-model, we
find nontrivial results for κ(`) both in two and in three dimensions. As expected
for an exact result, κ(`) is always positive and approaches zero only asymptot-
ically. We analyze the large scale behavior of κ(`) leading to a power series of
exponentials with the same decay length as obtained for the tangent correlations.
We define this length scale to be the persistence length of the polymer.

2.2 Various definitions of Lp

2.2.1 Decay of conformational orientation

Consider the schematic shape of a freely fluctuating semiflexible polymer in
Fig. 2.1. On small length scales (right), it is perfectly straight so that all its
tangent vectors point to the same direction. By contrast, this tangential orien-
tation is lost on very large length scales (left). The physical quantity measuring
this behavior is the tangent correlation function. Accordingly, for semiflexible
polymers with one internal dimension, Lp is usually defined by the characteris-
tic length scale for the exponential decay of the two-point correlation function
between unit tangent vectors t along the polymer.

In Chapter 1, the worm-like chain model [19] was presented as a continuous
model for an inextensible semiflexible polymer of contour length L. The Hamilto-
nian is given by the bending energy, eq. (1.2). For a WLC embedded in d spatial
dimensions, the tangent correlation function is found to be [20, 21]

〈t(s) · t(s′)〉 = e−|s−s′|/Lp, with Lp =
2

d− 1

κ0

T
(2.1)

where κ0 is the (unrenormalized) bending rigidity of the model1. The thermal
average 〈.〉 is taken by summing over all possible polymer shapes weighted by
the Boltzmann factor containing the bending energy (1.2). The polymer contour
is completely determined by the field t(s) of unit tangent vectors so that, in
practice, the sum over all conformations is achieved by functional integration
over t(s), as will be seen in detail in the next section.

1In this chapter, the mesoscopic bending rigidity κ is labeled with an index 0 to distinguish
between ‘bare’ and renormalized quantities. In subsequent chapters, this distinction will become
redundant and the index will be omitted again.
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For fluid membranes with two internal dimensions, the quantity analogous
to (2.1) is the correlation function of unit normal vectors, since the normal vec-
tors measure the local orientation of a surface. An approximate result for the
correlation function of normals has been given in Ref. [15], but a rigorous treat-
ment is missing because of the more involved differential geometry, which gives
rise to a number of complications discussed in the following.

Surfaces cannot be fully determined by specifying an arbitrary set of normal
vectors, because they have to fulfill additional compatibility conditions in terms of
the metric and curvature tensors, the equations of Gauss, Mainardi and Codazzi,
which ensure their continuity, cf. App. A. Implementations of these constraints
lead to a considerably more complicated field theory than (1.2) describing a two-
dimensional fluid membrane in terms of its normal vector field [67].

Not only the Hamiltonian itself becomes much more complicated. Even the
definition of thermal averages 〈.〉 is far from obvious for membranes. As men-
tioned earlier, it involves a summation over all possible surfaces, but each physi-
cal conformation should be counted only once. A particular surface shape can be
parametrized in many different ways, so in order to avoid overcounting, one has to
choose a parametrization. At the same time, one has to assure that the obtained
results do not depend on this choice (reparametrization invariance). The Fadeev-
Popov procedure [68, 69, 70] implements this issue by means of an additional fac-
tor in the path integral measure. For semiflexible polymers, the parametrization
via arc length guarantees the correct counting and reparametrization invariance
automatically. The respective Fadeev-Popov factor is thus equal to one. Further-
more, in the arc length parametrization, the degrees of freedom are equidistantly
distributed along the contour of the polymer and their total number is preserved
automatically. Such a favorable parametrization as the arc length does not exist
for membranes. In order to fix the number of degrees of freedom of a membrane
patch, another factor has to be included, which is known as the Liouville fac-
tor [71, 72]. The even distribution of the degrees of freedom cannot be assured,
since, for membranes with arbitrary shape, it is merely possible to find a local
coordinate system, which defines a metric proportional to the Euclidean met-
ric. The proportionality factor, however, may vary along the membrane. This
particular choice is known as the conformal gauge.

In most cases, one is only interested in the limit of very rigid membranes,
where the partition sum can approximately be truncated to surface shapes that
deviate only weakly from the flat plane. Then the parametrization by displace-
ment fields is adequate and corrections arising from the Fadeev-Popov and the
Liouville factor do not emerge below second order in T/κ0. Nevertheless, the dif-
ficulties described above strongly indicate that exact calculations in this context
are rarely manageable.
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2.2.2 Thermal softening and stiffening

For fluid membranes, an alternative definition of the persistence length Lp has
been given, which is linked to the effect of κ-renormalization. The mode coupling
between thermal shape fluctuations of different wave lengths modifies the large
scale bending behavior, which can be described by an effective or renormalized
bending rigidity κ. Transferring this notion to Fig. 2.1 would lead to a different
value for the effective bending rigidity κ(`) in each regime. In particular, this
schematic case exemplifies the thermal softening of a polymer, that is, κ(`)/T
decreases from right to left.

The renormalized κ has been calculated using different perturbative renormal-
ization group (RG) approaches [73, 74, 75, 76, 77, 78, 70, 79, 80], which are limited
to the first order in T/κ0 due to the reasons presented in the previous subsection.
The results are still controversial: Several authors [73, 74, 75, 76, 77, 78, 70]
find a thermal softening of the membrane with increasing length scales, but dif-
fering prefactors, whereas Pinnow and Helfrich [79, 80] obtained the opposite
result. Furthermore, different definitions of the persistence length are considered
in these approaches: In Refs. [76, 77, 78, 70], Lp is identified with the length scale,
where the renormalized bending rigidity κ vanishes, while Helfrich and Pinnow
defined Lp via the averaged absorbed area [73, 74, 75, 79, 80].

Even though a lot of effort was made to find the κ-renormalization for the
membrane, it has never been calculated for the simpler case of the semiflexible
polymer. In this chapter, we obtain an exact real-space RG scheme for the
bending rigidity of a semiflexible polymer or a one-dimensional fluid membrane,
which allows us to define the persistence length as the characteristic decay length
of the renormalized bending rigidity.

In principle, a perturbative result for the effective κ of a semiflexible poly-
mer can be deduced from the RG analysis of the one-dimensional nonlinear σ-
model, which is equivalent to the WLC Hamiltonian (1.2). After a Wilson-type
momentum-shell RG analysis, one obtains the effective rigidity, see e.g. Refs. [81],

κ(Λ)

T
=
κ0

T

[

1 − T

κ0

d− 2

π

{ 1

Λ
− 1

Λ0

}

+ O(T 2/κ2
0)

]

, (2.2)

which depends on the momentum Λ. The parameter κ0 = κ(Λ0) is the ‘bare’
coupling taken at the high momentum cut-off Λ0 = π/b0, which is given by a
’lattice spacing’ or bond length b0. Using also Λ = π/` we obtain the renormalized
κ = κ(`) as a function of the length scale `. Following the procedure previously
used for membranes, the persistence length can be defined via

κ(Lp) ≡ 0 and, thus, Lp ' π2

d− 2

κ0

T
. (2.3)
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For the case of the polymer in the plane (d = 2), the Hamiltonian simplifies to a
free or Gaussian field theory such that κ = κ0 is unrenormalized to all orders in
κ0/T and, therefore, Lp as defined via κ(Lp) ≡ 0 would become infinitely large.

A similar perturbative momentum-shell RG procedure is possible in the para-
metrization of a weakly bent semiflexible polymer by displacement fields, analo-
gous to the RG analysis for two-dimensional membranes [76]. There the polymer
is parametrized by its projected length x with 0 < x < Lx, where Lx is the fixed
projected length of the semiflexible polymer while its contour length becomes
a fluctuating quantity. The renormalized κ = κ(`x) becomes a function of the
projected length scale `x, which complicates a comparison with the result (2.2),
which was derived in an ensemble of fixed contour length. Using the analogous
criterion κ(Lp) = 0 we obtain

Lp ' 2π2

3d− 1

κ0

T
(2.4)

within the parametrization by displacement fields.
A comparison of the RG results from the non-linear σ-model, see eq. (2.3),

and the one obtained in the parametrization by displacement fields, see eq. (2.4)
with eq. (2.1) shows that the RG results for the persistence length Lp are not
compatible with the definition using the tangent correlation function. This raises
the general question which of the definitions should be preferred.

2.3 Model

A discretization of the WLC Hamiltonian (1.2) should preserve its local inexten-
sibility. In addition, we want to use a discretized Hamiltonian which is locally
invariant with respect to full rotations of single tangent vectors t, i.e. to a trans-
lation of any angular coordinate of the corresponding hypersphere by 2π – in
addition to the global rotational symmetry of the polymer as a whole. A suitable
discrete model is an inextensible semiflexible chain model as given by [82, 32]

Hdwlc{ti} =
κ0

b0

∑M

i=1
(1 − ti · ti−1), with t2

i = 1, (2.5)

with M bonds or chain segments of fixed length b0. The semiflexible chain model
is equivalent to the one-dimensional classical Heisenberg model (except for the
first term, which represents a constant energy term) describing a one-dimensional
chain of classical spins, cf. Fig. 2.2.

The partition sum reads

ZM =

(

M
∏

j=0

∫

dtj

)

exp[−Hdwlc{tj}/T ] =

(

M
∏

j=0

∫

dtj

)

∏M

i=1
Ti,i−1 , (2.6)
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where we have introduced the transfer matrix

Ti,i−1 = exp [−K0(1 − ti · ti−1)] ≡ exp
[

h(0)(ti · ti−1, K0)
]

, (2.7)

with K0 ≡ κ0/b0T and
∫

dti = 1. Equation (2.7) defines the interaction function
h(0)(x) between neighboring tangents. For the following calculations it proves
very advantageous that the transfer matrix (2.7) can be expanded in terms of the
complete set of its eigenfunctions ψk(ti). In order to find these eigenfunctions ψk

and the corresponding eigenvalues λk, one has to solve the integral equation

∫

dtiTi,i−1ψk(ti) = λkψk(ti−1). (2.8)

We can parametrize the tangent vectors via the polar/spherical coordinates θi

and φi and express the scalar product of unit tangent vectors in the interaction
h(0)(ti · ti−1, K0) using the azimuthal angle difference as

ti · ti−1 = cos(θi,i−1) ≡ cos(θi − θi−1) ,

ti · ti−1 = cos(Θi,i−1) ≡ cos θi cos θi−1 + sin θi sin θi−1 cos(φi − φi−1)
(2.9)

for the semiflexible polymer in the plane and in three-dimensional space, respec-
tively. Then the left-hand side of (2.8) can be rewritten with the help of the
expansions

eK0 cos θi,i−1 =
∞
∑

m=−∞

Im(K0) e
imθi,i−1 (2.10)

in two dimensions and

eK0 cos Θi,i−1 =

√

π

2K0

∞
∑

l=0

(2l + 1) Il+1/2(K0)Pl(cos Θi,i−1) (2.11)

in three dimensions, where Ik(x) denotes the modified Bessel function of the first
kind and Pl(x) the Legendre polynomials [83]. For d = 2, one immediately sees
that the eigenfunctions are simply exponentials eimθi , whereas, by making use of
the addition theorem

Pl(cos Θi,i−1) =
4π

2l + 1

l
∑

m=−l

Y ∗
lm(θi, φi)Ylm(θi−1, φi−1) (2.12)

and the orthogonality condition

∫ 2π

0

∫ π

0

dΩY ∗
lm(θ, φ)Yl′m′(θ, φ) = δl,l′δm,m′ (2.13)
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of spherical harmonics Ylm(θ, φ), the eigenfunctions for d = 3 are found to be√
4πYlm(θi, φi). In total, the transfer matrix can be expanded as

Ti,i−1 =
∞
∑

m=−∞

λ(0)
m eimθi,i−1 , λ(0)

m (K0) = e−K0Im(K0) (2.14a)

in two dimensions and

Ti,i−1 =

∞
∑

l=0

(2l + 1)λ
(0)
l Pl(cos Θi,i−1), λ

(0)
l (K0) =

√

π

2K0
e−K0Il+1/2(K0)

(2.14b)
in three dimensions. In the remainder of this chapter, the sums

∑∞
m=−∞ for d = 2

and
∑∞

l=0(2l + 1) for d = 3 are abbreviated by
∑(d)

n .
For simplicity, we restricted our analysis to d = 2 and d = 3 spatial dimen-

sions, but our results can easily be generalized to arbitrary dimensions d: The
transfer matrix is then expanded in Gegenbauer polynomials and the eigenvalues
λ

(0)
k are proportional to modified Bessel functions Ik+d/2−1(K0). It should also be

mentioned, that for an arbitrary interaction function h(ti · ti−1, K) depending on
an arbitrary parameter K we can expand the transfer matrix in the same sets
of functions as in (2.14), which defines eigenvalues e.g. λm = λm(K) in 2d and
λl = λl(K) in 3d.

The partition sum and tangent-tangent correlations may be calculated ex-
actly for open and periodic boundary conditions as was done, e.g., in d = 3
by Fisher [84] and Joyce [85]. For arbitrary dimension d the tangent-tangent
correlation for open boundary conditions is simply given by

〈t(0) · t(L)〉 =
[

λ
(0)
1 (K0)/λ

(0)
0 (K0)

]L/b0
, (2.15)

whereas for closed chains the same result is obtained only asymptotically for L
much bigger than b0. In the continuum limit of small b0 or large K0, one can
replace the Bessel functions contained in the eigenvalues λ

(0)
k , see (2.14), by their

asymptotic form [83]

Ik(x) ≈ (x/2π)−1/2 exp[x− (k2 − 1/4)(2x)−1] for large x (2.16)

leading to the result already found for the WLC model (2.1).

2.4 Renormalization procedure

The real-space functional RG analysis for the semiflexible chain (2.5) proceeds
in close analogy to the one-dimensional Heisenberg model [86] and similarly to
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(D) b0 (RG) b1 (RG)

h(0)(ti · ti−1, K0) h(1)(ti · ti−2, K0)

Figure 2.2: Schematic discretization and renormalization procedure. As a first
step (D), the contour of the semiflexible polymer is represented by a semiflexible
chain (or classical Heisenberg chain) with fixed bond length b0. The tangent
vector tn ≡ t(sn) at the position sn = nb0 on the contour of the semiflexible
polymer is assigned to the site n on the chain. The interaction function between
neighboring tangents is denoted by h(0) and depends on their scalar product
and the dimensionless parameter K0 = κ0/b0T . This interaction is recursively
renormalized. At each RG step (RG), every second tangent degree of freedom is
eliminated leading to an effective interaction h(1) on length scales b1 = 2b0.

the Ising-like case where the ti’s are confined to discrete values [87]. Similar real-
space functional RG methods have also been used to study wetting transitions
or the unbinding transitions of strings [88, 89].

The principle idea of the renormalization procedure is to extract the long range
behavior of a system by integrating recursively over short range fluctuations. This
means in the present case, that at each RG step, every second tangent degree of
freedom is eliminated as illustrated in Fig. 2.2. The resulting effective interaction
describing the system on large length scales is expressed in such a way, that it
has the same algebraic form as the original interaction, but with new parameters,
plus a constant energy shift, which is physically irrelevant. Therefore, all changes
caused by integration are absorbed in the set of renormalized system parameters,
which encode how the system behaves on different length scales.

We introduce a general transfer matrix

Ti,i−1 = exp [h(ti · ti−1, K)] (2.17)

where h = h(u,K) defines an arbitrary interaction function depending on the
scalar product of adjacent tangents u = ti · ti−1 and the parameter K. We
start the RG procedure with an initial value K = K0 and an initial interaction
function h(0)(u,K0) = −K0(1−u), see eq. (2.7). Accordingly, the eigenvalues are

initially λm(K0) = λ
(0)
m (K0) and λl(K0) = λ

(0)
l (K0). The explicit expressions for

the eigenvalues are given by (2.14).
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Persistence length of semiflexible polymers

Integration over one intermediate tangent t′ between t and t′′ defines a re-
cursion formula resulting in a new interaction function h(1) = h(1)(u,K0) and an
energy shift g(0) given by

exp[h(1)(t·t′′, K0)+g
(0)(K0)] =

∫

dt′ exp[ h(0)(t·t′, K0)+h
(0)(t′ ·t′′, K0)], (2.18)

where the energy shift g(0) is determined by the condition that h(1)(1, K0) =
h(0)(1, K0) = 0, i.e. the energy is shifted in such a way that the interaction term
is zero for a straight polymer. This leads to

exp[g(0)(K0)] =

∫

dt exp[2 h(0)(t · t′, K0)],

exp[h(1)(t · t′′, K0)] = exp[−g(0)(K0)]

∫

dt′ exp[ h(0)(t · t′, K0) + h(0)(t′ · t′′, K0)].

(2.19)

The recursion relations (2.18) and (2.19) are exact and can be used to obtain an

exact expression for the eigenvalues λ
(N)
k after N iterations, as given by

λ
(N)
k =

[

λ
(N−1)
k

]2/
{

∑(d)

n

[

λ(N−1)
n

]2
}

=
[

λ
(0)
k

]2N/
{

∑(d)

n

[

λ(0)
n

]2N
}

. (2.20)

It should be mentioned, that the tangent correlation function 〈t(0) · t(L)〉, with
L = 2Nb0, in (2.15) can now also be calculated by performing N recursion steps
until the tangent vectors are nearest neighbors and, therefore, can be expressed
in terms of the new eigenvalues λ

(N)
k , as

〈t(0) · t(L)〉 =
[

λ
(N)
1 (K0)/λ

(N)
0 (K0)

]

=
[

λ
(0)
1 (K0)/λ

(0)
0 (K0)

]2N

with L/b0 = 2N .

(2.21)

In general, the new and the old interaction h(1)(u,K0) and h(0)(u,K0) will
differ in their functional structure, see for instance Fig. 2.3. Thus, the renormal-
ization of the parameter K0 cannot be carried out in an exact and simple man-
ner as for one-dimensional Ising-like models with discrete spin orientation [87].
The only fixed point function of the recursion (2.18) is independent of u, i.e.
h∗(u,K0) = 0 because of h∗(1, K0) = 0. This result, together with the condition
h(1)(1, K0) = 0, which is imposed at every RG step, suggests that the function
h(1)(u,K0) can be approximated by

h(1)(u,K0) ' −K1(K0) (1 − u) for u = t · t′′ ' 1, (2.22)

i.e. by a linear function as long as the scalar product u = t · t′′ is close to one,
i.e. sufficiently close to the straight configuration. This approximation should
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h(N)/K0

N

0

−0.5

=   0     1     2     3     4     5  

−1 0
−1

1
u

Figure 2.3: Interaction h(N) divided by K0 as a function of the tangent scalar
product u ≡ t · t′′ for d = 2 and K0 = 10 after N = 0, ..., 5 iterations. The
plot illustrates, that as long as u ≈ 1, the renormalized interactions h(N) can be
approximated by linear functions h(N)(u) ' −KN (1 − u). The absolute value of
the slope of each line is identified with the renormalized parameter KN after N
recursion steps.

improve when the whole function h(1)(u,K0) becomes small upon approaching
the fixed point h∗(u,K0) = 0 after many iterations, i.e. on large length scales.
Using the approximation (2.22), K1(K0) is defined by the slope of h(1)(u,K0) at
u = 1,

K1(K0) ≡
dh(1)(u,K0)

du

∣

∣

∣

u=1
=

d

du
exp

[

h(1)(u,K0)
]

∣

∣

∣

u=1
, with u = t · t′′. (2.23)

Equivalently, one could expand the explicit expression for h(1)(x,K0) given by
(2.19) and the right hand side of (2.22) for small tangent angles and compare
the coefficients. In order to extract the renormalized bending rigidity κ1 from
the result for K1, one has to take into account that K1 also contains the new
bond length b1 = 2b0, which increases by a factor of 2 at each decimation step.
Therefore,

κ1(K0) = 2b0T K1(K0). (2.24)

Using this procedure we can calculate the renormalized bending rigidity κN after
N iterations in 2d and 3d starting from the exact expressions (2.20) for the
eigenvalues. Inserting the renormalized eigenvalues into (2.14), gives the transfer
matrix that contains the exact interaction function after N iterations in 2d and
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κ(`)/κ0
 = 3d

d  = 2

0.5

0

1

5000 10000

`/b0

Figure 2.4: Renormalized κ(`)/κ0 as a function of `/b0 = 2N for K0 = 1000 for
d = 2 (red) and d = 3 (blue) according to the recursion relation (2.25). The lines
show the asymptotic behavior for ` � κ0/T and ` � κ0/T according to eqs.
(2.26) and (2.28), respectively.

3d. Taking the derivative according to (2.23) and applying the rescaling (2.24)
finally yields the result

κN

κ0
=

2N

K0

{

∑(d)

n

[

λ(0)
n (K0)

]2N

A(d)
n

}/{

∑(d)

n

[

λ(0)
n (K0)

]2N
}

, (2.25)

with A
(2)
n ≡ n2 and A

(3)
n ≡ 1

2
n(n + 1). In the following we will interpret κN as

a continuous function κ(`) of the length scale ` by replacing the rescaling factor
2N = bN/b0 by the continuous parameter `/b0.

2.5 Persistence length

The sums in the expressions for the effective bending rigidity (2.25) can be com-
puted numerically. Fig. 2.4 displays the results for κ(`)/κ0 as a function of `/b0
for K0 = 1000 in 2d and 3d. The value K0 = 1000 is appropriate for a semi-
flexible polymer with κ0/T = 10µm and a bond length b0 = 10 nm, which is
close to experimental values for F-actin [9, 7]. For DNA, appropriate values are
κ0/T ' 50 nm and b0 ' 0.3 nm and, thus, K0 ' 150.

