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Foreword

Fourier analysis has long been a traditional tool in physics and other natural
sciences. Usually, the distinction is made between the discrete (atomic, pure-
point) and absolutely continuous spectra. Recently it became clear that spectral
measures which belong to neither of these two classes but are supported by
fractal sets, should not be viewed as exotic mathematical objects: examples of
such processes, neither ordered nor strongly irregular, were detected in different
physical situations. Several of such situations are described below; it is shown
that temporal dynamics with fractal (singular continuous) power spectra can be
found at virtually all levels of mathematical modeling of the real world: from
partial differential equations to ordinary differential equations and further to
mappings and symbolic sequences.

The first chapter demonstrates examples of dynamics with fractal sets of
singularities in power spectra; they include certain dissipative flows as well as
one-dimensional mappings and symbolic sequences related to these flows. Anal-
ysis shows that two basic mechanisms can be responsible for this phenomenon:
the special geometry of the attracting set and the divergence of return times
near the saddle point which belongs to the attractor.

Singular continuous power spectra are multifractal. In Chapter 2 the for-
malism of mutifractal analysis is applied to spectral measures of symbolic se-
quences built with the help of substitutions or concatenations. Exact algebraic
expressions for generalized fractal dimensions of the spectral measure of the
Thue-Morse sequence are obtained.

Divergence of return times can be a reason for the discrepancy between the
spectral properties of the continuous flows and the Poincaré maps of these flows.
In Chapter 3 this discrepancy between geometrical and dynamical characteris-
tics is discussed, and a method is proposed which efficiently incorporates the
information about return times into symbolic dynamics.

In Chapter 4 it is demonstrated that fractal power spectra can be found even
in two-dimensional autonomous systems, namely in flows on 2-tori with points
of equilibrium and irrational rotation numbers. As well as in the preceding
Chapter, in this case continuous evolution can be reduced to symbolic dynamics;
however due to unusual superexponential character of scaling of orbital returns,
the different formalism should be applied.

Examples discussed in Chapter 5 refer to the situation in which phase space
is a physical domain filled with fluid, and phase trajectories are orbits of tracer
particles which move along the streamlines of a steady viscous flow. It is shown
that for the observables built with the help of such tracers, presence of stagnation
points in flow patterns can be a reason for the onset of fractal power spectra .

The listed examples of Fourier spectra which include only the singular con-
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tinuous component, are restricted to purely deterministic dynamical systems.
Nevertheless, as demonstrated in Chapter 6, the traces of multifractality of
spectral measure can be detected also in the datasets of noisy origin. Influence
of noise on the symbolic dynamics is illustrated with the help of the exactly
solvable model of random binary substitutions.

Presentation of results is based on the papers [49], [57] and [77], [82], [122],
[65], [123] and [124].
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Chapter 1

Singular continuous spectra
in dissipative dynamics

1.1 Introduction

The dynamics of nonlinear systems may be described by means of different
characteristics. One of the classical (and lately shadowed by more elaborate
tools like Lyapunov exponents, dimensions, singularity spectra, etc.) ways to
characterize the dynamics of the observable f(t) is to compute its normalized
autocorrelation function

C(τ) =
〈 f(t)f(t + τ) 〉 − 〈f(t)〉2

〈 f2(t) 〉 − 〈f(t)〉2 (1.1)

where averaging over time and/or the respective set of initial conditions is as-
sumed. The dependence C(τ) provides the quantitative estimate of the system’s
ability to return to the same states after regular intervals of time [1, 2, 3, 4].
Usually, non-chaotic systems are well-correlated: the correlation function of the
periodic motion reaches unity at all integer multiples of the basic period, whereas
in the case of the quasiperiodic motion with an irrational ratio of frequencies, the
largest peaks correspond to the times proportional to the denominators of suc-
cessive rational approximations to this ratio, and the amplitudes of these peaks
asymptotically approach 1. On the other hand, the eventually (not necessarily
monotonically) decaying autocorrelation function of the chaotic motion reflects
its property to forget the details of the initial state. As an intermediate stage
one may imagine some “not perfectly regular” or “not entirely chaotic” motion
for which the correlation function would be everywhere (except for τ = 0) sep-
arated from 1, but at the same time would not entirely decay, displaying peaks
of finite height for arbitrarily large values of τ and thus disclosing the ability of
the system to remember “vaguely” its previous history.

Owing to the duality between the autocorrelation function and the Fourier
power spectrum, the same statements can be retold in terms of the latter. For
both periodic and quasiperiodic processes the Fourier spectrum is obviously
composed of discrete delta-peaks only; in the former case the peaks are well
separated whereas in the latter they are typically dense. The spectrum of the
chaotic motion is marked by the presence of a continuous component. In most of
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the known examples this component is absolutely continuous with respect to the
Lebesgue measure (albeit some local singularities are possible, like in the case
of 1/ω spectrum), but in principle it may also be singular, i.e. be concentrated
on a set of Lebesgue measure zero. This singular component might be viewed
as some remnant of the discrete ordered-state spectrum in the following way:
the response at the frequency corresponding to a singularity (such values must
be dense in the spectrum), although not mighty enough to produce a delta-
peak, is substantially stronger than in the immediate neighborhood. Therefore
the singular continuous spectra occupy some intermediate position between the
spectra of the well-ordered processes and those of the fully chaotic ones.

Singular continuous spatial spectra have been recently reported for the dis-
tributions of particles in systems with incommensurate scales[5, 6, 7]. They are
also known to appear in quantum systems with quasiperiodic potentials[8] and
quasiperiodic external forcing[9, 10]. Recently the singular continuous spectra
have been observed in dissipative systems with quasiperiodic external forcing,
where so-called “strange nonchaotic attractors” (sets which, like chaotic attrac-
tors, are not manifolds, but, contrary to them, are characterized by non-positive
Lyapunov exponents) appear[11, 12]. However, to our knowledge no examples
of this kind were reported for the conventional autonomous continuous-time
dissipative systems.

In this Chapter we show that singular continuous spectra appear in the au-
tonomous system of three ordinary differential equations [13] which resembles
very much the Lorenz equations. After reviewing the basic properties of cor-
relations and spectra in section 1.2, we describe the system in section 1.3 and
present the data which show that singular continuous spectra can be observed at
the accumulation points of the bifurcation scenarios in which the more and more
complicated homoclinic orbits of the saddle points are progressively formed and
destroyed. Although the scenarios themselves have been studied extensively
[13, 14, 15, 16, 17], the related unusual correlation properties seem to have been
overlooked.

It turns out, that in systems of this kind one encounters at least two dif-
ferent mechanisms, of which each one taken alone already supplies the singular
continuous spectrum. One of them is due to the special symmetry (which may
either be present or not) of the bifurcation scenario as expressed through the
appertaining renormalization rules; as a consequence already the Fourier spec-
trum produced from the symbolic code of the corresponding orbit displays the
required features. The simplest example of such a code is the so-called Thue-
Morse [18, 19] sequence, for which there exists a rigorous proof of the singularity
of the spectral measure. The other, more general mechanism producing a sin-
gular continuous spectrum, requires no symmetry and is associated with the
logarithmic divergence of the return times for the trajectories approaching the
homoclinicity. In physical language, variation of return times is tantamount to
the phase modulation of the process. The corresponding mathematical model -
the so-called special flow - is analyzed in section 1.4.

A curious and highly unusual peculiarity of the considered processes is a
seeming discrepancy between the continuous flow and its discretization obtained
with the help of the Poincaré mapping on a proper surface. As a kind of a coun-
terexample to the conventional belief that the mapping mimics all the dynamical
features of the flow, we present and discuss a situation in which the power spec-
trum of the attractor for the ODE system is singular continuous whereas the
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Poincaré mapping yields a discrete spectrum. Another example demonstrates
different spectral properties of return mappings obtained for two variables in
the very same process: the power spectrum is singular continuous for one of
them and discrete for the other one.

1.2 Basic properties of correlations and spectra

In this section we recall some facts about correlations and spectra (see [20, 21]).
The autocorrelation function (1.1) can be represented as a Fourier transform of
the spectral measure µ(ω):

C(t) =
∫

e−i2πωt dµ(ω). (1.2)

In general, the spectral measure can be decomposed into the pure point and the
continuous component (the possibilities for their simultaneous presence in the
spectrum of a continuous-time dynamical system are discussed e.g. in [22]). In
its turn the latter part can be further represented as a sum of the absolutely
continuous, and the singular continuous components: µ = µp.p. + µa.c. + µs.c..
In the physical language, the pure point component is a set of delta-functions
(discrete spectrum), while the absolutely continuous component has a spectral
density (which is usually called power spectrum). The singular continuous com-
ponent unites all what remains after both the pure point and the absolutely
continuous components are removed, it sits on a set of zero Lebesgue measure,
but is weaker than delta-peaks. To evaluate the intensity of the discrete spec-
trum it proves useful to introduce the averaged squared correlation function as
(we assume that the time is discrete, a generalization to the continuous time is
straightforward):

Cint(t) =
1
t

t−1∑
τ=0

|C(τ)|2. (1.3)

According to Wiener’s lemma (see[20, 21]), the total intensity of the discrete
component of the spectrum is Cint(∞). From the other side, a necessary condi-
tion for the spectrum to be absolutely continuous is the decay of correlations:

lim
t→∞

C(t) = 0. (1.4)

Hence, calculation of the autocorrelation function allows one (at least in simple
cases) to detect singular continuous spectrum. Thus the power spectrum should
be singular continuous if Cint(t) tends to 0 for large t, while C(t) does not: the
former requirement ensures the absence of the discrete component whereas the
latter precludes the presence of the absolutely continuous one. We will make
use of these criteria in our numerical studies below.

Recently it has been shown that the law of decay of the averaged squared cor-
relation function (1.3) is related to the correlation dimension D2 of the spectral
measure µ [23, 24, 25]:

Cint(t) ∼ t−D2 . (1.5)

Indeed, one can expect that for an absolutely continuous spectral measure hav-
ing dimension 1 the sum in (1.3) typically converges, so Cint(t) ∼ t−1 and
D2 = 1, while for a discrete spectrum (zero dimension) Cint does not decay and
relation (1.5) gives D2 = 0.
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1.3 The ODE system, its attractors and their
spectra

To demonstrate the action of the mechanisms which produce “intermediate”
spectral and correlation properties we use the 3-rd order ODE system which is
reminiscent of the Lorenz equations:

ẋ = σ(y − x) + σDy(z −R)
ẏ = Rx− y − xz (1.6)
ż = xy − bz + ax

but may have different scenarios of transition to chaos. This system (see [13] for
the derivation and more detailed description) models the averaged thermal con-
vection in the fluid layer subjected to the transversal high-frequency oscillations
of gravity. Vibrations are known to suppress the small-scale fluid motions[26],
which makes physically plausible the Lorenz-like truncation to one mode (x) for
the velocity field and two modes (y and z) for the temperature distribution. Here
σ denotes the Prandtl number of the fluid, R stands for the Rayleigh number
(normalized to its critical value in the absence of vibrations), b = 4α/(1+α2) is
the geometrical parameter determined by the wavenumber α of the convective
pattern. The additional (with respect to the Lorenz model) term in the first
equation is proportional to the “vibrational parameter” D, given by the squared
ratio of the amplitude of the modulation to its frequency; another modification
is breaking the symmetry (x, y) ⇔ (−x,−y) by means of introduction of the
term ax into the 3-rd equation.

Similarly to the unperturbed Lorenz equations, the transition to chaos in
the equations (1.6) follows the formation of the homoclinic trajectories to the
trivial steady state x = y = z = 0; in the parameter domain D < R−1−R−2 the
latter is a saddle-point with three real eigenvalues λ3 < λ2 < 0 < λ1. Whereas
in the Lorenz case the positive eigenvalue is larger than the absolute value of
the leading (closest to zero) negative one, here the homoclinic bifurcation can
be encountered also in the parameter domain

1
R
− 1

R2
− b(σ + 1− b)

σR2
< D <

1
R
− 1

R2
(1.7)

where λ2 + λ1 is negative. This means that, as opposed to the Lorenz system,
in the vicinity of the saddle point the contraction prevails over the expansion,
and the destruction of homoclinic connections should produce not the unstable
Ω-set [27, 28] but stable closed orbits. The further evolution through more
and more complicated periodic states eventually leads to the emergence of the
chaotic attractor; the structure of the parameter space is enormously rich, with
uncountably many different routes to chaos [15, 16, 17]. We will focus below on
two particular scenarios which seem to be the best-suited for the illustration of
the unusual spectral and correlation properties. In our computations we will fix
the “canonical” Lorenz parameter values σ = 10 and b = 8/3.

1.3.1 Symmetrical case

Let us fix a = 0, and increase R keeping D in the domain (1.7). Owing to the
symmetry (x, y) ⇔ (−x,−y) the homoclinic bifurcation results in gluing of two
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mutually symmetrical stable closed orbits into a single one (Fig.1.1(a)-1.1(b)).
The further sequence consists of the alternating symmetry-breaking bifurcations
and subsequent homoclinic gluings of periodic orbits (Fig.1.1(c)-1.1(d)).
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Figure 1.1: A sketch of the homoclinic-doubling bifurcation in the system(1.6):
two symmetrical stable cycles (a) glue into a homoclinic orbit, which produces
stable symmetrical cycle (b); this cycle loses its symmetry with creation of two
2-loop stable cycles (c), which glue and produce a “period-4” stable cycle (d).

The number of loops of the attracting periodic orbit is doubled at each
homoclinic bifurcation (this is not, however, the period-doubling in the usual
sense, since the time period is infinite at the bifurcation point), and the whole
bifurcation sequence is converging at the universal geometric rate. The renor-
malization treatment of the corresponding one-dimensional discontinuous map
[14, 13] shows that the convergence rate (along with the other scaling character-
istics of this hierarchical process) is entirely determined by the so-called saddle
index: the ratio of the eigenvalues ν = −λ2/λ1. Projection of the resulting
symmetric attractor at the accumulation point of homoclinic bifurcations for
ν = 2.0 can be seen in Fig.1.2. Further increase of R leads to the onset of chaos.
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Figure 1.2: View of the attractor of the system(1.6) at the point of transi-
tion to chaos through homoclinic-doublings. R = 15.8237366768028 . . . , D =
0.052634923195 . . . The Cantor structure of the attractor is clearly seen.
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We now consider the spectral and correlation properties of the system (1.6) at
the transition point. The computed autocorrelation functions for the variables
x and z on this attractor are presented in Fig.1.3. It can be seen that their
shape fulfills the conditions for the spectrum to be singular-continuous: the
correlations themselves do not decay, so the condition (4) is not satisfied; on the
other hand, the averaged squared correlation function decays as a power law.
The plotted data display a remarkable feature: the values of time corresponding
to the largest peaks of C(t) form a geometrical progression: the ratio of the
times is approximately 2. This factor corresponds to the fact that the attractor
is created through homoclinic doublings. However, unlike in the case of the
usual period doublings, the level of correlation remains less than 0.5.
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Figure 1.3: Autocorrelation functions for the variables x (a) and z (c). Note
the logarithmic scale of the time axes. This shape with arguments of the peaks
forming a geometrical progression, is typical for processes with singular contin-
uous spectra. The integrated squared correlation functions (1.3) are presented
in (b) and (d) respectively.

The spectral sums Sn for the same attractor, which were computed with
the use of 2n-points FFT (at a sampling rate 0.1 in the units of dimensionless
time of (1.6)) and subsequent averaging for many realizations, are presented in
Fig.1.4. One notices both the “fractalization” of the spectrum with the growth
of n and the apparent self-similarity in the low-frequency part of the power
spectrum: Sn(ω) ∝ Sn+1(ω

2 ) (Fig.1.5).
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Figure 1.4: Power spectrum of the variable x, calculated for different numbers
of points in the sample N = 2n. With the increase of N the spectrum becomes
more scarred: both the peaks and the depressions grow.
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A common way of reduction of a continuous-time dynamical system to a
discrete one is to consider the Poincaré map on some surface. For the equations
(1.6) it is convenient to introduce this surface near the saddle as depicted in
Fig.1.6.

Figure 1.6: The sketch of the surface of section (the cylinder z2 + y2 = 81) used
to construct the Poincaré map in the system (1.6).

Because of the strong volume contraction the resulting Poincaré map can be
viewed as quasi-one-dimensional, see Fig.1.7. The mapping for the variable x
(Fig.1.7a) is symmetric and discontinuous due to the symmetry of the underlying
ODE system; in case of the variable z (Fig.1.7b) which does not participate in
the symmetry transformation, the mapping is continuous and has a minimum.
Owing to the Cantor-like structure of the attractor, the points do not fill the
lines, but these can be easily interpolated [14, 13].

Calculations of the correlation function C(n) (where the discrete time vari-
able n stands for the number of intersections with the secant) for the corre-
sponding series of the section coordinates, demonstrate that while the spectrum
for the values of x remains singular-continuous (Fig.1.8(a)), the spectrum for z
is discrete (Fig.1.8(c)) precisely in the same way as it should be for the logistic
mapping at the Feigenbaum point[29]. This discrepancy between the properties
of two coupled variables stemming from the same dynamical system is discussed
in the Section 1.3.3 below; detailed analysis of the situation, including the proper
symbolic description, is performed in Chapter 3.
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Figure 1.7: Poincaré maps for the variables x (a) and z (b), obtained with the
surface of section Fig. 1.6 for the attractor Fig.1.2 (the variable x is addition-
ally projected on a line transversal to the stable manifold of the saddle). The
points of the attractor are marked with crosses which are connected by inter-
polation curves. The mapping (c) corresponds to the attractor Fig.1.9, here a
quasiperiodic orbit is dense on the interval.
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Figure 1.9: The view of the attractor of the system(1.6) at the point of transition
to chaos through “quasiperiodicity”

1.3.2 Asymmetrical case

Of many different scenarios, which are possible for a 6= 0 we take the one which
resembles very much the transition to chaos through quasiperiodicity. Without
going into details (see [15, 16, 17, 30]) we should only mention that in the
proper parameter domain one can define the “rotation number” ρ, which for
the closed periodic orbit is the ratio of the number of loops in the half-space
x > 0 to the entire number of the loops. For the non-closed orbit ρ is the
ultimate “proportion” of these loops, i.e. the limit of the respective ratio for
t → ∞. The parameter space can be separated into the “subcritical” domain
for which ρ is independent of the initial conditions, and the supercritical domain
where orbits with different values of ρ may coexist and one should speak rather
about the rotation intervals. These two domains are separated by a “critical”
surface. For the parameter plane the latter is just a curve, and the subcritical
domain is a union of the countable number of “resonant tongues” inside which ρ
is rational and the continuum of curves which correspond to irrational values of
ρ. This structure is reminiscent of the Arnold tongues for the circle mappings;
however in our case all the tongues and all the irrational curves emanate from
one and the same point; another difference is that at the edges of the tongues
the periodic orbits are not necessarily coalescing via the tangent bifurcation,
but may also disappear through the formation of the multi-turned homoclinic
orbit.

Let us fix some irrational value of ρ and move on the parameter plane along
the corresponding curve towards the critical line. The respective attracting set
at the critical point of transition to chaos for the “reciprocal golden mean” ro-
tation number ρ = (

√
5−1)/2 is presented at Fig.1.9; the parameter values R =

14.148796861 . . . , D = 0.054334761974059106 . . . , a = −0.561287331738 . . .
correspond to ν = 1.5.

One sees that, in contrast to the Cantor-like attractor from Fig.1.2, this set
looks dense on the transversal section. The Poincaré section resembles very
much the critical circle map (with the only difference that the singularity is
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Figure 1.10: Autocorrelation functions for the variable x of the attractor Fig.1.9.
C(t) has a typical form for the case of singular continuous spectrum with peaks
forming a geometrical progression. The factor of this progression is the golden
mean, according to our choice of the rotation number.

generally not cubic, but has an order ν) [17, 30]; insofar as the rotation number
is irrational, the attracting orbit is everywhere dense on the interval (Fig.1.7c).
Correspondingly, the spectrum of the variable xn discretized in this way, con-
tains the pure-point component only. However the calculation of the auto-
correlation function of the underlying continuous-time process x(t) (Fig.1.10)
demonstrates that its power spectrum is singular continuous.

1.3.3 Two mechanisms for the singular continuous spec-
trum

The numerical results presented above suggest that at least two distinct mech-
anisms are responsible for the appearance of singular continuous spectra.

1. The first mechanism is the one which ensures the singular continuous
spectrum for the variable x in the symmetric case. Producing the same results
for both the continuous flow and the sequence of the Poincaré sections, it ob-
viously does not depend on the dynamical time properties of the process, and
hence may be called the geometric mechanism. Not only the reduction to the
mapping, but already the symbolic representation of the orbit of such mapping
possesses the same spectral properties. Let us ascribe the symbol L(R) to each
loop in the half-space x < 0 (x > 0). On the symbolic language each homoclinic
bifurcation is the concatenation (gluing) of some finite symbolic sequence with
its mirror counterpart: the same sequence in which all R’s are substituted by
L’s and vice versa. Thereby the scenario of the change of the attractor’s code is

R → RL → RLLR → RLLRLRRL → . . .
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The resulting infinite symbolic code which is obviously invariant under the trans-
formation R → RL, L → LR, is known as the Thue-Morse sequence[18, 19].
From the mathematical literature it is known that this sequence has a singular
continuous Fourier spectrum[21]; multifractal characteristics of its spectral mea-
sure will be investigated in Chapter 2 below. There exists a number of studies
on the applications of the Thue-Morse sequence to different physical systems
[31, 32, 33], however to our knowledge in all of these examples the sequence was
prescribed externally – either as external forcing, or as a prepared pattern of the
lattice. In our case this sequence appears as a result of the intrinsic dynamics
of the system, which owes to the mirror symmetry of the original equations.
The correlation and spectral properties of this symbolic code are readily trans-
ferred to the values of the Poincaré sections for the variable x and, finally, to
the continuous process x(t).

Along with the described scenario which yields the “pure” Thue-Morse se-
quence, one can follow in the parameter space certain other bifurcational se-
quences where the geometric mechanism is at work. We will briefly mention
just two possibilities. For the general asymmetric case each intersection on the
parameter plane of two curves corresponding to the formation of multi-looped
homoclinic orbits, produces the pencil of lines marking the secondary homo-
clinic bifurcations [16, 17]. Let the symbolic codes of the primary multi-looped
orbits be two words of some finite (and not necessarily equal) length l1 and l2
respectively, the first letter being R in one of them and L in the other. Since
the codes of the new homoclinic orbits are obtained by concatenation of these
two words, it is straightforward to re-define the coding rules: let us take two
given words as the initial blocks and denote them by R and L respectively. Now
one may trace the new sequence of homoclinic doublings (the corresponding
orbits have (l1 + l2)2n−1 loops) and locate at some distance its accumulation
point, where the symbolic code of the attracting trajectory can be reduced to
the conventional Thue-Morse form by the single symbolic renormalization.

