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SYMPLECTIC INTEGRATION OF CONSTRAINED HAMILTONIAN

SYSTEMS

B� LEIMKUHLER�
AND S� REICH y

Abstract� A Hamiltonian system in potential form �H�q� p� � ptM��p�� � F �q�� subject to
smooth constraints on q can be viewed as a Hamiltonian system on a manifold� but numerical com	
putations must be performed in Rn� In this paper� methods which reduce 
Hamiltonian di�erential	
algebraic equations� to ODEs in Euclidean space are examined� The authors study the construction
of canonical parameterizations or local charts as well as methods based on the construction of ODE
systems in the space in which the constraint manifold is embedded which preserve the constraint man	
ifold as an invariant manifold� In each case� a Hamiltonian system of ordinary di�erential equations
is produced� The stability of the constraint	invariants and the behavior of the original Hamiltonian
along solutions are investigated both numerically and analytically�

Key words� di�erential	algebraic equations� constrained Hamiltonian systems� canonical dis	
cretization schemes� symplectic methods

AMS�MOS� subject classi�cations� 
�L��

�� Introduction� Consider a Hamiltonian system of the form�

�q � M��p���

�p � �rF �q����

where q� p � Rn	 F � Rn � R is C�	 and M is a symmetric	 positive de
nite n � n

mass matrix� With the scaling q � M���q	 p � M����p we can reduce ������� to
an equivalent system with M � I 	 so we will always assume this simpli
cation in the
remainder of the paper� All of the essential results of this paper could be extended
to the separable case �H�q� p� � T �p� 
 F �q��� The system ������� arises in numerous
practical applications �e�g� molecular dynamics ������ The �ow of a Hamiltonian
system like ������� is symplectic	 meaning that it conserves the two�form dq � dp��

A growing body of numerical evidence suggests that the integration of ������� over
long time intervals is best performed by canonical discretization schemes ���� which
maintain the symplectic structure of the �ow�

A natural question is what happens when ������� is constrained by algebraic equa�
tions on q and�or p� In this paper	 we primarily restrict ourselves to the case when the
constraints are holonomic �i�e� essentially dependent on q only� as in many mechanical
systems	 in which case	 starting from a Lagrangian variational principle	 one would
arrive at a system of di�erential�algebraic equations of the form�

�q � p���

�p � �rF �q��G�q�t����

� � g�q����

where g � Rn � R
m	 G�q� � g��q� � Rm�n has full rank	 and we have taken M � I �

� � R
m is a vector of Lagrange multipliers� This system generates a �ow on the
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��n � �m��dimensional manifold M � f�q� p� � g�q� � �� Gp � �g� �For notational
simplicity	 we write G for G�q�	 etc��

A standard �nonsymplectic� approach to solving the constrained system �
����� is
based on direct discretization with backward di�erentiation formulas �BDF methods�

��� In Figure �	 we have indicated the typical growth in energy error in the solution
of a simple plane pendulum ��������� computed with the second order BDF method
��xed stepsize h � ����� Here the initial energy was E��� � ��	 so we have completely
lost the conservative character of the problem after only a small number of periods�
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Fig� �� Energy in BDF�� solution vs� time�

Other approaches to solving �
����� are based on the construction of various fam�
ilies of ODEs in Euclidean space� the underlying and state�space form ODEs� An ex�
ample of an underlying ODE is obtained by �rst di�erentiating the constraint g�q� � �
and using �
��

G �q � � � Gp

Then di�erentiating again yields

G �p�Gq�p� p� � �

�We use the notation Gq�p� w� to denote the derivative of G�the tensor second deriva�
tive of g� operating on vectors p and w�� Next we substitute ��� and solve the resulting
equations for � in terms of q and p�

� � ��q� p� � �GGt�����GrF �q� � Gq�p� p��

which	 upon reintroduction in ��� gives

�p � ��I � H�rF �q��Gt�GGt���Gq�p� p����

where H � Gt�GGt���G is the orthogonal projector onto the orthogonal complement
of the null space of G� We term the ODE system comprising �q � p together with
��� the standard underlying ODE� it has the feature that the �ow it generates reduces
to the �ow of �
����� along the constraint manifold M� On the other hand	 without
enforcing the constraint	 �
�	 ��� actually de�ne a �ow in R�n� Numerical methods

�



applied directly to this underlying ODE typically drift from the constraint manifold
intoR�n during the course of integration� but a popular approach to short time interval
computations incorporates numerical discretization of ������� and frequent projection
onto the constraints ��	� ��	