As long as ` is small, κ decays almost linearly in d = 3, which is also in
qualitative agreement with the result (2.2) from the RG of the nonlinear σ-model.
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2.5. Persistence length

In contrast to the non-linear σ-model, κ is also renormalized in two dimensions,
although compared to d = 3 the decay is much slower at small length scales.
This qualitative difference is due to the following important difference between
the Heisenberg and the nonlinear σ-model: Parametrizing the WLC model (1.2)
via tangent angles leaves only quadratic terms ∝ (θi,i−1)

2, whereas the discrete
semiflexible chain (2.5) gives terms ∝ 1 − cos(θi,i−1), which represent the full
expansion of the cosine and are invariant with respect to a translation of any
angular coordinate of the corresponding hypersphere by 2π.

As ` increases, κ(`) approaches zero only asymptotically. Therefore, the defi-
nition of the persistence length as length scale where the renormalized κ vanishes,
κ(Lp) = 0 – which is usually used for fluid membranes – would always give an
infinite result. We propose not to ask at which length scale the renormalized κ
reaches zero, but rather how it reaches zero. For ` ≥ b0K0 = κ0/T the sums
in (2.25) converge fast and one has to include only the first few terms for ac-
curate results. In fact, one can take again the continuum limit of small b0 or
large K0 and use the asymptotic form (2.16) for the Bessel functions contained

in the eigenvalues λ
(0)
k , see (2.14). This is justified for sufficiently large K0 & 100,

which is fulfilled by semiflexible polymers like F-actin (K0 ' 1000) or DNA

(K0 ' 150). Using this asymptotics we find (λ
(0)
m (K0))

`/b0 ∼ e−m2`/2b0K0 for d = 2

and (λ
(0)
l (K0))

`/b0 ∼ e−l(l+1)`/2b0K0 for d = 3. Moreover, we may expand (2.25) as
a power series in e−`T/κ0 and obtain

κ(`)/κ0 ≈ (`T/κ0)
(

2e−`T/2κ0 − 4e−`T/κ0 + 8e−3`T/2κ0 − . . .
)

for d = 2 ,

κ(`)/κ0 ≈ (`T/κ0)
(

3e−`T/κ0 − 9e−2`T/κ0 + 42e−3`T/κ0 − . . .
)

for d = 3 .
(2.26)

The characteristic length scales in the expansions are 2κ0/T in d = 2 and κ0/T
in d = 3, which are, thus, a natural definition for the persistence length Lp. For
general dimensionality d, the exponent of the first term is determined by the order
of the Bessel function appearing in the eigenvalue. Thus the RG calculation leads
to a persistence length

Lp =
2κ0

T (d− 1)
, (2.27)

which agrees perfectly with the result (2.1) based on the tangent correlation
function.

Our definition based on the large-scale asymptotics of the exact RG flow is
qualitatively different from the definition (2.3) used in perturbative RG calcula-
tions. While the result (2.2) from the nonlinear σ-model is only valid for small
length scales `� κ0/T , where κ(`) is close to κ0, the expansion (2.26) describes
the region ` � κ0/T . Indeed, taking the expansion of the RG flow (2.25) for
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Persistence length of semiflexible polymers

`� κ0/T , that is

κ(`)/κ0 ≈ 1 − (8π2κ0/`T )e−2π2κ0/`T + O(`e−4π2κ0/`T ) for d = 2

κ(`)/κ0 ≈ 1 − (`T/6κ0) −O(`2T 2/κ2
0) for d = 3 ,

(2.28)

and defining Lp by the exponential decay length in two dimensions, respectively,
by the linear term in three dimensions leads to a persistence length, which is
considerably bigger than the value (2.27) found above. Hence it is not surprising
that the two computations (2.2) and (2.26) yield different results. The slow
exponential decay in the expansion (2.28) for d = 2 is reminiscent of the non-
renormalization of κ in the non-linear σ-model, see eq. (2.2), and leads to a
“plateau” in the numerical result for κ(`)/κ0 for `� κ0/T in Fig. 2.4.

2.6 Conclusion

In this chapter, we have presented a definition of the persistence length Lp of
a semiflexible polymer or one-dimensional fluid membrane based on the large
scale behavior of the RG flow of the bending rigidity κ, as obtained from a
functional real-space RG calculation. Our result (2.27) for Lp generalizes the
conventional definition based on the exponential decay of a particular two-point
tangent correlation function and gives identical results for Lp. The RG flows
(2.25) or (2.26) allow us to follow the behavior of a semiflexible polymer from
a stiff polymer on short length scales to an effectively flexible polymer on large
length scales quantitatively as a function of the length scale. On large length
scales, our functional RG gives qualitatively different results from perturbative
RG techniques, which have been used for the closely related problem of fluid
membranes [73, 74, 75, 76, 77, 78, 79, 80] and which we also applied to the one-
dimensional semiflexible polymer. The generalization of our renormalization ap-
proach to two-dimensional fluid membranes is complicated by the more involved
differential geometry of these two-dimensional objects and remains an open issue
for future investigation. Our results indicate that also for two-dimensional fluid
membranes the asymptotic large scale RG flow of the bending rigidity is needed
in order to identify their persistence length.
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Chapter 3

Semiflexible polymer rings on structured

substrates

We investigate morphologies of semiflexible polymer rings, such as circular
nanotubes or DNA, which are adsorbed onto topographically or chemically
structured substrate surfaces. We classify all equilibrium morphologies for
two striped surface structures, (i) a topographical surface channel and (ii) a
chemically structured surface domain. For both types of stripes we find four
equilibrium shapes: a round toroidal, a confined elongated, and two shapes
containing bulges.
We determine the complete morphology diagram as a function (i) of the con-
tour length of the polymer divided by the stripe width and (ii) of the ratio of
adhesive strength to bending rigidity (reduced adhesion strength).
For more complex geometries consisting of several topographical stripes we
find a cascade of transitions between elongated shapes. Finally, we compare
our findings to ring condensation by attractive interactions.

3.1 Introduction

Many applications in (bio-)nanotechnology, such as the construction of electric
devices or sensors containing nanotubes, require immobilization, controlled shape
manipulation, and positioning of semiflexible polymers. Adsorption on substrates
is the simplest technique to immobilize single polymers and a first step towards
further manipulation and visualization of structure details using, e.g. modern
scanning probe techniques [46, 90]. Furthermore, the controlled adsorption of
single polymers at predefined positions, e.g. at electrodes, has been achieved by
using chemically structured substrates [91, 48, 92, 93], see Fig. 3.1. The substrate
patterns used in these experiments are composed of domains of arbitrary shape,
which are characterized by a greater binding affinity compared to the surrounding
substrate. Theoretically, this effect can be described by a laterally modulated
adhesion potential, where, in the simplest version, the polymer gains a constant
adsorption energy W < 0 per unit length.

For manipulation, control over the shape of the adsorbed polymer, which is
for example a nanotube or DNA, is needed. Typical shapes of semiflexible and
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3. Semiflexible polymer rings on structured substrates

(a) (b) (c)

Figure 3.1: Three experimental examples for controlled adsorption of nanotubes
on structured substrates are shown: (a) The electron micrograph of a multi-
walled nanotube (light-grey) of length ' 0.6µm covered with a surfactant shell
completely adsorbed to a hydrophobic electrode (grey) with a width of ' 60 nm
on a silicon wafer [48]. (b) The AFM image of single-walled nanotubes of length
' 1 − 3µm that are forced to form a coiled shape by hydrophilic ring domains
with a width of 170 nm and a maximal diameter of 650 nm on a gold substrate
[93]. (c) The AFM image of a single-walled nanotube (sharp grey contour) of
length ' 1µm adsorbed to NH2-functionalized lines (blurred grey) on a silicon
wafer [92].

flexible polymers are fundamentally different: While on a homogeneous substrate,
flexible polymers are governed by conformational entropy and adsorb in random
coil configurations, open (closed) semiflexible polymers with large persistence
lengths are dominated by their bending rigidity and adsorb in a straight (circular)
configuration, as is nicely demonstrated e.g. in [91].

In Fig. 3.1 three experimental examples of an open nanotube adsorbed to a
patterned substrate are shown. In the first case (a), the striped structure (grey)
does not interfere with the straight conformation of the nanotube (light-grey),
which is favored by bending energy. By contrast, in the second case (b), it has to
form a tightly wound coil (yellow) to bind with its full contour length L to the
ring domain of maximal diameter a (invisible). This latter configuration is only
stable, if the cost of bending energy Eb is compensated by the gain in adsorption
energy Ead, i.e. for

Eb + Ead ' 2
κL

a2
−WL ≤ 0 or

Wa2

κ
≥ 2. (3.1)

Also in the last case (c), one can see clearly, that the nanotube (sharp grey
contour) bends to align well with the two parallel stripes (blurred grey).

In this chapter, we explore the possibility to gain such shape control for semi-
flexible polymer rings using simple striped surface structures, which, in a sense,
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(a) (b)

Figure 3.2: Adsorbed circular polymer on a striped surface containing (a) a
chemically structured surface domain of width ado and (b) two topographical
surface steps forming a channel of width ast.

is the counterpart to the setup depicted in Fig. 3.1(b). Examples of such circular
semiflexible polymers are provided by carbon nanotubes [12, 5], DNA minicircles
[10], filamentous actin [13], and amyloid fibrils [11]. The substrate patterns stud-
ied in the following correspond to a single chemically striped domain, see Fig.
3.2(a), and to a single topographical surface channel, see Fig. 3.2(b), but also
to periodic topographical structures, which provide a simple model for the inter-
action between a polymer and the atomic lattice structure of substrate surface.
It turns out, that a shallow topographical step of a certain width has an effect
very similar to a thin adhesive stripe as shown in Fig. 3.1(a) and (c), because the
polymer is attracted to the surface steps. Such topographical surface steps have
been employed in recent manipulation experiments on semiflexible polymer rings
[94].

We find that, for persistence lengths larger than the stripe width, the com-
petition between the bending rigidity of the circular polymer and its attraction
to the striped domain allows a controlled switching between four distinct stable
morphologies, see Figs. 3.4 and 3.13: Apart from a weakly bound almost circular
shape and a strongly bound confined shape, bulged intermediate shapes become
stable for large contour lengths. Our results are summarized in the full morpho-
logical diagrams for semiflexible ring shapes depending on the size of the ring
compared to the size of the structure as well as the material parameters, namely,
the bending rigidity κ and the adhesion energy gain W . This analysis can be
used to (i) control the ring shape and (ii) analyze material properties of the sub-
strate or the semiflexible polymer ring experimentally. Flexible polymer rings,
on the other hand, exhibit random coil configurations and such morphological
transitions are absent.

Interestingly, the conformation of the nanotube enforced by the ring domain
in Fig. 3.1(b) strongly resembles the compact toroidal condensates observed for
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DNA [14, 37, 95, 96] or actin filaments [13, 97]. The condensation of DNA oc-
curs in living cells and viruses and, on the other hand, it has potential technical
applications in gene delivery for gene transfer. In poor solvent, in the presence
of condensing agents or depletion forces, polymer-polymer contacts become fa-
vorable, but the bending rigidity of a semiflexible polymer inhibits its collapse
towards a tightly packed globular structure, which is common for flexible poly-
mers. It has been reported, e.g. in [98], that this phenomenon can also be induced
on substrates that are treated with cationic silanes. The resulting morphological
transitions into highly ordered rodlike or toroidal shapes [99] are closely related to
the transitions on striped surfaces, as they are likewise caused by the competition
between stiffness and attractive interactions.

This chapter is organized as follows. In Section 3.2, we begin with the anal-
ysis of the equilibrium morphologies of a ring adhered to a substrate containing
a topographical channel, since only for this architecture also an analytical treat-
ment is possible. Therefore, our model for the adhesion potential caused by the
topographical channel and the general minimization procedure are introduced,
which is followed by the analytical and numerical calculations. We obtain a
projection of the energy landscape, analyze its local minima and summarize our
findings in a morphological diagram. In the end of the section, the influence
of thermal fluctuations is discussed. In the same manner, the system with the
chemical domain is analyzed numerically in Section 3.3. As an example of more
complicated structures, our results are generalized to substrates with periodic
surface stripes. Finally, we compare our findings for morphological transitions of
semiflexible rings on structured substrates to the condensation of a semiflexible
ring by attractive polymer-polymer interactions.

3.2 Topographical surface channel

3.2.1 Substrate model

We consider a planar substrate in the xy-plane that contains two parallel topo-
graphical surface steps at x = ±ast/2 forming an infinitely long surface channel
of width ast, see Fig. 3.3 (left). A semiflexible polymer ring, characterized by the
bending rigidity κ and the fixed contour length L, gains an overall adsorption
energy Wst < 0 per polymer length by adsorbing to the substrate surface. At the
edges of the surface channel the adsorption energy is doubled, since the semiflex-
ible polymer can bind to two adjacent surfaces at the same time. We will refer
to this extra energy contribution as the adsorption energy and omit the constant
energy offset throughout this chapter. The resulting effective lateral adsorption
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|W |st

V (x)st

x
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Figure 3.3: Schematic image of a topographical surface channel (left) and the cor-
responding adsorption potential Vst(x) (middle). The distance between the two
steps is denoted by ast. At the edges, a polymer gains the additional adsorption
energy Wst < 0 per length, because it can bind to two surfaces, which is reflected
in Vst(x) by two narrow square wells at x = ±ast/2. The widths of the square
wells l is determined by the range of the adsorption potential. A substrate with
two thin chemically modified lines (right) induces a potential of the same shape,
but there Wst depends on the chemical composition of the adhesive lines.

potential can be described by

Vst(x) =

{

Wst for |x± ast/2| < l/2,

0 otherwise,
(3.2)

as shown in Fig. 3.3 (middle). The range of the adsorption potential Vst is denoted
by l, which is taken to be of the order of the polymer diameter D and small
compared to the channel width, l � ast. It is also equivalent to the range of the
overall adsorption potential perpendicular to the substrate surface. Furthermore,
we are solely interested in surface steps of a height comparable to the polymer
diameter D, as can be fabricated by conventional nanolithographic methods.
Then, small energy corrections arising if the polymer crosses the surface steps
can be neglected. The resulting confined shapes are therefore not a consequence
of pure geometric constraints, but of the adsorption energy gain induced by the
surface steps. It should be mentioned, that a potential of the same shape is
generated by a substrate containing two thin chemically modified lines of width
l, which are characterized by an adhesion contrast Wst and which are located at
a distance ast, see Fig. 3.3 (right)1. Therefore, all results that are derived for the
topographical channel in this section also apply to a ring that is adsorbed to such
a substrate pattern.

1Note that, in this case, Wst is tuned by the chemical composition of the stripes and is not
simply equal to the adhesion strength of the surrounding substrate.
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3.2.2 Minimization procedure

We will first focus on polymer morphologies at T = 0 and discuss the effect of
thermal fluctuations at the end of this section. Moreover, the overall adhesion
is assumed to be so strong, that the polymer is firmly adsorbed to the substrate
surface and thus the ring conformations are essentially planar. However, the
motion of the semiflexible polymer along the substrate should be unhindered, so
that kinetic trapping effects can be excluded and the ring always equilibrates.
Such conditions are found experimentally, e.g. for DNA adsorbed to mica via
electrostatic interactions [46].

With the above assumptions, for an adsorbed ring of length L and rigidity κ
on a structured substrate of the type shown in Fig. 3.3, which is characterized
by ast and relative adsorption strength Wst, the Hamiltonian can be written in
terms of the tangent angles θ(s) as

H{θ(s)} = Hwlc{θ(s)} +

∫ L

0

ds Vst(x). (3.3)

As before, the WLC Hamiltonian represents the bending energy of the ring, see
(1.3), whereas, in the second term, the adsorption energy is calculated by inte-
grating the laterally modulated adsorption potential (3.2) along the ring contour.
Only polymer segments that are located at |x ± ast/2| < l/2 and oriented par-
allel to the y-axis can adhere to the surface pattern and actually give rise to a
non-vanishing contribution to the integral, so that, if we refer to the total length
of these adhered segments as the adhered length Lst, the adsorption energy is
simply −|Wst|Lst. On the other hand, since the adhered segments are necessarily
straight and, accordingly, ∂sθ(s) = 0, they do not contribute to the bending en-
ergy. As a consequence, the segments of an adhered ring can be divided into two
categories, namely, straight adhered segments of length Lst, by which the ring
gains adsorption energy, and curved non-adhered segments of length L−Lst, that
cost bending energy. We express this observation in the Hamiltonian by writing

H{θ(s), Lst} = Hwlc{θ(s), L− Lst} − |Wst|Lst. (3.4)

By analyzing this Hamiltonian, it turns out, that only two control parameters,
which are combinations of the four parameters L, κ, ast and Wst, are actually
needed to characterize the system. The first control parameter is the ratio be-
tween the contour length of the ring and the stripe width

L̄ ≡ L

ast

(3.5)

and the second one is the dimensionless reduced adsorption strength, namely

|wst| ≡
|Wst|a2

st

κ
(3.6)
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or alternatively

|w̃st| ≡
|Wst|L2

κ
= |wst|L̄2. (3.7)

Both parameters |wst| and |w̃st| have advantages and disadvantages, which we will
discuss later in detail, but as the results for either choice can easily transformed
into the other, we will start with |wst|.

At equilibrium, the ring will adjust its conformation to minimize its total
energy, i.e. the above Hamiltonian. Two trivial, extreme cases are |wst| = 0
corresponding to a substrate without structure, where the adsorbed semiflexible
ring forms a circle with Lst = 0, and |wst| infinitely large, where a rectangular
shape with adhered length Lst = L − 2ast is generated. For arbitrary values
of the control parameters, the balance between the two energy contributions is
tuned by exchange of contour length between adhered segments of length Lst

and curved segments of length L− Lst. In this sense, the adhered length acts as
internal parameter, that specifies an equilibrium state together with the control
parameters, and is, thus, a convenient (but not the only possible) quantity to
map the energy landscape of the system.

Therefore in a first step (i), we minimize the Hamiltonian H with respect to
the tangent angles, while keeping Lst and, accordingly, the adhesion energy fixed,
as

δθH = δθHwlc
!
= 0, (3.8)

which yields the minimized bending energy as a function of the adhered length
Eb(Lst). With this result, also the total energy as a function of the adhered
length Etot(Lst) for a given value of the adhesion strength Wst is easily deduced
by including the adsorption energy

Etot(Lst) = Eb(Lst) − |Wst|Lst. (3.9)

This function represents the a projection of the full energy landscape onto the
one-dimensional coordinate Lst for a particular choice of the control parameters
of the system. In the following, we refer to this function as the projected energy
landscape. It exhibits sometimes only one, but usually several minima, depending
on the control parameters, which reflects the fact that the ring does not transform
from a circle into a rectangle in a uniform manner, but rather displays various
equilibrium morphologies, which are shown Fig. 3.4. Thereby, we will attribute
the terms metastable and stable to morphologies that belong to the local and
global minima, respectively.

In order to find the position Lst of these minima (for particular L̄ and |wst|),
the Hamiltonian H is varied in a second step (ii) with respect to the adhered
length,

∂LstEtot(Lst) = ∂LstEb(Lst) − |Wst| !
= 0, (3.10)
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II1 II0II2I

Figure 3.4: Top views of the four types of stable morphologies of a ring adhered
to a surface with a topographical channel as obtained by energy minimization
for contour lengths L/ast = 20. There exist two realizations of conformation II2,
one being asymmetric (left) and one being symmetric (right) with respect to the
horizontal axis. These two versions differ only in their stability, see Sections 3.2.6
and 3.2.7. The topographical surface steps are indicated by two thin grey lines
and the ring segments that are adhered to the step edges are colored in blue.

which establishes a necessary condition for the local extrema of Etot(Lst). The
relation (3.10) implies that, in principle, for a particular shape one can read off the
local slope of Eb(Lst), at which value of the adhesion strength |Wst| the energy of
this shape is extremal. Formally, this relation is used to eliminate Lst and, thus,
to obtain the total energy of the local extrema of the projected energy landscape,
which includes both minima and maxima. In this context, it is also necessary to
examine the stability of the local extrema. A stability boundary is defined by
the transition of a local minimum of the energy landscape into a saddle point.
Therefore, at such a stability boundary a small change of the control parameters
causes an abrupt change of the ring shape2.

As a last step (iii), we study how the stable morphology, i.e. the position of the
global minimum, changes with the control parameters and therefore divide the
plane spanned by L̄ and |wst| into regions representing the respective stable shapes
of the system. For the morphology boundaries between these regions approximate
relations between L̄ and |wst| are found by demanding that the energies of the
corresponding morphologies have to be equal. These relations are illustrated in
the morphological diagram.

Finally, we would like to emphasize, that although some features of the sys-
tem we are considering strongly resemble properties that are typical for thermo-
dynamic systems, such as phase transitions etc., a single ring does not constitute
a thermodynamic system. The problem is much better interpreted in the frame-

2Often the stability boundaries are directly included in the morphology diagram (see below),
but for clarity, we chose to discuss the stability boundaries separately.
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3.2. Topographical surface channel

work of bifurcation theory, which was successfully applied to numerous elastic
systems [100].