The other example is provided in the symmetric case a = 0 by the sequences
of “homoclinic m-tuplings”, which converge to the parameter values where the
symbolic code is invariant with respect to the substitution R → RLm−1, L →
LRm−1. For m = 2 one gets the scenario of homoclinic doublings described
above, which provides the Thue-Morse code; symbolic sequences for the higher
values of m also demonstrate singular continuous spectral properties, and this
is immediately mirrored by the corresponding characteristics of the trajectories
for the continuous flow (1.6).

It is noteworthy that one can find the Thue-Morse sequence even in a
much simpler dynamical system: consider the symmetrical cubic mapping x →
Ax(x2 − 3). This mapping has three intervals of monotonicity: x < −1, −1 <
x < 1 and x > 1, which provides the natural coding by symbols L, C, and R
respectively. For the particular choice of the parameter a = 0.9659413915688 . . .
the stable orbit starting at the point x = 1 does not visit the central segment,
and its symbolic coding which is composed of R’s and L’s only, is organized
into the Thue-Morse sequence. No wonder that at this parameter value the
Fourier spectrum of the attracting trajectory for the continuous cubic mapping
is singular continuous (Fig.1.11).

2. The second mechanism which ensures the onset of singular-continuous
spectra, is at work for the variable z in the symmetric case and for all the vari-
ables in the absence of symmetry. Here the discretized and the continuous-time
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Figure 1.11: Autocorrelation function for the mapping x → Ax(x2 − 3).

processes have qualitatively different spectra. The reason for the difference must
lie in the properties of the return times between the consecutive Poincaré sec-
tions; therefore it is natural to call this mechanism the dynamical one. Indeed,
the Poincaré map for the considered ODE system, as well as for the Lorenz
equations, is singular: it is not defined at the intersection of the secant surface
with the stable manifold of the saddle point. The behavior of return times is
also singular: as the point of section approaches the stable manifold, the re-
turn time diverges logarithmically. As a result, one cannot speak about the
characteristic return time (as it would be the case for period-doublings); insofar
as the orbit should pass arbitrarily close to the saddle point, the return time
may be arbitrary large. We conjecture that this singularity is responsible for
the singular continuous nature of the spectrum. To support this conjecture we
perform in the following section the analysis of the idealized dynamical system
– the so-called special flow.

1.4 The special flow

In this section we intend to demonstrate that the logarithmic singularity of the
return times alone provides the singular continuous spectrum. For this purpose
we consider an idealized process, for which it is possible to separate properties of
the Poincaré map and of the return times. The construction we use is a variant
of the so-called special flow, typically used in studies of ergodic properties of
continuous-time dynamical systems[20]. The special flow over the map x → f(x)
of the interval 0 ≤ x < 1 is defined as follows. Consider the piece of the plane
0 ≤ x < 1, 0 ≤ y < F (x). The trajectory starting from the initial point
x(0), y(0) is defined as

x(t) = fn(x(0)), y(t) = y(0) + t−
n−1∑

k=0

F (fk(x(0))) (1.8)

where integer n as a function of continuous time t is uniquely defined from the
inequalities

n−1∑

k=0

F (fk(x(0))) ≤ y(0) + t <

n∑

k=0

F (fk(x(0))).
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Figure 1.12: Geometric representation of the special flow construction
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Figure 1.13: Process with pure phase modulation, generated by the special flow.

The geometrical representation of the special flow is the following (see Fig.1.12):
a trajectory moves on the plane x, y upwards with unit velocity, until the value of
y reaches the border y = F (x), then the trajectory jumps to the point (f(x), 0)
and begins to move upwards again. One can see that the special flow has the
map x → f(x) as the Poincaré map, and the return times are given by the
function F (x).

The variable x can be considered as the amplitude and the ratio y/F (x) as
the phase of the continuous-time dynamical process. The amplitude modulation
is determined by the Poincaré map, while the phase modulation depends also
on the properties of the return times F (x). By choosing an observable which
depends only on the phase, e.g. w = cos(2πy/F (x)), we can select properties of
the continuous dynamics that are connected with the distribution of the return
times: for this observable the amplitude modulation vanishes (see Fig.1.13).

These properties are completely defined by the Poincaré map x → f(x) and
by the function F (x). We consider the two cases:
1) f(x) is the logistic map at the point of transition to chaos1

2) f(x) is a circle map with irrational rotation number.
1Although in real systems the Poincaré map is invertible, at the point of accumulation of

period doublings it can be good approximated with a one-dimensional parabola-type mapping.
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Figure 1.14: Autocorrelation functions for the processes with logarithmic sin-
gularities in return times constructed with the special flows over the logistic
(a) and circle (c) maps. The corresponding averaged squared correlation func-
tions (b) and (d) decay as powers of time, indicating the existence of singular
continuous spectrum.

In both cases the spectrum of the Poincaré map of the variable x is discrete.
While with a smooth function F (x) the spectrum of the variable w remains
discrete [34, 35], it can become continuous if F is singular. Von Neumann
proved in [36] that in the second case a discontinuous F (x) can generate a
process with continuous spectrum. The mixing properties of the special flow
when the function F has a logarithmic singularity F (x) ∼ − log |x − x0| were
studied in refs. [37, 38], however to our knowledge, the characteristics of the
Fourier spectrum have not been considered.

We have investigated numerically the correlation properties of the process
w(t) in the presence of a logarithmic singularity for the cases (1) and (2)
described above (a renormalization group analysis of this problem is now in
progress). The results are presented in Fig.1.14. They clearly demonstrate,
according to the criteria discussed in section 1.2, that special flows with a loga-
rithmic singularity have singular continuous spectra. It seems that for the circle
map, where trajectories are dense on the interval, the location of the logarithmic
singularity is irrelevant. For the Feigenbaum map the attractor is a Cantor set,
so the singularity should not fall in a gap. In order to model the ODE system
close to the homoclinicity, the singularity must be placed at the extremum of
the map, and this point belongs to the Feigenbaum attractor.

Thus, consideration of special flows allows us to conclude, that a logarithmic
singularity in return times can provide a singular continuous spectrum, even if
the spectrum of the Poincaré map itself is discrete. For the system of ODEs
considered above, this mechanism works for the variable z in the symmetrical
case, and in general in the asymmetrical case.

1.5 Summary

In this chapter we have demonstrated that singular continuous spectra can be
observed in certain autonomous dissipative dynamical system at the point of
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transition to chaos. In the investigated ODE system we found two different
mechanisms which are responsible for these spectra. The first mechanism, being
purely geometrical, works equally well for both discrete-time and continuous-
time dynamics; it is connected with the appearance of the particular symbolic
code – the Thue-Morse sequence (or its generalizations). The second mechanism
which owes to the dynamics of the return times, affects only the continuous-time
systems, and is connected with singular phase modulation, when the process
consists of pulses of different length. The amplitudes of the pulses are de-
scribed by a corresponding Poincaré map and behave quasiperiodically (when
the map is equivalent to a circle map with irrational rotation number) or almost
periodically (when the map has the Feigenbaum-like attractor). The singular
continuous spectrum appears, when the dependence of the duration of pulses
on their amplitude has a logarithmic singularity. Such a singularity is present
in the considered ODE system because the closure of the attractor includes the
saddle point, in which neighbourhood the trajectories “stick” for a long time.
As a consequence, the spectral properties of the continuous flow differ from
those of the mapping. From the results of von Neumann [36] it follows that
the singularity of phase modulation may be even weaker, in some cases a dis-
continuity in the dependence of return time on the amplitude is enough for the
spectrum to be continuous. Presently, however, we do not have an example of
an autonomous dynamical system, in which a discontinuity of return times is
responsible for a singular continuous spectrum.



Chapter 2

On the generalized
dimensions for the Fourier
spectrum of the
Thue-Morse sequence

2.1 Introduction

The Thue-Morse infinite binary sequence {Mj}, (j = 1, 2, . . .) is formed by two
symbols (in our notation, 1 and -1) and can be obtained from the starting point
M1 = 1 by means of repetitive substitutions (inflations) according to the rule
[18, 19]:

1 → 1 −1
−1 → −1 1 (2.1)

Several equivalent definitions are possible, for instance, Mj = (−1)k+1 where
k is the sum of digits in the binary representation of j. Yet another definition
(which we will exploit below) is based on concatenations. This goes as follows:
given a symbolic string Kn of length 2n we append to it the string Kn in
which each symbol “1”of Kn is replaced by “–1” and vice versa; the recursion
Kn+1 = KnKn combined with the initial condition K0=1 yields the Thue-Morse
sequence.

With respect to a shift along the symbolic chain, the Thue-Morse sequence
supports a unique translation-invariant ergodic probability measure [39]. Al-
though organized by a simple deterministic rule, the Thue-Morse sequence is
not periodic. The Fourier spectrum (in physical applications the term “struc-
ture factor” is frequently used) of the infinite chain is long known to be purely
singular continuous [40, 21]: the spectral measure is neither atomic (discrete)
nor absolutely continuous with respect to the Lebesgue measure, but is concen-
trated on a fractal set. This convenient combination of computational simplic-
ity and intrinsic complexity turned the Thue-Morse sequence into a standard
tool, widely exploited in the context of long-range ordering and disordering in
one-dimensional patterns. To mention only a few recent applications, it was

23
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prescribed as a governing law for the external force in a kicked quantum rotator
[33, 41] and served as a ground state configuration for the classical lattice gas
model [42] and Ising spin system with short interaction[43]. In the description
of the critical phenomena for the aperiodic quantum Ising lattices [44, 45, 46] it
dictated the constants of exchange coupling. Further, the Thue-Morse sequence
played a role of a one-dimensional potential for the discretized Schrödinger equa-
tion in the study of the gaps distribution in the energy spectrum [31], and its
singular spectra have been recovered in the diffraction patterns of the specially
prepared GaAs-AlAs superlattice heterostructures [32, 47]; the latest advances
in this direction are thoroughly discussed in [48] (where also the exhaustive list
of appertaining references can be found). Finally, the Thue-Morse symbolic
code of the attractor at the accumulation point of the sequence of “homoclinic
doublings” in symmetrical flows with saddle equilibria [14, 13] was recently un-
derstood as one of the mechanisms responsible for the generation of singular
continuous spectra in continuous dissipative systems [49].

2.2 Correlation dimension of the Fourier spec-
trum

The multifractal properties of the Fourier spectrum for the Thue-Morse sequence
have been investigated by Godrèche and Luck [50], who determined numerically
the generalized dimensions Dq and the singularity spectrum f(α) for the spec-
tral measure (see also a recent application of the wavelet technique in [51]).
Apparently, the box-counting dimension D0 equals 1 (the fractal set which car-
ries the spectral measure, is dense); estimation of Dq for the general case q 6= 0
requires extensive numerical computations. In this section we explicitly cal-
culate the value of the correlation dimension D2 for the spectral measure. In
doing this, we utilize the exact relation Cint(T ) ∼ T−D2 derived in [23, 24, 52]
which binds the properties of the (integrated) autocorrelation to the value of
D2. Thus the direct evaluation of D2 from the Fourier spectral data can be
replaced by the estimation of the decay rate for the integrated autocorrelation;
as shown below, the self-similarity of the Thue-Morse sequence allows to deter-
mine this rate analytically (note that autocorrelation function generically does
not depend on the choice of observable, so we simply put xj = Mj).

By construction the Thue-Morse sequence is invariant under the substitution
(2.1) and under the inverse operation of “binary decimation”: crossing out each
even symbol. This is reflected in the recurrence properties of the correlation
function:

∑
j MjMj+t =

∑
j MjMj+2t and, respectively,

C(2t) = C(t). (2.2)

This ensures repetitive non-decaying peaks for arbitrary large values of t (and
thus prohibits the spectrum to be absolutely continuous with respect to the
Lebesgue measure: the necessary condition of such continuity is the decay of
correlations for t →∞ [53, 20]). The analogous recurrence relation for the odd
argument values follows from the invariance of the infinite sum

∑
j MjMj+2t+1

under the binary decimation. After decimation, the odd symbols remain un-
changed whereas the even ones are replaced by their counterparts (1 by −1 and
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vice versa), hence the pairwise products acquire the opposite sign. Consequently,

C(2t + 1) = −C(t) + C(t + 1)
2

. (2.3)

The relations (2.2, 2.3) combined with “initial condition” C(0) = 1 allow one
to obtain the exact values of C(t) for any value of t. They ensure that the
inequality |C(t)| ≤ 1

3 holds for all t (naturally, except for C(0)=1).
Consider now the recurrences between the sums Sn ≡

∑2n
n+1 C2(t) for n =

m, 2m, 4m, . . ., m - arbitrary positive integer. On applying (2.2) and (2.3) to
the even and odd terms in S4m respectively, we obtain

S4m = S2m +
S2m

2
+

1
2

4m−1∑
2m

C(t)C(t + 1) (2.4)

Denoting the last term in the right hand size of (2.4) by Π2m and transforming
it with the help of (2.2, 2.3), we arrive at

Π2m = −
2m−1∑

m

(
C2(t) + C(t)C(t + 1)

)
. (2.5)

Thus we are left with the two coupled linear recurrences

S2j =
3
2
Sj +

1
2
Πj

(2.6)
Π2j = −Sj −Πj

Introducing further the variables κj ≡ S2j/Sj and ξj ≡ Π2j/Sj and noticing
that the equality κj(ξj + 2) = 2 is independent of j, we end up with a simple
one-dimensional mapping

κ2j =
1
κj

+
1
2

. (2.7)

which in the domain κ > 0 (only this is of relevance, since Sj >0) has the globally
attracting fixed point κ∗ = 1+

√
17

4 =1.280776406. . .. Therefore, for large j holds:
Sm2j ∝ (κ∗)jSm. Let us turn now to the integrated autocorrelation Cint(T ).
Since this function is by definition a ratio of two monotonous functions of T , it
is easy to see that, irrespectively of T , the inequality

Cint(2T )
2

< Cint(t) < 2Cint(T ) (2.8)

holds for any t from the interval (T, 2T ). Obviously, for the values T = 2nm
under large n

Cint(T ) =
1 +

∑n
j=1 Sm2j

m2n
∝ T

log κ∗
log 2 −1 . (2.9)

In combination with (2.8), this ensures the power-law decay of Cint(T ). Ac-
cording to Wiener [53], vanishing of Cint(∞) implies the absence of the discrete
component in the spectrum. Consequently, the spectral measure for the Thue-
Morse sequence is purely singular continuous, and its correlation dimension
equals:

D2 = 1− log κ∗
log 2

= 3− log(1 +
√

17)
log 2

= 0.64298136 . . . (2.10)
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Cf. the values of other generalized dimensions: the capacity D0=1 and the
information dimension D1=0.730 (numerical value).

The fact that the relation (2.9) is independent of m, implies that the prefac-
tor before T 1−D2 on the right hand size of (2.9) must tend to a periodic function
of the logarithmic variable log T/ log 2. Our numerical estimates, however, show
the influence of this time-dependence to be rather weak: the prefactor oscillates
log-periodically between 0.75 and 0.77.

The same procedure can be implemented for other symmetrical substitu-
tion sequences, for instance, for the m-tuplings: A → ABm−1, B → BAm−1.
Obviously, the case m=2 yields the Thue-Morse sequence. For m=3 the auto-
correlation function obeys the recurrences

C(3t) = C(t), C(3t + 1) = −C(t + 1)
3

, C(3t + 2) = −C(t)
3

and the correlation dimension of the spectral measure equals 3− log 11
log 3 =0.8173. . ..

For m=4 one has:

C(4t) = C(t), C(4t + 1) = −C(4t + 3) =
C(t)− C(t + 1)

4
, C(4t + 2) = 0

and D2 = 5
2 − log(3+

√
41)

log 4 =0.8834. . .. Higher values of m can be treated in a
similar way.

We expect that the knowledge of recurrent properties for the autocorrelation
function of substitution symbolic sequences (the obvious (2.2) is commonly used,
but the less evident relations like (2.3) seem to be overlooked) and that of
the exact values like (2.10) can be helpful in answering many subtle questions
which arise in the context of one-dimensional “quasicrystals” in substitutional
systems with various bond-length ratios [54, 55], extended electronic states in
one-dimensional lattices [56], and kicked quantum systems with corresponding
potentials [33, 41].

2.3 Spectral measure

Since the Thue-Morse sequence plays a prototypic role for weakly aperiodic sys-
tems, the exact knowledge of the characteristics of its spectral properties is of
especial methodical interest. In the previous section we utilized the relation
between the decay rate of the integrated autocorrelation function and the cor-
relation dimension D2 of the spectral measure [23, 24] to obtain the exact value
of the correlation dimension D2 for the spectral measure of the Thue-Morse
sequence: D2 = 3 − log(1 +

√
17)/ log 2 = 0.64298 . . . [57]. Below, we will use

a different approach and express the values of the generalized dimensions Dq

for integer q through the leading eigenvalues of the appertaining q× q matrices.
Further, we generalize the results of [23, 24] by relating Dq to the growth rates
of the higher products of the values of the autocorrelation function. The case
of the information dimension D1 does not conform to this scheme; we present
the series which allows to calculate it to arbitrary precision.

A generic observable built from the Thue-Morse sequence should attain
only two values. Therefore, the spectral properties do not depend on the
choice of the observable, and we select the most convenient one: the value
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of Mj = ±1 itself. Let us take the value ω (0 ≤ ω ≤ 1) and consider the
partial Fourier sums formed by the first ln = 2n symbols of the sequence:
σn(ω) =

∑2n

j=1 Mje2πijω, and the finite-length approximations to the power
spectrum Sn(ω) = 2−n|σn(ω)|2. The concatenation rule through which the
Thue-Morse sequence is built, implies σn+1(ω) = σn(ω)(1 − e2n+1πiω) and, re-
spectively, Sn+1(ω) = Sn(ω)(1−cos 2n+1πω). The evolution of Sn(ω) under the
growing n allows to conclude both on the nature of the power spectrum at the
given point ω and on the global distribution of the spectral measure µ:

µ(ω) = lim
n→∞

Sn(ω) = lim
n→∞

n−1∏

j=0

(1− cos 2j+1πω) (2.11)

The properties of µ(ω) can be reconstructed from the asymptotic features of the
infinite product (2.11) (also called the Riesz product [21]). It is straightforward
to see that Sn(ω) vanishes at ω = 2−km for n ≥ k + 1 and arbitrary integer
m, k [50]. For all the other rational values of ω, the ratio ρ = Sn+1(ω)/Sn(ω)
oscillates periodically with n. (These oscillations are preceded by a a transient
whose length equals the multiplicity of the factor 2 in the factorization of the
denominator of ω). When the geometric mean value 〈ρ〉 over the period of
oscillations exceeds 1, the spectral sums Sn grow “on the average”: Sn ∼ 〈ρ〉n
or, in terms of the length of the symbolic string, Sn ∼ lγn where the growth
rate γ equals log〈ρ〉/ log 2. However, no values of ω enable the delta peaks in
the spectrum (or, in the diffraction jargon, the “Bragg peaks”): this would
require γ = 1. This means that the discrete (atomic) component is absent in
the spectrum. The fastest growth and, respectively, the largest γ is attained
at ω = 2−km/3 (of course, m should not be a multiple of 3); in this case
γ = log 3/ log 2 − 1 = 0.584 . . .[50]. Already this subset of ω-values is dense on
the interval [0, 1]; this fact alone is sufficient to ensure that the capacity (box-
counting dimension) D0 of the set which carries the spectral measure, equals 1.
However, since the latter measure is not absolutely continuous with respect to
the Lebesgue measure, the other generalized dimensions Dq can differ from 1.

To describe the multifractal properties of µ(ω), an appropriate partition of
the interval [0, 1] should be introduced. A standard way (see e.g. [50] where this
formalism was applied to spectral measures) is to divide the unit interval into
N small boxes of the length ε = 1/N , so that the probability to locate measure
in the k-th subinterval is pk =

∫ kε

(k−1)ε
µ(ω)dω. The partition function is defined

for any real number q as Z(q, ε) =
∑N

k=1 pq
k. Assuming under the fixed q the

scaling law Z(q, ε) ∼ ετ(q), we arrive in the standard way [50] at the generalized
(Rényi) dimensions: Dq = τ(q)/(q − 1).

Since the normalization condition
∫ 1

0
Sn(ω)dω = 1 holds for every n, we can

use a sequence of Sn(ω) as approximations to the probability density. In its
turn, this provides a sequence of approximations

Z̃(q, ε, n) =
1/ε∑

k=1

(∫ kε

(k−1)ε

Sn(ω)dω

)q

to the partition function. As ε tends to zero, we can replace in these approxi-
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mations summation by integration:

Z̃(q, ε, n) = εq−1

1/ε∑

k=1

(
1
ε

∫ kε

(k−1)ε

Sn(ω)dω

)q

ε → εq−1

∫ 1

0

Sq
n(ω)dω (2.12)

Apparently, infinite decrease of ε under fixed finite n makes no sense: in this
way, one would approach the smooth Sn(ω) and obtain trivial scaling τ = q−1.
The decrease of ε should be combined with the simultaneous increase of n; this
refinement of the partition allows to explore the asymptotical fine structure of
µ(ω). According to Eq.(2.11), the resolution in frequency domain for Sn+1(ω)
is twice as good as that for Sn(ω). Respectively, seeking for the asymptotic
scaling properties, one should compare Z̃(q, ε, n) with Z̃(q, ε

2 , n + 1). Therefore
τ(q) under fixed n and ε is evaluated as

−(log 2)−1 log
Z̃(q, ε

2 , n + 1)

Z̃(q, ε, n)
(2.13)

which, taking into account the asymptotics (2.12), yields finally

Dq =
τ(q)
q − 1

= 1− log λ(q)
(q − 1) log 2

(2.14)

where the growth rate λ(q) is given by

λ(q) = lim
n→∞

∫ 1

0
Sq

n+1(ω)dω∫ 1

0
Sq

n(ω)dω
= lim

n→∞

∫ 1

0

(∏n
k=0(1− cos(2k+1πω)

)q
dω

∫ 1

0

(∏n−1
k=0(1− cos(2k+1πω)

)q

dω
(2.15)

In this way, computation of the generalized dimensions Dq has been reduced to
the evaluation of λ(q).