While ������� de�ne a particular underlying ODE there is an entire family of ODEs
whose dynamics reduce to those of the constrained system alongM
 While ������� is
not a Hamiltonian system away fromM� Hamiltonian ODE systems can be found in
the family of underlying ODEs� such systems are developed in x� using the Poisson
bracket formalism of Dirac �
	 for constrained Hamiltonian systems


The second family of ODEs associated with the DAE ������� is constructed via a
parameterization of the constraint ���
 Supposing that there is a function � � Rn�m �

R
n with a full rank Jacobian satisfying� for all � � Rn�m�

g������ � �

then with �� � � Rn�m the equations

q � ����

p � ������

de�ne an invertible map from M to R�n��m
 This results in equations in the new
variables of the form

����� �� � ������

����� �� �
�������

��
�� � �rF ������ �Gt�

Now multiplying both equations on the left by ���t�������t results in

�� � �

�� � ����t�������t�rF ������� ������ ���

A state space form constructed along these lines will rarely be Hamiltonian
 On the
other hand� by searching among all parameterization ofM �which do not necessarily
maintain the relation �� � ��� one can �nd a family of canonical state space forms for
the constrained problem
 This is the approach taken in x�


An alternative approach would be based on direct canonical discretization of the
constrained system �see Leimkuhler and Skeel ���	� Reich ���	� and Jay ���	�


�� Hamiltonian State Space Forms� The following theorem shows that there
is a family of canonical state space forms based on parameterizations of the constraints

Throughout this section we are concerned with a Hamiltonian of the form H � F �q��
ptp��


Proposition ���� If � is a local parameterization of g�q� � �� then the equations

q � ����

��tp � �

Gp � �

�



de�ne a canonical map between M and an open subset of R�n��m� The Hamiltonian

in the new coordinates is

�H��� �� �
�

�
�t���t������ � �F � �����

Proof�

To see that the mapping is canonical� note that

dq � dp � ������d��� dp

� d� � ������tdp�

now d� � �����tdp�
P

n

i��
pi�

��

i
d�� where ��� represents the Hessian of the ith component

of g� so

d� � ������tdp� � d� � �d� �
nX
i��

pi�
��

i d��

� d� � d� �

nX
i��

pid� � ���i d�

Using the properties of the wedge product� it is straightforward to show that du�Bdu
vanishes when B is a symmetric matrix� thus we conclude

dq � dp � d� � d�

It is easy to see that the potential energy in the new coordinates becomes �F ������	
to derive an expression for the kinetic energy in the new coordinates� observe that

p �

�
��t

g��q�

�
��
�
�




�

hence

�

�
ptp �

�

�

h
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i � ��t

g�
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�
��t
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�
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g��� g�g�t
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�
�




�

but we know that g��� � 
 since � is a parameterization of g� hence we have

�

�
ptp �

�

�
�t���t������

and the result follows� �
In general such a state�space form is computationally impractical because of the

need to automatically obtain and then twice di
erentiate the function � de�ning the
parameterization� In certain cases� for example a many�body system whose constraints
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have a tree structure� one can derive a global parameterization of the Hamiltonian
directly from physical principles� For the general case� we show how a careful choice
of parameterization can lead to a more general formulation without explicit knowledge
of �H�

Following Potra and Rheinboldt ���� we de	ne q 
 ���� as the solution of the
nonlinear system

Aq 
 ��
�

g�q� 
 ����

where the constant matrix A � R�n�m��n is chosen so that

R 


�
A

G

�

is a nonsingular matrix� Typically A is treated as a piecewise constant function of
time� Previous authors have used the induced state space form obtained by setting
�� 
 � to solve multibody dynamics problems� but instead� we here choose � according
to Proposition ��� to insure a canonical map�

If the mapping � 
 ���� in Proposition ��� is de	ned by �
������ then �� can be
written explicitly as

�� 
 R��

�
I

�

�

Hence the equations determining � boil down toh
I �

i
R�tp 
 �

Gp 
 �

Thus we must have

R�tp 


�
�

�

�

� b

for some �� hence p 
 Rtb 
 At� �Gt�� Now by virtue of Gp 
 �� we obtain

p 
 �I �H�At����

with H 
 Gt�GGt���G�
Theorem ���� Suppose a parameterization of g�q� 
 � is de�ned via ��������

Then the corresponding Hamiltonian state�space form is characterized by

�� 
 A�I � H�At�����

A�I �H�At �� 
 �A�I �H�rF �q� � A�I � H�Hq�p� A
t������

since A�I � H�At is nonsingular�
Proof	 Di�erentiating �
� with respect to time and using ��� yields

�� 
 A �q 
 Ap 
 A�I �H�At�

�



Next di�erentiate ��� with respect to time� replace �p by ���� and premultiply by
A�I � H� to obtain equation �		�
 �

It must be pointed out that although we began this section treating a problem with
a separable Hamiltonian �i
e
 H�q� p� � T �p��V �q��� the Hamiltonian of the canonical
state space form ODE is not separable
 Since no explicit symplectic discretizations
are available for a general Hamiltonian� it would be necessary to employ an implicit
scheme
 In 
	��� it is shown that the mixed set of equations �����		� in q� p� � and
� can be solved e�ectively with Gauss�Legendre Runge�Kutta discretization by an
algorithm based on functional iteration
 However� there is a more serious and perhaps
insurmountable problem with using the discretized state space form for symplectic
integration


Recent results �see� e
g
� Sanz�Serna 
�	�� indicate that an integrator for a Hamil�
tonian system should consist of the iteration of one and the same symplectic map
 In
this case� it can be shown that there is a nearby Hamiltonian for which the numerical
solution is nearly the exact �ow
 In terms of our state�space form this means that the
matrix A must be held constant� in other words� A must de�ne a parameterization
valid along the entire trajectory


To illustrate the di�culty when the parameterization changes along a trajectory
�i
e
 when we switch from one local chart of the manifold to another�� we considered
the plane pendulum with unit length and mass� where for q� p � R�� we have

H�q� p� �
	

�
ptp� gq�

�q � p�	��

�p �

�
�
�g

�
� �q�	��

� �
	

�
�qtq � 	��	��

We parameterized the unit circle in four charts� �i� i � 	���� using alternately
x and y as parameter� and following the program of Theorem �
�
 The chart was
changed when y crossed the threshold values �p���
 For our experiment� we took
g � � and set �q����� q����� p����� p����� � �	� �� �����
 In each chart� we applied the
implicit midpoint method
 This resulted in correct dynamics on bounded intervals as
h� �


As illustrated in Figure � �with h � ��	�� we observed an undesirable drift in the
energy of the numerical solution
 Such behavior would not be anticipated from �xed
stepsize symplectic integration of a single Hamiltonian vector �eld
 Nevertheless� the
numerical results for the Hamiltonian state space form were a vast improvement over
the results with BDF��


�� Hamiltonian Underlying ODEs� We now examine the possibility of ob�
taining Hamiltonian underlying ODEs as an alternative to the computation of the
state space form
 In case the constraint is linear�

Gq � �

�
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Fig� �� Energy in numerically computed state space form vs� time�

with G constant� the standard underlying ODE ������� reduces to

�q 	 p

�p 	 ��I �H�rF �q�

This ODE system is not Hamiltonian because the projection of rF is not necessarily
the gradient of any function� however it is easy to construct an underlying ODE which
is Hamiltonian
 we simply note that if q lies on Gq 	 �� then �I �H�q 	 q so that

�q 	 p

�p 	 ��I �H�rF ��I � H�q�

is also an underlying ODE�and this one is a Hamiltonian system

For the nonlinearly constrained case� we make use of Dirac�s theory of constrained

Hamiltonian systems ���


���� Nonlinearly Constrained Hamiltonians� In this section� we will derive
a modi�ed� unconstrained Hamiltonian with the property that on M the modi�ed
and the original Hamiltonian are identical and that M is an invariant manifold of
the �ow corresponding to the modi�ed Hamiltonian
 As a result we will obtain a
Hamiltonian ODE whose �ow on M reduces to the �ow of �������
 The main idea in
the construction of the modi�ed Hamiltonian is the following one
 for a Hamiltonian
function H 	 H�q� p� and a scalar�valued function � 	 ��q� p�� the condition for � to
be an invariant under the �ow of the Hamiltonian system derived from H is just that
the Poisson bracket ���� of � with H vanishes� i
e


nX

i��

��

�qi

�H

�pi
�

��

�pi

�H

�qi
	
 f��Hg 	 �

Following Dirac ���� a distinction is made between two types of invariants
 ��q� p� 	 �
is said to be a strong invariant of the �ow derived from H in case f��Hg vanishes
identically
 A weak invariant is one that satis�es f��Hg 	 � only when ��q� p� 	 ��

�



In the latter case we will often write f��Hg � �� We make use of the following
elementary properties of Poisson brackets for functions �� �� � � R�n � R and real
constants ��� ���
�i� f�� �g � �f�� �g
�ii� f�� �g � �
�iii� f���� � ����� �g � ��f��� �g� ��f��� �g	

f�� ���� � ����g � ��f�� ��g� ��f�� ��g
�iv� f�� ��g � f�� �g�� f�� �g�

If � is not an invariant of the Hamiltonian H 
 as in the case of constrained Hamil�
tonian systems with H � ptp���F �q� and � � g
 consider the adjusted �constrained�
Hamiltonian function