3.2.3 Analytical energy minimization

In this section, we minimize the bending energy of a ring for fixed adhered length
Lst as described above. The relevant shapes are depicted in Fig. 3.4. There
are obviously two different types of configurations, namely, those where the ring
binds only to one of the step edges, denoted by I, and those where it binds to both
step edges, denoted by II. The additional index for the conformations of type II
refers to the number of bulges. Further, it should be mentioned, that all shapes
shown in Fig. 3.4, except for the conformation II0, are degenerate: A ring can
assume shape I by adhering to either of the two edges. Moreover, the non-adhered
segments of the ring can be located either to the left or to the right hand side of
the edge the ring adheres to, which amounts in total to a degree of degeneracy of
four. However, we would like to exclude those two configurations, where the ring
does not overlap the second edge (unlike the one shown in Fig. 3.4), since they
cannot undergo any morphological transitions, cf. the discussion in Section 3.2.6.
The conformations with the same total energy as shape II2 can be generated
by flipping the conformation horizontally, whereas flipping shape II1 horizontally
and vertically leads in total to four equivalent conformations. Furthermore, there
also exist two realizations of shape II2, which have both bulges on the same side
of the stripe and are, thus, symmetric with respect to the horizontal axis, see
Fig. 3.4. The asymmetric and the symmetric version of shape II2 differ only in
their stability, see the discussion in Section 3.2.6. In general, we will refer to the
asymmetric version as shape II2, since it exists in a greater range of the control
parameters, and distinguish between the two versions only in some places to point
out differences.

The degree of degeneracy is irrelevant for the energy calculation, but it should
influence the relative frequency of observing a particular conformation in exper-
iments.

Conformations adhered to a single step edge (I)

For small |Lst|, the ring will attach only to one step edge and adopt the rather
round toroidal configuration I, see Fig. 3.4. As the resulting shape is symmetric
with respect to the horizontal axis, it is sufficient to calculate, say, only the
upper half of the ring shape, as sketched in Fig. 3.5(a). The curved segment
we are considering starts at the point where the ring adheres to the left edge
(s = Lst/2) and ends where the contour and the symmetry axis cross each other
(s = L/2). In order to assure that the final shape is smooth and closed, we
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3. Semiflexible polymer rings on structured substrates

impose the boundary conditions θ(Lst/2) = 0 and θ(L/2) = π at the ends and
impose a constraint on the tangent vector component parallel to the channel, cf.
Fig. 3.5(a), namely

∫ L/2

Lst/2

ds cos θ(s) +
Lst

2
= 0, (3.11)

which is enforced by a Lagrange multiplier called µ.
With these ingredients, we are ready to carry out the first step (i) of the

minimization procedure. The first variation of (1.3) with respect to the tangent
angles reads

δH =

∫ L/2

Lst/2

ds δθ
{

− κ θ̈ − µ sin θ
}

+
[

κ θ̇ δθ
]L/2

Lst/2
, (3.12)

where the first term yields the Euler-Lagrange equation for θ(s)

κ θ̈(s) + µ sin θ(s) = 0, (3.13)

while the second term vanishes, because the tangent angles are fixed at the end
points of the curved segment we are considering. For our purpose, it is more
convenient to use the integrated version of the Euler-Lagrange equation. It is
obtained by multiplication with θ̇(s) and integration over s, which leads to

θ̇(s) =

{

2
µ

κ

[

c

µ
+ cos θ(s)

]}1/2

or ds = dθ

{

2
µ

κ

[

c

µ
+ cos θ(s)

]}−1/2

,

(3.14)
where c is an integration constant. A second integration of the above equa-
tion (3.14) yields

L− Lst

2
=

(

κ

2µ

)1/2 ∫ π

0

dθ
1

(q + cos θ)1/2

= 2

(

κ

2µ

)1/2
1

(q − 1)1/2
K(2/[q − 1])

(3.15)

with q ≡ c/µ and K(x) being the complete elliptic integral of the first kind [83].
Then, by plugging the expressions of ds into the constraint (3.11), which gives

Lst

2
= −

(

κ

2µ

)1/2 ∫ π

0

dθ
cos θ

(q + cos θ)1/2
, (3.16a)

we find an implicit equation for q as a function of Lst using the integrated version
of the Euler-Lagrange equation (3.15), namely

Lst

L− Lst
= q

{

1 −
(

1 − 1

q

)

E(2/[q − 1])

K(2/[q − 1])

}

, (3.16b)

38



3.2. Topographical surface channel

containing also the complete elliptic integral of the second kind E(x) [83]. The
solution of this equation can be calculated only numerically and was done using
Newton’s method, which is implemented in Mathematica r© 5.2. The bending
energy of the full conformation as a function of q and Lst can be calculated in a
similar way as

EI
b(q, Lst) = (2κµ)1/2

∫ π

0

dθ(q + cos θ)1/2

= 8κ(L− Lst)
−1K(2/[q − 1])E(2/[q − 1]).

(3.17)

In order to compute the bending energy Eb as a function of Lst, as depicted in
Fig. 3.6(a), the corresponding value for q for each value Lst was determined using
(3.16) and plugged into (3.17).

Conformations adhered to both step edges (II)

For Lst & L/2, conformations, where the ring binds to both step edges, will
become relevant. These shapes may be classified by the number of bulges or
segments outside the channel and are referred to as II0, II1, and II2, accordingly,
see Fig. 3.4. These shapes are all composed of two types of curved segments –
one with and one without bulge – as shown in Fig. 3.5(b) and (c). In order to
compute the bending energy of shapes II0, II1, and II2, we first consider curved
segments of length L∗ of each type3. These segments obey boundary conditions
θ(0) = 0 and θ(L∗) = π, and they start on one edge and end on the other, which
is enforced by a constraint on the tangent vector component perpendicular to the
channel, see Fig. 3.5(b) and (c), namely

∫ L∗

0

ds sin θ(s) − ast = 0, (3.18)

via the Lagrange multiplier ν. The corresponding Euler-Lagrange equation is

κ θ̈(s) − ν cos θ(s) = 0. (3.19)

and the integrated form reads

θ̇(s) = ±
{

2
ν

κ

[ c

ν
+ sin θ(s)

]}1/2

or ds = ±dθ
{

2
ν

κ

[ c

ν
+ sin θ(s)

]}−1/2

.

(3.20)
For the bulged segment in Fig. 3.5(b) the sign of θ̇(s) changes from plus to minus
at the inflection point, whereas it is always positive for the segment depicted in

3Later on we will call the length of the bulged segment LB
∗ and the length of the segment

without bulge L
6B
∗ , respectively. This notation is already used in Fig. 3.5(b) and (c).
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(I) =⇒ 2 × + straight lines

(II2) =⇒ 2 × + straight lines

(II1) =⇒ + + straight lines

(II0) =⇒ 2 × + straight lines

ast

θ θ

θ

s = 0       
s =       

2 
stL 

2 
L st

*s = L *s = Ls =       L 
2 

ast

B Bs = 0

(a) (b) (c)

Figure 3.5: Shapes I, II0, II1 and II2 in Fig. 3.4 can be divided into straight
(adsorbed) and curved (desorbed) constituent parts. Accordingly, configuration
I contains an axissymmetric curved segment, one half of which is depicted in (a),
whereas shapes II0, II1 and II2 are combinations of the appropriate curved parts
(b) with and (c) without bulge.
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Fig. 3.5(c). All in all, the system of equations that determines c, ν and Eb for
both shapes is given by

L∗

(

2ν

κ

)1/2

=

[
∫ π

0

+2

∫ θinf

π

]

dθ
1

(p+ sin θ(s))1/2
≡ f1(p),

ast

(

2ν

κ

)1/2

=

[
∫ π

0

+2

∫ θinf

π

]

dθ
sin θ

(p+ sin θ(s))1/2
≡ f2(p),

EII
b

(

2

κν

)1/2

=

[
∫ π

0

+2

∫ θinf

π

]

dθ(p+ sin θ(s))1/2 ≡ f3(p),

(3.21)

with p ≡ c/ν, π < θinf = arcsin(−c/ν) < 3π/2 for the bulged shape and θinf = π
for the shape without bulge, so that, in this case, the second integral in each
equation is absent. The explicit expressions of the functions f1, f2 and f3 are
rather lengthy, but can be found in App. B. There, quantities referring to the
segment with or without bulge are indicated by an index B and 6B, respectively.

In the same manner as for the conformation I, the equations can be combined
to give an implicit equation for p of the form

L∗

ast
=
f1(p)

f2(p)
(3.22)

and a formula for the bending energy of the curved segment depending on p

EII
b (p, Lst) = κ(2L∗)

−1f1(p)f3(p). (3.23)

Now the different pieces have to be joined together to form the shapes II0,
II1 and II2. The conformations II0 and II2 are symmetric and, therefore, the
bending energy is simply two times the contribution of the corresponding segment
of length L∗ = (L − Lst)/2. For shape II1, on the other hand, the non-adhered
length L− Lst has to be distributed between the two curved parts such that the
sum of the bending energies EB

b (Lst + dLst) + E 6B
b (Lst − dLst) is minimized with

respect to dLst. One finds, that dLst varies only weakly for the ranges of L−Lst

considered here and can thus be approximated by an appropriate constant value.
The resulting bending energies for shapes I, II0, II1 and II2 as functions of Lst

are plotted and compared to numerical results in Fig. 3.6(a).

3.2.4 Numerical energy minimization

For some systems, that are considered in this chapter, the analytical energy
minimization becomes very involved, so that we prefer to switch to a numerical
treatment using the freely available program package SURFACE EVOLVER 2.26
[101]. As for the system with the topographical channel a numerical and an
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analytical analysis are feasible, it offers the possibility to compare the results and
thus to check the reliability of the numerical calculations for more complicated
substrate structures.

The SURFACE EVOLVER was originally designed to minimize the energy
of two-dimensional surfaces subject to constraints, but can also be applied to
one-dimensional ‘surfaces’. In this framework, the contour of the polymer is dis-
cretized and represented by a set of vertices and directed edges, which connect
neighboring vertices. The contour length of a shape segment is identified with the
sum over the length of the corresponding edges, which is a reasonable approxima-
tion, if the discretization is fine enough. Further, one may assign to each vertex a
bending energy, which is identical to the interaction defined by (2.5) interpreting
the edges as tangent vectors of length b. Therefore, it is necessary to assure,
that the edges have approximately the same length, or, in other words, that the
vertices are uniformly distributed along the contour. In addition, constraints on
vertices and edges or quantities, such as the contour length, can be introduced.

The basic operations are the refinement of the discretization, the vertex aver-
age and, of course, an iteration step. The refinement operation subdivides each
edge by two edges and a vertex in the middle. Constraints and energies de-
fined for the original edge are inherited by the two new edges. Similarly, the
properties of the new vertex are determined by the properties of its two neigh-
boring vertices. Further, by performing a vertex average, one makes sure that
the vertex positions are evenly spread out along the contour, which otherwise
leads to wrong results e.g. for the bending energy. At each iteration step, all
vertices are moved to reduce the overall energy, while satisfying the constraints,
according to the gradient descent or the conjugate gradient method. In practice,
one usually starts with only a few vertices and edges and successively refines,
averages over vertex positions and iterates using the gradient descent method a
few times until a regular shape is reached, which is reasonably close to an energy
minimum. Then, one switches to the more efficient conjugate gradient method
and occasionally averages over the vertex positions. When the energy ceases to
change significantly, the refinement is further increased to enhance the precision
of the energy. Snapshots of shapes resulting from this minimization procedure
are shown in Fig. 3.4 and later on in Fig. 3.13.

In principle, we are repeating the minimization of the bending energy in anal-
ogy to the previous section, while the contour length L, the width of the to-
pographical channel ast and the bending rigidity κ are kept fixed. Then the
bending energy is minimized at a given value for the adhered length Lst, which
is achieved by constraining the x coordinate of the corresponding edges and ver-
tices to x = ±ast/2. As already pointed out, the ring may bind to only one or to
both edges corresponding to two different initial conditions. For conformations,
that are adhered to both edges of the channel, such as the shapes II0, II1 and
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3.2. Topographical surface channel

II2, the adhered (and likewise the non-adhered) segments can exchange length.
The computation of the bending energy for different values of Lst is performed
sequentially, by gradually increasing or decreasing Lst. Hereby the optimal shape
for a given Lst serves as initial configuration for the subsequent minimization for
slightly increased or decreased Lst.

The numerical data for Eb(Lst) are shown together with our analytical results
in Fig. 3.6(a) and are found to be in excellent agreement. Consequently, in this
case, it is sufficient to perform the remaining steps of the minimization procedure
only with the analytical results, as the outcome should be identical in both cases.

Alternatively to constraining edges of lengths Lst to x = ±ast/2, and thus
realizing a contact potential, a potential consisting of two thin potential wells,
that model the surface steps according to Fig. 3.3, can be used. Then again the
length located at the potential wells is kept constant. In practice, the potential
wells have to be smooth and not too thin, since in the minimization algorithm
of the SURFACE EVOLVER energy gradients are computed, which otherwise
become infinite at the boundaries |x ± ast| = l/2. The position of the vertices
and edges representing the ring contour need not to be fixed, but initially the ring
has to be placed such that the contour overlaps the surface structure. The results
obtained by this approach agree qualitatively with the data that is presented here,
but exhibit artifacts that can be traced back to the flattened potential and the
relatively big potential range l that has to be chosen.

3.2.5 Projected energy landscape

As an illustration of the above calculations, Fig. 3.6(a) shows the bending energy
Eb, normalized by the typical energy scale

Est ≡
κ

ast
, (3.24)

plotted as a function of the adhered length in units of the channel width L̄st ≡
Lst/ast. The dots and solid lines represent the numerical data and analytical
results, respectively. Their different colors indicate different morphologies. A
horizontal line, that marks the bending energy of a circle with L̄ = 20 as a lower
bound, is also included. As was already mentioned in the previous section, the
numerical and analytical results match perfectly.

As intuitively expected, for small Lst, conformation I has the smallest bending
energy (3.17) starting at Lst = 0, where it is equivalent to a circle, but the energy
diverges as Lst approaches L/2. At Lst = 0, also the asymmetric conformation
with two bulges II2 initiates, which corresponds to a ring conformation that is
bound to each edge with a single contact point. The symmetric version of shape
II2 does not exist before L̄st ' 6.30 (not indicated explicitly), where the two
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Figure 3.6: (a) The bending energy Eb of all relevant conformations to a topo-
graphical surface channel of width ast (in units of Est = κ/ast) as a function of
the adhered length Lst (in units of ast) for a semiflexible ring with L/ast = 20
adsorbing on a topographical surface channel of width ast. The analytical results
(solid lines) and the numerical data (dots) of the different shapes are shown in
different colors. The arrows indicate, where the snapshots in Fig. 3.4 have been
taken. (b) The corresponding graph for a ring with L/ado = 20 adhering to a
substrate with the chemically modified stripe of width ado and adhesion strength
|Wdo| is shown. In this case the bending energy Eb is normalized by the typical
energy scale Edo = κ/ado and the adhered length Ldo is measured in units of ado.
The numerical data are shown as dots. Apparently, there is an almost constant
shift in the adhered length ∆L̄ compared to the results for the topographical
structure in (a), which can be attributed to the fact that, in contrast to the chan-
nel, the stripe domain is also adhesive between its boundaries. The arrows point
to shapes that are displayed in Fig. 3.13(a). The fact, that the red curve overlaps
the green and the purple curve is discussed in detail in Section 3.2.7.
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bulges touch, which are located on the same side of the striped structure in
this case. For L̄st > 6.30, the energies of the asymmetric and the symmetric
realizations of shape II2 coincide.

On the other hand, in order to assume the conformation II1, a minimal ad-
hered length Lst > 0 is needed, which is required for a closed configuration, cf.
Fig. 3.5(b) and Section 3.2.6. For the present case, i.e. L̄ = 20, this minimal
length is approximately L̄st ' 5.73. The green (II2) and the purple (II1) curve
merge in a single blue (II0) curve at a value L̄st ' 15.62, which implies, that
the segment with bulge and the one without become identical, i.e. θinf = π and
p = 0 in (3.21). Finally, the blue curve tends asymptotically to infinity as Lst

approaches L̄st = L̄ − 2 = 18, where the ring assumes a rectangular shape with
infinite bending energy.

The projected energy landscape Ētot(L̄st) ≡ Etot(L̄st)/Est for a fixed set of
control parameters, L̄ and |wst|, is obtained by subtracting |wst|L̄st from the
dimensionless bending energy Eb(Lst)/Est, see (3.9). In this respect, the curves
in Fig. 3.6(a) represent Ētot(L̄st) for L̄ = 20 and |wst| = 0. Taking these values
as a starting point, a change in the reduced potential |wst| effects essentially a
tilt of the curves in Fig. 3.6(a) with a slope −|wst|, whereas a variation of L̄ to
bigger or smaller rings, can roughly be achieved by stretching or compressing the
L̄st-axis by a factor of L̄new/L̄old. Both statements are not exactly correct, but
give a useful intuitive idea of the qualitative behavior.

Depending on L̄ and |wst|, the projected energy landscape Ētot(L̄st) exhibits
up to four minima, one in each branch, and two maxima, which we will analyze
in detail in the following section.

3.2.6 Energy minima

Unfortunately, in our results for the bending energy, see (3.17) and (3.23), the
actual dependence of Lst is implicit through the parameters p and q, so that the
variation of the total energy Etot(Lst) with respect to Lst in the second step (ii)
of the minimization procedure, cf. (3.10), can be performed only numerically,
some results are shown in Fig. 3.9(a). Consequently, the functional dependence
of the total energy of the extremal points of Etot(Lst) on the control parameters
is also not accessible in this way. On the other hand, one can circumvent the de-
termination of Etot(Lst) and directly obtain the total energy of the unconstrained
equilibrium morphologies by varying H, given in (3.4), with respect to θ and Lst

simultaneously. This procedure has the advantage that |Wst| explicitly appears
in the calculations right from the start and that the functional dependence on the
control parameters can be deduced at least approximately. The prize one has to
pay in return is that Lst is unknown initially and yet to be determined. There-
fore, in the following, we will derive these energy estimates for the conformations
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I, II0, II1 and II2 and compare them to the exact results, which are obtained
numerically by applying the rule (3.10) to (3.17) and (3.23).

Again, we start with shape I. As an explicit example, we write down the
variation of the Hamiltonian with respect to θ and Lst, which is

δH =

∫ L/2

Lst/2

ds δθ
{

− κ θ̈ − µ sin θ
}

+
[

κ θ̇ δθ
]L/2

Lst/2

+
1

2
δLst

{

− 1
2
κ θ̇2 − µ+ µ− |Wst|

}

.

(3.25)

The variation of θ at s = Lst/2 and s = L/2 has to vanish, since the angles are
fixed at the ends, which leads for s = L/2 simply to δθ(L/2) = 0. At the contact
point of the ring and the step edge, the total variation of θ(Lst/2) is

∆θ(Lst/2) = δθ(Lst/2) +
1

2
θ̇(Lst/2)δLst

!
= 0, (3.26)

which we solve with respect to δθ(Lst/2) and plug into (3.25). δH has to vanish
for all possible δθ(s) and δLst, so that we find two equations for θ(s) and Lst,
namely, the Euler-Lagrange equation (3.13), the condition (3.11) to determine
the Lagrange multiplier and a transversality condition, that fixes the curvature
at s = Lst/2 as

θ̇2(Lst/2) = 2
|Wst|
κ

≡ 1

R2
co

, (3.27)

where Rco is sometimes called the contact radius. For fixed adhered length Lst,
δLst is zero and the original result in (3.12) is recovered.

Plugging (3.27) into (3.14) yields c = |Wst| − µ and

θ̇(s)Rco =

{

1 − µ

|Wst|
+

µ

|Wst|
cos θ(s)

}1/2

(3.28)

We add (3.15) and (3.16) to obtain an equation for µ

L

2Rco
=

∫ π

0

1 − cos θ

(1 − µ/|Wst| + µ/|Wst| cos θ)1/2
(3.29)

and maintain (3.16) and (3.17), which can be written in a similar form as (3.29)
using (3.28), to determine Lst and the bending energy.

For the special case L = 2πRco or L̄ = π
√

2/|wst|, cf. Fig. 3.7(a), the above
equation (3.29) gives µ = 0, which likewise results in Lst = 0. Decreasing L
further, even yields a negative and thus unphysical result for Lst. In other words,
a semiflexible ring of length L = 2πRco adheres to the edge of a step only at a
single point, whereas rings with L < 2πRco do not bind at all to the substrate
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structure. This phenomenon is also known for vesicles adhering to a flat plane
with an adhesion potential of very small range [102, 103]. The interplay between
adhesion and bending energy leads to an unbinding transition, which is not driven
by thermal fluctuations. It is one example mentioned in the introduction, where
the calculation for vesicles is reduced to the minimization of the contour of the
vesicle’s cross section due to the axial symmetry, which is the reason for the great
similarities to the above treatment.

If the contour length is well above 2πRco, we can assume, that the curvature
at the contact point is much bigger than the curvature at s = L/2, see Fig. 3.7(a),
which, if applied to (3.28), corresponds to µ ' |Wst|/2. In this approximation,
one finds the adhered length in units of ast

L̄I
st ≡

LI
st

ast
' L

2
− 4Rco =

L̄

2
− 2

√

2

|wst|
(3.30a)

and the total energy normalized by the typical energy scale Est

ĒI
tot ≡

EI
tot

Est
' 2
√

2|wst| − |wst|L̄I
st = 4

√

2|wst| − |wst|
L̄

2
. (3.30b)

If the extension of the segment perpendicular to the channel ∆x is equal to the
channel width ast, compare Fig. 3.8(a), which happens at

∆x ' 16

3
Rco

!
= ast or |wst| ' 14.22, (3.31)

the ring touches the second edge at s = L/2 and the tangent vector at this point
is oriented parallel to the structure. Thus, the ring can also bind to the second
edge and conformation I becomes unstable. Note, that if the non-adhered part of
shape I is on the ‘wrong’ side of the structure (rotate shape I around the edge it
adheres to in Fig. 3.4), this will never happen and shape I remains (meta-)stable
as |wst| goes to infinity.