2.4 Generalized dimensions Dq for integer values
of q

In general, the only way to find the value of λ(q) seems to be the direct numerical
integration of numerator and denominator in Eq.(2.15) with subsequent extrap-
olation to the limit n →∞. However, the case of integer values of q > 1 admits a
simplification. The 2n terms in the expansion of Sn(ω) into cos 2πkω range from
k = 0 to k = 2n−1. Respectively, for integer q > 0 the cosine-expansion of Sq

n(ω)
contains the terms until cos 2π(2n − 1)qω: Sq

n(ω) =
∑q(2n−1)

k=1 b
(n)
k cos 2πkω.

Let us pick out from the set of the coefficients {b(n)
k } the subset which corre-

sponds to the multiples of 2n: a
(n)
j ≡ b

(n)
j×2n , j = 0, 1, . . . , q−1. Obviously, of the

whole expansion only the ω-independent term a
(n)
0 contributes to the integrals

in (2.15), and λ(q) equals limn→∞ a
(n+1)
0 /a

(n)
0 . When we proceed from Sn to

Sn+1, the coefficients a
(n+1)
j at cos 2πj2n+1ω come into the consideration. By

combinatorial arguments it can be easily shown that each of a
(n+1)
j is a linear

combination of a
(n)
k : thus, for q = 2 we have

a
(n+1)
0 =

3
2
a
(n)
0 − a

(n)
1
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(2.16)

a
(n+1)
1 =

1
2
a
(n)
0 − a

(n)
1

for q = 3 the recursion relations are

a
(n+1)
0 =

5
2
a
(n)
0 − 15

8
a
(n)
1 +

3
4
a
(n)
2

a
(n+1)
1 =

3
2
a
(n)
0 − 2a

(n)
1 +

5
2
a
(n)
2 (2.17)

a
(n+1)
2 = −1

8
a
(n)
1 +

3
4
a
(n)
2

and so on. In case of Sq one has to do with the q × q matrix, whose elements
are combinations of binomial coefficients with the coefficients of expansion of
cosn x into cos jx. Although the general expressions are rather complicated, the
computation of the matrix elements for not too large q is straightforward.

Since the relations (2.16),(2.17) etc. are linear, λ is simply the largest eigen-
value of the corresponding matrix and can be found from the respective char-
acteristic equation. For q = 2 the equation is

λ2 − λ

2
− 1 = 0 (2.18)

which yields λ = (1 +
√

17)/4 = 1.28077064 . . . and D2 = 1 − log λ/ log 2 =
0.642981 . . ..

For q = 3 we have

λ3 − 5
4
λ2 − 3

2
λ− 1 = 0 (2.19)

and, respectively, λ = 1.777389781 . . . and D3 = 0.58511995 . . .; for q = 4 the
characteristic equation is

λ4 − 13
8

λ3 − 55
16

λ2 +
17
8

λ + 1 = 0 (2.20)

with λ = 2.579911342 . . . and D4 = 0.5442261703 . . ., etc.

2.5 Generalized dimensions through the auto-
correlation function

The same results can be expressed in terms of the autocorrelation functions.
Being merely the Fourier transform of the power spectrum, C(t) can be easily
recovered from the spectral sums. In this sense, casting the Riesz product into
the form of the trigonometric sum immediately yields the cosine-transform of the
power spectrum and is especially convenient: let c

(n)
j = 2

∫ 1

0
Sn(ω) cos(2πjω)dω

denote the coefficient at cos 2πjω in Sn, then

C(j) =
1

2− δ0j
lim

n→∞
c
(n)
j (2.21)

(the factor 1
2 at j 6= 0 enters the expression because Sn includes the contributions

of both C(j) and C(−j) ).
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This presentation allows to reformulate the above analysis of the growth of
the coefficient a

(n)
0 in the expansions of Sq

n(ω). In the q-th power of the cosine-
transform of Sn(ω), the ω-independent part is formed by the product terms
with the vanishing net sum of trigonometrical arguments. Respectively, in the
time domain the integral

∫ 1

0
Sq

n(ω)dω is represented by the sum of the products
of q values of C(j):

U(q, T ) =
∑

|j1|+|j2|+...+|jq−1|<T

C(j1)C(j2) . . . C(jq−1)C(−j1 − j2 − . . .− jq−1)

(2.22)
where T is the length of the segment of the symbolic string, contributing to
Sn. This sum grows with T according to the power law: U(q, T ) ∼ Tκ(q) where
κ(q) = log λ(q)/ log 2. Respectively,

Dq = 1− κ(q)
q − 1

(2.23)

The expression (2.23) relates the Rényi dimensions of the spectral measure Dq

for integer q with the growth law for the sums of q−products of the values of
the autocorrelation function. For the case q = 2 it is equivalent to the formula
derived in [23].

2.6 Cases of q → 0 and large q

In case of small q the growth rate λ can be computed explicitly:

λ(q) = lim
n→∞

1 + q
∫ 1

0
log Sn+1(ω)dω

1 + q
∫ 1

0
log Sn(ω)dω

+ O(q2)

= 1 + q

∫ 1

0

log
Sn+1(ω)
Sn(ω)

dω + O(q2) (2.24)

= 1− q log 2 + O(q2)

For the generalized dimension this yields:

Dq = 1− log λ

(q − 1) log 2
= 1− q + O(q2) (2.25)

In the opposite limit q →∞ the dominating contribution into
∫ 1

0
Sq

n(ω)dω is
made by the values of ω which enable the fastest growth of the local finite-length
approximations Sn(ω). The peaks in Sn+1 which belong to the most rapidly
growing family are 3/2 times higher than the peaks at the same places in Sn;
at the same time, due to the improvement of the spectral resolution, the width
of these peaks is halved. Therefore, λ ∼= 1

2 (3/2)q. Respectively,

Dq
∼= q

q − 1

(
2− log 3

log 2

)
(2.26)

As q grows, Dq tends to D∞ = 2− log 3/ log 2 = 0.415037 . . ..
In fact, already moderate values of q are “large” enough: thus, the exact

value of D4 quoted above differs from the estimate (2.26) by less than 0.01; in
case of q = 6 this difference is less than 0.0007, and for q = 8 it is even less than
0.00007.
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2.7 Information dimension D1

The case q = 1 should be treated separately. Differentiation of numerator and
denominator in (2.14) provides the expression for the value of the information
dimension:

D1 = 1− 1
log 2

lim
n→∞

∫ 1

0

(Sn+1(ω) log Sn+1(ω)− Sn(ω) log Sn(ω)) dω (2.27)

Let us transform the integral in this expression:

∫ 1

0




n+1∏

j=1

(1− cos 2jπω)
n+1∑

j=1

log(1− cos 2jπω)

−
n∏

j=1

(1− cos 2jπω)
n∑

j=1

log(1− cos 2jπω)


 dω =

∫ 1

0

Sn(ω) log(1− cos 2πω)dω (2.28)

−
∫ 1

0

cos 2πω

n∑

j=2

log(1− cos 2jπω)dω

+
∫ 1

0




n+1∏

j=2

(1− cos 2jπω)
n+1∑

j=2

log(1− cos 2jπω)

−
n∏

j=1

(1− cos 2jπω)
n∑

j=1

log(1− cos 2jπω)


 dω

Of the three integrals, the last one vanishes, since the contributions of its first
and second parts mutually balance each other. Similarly, the second integral
vanishes because

∑n
j=2 log(1 − cos 2jπω) does not contain terms proportional

to cos 2πω: its cosine-expansion starts with cos 4πω. Thus, the only remaining
part is the first term

∫ 1

0

Sn(ω) log(1− cos 2πω)dω = − log 2−
2n−1∑

j=1

c
(n)
j

j
(2.29)

where c
(n)
j , as above, is the coefficient at cos 2πjω in Sn. Taking into account

Eq.(2.21) which relates c
(n)
j to the values of the autocorrelation function C(j),

we get

D1 = 1−
− log 2− limn→∞

∑2n−1
j=1

c
(n)
j

j

log 2
= 2 +

2
log 2

∞∑

j=1

C(j)
j

(2.30)

Thus the problem is reduced to the estimation of the value Λ ≡ ∑∞
j=1 C(j)/j.

The invariance of the infinite Thue-Morse sequence with respect to the in-
flation and the inverse operation of binary decimation imposes the recurrent
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relations on the values of the autocorrelation function [40, 57]:

C(2j) = C(j), C(2j + 1) = −C(j) + C(j + 1)
2

(2.31)

which, combined with the normalization condition C(0) = 1, allow to compute
C(j) for every value of j: C(2n) = −C(3×2n) = −1/3, C(5×2n) = C(7×2n) =
0, C(9× 2n) = −C(11× 2n) = 1/6, and so on (n = 0, 1, . . .). This information
alone does not allow to obtain Λ in a closed form. The series in (2.30) converges
slowly (∼ j−1); however, the recursions (2.31) allow to implement the “internal
summation” which leads to the noticeable (in principle, indefinite) acceleration
of the convergence. Let Ξ be a sum

Ξ = a +
∞∑

j=1

f(j)C(j) (2.32)

where a is a constant and f(j) is some function of j. Transforming this expres-
sion with the help of (2.31), we obtain

Ξ = a− f(1)
2

+
∞∑

j=1

2f(2j)− f(2j − 1)− f(2j + 1)
2

C(j) (2.33)

This provides the iteration scheme:

am+1 = am − fm(1)
2

(2.34)

fm+1(j) =
2fm(2j)− fm(2j − 1)− fm(2j + 1)

2
(2.35)

where, in order to compute Λ, we should start with a0 = 0 and f0 = 1/j.
Since the expression on the right of Eq.(2.35) is the (rescaled and shifted)

finite-difference approximation for the second derivative of fm(j), the result of
k iterations of Eq.(2.34,2.35) provides a series in C(j) whose coefficients fk(j)
converge as j−1−2k. Successive transformations yield

Λ = −1
2
−

∞∑

j=1

C(j)
2j(4j2 − 1)

= − 5
12

+
∞∑

j=1

(96j2 − 9)C(j)
4j(4j2 − 1)(16j2 − 1)(16j2 − 9)

= . . .

(2.36)
Although the further expressions are too cumbersome to quote them explicitly,
their derivation is straightforward and can be easily performed with every pro-
gram for symbolic computations. Already after the 7-th iteration the coefficients
at C(2), C(3) and C(4) have an order of, respectively, 10−15, 10−18 and 10−20,
and it is enough to take the first two terms in the series (that is, a(7) and the term
at C(1)), in order to produce Λ with 14 correct digits: Λ = −0.43995518283629
and, respectively, D1 = 0.73055767901739 . . .

2.8 Discussion

The approach which we have proposed above, is not restricted to the particu-
larities of the Thue-Morse sequence. In the general case, as soon as the building
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rules of the symbolic sequence allow to explicitly interrelate the consecutive ap-
proximations Sn(ω) and Sn+1(ω) to the spectral measure µ(ω), the same tech-
nique can help to extract the generalized dimensions from the corresponding
characteristic equations.

Similarly, the expression (2.23) which relates the generalized dimensions to
the growth rate of the products of the autocorrelation function values, remains
valid for a broad class of problems and can be applied not only to binary sym-
bolic sequences but to general (stationary) datasets of computational or exper-
imental origin. In case of processes with singular continuous or mixed Fourier
spectra the direct evaluation of spectral sums (and thereby of the set which
supports the spectral measure) is sensitive to the numerical details like fre-
quency resolution, etc. Compared to this, the estimation of the autocorrelation
function is a robust procedure. Thus the relationship (2.23) allows one in prin-
ciple to recover the generalized dimensions from observational and numerical
data. However, the rapid growth of the number of terms in the sums U(q, T )
(this number is proportional to T q−1) makes its application for q > 4 hardly
practical.
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Chapter 3

Symbolic dynamics behind
the singular continuous
power spectra of continuous
flows

3.1 Introduction

The common way to obtain the discretized description of a continuous process
is to mimic the flow by some recurrent relation binding the current position of
the imaging point to its location at certain future and/or past moments. This
construction replaces the continuous independent variable by an integer. A re-
markably efficient tool for this is the Poincaré map which interrelates two con-
secutive returns onto some appropriate part of a suitably chosen codimension-1
surface (Poincaré surface) in the phase space; it is required that the relevant
orbits intersect this surface transversely. In many situations the dynamics of the
flow is adequately reproduced by the dynamics of the Poincaré map. Accord-
ingly, there is a widespread feeling that the reduction to the map is an innocent
procedure which preserves the dynamical features completely. However, this is
not necessarily the case, and our current study is focused on one origin of the
possible discrepancies.

In general, the time interval τr between the consecutive intersections with
the Poincaré surface is not constant. Usually τr as a function of the coordinates
on this surface is bounded and continuous (as in the case of a Feigenbaum at-
tractor), and there is no qualitative difference between the properties of the map
and the flow. Moreover, in some situations it is possible to make the moments of
intersections equidistant by shifting the secant surface and reparameterizing the
time [22]; thus the flow becomes a suspension over the Poincaré mapping and
their features coincide. An example is given by quasiperiodic motions, provided
that the rotation numbers are not anomalously close to their rational approxi-
mants. On the other hand, it is known that discontinuities and singularities in
τr may lead to a qualitative change of dynamical properties, like the birth of a
continuous spectrum [36] or the onset of mixing [37, 38]. In this Chapter, we

35



36 CHAPTER 3. SYMBOLIC DYNAMICS FROM RETURN TIMES

will address a situation where a saddle-point of the flow belongs to the closure
of the attractor. Here τr is finite for those points at the Poincaré surface which
do not lie on the intersection of this surface with the local stable manifold of
the saddle. On the contrary, orbits which start from points close to this inter-
section slow down in the vicinity of the saddle; this results in a marked increase
of τr. As a function of a coordinate (say, x) parameterizing some path along
the Poincaré surface, the return time diverges at the intersection point x0; this
singularity is logarithmic (τr ∼ − log |x − x0| ) for non-degenerate saddles and
power-like (τr ∼ |x − x0|−β , β > 0) otherwise. Under these circumstances the
averaged characteristics (like the Fourier spectra) computed from the map by a
procedure which treats all the points uniformly and does not assign additional
weights to the “neighborhood of singularity”, can differ dramatically from those
of the prototype flow. For instance, in the situation when the power spectrum
of the flow is (singular) continuous, the return map may nevertheless have a dis-
crete spectrum which is a signature of a qualitatively different type of dynamics.
This situation was encountered in [49]; the objective of the current paper is to
analyze the influence of the distribution of return times on the power spectrum.

Unbounded return times are inherent in continuous systems close to ho-
moclinic and heteroclinic bifurcations. After a brief introduction to singular
continuous spectra in section 3.2, we proceed in section 3.3 to the description of
a particular dissipative flow whose attractor possesses the demanded properties,
and develop in section 3.4 a kind of an “improved” semi-discrete model which
effectively accounts for the variations in return times. In section 3.5 we reduce
this model to self-similar symbolic sequences; the subsequent calculation of their
spectral and correlation characteristics in section 3.6 reproduces the respective
features of the flow and demonstrates qualitative differences in comparison with
the usual Poincaré mapping.

3.2 Singular continuous spectra in dynamics

Systems with singular continuous spectra constitute a kind of a bridge between
regular behavior and chaotic dynamics. Unlike ordered systems, they do not
preserve the complete information about the details of an initial state; never-
theless, unlike the chaotic systems, they still exhibit a kind of a vague memory
about the distant past. The basic feature of this kind of dynamics is reflected in
the name: the spectral measure is neither pure point (discrete) nor absolutely
continuous with respect to the Lebesgue measure, but is singular continuous;
its carrier is a dense Cantor set. The calculation of the power spectra for the
observable ζ from the respective time series {ζk} through the familiar expression

S(ω, l) =
1
l
〈|

m−1+l∑

k=m

ζkei2πkω |2〉 (3.1)

(the angular brackets denote averaging over the initial position m) fails to pro-
vide conventional results. With the increase of the sample length l, the partial
sums S(ω, l) converge for a dense set of frequency values ω neither to constant
values (which would correspond to an absolutely continuous spectrum), nor grow
linearly with l (which would hold for the discrete spectra). Usually they grow as
S(ω, l) ∼ lγ(ω) (0< γ(ω) <1), and one observes a “fractalization” of the spectral
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curve. Accordingly, estimation of the autocorrelation function for such processes
shows that the correlations neither ultimately decay for large τ , which would
be the case for chaotic motion, nor display the infinite sequences of exact (or
arbitrarily close) returns to unity, as for periodic (respectively, quasiperiodic)
processes.

The autocorrelation function gives a reasonably reliable numerical tool for
telling processes with singular continuous spectra from such with discrete or
absolutely continuous ones. Recall that the necessary condition for the spectral
measure to be absolutely continuous is the decay of correlations. On the other
hand, the pure point component is absent if the value of the integrated corre-
lation Cint(T )= 1

T

∫ T

0
|C(τ)|2dτ vanishes for T → ∞[53]. Thus the numerical

observation that the function C(τ) displays repetitive peaks of non-diminishing
height over the longest computationally available values of τ whereas Cint de-
cays (usually in a power-like way), provides reasons to conjecture that one has
to do with a singular continuous spectrum. Keeping this criterion in mind, we
will use the spectral vocabulary but make our judgments from the appearance
of the respective autocorrelation functions.

3.3 The flow and its maps: affinity and mis-
match

For our purpose we need a flow in which orbits on the attractor pass arbitrary
close to the saddle point. This is the case for the Lorenz attractor [58] which
contains the saddle point in its closure; however here already the Poincaré map
delivers the fully chaotic dynamics [27] with positive Lyapunov exponent and
continuous Fourier spectrum. A more appropriate example is provided by con-
tinuous dynamical systems at the accumulation point of the “homoclinic dou-
blings” scenario. For such flows it has been recently demonstrated that their
spectral properties can be qualitatively different from those of the induced re-
turn maps [49]. We will exploit this example to see in detail how the slowing
down near the saddle results in the singularities of the power spectra.

As a starting point we take the symmetric case of Eq.(1.6): the system of
the third order

ẋ = σ(y − x) + σDy(z − r)
ẏ = rx− y − xz (3.2)
ż = xy − bz

which differs from the conventional Lorenz equations in their standard notation
by the additional term proportional to the non-negative parameter D. The de-
tailed description of the underlying hydro-mechanical problem, of the equations
themselves and of the numerous bifurcation scenarios can be found elsewhere
[13, 17, 49]; here we will only briefly recall the properties which are relevant for
our current purpose. In the parameter region D > (r−1)/r2 the trivial equilib-
rium x = y = z = 0 is a saddle with one-dimensional unstable manifold. Inside
this region the increase of r eventually leads to the formation and subsequent
destruction of homoclinic connections to the equilibrium; due to the symmetry
{x, y} ↔ {−x,−y} (inherited from the Lorenz equations), the homoclinic orbits
always arrive in pairs. In the parameter domain r−1−(σ+1−b)/σ < r2D < r−1
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Figure 3.1: Attractor for eq. (3.2) at the accumulation point of homoclinic bifurca-
tions
(σ=10; b=8/3; r = 15.82373667 . . .; D = 0.052634923 . . .);
The saddle point is located at the origin; the saddle index ν equals 2.0.

the positive eigenvalue λ1 which locally characterizes the unstable direction, is
smaller than the absolute value |λ2| = b of the leading (closest to zero) nega-
tive eigenvalue. This implies that unlike the Lorenz case, the destruction of the
couple of homoclinic orbits does not create a chaotic set, but instead “glues”
two stable mutually symmetrical closed orbits into a single one. In this way the
length of the attracting trajectory in the phase space is doubled; notably, the
period at the bifurcation point is infinite. Further increase of r leads through a
bifurcation sequence in which symmetry-breakings of periodic orbits alternate
with new homoclinic doublings (in systems with the Lorenz-like mirror symme-
try each of these bifurcations is a codimension-1 event). The renormalization
treatment of the reduced return mapping shows that this sequence converges in
a universal i way [14, 13]; the quantitative characteristics of the scenario (conver-
gence rate, scaling properties of the resulting attracting set, etc.) depend only
on the saddle index ν = |λ2|/λ1 which uniquely determines the universality
class.

The projection of this latter set is presented in Fig. 3.1; one notices both the
reflection symmetry and the self-similar structure of the attractor. The unstable
manifold Γu of (0,0,0) belongs to the attractor and provides a convenient way to
characterize its scaling: starting from the outermost turn, the distance between
the 2n-th and 2n+1-th turns of Γu decays as α−n. The scaling factor α as a
function of the saddle index ν monotonically decreases from α = ∞ for ν = 1
to α → 1 for ν = ∞ (the latter case corresponds to vanishing of the eigenvalue
λ1 at the stability boundary of the equilibrium).

The geometry of the attractor admits the convenient symbolic coding. Let
us assign the symbol R to each revolution of the orbit in the half-space x > 0
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and the symbol L to the revolution in the half-space x < 0. At each homoclinic
doubling the two mutually symmetric attracting orbits (whose codes turn into
each other under the transformation R ↔ L) are glued together; thereby the
code of the new attractor is simply the concatenation of the codes of its parents.
This scenario runs through the steps R → RL → RLLR → RLLRLRRL . . .
and ends up with the symbolic object familiar from the previous Chapter: the
Thue-Morse code [18, 19].

One would expect that the symbolic dynamics (as given by the Thue-Morse
sequence) directly reflects the properties of the continuous system (3.2). Indeed,
the estimates of power spectra computed from the finite series of the variables
x(t), y(t) and z(t) of the flow display no tendency to converge to smooth curves
with the increase of the sample length [49]. Calculation of the autocorrelation
function (Fig. 3.2a,b) demonstrates a series of moderate (distinctly lower than
the unit value) peaks which, although becoming more and more seldom, pre-
serve the same height (the rightmost peaks at these plots correspond to ≈ 215

revolutions around the attractor). The integrated correlation function Cint de-
cays within the same time interval by a factor of ≈ 103 (Fig. 3.3). Thus, we
have convincing numerical evidence that the criterion from preceding section is
fulfilled: Cint decays whereas C(τ)does not; accordingly, we may conjecture that
the spectrum is singular continuous. (In fact, the analysis below implies that
the discrete spectral component might be present as well, but its contribution
seems to be exclusively small).

The autocorrelation function in logarithmic timescale for the variable x(t) is
plotted in Fig.3.2a; the whole structure is reminiscent of the correlation function
for the Thue-Morse sequence (Fig. 3.2c). The latter can be computed with the
help of the recurrent formulae C(2τ) = C(τ), C(2τ + 1) = −C(τ)+C(τ+1)

2 ; its
largest peak values are C(3 × 2n)=–C(2n)=1/3, n = 0, 1, 2, 3 . . .. 1 (A closer
look at the two plots shows that this typical symmetry between the positive
and negative peaks of C(τ) is absent for the continuous variable; accordingly, a
finer symbolic description of the flow should yield the symbolic sequence with
asymmetric autocorrelation function).

In studying the properties of the continuous system (3.2) the natural way is
to reduce the dynamics to the return map; in presence of a stable foliation the
map can be further reduced to a one-dimensional one. Should the surface of
section be chosen transversely to the stable manifold of the saddle (in practice,
fixing a small value of z is sufficient), this map will have a form

ξi+1 = fξ(ξi) = (|ξi|ν − µ) sign(ξi) (3.3)

up to the higher order terms in ξi|ξi|ν−1. Here the coordinate ξ is measured
along the unstable manifold of the saddle; ν is the saddle index (unlike the
Lorenz case, ν > 1). The parameter µ characterizes the distance between the
first return of the unstable manifold and the local stable manifold: µ = 0
corresponds to the formation of a couple of simple (1-looped) homoclinic orbits.
The two antisymmetric branches of the discontinuous map (3.3) correspond
to the two components of the unstable manifold of the saddle-point of initial

1For the flows C(τ) is well defined for all τ ; for a comparison with symbolic sequences and
maps, one should choose in the continuous system times t = nτav (n = 1, 2, 3, . . .) where τav

is the average duration of one loop (which for the attractor of Fig. 3.1 is 1.85465. . . in the
dimensionless time units of (3.2) ).
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Figure 3.2: Autocorrelation function in logarithmic timescale for the observables:
a) variable x(t) for the attractor from Fig. 3.1;
b) variable z(t) for the attractor from Fig. 3.1;
c) Thue-Morse sequence;
d) attracting orbit of fz at m∗.

system. On assigning the symbol R (L) to iterations with positive (negative)
ξ, one obtains a convenient coding; obviously, for the parameter value µ∗(ν)
which marks the accumulation of the homoclinic doublings, the symbolic code
of the attractor is the Thue-Morse sequence. No wonder that the spectrum of
the orbit of the map (3.3) at this parameter value also proves to be singular
continuous.

The described way to construct the return map is by far not the only one; the
Poincaré surface may be for instance any of cylinders whose axis passes through
the saddle point and is perpendicular to the z-axis. Once again, the stable
foliation reduces the dynamics to a one-dimensional map. If the map variable
is chosen to be x or y or any combination thereof, then the map itself has the
form of eq.(3.3). However if one chooses the z-coordinate of the intersections,
then (after proper rescaling, shift and truncation up to the terms of the order
O(|zi|ν)) the map takes the form

zi+1 = fz(zi) = µ− |zi|ν (3.4)
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Figure 3.3: Integrated autocorrelation in logarithmic timescale;
the observables are:
a) variable x(t); b) variable z(t) from eq.(3.2)
for parameter values from Fig. 3.1.

(a similar expression is obtained for the return map of subsequent z-maxima
as it was done in the initial paper of Lorenz [58]). Unlike eq.(3.3), the map
(3.4) is continuous and unimodal; on changing the parameter µ, instead of
the sequence of homoclinic bifurcations the period-doubling scenario is encoun-
tered. Obviously, fz is nothing else but the even counterpart of the odd fξ: one
has fξ(x) = fz(x)sign(x), and, therefore, |fn

ξ (x)| = |fn
z (x)| for each n. Con-

sequently, there exists a one-to-one correspondence between the bifurcational
parameter values in these two maps [14]: the symmetry-breakings of eq.(3.3)
correspond to period-doublings in eq.(3.4), whereas the homoclinic bifurcations
in eq.(3.3) are matched by the points of superstability for the periodic orbits
of the map (3.4). The convergence rate δ(ν) of both scenarios depends on the
saddle index ν; it increases monotonically from δ(1)=2 to δ(∞) = 29.57 . . .
[59]; obviously, for the case of quadratic singularity ν = 2 it is given by the
Feigenbaum constant: δ(2)=4.669201. . .. The symbolic codings in the limiting
points of both scenarios are the well-known symbolic itinerary of the period-
doubling attractor [60] {Pj} = RLRRRLRL . . . and the Thue-Morse sequence
{Tj} = RLLRLRRL . . .. These codes are interrelated: if one starts with T1 = R
and assigns the values of −1 and 1 to L and R respectively, the sequence {Tj}
can be obtained from {Pj} by recursion:

Tj+1 =
j∏

k=1

(−Pk) = −PjTj (3.5)

However the dynamics on the period-doubling attractor which exists at
µ = µ∗(ν), is not equivalent to its counterpart from eq.(3.3): the values of
the autocorrelation function C(n) for the attractor of eq.(3.4) approach 1 for
even n (Fig. 3.2d); respectively, the power spectrum of zj as well as the spectrum
of the symbolic itinerary {Pj} are both pure point.



42 CHAPTER 3. SYMBOLIC DYNAMICS FROM RETURN TIMES

Thus two one-dimensional reductions of the same two-dimensional Poincaré
map prove to have attractors with qualitatively different dynamics. This seem-
ing paradox is easily resolved when one recalls that the variables x and z have
different symmetries with respect to the original flow. According to eq.(3.5)
the rule which yields the value of the n-th element of the Thue-Morse sequence
as a function of n, is simply a skew product over the analogous rule for the
period-doubling itinerary; it is known that a skew product over a dynamical
system often possesses the richer spectral properties than the system itself [20].
Another discrepancy arises in relationship between the continuous variable z(t)
from (3.2) and its discretized version zi from (3.4), as seen from the autocorre-
lation functions for the former (Fig. 3.2b) and for the latter (Fig. 3.2d). One
notices series of persistent peaks in Fig. 3.2b; although these are definitely lower
than 1, the correlations do not ultimately decay. Combined with the apparent
decay of the integrated function Cint(t) (Fig. 3.3b), this points to the singular
continuous spectral component. This confirms that a “straightforward” dis-
cretization with the help of the return map fails to capture the basic feature of
the dynamics, presenting it more ordered than it really is. As found in [49], the
reason for this failure lies in the divergence of the return times near the saddle
point, which remains unnoticed by the return map. Below we introduce the
simplified model which incorporates the return times into this map, thus allow-
ing us to see explicitly how the non-uniformity of the return times influences
the power spectrum of the process.

3.4 Modeling non-equal return times

Our starting point is the continuous dependence z(t) from eq.(3.2) (as plotted
in Fig. 3.4a); our aim is to obtain a map which adequately models the spectral
properties of z(t). The crosses mark the intersections of the orbit with the
cylinder x2 + y2 = 9 (with d

dt (x
2 + y2) > 0); the resulting sequence {zi} induces

a mapping fz. As seen from Fig. 3.4a, the peaks are sharp and the valleys
are broad (the lower the minimum, the broader the plateau around it). The
system spends a noticeable time in the region of relatively small z, that is, near
the saddle point where the “velocity” of the imaging point is much lower than
elsewhere. It is therefore natural that characteristics (correlation functions,
spectra etc.) averaged over time are strongly influenced by the contributions
of the low-amplitude part of the orbit. One can hope to extract the necessary
information from the points {zi}. However, as we know, taking the mapping fz

as it is would be insufficient, since it does not take into account the differences
between the durations of residence at different zi’s.

Let us couple the return map on the Poincaré surface to the temporal distri-
bution of returns. Consider the discontinuous process u(t) where u(t) admits the
constant value zj (or ξj , if one models the variable x(t)) for the whole interval of
time between the j-th and j + 1-th intersections; it jumps to zj+1 (respectively,
ξj+1) in the right endpoint of this interval (Fig. 3.4b). This construction in
which the time is continuous and the observable variable is piecewise constant,
is known under the name of “special flow” [20], and can be viewed as the map
whose iterations are separated by non-equal time differences . Thus, the return
times turn into the “residence durations”.

Near the non-degenerate saddle point the return time has a logarithmic



3.4 Modeling non-equal return times 43

(a)

(b)

(c)

(d)

(e)

0 10 20 30 40 50 60t
0

10

20

z(
t)

0 10 20 30 40 50 60t

3

5

u(
t)

0 10 20 30 40 50 60t
-1

0

-v

0 10 20 30 40 50 60t
-1

0

1

0 10 20 30 40 50 60t
-1

0

1

Figure 3.4: Time dependencies corresponding to 34 orbit turns
(residence durations in c), d) and e) are given by (3.8) ):

a) variable z(t) (crosses denote intersections with Poincaré surface);
b) special flow u(t) over the mapping induced by crosses in subplot a);

dashed line denotes the preimage of the extremum of zj ;
c) special flow over the variable vn with α = 2.5 and τ0 = 0

(as compared to u(t), v is shifted and rescaled, and its sign is changed);
d) process reconstructed from the period-doubling code;
e) process reconstructed from the Thue-Morse sequence.

singularity; we model it by the function

τr(u) = A + B log
1
|u| (3.6)

where the variable u stands both for ξi from (3.3) and zi from (3.4). Here,
the logarithmic term is responsible for the hovering near the saddle, and the
u-independent term A gives roughly the time spent on the global (distant from
the saddle) segment of the orbit loop. By itself, the knowledge of the coordinate
dependence τr(u) does not yet provide the statistics of return times: this would
also require the complete knowledge of the distribution of the values of u on the
attractor. We approximate this distribution taking use of the scaling properties.

Both for the scenario of homoclinic doublings in (3.3) and for the period-
doubling sequence in (3.4) the Feigenbaum-Cvitanović renormalization equation
g(u) = αg(g(u/α)) [61] yields the universal function g(u) which is discontinuous
(piecewise increasing) in the former case and has extrema of order ν in the lat-
ter. Since eq.(3.6) is logarithmic, presentation on logarithmic scale is especially
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Figure 3.5: Logarithmic coordinate dependence of residence durations τ(u) in the
points of the attractor (points of the period-doubling attractor are marked along the
abscissa).

illuminating (Fig. 3.5): one sees that the points on the attractor are grouped
around the values dn=g2n

(0)=α−ng(0), with the size of the n-th “cluster” being
of order dn/|α|. Take the sequence {ui} obtained from u0 = 0+ by iterating the
function fξ or fz. The n-th iteration of the extremum lies in the j +1-th cluster
where j(n) is the number of the first non-zero coefficient mj in the binary ex-
pansion of n: n =

∑∞
j=0 mj2j (thus, all odd iterations belong to the 1-st cluster

located at a distance of µ∗ from the origin). In our further estimates we neglect
the distances between the points within the same cluster. In other words, in-
stead of the sequence {un} we consider the values vn ≡ µ∗|α|−j(n)sign(un). For
vn the value of τr(vn) equals

τr(vn) = τr(µ∗|α|−j(n) = A−B log µ∗ + B j(n) log |α|) (3.7)

Apparently, this approximation should work better for larger values of |α|, that
is, in the range of not too large values of the saddle index ν.

Let the time be measured in units of B log |α|; in these units eq.(3.7) can be
rewritten as

τr(vn) =
A−B log(µ∗|α|)

B log |α| + 1 + j(n) ≡ τ0 + (1 + j(n)) (3.8)

In this notation, τ0 is the contribution of the global segment, and the bracketed
term presents the logarithmic divergence of residence times on the attractor
with geometric scaling: for all the odd values of n it equals 1, for the even
values which are not multiples of 4, it equals 2, etc.

The mean residence duration under the law (3.8) is τ0+2; it corresponds in
the original continuous system to the average duration of one turn of the trajec-
tory on the attractor. Evolution of the “continuous” variable reconstructed in
this way from the discrete sequence {vn} for the unimodal map (3.4) with ν=2 is
plotted in Fig. 3.4c. The autocorrelation function for this process (Fig. 3.6a) is
qualitatively very similar to C(τ) computed for the original continuous variable
z(t) and plotted in Fig. 3.2b.
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Figure 3.6: Autocorrelation function in logarithmic timescale for the observables:
a) variable v(t) from Fig. 3.4c;
b) process reconstructed from period-doubling code (as in Fig. 3.4d);
c) process reconstructed from the Thue-Morse code (as in Fig. 3.4e).

3.5 Transformation of symbolic sequences

Insofar, we approximated the range of z(t) by the set {µ∗|α|−j(n)} without any
qualitative changes in the autocorrelations. A further simplification eliminates
the coordinate values at all; we replace u(t) in the special flow by sign(u).
The process obtained in this way from the special flow over the period-doubling
attractor is presented in Fig. 3.4d; the analogous procedure applied to the special
flow over the discontinuous map (3.3) yields the process shown in Fig. 3.4e. The
respective autocorrelation functions are plotted in Fig. 3.6b,c; their likeness to
the autocorrelation functions of the original continuous variables z(t) and x(t)
is apparent. Noteworthy, the plot in Fig. 3.6c has lost the typical up-down
symmetry of the autocorrelation function for Thue-Morse sequence.

The rough description with the help of sign(u) is in fact nothing else but
coding with two symbols. Therefore, another way to view the results of this last
simplification could be the following: Given the symbolic sequence, we prescribe
the “residence duration” of the n-th symbol by τr(n) = τ0+(1 + j(n)), and build
in this way a kind of a special flow over the symbolic sequence. From this point
of view, the plots in Fig. 3.4d and Fig. 3.4e present continuous-time processes
reconstructed from the period-doubling code and the Thue-Morse sequence,
respectively.

Now let us assume that τ0 is a non-negative integer and go back from contin-
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uous time to symbolic sequences. For example, starting from the Thue-Morse
sequence {Tj} = R L LR LR . . ., taking τ0 = 0 and keeping in mind that
j(1) = j(3) = j(5) = 0, j(2) = j(6) = 1 etc., we arrive at the sequence in which
the second and the sixth symbol of {Tj} are repeated twice, the fourth one is
repeated three times, and so on: R LL L RRR L RR . . ..

From now on the object of our studies will be symbolic codes obtained by
introducing the residence durations into {Pj} and {Tj}. In fact, instead of the
direct evaluation of these durations for each particular symbol, we will utilize
the self-similarity of the codes. There are two equivalent methods to construct
a self-similar symbolic sequence from an initial segment. One of them is to
substitute recursively each letter of this segment by a prescribed sequence of
symbols; in this way the sequence is “inflated” from inside. The other method
is the concatenation: one deals with several sorts of symbolic “bricks” which are
consecutively added to one another in the prescribed order; the result is treated
as a new set of bricks, the procedure being repeated ad infinitum. During this
process the “head” of the sequence (which is just the initial segment) remains
unchanged whereas the “tail” grows and gets longer and longer.

Let us discuss briefly the first of these methods. At each step of the sub-
stitution (inflation) each symbol is substituted according to a specific rule.
For both initial sequences these rules involve two letters: the period-doubling
code {Pj} can be obtained from the initial symbol R by repeated substitutions
R → RL, L → RR, and the Thue-Morse sequence evolves from the same R un-
der the action of the symmetric substitution R → RL, L → LR. The inflation
rules which take into account the distribution of residence durations, require in
both cases four letters. For the code {Πj} obtained from {Pj}, the rule is

A → ABC, B → AAD, C → D, D → C (3.9)

One should start with the symbol A; before assigning the numerical values to
the letters, each A must be replaced by a chain of τ0 + 1 symbols R, each B
should be identified with τ0 + 1 subsequent L’s, each C becomes a single L
and each D becomes a single R, respectively. The code {Υj} built over the
Thue-Morse sequence is generated from Υ1 = A by the inflation rule

A → ABC, B → BAD, C → D, D → C (3.10)

with the same condition for replacements before identifying the symbols with
numbers. In each case, after m steps the sequence consists of 2m − 1 symbols.
It is convenient to characterize the substitution with the help of its associated
matrix [62, 7]. Let our alphabet consist of k symbols a1, a2, . . . , ak. Take an
arbitrary word in which all the letters are represented (this requirement excludes
a risk of picking a word from the subset of alphabet which is substituted only
through its own elements), and inflate it. The relation between the numbers of
entries of each type na1 , . . . nak

in the initial word and the respective numbers
n′a1

, . . . n′ak
for the transformed word, is




n′a1

. . .
n′ak


 = M




na1

. . .
nak


 (3.11)

and M is called the associated matrix of the substitution rule. In case of the
period-doubling code this matrix is (11

2
0), and for the Thue-Morse sequence it is
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(11
1
1). Noteworthy, the ordering of symbols in the substitution finds no reflection

in M ; only the overall numbers of entries of each type count. According to the
conjecture of Bombieri and Taylor[62], spectral properties of the symbolic code
are determined by the location of eigenvalues of the associated matrix for its
substitution rule: a discrete component must be present, if the so-called Pisot-
Vijayaraghavan (PV) condition is satisfied. This condition requires that strictly
one eigenvalue is larger than one whereas the rest of the eigenvalues lies within
the unit circle. Already the Thue-Morse code provides an important exception
to this rule: although the PV condition is fulfilled (the eigenvalues are 2 and 0),
the spectrum, instead of being discrete, is singular continuous.

The associated matrix for the substitution (3.9) is



1 2 0 0
1 0 0 0
1 0 0 1
0 1 1 0


 (3.12)

with the eigenvalues (2, 1,−1,−1); the respective matrix for (3.10) is



1 1 0 0
1 1 0 0
1 0 0 1
0 1 1 0


 , (3.13)

its eigenvalues being (2, 1, 0,−1). In neither of these two cases is the PV condi-
tion fulfilled: along with the eigenvalue 2 one has to do with several marginal
eigenvalues belonging to the unit circle.

To get an idea of the spectral properties of {Πj} and {Υj} one can further
exploit the associated matrices (3.12) and (3.13), similarly to the technique
used in [7] for studies of quasiperiodically ordered short and long bonds on the
line. To our mind, however, the other recursive way to build the same symbolic
sequences looks more appropriate for this purpose: to produce them with the
help of the concatenation rules.

Concatenation of two strings is simply writing the second after the end of
the first. In the following, the very last letter of a string Ψ will be denoted
as ψE, and the string Ψ without this last symbol will be denoted as ψB (thus
Ψ = ψBψE). For a binary string, the overbar will denote the =“mirror image”:
given the string A, the string A defines the string in which each 1 (or, in our
context, R) of A is changed to -1 (L) and vice versa.

The concatenation rule for building the Thue-Morse sequence has been al-
ready demonstrated above while describing the scenario of homoclinic doublings.
The string Ψ(n+1) obtained from Ψ(1) = R after n concatenations, consists of
2n symbols and is produced by appending to Ψ(n) its opposite:

Ψ(n+1) = Ψ(n)Ψ(n) (3.14)

The analogous rule for the period-doubling code involves two steps. At first,
Ψ(n) is concatenated with itself: Ψ(n) → Ψ(n)Ψ(n), and then the very last letter
of the resulting word is converted to the opposite one: R ↔ L.

Ψ(n+1) = Ψ(n)ψ
(n)
B ψ

(n)
E (3.15)
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Evaluation of the respective spectral sums S(ω, l) shows that the power spec-
trum is discrete for eq.(3.15) and singular continuous for eq.(3.14) (see e.g. [49]).

In order to take account for the residence durations, the rules (3.14,3.15)
require only a slight modification: in each case the last letter of the concatenated
word should be repeated. This yields

Ψ(n+1) = Ψ(n)Ψ(n)ψ
(n)
E (3.16)

for the code {Υj}, and

Ψ(n+1) = Ψ(n)ψ
(n)
B ψ

(n)
E ψ

(n)
E (3.17)

for the code {Πj}, respectively. Besides, the initial condition should be refor-
mulated: now Ψ(1) is a string of τ0 + 1 symbols R. Obviously, in both cases
after n concatenations the resulting object consists of ln = (τ0 +2)2n−1 letters
and is identical with the string obtained by applying n respective substitutions
to the same initial word.

3.6 Spectral characteristics of symbolic codes

Let us proceed with the estimation of the spectral sums S(ω, ln). We begin
with the code {Υj} derived from the Thue-Morse sequence. Consider Zn(ω) =∑ln

k=1 Υke2πiωk. From eq.(3.16) follows:

Zn+1(ω) = Zn(ω)(1− e2πiωln) + Υln+1e
2πiωln+1 (3.18)

and, further,

|Zn+1(ω)|2 = 2|Zn(ω)|2(1− cos 2πωln) + 1
(3.19)

+ Υln+1

(
Zn(ω)(1− e2πiωln)e−2πiωln+1 + Z∗n(ω)(1− e−2πiωln)e2πiωln+1

)

In the following we consider only such values of ω for which the spectral sums
S(ω, ln) = l−1

n |Zn(ω)|2 at least do not decay for large n, i.e. for which |Zn(ω)|
grows not slower than

√
ln. For these values of ω one can neglect on the right

hand size of eq.(3.19) the terms proportional to Υln+1 (recall that |Υj | = 1) and
the summand 1. For large n this leaves us with

S(ω, ln+1) ≈ S(ω, ln)(1− cos 2πωln) (3.20)

We will treat it as an exact recurrent relation; combined with the relationship
between ln+1 and ln, this provides us with the two-dimensional mapping

Sn+1 = Sn(1− cos 2πθn) (3.21)
θn+1 = (2θn + ω) mod 1 (3.22)

whose orbit starts from initial conditions S1 = 1, θ0 = (τ0 + 1)ω.
The map (3.21,3.22) is a skew product: the dynamics of the second variable

does not depend on the first one. We are interested in the evolution of Sn;
its mean growth (or decay) rate is determined by the geometric average % =
〈1−cos 2πθn〉 along the respective orbit of (3.22): Sn ∼ lλn where λ = log %/ log 2.
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Generally speaking, (3.22) is a chaotic map with uniform invariant density, a
variant of the Bernoulli shift [20], but for each given ω we are interested in
the particular orbit starting at θ0. In terms of the variable (θ + ω) the map
acquires the familiar Bernoulli form; from this point of view, changing ω in
eq. (3.22) is equivalent to changing initial value in the Bernoulli map. If ω
is rational, the respective orbit is either periodic or eventually periodic (in the
latter case it becomes periodic after a certain initial segment). For the fixed
period p (p = 1, 2, 3, . . .) the corresponding values of ω are given by

ω =
l

(τ0 + 2)2m(2p − 1)
(3.23)

where m is an arbitrary non-negative integer and l is an odd integer between 0
and (τ0 + 2)2m(2p − 1). For m 6= 1 the orbit is eventually periodic: the actual
periodic orbit located at

θ =
l

2p − 1

(
1− 1

2m(τ0 + 2)

)
mod 1 (3.24)

is reached at the (m− 1)-th iteration of (3.22).
As an example, we present in Table 3.1 the values of λ for several periodic

orbits of (3.22) and compare them to the analogous values evaluated from the
sequence {Υj}. In the latter case the estimates to λ are given by the expression:

λl(ω) = (p log 2)−1 log

1 + 21−l
2l−1∑

k=1

(2l − 1− j)C(k) cos 2πωk

1 + 21+p−l
2l−p−1∑

k=1

(2l−p − 1− j)C(k) cos 2πωk

(3.25)

where C(k) is the value of the autocorrelation function for {Υj}. According
to numerics, the quite satisfactory convergence of λl is attained already for
moderate (≥ 12) l’s.