We proceed in the same way as for the conformation I, to extract the ap-
proximate functional dependence of the total energy and the adhered length on
the control parameters for both curved segments depicted in Fig. 3.5(b) and
(c). Variation of H with respect to the adhered length, i.e. the length of the
curved segment, imposes the same condition on the curvature as (3.27) at all
contact points. This result plugged into (3.20) determines the integration con-
stant c = |Wst| and leads via

θ̇(s)Rco = ±
{

1 +
ν

|Wst|
sin θ(s)

}1/2

(3.32)
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θ = π / 2

L = 2πRco L� 2πRco ast � 2Rco ast = 2Rco
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Figure 3.7: Two extreme cases for the segment depicted in Fig. 3.5(a) and (b) the
segment without bulge shown Fig. 3.5(c), for which the energy is approximately
calculated. The two outer pictures illustrate the special cases, where the contact
radius Rco is equal to (a) the radius of the polymer ring and (b) half the stripe
width. For the two inner pictures, the curvatures at different tangent angles θ
are compared. The curvature at the contact point 1/Rco at θ = 0 is in (a) much
bigger than the curvature at θ = π, whereas and in (b) it is much smaller than
the curvature at the reference point at θ = π/2.

and the second line of (3.21) to an equation of the form

ast

Rco

= F (ν/|Wst|) (3.33)

for the Lagrange multiplier ν, where F is a lengthy function, which is straight-
forward to compute, but is not explicitly shown here. Formulae for the length of
the segment and the bending energy are obtained by using (3.32) to rewrite the
first and the third equation in (3.21), respectively.

A special case for the shape without bulge is ast = 2Rco, cf. Fig. 3.7(b),
corresponding to |wst| = 2, because then (3.33) yields ν = 0 and the segment
forms an exact semicircle, so that the length of the segment without bulge is
given by

L 6B
∗

ast

=
π

2
for |wst| = 2 (3.34a)

and its bending energy reads

E 6B
b

Est

= π for |wst| = 2. (3.34b)

On the other hand, if |wst| � 1 or ast � 2Rco, see Fig. 3.7(b), the curvature at
the contact point is significantly smaller than the curvature at θ = π/2 so that
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Figure 3.8: (a) Schematic picture of the configuration where shape I becomes
unstable for large |wst| and the ring can bind to the second edge. The other
schematic pictures illustrate the configurations at the stability boundary for small
|wst| of the asymmetric and the symmetric versions of shape II2 in (b) and (c),
and of shape II1 in (d).

both sides of the equation (3.32) are much bigger than one. Then, the equation
(3.33) can be solved for ν/|Wst| � 1 and one finds for the length of the segment
without bulge

L 6B
∗

ast

' 2.19 for |wst| � 1 (3.35a)

and for the resulting bending energy

E 6B
b

Est
' 2.87 for |wst| � 1. (3.35b)

For the bulged segment depicted in Fig. 3.5(b), a reasonable approximation
for (3.33) is less obvious. The equation (3.33) gives rise to two solutions for
ν/|Wst|, that only exist for 0 < |wst| < 0.35, and an additional unphysical solution
for |wst| > 0 , which is the only remaining, if |wst| > 0.35. The latter solution
can be excluded right from the beginning, whereas for the other two solutions,
for 0 < |wst| < 0.35, we check the resulting behavior of the segment length.
For one solution L∗ decreases with increasing |wst|, whereas for the other one L∗

increases with increasing |wst|. Accordingly, the former is the desired solution for
the minimized bulged segment. The other solution is identified with the bulged
segment belonging to the local maxima II∗1 and II∗2, which we discuss in detail
later on.

We expand the equation (3.33) in the corresponding region of ν/|Wst| and
accordingly find for the length of the bulged segment

LB
∗

ast
'
√

2

|wst|
(2.45 − 1.95|wst|) for |wst| � 1 (3.36a)
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and for the bending energy

EB
b

Est

'
√

2|wst| (2.66 + 0.10|wst|) for |wst| � 1. (3.36b)

As a final step, the estimated total energies for the shapes II0, II1 and II2 are
computed by assembling the corresponding expressions for L∗ and Eb. We obtain
the total energies for conformation II0

ĒII0
tot ' 2

E 6B
b

Est
− |wst|

(

L̄− 2
L 6B
∗

ast

)

=

{

5.74 − |wst|(L̄− 4.38) for |wst| � 1,

2π − |wst|(L̄− π) for |wst| ' 2,

(3.37)

and for conformation II2

ĒII2
tot ' 2

EB
b

Est
− |wst|

(

L̄− 2
LB
∗

ast

)

= |wst|1/2(14.45 − L̄|wst|1/2 − 5.23|wst|) for w2(L̄) < |wst| < 0.35,

(3.38)

with w2 indicating the value of the reduced adhesion potential, where the ad-
hered length becomes too small to maintain the stability of the shape. For the
asymmetric version of shape II2, this is the case if the adhered length is zero, see
Fig. 3.8(b), i.e.

L̄− 2
LB
∗ (w2)

ast

!
= 0. (3.39)

If we set w2 = 0.35 in relation (3.39), we find that for L̄ < 8.45 the local minimum
corresponding the conformation II2 vanishes. The symmetric realization of shape
II2, that has both bulges on the same side of the channel, becomes unstable if
the bulges touch, see Fig. 3.8(c), i.e.

L̄− 2{LB
∗ (w2) + ∆y(w2)}/ast

!
= 0, (3.40)

with ∆y given by

∆y(|wst|) '
√

2

|wst|
(1.18 − 1.19|wst|). (3.41)

Again, by plugging w2 = 0.35 into (3.40) we obtain that for L̄ < 11.53 this shape
becomes unstable. The total energy of the remaining conformation II1 can be
written as

ĒII1
tot '

ĒII0
tot + ĒII2

tot

2
for w1(L̄) < |wst| < 0.35, (3.42)
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There is also a lower limit of wst, denoted by w1(L̄), which can be explained by
the observation that this shape becomes unstable, if the bulged segment extends
to the other curved segment on the other side of the ring, see Fig. 3.8(d), i.e.

L̄− {LB
∗ (w1) + L 6B

∗ (w1) + ∆y(w1)}/ast
!
= 0, (3.43)

see Fig. 3.5(b). For L̄ < 7.96, the lower and the upper limit are equal, namely
w1(L̄) = 0.35, also conformation II1 ceases to exist as metastable state.

In Fig. 3.9(a), only the local minima of the projected energy landscape Ētot(L̄st)
as a function of |wst| for L̄ = 20 are shown. Note that likewise we could keep the
reduced adhesion strength |wst| fixed and examine the functional dependence of
the local energy minima on L̄, which we will not show here, but the results are
implicitly included in the morphology diagram, see Fig. 3.11(a). For the (exact)
analytical results, we applied the same color code as before, while the energy es-
timates, given in equations (3.30b), (3.37), (3.38) and (3.42), are drawn as black
dashed lines. For the elongated shape II0, only the approximation for |wst| � 2
is included. A comparison between the solid and the dashed lines demonstrates,
that our energy estimates are very good for the morphologies containing bulges
and good within their range of application for shapes I and II0.

As long as |wst| is very small, the unbound ring is the stable conformation,
while conformation II0 is metastable. Then, at

L̄ = L̄unb ≡ 2π
Rco

ast
or |wst| = |wst|unb ≡ 2π2

L̄2
' 0.05, (3.44)

the curvature of the undeformed circle, is equal to the curvature required at the
contact points, see (3.27), so that the ring can bind to the first edge. In other
words, at |wst| = |wst|unb, the Hamiltonian (3.4) has two (equivalent) equilibrium
configurations: the unbound circle and the circle binding to one edge with a
single point. If |wst| is increased beyond |wst|unb, the unbound circle (which
touches the edge, but does not adhere) becomes unstable, whereas configuration
I, with Lst > 0, represents the global minimum, and vice versa for |wst| < |wst|unb.
Hence, at |wst| = |wst|unb a morphology transition between the unbound circle and
shape I occurs, and, at the same time, |wst| = |wst|unb marks a stability boundary
for the unbound circle and configuration I. Moreover, since the configuration I
coincides with the circle at |wst| = |wst|unb, i.e. the internal parameter Lst is the
same, we refer to this transition as continuous.

Apart from that, as naively expected, the round configuration I (red) is the
state of minimal energy for small |wst|, whereas the adhesion energy gain, and
therefore the elongated shape II0 (blue), dominates for large |wst| and, in fact,
is the only remaining stable shape II0 for |wst| & 14.2, see (3.31), which is not
shown in the picture. The morphological transition between these two shapes is
always accompanied by a jump in the adhered length Lst and is thus discontinu-
ous. The transition point is determined approximately by equating the respective
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Figure 3.9: (a) Total dimensionless energy Etot/Est of all (meta-)stable states
versus the reduced potential |wst| for a semiflexible ring of contour length L/ast =
20 adsorbing on a topographical surface channel of width ast. Analytical results
for the metastable and stable shapes are shown as colored solid lines, whereas the
estimates for these energy curves calculated in Section 3.2.2 are drawn as dashed
lines and seem to match fairly well. (b) A magnification of the upper left corner
of (a) including also the unstable states II∗1 and II∗2 as purple and green dashed
line, respectively. The energy estimates are omitted for clarity. The analogous
numerical results of the dimensionless total energy Etot/Edo as a function of |wdo|
for a ring adhered to a chemical domain with L/ado = 20 in (c) and magnified in
(d). The unbound circle is never stable and therefore absent in this case.
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(a)

(b)

Figure 3.10: Two schematic examples of how the energy curves as a function of
the adhered length representing (a) shape II2 and (b) shape I in the projected
energy landscape evolve, if |wst| is increased. The arrows indicate the locations of
local minima and maxima. The minimum on the right in the green curve belongs
already to shape II0, which in Fig. 3.6 (a) is colored in blue. In (a) the transition
state is identified with the local maximum in between the two local minima.
At the stability boundary, the local maximum fuses with a local minimum to
form a saddle point (middle). By contrast in (b), the transition state cannot be
identified. Then, the stability boundaries are characterized by a horizontal slope
at the end point of a curve (right).

energy estimates, see the next section. In the vicinity of this transition, namely,
for w1, w2 . |wst| . 0.35, also the shapes II1 (purple) and II2 (green) become
metastable. Note, that the endpoint of the green curve at w2 ' 0.10 refers to
the asymmetric version of shape II2. Its symmetric counterpart already ends at
w2 ' 0.18, which is not shown explicitly in Fig. 3.9.

3.2.7 Stability

Now we turn to the stability analysis. As we mentioned earlier, the number of
curves, that are present for a particular value of |wst| in Fig. 3.9(a), reflects the
number of local minima of the projected energy landscape. Accordingly, the start
and end points of the curves in Fig. 3.9(a) mark those values of |wst|, for which
a new minimum arises or a current minimum disappears in Ētot(L̄st). The local
extrema of the projected energy landscape have to satisfy the necessary condi-
tion, that the local slope of Ētot(L̄st) has to be equal to |wst|. Furthermore, the
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sufficient condition for an extremum of the projected energy landscape Ētot(L̄st)
to be a local minimum, ∂2

L̄st
Ētot > 0, is found to be equivalent with the statement,

that the adhered length of the (meta-)stable morphologies grows with increasing
|wst|.

In order to examine the other stability boundary for shapes II1 and II2 at
|wst| ' 0.35, we include also the two local maxima of the projected energy land-
scape, which we call II∗1 and II∗2, shown as purple and green dashed lines in
Fig. 3.9(b). In the projected energy landscape, see Fig. 3.6(a), the maximum
related to shape II∗1 (II∗2) emerges in the energy branch of conformation II1 (II2)
for 0 < |wst| . 0.35 and is located between L̄st = 13.58 (L̄st = 11.55) and
L̄st = 15.62, where the bending energy Ēb(L̄st) and, consequently, also Ētot(L̄st)
are concave. Accordingly, conformations II∗1 and II∗2 have qualitatively the same
form as II1 and II2, but the bulges are smaller. In order to keep track of the
various curves, the energy estimates are no longer displayed.

For the moment, let us trace the green solid curve representing shape II2
and the green dashed curve representing shape II∗2 simultaneously approaching
|wst| = 0.35 from the left in Fig. 3.9(b). As we stated above, an increase in |wst|
causes the two bulges of II2 to become smaller, as more length adheres to the
edges, so that the local minimum in the projected energy landscape belonging
to the equilibrium shape II2 is shifted to higher adhered length Lst as |wst| is
increased. On the contrary, the adhered length of II∗2, which is always greater
than the one of II2 decreases continuously as |wst| is increased, so that the corre-
sponding maximum is shifted towards the minimum of II2. At |wst| ' 0.35, the
two shapes are identical which indicates, that the local minimum and the local
maximum of Ētot(L̄st) corresponding to these shapes fuse into a saddle point, with
∂L̄st

Ētot(L̄st) = ∂2
L̄st
Ētot(L̄st) = 0, which is schematically shown in Fig. 3.10(a).

Such a point is also called bifurcation point, because the energy in Fig. 3.9(b) forks
into two branches, namely, a metastable and an unstable shape. If we increase
|wst| beyond this point, the ring morphology changes abruptly to conformation
II0, which causes a jump in the adhered length Lst. In an analogous manner,
the maximum belonging to shape II∗1 and the minimum belonging to shape II1
merge at |wst| ' 0.35, leading to another bifurcation point in Fig. 3.9(b), while
at |wst| = 0 both maxima fuse with the minimum of shape II0, see Fig. 3.6(a).
In Fig. 3.9(b) this corresponds to the point at |wst| = 0, where the energy fur-
cates into one stable (blue line) and two unstable states (purple and green dashed
lines). In the context of thermodynamics, the triangle formed e.g. by the dashed
green, the solid green and the solid blue energy curve is known as Gibbs triangle
or Gibbs wing. The corners of the triangle are defined by the two bifurcation
points and the transition point between the (meta-)stable shapes II2 and II0.

Before discussing the remaining stability boundaries, let us mention a pecu-
liarity of the projected energy landscape. In Fig. 3.6(a) the red curve overlaps
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the green and the purple curve, which is a result of the mapping of the full (con-
tinuous) energy landscape onto the adhered length. As a consequence, the curves
of the shapes I, II1 and II2 are not connected and the respective transition states
corresponding to local maxima in the full energy landscape cannot be resolved in
this projection of the energy landscape. The determination of all local minima
and their stability boundaries is, however, still possible as we will see below. In
order to identify the missing transition states, more constraints would have to be
imposed, e.g. on the center of mass coordinate perpendicular to the stripe axis.
But since the knowledge of the transition states is not essential for our analysis,
they will be omitted here.

For the disconnected curves in Fig. 3.6(a), the stability boundaries are found
as follows. If we start with the projected energy landscape at L̄ = 20 and
|wst| = 0, shown in Fig. 3.6(a), and gradually increase |wst| (by gradually tilting
the curves), the minimum in a particular branch, will initially occur at the starting
point of the branch, when the local slope at this point is horizontal, then the
position of the minimum will move to higher values of Lst towards the end point
of the branch until the local slope at the end point is horizontal and the minimum
vanishes. This means, e.g. for shape I represented by the red curve in Fig. 3.6(a),
that at |wst| ' 0.05, a minimum emerges at Lst = 0, which is shifted step by step
towards the end of the curve at L̄st ' 9.25, where, for |wst| ' 14.2, it disappears,
which is schematically shown in Fig. 3.10(b). Consequently, |wst| = |wst|unb and
|wst| ' 14.2 are the stability boundaries of shape I. If |wst| changes only weakly
beyond these boundaries, a ring that assumes shape I either unbinds (which is
caused by decreasing L̄, too), or abruptly binds to both edges and adjusts is
shape according to the only remaining minimum for |wst| > 14.2, namely, shape
II0. In a similar fashion, the stability boundary w1(L̄) (w2(L̄)) for configuration
II1 (II2) is equivalent to the situation, where the purple (green) curve in Fig. 3.6(a)
starts at L̄st ' 5.73 (L̄st = 0 for the asymmetric and L̄st ' 6.30 for the symmetric
realization of shape II2) with a horizontal slope, and this boundary can be crossed
by decreasing either of the control parameters L̄ and |wst|.

All in all, there are up to four metastable states that should give rise to a
rather complex shape hysteresis.

3.2.8 Morphology diagram

The full morphology diagram Fig. 3.11(a) shows how the equilibrium morphol-
ogy is controlled by the parameters |wst| and L̄. Morphology boundaries from
the analytical minimization procedure are denoted by stars, triangles, dots and
diamonds.

The main feature of the morphology diagram is the discontinuous transition
between morphologies I and II0, (stars). The location of this transition can be
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Figure 3.11: Morphology diagram for a ring of length L adhering to the topo-
graphical surface channel of width ast as a function of (a) L/ast and |wst| ≡
|Wst|a2

st/κ and (b) L/ast and |w̃st| ≡ |Wst|L2/κ. If the topographical structure
is replaced by a chemical domain of width ado and adhesion strength |Wdo|, the
system is characterized by (c) L/ado and |wdo| ≡ |Wdo|a2

do/κ or (d) L/ado and
|w̃do| ≡ |Wdo|L2/κ. The parameter choice in (b) and (d) is advantageous if the
structure width ast and ado is varied, while the other system parameters are kept
constant. Morphological transitions as obtained from analytical energy mini-
mization in (a) and (b) and from numerical energy minimization in (c) and (d)
are represented by stars, triangles, diamonds and dots. The approximate results
(3.45), (3.46), and (3.47) for these transitions are indicated as dot-dashed, dot-
ted and solid lines, respectively. In (a) and (b) the dashed line marks the exact
unbinding transition (3.44), whereas in (c) and (d) the dashed line signifies the
estimated transition for small rings (3.61).
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derived from the condition ĒI
tot = ĒII0

tot . As ĒI
tot in (3.30b) is valid for |wst| �

|wst|unb, we also choose in (3.37) the version of ĒII0
tot for |wst| ' 2, to deal in both

cases with expressions that apply to |wst| � 1. One obtains

L̄I−II0 ' 2π − 8

√

2

|wst|
+

4π

|wst|
, (3.45)

shown as dot-dashed line in Fig. 3.11(a). This transition line terminates at L̄ = π
and |wst| = 2, where it intersects the unbinding transition line represented by
the dots and the dashed line from the analytical minimization and the exact
result (3.44), respectively. At this point, the ring is just large enough, that the
undeformed circle fits exactly into the channel touching each edge with a single
point, and, at the same time, the transversality condition (3.27) is fulfilled, so
that the ring adheres to both edges. If |wst| is further increased, while the length
is decreased, so that L̄unb < L̄ < π, the ring will bind to one edge, but cannot
reach the other without paying a large amount of bending energy. Consequently,
shape I is stable in this region.

For rather large rings, L̄ & 27.52, also configurations II1 and II2 are found
to be stable. At the vertical boundary between configurations II0 and II2 (dia-
monds), it becomes energetically favorable for the confined shape II0 to create
bulges, i.e., ĒII0

tot = ĒII2
tot or equivalently ĒII0

tot = ĒII1
tot , which gives

|wst|II0−II2 ' 0.30, (3.46)

shown as dotted line in Fig. 3.11(a). In fact, below this boundary, |wst| <
|wst|II0−II2 , it is always preferable to form two and not only one bulge, such
that shape II1 is only stable on the boundary line and otherwise metastable. In
addition, it is remarkable, that (3.46) is independent of L̄ and that the bulges on
the boundary have a fixed size, which can be calculated by plugging (3.46) into
(3.36) and is found to be LB

∗ /ast ' 4.81. Furthermore, we can obtain the tran-
sition line between shapes II2 and I (triangles) using the condition ĒI

tot = ĒII2
tot

resulting in
L̄I−II2 ' |wst|−1/2(17.59 − 10.47|wst|) (3.47)

shown as solid line in Fig. 3.11(a). All transition lines are in good agreement
with the results calculated in Section 3.2.3.

The transition lines depend on the control parameters of the system, hence,
measurements of these transition lines can be used to determine material param-
eters, such as |Wst| or κ, experimentally. A fundamental difference compared to
other experimental methods to determine the bending rigidity is, that no exter-
nal forces, e.g. via an AFM tip, have to be applied to the polymer, but that the
substrate pattern itself exerts forces on the ring. In an experiment, the transition
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lines in the morphological diagram Fig. 3.11(a) could be crossed in horizontal
direction by changing the adhesion strength |Wst| of the substrate, e.g. for DNA
rings adsorbed to mica this could be achieved by changing the charge density on
the surface. Likewise, one could vary the bending rigidity κ by performing the
experiment with different polymers, which is probably the least feasible option.
The equilibrium energies for this type of experiment are described by Fig. 3.9(a).
On the other hand, one could use rings of different length on the same substrate
and thereby observe ring morphologies along a vertical line in Fig. 3.11(a). The
last and maybe simplest idea would be to fabricate a substrate with several chan-
nels of different width ast. In this case, one would change the ratio of the involved
length scales L̄ and the reduced adhesion strength |wst| at the same time, and
therefore, it is much more convenient to characterize the ring/channel-system by
L̄ and the control parameter |w̃st| ≡ |Wst|L2/κ, which we introduced in (3.7). For
the sake of completeness, the morphological diagram in terms of L̄ and |w̃st| is
depicted in Fig. 3.11(b). The symbols and lines are the same results as shown in
Fig. 3.11(a), but rephrased according to (3.7). The ring morphologies recorded
for different channel widths ast would now lie on a vertical line in Fig. 3.11(b).