Table 3.1: Growth rates of the spectral sums for the sequence {Υj}.

τ0 p ω % λ λ12 λ13 λ14 λ15

0 1 3/8 1+2−1/2 0.77155 0.77389 0.77246 0.77051 0.76632
0 1 5/16 1.38268 0.46747 0.47425 0.47118 0.47420 0.47088
0 1 1/4 1 0 0.00596 0.00639 0.00414 –0.00024
0 2 1/12 1.36602 0.44998 0.46043 0.45512 0.45339 0.45256
0 2 5/12 0.36602 –1.44998 –0.78587 –0.81555 –0.83187 –0.85719
0 2 5/24 0.75882 –0.39817 –0.34811 –0.35401 –0.38569 –0.38767
1 1 1/3 3/2 0.58496 0.58509 0.58579 0.58760 0.58416
1 2 1/9 1.26604 0.34033 0.34297 0.34105 0.33910 0.34032
1 3 2/7 1.10809 0.14807 0.15206 0.15412 0.15128 0.15044
1 3 9/28 0.91566 –0.12711 –0.11465 –0.11612 –0.11653 –0.12446
1 3 8/21 0.10203 –1.09761 –0.88704 –0.91565 –0.92706 –0.93559
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The remarkably good correspondence between the positive growth rates pro-
vides an a-posteriori justification for our reduction of (3.19) to (3.20). Moreover,
the last row of the upper half of the Table and the penultimate row of the lower
half display this correspondence even in case of the moderate (–1/2< λ <0) de-
cay of the spectral sums. Only the faster decay (cf. the last row in the Table),
as expected, cannot be properly described with the help of relations (3.21,3.22).
Consequently, we conjecture that some part of the spectral measure is concen-
trated on the countable set of the rational values of (ω) with λ(ω) ≥ 0. For all
the periodic and eventually periodic orbits with p > 1 and nearly all fixed and
eventually fixed points with p = 1 (the exceptions will be separately discussed
below) the value of λ is distinctly lower than 1; accordingly, the spectral sums
grow with n slower than linearly, and the respective values of ω belong to the
singular continuous spectral component.

For the irrational values of ω the corresponding orbit of (3.22) is chaotic.
The distribution of the invariant measure on the interval (0, 1) is uniform, and
for the generic value of ω the rate λ can be computed simply by averaging
the ratio log(1−cos 2πθ)

log 2 on this interval; this yields λ = − 1
2 − 1

4π ≈ −0.579 and
ensures the rapid decay of the respective spectral sums. However, the Bernoulli
map includes also the continuum of trajectories which stay anomalously close
to the rational values of ω. Let us pick out from this continuum the trajectories
which repeatedly hover near the periodic orbits with positive λ. An iteration
of the Bernoulli map is simply a unit shift along the binary representation
of the number. One should cut out the very long segments from the binary
representations of ω for different periodic orbits with positive λ, and concatenate
them into the infinite binary sequence. Obviously, the leftmost segment of the
sequence is of no importance, and the orbit can be started arbitrarily close
to any given point. This procedure provides a dense non-denumerable set of
irrational (if we reject the periodic concatenations) values of ω with λ(ω) > 0;
roughly speaking, this is just the set which carries the spectral measure.

The peculiar circumstance is associated with the value ω = 1
2 : this is a fixed

point of (3.22) for any integer τ0, and the growth rate for it equals 1: S(1/2, ln) ∝
ln which produces the δ-peak in the power spectrum. Hence the spectrum
should be a mixture of the discrete and the singular continuous component. The
visual absence of the former, as implied by the apparent decay of the integrated
autocorrelation function Cint(t) in Fig.3.3, can be attributed to the weakness
of the contribution of the discrete part; this contribution must be especially
small, should τ0 be non-integer (this aspect is further discussed below in the
final paragraph of this section).

Now let us turn to the sequence {Πj} obtained from the period-doubling
code. In this case we have

Zn+1(ω) = Zn(ω)(1 + e2πiωln)− 2Πlne2πiω(ln+1−1) + Πln+1e
2πiωln+1 (3.26)

and, using the same assumptions as above, the recursion for the spectral sums
Sn is derived:

Sn+1 = Sn(1 + cos 2πθn) (3.27)
θn+1 = (2θn + ω) mod 1 (3.28)

The map (3.28) coincides with (3.22); consequently, the same expression (3.23)
provides us with the complete list of the values of ω corresponding to periodic
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and eventually periodic orbits. On the other hand, the difference between (3.21)
and (3.27) means that for each of these orbits the growth/decay rate for the
spectral sums of {Πj}, in general, is not the same as in the case of {Υj} (Table
3.2). Thus, for the orbit with period 1 the decay for {Πj} always implies growth
for {Υj} and vice versa, since the respective values of % are related by %(Π) +
%(Υ) = 2. On the whole, however, we obtain qualitatively the same picture:
decay of spectral sums for almost all irrational values of ω and part of the
rationals, as opposed to the growth (with λ < 1) of these sums for the rest of
the rationals and the remaining dense subset of the irrationals.

Table 3.2: Growth rates of the spectral sums for the sequence {Πj}.
τ0 p ω % λ

0 1 3/8 1-2−1/2 –1.77155
0 1 5/16 0.61731 –0.69591
0 1 1/4 1 0
0 2 1/12 0.36602 –1.44984
0 2 5/12 1.36602 0.44984
0 2 5/24 0.24118 –2.05181
1 1 1/3 1/2 –1
1 2 1/9 0.26604 –1.91026
1 3 2/7 0.25157 –1.99090
1 3 9/28 0.21360 –2.22696
1 3 8/21 0.10203 0.47403

On the first sight, it may seem that in this situation the discrete component
might be absent: although θ = 1/2 remains the fixed point of the map (3.28),
the respective growth rate vanishes identically. However, there are countably
many eventually periodic orbits of (3.28) with period 1 whose growth rate λ
is arbitrarily close to 1. The last iteration on the transient, before reaching
the periodic orbit, passes very close to θ = 1/2; respectively, the spectral sum
is multiplied by a tiny factor and nearly vanishes after this iteration. The
subsequent fast growth begins from the very small starting position; for this
reason, to observe the presence of the discrete component, one needs really long
samples.

The above discussion refers to the local properties of the spectral measure.
The global description should characterize the set which carries this measure as
a whole; this would inevitably require the multifractal analysis, because the gen-
eralized dimensions Dq of this set are apparently different (thus, its capacity D0

equals 1, since the values of ω with positive λ are dense). The complete picture
is delivered by the singularity spectrum f(α) (for the applications of thermo-
dynamical formalism to singular continuous spectra see, e.g. [50, 49]); here we
will limit ourselves to the numerical estimates for the correlation dimension D2

of the fractal component of the spectrum. It has been recently proved that in
systems with purely singular continuous spectra the correlation dimension of the
spectral measure predetermines the decay rate of the integrated autocorrelation
function [23, 24]: Cint(T ) ∼ T−D2 . Our situation is more complicated: the
above analysis predicts the presence of discrete component in the power spectra
of both {Πj} and {Υj}, which means that Cint(T ) should not decay to zero but
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Figure 3.7: Integrated autocorrelation in logarithmic timescale for the observables:
a) symbolic sequence {Υj}: τ0 = 0 (solid line) and τ0 = 3 (dashed line);
b) symbolic sequence {Πj}: τ0 = 0 (solid line) and τ0 = 3 (dashed line).

will instead tend to some finite positive value. At present we are not aware of
rigorous mathematical relations between the dimensions of the spectral measure
and the properties of integrated correlations for the case of mixed power spectra.
For this reason we will use the empirical extrapolation from the pure singular
case, employed in [63] for the mixed spectrum of the kicked Harpers model. Let
the contribution of the discrete spectral component be Cint(∞) ≡ A (A > 0);
we assume that the rate of convergence to A is a reasonably good approximation
to D2: Cint(T )−A ∼ T−D2 and estimate the values of A and D2 by numerical
fitting of the Cint(T ) dependencies.

Let us take as a reference point the prototype symbolic sequences {Pj} and
{Tj}. The spectral measure of the period-doubling code is pure-point, hence for
the former D2 = 0. The value of D2 for the spectral measure of the Thue-Morse
sequence equals 3− log(1 +

√
17)/ log 2 = 0.64298 . . . [57].

Fitting the data on Cint from Fig.3.3, obtained from the integration of the
initial continuous system (3.2), we come to the values A ≈ 1.9×10−4, D2 ≈ 0.63
for the variable x(t) and A ≈ 8.1× 10−4, D2 ≈ 0.56 for the variable z(t).

Coming now to the corresponding data for {Υj} (Fig.3.7a), we observe that
the weight of the discrete component in the power spectrum is strongly depen-
dent on τ0: the best-fitted value of A may be as large as 1.2× 10−2 for τ0 = 0
and as small as 9.1× 10−5 for τ0 = 3. However, this seems to exert little (if at
all) influence on the slope D2: for the checked values 0 ≤ τ0 ≤ 6 the estimates
on D2 lie within the range (0.64÷0.68). Thus we see that, both for the flow and
its discrete models, even on the quantitative level the fractal component of the
spectral measure, as inherited from the Thue-Morse sequence, does not change
its global properties in spite of the action of the logarithmic divergence in the
return (residence) times.

The results for {Πj} are much less conclusive. Again, the intensity of the dis-
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crete spectral component A is strongly influenced by the value of τ0 (Fig.3.7b).
However, here also the slope D2 exhibits large fluctuations depending on τ0:
from D2 ≈ 0.58 for τ0 = 0 to D2 ≈ 0.36 for τ0 = 3. In the Thue-Morse case,
introduction of the residence durations has enforced the onset of a weak discrete
spectral component upon the singular continuous background; here, on the con-
trary, the very existence of the singular continuous part of the spectrum is due
to these unequal residence times. For this reason, the properties of the fractal
component seem to be very sensitive to the details of the pattern of residence
durations.

The final remark concerns the origin of the mixed character of the spectrum.
On the first sight, the presence of the discrete spectral component follows from
the provision that the time of global reinjection τ0 should be integer. One
can hardly expect that in a generic continuous system the mean time of global
reinjection would be commensurate with the average time of hovering near the
saddle point. In fact, this provision is formally needed neither for the inflation
rules (3.9,3.10) nor for the concatenations (3.16,3.17). The associated substitu-
tion matrices are τ0-independent. The only place where it really matters is the
substitution of the “original” symbols R and L into the inflated codes. Should
we allow the process to be described in terms of four (and not two) symbols, τ0

can easily be rendered non-integer. Then the partial spectral sums (3.1) turn
into the Fourier integrals, and the assumption that they do not decay when the
sample length grows, leads to the very same skew products: (3.21,3.22) for the
process obtained from the Thue-Morse sequence and (3.27,3.28) for the suspen-
sion over the period-doubling code. Under irrational τ0 all the periodic and
eventually periodic orbits correspond to irrational values of ω; for this reason,
say, in the Thue-Morse case, θ = 1/2 would not be a fixed point. However, ad-
mission of non-integer values of τ0 does not provide an ultimate remedy, since
for any of these values the eventual fixed points can be found arbitrarily close to
1/2; respectively, the growth rate λ can be made arbitrarily close to 1, the cor-
responding spectral component being indistinguishable from the delta-function.
Noteworthy, linear growth starts only after hitting the fixed point, and the pre-
ceding transient may well be long. Each new iteration of the skew product is
equivalent to the doubling of the sample length; this means that the integer
values of τ0 simply make the discrete component of the power spectrum better
resolvable in short samples.

3.7 Discussion

Self-similar properties of the prototype Thue-Morse and period-doubling sym-
bolic sequences play the crucial role in our derivation of substitution and con-
catenation rules for the processes with logarithmic singularities of return times.
Although inherent for the scenario of “homoclinic doublings”, these properties
are absent in the general case when the flow does not possess the Lorenz-like mir-
ror symmetry, and the road to chaos through the homoclinic bifurcations in the
parameter space follows one of the multitude of the possible routes [15, 16, 17].
All of these routes are associated with unbounded times of return on the secant
surface (and hence, for all of them the flow is not equivalent to the Poincaré
map), but only a countable subset can be characterized through self-similarities.
In the latter case one can build up the corresponding concatenation rules and
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examine with their help the laws which govern the growth of the spectral sums;
in the more general case a kind of a statistical approach could be more helpful.

The same methods can be applied to other situations in which the origin of
the singular continuous spectral component is related to singularities of return
times: e.g. in Hamiltonian flows on a 2-torus with saddle points and irrational
rotation numbers [64, 38], or in the hydrodynamical variant of the problem: the
forced steady flow of a viscous fluid on a doubly periodic domain in presence of
a mean drift [65].

In the paper we have demonstrated that particular mechanisms for the ap-
pearance of multifractal power spectrum in continuous dissipative systems can
be adequately described by means of symbolic dynamics. In fact, the role played
in the above analysis by the dissipative character of the flow, is restricted to the
effective reduction of dynamics to one-dimensional maps; the proper account
of the logarithmic divergence of return times seems to be more important, and
we expect that similar considerations should work also in the context of low-
dimensional conservative systems. An open question remains, whether an ad-
equate symbolic description is possible for a general continuous flow. As soon
as such description is obtained, the well-developed theory of spectral properties
of symbolic sequences [21] can serve as a basis for understanding dynamical
systems at the border between order and chaos.



Chapter 4

Fractal Fourier spectra of
Cherry flows

4.1 Introduction

Equations reducible to flows on 2-tori are encountered in different branches of
science. In many cases, such dynamical systems possess no steady states: thus,
in the textbook example of a 2-torus flow governing the dynamics of a peri-
odically perturbed oscillator, the monotonic growth of the phase of the force
forbids the existence of static equilibria. However, flows on 2-tori arise also
in the autonomous setup where the evolution does not need to be monotonic.
Examples of vector fields on low-dimensional tori which possess fixed points, ap-
pear in various physical contexts: charged particle transport in toroidal plasma
fusion devices in the approximation of several electrostatic plane waves [66, 67],
charge-density wave transport[68], forced two-dimensional viscous flows [65],
phase approximation to the dynamics of coupled solid state lasers interacting
with an injected field [69], etc.

Since chaos in a continuous dynamical system is only possible if the di-
mension of its phase space exceeds two, dynamics on two-dimensional manifolds
may appear simple. However, the question about the spectral properties of such
flows is still not completely answered. Kolmogorov proved that the spectrum of
a Hamiltonian flow on a 2-torus with an irrational rotation number is discrete,
provided that two conditions are satisfied: the flow has no fixed points, and the
rotation number cannot be anomalously well approximated by rationals [34]; his
conjecture that violation of the latter condition could produce continuous spec-
trum, was later confirmed in [70]. Spectral properties are related to the ergodic
property of mixing [20]; absence of mixing for a flow without fixed points on a
2-torus was demonstrated in [71]. In the present analysis, we remove the re-
maining restriction and allow the vector field to possess fixed points. According
to numerical results, in this case the Fourier spectrum of the trajectory with
irrational rotation number is supported by a fractal set.

In Sect.4.2 an exemplary 2-parameter family of equations on a 2-torus is
introduced. In Sect.4.3 the characteristics of the Fourier spectral measure are
discussed. Numerically evaluated autocorrelation function indicates that the
power spectrum of the flow with irrational rotation number is neither discrete

55
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nor absolutely continuous but fractal. A straightforward symbolic description
based solely on topology of the orbit, fails to reproduce the unusual spectral
properties of the flow. This discrepancy is due to the extreme variation of
return times which is not contained in the Poincaré map. Sect.4.4 describes
modification of the symbolic representation by incorporating metric informa-
tion about dynamics. For this purpose, we utilize the fact that the return map
is a discontinuous circle map for which the accumulation of closest returns to
the critical point is described by the superexponential scaling law. The mod-
ified substitution rule produces a symbolic code whose spectral characteristics
are in good correspondence with those of the original continuous flow. In the
concluding part of the paper we argue that our particular example represents
a typical case and, hence, the results apply to a wide class of flows with fixed
points on the 2-torus.

4.2 A sample Cherry flow

In the generic case of a flow with fixed points on a 2-torus, at least one of
these points should be a saddle. For the flows with rational rotation numbers,
existence of saddle points permits the formation of homoclinic trajectories which
can give birth to the respective closed orbits. The implications in the case of
irrational rotation numbers are more far-reaching. The qualitative differences
were described by Cherry [72] who constructed an analytical example of a vector
field on a torus with a saddle, a source and non-trivial recurrent trajectories.
By the term “Cherry flow” we will denote below a flow on a 2-torus which has
fixed points and an irrational rotation number. We restrict ourselves to the
simplest example when there are only two fixed points (Fig.4.1a), one of them a
saddle and the other one a source: the latter may be either an unstable node or
an unstable focus. Flows with one sink and one saddle turn into our case when
viewed in reversed time. For the description of geometric properties of Cherry
flows see e.g. [73, 74]; typical bifurcation sequences were investigated in [75].

(a)

α
ΓΓ

γ *β
γ∗

α

β

(b)

γ  i
+

1

γ i

Figure 4.1: (a) Geometry of the Cherry flow; Γ: global secant on the torus;
α, β, γ∗: intersections of Γ with invariant manifolds of the saddle point.
(b) Return mapping on Γ (γ: coordinate along the secant).
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As an example, we consider the family

ẋ = 1 + sin y − sin x sin y (4.1)
ẏ = b + cos x−K cos x cos y

which is a generalization of equations arising in the context of forced spatially
periodic steady motions of incompressible viscous fluid [65]. The algebraic ex-
pressions which, in terms of parameters b and K, ensure the existence of steady
solutions of Eqs.(4.1), are too cumbersome to be quoted explicitly; below we
deal with the ranges of values of b and K where such solutions are present.

To compute the rotation number on the torus T 2, we introduce a lift of the
flow from T 2 to the plane R2 [75]. For the case of a flow with a source, take the
initial conditions (x0, y0) which do not belong to the stable manifold of a fixed
point, and consider the forward limits of x(t) and y(t). The rotation number is
defined as ρ = limt→+∞ y(t)/x(t). If the flow has a sink instead of a source, the
initial conditions should be chosen outside the unstable manifold of the saddle
point, and the limit should be taken at t → −∞; for the conservative case,
either of the limits will do.

We begin with this conservative flow. At K = 1 Eqs.(4.1) describe an
area-preserving flow with the Hamiltonian H(x, y) = −x + by − cos y − sin x +
sin x cos y. For −1.56644 < b < 1.56644, the vector field has two fixed points:
a center and a saddle. The center is surrounded by closed curves which fill
the “vortex” V encircled by the separatrix of the saddle point (Fig.4.2a). The
rotation number for the points outside the vortex equals b; under irrational
values of b each orbit which starts outside the vortex, is dense in T 2 \ V .
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Figure 4.2: Phase portraits of Eqs.(4.1) for flows with inverse golden mean
rotation number.
(a) Hamiltonian flow: K = 1, b = (

√
5 − 1)/2; (b) saddle and source: K =

3/2, b = 0.58766578 . . .; (c) saddle and sink: K = 1/2, b = 0.60398604 . . ..

The situation for K 6= 1 is different. The degeneracy is removed, the contin-
uum of closed curves disappears, and for K > 1 the center turns into the unsta-
ble focus (Fig.4.2b); for K < 1, the center becomes the stable sink (Fig.4.2c). In
both cases the dense covering of the torus is replaced by the Cantor-like pattern.

The bifurcation diagram of Eqs.(4.1) on the plane of parameters b and K
is briefly described in the Appendix. On this plane, Cherry flows exist on the
continuum of curves; the curve which corresponds to a flow with rotation number
ρ, passes through the point (b = ρ,K = 1). We choose the curve corresponding
to the inverse “golden mean” rotation number: ρ = σ−1 = (

√
5 − 1)/2. A
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typical phase portrait of the attracting set is shown in Fig.4.2b; here, K = 3/2
and b = 0.58766578 . . .. In the course of winding around the torus, the orbit
approaches the saddle point and departs from it; the distance between the orbit
and the saddle is not bounded from below. During such passages the velocity of
the imaging point can become arbitrarily small. This property has been shown
to lead to the presence of the fractal component in the power spectrum [49].

4.3 Autocorrelations and Fourier spectra on or-
bits with irrational rotation numbers

Since we expect that the support of Fourier spectra can be concentrated on
fractals, direct numerical computation of such spectra may prove to be a fragile
procedure. For this reason, instead of insecure estimates in the frequency do-
main, we will mainly work in the time domain and use the more robust tool:
the autocorrelation function C(τ) defined in Eq.(1.1). If the observable is a
periodic function of time, its C(τ) is also periodic, with maximal values equal
to 1. For quasiperiodic motions, the values of τ which correspond to the peaks
of C(τ), form a progression in which the ratios of consecutive terms yield the
best rational approximations to the irrational rotation number; the magnitude
of these peaks tends to 1. For the chaotic and stochastic processes, the increase
of τ is accompanied by the asymptotic decay of C(τ).

Autocorrelation is the Fourier image of the spectral measure µ(ω): C(τ) =∫
dµ(ω) exp(2πiωτ). There always exists a uniquely determined decomposi-

tion of the spectral measure into the pure-point component (discrete power
spectrum) and the continuous one [76]. The latter, in its turn, is further de-
composable into a part which is absolutely continuous with respect to Lebesgue
measure (absolutely continuous power spectrum) and a singular continuous part
supported by a fractal set. This singular continuous spectral component will be
a main object of our interest.

Along with C(τ) we will also employ the integrated autocorrelation Cint(T )
introduced in Eq.(1.3). Recall that behavior of these two functions at asymp-
totically large argument values characterizes the spectral measure:

a) a necessary condition for a spectral measure to be purely absolutely con-
tinuous is the decay of autocorrelation: limτ→∞ C(τ) = 0 [20];

b) contribution of the pure point component into the power spectrum is pro-
portional to limT→∞ Cint(T ) [53].

Hence, if for sufficiently long time intervals the integrated autocorrelation de-
cays to (nearly) zero, one can conjecture that the power spectrum includes no
discrete component. If, further, the autocorrelation function itself does not dis-
play the tendency to a complete decay, the absolutely continuous component
of the spectral measure also appears to be absent. Consequently, the process
has a singular continuous Fourier spectrum. Further, as discussed in previous
chapters, the knowledge of the power law which characterizes the decay rate
of Cint(T ), allows one to evaluate the fractal properties of the set which sup-
ports the spectral measure: namely, to estimate its correlation dimension (for
the connections between the products of autocorrelations and the values of the
other generalized fractal dimensions Dq, see Section 2.5 above and [77]).
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For computational purpose, it is convenient to “unfold” a torus onto a plane
and consider an observable which is a continuous periodic function of coordinates
x and y; immediate candidates are trigonometric functions like cos x.