3.2.9 Thermal fluctuations

Finally, we turn to the influence of thermal fluctuations. Thermal fluctuations
allow the polymer ring to overcome energy barriers ∆E < T (kB ≡ 1), which is
equivalent to ∆Ē < 2ast/Lp for a semiflexible polymer with a persistence length
Lp = 2κ/T . In our system, the highest energy barriers4 ∆Ē arise between shape
II2 and the transition state II∗2 for small values of |wst|, which can be read off from
Fig. 3.9(b), and are of the order ∆Ē ' 1. Therefore, the influence of thermal
fluctuations crucially depends on the ratio Lp/ast, namely

∆E � T for Lp/ast � 1,

∆E � T for Lp/ast � 1.
(3.48)

Our results apply for persistence lengths much larger than the stripe width,
Lp/ast � 1, where energy barriers are relevant. Then all four ring shapes are
observable, and their morphological transitions exhibit a pronounced hysteretic
behavior. For flexible polymers with Lp/ast � 1, on the other hand, thermal fluc-
tuations allow the polymer to change orientation within the channel such that
the four morphologies can no longer be clearly distinguished.

Another effect that has to be considered is connected to the loss of configu-
rational entropy for the adhered segments. If the adhered length is smaller or

4The energy barriers from the transition states that could not be identified due to the
mapping of the energy landscape are not included in this analysis.
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Figure 3.12: Schematic image of a substrate surface containing a chemically
modified striped domain of width ado and the corresponding adsorption potential
Vdo(x). Polymer segments adsorbed to the striped domain gain the additional
adsorption energy Wdo < 0 per length, so that Vdo(x) is a broad square well with
boundaries at x = ±ado/2.

comparable to the persistence length, we can basically use the results obtained
in [104, 105]. In this case, the adsoption strength |Wst| is replaced by the free
adsorption energy per segment fst, which is roughly given by

|fst| ' |Wst −Wc,st|. (3.49)

Here Wc,st is the critical potential, which depends on the range of the width of
the potential well l, the temperature and the persistence length. Consequently, in
the morphological diagram all transition lines are essentially shifted by a constant
Wc,st towards smaller adsorption strengths. Thereby, the part of the morpholog-
ical diagram for which |Wc,st| > |Wst| becomes irrelevant.

3.3 Chemically striped surface domain

3.3.1 Substrate model

In this section, the surface channel is replaced by a chemically structured striped
domain of width ado, see Fig. 3.12. Again the overall adsorption is assumed to be
so large, that the polymer is tightly bound to the substrate, without restraining
its lateral motion. The energy contribution from the overall adsorption will be
omitted, as we are only interested in the additional adhesion energy Wdo < 0 per
length, which a polymer segment gains on the striped domain. As illustrated in
Fig. 3.12, such a substrate structure can be modelled by a generic square well
adsorption potential of the form

Vdo(x) =

{

Wdo for |x| ≤ ado/2,

0 for |x| > ado/2,
(3.50)
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3. Semiflexible polymer rings on structured substrates

and the Hamiltonian for this system is obtained by exchanging Vst(x) by Vdo(x)
in (3.3)

H{θ(s)} = Hwlc{θ(s)} +

∫ L

0

dsVdo(x). (3.51)

For a particular conformation, we denote the length of segments adhered to the
domain by Ldo and the adhesion energy is then given by Ead = −|Wdo|Ldo.

3.3.2 Analytical energy minimization

In order to find the ring morphologies that extremize (3.51) we can in principle
follow the same minimization procedure as described in Section 3.2.2. A small
but crucial difference compared to the channel is, that the adhesive domain now
also comprises the region between the boundaries x = ±ado/2, which implies,
that the segments adhered to the domain no longer need to be straight and
therefore contribute to the bending energy of the conformation. Remarkably, the
ring shapes minimizing the bending energy are almost identical to the shapes of
minimal energy for a topographical surface channel of the same width ast = ado,
see Fig. 3.13. It is therefore adequate to use the same nomenclature for both
types of surface structures.

As an example of a nontrivial ring morphology, we derive the resulting system
of equations for a conformation similar to shape I, see Fig. 3.13(a) and (b). The
boundary conditions are θ(0) = 0 and θ(L/2) = π in this case, and the constraint
(3.11) guaranteeing ring closure is replaced by

∫ L/2

0

ds cos θ = 0. (3.52)

In addition, we need to impose a constraint on the adhered segments

∫ Ldo/2

0

ds sin θ − ado = 0 (3.53)

to assure that they stay on the adhesive striped domain. Then, the corresponding
Hamiltonian reads

H =

∫ Ldo/2

0

ds

{

1

2
κ θ̇2

< + µ cos θ< + ρ sin θ<

}

+

∫ L/2

Ldo/2

ds

{

1

2
κ θ̇2

< + µ cos θ>

}

− |Wdo|
Ldo

2
− ρado,

(3.54)

which now contains two Lagrange multipliers µ and ρ. Further, we have intro-
duced the tangent angles with subscripts to distinguish, whether they belong to
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3.3. Chemically striped surface domain

the adhered segment (<) or not (>). They have to obey θ<(Ldo/2) = θ>(Ldo/2)
at the stripe boundary to avoid a diverging curvature at this point. Again, we
examine the response of the Hamiltonian to a small variation in θ and Ldo

5, with
δθ<(Ldo/2) = δθ>(Ldo/2), leading to

δH =

∫ Ldo/2

0

ds δθ<

{

− κ θ̈< − µ sin θ< + ρ cos θ<

}

+

∫ L/2

Ldo/2

ds δθ>

{

− κ θ̈> − µ sin θ>

}

+ δθ<(Ldo/2) κ

{

θ̇<(Ldo/2) − θ̇>(Ldo/2)

}

+
1

2
δLdo

{

1

2
κ θ̇2

<(Ldo/2) + ρ sin θ<(Ldo/2) − 1

2
κ θ̇2

>(Ldo/2) − |Wdo|
}

.

(3.55)

In this case, δLdo and δθ<(Ldo/2) are independent, since there is no specific
boundary condition at s = Ldo/2. As a consequence, the curvature is continuous
where the ring crosses the domain boundary, and the first and the third term
in the last line of (3.55) cancel, leaving a condition on the tangent angle at the
crossing point. It is interesting to see, that in the limit of small stripe widths the
problem becomes equivalent to a ring adhering to a topographical channel.

All in all, demanding that δH should vanish for all possible variations of
θ≷, θ<(Ldo/2) and Ldo together with the constraints for the Lagrange multipli-
ers, (3.52) and (3.53), results in a system of six coupled equations. A further
complication occurring for the shapes II1 and II2 is, that a decomposition into
almost independent curved segments is no longer possible, see Fig. 3.13(a). As a
consequence, we mainly restrict our analysis to a numerical treatment using the
SURFACE EVOLVER, which is described in the next paragraph and gives very
accurate results, as we have checked for the case of the topographical channel.

The only ring morphology, which is, in comparison to the topographical chan-
nel, actually easier to calculate, is the shape II0, cf. Fig. 3.13: For the chemical
domain shape II0 comprises a unique ring conformation, where the ring is entirely
confined to the striped domain. Hence, for this shape the adhesion energy is con-
stant, namely −|Wdo|L, and the only contribution to the bending energy arises
from the curved segments, whose length is free to adjust. The computation of
the minimal bending energy for Ldo = L is carried out in the same way as for the
topographical channel structure, and we can use the equations (3.20) and (3.21)

5For the calculation of the projected energy landscape Etot(Ldo), the variation with respect
to Ldo is not needed, rather, Ldo is kept fixed and hence δLdo = 0. Nevertheless we perform
the variation here to demonstrate, that the transversality condition is different in this case.
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3. Semiflexible polymer rings on structured substrates

for the curved segment depicted in Fig. 3.5(c), where θinf = π, ast is replaced by
ado and L∗ is yet to be determined. The transversality condition arising from the
variation of the length of the curved part is independent of the adhesion energy
and enforces θ̇ = 0 at the contact points of the ring and the domain boundaries.
This new boundary condition, applied to (3.20), yields c = 0, so that the approx-
imate results for the length of the curved segment and the bending energy found
for |wst| � 1, see (3.35), become exact for a ring confined to a striped domain.
Therefore we can write

(EII0
tot )do

Edo
= 5.74 − |wdo|

L

ado
(3.56)

with the typical energy scale Edo and the reduced adhesion strength for the
chemical domain

Edo ≡
κ

ado

and |wdo| ≡
|Wdo|a2

do

κ
or |w̃do| ≡

|Wdo|L2

κ
. (3.57)

3.3.3 Numerical energy minimization

The numerical analysis using the SURFACE EVOLVER proceeds analogously to
the computation described in Section 3.2.4, replacing the surface structure, which
is achieved in the following way: Adhered segments start and end on the domain
boundaries so that the x component of the vertices, which separate adhered and
non-adhered parts, is fixed to x = ±ado/2. Moreover, the vertices and edges
belonging to an adhered segment are constrained to stay on the striped domain
by demanding |x| < ado/2.

The energy extrema for a given value of |wdo| as well as the morphology
boundaries are found in the same way as described in Section 3.2.2. The results
for all three steps in the minimization procedure are illustrated exemplarily for
L/ado = 20 in Figs. 3.6(b), 3.9(c) and (d) and 3.11(c) and (d), respectively.

Also in this case, one can directly include a smooth, flattened version of the
potential well, see Section 3.2.4, which leads qualitatively to the same results,
but also produces artifacts as a consequence of the finite slopes at the boundaries
of the domain.

3.3.4 Projected energy landscape

In Fig. 3.6(b), the numerical results for the minimized bending energy Eb of the
shapes I , II2, II1 and II0 normalized by Edo for L/ado = 20, are plotted as a
function of the adhered length Ldo, which is measured in units of the stripe width
ado. A comparison of the two graphs, Figs. 3.6(a) and (b), demonstrates, that not
only the morphologies a ring assumes, when adhering to a topographical channel
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3.3. Chemically striped surface domain

(a)

2II II1 II0I

(b)

Figure 3.13: (a) Top views of all four stable morphologies of a ring adhered to a
substrate with a chemically modified stripe as obtained by energy minimization
for contour lengths L/ado = 20. In comparison, the corresponding ring mor-
phologies for the topographical stripe are shown in (b). In principle, there exists
a realization of shape II2, which is symmetric with respect to the horizontal axis,
for the chemical stripe, too, see Fig. 3.4. Also in this case, the two realizations
are (almost) equivalent, which is why we omit the symmetric version here.

or a chemical stripe (of the same width) are very much alike, cf. Fig. 3.13(a)
and (b), but that the similarities sustain for the resulting energies, despite minor
differences.

One immediately observes, that the bending energy curves computed for the
chemical stripe appear to be shifted by a constant value compared to those for the
topographical channel. The shift, which we denote by ∆L̄ = Ldo/ado − Lst/ast,
can be attributed to the fact, that, in contrast to the channel, the stripe domain is
also adhesive between its boundaries for |x| < ado/2. Consequently, for the same
ring shape adhered to either surface structure, Ldo is always larger than Lst. For
instance, a circular ring can adhere to the chemical domain with adhered length

(Ldo)circle = 2R arccos
(

1 − ado

R

)

(3.58)

with R = L/2π being the radius of the ring, whereas for the same ring adhered
to a topographical stripe Lst is zero. For the circular ring morphology, the shift
is thus maximal, namely ∆L̄ ' 5.19, whereas it amounts to ∆L̄ ' 4.38 for the
morphology II2, compare (3.37) with (3.56).
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3. Semiflexible polymer rings on structured substrates

The last example already alludes to the rather different behavior as the ad-
hered length becomes comparable to the contour length L. While the ring can
adhere with its full length to the chemical stripe reaching a plateau in the bend-
ing energy, the maximal length adhered to the edges of the topographical stripe
is L− 2ast, where the ring is deformed into a rectangle of side length ast, which
gives rise to a diverging bending energy for Lst/ast reaching L/ast−2 from below.

The projected energy landscape for a system characterized by the control
parameters L/ado and |wdo| is obtained again by including the adhesion energy
as

Etot(Ldo/ado)

Edo

=
Eb(Ldo/ado)

Edo

− |wdo|
Ldo

ado

. (3.59)

3.3.5 Energy minima and stability

Fig. 3.9(c) shows, how the energies of the local extrema of the projected energy
landscape in Fig. 3.6(b) for the system with the chemically striped substrate
evolve as a function of the control parameter |wst| for L/ado = 20. As a conse-
quence of the observation, that one can almost reproduce Fig. 3.6(b) by shifting
the curves in Fig. 3.6(a) by a constant value ∆L̄, the energy estimates obtained
in Section 3.2.6 should also present a rough approximation of the system with a
chemical domain, if supplemented by a term −|wdo|∆L and if we substitute ast

by ado and |wst| by |wdo|, respectively. This assumption is supported by the great
resemblance of Figs. 3.9(a) and (c), and (b) and (d), respectively, apart from one
exception: There is no unbinding transition for the chemical stripe.

This fact can be traced back to the following observation: For the topo-
graphical channel, the unbinding transition is a consequence of the transversality
condition, which leads to a minimal value for |wst| above which a ring can gain
energy by binding with a straight segment of length Lst > 0 to the edge of a
step. As a consequence, the bending energy of shape I in Fig. 3.6(a) starts with
small, but nonvanishing slope at Lst = 0. On the contrary, a ring can bind to the
chemical domain without creating straight segments, and in particular, without
deforming the circular conformation preferred by the bending energy, which is
also reflected in the weaker form of the transversality condition for the chemical
stripe (compare the results in (3.55) with those in (3.25)). This, in turn, pro-
duces a continuous rise of the slope of the bending energy of shape I starting at
Lst ' 5.19 in Fig. 3.6(b). Consequently, the stability boundary of shape I is
shifted compared to the channel to |wst| = 0.

It is hard to analyze the stability of conformation I using the SURFACE
EVOLVER, as soon as conformation II1 becomes energetically favorable and vice
versa. In this range of Ldo, only a rather small deformation of the ring contour is
sufficient to induce a transition between the two shapes, which can only partially
be prevented by increasing the refinement of the discretization and by decreasing
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3.3. Chemically striped surface domain

the step size dLdo between subsequent conformations. This problem did not occur
in the corresponding numerical analysis of shape I for the channel, because the
second adhesive line was not included, so that the instability in the presence of
the second edge could not be studied at all. Although explicit evidence is missing,
one should expect that, unlike its counterpart for the topographical channel, the
conformation I adhered to the chemical domain ceases to exist before ∆x = ado,
see Fig. 3.5(a), which would correspond to Ldo = L. Apart from that, the
stability boundaries for the chemical stripe and for the topographical channel
should be approximately the same.

3.3.6 Morphology diagram

Also the morphology diagram in the plane spanned by the reduced potential
strength |wdo| and L/ado, as shown in Fig. 3.11(c) and (d), looks very similar
to the morphology diagram for a topographical surface channel. In the previous
section, we argued that the energy estimates for the equilibrium morphologies
of the ring/channel-system derived in Section 3.2.6 should roughly apply to the
system with the chemical domain, if a correction −|wdo|∆L̄ is included that ac-
counts for the additional adhered length of the ring segments that are located
in between the boundaries of the chemical domain. Further we found, that ∆L̄
is approximately constant, which implies that this additional term is irrelevant
when considering morphological transitions.

In fact, our results (3.45) for the transition between shapes I and II0 (dot-
dashed line), (3.46) for the appearance of bulged states (dotted line), and (3.47)
for the transition between shapes I and II2 (solid line) agree well with the nu-
merical results (indicated by various black symbols). As already mentioned, the
unbinding transition of shape I is absent for the chemical stripe domain.

Furthermore, the two morphology diagrams differ in the behavior of small
rings. Rings with L/ado = π can fully bind to the chemical stripe without de-
formation and shapes I and II0 become equivalent. The re-entrance of shape II0
close to L/ado = π can be estimated by the following simple argument. For small
rings, shape I can be approximated by a circle, so that its energy can be written
as

(EI
tot)do

Edo
' 2π2ado

L
− |wdo|

(Ldo)circle

ado
. (3.60)

Equating this energy with (EII0
tot )do/Edo given in (3.56) yields

|wdo|I−II0 ' π

(

2π2 − 5.74
L

ado

) (

L

ado

)−2

arccos

(

2π

L̄
− 1

)−1

(3.61)

shown as dashed line in Fig. 3.11(c).
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3. Semiflexible polymer rings on structured substrates

Also in this case, we can reparametrize the ring/domain-system by exchang-
ing |wdo| with |w̃do|, which is particularly convenient for applications where the
polymer rings of a fixed size L adhere to a substrate with various domains of
different widths ado. The resulting morphology diagram is shown in Fig. 3.11(d).

3.4 Periodic surface stripes

An important generalization of our system, which can serve as a model for the
atomic lattice structure of substrates, is the replacement of a single stripe or
channel by a periodic chemical or topographical stripe pattern. However, we
restrict our analysis to surfaces with equidistant step patterns, thereby the surface
steps do not necessarily have to form channels, but could likewise be arranged
e.g. as stairs.

Such surface structures drastically increase the number of metastable polymer
shapes, so that, before presenting some general statements on the shapes arising
on periodic patterns, let us start by adding just a single step to the structure
shown in Fig. 3.3. We assume that the additional step is parallel to the other two
steps and that the distance between neighboring steps is ast, so that effectively,
we only have to extend the adhesion potential (on top of the overall adhesion
of the substrate), cf. Fig. 3.3, by a third thin potential well at x = 3ast/2 or
x = −3ast/2. The resulting ring morphologies can be classified into conformations
that adhere to one (I), two (II) and three (III) edges plus the unbound circular
shape. Clearly, the shapes I are the same as for the single stripe, as the remaining
steps (up to small corrections) do not contribute to the energy and also the
unbinding transition applies without modifications to the three-step-system.

Moreover, if the ring binds to two edges, it should attain shapes that corre-
spond to the morphologies II0 and II2 we found before6, but now the ring can
adhere either to two neighboring steps (at a distance ast) or to the two outer
steps (at a distance 2ast). Formally, we will distinguish these two cases via a
superscript that indicates the distance between the relevant edges in units of ast,
for instance II10, II20 etc. The surface structure effectively contains two different
‘stripe widths’, namely, ast and 2ast, which implies that the parametrization using
|w̃st| instead of |wst| is more convenient. By analyzing the corresponding energy
estimates Etot(|w̃st|) one finds, that shape II20 is always energetically favorable
compared to shape II12. Furthermore, II22 becomes only stable for very large rings,
i.e. L/(2ast) & 27, so that to a good approximation shapes with bulges can be
neglected altogether.

6As in this section we are only interested in the stable morphologies of the system, we can
safely neglect II1, because even for two steps it is merely stable on the morphology boundary
between conformations II2 and II0, see (3.46).
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Figure 3.14: Morphology diagrams of a ring adhered to a substrate with (a) three
and (b) n surface equidistant steps at a distance ast as a function of L/ast and
|w̃st|. In comparison to the morphology diagram in Fig. 3.11, there are additional
shapes IIn0 , with n ≥ 2, that are stable in the regions colored in different nuances
of blue. The dashed line marks the unbinding transition at |w̃st| = 2π2 and the
solid and dotted lines indicate the morphology transitions estimated in (3.68)
and (3.69), respectively.

The number of shapes can be further reduced by noticing that it should be
always favorable to distribute the adhered length only among two instead of three
edges, simply because the cost of bending energy is too high. As a consequence,
conformations III are also ignored in our analysis.

To summarize, we end up with the unbound circular shape and the conforma-
tions I, II10 and II20 as possible stable morphologies of the three-step-system. For
rather small rings with L/ast ≤ 2π, shape II20 is inaccessible, so that the analysis
in Section 3.2 and, in particular, the morphology diagram shown in Fig. 3.11(b)
applies. Hence, in order to see an effect of the third step edge, the ring has to be
larger than

L/ast = 2π. (3.62)

This relation therefore appears as horizontal morphology boundary in the mor-
phological diagram. The dominating morphologies for large and small |w̃st| > 2π2

remain the shapes II10 and I, respectively, but, in addition, there is an intermedi-
ate regime, where shape II20 becomes stable, see Fig. 3.14(a). The corresponding
morphology boundaries are roughly given by

|w̃st|I−II2
0
' πL̄ (3.63)
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and
|w̃st|II1

0
−II2

0
' L̄2, (3.64)

where, for simplicity, we approximated shape I by a circle

EI
tot

Ẽst

' 2π2 with Ẽst ≡
κ

L
, (3.65)

which is justified for values of |w̃st| close to the unbinding transition at |w̃st| = 2π2,
and likewise used the estimate for shape II0 in (3.37) with the curved segments
being described as semicircles of diameter ast and 2ast, i.e.

E
IIn

0

tot

Ẽst

' n

L̄

{

2π
L̄2

n2
− |w̃st|

[

L̄

n
− π

]}

with n = 1, 2. (3.66)

The generalization to n equidistant steps is now straightforward. Again only
the unbound circle and those shapes that bind to one (I) and two step edges (IIn0)
need to be considered. In accordance with the above convention, IIn0 refers to the
shape a ring attains if bound to two edges, which are nast apart. For a ring of
contour length L, only states with L̄ ≥ πn are accessible, which is reflected in
horizontal morphology boundaries

L̄ = πn (3.67)

in the morphological diagram. The transition between shape I and the confor-
mation IIn0 with the largest n = nmax is found to be

|w̃st|I−IInmax
0

' 2π
L̄

nmax
(3.68)

and the criterion Ē
IIn

0

tot = Ē
IIn−1

0

tot gives a cascade of nmax − 1 further morphological
transitions from shape IIn0 into shape IIn−1

0 taking place at

|w̃st|IIn
0
−IIn−1

0

' 2π
L̄2

n(n− 1)
(2 ≤ n ≤ nmax). (3.69)

The resulting morphology diagram is shown in Fig. 3.14(b).

3.5 Ring condensation

Finally, let us briefly comment on the application of our model to the widely
studied field representing the condensation of semiflexible polymers, such as DNA
and F-actin. In poor solvent or in the presence of condensing agents (charged)
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3.5. Ring condensation

Figure 3.15: Metastable racquet shape of a condensed ring with total energy
(3.73). If the racquet-shaped segments become small, these conformations re-
semble rods, which is why in some cases they are referred to as rodlike shapes.
The segments, that adhere to each other, are colored in blue.

semiflexible polymers can exhibit an effective interpolymer attraction, which can
roughly be modelled by a condensation energy gain Wcon < 0 per contact length.
The effective potential describing the attraction between polymer segments, that
are located at r(s1) and r(s2), with 0 ≤ s1 < s2 ≤ L, now takes the form

Vcon(|r(s1) − r(s2)|) =

{

Wcon for |r(s1) − r(s2)| < l,

0 otherwise,
(3.70)

where |r(s1) − r(s2)| is the distance between the respective polymer segments.
The range l is again of the order of the polymer diameter D. In comparison to
the ring adsorbed to the striped structures, the length scale of the stripe width
is absent, and the morphologies in the presence of a condensing potential are
characterized by only one parameter, namely,

|w̃con| =
|Wcon|L2

κ
(3.71)

(if Lp is large such that thermal unbinding can be neglected [104]).
As for open polymers [14, 37], one expects the polymer ring to form a toroid,

but with radius L/2πn, where n is the winding number, i.e. n = 1 is the trivial
circular shape and n = 2 is the first condensed toroidal state with a total energy

(Etot)toroid

Ẽcon

= 8π2 − |w̃con|
2

with Ẽcon =
κ

L
. (3.72)

In addition, there is a class of metastable shapes with racquets, which were treated
in detail in [95, 96]. Again, we consider only the shape with the least packing,
see Fig. 3.15, whose energy can be calculated exactly in a very similar way as
the conformations II. Its total energy reads

(Etot)rod

Ẽcon

' 18.18

√

|w̃con|
2

− |w̃con|
2

for |w̃con| & 73.45, (3.73)
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where the lower bound for |w̃con| is again a result of the requirement that the
adhered length has to be positive. Comparing the energies (3.72) and (3.73), one
observes that the toroidal shape is always energetically favorable. The transition
from a ring to this first condensed toroidal state occurs at

|w̃con| = 12π2. (3.74)

For toroids with n > 2 the packing structure, which is commonly assumed to be
hexagonal [14, 37, 95, 96], has to be taken into account, which goes beyond the
scope of this thesis.

3.6 Conclusion and Outlook

As an example of how controlled adsorption of semiflexible polymers can be
achieved by a structured substrate, we presented a complete classification of the
morphologies of an adsorbed semiflexible polymer ring on a substrate containing
an adhesive topographically or chemically striped domain. Both types of struc-
tures lead to a very similar behavior with a discontinuous morphological transition
between the two dominant shapes I and II0 and with intermediate bulged shapes
II1 and II2 for large contour lengths. Estimates for all transition lines were de-
rived, which could serve to determine material properties of the substrate or the
polymer ring experimentally. The discontinuous transitions display shape hys-
teresis and are observable for persistence lengths exceeding the stripe width. For
a periodic array of topographic steps we find a cascade of morphological shape
transitions. Furthermore, the application of our model to the condensation of
semiflexible polymer rings is briefly discussed.

The adhesion contrasts created by the surface structures considered in this
chapter are equivalent to localized forces at the stripe boundaries, which pull the
polymer into the region of higher adsorption strength. Therefore, the morpholog-
ical transitions can also be interpreted as packaging transitions for semiflexible
rings, e.g. into viral capsids [106]. An interesting two-dimensional system related
to this problem is the adsorption of a semiflexible polymer ring on a substrate
containing a chemically modified circular domain. Using similar techniques as in
this chapter, one can study for instance under which conditions the ring fully ad-
heres to the domain. Similar packaging effects have been examined for cylindrical
sheets leading to spiral configurations [107].
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Chapter 4

Conformations of zipped filaments

We study the zipping of two filaments with an attractive interaction and pinned
filament ends based on experiments using microscopic pillar arrays. For the
cases of weak and strong attraction between filaments, we analyze the influence
of the filaments’ stiffness and thermal fluctuations on the zipped equilibrium
shape. Thereby we propose a scheme, by which the magnitude of the at-
traction between the filaments can be deduced from experimentally observed
conformations. Our results should be applicable to actin filaments bundles
induced by various crosslinker proteins and multivalent cations, but also to
bundles formed by other types of semiflexible polymers.

4.1 Introduction

Eukaryotic cells contain a thin shell of crosslinked actin filaments only a few
hundred nanometers thick just beneath the cell membrane. This so-called actin
cortex is attached via pointwise anchors to the plasma membrane and accounts
for the shape and the mechanical properties of a cell. Its internal structure is not
uniform, but exhibits essentially two types of assemblies: There are networks of
randomly linked filaments and bundles composed of aligned filaments, which are
crosslinked by actin binding proteins, such as filamin, α-actinin or myosin, or by
multivalent cations [3]. Actin bundles play a prominent role in filopodia, stress
fibers and muscles and have been extensively studied experimentally focussing
on various aspects, see e.g. Refs. [108, 109, 110, 111, 43, 44]. Besides in vivo
studies, one way to explore the structural properties of the actin networks and
bundles, quantitatively, is to construct in vitro model systems, which can be
exposed to controlled mechanical or biochemical stimuli [112, 113, 114, 115, 116].
Following this strategy, it has been achieved to self-assemble a freely suspended
actin network on arrays of microscopic pillars [116, 54], which mimic the focal
contacts between the actin cortex and the membrane. In comparison to earlier
experiments, e.g. Refs. [112, 113, 114, 115], the architecture of the resulting
network is transparent and quasi two-dimensional reflecting the small thickness
of the actin cortex, cf. Fig. 4.1.
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(a) (b)

Figure 4.1: Fluorescence images of (a) a part of the actin cortex of a fibroblast
and (b) an actin network suspended on a pillar array. Both images are taken
from Ref. [116].

In this chapter, we study the bundling of single filaments, based on experi-
ments described in Ref. [116] and ongoing experiments in the group of J. P. Spatz,
see Fig. 4.1(b) and Fig. 4.2. In these experiments, the filaments are locally pinned
to the heads of micron-sized pillars, which are several micrometers apart, imitat-
ing the confining boundary conditions of filaments within real networks. By
addition of crosslinkers, the process of bundle formation can be initiated and di-
rectly be observed. After the first crosslink between two filaments is established,
thermal shape fluctuations decay in the vicinity of the binding site, which en-
hances further nearby crosslinking. The length of the bundle grows bit by bit,
and the filaments are zipped up [117].

In the limit of large binding energy and in the absence of thermal fluctuations,
the zipping process only terminates, if the available contour length, which is con-
strained by the attachment to the pillar heads, is used up. In this state the zipped
filaments assume a fork- or ‘Y’-like shape with straight branches and sharp bends
at the zipping point. For a real filament, however, even in the regime of strong
attraction the conformational entropy will act against complete zipping resulting
in small fluctuations around the ‘Y’-like shape. On the other hand, for weak
attraction one expects a rounded configuration governed by the bending rigidity.
Consequently, the equilibrium conformation depends on the bending rigidities
of the isolated and the bundled filaments, the crosslinker mediated attraction
between the filaments, the temperature, and geometric constraints imposed by
the experimental setup. By examining the equilibrated, partially zipped shape,
it should be possible to extract the magnitude of the interfilament attraction
which is an important characteristic of filament bundles. We present a theoret-
ical description of the configurations arising in the regimes of weak and strong
attraction, and develop methods to analyze experimental data on configurations
of zipped filaments, which we expect to become available in the future.

72



4.2. Experiments

(a) (b) (c)

Figure 4.2: (a) Schematic setup of the experiments considered here [116]. The de-
activated myosin, the actin filaments and the crosslinkers are shown in green, red
and blue, respectively. (b) and (c) Micrographs of partially zipped configurations.
[Figures (b) and (c) courtesy of Simon Schulz, University of Heidelberg]

The term ‘zipping’ occurs also in other biological contexts. In cells proteins
unzip the double-stranded DNA, which has been studied experimentally e.g. in
Refs. [118, 119, 120, 121]. The crucial difference, compared to actin filaments,
is that the separated DNA strands are rather flexible, whereas actin filaments
as well as actin bundles are semiflexible. On the other hand, a closely related
effect is observed for stiff HbS fibers [122, 123], which has been used in [123] to
estimate the involved attraction via a similar method as is presented here.

This chapter is organized as follows. Firstly, we will explain the experimen-
tal setup in more detail to elucidate the assumptions made in our calculations.
After that, we discuss theoretically how the magnitude of the interfilament at-
traction can be extracted from the equilibrium conformation. In particular, the
two cases of strong and weak attraction and the influence of thermal fluctuations
are discussed. We end with a conclusion and an outlook on future work.

4.2 Experiments

The main motivation for the analysis presented in this chapter are experiments
that were and are at present performed mainly by W. Roos and S. Schulz in
the group of J. P. Spatz at the University of Heidelberg and the MPI for metals
research in Stuttgart. The key issue of these experiments is the application of so-
called microscopic pillar arrays [54], to which the actin filaments are pinned, lead-
ing to a network with a transparent architecture and well-defined, fixed boundary
conditions.

The pillars are made of various materials, such as silicon, PDMS or epoxy,
which differ in their optical and elastic properties, to act as templates for cell and
filament adhesion, but also as force sensors. However, the forces detectable by the
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4. Conformations of zipped filaments

pillars are well above the piconewton force range, which one expects to be relevant
in zipping experiments, so that the deformation of pillars can be neglected. The
pillars are typically a few micrometers in diameter, about 15µm high and can be
arranged on the underlying substrate according to the experimental needs, where
lattice spacings are usually less than 10µm.

In order to attach filaments irreversibly to the pillars, the pillar heads are
coated with NEMHMM, a fragment of the motor protein myosin, which contains
only the head and the neck and where the ATPase-function has been deacti-
vated. In addition to this coating, the pillar heads and the supporting substrate
are chemically treated to prevent unspecific binding of actin to the pillar ar-
ray. The already polymerized actin filaments are either flown into the chamber
containing the pillar array, where they bind to the pillar heads at random, or
they are directly polymerized with one end attached to a pillar head. To visual-
ize their contour the filaments are labeled with the fluorescent dye TRITC that
also inhibits depolymerization. In a final step, the addition of crosslinkers, such
as proteins like filamin or myosin II or simply multivalent cations, initiates the
spontaneous formation of a quasi two-dimensional network, see Fig. 4.1(b) and
Fig. 4.2. As can be seen in Fig. 4.1(b) and Fig. 4.2(c), the bundles exhibit a
preferred direction due to the flow, by which the crosslinkers are injected. The
images are taken via fluorescent (or confocal) microscopy.

For the following analysis, we are interested in the equilibrated bundle con-
figurations within the established network. In particular, we are looking for
configurations, where the bundle formation is restricted by the attachment of
the filaments to the pillar heads, which provide definite boundary conditions
for calculations. These partially zipped conformations result from the competi-
tion between the bending energy and the crosslinker-induced attraction between
filaments, and, thus, encode information about the material properties. The pro-
cedure, how this information can be extracted, is the subject of the remaining
sections of the present chapter.

4.3 Model

We consider an array of pillars, the fixed positions of which are denoted by Pi,
i ∈ N. The configurations we are particularly interested in are those, where two
filaments are attached with one end to the same pillar head, say P3, see Fig. 4.3.
The two inextensible filaments are characterized by their bending rigidities κ1

and κ2 and the contour lengths between the attachment points, L1 and L2. As
the anchorage of the filaments via the myosin fragment is irreversible, L1 and
L2 are fixed. We can further assume, that the tangent orientations at the pillars
are likewise predefined by this anchoring. Moreover, also the zipping of bundles

74



4.3. Model

P3

P2

P1

Z
1

2

3

Figure 4.3: Schematic image of a configuration of two zipped filaments (shown in
red and green), whose ends are attached to the pillar heads P1, P2 and P3. The
configuration consists of three branches (1, 2 and 3), which meet at the zipping
point Z.

composed of a few filaments can occur. If we suppose that the bundles are stable
and therefore well-defined during a zipping event, one can treat these bundles, in
a first approximation, as single filaments with effectively larger bending rigidities.

The contour lengths L1 and L2 and the distances between the pillar heads P1P3

and P2P3 should be of the same order or smaller than the persistence length,
so that interactions with the substrate can be neglected. This assumption is
supported by the observation stated in Ref. [124], that the persistence length of
the actin filaments might present an upper limit for the lattice spacing of pillar
arrays, on which the formation of networks can take place.

By addition of crosslinker proteins or multivalent cations one can induce the
partial zipping of the two filaments over a length Lzip, which gives rise to an adhe-
sive energy gainWzip < 0 per zipped length. We describe the crosslinker mediated
attraction Vzip between the segments of two filaments, which are parametrized
by position vectors r1(s1) and r2(s2), respectively, in the same manner as the
effective potential used for the condensation in (3.70), namely by

Vzip(|r1(s1) − r2(s2)|) =

{

Wzip for |r1(s1) − r2(s2)| < l,

0 otherwise.
(4.1)

The range l of the attractive potential depends on the molecular architecture of
crosslinker proteins or the screening length lDH for multivalent cations, respec-
tively, cf. Chapter 1 for details. Filament segments, that are linked to each other
by more than one crosslinker protein, are oriented parallel to each other.

In practice, the potential range l is very small compared to the other length
scales involved, so that the zipped segment can be treated effectively as a single
filament branch. The bending rigidity of the zipped segment κ3 results from the
bending rigidities of the separated filaments κ1 and κ2 either via

κ3 = κ1 + κ2, (4.2)
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4. Conformations of zipped filaments

if the bound filaments are able to slide past each other, or via

κ3 = (κ
1/2
1 + κ

1/2
2 )2, (4.3)

if the zipped segment is modeled by a homogeneous cylinder, whose cross section
area is equal to the sum of the single filaments cross section areas [125].

All in all, the configurations under consideration consist of three filament
branches characterized by the parameters {κ1, L1 − Lzip} , {κ2, L2 − Lzip} and
{κ3, Lzip}, which meet at the zipping point Z. For simplicity, we will refer to
theses branches in the following as branch 1, 2 and 3, respectively, see Fig. 4.3.
As the pillars have all the same height, the equilibrium conformation of the sys-
tem is essentially planar and lies in the plane defined by the three pillar heads.
However, the thermal shape fluctuations are not confined to this plane. Further-
more, the resulting configuration of the system strongly depends on the relative
magnitude of three length scales, namely, the involved contour lengths Li, the per-
sistence lengths Li,p and the typical contact curvature radii at the zipping point
Ri,co ∼

√

κi/|Wzip|, (i = 1, 2), which already appeared in the preceding chapter.
As already stated above, the experimental setup is such that the contour lengths
Li are always smaller than the persistence lengths Li,p. In addition, if the persis-
tence lengths Li,p are comparable to the contact radii Ri,co, i.e. |Wzip|Li,p ∼ T ,
zipped configurations should become rather unstable. We therefore demand that
Li,p > Ri,co. Finally, only two generic cases remain: If Ri,co is small compared to
Li, the zipping induces sharp bends, whereas if Ri,co is large compared to Li, the
conformations are rounded. We refer to these two regimes as strong and weak
attraction, respectively. For both regimes, we first discuss the case of zero tem-
perature or, equivalently, infinitely large persistence length Li,p and then include
the influence of thermal fluctuations.

4.4 Strong attraction

4.4.1 Conformations at T = 0

If the attraction between the two filaments is so strong that it dominates over
stiffness effects, i.e. if the contact radii are small compared to the contour lengths,

Ri,co ∼
√

κi/|Wzip| � Li i = 1, 2, (4.4)

we can neglect the bending energy of the filaments. This is the easiest, but
also roughest approximation that can be made. Under these conditions, the
Hamiltonian of the system contains only the energy contribution due to attraction
and is simply given by

H ' −|Wzip|Lzip. (4.5)
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Figure 4.4: (a) Schematic image of a symmetric configuration of two partially
zipped filaments, which are attached to the pillar heads P1, P2 and P3, for the
case of strong attraction. This scenario is closely related to the situations, (b)
where one filament is very stiff or fully stretched between the pillars and (c) where
one filament fixed at P1 and P3 adsorbs to a surface.

The mechanical equilibrium is reached, for the maximal value of Lzip subject to
geometric constraints, that is, the positions of the pillar heads Pi as well as the
contour lengths L1 and L2.

As mentioned in the introduction of this chapter, the influence of the bend-
ing rigidity as well as thermal fluctuations treated in the following causes the
filaments to resist zipping. In this sense, the values for Lzip obtained in this sec-
tion represent an upper limit (Lzip)max for subsequent calculations that include
the bending rigidity and thermal fluctuations. On the other hand, the results
for Lzip are purely based on geometric considerations, which makes this scenario
also the least desired in experiments, since it is not suited to determine material
parameters, apart from the contour lengths of the filaments.

Symmetric setup

Suppose, the two filaments are identical and the pillars they are attached to are
arranged symmetrically, such that

L1 = L2 ≡ L and κ1 = κ2 ≡ κ and P1P3 = P2P3. (4.6)

Then the adsorbed length Lzip becomes maximal, if all branches are tightened
and the adsorbed segment of length Lzip = P3Z and, therefore, also the zipping
point Z lie on the symmetry axis, which is defined by P3 and the midpoint of the
line P1P2, see Fig. 4.4(a).

If we define b ≡ P1P2/2, Lzip is found to be

(Lzip)max = L− b

sinα
. (4.7)
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P3

P1

P2

Z

Figure 4.5: Schematic example of an asymmetric configuration of two partially
zipped filaments as a result of strong attraction. The zipping point Z is identical
to the crossing point of the two ellipses, which is the farthest apart from P3.

The same result for Lzip is obtained for the setups shown in Fig. 4.4(b) and (c).
In the first case, one of the filaments is infinitely stiff or, equivalently, L2 = P2P3,
which replaces the symmetry axis in Fig. 4.4(a). On the other hand, one can
substitute the second filament altogether by an adhesive substrate surface, see
Fig. 4.4(c), to which a filament with one end fixed at P1 adsorbs. The angle α is
then either a result of an attachment of the other end at the surface at P3, or it
arises because of infinite friction of the polymer at the surface [126]1.

Also for the other regimes examined in this chapter, the conformation arising
in a symmetric setup is closely related to the constrained adsorption of a single
filament to a wall with appropriate boundary conditions, see e.g. [105].

Asymmetric setup

Already for the general case, where L1 6= L2 and P1P3 6= P2P3, the determination
of Lzip is much more involved. Geometrically, one can interpret the zipping point
Z as the crossing point of two ellipses, cf. Fig. 4.5(b). The two ellipses share one
focus, namely P3, while the other is P1 and P2, which is located at a distance

2c1 ≡ P1P3 and 2c2 ≡ P2P3, (4.8)

respectively. Their semimajor axes a1 and a2 are defined via the contour lengths
as

2a1 ≡ L1 and 2a2 ≡ L2. (4.9)

whereas the semiminor axes b1 and b2 are determined via the equation

b1 ≡
√

(L1/2)2 − (P1P3/2)2 and b2 ≡
√

(L2/2)2 − (P2P3/2)2. (4.10)

1If the polymer could glide over the surface and is not attached at a specific point at the
surface, the angle α will adjust to ninety degrees to assume the maximal value for Lzip = L1−b.
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4.4. Strong attraction

With these definitions and by identifying P3 with the origin of our coordinate
system, so that P3 and P2 lie on the x-axis, we can parametrize the ellipses using
the polar coordinates t1 and t2, t1, t2 ∈ [0, 2π]. Their crossing points are obtained
by solving the equations

cos β(c1 + a1 cos t1) + b1 sin β sin t1
!
= c2 + a2 cos t2

− sin β(c1 + a1 cos t1) + b1 cos β sin t1
!
= b2 sin t2

(4.11)

for the variables t1 and t2, where β denotes the tilt angle between the ellipses.
Finally, the adsorbed length Lzip is given by

(Lzip)max = max
i

√

(c1 + a1 cos ti1)
2 + (b1 sin ti1)

2

= max
i

√

(c2 + a2 cos ti2)
2 + (b2 sin ti2)

2

(4.12)

where {ti1, ti2} is the set of solutions to (4.11).