Typical autocorrelation functions for the flows whose rotation number equals
the inverse golden mean, are presented in Fig.4.3; note the logarithmic timescale.
Within the plotted time intervals the orbit performs ∼3000 turns around the
torus. The parameter values in Fig.4.3a and Fig.4.3b correspond to the phase
portrait shown in Fig.4.2b; the flow at K = 2, b = 0.513061539446796 . . . used
for the plots in Fig.4.3c and Fig.4.3d, is qualitatively similar to Fig.4.2b. Fi-
nally, the plots of autocorrelations in Fig.4.3e and Fig.4.3f correspond to the
quasiminimal set of the vector field from Fig.4.2c which has a saddle and a sink
(recall that under K < 1 one of the fixed points is a stable focus).
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Figure 4.3: Autocorrelation of observable cosx in flows with golden mean rota-
tion number:
(a),(b): K = 3/2; b = 0.58766578 . . . (vector field from Fig.4.2b);
(c),(d): K = 2; b = 0.51306153 . . .;
(e),(f): K = 1/2; b = 0.60398604 . . . (vector field from Fig.4.2c).

As recognizable in the plots, the autocorrelation C(τ) does not return to
the value of 1; this underscores the difference from the case of quasiperiodic
dynamics. On the other side, repetitive minor peaks of C(τ) imply that the
power spectrum cannot be absolutely continuous. On the logarithmic axis, the
highest peaks form a nearly regular lattice; they are separated by the distance
≈ σ = (

√
5 + 1)/2. As visualized by the plots of the integrated autocorrelation

which is apparently decaying, the spectrum also cannot include the discrete
component. We can conjecture that the power spectrum is singular continuous;
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the dimension of the fractal set which supports the spectral measure, can be
estimated from the slope of the Cint(T ) on log-log plots.

4.4 Symbolic coding

In this section, dynamics of the continuous flow is reduced to a much simpler
discrete object: the sequence built over the finite set of symbols. Our aim
is to obtain a symbolic string which adequately reproduces the spectral and
correlation properties of the flow.

The most straightforward way to introduce the symbolic coding of the orbit
involves the Poincaré map induced by the flow. Due to the presence of fixed
points on the surface of the torus, such maps differ qualitatively from conven-
tional circle mappings. Let us briefly describe their basic properties.

Let Γ be a global secant on the torus (Fig.4.1a). Since two separatrices of
the saddle point return onto Γ in two different places (denoted, respectively, by
α and β), the 1-dimensional map φ induced on Γ is not homeomorphic: not all
of the points of Γ have preimages. This is a discontinuous circle map with a
gap (Fig.4.1b). Since during the passage near the saddle the linear terms of the
equations dominate, close to the discontinuity the mapping is described by the
power law: for small positive ε, φ(γ∗ + ε) − β ∼ εν , and α − φ(γ∗ − ε) ∼ εν .
Here the saddle index ν = −λs/λu is the ratio of the negative eigenvalue λs and
the positive eigenvalue λu of the Jacobian of the vector field taken at the saddle
point. The properties of families of circle mappings with gaps were previously
considered in the context of sequences of homoclinic (“gluing”) bifurcations
for flows in Rn, n ≥ 3 [15, 16, 17, 30]. The peculiarity of these mappings
is the superexponential scaling near the irrational rotation numbers, both in
the parameter space and along the state variable; the reason for this unusual
scaling lies not in the power-law character of the map (the piecewise-linear map
demonstrates it as well), but in the presence of the discontinuity. The flow with
a sink is described by the same mapping in the reversed time. In this case
the mapping is not everywhere defined on Γ: the backward orbits which start
between the points α and β in Fig.4.1a end up in the sink and never return onto
Γ. On extending the map to the whole of Γ by prescribing a constant value
on [α, β], one arrives at the circle mapping with a flat interval. Such mappings
have also been an object of extensive studies [78, 79, 80, 81]. Thus, it has been
proven that, under ν > 1, the Hausdorff dimension of the non-wandering set of
the map is strictly less than one [80]. For the opposite case of expanding maps
with flat intervals, the Cherry flows have been shown to be, in a certain sense,
“rare”: parameter values corresponding to irrational rotation numbers have in
the parameter space not only zero Lebesgue measure but also zero Hausdorff
dimension [78]; under certain additional technical assumptions, each recurrent
set of Γ with irrational rotation number has Hausdorff dimension zero [79].

The Poincaré map has one discontinuity and consists of monotonic branches;
this suggests that the alphabet consisting of two symbols is sufficient for the ad-
equate description of dynamics: the symbols mark the passages e.g. “below”
and “above” the saddle point. The symbolic code for the inverse golden mean
rotation number is the Fibonacci symbolic sequence ABAABABA . . . which
can be obtained from the initial symbol A by means of repetitive substitutions
(inflations) {A → AB, B → A}. On assigning to A and B numerical values, a
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symbolic code is turned into a sequence of numbers which can be further treated
as time series. In this way the metric characteristics of the sequence (autocorre-
lation, Fourier spectrum, entropies, etc.) can be evaluated. The straightforward
computation shows that the autocorrelation function C(τ) displays repetitive
returns arbitrarily close to 1 (Fig.4.4a); hence, the power spectrum of the Fi-
bonacci sequence is discrete. We see that the Fibonacci code, albeit correctly
reproducing the pattern which the orbit follows during its winding around the
torus, fails to reproduce the spectral properties of the Cherry flow. This does
not mean that the chosen symbolic coding is not appropriate for the Poincaré
map; the reason is deeper: the map itself also appears to have a discrete power
spectrum (Fig.4.4b). Hence, the Poincaré map does not share the spectral prop-
erties of the underlying flow.

 

0 1000τ-1.0

 

  0

   

(a)
1.0

C
(τ

)

     

0 1000τ-1.0

 

  0

 

(b)
1.0

C
(τ

)

Figure 4.4: Autocorrelation function for: (a) Fibonacci symbolic code;
(b): Poincaré mapping induced by the flow from Fig.4.2b.

The situation in which the flows and their Poincaré maps have qualitatively
different Fourier spectra, was discussed in [49]; the reason was found to lie in
the unboundedness of the return times onto the Poincaré surface in the phase
space, resulting from presence of saddle points in the attractors of corresponding
flows. In the case of Cherry flows the same mechanism is in action: trajectories
can approach the saddle point arbitrarily close, and the time intervals between
the returns onto a secant Γ can be arbitrarily long. The cause of the discrep-
ancy is obvious: in the straightforward symbolic representation all turns of the
trajectory around the torus are treated equally: each one, irrespectively of its
temporal duration, is represented by a single symbol. The duration is character-
ized through strong variations: the turns during which the orbit passes close to
the saddle point, require rather long time intervals. Consequently, the contribu-
tion of the protracted turns into the computation of averaged characteristics of
the orbit, like the power spectrum, autocorrelation function etc., is significantly
larger than that of the faster turns; this circumstance remains ignored by the
Poincaré map.

To obtain an adequate symbolic description which recovers the metric char-
acteristics of the process, one has to take into account the slowdown of the flow
in the neighborhood of the saddle point. Certain symbols in the Fibonacci code
must be doubled, tripled etc, depending on the length of the corresponding time
intervals. Consider the Poincaré secant Γ parameterized by coordinate γ; let
γ∗, as above, denote the coordinate of the intersection of Γ with the local stable
manifold of the saddle point (Fig.4.1a). The length τr of the time interval until
the next return of an orbit onto Γ is a function of γ; it is easy to estimate that
this function has a logarithmic singularity in the point γ∗:

τr(γ) ∼ − log |γ − γ∗| (4.2)
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The multiplicity (the number of repeats) of each symbol in the code should
be proportional to the corresponding τr. In order to characterize the weight
with which the individual symbols in the code contribute into the averaged
characteristics, let us follow the approach of [82] and introduce the “residence
time” R for the symbols. For the j-th symbol this time R(j) is given by the
length of time interval between the j-th and the j+1-th crossings of the Poincaré
secant by the orbit starting at γ∗. (Strictly speaking, the orbit starting exactly
at γ∗ belongs to the local stable manifold of the saddle and never returns onto
Γ; here and below under images of γ∗ we mean, for shortness, either of the
one-sided limits for γ → γ∗; these limits correspond to two components of the
unstable manifold of the saddle).

To estimate the distribution of residence times, scaling properties of the
orbit should be taken into account. In the example of [82] the logarithmic sin-
gularity of return times was combined with the geometric (exponential) scaling
on the attractor. In Cherry flows the situation is qualitatively different, and
the construction of [82] cannot be directly applied. As already mentioned, in
contrast to vector fields on tori without fixed points where under irrational ro-
tation numbers the trajectories are dense, the trace of a Cherry flow on the
secant Γ is a Cantor set (cf. Fig.4.2b). Keeping the inverse golden mean ro-
tation number, consider the “Fibonacci returns” for the Poincaré mapping φ:
the Fn-th images of γ∗ where Fn is the n-th number in the Fibonacci series
{1, 2, 3, 5, 8, 13 . . .} 1. The “odd” (corresponding to the odd n) and the even
Fibonacci returns accumulate to γ∗ from two opposite sides; as known from the
analysis of gap maps [16, 17, 30], this accumulation is characterized through the
superexponential scaling:

|φFn+2(γ∗)− γ∗| ∼ |φFn(γ∗)− γ∗|κ (4.3)

where the rate of accumulation κ, in its turn, depends on the saddle index
ν. The analysis of the corresponding renormalization operator shows that the
relevant fixed point is singular: the renormalizing transformation cannot be
properly linearized in its vicinity. For the values of ν close to 1 the respective κ
can be estimated [17, 30] as

κ(ν) ≈ ν +
ν2 +

√
ν4 + 4ν3

2
(4.4)

When n is large enough, the most part of τr for the Fn-th return is spent in
a very slow motion near the saddle point, and the contribution of relatively fast
“global” passage around the torus is negligible. Combining (4.2) with (4.3), we
obtain the residence times for the symbols with numbers Fn:

R(Fn) = τr

(
φFn(γ∗)

) ∼ Go,eκ
n/2 (4.5)

where the constants Go,e > 1 refer to odd and even n, respectively. Accord-
ing to Eq.(4.5), residence times for the Fibonacci returns form two geometric
progressions with the same exponent κ.

The Cantor set on Γ has a hierarchical structure: it is composed of “clusters”;
each cluster is organized around one of the Fibonacci returns; inside each cluster

1Naturally, the full Fibonacci series reads {1, 1, 2, 3, 5, 8, . . .}; to simplify the notation, we
start the enumeration from zero: F0 = 1, F1 = 1, . . ., and do not use the zeroth term.
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one observes the next level of self-similar hierarchy, and so on. As n grows, the
size of the n-th cluster rapidly (obeying the double-exponential law) decreases.
Since the gaps which separate the clusters are large compared to the cluster
sizes, we can neglect the variation of return time inside each cluster. Therefore,
as the representative timescale for each cluster we choose the value of τr for
the Fibonacci return from this cluster, as given by Eq.(4.5). Then, to compute
the residence time for the j-th symbol in the code, one needs only to determine
the number N(j) of the cluster to which belongs the j-th image of γ∗. This
N(j) can be determined with the help of so-called Zeckendorf expansion [83]
through which each natural number is in the unique way represented as a sum
of non-neighboring Fibonacci numbers (e.g. 16=13+3, 133=89+34+8+2, etc.).
The value of N(j) is given by the place which the last (the smallest) term in the
Zeckendorf expansion of j occupies in the Fibonacci series {1, 2, 3, 5, 8, 13 . . .}.
For the above examples, N(16) = 3 (the smallest term in the expansion is 3,
which is the 3-rd Fibonacci number), N(133) = 2; obviously, N(Fn) = n. In
this way, the residence time for j-th symbol becomes

R(j) = R (N(j)) = GκN(j)/2 (4.6)

where G = Go (G = Ge) if N(j) is odd (even).
Since the residence time R(j) effectively accounts for the contribution of

the j-th turn of the orbit into the averaged characteristics, one can attempt
to recover these characteristics numerically by computing them for the step
function which admits only two values 1 and 0. In the plot of this function
the j-th plateau has the height 1 if the j-th symbol of the Fibonacci code is A,
and the height 0 if the respective symbol is B; the length of the j-th plateau is
N(j). Applied to the Fibonacci code, this procedure allows to recover fractal
power spectra. On the symbolic level this means that the j-th letter in the
symbolic Fibonacci code should be replaced by a string of R(j) identical letters.
In general, this does not work out, since the rate κ is non-integer, and we obtain
the non-integer multiplicity for R(j). A convenient integer example is delivered
e.g. by κ = 2; according to Eq.(4.4) this requires the value of the saddle index
ν ≈ 2

√
2 − 1 = 0.8284 . . . which in the Eqs.(4.1) corresponds to K ≈ 1.21. We

can choose a time unit to be Go and include κ1/2 into the rescaled Ge, then
R(F2n+1) = κn and R(F2n) = Geκ

n. Under Ge = 2, this produces from the
Fibonacci code ABAABABA . . . the string

A(1)B(2)A(2)A(1)B(4)A(1)B(2)A(4) . . . (4.7)

where the bracketed indices denote the residence times, in other words the
multiplicities with which the respective letters should be repeated.

The very same symbolic string (4.7) can be produced in a different way, with
the help of the substitution rule applicable to the case of integer κ. The rule
combines two parts: a part, responsible for the correct ordering of the orbit,
and a part which reflects the growth of residence times due to hovering near the
saddle after Fibonacci returns. Since the topology of the orbit is the same as for
the flow without fixed points, the first part must be the Fibonacci substitution
{A → AB, B → A}. The action of the second part should elongate the sequence
for A; let us use the symbol D for the added “hovering” segment: A → ABD.
The substitution rule for D is D → C, where C denotes the “hovering part” of
the previous Fibonacci return. In its turn, after the substitution C is replaced
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by two (three in case of κ=3, etc.) symbols D: C → DD. Assembling the parts
together, we obtain an inflation rule acting on an alphabet of four letters:

A → ABD, B → A, C → DD, D → C (4.8)

It should be kept in mind that both A and C refer to the same branch of the
Poincaré map; the other branch is represented by B and D. For this reason,
while computing the quantitative characteristics of the symbolic sequence, the
numerical values should be assigned to the letters pairwise: e.g. A = C =
1, B = D = 0.

The autocorrelation function and integrated autocorrelation for the symbolic
code built with the help of the rule (4.8) are presented in Fig.4.5a,b respectively.
Modification of the rule allows to reproduce the qualitative properties of the
autocorrelation function computed directly from the orbit of the Cherry flow
(cf. Fig.4.3a,c,e): the observed structure has moderate, log-periodic in τ peaks,
typical for systems with singular continuous spectra. The quantitative corre-
spondence, as measured by the logarithmic period which is close to the golden
mean σ = (

√
5 + 1)/2, and by the decay rate of the integrated autocorrelation,

is also quite satisfactory.
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Figure 4.5: Characteristics of symbolic code produced by substitution rule (4.8).
Code length: 4× 106; (a) correlation function; (b) integrated autocorrelation.

4.5 Discussion

In order to obtain the symbolic sequence with correct spectral characteristics,
the topological properties of the trajectory (ordering of the turns, as reflected by
the Fibonacci code) should be combined with its metric properties (supexponen-
tial scaling of the nearest returns) and its dynamical characteristics (logarithmic
divergence of return times). The crucial role is played here by the neighborhood
of the saddle point. Each generic observable on the trajectory remains nearly
constant during the long hoverings near the saddle; the durations and ordering
of these hoverings are governed by the properties of the trajectory (and not of
the observable itself). Therefore the singular continuous component should be
present in the Fourier spectral measure of a generic observable.

Although the above results concentrate on the particular rotation number,
they seem to be in some sense typical. Logarithmic periodicity for the lattice
of peaks of the autocorrelation function follows from the periodicity of the ex-
pansion of the rotation number into the continued fraction: σ−1 = {1, 1, 1, . . .}.
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The inverse golden mean σ−1 is slowly approximated by rationals; denomina-
tors of successive approximants Fn/Fn+1 differ by a factor which tends to σ
with n → ∞. This growth factor determines the distance between the highest
peaks of the autocorrelation function on the logarithmic timescale. For other
“noble” irrationals (numbers with periodic expansions into continued fractions)
log-periodicity of the peak lattice should persist; however, the convergence of
approximants is faster, hence the peaks are more seldom. This is illustrated by
Fig.4.6a where the autocorrelation function is plotted for the Cherry flow with
the “silver mean” rotation number

√
2 − 1 = {2, 2, 2, . . .}. For a “generic” ro-

tation number, there is no periodicity among the coefficients of the continuous
fraction expansion; hence the peak pattern is irregular. This can be seen in
Fig.4.6b, where C(τ) is computed for the “randomly chosen” rotation number
0.441756079565 . . . = {2, 3, 1, 3, 1, 4, 2, 1, 1, 3, 1, 1, 2, . . .}.
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Figure 4.6: Autocorrelation function for Cherry flows at K = 3/2:
(a) “silver mean” rotation number; b = 0.38717552694000980415 . . .
(b) rotation number 0.441756079565; b = 0.406982282437618009092 . . .

The substitution rule on the alphabet of four symbols can be easily gener-
alized for other rotation numbers; the procedure should combine the symbolic
2-letter renormalization known from the usual circle map [84, 16] and the elon-
gation of residence times, described in the previous section. Thus, for a rotation
number with expansion into the continuous fraction {n1, . . . , nj , . . .} substitu-
tion on the j-th step should be

A → B(nj−1)ABD, B → B(nj−1)A, C → DD, D → C (4.9)

For rotation numbers with periodic or eventually periodic continued-fraction
expansions, a finite set of substitutions would alternate in the regular manner,
eventually resulting in the ordered lattice of peaks for the autocorrelation func-
tion. Non-periodic sequences of continuous fraction entries {ni} would produce
disordered symbolic strings and, consequently, disordered peak pattern.

Irrespective of the periodicity of the continued fraction expansion, the pres-
ence of singular continuous component appears to be the common property both
of Cherry flows and of substitution sequences which mimic this unusual kind of
two-dimensional dynamics.

Another aspect which deserves to be mentioned here, is the role of power
spectra as a criterion to separate chaotic processes from non-chaotic ones. Among
the first tools exploited by experimentalists in their search for chaos in the exper-
imental data was the Fourier analysis of time records [85, 86], with continuous
spectra being interpreted as the hallmark of chaotic dynamics, and discrete
spectra indicating to non-chaotic behavior. Since that early work, this crite-
rion has been often employed for the identification of the type of dynamics
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from experimental and numerical data. The above results suggest that certain
precautions should be met: in case of processes with fractal power spectra,
finite-length spectral sums may produce the false impression of the absolutely
continuous spectrum and, hence, chaotic dynamics. This can be seen in Fig. 4.7
which shows the approximation to the power spectrum of the Cherry flow from
Fig.4.2b, estimated from 214 datapoints. Behavior of spectral sums under the
increase of the dataset length should be checked: in case of the absolutely con-
tinuous spectrum, finite-length approximations converge to a bounded spectral
curve, whereas the absence of such convergence indicates to the presence of
singularities in the spectral measure.
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Figure 4.7: Estimation of the power spectrum for the flow from Fig.4.2b. Length
of the sample: 214 points.

Appendix: Bifurcation sequences in the family
(4.1).

The organizing element for the diagram of states on the parameter plane of the
equations (4.1) is the line K = 1 on which the dynamics is Hamiltonian, and on
which each rotation number ρ is represented by the point b = ρ. For rational
values of ρ, the existence domains for periodic solutions with the corresponding
rotation numbers open from these points into both directions (K > 1 and K < 1,
respectively); for irrational ρ these points belong to the existence curves for the
Cherry flows. In Fig.4.8 these domains are presented for the rotation numbers
equal to the first 6 ratios of the consecutive Fibonacci numbers Fn/Fn+1.

The structure of the parameter plane is reminiscent of two-parameter families
with quasiperiodic and periodic dynamics. Similarly to the Arnold tongues in
such families, the domains of periodic behavior have wedge-like shape and are
bounded by the lines of saddle-node bifurcations. However, in contrast to the
Arnold tongues, inside these domains there are additional bifurcation lines which
pass through the tips of the wedges: lines of homoclinic bifurcations. These
lines divide each “tongue” into the inner region and two narrow sideband strips.
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Figure 4.8: Bifurcation diagram of Eqs (4.1). Labels denote rotation numbers;
solid lines: saddle-node bifurcations of periodic solutions;
dashed lines: homoclinic bifurcations of the saddle-point.

In the narrow strips, close to the curves of tangent bifurcations, two periodic
orbits are present: one stable and one unstable; this illustrates the statement
proven in [87] that approximations to expanding Cherry flows possess at most
two periodic trajectories. In the inner region only one periodic orbit exists.
For K > 1 this is the stable one, which remains the unique attractor for the
flow in the whole parameter domain. For K < 1 the picture is reversed; now
the unstable periodic orbit is present everywhere inside the tongue, whereas
the existence of the stable one is restricted to the strips outside the curves of
homoclinic bifurcations. Inside the inner tongue, the only attractor of the flow
is the stable fixed point; in the strips two attracting states coexist.
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Chapter 5

Steady viscous flow with
fractal power spectrum

5.1 Introduction

To get a feeling of historic affinity between hydromechanics and the theory of
dynamical systems one has only to recall several words like “sink”, “source”
and, last not least, one of the most important ones, the “flow”. When one views
a steady motion of incompressible fluid as a dynamical system, the flow is really
a phase flow, streamlines become phase trajectories, and the time-independent
spatial pattern recovers the geometry of the attractor. For this purpose, the
Lagrangian description of the fluid motion seems more suited than the Eulerian
one. Whereas the latter is bound to the fixed place in the space (where by virtue
of steadiness the values of all observables remain time-independent), the former
traces the individual “fluid particles” along their paths and can deliver the
picture of chaotic motion with its exponential growth of the distance between
the initially close particles [88]. The stirring and mixing imposed by chaotic
streamline patterns is of importance for geophysics and magnetohydrodynamics;
for the numerous examples of Lagrangian chaos in various steady and time-
dependent flow patterns see e.g. the monograph [89].