4.4.2 Conformations at T > 0

Configurations, where filaments are maximally zipped together, as discussed in
Section 4.4.1, involve a straightening of all three filament branches, which dras-
tically reduces the entropy of the system as there exists only one possible con-
figuration. If thermal fluctuations are taken into account, the persistence length
also has to be included, namely,

√

κi/|Wzip| � Li < Li,p i = 1, 2, (4.13)

and the entropy, that causes thermally fluctuating filaments to resist full extension
and therefore to act against the zipping, can no longer be neglected. As a result,
the length along which the filaments are zipped together will become smaller,
i.e. Lzip < (Lzip)max, to allow small shape fluctuations around the ‘Y’-shaped
configuration obtained in the previous section. Each branch is then additionally
characterized by the distance between its end points called the end-to-end dis-
tance, which in our case is denoted by Li,q, for i = 1, 2, and by Lzip,q for the
zipped branch, respectively. Accordingly, the three branches are described by
{κi, Li − Lzip, Li,q}, for i = 1, 2, and {κ3, Lzip, Lzip,q}, with Li − Lzip ≥ Li,q and
Lzip ≥ Lzip,q. The geometric constraints discussed in the previous section now
apply to the end-to-end distances instead of the contour lengths.

The equilibrium configuration is found by minimizing the free energy of the
system, which is given by

T−1F = −
∑

i=1,2

log G(Li − Lzip, Li,q, Li,p) − log G(Lzip, Lzip,q, L3,p) − T−1|fzip|Lzip.

(4.14)
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The last term is the free energy due to attraction, where, in the presence of ther-
mal fluctuations, the adhesion strength Wzip is replaced by free adhesion energy
per crosslinked segment fzip, see Refs. [104, 105]. Analogously to Section 3.2.9 it
is approximately given by

|fzip| ' |Wzip −Wc,zip|, Wc,zip ∼
T

l2/3L
1/3
p,red

(4.15)

where the critical potential strength Wc,zip depends on the range of the potential
well l, the temperature T and the reduced persistence length Lp,red as given by

Lp,red ≡
1

T

κ1κ2

κ1 + κ2
. (4.16)

We will assume that we are far from the thermal unbundling transition so that,
even if Wzip is replaced by fzip, the condition (4.13) still holds. Further, G is the
radial distribution function of a polymer of contour length L, end-to-end distance
L

q
and persistence length Lp. Note that, in contrast to the free energy used in

conventional stretching experiments, e.g. [22], where an external force couples
to the end-to-end distance parallel to the force direction, the attraction strength
Wzip couples here to the contour length of the zipped part. Hence, the end-to-end
distances are tuned here by the adjustment of the zipped contour length.

The explicit expressions for G are usually rather complicated and the calcu-
lation becomes even more involved, if the coupling of the tangent vectors at the
zipping point is included to assure continuity. As a simple approximation, we
therefore neglect the bending energy contributions around the zipping point Z
and assume free tangent orientations at the ends of all branches. Then we can
use the estimate of G calculated in Ref. [127]

− log G(L, L
q
, Lp) '

1

4Lp

L2

L− L
q

(4.17)

valid for L
q
/L close to one, which, according to the classification of force regimes

presented e.g. in [32], is justified for the conditions (4.13). This approximation
should altogether be reasonable for large |Wzip| and |fzip| and small angle α, see
Fig. 4.6.

Symmetric setup

We consider the symmetric setup specified in (4.6) and displayed in Fig. 4.6 so
that the contributions to the free energy from branch 1 and 2 become identical,
namely,

T−1F ' −2 log G(L−Lzip, Lq
, Lp)−log G(Lzip, Lzip,q, L3,p)−T−1|fzip|Lzip. (4.18)
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Figure 4.6: Schematic example of a symmetric configuration of two fluctuating
filaments, which are partially zipped together and are attached to the pillar heads
P1, P2 and P3. For the case of strong attraction, the filaments weakly fluctuate
around the ‘Y’-shaped configuration illustrated in Fig. 4.4(a).

In principle, (4.18) contains four variables, i.e. the contour lengths and end-to-
end distances of the two identical and the zipped branches, where we already
eliminated one variable by imposing the conservation of the contour length L of
the two filaments. On the other hand, the two end-to-end distances also depend
on each other as they have to satisfy the condition

a = Lzip,q +
√

L2
q
− b2 (4.19)

generated by the relative positions of the pillar heads, cf. Fig. 4.6. For the
variation of the free energy it is further useful to know how the above conditions
relate the variations δL

q
and δLzip,q, which is extracted from the variation of the

above equation (4.19) as

δLzip,q = −δL
q

L
q

√

L2
q
− b2

= −δL
q

1

cosα
. (4.20)

The first variation of free energy (4.18) then reads

δF = δLzip,q

{

− cosα
δF
δL

q

+
δF

δLzip,q

}

+ δLzip

{

− δF
δ(L− Lzip)

+
δF
δLzip

}

(4.21)

yielding two equations for Lzip,q and Lzip, which are given by

−a− Lzip,q

L
q

(L− Lzip)
2

2Lp(L− Lzip − L
q
)2

+
L2

zip

4L3,p(Lzip − Lzip,q)2

!
= 0

−(L− Lzip)(L− Lzip − 2L
q
)

2Lp(L− Lzip − L
q
)

+
Lzip(Lzip − 2Lzip,q)

4L3,p(Lzip − Lzip,q)2
− T−1|fzip| !

= 0,

(4.22)

where L
q
can be expressed via (4.19). The first equation in (4.22) from the varia-

tion with respect to the projected length represents the balance of the horizontal
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component of the resulting forces at the zipping point, whereas the vertical com-
ponent of the forces vanishes automatically due to the symmetry of the system.
Furthermore, the second equation in (4.22) from the variation with respect to the
contour length resembles the transversality conditions, which we derived in the
previous chapter and which we will encounter again in the following section.

In experiments, Lzip,q can be measured, which, together with the knowledge of
the contour length L and the persistence lengths Lp and L3,p, suffices to determine
Lzip and fzip via (4.22).

Asymmetric setup

The general setup should be treated equivalently to the symmetric case replacing
(4.19) by the condition that the zipping point coincides with the crossing point
of two ellipses, cf. the second paragraph in Section 4.4.1. These conditions com-
plicate the explicit analysis significantly, but should not introduce qualitatively
new aspects, which is why we deliberately omit detailed calculations for this case.

4.5 Weak attraction

4.5.1 Conformations at T = 0

In this section, we analyze the case where the bending energy of the filaments
governs the zipping of the filaments, i.e. where the contact radii become larger
than the contour lengths,

Li � Ri,co ∼
√

κi/|Wzip| i = 1, 2. (4.23)

Therefore, we have to supplement the Hamiltonian by adding a worm-like chain
Hamiltonian for each of the three branches, namely

H = H1
wlc + H2

wlc + H3
wlc − |Wzip|Lzip. (4.24)

Now the bending energies act against the zipping mechanism and thus against
the maximization of Lzip. Heuristically, the sharp bends in the ‘Y’-shaped con-
figuration considered in Section 4.4.1, are now rounded by the bending rigidity.
At equilibrium, the attraction energy and the sum of the bending energies are
balanced through the adjustment of Lzip, so that the variation of H with re-
spect to Lzip results in a relation by which the crosslinker strength |Wzip| can be
determined, if the involved bending rigidities are known.
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For the minimization of H, the attachment of the filament ends to the pillar
heads, the fixed contour lengths of the filaments and (potentially) a fixed orienta-
tion of the filament ends have to be incorporated into the calculations as boundary
conditions and constraints. In the parametrization via tangent angles, that we
used in the previous chapter, the relative positions of the pillar heads introduce
four constraints, which are imposed via Lagrange multipliers. On the other hand,
the overall contour lengths of the filaments are automatically kept fixed by defin-
ing the ranges of the respective arc length variables si as si ∈ [Lzip, Li −Lzip] for
i = 1, 2 and s3 ∈ [0, Lzip], whereas the tangent orientation at each pillar head
is specified by the boundary values of the tangent angles. Alternatively, in the
parametrization by displacement fields, see (1.4), the positions of the filament
contours are measured as displacements zi(x) with respect to a reference axis.
Hence, the positions and orientations of the filament ends are implied as bound-
ary values of the displacement fields zi(x) and their derivatives ∂xzi(x), whereas
the constant contour lengths L1 and L2 have to be enforced by two Lagrange
multipliers. Consequently, for this application the parametrization by displace-
ment fields is more convenient, because it requires less Lagrange multipliers, that
have to be determined in the end.

As mentioned in Chapter 1, the parametrization by displacement fields is only
suitable for filament conformations without overhangs, i.e. the mapping between
points on the reference axis and on the polymer backbone has to be unique.
In addition, it is commonly assumed, that the displacement field changes only
weakly along the reference axis so that terms of higher than quadratic order in the
displacement field and its derivatives become negligible. The conditions (4.23)
we are considering comply with these requirements.

Symmetric setup

As a first step, we assume the same symmetric setup as given in (4.6). The special
feature of this setup is, that at equilibrium the zipped branch is straight defining
a natural reference axis

z3(x) = 0, x ∈ [0, Lzip], (4.25)

where we identified P3 with the origin of our coordinate system, while the position
of the zipping point on the axis Lzip is yet to be determined. In order to inhibit
kinks at the zipping point, we demand zi(Lzip) = 0 and ∂xzi(Lzip) = 0 (i=1,2,3).
As remaining boundary conditions for z1 and z2, we specify the positions of the
remaining pillar heads as

P1 = (a, b) ≡ (a, z1(a)) and P2 = (a,−b) ≡ (a, z2(a)), (4.26)

cf. Fig. 4.7(a) and, concerning the tangent orientation at the pillar heads, we
choose the special case ∂xz1(a) = −∂xz2(a) = v, if the tangents are fixed, and
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Figure 4.7: Schematic image of (a) a symmetric and (b) an asymmetric setup
of two semiflexible filaments attached at the pillar heads Pi, that are zipped
together between P3 and Z. As indicated in the pictures, for weak interfilamental
attraction, the resulting curvature radius at the zipping point is bigger than the
contour lengths of the filaments.

demand ∂2
xzi(a) = 0, i = 1, 2, if the tangent orientations are free. Furthermore,

z1 and z2 have to obey the constraint

L−Lzip
!
=

∫ a

Lzip

dx
√

1 + (∂xzi(x))2 ' a−Lzip+
1
2

∫ a

Lzip

(∂xzi(x))
2, i = 1, 2, (4.27)

to conserve the contour length in either branch. Since the Hamiltonian (1.4) as
well as the above constraints depend only on the absolute value of the displace-
ment fields z1 and z2, the contributions from branch 1 and 2 to the Hamiltonian
are identical and we can write

H{z} '
∫ a

Lzip

dx{κ(∂2
xz(x))

2 + µ(∂xz(x))
2} − µ(L− a) − |Wzip|Lzip (4.28)

with

z1(x) = −z2(x) ≡ z(x), x ∈ [Lzip, a]. (4.29)

Here, the Lagrange multiplier µ can be interpreted as a force in x-direction, which
enforces the horizontal confinement of the filaments. The variation with respect
to z yields the Euler-Lagrange equation for the displacement field z

∂4
xz(x) − k2∂2

xz(x) = 0 with k2 ≡ µ/κ, (4.30)

which is solved by the Ansatz

z(x) =
A1

k2
sinh(kx) +

A2

k2
cosh(kx) + A3x+ A4, (4.31)
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where the constants Ai, i = 1, ..., 4, are determined by imposing the boundary
conditions, see App. C. In addition, H has to be varied with respect to Lzip to
obtain the transversality condition

∂2
xz(Lzip) =

√

|Wzip|/κ (4.32)

where we have applied the same method as in the previous chapter, cf. (3.26),
to set δz(Lzip) = −δLzip∂xz(Lzip). In this case, equation (4.32) establishes a
relation between the equilibrium shape z(x) of the filaments, in particular, the
curvature at the zipping point, and the ratio between Wzip and κ, which can
be used to determine the effective crosslinker strength Wzip, if κ is known. In
App. C the explicit results for the transversality condition for fixed (C.3) and
free (C.6) tangent orientation at the ends are given. These relations and likewise
the displacement field z still depend on the unknown variable k, see (4.30), which
is either calculated numerically by solving the constraint (4.27) or by fitting
experimentally observed conformations.

Asymmetric setup

For the general asymmetric case, which is schematically shown in Fig. 4.7(b), we
fix the ends of the filaments as

zi(ai) = bi, i = 1, 2 , and z3(0) = 0, (4.33)

while again, if the setup is such that the tangents are fixed at the ends, we set
∂xzi(ai) = vi, i = 1, 2, and ∂xz3(0) = 0, and postulate that ∂2

xzi has to vanish at
the ends, if the tangent orientations are free. At the zipping point, we postulate
the continuity of the displacement field and its derivative

zi(xzip) ≡ zzip and ∂xzi(xzip) ≡ vzip, i = 1, 2, 3, (4.34)

but xzip, zzip and vzip are free to adjust. Accordingly, the constraints (4.27) now
take the form

Li − ai ' 1
2

∫ xzip

0

dx(∂xz3)
2 + 1

2

∫ ai

xzip

dx(∂xzi)
2, i = 1, 2, (4.35)

where we have already expanded the square root, and the corresponding Hamil-
tonian is given by

H =
∑

i=1,2

{

1
2

∫ ai

xzip

dx{κi(∂
2
xzi)

2 + µi(∂xzi)
2} − µi(Li − ai)

}

+ 1
2

∫ xzip

0

dx{κ3(∂
2
xz3)

2 + (µ1 + µ2 − |Wzip|)(∂xz3)
2} − |Wzip|xzip.

(4.36)
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Here, the approximate zipped length

Lzip ' xzip + 1
2

∫ xzip

0

dx(∂xz3)
2 (4.37)

appears in the Hamiltonian via xzip and an extra term in the integral in the
second line. The variation of the Hamiltonian results in the same type of Euler-
Lagrange equation for the zi as before (4.30), in which k is to be replaced by the
respective ki with

k2
1 ≡ µ1/κ1, k2

2 ≡ µ2/κ2 and k2
3 ≡ (µ1 + µ2 − |Wzip|)/κ3. (4.38)

Furthermore, the transversality condition associated with the variation of xzip is
found to be

|Wzip| = {κ3(∂
2
xz3(xzip))

2 − κ1(∂
2
xz1(xzip))

2 − κ2(∂
2
xz2(xzip))

2}/{2 + v2
zip} (4.39)

and two conditions that originate from the demand that δH has to vanish for all
possible variations δzzip and δvzip, namely,

|Wzip|vzip = κ1∂
3
xz1(xzip) + κ2∂

3
xz2(xzip) − κ3∂

3
xz3(xzip) (4.40a)

and

κ1∂
2
xz1(xzip) + κ2∂

2
xz2(xzip) − κ3∂

2
xz3(xzip) = 0, (4.40b)

respectively. In terms of mechanical quantities, these conditions are interpreted as
the balance of forces in x- and z-direction and the balance of torques perpendicu-
lar to the xz-plane at the zipping point. For the symmetric setup we had δzzip = 0,
which implies that (4.40a) is absent, and δ(∂xzi(xzip)) = −δxzip∂

2
xzi(xzip) leading

to a combination of (4.39) and (4.40b), that strongly resembles (4.39), but has
the opposite sign on the left hand side. In this way, the results for the symmetric
case discussed in the previous paragraph are recovered.

In order to determine Wzip, one has to proceed just as in the previous para-
graph: With the ansatz (4.31) and the boundary conditions specified above one
obtains the zi(x, ki) with coefficients very similar to those given in App. C. The
ki can then be extracted from a fit of the experimentally observed equilibrium
conformations. In principle, the knowledge of the ki already suffices for the de-
termination of Wzip in this case, since

κ1k
2
1 + κ2k

2
2 − κ3k

2
3 = |Wzip|. (4.41)

For the symmetric case, this relation reduces to the definition of k in eq. (4.30).
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4.5.2 Conformations at T > 0

If the influence of thermal fluctuations is taken into account we have to replace
again the crosslinker-mediated adhesion strength Wzip by the free adhesion energy
per crosslinked segment fzip given in eq. (4.15). Assuming that

Li �
√

κi/|fzip| < Li,p i = 1, 2, (4.42)

the results of the preceding calculation remain to be valid also for T > 0.

4.6 Conclusion and Outlook

We considered the configurations of two partially zipped actin filaments, whose
ends are locally pinned to pillar arrays, for the cases of strong and weak attrac-
tion, which can be mediated, for example, by crosslinker proteins or counterions.
The different regimes were classified according to the relative magnitude of in-
volved contour lengths Li, the persistence lengths Li,p and the typical contact
curvature radii at the zipping point Ri,co, which are related to the square root of
the ratio between the bending rigidities and the effective attraction strength: The
strong attraction regime was thereby identified with the case, where the contact
radii are small compared to the contour lengths, Ri,co � Li, whereas the weak
attraction regime was characterized by Ri,co � Li. For both regimes, we estab-
lished methods to extract the effective interfilament attraction strength from the
experimentally observable equilibrium shapes for the zero temperature case and
discussed the influence of thermal fluctuations.

The motivation of this theoretical analysis are experiments in the group of
J. P. Spatz, to which our results shall be applied in the future. In these exper-
iments, the filaments are locally pinned to microscopic pillar arrays, which give
rise to well-defined boundary conditions advantageous for a comparison with the-
oretical calculations. By means of the results presented in this chapter, it should
be possible to measure the attraction strength mediated by multivalent cations,
such as Mg2+, and various actin binding proteins, such as fimbrin or α-actinin,
which is an important property of actin bundles. It is also straightforward to
apply our results to bundles formed by other types of semiflexible polymers,
e.g. protein fibers or microtubules. Furthermore, in an alternative experimental
setup, the filaments are attached to optically trapped beads instead of pillars, so
that the arising forces can directly be measured, which is easily incorporated in
our theoretical analysis. Finally, it would also be interesting to extend this work
to active crosslinkers, such as myosin II, focusing more on dynamic aspects.
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Chapter 5

Summary and Outlook

In the preceding chapters, various aspects concerning the conformations of indi-
vidual semiflexible polymers were considered. We discussed the concept of the
persistence length for the classification of semiflexible polymers and how it can
be related to the renormalization of the bending rigidity. On the basis of two
examples, namely, the adsorption of polymer rings on structured substrates and
the constrained bundling of actin filaments, we demonstrated how the resulting
morphologies can be controlled for technological applications and how they can
be used to extract information about biological systems.

The topic of Chapter 2 was the relation between the persistence length of
semiflexible polymers and bending rigidity renormalization. Therefore, we first
reviewed existing definitions for the persistence length based on tangent corre-
lations for polymers and on the perturbatively renormalized bending rigidity for
membranes, see Section 2.2. A comparison of both definitions for semiflexible
polymers demonstrated their incompatibility. In order to analyze this discrep-
ancy in more detail, we described semiflexible polymers by a discretized worm-
like chain model, which is equivalent to the one-dimensional classical Heisenberg
model as explained in Section 2.3. The advantage of this description is, that the
renormalization of the bending rigidity and the tangent correlation function are
exactly computable in arbitrary dimensions. The renormalization of the bending
rigidity was obtained using an exact real-space functional renormalization group
(RG) transformation, see Section 2.4. The RG flows (2.25) or (2.26), as illus-
trated in Fig. 2.4, cover the behavior of a semiflexible polymer from the rigid
regime on short length scales to the flexible regime on large length scales, where
the renormalized bending rigidity vanishes exponentially, cf. (2.26). We defined
the persistence length by the asymptotic behavior on large length scales. This
definition generalizes the conventional definition based on the exponential decay
of the two-point tangent correlation function (2.1) and gives identical results for
the persistence length, compare (2.1) with (2.27). Furthermore, it is qualita-
tively different from the definition commonly used for the persistence length of
fluid membranes based on a perturbative renormalization of the bending rigidity:
Our definition reflects the behavior on large length scales, whereas the one used
in [73, 74, 75, 76, 77, 78, 79, 80] contains only the short range behavior accessible
by perturbative RG techniques. For semiflexible polymers, this discrepancy was
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demonstrated explicitly by the comparison between our result for the persistence
length (2.27) and the one deduced from a renormalized bending rigidity, which
was obtained via a perturbative momentum-shell RG analysis of the worm-like
chain model, see (2.3).

The application of the renormalization procedure, which was presented here,
to two-dimensional fluid membranes is impeded by the more involved differential
geometry of two-dimensional surfaces and remains a challenge for the future.
However, our analysis suggests that the behavior of the RG flow of the bending
rigidity on large length scales is essential for the determination of the persistence
length for membranes as well.

In Chapter 3, we studied an example of how a systematic shape control of ad-
sorbed semiflexible polymers can be achieved by making use of surfaces containing
affinity patterns. In particular, we considered semiflexible polymer rings adsorbed
to substrate surfaces containing (i) a topographical channel and (ii) a chemically
modified stripe, schematically shown in Figs. 3.3 and 3.12. For either type of
structure, we presented a complete classification of all equilibrium morphologies,
cf. the snapshots in Fig. 3.13, by calculating a projection of the energy land-
scape, see Sections 3.2.5 and 3.3.4, determining its local minima in Sections 3.2.6
and 3.3.5 and discussed their stability in Sections 3.2.7 and 3.3.5. The results for
the two systems were found to be very similar and were summarized in morphol-
ogy diagrams, shown in Fig. 3.11: In both cases, the morphology diagrams are
dominated by discontinuous morphological transitions between the weakly de-
formed circular shape I and the confined elongated shape II0. The intermediate
shapes with one and two bulges II1 and II2 become stable for rings that are large
compared to the stripe width. In addition, the system with the topographical
stripe leads to an unbinding transition, which is also known for vesicles adhering
to a planar substrate with an adhesion potential of very small range [102, 103]. We
derived analytical estimates for all transition lines, see Sections 3.2.8 and 3.3.6,
which provide the basis to determine material parameters of the polymer ring
or the adhesive domain experimentally. Furthermore, they demonstrate how
the ring shapes can be manipulated systematically by the control parameters in
(bio-)nanotechnological applications. Including thermal fluctuations it was found,
that the transitions display a complex shape hysteresis, if the persistence length
of the polymer ring is larger than the stripe width, cf. Section 3.2.9.