For obvious reasons, the phase space of a chaotic autonomous dynamical sys-
tem is at least 3-dimensional. Consequently, Lagrangian chaos can be encoun-
tered only in fully 3-dimensional steady fluid motions. At the first sight, it may
seem that the highest temporal complexity attainable for tracers transported
by two-dimensional steady flows is periodicity or at most (in appropriate geom-
etry) quasiperiodicity, with well pronounced correlations and discrete temporal
spectra. However, slowing down near the stagnation points generates singulari-
ties in the turnover times of individual fluid particles. As we will demonstrate,
this can result in the onset of some intermediate phase between order and chaos,
where the power spectrum is (singular) continuous, but certain correlations per-
sist over arbitrarily long times (recall that the absolutely continuous spectrum
is a signature of chaos, but a dynamical system is mixing if and only if the cor-
relations asymptotically decay [20]). This peculiar type of dynamics is known
basically from the mathematical models of systems with incommensurate scales
or quantum systems in quasiperiodic potentials (see e.g. [5, 8]), where, unlike

69
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our case, the singular spectra describe the spatial structure; to our knowledge
it has never been previously reported in the context of fluid mechanics.

In this Chapter, we report on the class of two-dimensional steady viscous
flows generated by time-independent forcing. Increase of the forcing amplitude
leads to changes in the topology of streamlines pattern; from the Lagrangian
point of view, this marks the transition from the flow with a discrete temporal
spectrum to the motion with a fractal one. With the help of the autocorrelation
function, we obtain numerical estimates for the correlation dimension of the
spectral measure.

5.2 Formulation of hydrodynamical problem

Let the incompressible fluid with density ρ and viscosity ν flow over the 2-
torus (0≤ x ≤ 2π, 0≤ y ≤ 2π) under the action of the time-independent force
F = (f sin y, f sin x, 0) (for the experimental realization of spatially periodic
forcing in 2-dimensional flows see e.g. [90, 91, 92]). The Navier-Stokes equations
governing the fluid motion are

∂

∂t
v + (v · ∇)v = −∇P

ρ
+ ν∇2v + F (5.1)

∇ · v = 0

where v and P are, respectively, the velocity and the pressure. The structure of
the forcing term is reminiscent of the Kolmogorov flow [93]. We restrict ourselves
to the 2-dimensional formulation; besides, the geometry of the domain implies
that not only the forcing, but also the velocity field itself is periodic:

v(x, y) = v(x + 2π, y) = v(x, y + 2π) (5.2)

Thus the possible perturbations are confined to the torus size, and the longwave
disturbances which are known to be the first to destabilize the Kolmogorov flow
[93, 94], are precluded. As a further difference from the Kolmogorov flow we
prescribe the fixed non-zero mean flow across the domain in both directions,
parameterizing it by the two flow rates α and β, respectively:

∫ 2π

0

vxdy

∣∣∣∣
x=0,2π

= 2πα,
(5.3)

∫ 2π

0

vydx

∣∣∣∣
y=0,2π

= 2πβ

5.3 Flow patterns

Incompressibility of the fluid allows to project out the pressure by introducing
the streamfunction Ψ(x, y) : vx = ∂Ψ/∂y, vy = −∂Ψ/∂x. The pattern,
described by the steady solution

Ψ = αy − βx +
f sin(x− φ1)√

α2 + ν2
− f sin(y − φ2)√

β2 + ν2
(5.4)
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φ1 = − arctan
ν

α
, φ2 = − arctan

ν

β

of the equations (5.1) satisfying to (5.2) and (5.3), yields the stationary velocity
field:

vx = α− f cos(y − φ2)√
β2 + ν2 (5.5)

vy = β − f cos(x− φ1)√
α2 + ν2

In the absence of forcing (f = 0) the streamlines are straight and the velocity is
everywhere the same; one has the trivial flow on the 2-torus with the rotation
number α/β. (Of course, the rotation number equals α/β also in the general
case Ψ = αy − βx + Φ(x, y) where Φ(x, y) is periodic in both arguments and
bounded). The increase of the forcing amplitude f distorts the streamlines

(c) (d)

(a) (b)

Figure 5.1: Flow patterns for α = (
√

5− 1)/2, β=1:
(a) pattern (5.4) for ν=1, f = 1

2fcr= 0.587785;
(b) pattern (5.4) for ν=1, f = fcr;
(c) pattern (5.4) for ν=1, f = 3

2fcr= 1.7633557;
(d) pattern (5.7).

(Fig.5.1(a)). However, in a range of values of f the Lagrangian dynamics does
not alter qualitatively: if α/β is rational, the streamlines are eventually closed;
otherwise each particle path is dense in the domain. In both cases the Fourier
spectrum of an observable ξ(t) measured along the trajectory of the particle is
discrete; the autocorrelation function C(τ) displays peaks which approach 1 for
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the time values corresponding to the multiples of period in the former case and
to the denominators of rational approximations to α/β in the latter. This can
be seen in Fig.5.2(a); here and below we fix the values ν=1 and the “golden
mean” rotation number (

√
5− 1)/2.
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Figure 5.2: Autocorrelation function for “fluid particles” in steady flow patterns:
(a) pattern (5.4); parameter values as in Fig.5.1(a);
(b) pattern (5.4); parameter values as in Fig.5.1(c);
(c) pattern (5.7).

At reaching the threshold value of the forcing amplitude

f = fcr =
√

α2β2 + ν2 max(α2, β2) (5.6)

two cusps appear at two particular streamlines, with the velocity vanishing at
the cusp tips (Fig.5.1(b)). For f > fcr each cusp tip splits into a couple of
stagnation points: the elliptic one and the hyperbolic one (the Poincaré index
[95, 96] being 1 for the former and −1 for the latter). The pattern of streamlines
(5.4) acquires new features: along with the “global” particle paths crossing the
whole domain, there appears a “localized” component which is built of two
mutually symmetric isolated eddies (Fig.5.1(c)). Each eddy has the elliptic
point at its centre and is encircled by one of the separatrices of the respective
hyperbolic stagnation point. Inside the eddies the particle paths are obviously
closed; respectively, the above statement concerning the density of orbits under
irrational values of α/β holds everywhere outside the eddies [97].
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5.4 Correlation and transport properties

Let us choose a secant which is transversal to the global component of the
flow. Due to the Hamiltonian nature of the flow (which is ensured by the
incompressibility of the fluid), the Poincaré return mapping which the particle
paths induce on this secant, is conjugate to the shift on the circle: φi+1 =
(φi + 2π α/β) mod 2π, both for rational and irrational values of α/β.

Under irrational values of α/β the power spectrum for any orbit of this
map is discrete, and the motion is completely correlated, with the appropriate
peaks of the autocorrelation function (ACF) tending to 1, like those in Fig.2(a).
However, the correlation properties of the flow appear to be remarkably different
from those of its own Poincaré mapping. As can be seen from Fig.5.2(b), unlike
the subcritical case from Fig.5.2(a), the highest peaks of the ACF do not even
reach 1

2 , i.e. the dynamics is far from being completely ordered. The reason for
the weakening of correlations lies in the non-uniform slowing down of motion
in vicinities of the stagnation points. Take a smooth curve l transversal to
the local stable separatrix Ws of a stagnation point. The turnover time τ as a
function of a coordinate ζ on l diverges at the point ζ0 where l and Ws intersect:
τ(ζ) ∼ − log |ζ − ζ0| (Fig. 5.4). Consider two initially close fluid particles near
Ws which move along two streamlines on the same side of Ws and slow down
while approaching the stagnation point. The slowing is more pronounced for
the particle which lies closer to the separatrix; it stays in the vicinity of the
stagnation point longer than its counterpart, and the distance between them
grows. The much stronger effect is observed for the two particles lying on the
opposite sides of Ws, since one of them is doomed to hover in the stagnation
region twice (for the first time, on entering it along Ws and for the second, after
making a tour around the eddy) and thereby gets a very noticeable lag. As a
consequence, the coefficients before the logarithmic terms in τ(ζ) to the left and
to the right from ζ0 differ by a factor of 2 [97].
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+: passage to the left from stagnation point;
×: passage to the right from stagnation point



74 CHAPTER 5. VISCOUS FLOW WITH FRACTAL POWER SPECTRUM

Albeit relatively low, the correlations do not entirely decay: at certain time
values (which apparently mark the denominators of the best rational approxi-
mations to α/β) the ACF displays distinct peaks whose height remains above
the certain finite level. Although with growth of time the intervals between
these peaks are getting larger and larger (note the logarithmic scale along the
time axis), they are well discernible at the largest computationally attainable
times which correspond to tens of thousands of revolutions around the torus.
The “vague” memory of this kind is characteristic for dynamical systems with
singular continuous (fractal) power spectra [49]. The latter deliver a link be-
tween systems with the discrete (pure point) spectra and those with absolutely
continuous spectra: although the spectrum is continuous, the spectral measure
is located on a set of zero Lebesgue measure. For the typical frequency values
ω the Fourier sums S(ω,L) = L−1

∑L
k=1 |ξkei2πkω |2 neither grow linearly with

the increase of the sample length L, as would be the case for the δ-peaks of
the discrete spectrum, nor converge to constant values as in the case of the
absolutely continuous spectrum. In this sense, the conventional procedure of
computing the power spectrum S(ω) from time series of progressively growing
length provides the more and more “fractalized” approximations to the ultimate
singular continuous object. Since the ACF is the Fourier transform of the power
spectrum, the fractal properties of the latter can be evaluated with the help of
the former. Thus, as discussed above, the integrated squared autocorrelation
function Cint(T ) for a state with purely singular continuous spectrum should
decay as ∼ T−D2 where D2 is the correlation dimension of the spectral measure
[23]. The plot of Cint(T ) corresponding to Fig.5.2(b) is presented in Fig.5.4; it
provides evidence that the contribution of the discrete spectral component, if
present at all, is extremely weak; the slope of this curve yields the estimate for
D2 of the fractal spectral measure: D2 = 0.51± 0.02.
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The spectral properties of the Hamiltonian flow on a torus without fixed
points (f < fcr in our terms) were first addressed by Kolmogorov [34], who
showed that the spectrum was discrete for irrational rotation numbers “not too
fast” approximated by rationals and conjectured thay it could be continuous
otherwise. Further, the possibility of weak mixing for the latter rotation num-
bers (which constitute a subset of zero measure on the set of all numbers) under
certain conditions imposed on the distribution of bounded turnover times was
demonstrated by Shklover [70]. In the presence of fixed points the return times
are unbounded; as shown by Kochergin [37] in this case the flow does not mix
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if the prefactors before the logarithmic terms in the return times are balanced.
This is precisely the case for the pattern (5.4) with two symmetric eddies where
the sums of prefactors corresponding to the passage to the left and to the right
from the stagnation points are obviously equal. Noteworthy, mixing must be
present [64] in the threshold case f = fcr when the stagnation points are de-
generate and the return times diverge in a power-like way τ(ζ) ∼ |ζ − ζ0|−1/6.

Applying the more elaborate periodic forcing, it is possible to excite a ve-
locity field with a single eddy; a typical flow pattern with a stream function

Ψ(x, y) = αy − βx + sin x cos y − sin x− cos y (5.7)

is presented in Fig.5.1(d). For this pattern the logarithmic singularities in the
return times are not mutually compensated. The respective ACF is plotted
in Fig.5.2(c); although one notices many similarities to Fig.5.2(b), the slow
but definite decrease of the highest peaks is not to be overseen. The decay
of correlations implies mixing; presence of mixing for Hamiltonian flows on
a torus with non-balanced logarithmic singularities was shown by Sinai and
Khanin [38]. As compared to the case of symmetric eddies, Cint(T ) decays faster
(Fig.5.4); evaluation of the fractal dimension of the spectral measure results in
D2 = 0.75± 0.01.

As regards the transport of the non-diffusive scalar tracers in these veloc-
ity fields, one may expect something “in between” the ordered motion over the
regular pattern and the chaotic advection imposed by Lagrangian turbulence.
Due to incompressibility, both Lyapunov characteristic exponents vanish identi-
cally; thereby the exponential divergence of close particles is prohibited, and the
slower effects should be looked for. Different stages of this slow ”diffusion” for
the pattern from Fig.5.1(d) are shown in Fig.5.5: the initially compact droplet
(104 individual particles) spreads over the whole area outside the eddy.

To enable the unbounded drift, we considered the periodic tiling on the plane
and computed the value of

d2(t) = 〈 (x(T + t)− x(t)− tvx)2 〉 (5.8)

averaged with respect to the time T along the particle paths, for both the
symmetric field (5.4) and asymmetric pattern (5.7); here vx is the mean velocity
of the drift in x-direction. In both cases after a short intermediate stage with the
timescale of one revolution around the torus, one observes the slow stretching;
d2(t) ∼ t2χ with χ ≈ 0.07 for the former and χ ≈ 0.09 for the latter.

Summarizing, the discussed class of steady flows is a reasonable candidate
for a role of a state with the most complicated Lagrangian dynamics which can
be observed in a time-independent 2-dimensional setup. Noteworthy, for these
flow patterns the property of having a singular continuous component in the
spectrum is generic, unlike the case of dissipative dynamical systems where un-
til now such spectra were reported only for certain marginal situations on the
border between order and chaos [49]. Properly rewritten, the equations are gov-
erned by 3 dimensionless parameters: the forcing strength and two “Reynolds
numbers” characterizing the mean flow in x− and y− directions, respectively.
Obviously, each particular state with an irrational rotation number is struc-
turally unstable, but the set of all these states taken together occupies almost
the whole parameter space (its complement, corresponding to rational rotation
numbers has zero measure). In other words, a randomly chosen point in the
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Figure 5.5: Transport of tracer particles by the steady pattern from Fig.5.1(d)

parameter space corresponds with probability 1 to a pattern with irrational
rotation number. Thus one is tempted to conjecture that in presence of the im-
posed mean flow a motion of a passive tracer along the typical two-dimensional
steady pattern with isolated eddies possesses the fractal Fourier spectrum.



Chapter 6

Action of noise and
randomness on dynamics
with fractal Fourier spectra

Problems which were considered in the preceding chapters, were purely deter-
ministic. In almost every physical observation, measurement and experiment
the stochastic component is present for obvious reasons: neither it is possible to
ensure perfectly constant external conditions during the whole experiment, nor
is the precision of the measurement tools unlimited. Our theoretical models also
have limited accuracy, and contribution of non-accounted or neglected factors
can be often viewed as some weak noise. Singular continuous Fourier spectra
are fragile; a weak disturbance can either make them discrete, collecting spec-
tral measure into the countable subset, or (which seems much more plausible)
smooth out the singularities, turning them into the absolutely continuous ones.
A natural question is: how to resolve inside the noisy datasets the patterns
which allow one to conclude that in the deterministic setup the Fourier spec-
trum should be fractal ? Below we consider several of such situations. We show
that the noise which enters the data only during the measurement, leaves intact
large parts of the fractal structure of the spectral measure. Further, we take the
case when the singular continuous component of the spectrum is generated by
geometric mechanism (see Chapter 1), and see how it is affected by the presence
of additive noise. Although action of noise leads to the decay of correlations,
on the intermediate stage the “noiseless” correlation pattern persists. Duration
of this stage is related to the noise intensity by the power law.

Finally, in Sect. 6.3 we introduce randomness into the every core of dy-
namics: we consider substitution sequences in which each individual symbol
is inflated according to one of several randomly chosen substitution rules. It
is demonstrated that randomness ensures the power-law decay of correlations;
furthermore, if one of the substitution patterns is strongly preferred, the Fourier
spectrum retains its multifractal nature.

77
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6.1 Contamination by instrumental noise

In this short section, we treat the situation in which the noise does not affect
the nature of the process and interferes only at the observation stage by means
of an inaccurate measurement device. Let observable be a superposition of the
original signal xi and δ-correlated noise ξ. In case of additive measurement
noise, the autocorrelation function for the variable yi = xi + ξi is

Cy(τ) =
Cx(τ)

1 + 〈ξ2
i 〉/〈x2

i 〉
(6.1)

where Cx(τ) is the autocorrelation for the variable xi.
For the noisy “amplitude modulation” yi = xi(1 + ξi), we get

Cy(τ) =
Cx(τ)

1 + 〈ξ2
i 〉

(6.2)

In both cases the autocorrelation function of the noisy observable is ob-
tained from the autocorrelation function of the original signal by uniform (τ -
independent) contraction. The contraction factor depends on the distribution
of noise and is non-zero for the noise with bounded mean square amplitude.

Accordingly, the integrated autocorrelation Cint(τ) of the observable yi dif-
fers from Cint(τ) of xi by the constant factor, and has the same decay rate.
Hence, the correlation dimension D2 of the spectral measure of yi coincides
with D2 of the spectral measure of xi. Furthermore, as shown in Chapter 2,
all generalized dimensions Dq with integer q ≥ 2 for the spectral measure are
prescribed by the growth rate of products of values of the autocorrelation func-
tion; hence, if the power spectrum of xi is multifractal, this multifractality in
the domain q ≥ 2 is quantitatively reproduced by the power spectrum of the
observed variable yi. On the other hand, the signal yi includes the noisy compo-
nent ξ; since the power spectrum of the latter is absolutely continuous, Dq = 1
for q ≤ 1.

Now consider the instrumental noise on the symbolic level: in the course of
observation some of the symbols can be identified wrongly. Let X = x1x2x3...
and Y = y1, y2, y3 . . . be binary symbolic strings:

yi =
{

xi with probability 1− p
xi with probability p

(6.3)

where A denotes a symbol complementary to A. Then: Cy(τ) = (1−2p)2 Cx(τ)
For p 6= 1

2 the pattern of Cx(τ) is uniformly vertically compressed. Accordingly,
if the spectral measure of original symbolic sequence is fractal, its qualitative
and quantitative structure for q ≥ 2 is recovered in the measured symbolic
signal. An example: if each individual symbol in the Thue-Morse sequence
is “flipped” with probability p 6= 1

2 , the correlation dimension for the Fourier
spectral measure of the symbolic sequence thus obtained, equals the same value
D2 = 3− log(1 +

√
17)/ log 2 (cf. Eq.(2.10)).
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6.2 Interaction between additive noise and geo-
metric mechanism

Now let us allow the noise to interfere into dynamics. This inevitably leads to
the onset of absolutely continuous spectral background and ultimate decay of
autocorrelation. However, as we will see, in the pattern of autocorrelations it is
possible to recover certain “remnants” which allow to conclude that the power
spectrum of purely deterministic process is singular continuous. This effect is
especially well pronounced in the situations when the fractal spectral component
owes to the geometric mechanism. To elucidate this, consider the noisy version
of the Eq.(1.6)

ẋ = σ(y − x) + σDy(z −R) + Eζ(t)
ẏ = Rx− y − xz (6.4)
ż = xy − bz

with the values of the parameters σ,D,R, b corresponding to the accumulation
of homoclinic doublings. Here, E is the amplitude of the noisy term, and ζ(t)
is a random variable; for computational reasons it is convenient to take the
variable uniformly distributed on the interval (−1, 1).

Recall that in the absence of noise the universal properties of the bifurcation
scenario are entirely determined by the saddle index ν = |λ2|/λ1: the ratio
of two eigenvalues of the linearization of the flow near the trivial equilibrium
x = y = z = 0; to enable the sequence of homoclinic doublings, the inequality
ν > 1 should hold. To single out the action of the geometric mechanism,
we will concentrate on the observables built from the variable x. Reduction
of the deterministic flow to one-dimensional mapping on the Poincaré plane
yields the discontinuous recursion relation (3.3). At the accumulation point
of the bifurcation sequence, the Fourier spectrum of this mapping is singular
continuous due to the geometric mechanism. The noisy counterpart of the return
mapping (3.3) is

ξi+1 = (|ξi|ν − µ + Eζi ) sign(ξi), (6.5)

ζi being a random function of the discrete argument.
In the deterministic case the attracting sets of Eq.(6.4) and Eq.(6.5) are

self-similar and possess scaling properties. Introduction of noise “washes out”
the fine structure of the attractors, and the approximate self-similarity can be
recovered only beyond a certain level of resolution. The very same process
takes place when additive noise acts on dynamical systems at the onset of chaos
through period-doublings. It is convenient to characterize the system through
the noise sensitivity β which has a transparent meaning: in order to be able to
resolve each next level of the fine structure of the attracting set (that is, to see
twice as many “bands” in the attractor of the flow, or twice as many “clusters”
in the attractor of the map), the noise level should be reduced by a factor β.
The value of β = 6.61 . . . for the period-doubling scenario was found by direct
computations and with the help of the renormalization formalism [98, 99].

Since both the period-doubling scenario and the onset of chaos through the
homoclinic doublings can be described within the framework of the same renor-
malization operator (see e.g. [13, 14, 16, 17]), under the same values of ν the
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sensitivity to noise for the discontinuous mappings (6.5) and continuous map-
pings (3.4) is characterized by the same values of β. Whereas in the discon-
tinuous case all values of ν are equally relevant, for non-degenerate continuous
mappings only the quadratic extrema (ν=2) are important. The dependence
β(ν) is presented in Fig.6.1; to our knowledge this is the first computation for
ν 6= 2. It turns out that the systems with ν ≈ 2 are the least sensitive ones; the
minimum is reached at ν ≈ 1.91.
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Figure 6.1: Sensitivity to noise as function of the saddle index ν.

The action of noise on the pattern of autocorrelation function of the map-
ping (6.5) is illustrated in Fig.6.2; the value ν = 2 chosen for this set of com-
putations, corresponds to the sensitivity β = 6.61904 . . . 1. The plot in Fig.6.2a
shows the familiar pattern in the absence of noise; the panel (b) presents auto-
correlation for the noise with the amplitude E0 = 10−11, and the lower panels
(c), (d), (e), (f) and (g) correspond to the intensities of noise βE0, β2E0, β3E0,
β4E0 and βE0, respectively.

From these plots it can be seen that the original log-periodic pattern of
autocorrelation persists almost intact until a certain threshold value of time tn;
beyond tn autocorrelation rapidly decays. We observe in plots (b)-(g) that each
increase of the noise intensity by the factor β is accompanied by the shift of the
right boundary of the correlation pattern “one big peak to the left”: in other
words, it decreases tn by factor 2. Accordingly, the length of time interval during
which the autocorrelations largely behave in the same way as in the absence of
noise, is related to the noise intensity by means of the power law:

tn ≈ CE−κ, κ ≡ log β(ν)
log 2

(6.6)

This is also well corroborated by computations for other values of ν.

1Strictly speaking, the value of sensitivity depends on the particular kind of noise [100];
the procedure employed for the calculations in Fig. 6.1 assumes that the noise is Gaussian.
However, from our numerical results on the scaling of autocorrelation functions, it appears
that the values for uniformly distributed random variables are close to the respective values
for Gaussian noise.
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Figure 6.2: Autocorrelation for the mapping (6.5) with ν=2:
(a) E = 0; (b) E = E0 = 10−11; (c) E = βE0 = 6.61904× 10−11;
(d) E = β2E0 = 4.38117× 10−10; (e) E = β3E0 = 2.89991× 10−9;
(f) E = β4E0 = 1.91946× 10−8; (g) E = β5E0 = 1.27050× 10−7.