We extended our analysis to periodic arrays of topographic steps in Sec-
tion 3.4, for which a cascade of transitions between elongated shapes was found,
see Fig. 3.14. Furthermore, in Section 3.5, we briefly discussed the application
of our model to condensation transitions of closed semiflexible polymers induced
by attractive interactions.

An interesting system to study in the future is the adsorption of a semiflexible
polymer ring onto a surface with a small circular adhesive domain. The adhesion
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contrast at the domain boundaries generates local forces, which pull the ring
into the region of higher adsorption strength. These forces can be compared
with those involved in packaging transitions, which are relevant for the packaging
of DNA into viral capsids [106]. Moreover, the resulting polymer morphologies
should be similar to those observed for cylindrical semiflexible sheets confined
into cylindrical tubes [107].

Finally, in the Chapter 4, we focused on the theoretical description of experi-
ments, which investigate the zipping of actin filaments using a biomimetic model
of the actin cortex. In the experiments performed in the group of J. P. Spatz, see
Section 4.2, the filaments are locally anchored to the heads of micron-sized pillars
mimicking the confining boundary conditions of filaments within real networks.
The pillars are arranged with a lattice spacing of several micrometers resulting
in a quasi two-dimensional network and have a height which is comparable or
greater than the filament length. By adding crosslinkers or multivalent cations,
the zipping of neighboring filaments can be initiated.

The aim of our theoretical analysis was to show how one can extract the
magnitude of the attraction between the filaments from experimentally observ-
able conformations. Therefore, we considered the configurations of two partially
zipped actin filaments distinguishing between the cases of strong and weak at-
traction, see Section 4.3. These two regimes were characterized by the ratio of the
involved contour lengths of the filaments and the typical contact curvature radii
at the zipping point, which are proportional to the square root of the bending
rigidities of the filaments divided by the effective attraction strength: For strong
attraction, the contour lengths are large in comparison to the typical contact
curvature radii resulting in conformations with sharp bends, cf. Section 4.4. By
contrast, the conformations are rounded for weak attraction, which is specified
by large contact curvature radii compared to the contour lengths of the filaments,
see Section 4.5. Both regimes were discussed for the zero temperature case and
in the presence of thermal fluctuations.

With the help of our results, it should be possible to determine the attraction
strength of various actin binding proteins, e.g. fimbrin or α-actinin, or multivalent
cations like Mg2+. However, they should also apply to bundles formed by other
types of semiflexible polymers, such as protein fibers or microtubules. The forces
generated by the zipping of the filaments could be measured directly using an
alternative experimental setup, where the pillars are replaced by optically trapped
beads. Likewise, the zipping caused by active crosslinkers, such as myosin II,
would be an interesting extension of our system including also active processes.
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Appendix A

Differential geometry of membranes

The conformation of a membrane is mathematically described by the embedding
functions R(s1, s2) defining a surface in three-dimensional space. s1 and s2 con-
stitute the two-dimensional (internal) coordinate system, such as s or x for the
case of a filament. To each point (s1, s2), one can assign two tangent vectors, R1

and R2, and a normal vector N as

Ri = ∂si
R with i = 1, 2 and N =

R1 × R2

|R1 × R2|
. (A.1)

The metric tensor
gij = Ri ·Rj, (A.2)

its inverse gij and its determinant g complete the list of quantities needed to
define the quantities contained in the Hamiltonian (1.9): The infinitesimal area
element is given by

dA =
√
gds1ds1. (A.3)

From the curvature tensor hij

hij = N · (∂si
∂sj

R) (A.4)

one obtains the mean curvature M as its trace and the Gaussian curvature G as
its determinant, namely

M =
1

2
tr(gikhkj), G = det(gikhkj). (A.5)

In this convention the mean curvature of a sphere is negative. This is why
sometimes M is defined with a negative sign.

The metric tensor gij and the curvature tensor hij are both symmetric, so that
altogether there are six functions of the coordinates (s1, s2) characterizing gij and
hij. For a given surface R(s1, s2), these functions satisfy the compatibility equa-
tions of Mainardi, Codazzi and Gauss. If the diagonal components of the metric
and its determinant are positive, these equations constitute even sufficient con-
ditions for the surface to be uniquely determined by R(s1, s2), except for global
rotations and translations (Bonnet Theorem). By contrast, a one-dimensional
space curve is in this sense simply determined by its set of unit tangent vectors
t(s). For a comprehensive introduction into the differential geometry of surfaces,
see e.g. Ref. [128].
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Appendix B

Explicit expressions for the configurations II

In this Appendix, the explicit expressions for the functions f1(p), f2(p) and f3(p)
occurring in equations (3.22) and (3.23) in the analytical minimization of the
segments depicted in Fig. 3.5(b) and (c) are provided. The functions for the case
of a segment with or without bulge, cf. Fig. 3.5(b) and (c), are decorated with
an index B and 6B, respectively. For the bulged shape one finds

fB
1 (p) = 2

(1+p)1/2K( 2
1+p

) − 1
p3/2 3F2[B1(p)] + 4p1/2

3F2[B2(p)]

fB
2 (p) = − π

(4p)3/2 2F1[B3(p)] + 2
p1/2 3F2[B4(p)] − 8p3/2

3 3F2[B5(p)]

fB
3 (p) = πp1/2

2F1[B6(p)] + 1
p1/2 3F2[B7(p)] + 4p3/2

3 3F2[B8(p)]

(B.1)

and for the shape without bulge

f 6B
1 (p) = 4(1 + 1

p
)−1/2F (π

4
, 2

1+p
)

f 6B
2 (p) = − π

4p 2F1[A1(p)] + 2 3F2[A2(p)]

f 6B
3 (p) = 4(1 + 1

p
)1/2E(π

4
, 2

1+p
)

(B.2)

containing the elliptic integral of the first kind and the second kind, F (φ, k)
and E(φ, k), and the hypergeometric functions mFn[(a1, ..., am), (b1, ..., bn); z], for
definitions see e.g. Ref. [83]. For the bulged segment the arguments of the hyper-
geometric functions are given by

B1(p) = {(3
4
, 1, 5

4
), (3

2
, 3

2
); 1

p2} B5(p) = {(1
2
, 1, 3

2
), (5

4
, 7

4
); p2}

B2(p) = {(1
2
, 1

2
, 1), (3

4
, 5

4
); p2} B6(p) = {(−1

4
, 1

4
), 1; 1

p2}
B3(p) = {(3

4
, 5

4
), 2; 1

p2} B7(p) = {(1
4
, 3

4
, 1), (3

2
, 3

2
); 1

p2}
B4(p) = {(1

4
, 3

4
, 1), (1

2
, 3

2
); 1

p2} B8(p) = {(1
2
, 1

2
, 1), (5

4
, 7

4
); p2}.

(B.3)

For the segment without bulge they are

A1(p) = {(3
4
, 5

4
), 2; 1

p2}
A2(p) = {(1

4
, 3

4
, 1), (1

2
, 3

2
); 1

p2}.
(B.4)
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Appendix C

Coefficients of the displacement field z(x)

In this Appendix, the explicit expressions for the displacement field z(x) in (4.31)
are given. For fixed tangent orientation ∂xz(a) = v, the boundary conditions yield
the following coefficients

A1 = − k
∆1

{−kb sinh(ka) + k(b− [a− Lzip]v) sinh(kLzip)

+ v (cosh(ka) − cosh(kLzip))}
A2 = k

∆1
{−kb cosh(ka) + k(b− [a− Lzip]v) cosh(kLzip)

+ v (sinh(ka) − sinh(kLzip))}
A3 = 2

∆1
sinh(1

2
k[a− Lzip]){−bk cosh( 1

2
k[a− Lzip])

+ v sinh(1
2
k[a− Lzip])}

A4 = 1
k∆1

{−k(b− av) + k(b− Lzipv) cosh(k[a− Lzip])

+ (bk2Lzip − v) sinh(k[a− Lzip])}

(C.1)

where

∆1 ≡ 2 sinh(1
2
k[a− Lzip]){k(a− Lzip) cosh(1

2
k[a− Lzip]) − 2 sinh(1

2
k[a− Lzip])}.

(C.2)
The corresponding transversality condition (4.32) reads
√

Wzip/κ
!
= k

∆1
{k(b−[a−Lzip]v)−kb cosh(k[a−Lzip])+v sinh(k[a−Lzip])}. (C.3)

For completeness, we also discuss the case, where the tangent orientation is
not restricted by the attachment of the filament ends to the pillar heads, i.e.
∂2

xz(a) = 0. One finds for the coefficients

A1 = −k2b cosh(ka)/∆2 A3 = −kb/∆3

A2 = k2b sinh(ka)/∆2 A4 = b + kab/∆3

(C.4)

with

∆2 ≡ k(a− Lzip) cosh(k[a− Lzip]) − sinh(k[a− Lzip])

∆3 ≡ −k(a− Lzip) + tanh(k[a− Lzip]),
(C.5)

which finally reduces the transversality condition (4.32) to
√

Wzip/κ
!
= k2b/{k(a− Lzip) coth(k[a− Lzip]) − 1}. (C.6)
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List of Symbols

List of Symbols

I conformation adhering to one step edge or analogous conformation
for the striped domain; Chap. 3

IIi conformation with i bulges adhered to two step edges at a distance ast

or analogous conformation for the striped domain; Chap. 3
IIni conformation with i bulges adhered to two steps at a distance nast

or analogous conformation for the striped domain; Chap. 3
III conformation adhering to three step edges; Chap. 3
A area of the membrane surface
Ai coefficients of the displacement field z (i = 1, ..., 4); App. C
a length scale characterizing substrate structure; (3.1)

geometric distance characterizing a pillar configuration; Chap. 4
ai geometric distance characterizing a pillar configuration (i = 1, 2);

Chap. 4
ado width of a striped domain on the substrate surface; (3.50)
ast distance between two parallel topographical surface steps; (3.2)
α angle characterizing two zipped filaments; Chap. 4
b geometric distance characterizing a pillar configuration; Chap. 4
b0 bare bond length; (2.5)
b1 renormalized bond length after 1st RG step; Chap. 2
bN renormalized bond length after Nth RG step; Chap. 2
bi geometric distance characterizing a pillar configuration (i = 1, 2);

Chap. 4
β angle characterizing a pillar configuration; Chap. 4
C1, C2 principal curvatures of a membrane; (1.10)
c integration constant; (3.14), (3.20)
ci geometric distance characterizing a pillar configuration (i = 1, 2);

Chap. 4
cs concentration of salt ions; (1.6)
D approximate diameter of a semiflexible polymer
d dimension of embedding space
∂s ≡ ∂

∂s
partial derivative with respect to s

δi,j Kronecker symbol
δθ infinitesimal variation with respect to θ; (3.8)
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List of Symbols

E Young’s modulus; (1.1)
complete elliptic integral of the second kind; Chap. 3

∆E energy barrier; (3.48)
∆Ē dimensionless energy barrier; Chap. 3
Ead adsorption energy gain induced by surface structure; Chap. 3
Eb bending energy; Chap. 3
EI

b, E
II
b bending energy of a shape of type I, II; (3.17), (3.23)

EB
b , E

6B
b bending energy of a polymer segment with/without bulge;

(3.36), (3.34), (3.35)

Ẽcon typical energy scale for a ring condensate; (3.72)
Edo typical energy scale for a ring adsorbed to a striped domain; (3.57)
Est typical energy scale for a ring adsorbed to a channel; (3.24)

Ẽst typical energy scale for a ring adsorbed to a periodic array of steps;
(3.65)

Etot total energy; Chap. 3
Ētot dimensionless total energy normalized by Est; Chap. 3
ĒI

tot dimensionless total energy of shape I; (3.30b)

analogously ĒII0
tot , Ē

II1
tot , Ē

II2
tot , ...

e0 elementary charge; (1.7)
ε, ε0 dielectric constants of the solution and vacuum; (1.7)
F functionsarising in calculation of energy estimates; (3.33)
F free energy; Chap. 4
f1, f2, f3 functions arising in minimization procedure; (3.21), App. B
fst free adsorption energy per segment for a ring adsorbed to a

channel; (3.49)
fzip free energy per zipped length; (4.15)
G Gaussian curvature of a membrane; (1.10), (A.5)
G radial distribution function; Chap. 4
gij, g

ij, g metric tensor, its inverse and its determinant; (A.2)
g(0) energy shift arising in 1st RG step; (2.18), (2.19)
H Hamiltonian
Hdwlc discrete worm-like chain Hamiltonian; (2.5)
Hmem membrane Hamiltonian; (1.9)
Hwlc worm-like chain Hamiltonian of a semiflexible polymer, e.g. (1.2)
h arbitrary interaction function; Chap. 2
h∗ fixed point interaction function; Chap. 2
h(0) initial interaction function of the semiflexible chain; (2.7)
h(1) renormalized interaction function after 1st RG step; (2.18), (2.19)
h(N) renormalized interaction function after Nth RG step; Fig. 2.3
hij curvature tensor of a membrane; (A.5)
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List of Symbols

I inertia of a rod’s cross section; (1.1)
Ik modified Bessel function of the first kind; Chap. 2
K arbitrary interaction parameter; Chap. 2

complete elliptic integral of the first kind; Chap. 3
K0 bare interaction parameter of the semiflexible chain; (2.7)
K1 renormalized interaction parameter after 1st RG step; (2.23)
KN renormalized interaction parameter after Nth RG step; Fig. 2.3
kB Boltzmann constant, here: kB ≡ 1
k parameter arising in minimization procedure; (4.30)
ki parameters arising in minimization procedure (i = 1, 2, 3); (4.38)
κ mesoscopic bending rigidity; (1.1)

renormalized bending rigidity; Chap. 2, (2.26), (2.28)
κ̄ Gaussian bending modulus; (1.9)
κ0 (bare) bending rigidity at b0; Chap. 2
κ1 renormalized bending rigidity after 1st RG step at b1; (2.24)
κN renormalized bending rigidity after Nth RG step at bN ; (2.25)
κi bending rigidity of the ith filament (i = 1, 2, 3); Chap. 4
L contour length of a semiflexible polymer
L̄ contour length of a polymer ring L over the channel width ast; (3.5)
L̄unb L̄ at unbinding transition; (3.44)
L̄I−II0 L̄ at transition between shapes I and II0; (3.45)
L̄I−II2 L̄ at transition between shapes I and II2; (3.47)
∆L̄ dimensionless shift between Ldo and Lst; Fig. 3.6(b)
Ldo length of polymer segments adhered to the striped domain; Chap. 3
Li contour length of the ith filament (i = 1, 2); Chap. 4
Li,p persistence length of the ith filament (i = 1, 2, 3); Chap. 4
Li,q end-to-end distance of ith filament branch (i = 1, 2); Chap. 4
LOSF additive correction to the persistence length of polyelectrolytes; (1.8)
Lp persistence length (several definitions); (2.1), (2.27)
Lp,red reduced persistence length; (4.16)
L∗

p persistence length of polyelectrolytes; (1.8)
Lst polymer length adhered to a topographical channel; Chap. 3
L̄st Lst in units of the channel width ast; Chap. 3
L̄I

st Lst in units of ast of shape I; (3.30a)
Lx projected length (parametrization by displacement fields; Chap. 1)
Lzip contour length along which two filaments are zipped together;

Chap. 4
Lzip,q end-to-end distance of the zipped filament branch; Chap. 4
L∗ length of curved segments of conformations II; Chap. 3
LB
∗ ,L 6B

∗ length of a polymer segment with/without bulge; (3.36), (3.34), (3.35)
L

q
end-to-end distance; (4.17)
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List of Symbols

l potential range
lB Bjerrum length; (1.7)
lDH screening length; (1.6)
` length scale
`x projected length scale; Chap. 2
Λ0 high momentum cut-off; (2.2)
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Anordnung einer Vielzahl säulenförmiger Erhebungen und deren Anwen-
dungen, German patent pending, 2004.

[55] http://www.mpikg.mpg.de/lipowsky/res/rmem/image01.html.

[56] P.B. Canham. The minimum energy of bending as a possible explanation of
the biconcave shape of the human red blood cell. J. Theor. Biol. , 26:61–81,
1970.

[57] W. Helfrich. Elastic properties of lipid bilayers: theory and possible exper-
iments. Z. Naturforsch. , 28c:693–703, 1973.

[58] E. Evans. Bending moments and chemically induced moments in membrane
bilayers. Biophys. J. , 14:923–931, 1974.

[59] R. Lipowsky. The conformation of membranes. Nature, 349:475–481, 1991.

[60] H.P. Duwe, J. Käs, and E. Sackmann. Bending elastic-moduli of lipid
bilayers - modulation by solutes. J. Phys. Fr. , 51:945–962, 1990.

[61] M. Mutz and W. Helfrich. Bending rigidities of some biological model
membranes as obtained from the fourier-analysis of contour sections.
J. Phys. Fr. , 51:991–1002, 1990.

[62] P.G. de Gennes and C. Taupin. Microemulsions and the Flexibility of
Oil/Water Interfaces. J. Phys. Chem. , 86:2294–2304, 1982.

[63] R. Lipowsky and E. Sackmann. Structure and Dynamics of Membranes:
from Cells to Vesicles (Handbook of Biological Physics vol 1). Elsevier,
Amsterdam, 1995.

[64] U. Seifert. Configurations of fluid membranes and vesicles. Advances in
Physics, 46:13–137, 1997.

[65] P. Gutjahr, R. Lipowsky, and J. Kierfeld. Persistence length of semiflexible
polymers and bending rigidity renormalization. Europhys. Lett. , 76:994–
1000, 2006.

113



Bibliography

[66] J. Kierfeld, P. Gutjahr, T. Kühne, P. Kraikivski, and R. Lipowsky. Buck-
ling, Bundling, and Pattern Formation: From Semi-Flexible Polymers to
Assemblies of Interacting Filaments. J. Comput. Theor. Nanosci. , 3:898–
911, 2006.

[67] R. Capovilla and J. Guven. Helfrich-Canham bending energy as a con-
strained nonlinear sigma model. J. Phys. A: Math. Gen. , 38:2593–2597,
2005.

[68] L. Fadeev and V.N. Popov. Feynman diagrams for the Yang-Mills field.
Phys. Lett. B, 25:29–30, 1967.

[69] V.N. Popov. Functional Integrals in Quantum Field Theory and Statistical
Physics. Kluwer Academic Publisher, Dordrecht, 1983.

[70] F. David. Geometry and field theory of random surfaces and membranes.
In D. Nelson, T. Piran, and S. Weinberg, editors, Statistical Mechanics of
Membranes and Surfaces. World Scientific, Singapore, 1989.

[71] P. Nelson and T. Powers. Renormalization of chiral couplings in tilted
bilayer membranes. J. Phys. France II, 3:1535–1569, 1993.

[72] W. Cai, T.C. Lubensky, P. Nelson, and T. Powers. Measure factors, tension,
and correlations of fluid membranes. J. Phys. II France, 4:931–949, 1994.

[73] W. Helfrich. Effect of thermal undulations on the rigidity of fluid mem-
branes and interfaces. J. Physique, 46:1263–1268, 1985.

[74] W. Helfrich. Size distributions of vesicles: the role of the effective rigidity
of membranes. J. Physique, 47:321–329, 1986.

[75] W. Helfrich. Measures of integration in calculating the effective rigidity of
fluid surfaces. J. Physique, 48:285–289, 1987.

[76] L. Peliti and S. Leibler. Effects of Thermal Fluctuations on Systems with
Small Surface Tension. Phys. Rev. Lett. , 54:1690–1693, 1985.

[77] D. Förster. On the scale dependence, due to thermal fluctuations, of the
elastic properties of membranes. Phys. Lett. , 114A:115–120, 1986.

[78] H. Kleinert. Thermal softening of curvature elasticity in membranes.
Phys. Lett. , 114A:263–268, 1986.

[79] W. Helfrich. Stiffening of fluid membranes and entropy loss of membrane
closure: Two effects of thermal undulations. Eur. Phys. J. B, 1:481–489,
1998.

114



Bibliography

[80] H. Pinnow and W. Helfrich. Effect of thermal undulations on the bending
elasticity and spontaneous curvature of fluid membranes. Eur. Phys. J. E,
3:149–157, 2000.

[81] A.M. Polyakov. Gauge Fields and Strings. Harwood Academic Publishers,
Chur, 1987.

[82] L. Livadaru, R.R. Netz, and H.J. Kreuzer. Stretching response of discrete
semiflexible polymers. Macromolecules, 36:3732–3744, 2003.

[83] M. Abramowitz and A.I. Stegun. Handbook of Mathematical functions.
Natl. Bur. Stand. , Washington, 1965.

[84] M.E. Fisher. Magnetism in One-Dimensional Systems: The Heisenberg
Model for Infinite Spin. Am. J. Phys. , 32:343–346, 1964.

[85] G.S. Joyce. Classical Heisenberg Model. Phys. Rev. , 155:487–491, 1967.

[86] Th. Niemeijer and Th.W. Ruijgrok. Renormalization Group Solution of the
One-Dimensional Classical Heisenberg Model. Physica, 81A:427–440, 1975.

[87] M. Nauenberg. Renormalization group solution of the one dimensional Ising
model. J. Math. Phys. , 16:703–705, 1975.
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