The similar picture is found in case of continuous-time dynamics. Results
obtained by integration of Eq.(6.4) under different noise intensities are presented
in Fig.6.3. Again we observe the persistence of the pattern of the autocorrelation
function within a certain interval of time, whose duration is interrelated with
the noise intensity by means of the power law (6.6). This allows us to expect
that the same scaling of the length tn of “singular continuous” autocorrelation
pattern can be measured in sufficiently accurate real physical experiments by
introducing the controlled amount of noise.
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Figure 6.3: Autocorrelation for the equations (6.4) with ν=2:
(a) E = 0; (b) E = E0 = 10−6; (c) E = βE0 = 6.61904× 10−6;
(d) E = β2E0 = 4.38117× 10−5; (e) E = β3E0 = 2.89991× 10−4;
(f) E = β4E0 = 1.91946× 10−3; (g) E = β5E0 = 1.27050× 10−2.

6.3 Multifractal Fourier spectra and power-law
decay of correlations
in random substitution sequences

Discrete patterns (vortices, crystals, spins, . . ., nucleotides, . . .) occur on the
continuous background in almost every natural system. This makes such sys-
tems amenable to discretized description, the ultimate step of which is the
reduction to a finite set of symbols, without restricting the generality [101, 102].
For example, in nonlinear dynamics a common practice is to define the partition
of the state space, assign labels to partition cells, and mimic continuous evoilu-
tion by a sequence of letters. In many important cases the resulting symbolic
code is invariant under replacement of certain blocks of several letters by one
letter. Such self-similar codes are recovered e.g. at the onset of chaos through
the period-doubling scenario[61, 103], quasiperiodicity [84] or homoclinic bifur-
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cations [15]. In a wider context, self-similar symbolic sequences stand behind
many phenomena in physics of critical states. Often exact similarity is marred
by imperfections caused by various reasons, from noise to influence of the bound-
aries.

Inversely, symbolic codes are unfolded from a single initial symbol by re-
peated substitutions (inflations) which replace each letter by the prescribed
block. Viewed as dynamical systems, deterministic substitution sequences have
long been an object of intensive studies [21, 101]. By analyzing the distribu-
tions of different combinations of symbols in these sequences, the measure of
their complexity can be characterized in terms of word frequencies, entropies
and transinformation [102]. On assigning numerical values to letters, a symbolic
string turns into a time series and its metric characteristics: Fourier spectra,
correlation functions, etc. can be computed. For periodic and quasiperiodic
sequences the power spectrum is a set of discrete δ-peaks; spectra of chaotic se-
quences are absolutely continuous with respect to the Lebesgue measure. One of
the classical substitution sequences, the Thue-Morse code [18, 19] produced by
the action of a substitution

{
A→AB
B→BA on a two-letter alphabet, is neither periodic

nor chaotic; accordingly, its power spectrum is neither discrete nor absolutely
continuous, but was proved to be singular continuous [40]: the spectral measure
is supported by the fractal set.

Influence of noise results in imperfections in the structure of a symbolic
string. Action of different kinds of noise on entropic characteristics of sym-
bolic sequences was considered in [104, 105]. In this Chapter, we introduce
randomness into the very core of the substitution process: for each symbol, the
substitution pattern is chosen among several candidates. We show how this
leads to the power-law decay of correlations; for a class of such sequences, the
Fourier spectrum is a multifractal mixture of absolutely continuous and singular
parts.

We restrict ourselves to substitutions in which the alphabet is binary, all
letters are updated simultaneously, and each one is replaced by two letters, so
that one global update doubles the length of the symbolic string. The process
starts with one letter and creates the infinite sequence {ξj}. In the biological
context, this can be viewed as a toy model of linear growth: a cell divides into
two which divide again and so on. If there are only two kinds of cells, the process
is a sequence of binary substitutions. Without mutations, all cells obey the same
“built-in” division rule, e.g. a duplication A → AA. With random mutations
allowed, some of the divisions follow different rules, introducing disorder into
the growing pattern.

To conclude on the nature of spectral measure, we use the same tools as
in purely deterministic dynamical systems from the preceding chapters: the
autocorrelation function C(τ) and the integrated autocorrelation Cint(t).

6.3.1 Random mixture of two substitution rules

We start with two inflation rules which randomly alternate. At each individual
place the replacing pattern is chosen among two candidates: with probability p
the symbol is duplicated and with probability 1–p the complementary symbol
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is written after it:

A →
{

AA with probability p
AB with probability 1− p

B →
{

BB with probability p
BA with probability 1− p

(6.7)

The rule for each letter is chosen independently of the choices made elsewhere.
Deterministic case p=0 yields the Thue-Morse code; its autocorrelation has a
typical pattern of a system with purely singular power spectra (Fig.6.4a), built
around a log-periodic lattice of moderate peaks C(3 × 2n) = −C(2n) = 1/3.
The trivial opposite limit p=1 results in repetition of one symbol. For p 6= 0,1
the statistical treatment is required; statements below refer to the expectations
of the corresponding values, and assume averaging over ensembles of infinite
symbolic strings.

Assigning numerical values to symbols (i.e. A=−B =1) and demanding
invariance of the averaged products 〈ξjξj+τ 〉 with respect to inflation (6.7), we
obtain two recurrent relations for the autocorrelation function:

C(2τ) = keC(τ)
C(2τ + 1) = ko (C(τ) + C(τ + 1)) ,

(6.8)

ke = 1− 2p + 2p2, ko = p− 1
2

which, together with the “initial condition”

C(1) = (2p− 1)/(3 + 4p− 4p2),

determine C(τ) for any τ . For p 6=0,1 the prefactor ke in the first of Eqs.(6.8)
lies between 0 and 1; hence, autocorrelation decays. The highest peaks obey
the power law: |C(τ)| ∼ τκ with κ = log(1 − 2p + 2p2)/ log 2. For p < 1/2
the second prefactor ko is negative and the decay is oscillatory (Fig.6.4b); for
p > 1/2 the values of C(τ) stay positive (Fig.6.4c).

The relations (6.8) allow us to determine the decay rate of the integrated
autocorrelation Cint. The evolution of the sums

Un ≡
2n+1−1∑
τ=2n

C2(τ), Wn ≡
2n+1−1∑
τ=2n

C(τ)C(τ + 1) (6.9)

is governed by recurrent relations

Un+1 = (k2
e + 2k2

o)Un + 2k2
oWn + k2

oζn

Wn+1 = 2keko(Un + Wn) + kekoζn (6.10)

where ζn = (C(1))2(k2
e −1)k2n

e . If Un and Wn as functions of n do not decrease,
the terms with ζn in the equations (6.10) can be neglected, and for large values
of n both sums (6.9) are proportional to λn where λ is the larger root of the
quadratic equation:

λ2 −(4p4 − 4p3 + 4p2 − 2p + 1
2 )λ

−(1− 2p)(2p2 − 2p + 1)3 = 0. (6.11)
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Figure 6.4: Autocorrelation function for the substitution (6.7).
(a): p=0 (Thue-Morse sequence); (b) p=0.05; (c): p=0.9.

Accordingly, the decay of the integrated autocorrelation Cint(t) is described by
the power law with the exponent max(log λ/ log 2 − 1,−1). This yields the
correlation dimension of the spectral measure:

D2 = min(1, 1− log λ

log 2
) (6.12)

Since for p < 0.06123 and for p >0.84079 D2(p) is smaller than 1, the spec-
tral measure in these intervals of p is fractal or, at least, includes a singular
component (Fig.6.5).
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Figure 6.5: Dependence of fractal dimensions of the spectral measure on prob-
ability p.

To get a better idea of the distribution of spectral measure as a function of p,
consider dynamics of finite-length Fourier sums Sn(ω) = 2−n|∑2n

k=1 ξk exp(i2πωk)|2
under the increase of n. Due to periodicity, analysis can be restricted to the
interval 0≤ ω <1. For the absolutely continuous spectrum, Sn→∞(ω) converges
to a bounded curve. Pointwise divergence of Sn(ω) indicates presence of singu-
larities in the spectral measure. For the pure-point measure, Sn→∞(ω) vanishes
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everywhere outside the countable set of points; in these points which correspond
to δ-peaks in the spectrum, Sn diverges, and the ratio Sn+1/Sn tends to 2.

For the substitution (6.7), the Fourier sums are interrelated by the functional
equation

Sn+1(ω) = 2p− 2p2 +
(
1− 2p + 2p2 − (1− 2p) cos 2πω

)
Sn(2ω) (6.13)

with the initial condition S0=1.
At p=0 this gives Sn+1(ω) = (1− cos 2πω) Sn(2ω). The sum Sn(ω) vanishes

at ω = m/2n−1, m = 0, 1, 2, . . .. The values of ω with the highest local growth
rate γmax = Sn+1(ω)/Sn(ω) lie at ω = m/(3 × 2n−1),m = 1, . . . , 3 × 2n−1 − 1;
since γmax = 1 − cos 2π/3 = 3/2 < 2, the highest peaks grow slower than
the δ-peaks would do. Numerically, the multifractal spectral measure of the
Thue-Morse sequence was analyzed in [50]; exact expressions for the generalized
dimensions were derived in [77].

Under p 6= 0, 1 the factor before Sn(2ω) in Eq.(6.13) is positive. Hence,
Sn+1(ω) > 2p − 2p2 > 0, and the absolutely continuous part is present in the
power spectrum.

The curve Sn(ω), typical for small p (here, p=0.1, n=11) is plotted in
Fig.6.6a. For p < 1/2, the rate γmax equals 2p2−3p+3/2 and is attained at the
same values of ω as for the Thue-Morse code; the highest peak for all n lies at
ω = 1/3. Presence of the dense set of singularities is guaranteed if γmax > 1; ab-
sence of discrete component is ensured by γmax < 2. The latter inequality holds
for all p, and from the former it follows that for p < pb = (3−√5)/2 = 0.1909 . . .
the power spectrum is a mixture of absolutely continuous and singular contin-
uous components. To the support of the latter belongs the disjoint continuum
of ω-values which, written in the binary notation, contain the infinite number
of sufficiently long segments . . .101010101. . ..
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Figure 6.6: Finite-length approximations Sn(ω) to spectral curves.
(a): p=0.1, n=11; (b): p=0.9, n=11.

When p exceeds 1/2, the picture is different (Fig.6.6b). Now γmax equals 2p2

and is reached at ω = m/2n−1, m = 0, 1, 2, . . .. For p > pt =
√

2/2 = 0.707 . . .,
the inequalities 1 < γmax < 2 are fulfilled, and the power spectrum includes
a dense set of singularities; the highest peak for each n lies at ω = 0. The
background of the spectrum is formed by the continuous component which obeys
a power law: for the non-singular small values of ω,

Sn→∞(ω) ∼ ω−1−2 log p/ log 2 (6.14)
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Accordingly, for pt < p < 1 the spectrum is again a mixture of absolutely
continuous and singular components. The fractal support of the latter includes
the continuum of ω-values whose binary expansions contain infinitely many
segments . . .0000. . ..

For the values of p between pb and pt, the power spectrum contains no
singularities; it is absolutely continuous. In the simplest case of p = 1/2 when
substitutions in (6.7) have equal probabilities, Eq.(6.13) results in Sn(ω) = 1:
the spectral measure is uniform. According to Eq.(6.8), the autocorrelation
C(τ) in this case vanishes identically.

For 0 < p < pb and for pt < p < 1 the distribution of the spectral measure is
multifractal. The formalism of multifractal analysis [106, 107] has been adapted
for Fourier spectra in [50, 49]: the range of values of ω between 0 and 1 is
partitioned into the boxes of the size ε, and the partition function for a real
q is introduced as U(q, ε) =

∑1/ε
i=1 ρq

i where ρi is the probability to locate the
measure in the i-th box. Since spectral measure itself is not explicitly available,
one can use as approximations the finite-length sums Sn(ω); as shown in [77],
the refinement of the partition should be accompanied by the increase of n.
Assuming the scaling U(q, ε) ∼ ετ(q), we arrive in the usual way at the definition
of generalized dimensions Dq: Dq = (q − 1)−1τ(q). Due to the presence of
continuous background, Dq = 1 for q ≤1. For large positive q the partition
function is dominated by the contribution of boxes in which Sn(ω) grows with
the rate γmax; accordingly,

Dq→∞ ∼= q

q − 1

(
1− log γmax

log 2

)

For 0 < p < pb, as shown above, γmax = 2p2 − 3p + 3/2; hence

Dq→∞ → D∞ = 1− log(2p2 − 3p + 3/2)
log 2

In the interval pt < p < 1, the rate γmax equals 2p2; therefore, D∞ = −2 log p/ log 2.
Numerically found dependencies Dq for several values of p are plotted in Fig.6.7a,b.

The dependence τ(q) yields the spectrum of singularities f(α) [107]: α =
dτ/dq and f(α) = qα−τ . Presence of continuous component makes the distribu-
tion, in terms of [50], “half a multifractal”: the curve f(α) has only an ascending
branch (Fig.6.7c,d). For each p, the values of α lie in the range (D∞, 1) (in the
exceptional case of purely singular-continuous spectrum at p = 0, the right bor-
der reaches α = 2 [50]). With increase of p from zero, this range monotonically
decreases and at p = pb shrinks to a point; up from pt the range of α regains
the finite width.

6.3.2 Four alternating substitution rules

Now consider random choice among all possible two-letter words. Fix non-
negative p1, p2, and p3 so that p4 ≡ 1–p1− p2− p3 ≥ 0, and inflate each symbol
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Figure 6.7: Multifractal characteristics of the spectral measure of substitution
(6.7). (a),(b): generalized fractal dimensions; (c),(d): spectra of singularities.

according to:

A →





AA with probability p1

AB with probability p2

BA with probability p3

BB with probability p4

B →





BB with probability p1

BA with probability p2

AB with probability p3

AA with probability p4

(6.15)

The values of the autocorrelation function C(τ) for the substitution (6.15)
are related through the recurrence

C(2τ) = KeC(τ),
C(2τ + 1) = Ko (C(τ) + C(τ + 1)) (6.16)

with Ke=(p1− p4)2 + (p2− p3)2 and 2Ko=(p1− p4)2− (p2− p3)2. The starting
point of this recurrence is given by

C(1) =
p1 − p2 − p3 + p4

2(1−Ko)
(6.17)

This, again, ensures the power-law decay of autocorrelation: |C(τ)| ∼ τ log Ke/ log 2.
The correlation dimension of the spectral measure is given by D2 = min(1, 1−
log λ/ log 2) where λ is the larger root of

λ2 − (2K2
o + 2KeKo + K2

e )λ + 2K3
e Ko = 0 (6.18)
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In the case of “rare mutations” when one of the probabilities pi is sufficiently
close to 1, and the other three are small, the inequality λ > 1 (which, in turn,
implies D2 < 1) holds. Accordingly, the presence of the singular continuous
component is typical for such situations.

Multifractal properties of the spectral measure can be recovered from finite-
length sums Sn(ω) which, for the substitution (6.15), obey the recurrent relation

Sn+1(ω) = 1−Ke + (Ke + 2Ko cos 2πω)Sn(2ω)
+(p1 + p4 − p2 − p3 − 2Ko) cos 2πω

(6.19)

If at least two of the probabilities pi do not vanish, the spectral background is
everywhere (except, perhaps, at ω = 0, 1/2) bounded away from zero. Hence,
the absolutely continuous component is present, and the power spectrum is
either purely absolutely continuous or mixed.

The detailed analysis of the substitution (6.15) and the recurrent relation
(6.19) will be presented elsewhere. The case p3 = p4 = 0 has been considered
above. Here we briefly comment on two other combinations of two substitu-
tions. Under p1 = p4 = 0, the substitution rules which alternate, are the
Thue-Morse rule, and the “reordered Thue-Morse”. For each of them, taken
alone, the Fourier spectrum is purely singular continuous. As soon as they are
mixed together, the absolutely continuous component appears. In order for the
spectrum to be multifractal, probabilities of the substitutions should strongly
differ. If p ≡ min(p2, p3) exceeds 0.03, the dimension D2 of the spectral measure
equals 1. For p > 1/2 −√6/6, the dimension D∞ turns into 1, and the power
spectrum is absolutely continuous.

In the opposite case p2 = p3 = 0 each of two competing rules produces the
periodic symbolic sequence. For p ≡ min(p1, p4) < pb = 1/2 − √2/2, spectral
measure has a singularity at ω = 0; at small ω the power law holds:

Sn→∞(ω) ∼ ω−1−2 log(1−2p)/ log 2 (6.20)

Above pb the singularity is absent; the spectrum is absolutely continuous.
Summarizing, random combination of binary substitutions always leads to

the power-law decay of autocorrelation and is, in many cases, a cause of singu-
larities in the spectral measure.

6.3.3 Implications for observational data

The power-law correlation decay (“long range correlations”) is abundant in nat-
ural processes, from physical systems near critical points [108] to human walk-
ing [109] and standing [110], atmospheric variability [111, 112] and sequences of
nucleotides in the DNA [113, 114, 115, 116, 117]. A decade ago W. Li recognized
that many properties of such processes were reproduced by randomly alternat-
ing substitutions; in his “expansion-modification system”, the choice was made
between a duplication and a mutation to a complementary symbol [118, 119].
Compared to the substitution (6.15), such systems are reminiscent of the case
p2=p3=0: when mutations are rare, the power spectrum decays as 1/ωα with
α ∼ 1.

Processes with long-range correlations are often explained in terms of ran-
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dom walks [108, 109, 110, 111, 112, 113], by means of squared fluctuation

F 2(l) = 〈(
j+l∑

j+1

ξi)2〉

averaged over the position j. In the scaling dependency F 2(l) ∼ l2α, the value
α = 1/2 is interpreted as an attribute of a genuine non-correlated random walk,
whereas α > 1/2 indicates the presence of correlations. Calculation for Eq.(6.15)
yields

2α = max
(

sign(p1 + p4), 2 + 2
log |p1 − p4|

log 2

)
(6.21)

Thereby, the criterion does not distinguish substitutions with |p1 − p4| <
√

2/2
from random walk; in particular, all sequences with a big proportion of Thue-
Morse-like inflations (and slow correlation decay) look from this point of view
as completely disordered.

Alternatively, in dynamics the degree of irregularity is usually expressed in
terms of ergodic characteristics like mixing, which, in their turn, are related
to spectral properties [101]. Analysis of observables built on 2-letter words
of inflations (6.7) and (6.15) shows that corresponding dynamical systems are
neither mixing nor even weakly mixing. This means that, in spite of the con-
tinuous component in the Fourier spectrum, the actual level of disorder in the
substitution sequences is relatively low.

Simple random substitution rules allow us to arrive at explicit scaling laws
and exact values of fractal dimensions. Corresponding characteristics of more
realistic models can be reasonably close to these laws and values. In this respect,
it can be noticed that the strongly pronounced peak exactly at the frequency
ω = 1/3 in Fig.6.6a (as well, as in power spectra of the substitution (6.15)
with dominating values of p2 or p3) is reminiscent of the “period-three” pattern
recovered in the structure of correlation functions and mutual information of
the DNA [120, 121].

As seen from our analysis, power-law decay of correlations does not neces-
sarily imply that the spectral measure is multifractal; however, in situations
when one of the substitution patterns is strongly preferred, presence of frac-
tal component is quite probable. To our knowledge, decomposition of spectral
measure in processes with power-law correlations did not yet receive the proper
attention. Presented results allow to expect the fingerprints of fractal power
spectra in many of such processes.



Conclusions

1. It is demonstrated that singular continuous Fourier spectra can be met in
dynamical systems of different nature: symbolic sequences, continuous and
discontinuous one-dimensional mappings, time-continuous flows governed
by ordinary differential equations, and in systems described by partial
differential equations.

2. Two mechanisms can be responsible for the onset of fractal Fourier spectra:

(a) the “geometrical” mechanism which owes to the mirror symmetry of
the attracting set: passage through each of the halves of the attractor
is encoded by a symbol, and the binary sequence produced by sym-
bolic encoding of the orbit can have singular continuous spectrum;

(b) the “dynamical” mechanism which is related to presence of saddle
points in the attracting sets of time-continuous flows: near the stable
manifold of such points the return times onto the Poincaré plane
diverge logarithmically or following the power law.

3. Continuous dynamical systems with saddle states of equilibrium possess
fractal power spectra at the point of transition from order to chaos through
different sequences of homoclinic bifurcations. For the continuum of sce-
narios of such transition, the dynamical mechanism is in action; additional
symmetries in the system can enable also the action of the geometrical
mechanism.

4. Spectral properties of continuous dynamical systems with unbounded re-
turn times are not necessarily correctly reproduced by spectral properties
of their Poincaré mappings: if the power spectra of the flows are singu-
lar continuous, the power spectra of the corresponding mappings can be
purely discrete. Thereby the dynamics of the mapping can be simpler
than the dynamics of the underlying continuous flows.

5. For a class of substitution sequences, estimation of dimensions of their
multifractal spectral measure is reduced to the computation of the largest
eigenvalue of the corresponding matrix.

6. Generalized fractal dimensions of spectral measure with positive integer
indices can be evaluated from the growth rates of the corresponding prod-
ucts of autocorrelations.

7. Discrepancy between the spectral properties of continuous flows with un-
bounded return times and spectral properties of symbolic sequences gen-
erated by the partition of the phase space is removed, if the symbols in
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the sequence are endowed with “residence times”, proportional to the du-
rations of stay of the system in the cells of the partition. In defining these
residence times, taking into account the exponential or superexponential
scaling properties of the attractor can be helpful.

8. Continuous dynamical systems on two-dimensional tori with points of
equilibrium and irrational rotation numbers – so-called Cherry flows –
possess singular continuous component in the Fourier spectra of generic
observables. This property is not shared by symbolic sequences obtained
from one-dimensional Poincaré mappings of such flows; however, the in-
troduction of residence times for individual symbols allows to reconstruct
symbolic dynamics with qualitatively correct spectral characteristics.

9. For observables, built from the motion of a Lagrangian tracer particle
in steady plane flows of viscous incompressible fluid over domains with
doubly periodic boundary conditions, power spectra can be multifractal.
In particular, in flows past the lattice of stationary eddies excited by spa-
tially periodic forcing, presence of singular continuous spectral component
is typical, and autocorrelation function decays in spite of the non-chaotic
nature of the motion.

10. Binary substitution sequences built with the help of random choice of a
substitution pattern among several candidates, display, in general, power-
law decay of correlations. If one of the substitution patterns is strongly
preferred (“weak mutations”), the Fourier spectra of such sequences are
multifractal.
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[6] C. Godrèche, J.M. Luck, F. Vallet, Quasiperiodicity and types of order: a
study in one dimension, J. Phys. A: Math.Gen. 20, 4483-4499 (1987).
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