H
���
T

� H � ��

Here the function � � ��q� p� plays much the same role as the Lagrange multiplier
in �
������ The function � is chosen to insure � � � along solutions
 which certainly

holds if � is a weak invariant of the �ow of H
���
T

� For this to happen
 we need that

� � f��H
���
T
g � f��Hg� f�� ��g

� f��Hg� f�� �g�� f�� �g�

Taking � � � in the above and noting that f�� �g � �
 we must have f��Hg � ��
Since we assumed f��Hg �� �
 we have to treat the equation � � f��Hg � � as a new
constraint and consider the revised Hamiltonian

H
���
T

� H � ���� ���

If we now seek �� � ���q� p� and �� � ���q� p� to insure that both f��H
���
T
g � � and

f��H
���
T
g � �
 we �nd that the key issue concerns the invertibility of the matrix of

Poisson brackets

R �

�
f�� �g f�� �g
f�� �g f�� �g

�
�

�
� f�� �g

f�� �g �

�

When f�� �g �� �
 R is nonsingular and we can solve for the functions ���� ��� so

that both � � � and � � � are invariant for H
���
T

� Furthermore
 on � � � � � we

have H
���
T

� H �
We now turn to the case of a vector�valued constraint function� The main thing

to bear in mind here is that
 in the end
 the constraints must be treated all at once

not one at a time� Given a vector of constraints � � �
 one must �rst augment these
constraints by all of the �hidden� constraints which arise by taking Poisson brackets
with the augmented Hamiltonians
 i�e� through the recursive di�erentiation of the
constraints and substitution of the di�erential equations derived from the Hamiltonian�
This approach is taken in ���� in deriving control laws for constrained systems
 where
it is shown that two steps of the reduction process are su�cient if the constraints are
independent and holonomic
 i�e� essentially only dependent on q�

As an example
 if we follow the reduction for H � ptp�� � F �q� and independent
constraints of the form g�q� � �
 we obtain the hidden constraints G�q�p � �� The

�



next step is construction of the modi�ed Hamiltonian HT from H and the constraints�
thus we set

HT �q� p� �� H�q� p� � �tg�q� � �tG�q�p

Equations for � and � can be derived directly by insuring that g�q� � 	 and G�q�p � 	
are either weak or strong invariants of the 
ow derived from HT � A slight gener�
alization of the Poisson bracket notation to handle multiple constraints makes this
straightforward�

Definition ���� Given vector valued functions � � R�n � R
l and � � R�n � R

m�

the Poisson bracket of � and � is the l �m matrix whose �i� j��component is de�ned

by

�f�� �g�i�j � f�i� �jg

The following proposition shows how the generalized Poisson bracket can be eval�
uated in terms of the Jacobians of the vector functions�

Proposition ���� Given vector valued functions � � R�n � R
l and � � R�n �

R
m� let �q� �p � R

l�n� �q� �p � R
m�n� and denote the Jacobian matrices of the

indicated function with respect to the indicated variables� Then

f�� �g � �q�
t
p � �p�

t
q

Using Proposition 
��� it is easy to see that f�� �g� �f�� �gt� Proposition 
�� is
also useful in calculations�

Proposition ���� If � and � are as in Proposition ���� and � � R�n � R
m� then

f�� �t�g � f�� �g�� f�� �g�

Proof�

f�� �t�g � �q��
t��tp � �p��

t��tq

� �q��
t
p�� �t�p�� �p��

t
q�� �t�q�

� f�� �g�� f�� �g�

The generalized Poisson bracket described here is purely a computational device

and not technically a Poisson bracket in the classical sense �see e�g� ������ In partic�
ular� the Poisson bracket of a vector function with itself is a skew symmetric matrix�
moreover� the development of a Jacobi identity for this new bracket would require
that the concept be further generalized to allow one to take the Poisson bracket of a
matrix�valued function with a vector�valued function�

To get an invariant� we require

fg�HTg � fg�Hg� fg� �tgg� fg� �tGpg � 	

fGp�HTg � fGp�Hg� fGp� �tgg� fGp� �tGpg � 	

Working out the Poisson brackets in the �rst equation� we get

� fg�Hg � fg� gg�� fg� �gg� fg�Gpg�� fg� �gGp����

�



If we do not take the constraints to be satis�ed and seek � and � so that e�g�
fg�HTg � �� then we need to solve a system of partial di�erential equations which
actually becomes singular along the constraints� thus it seems to be too much to ask
for strong invariance of the constraints�

On the other hand� for a weak invariant� we may assume that g � Gp � �� Next�
note that fg� gg vanishes because g is a function of q only� Moreover� fg�Gpg� GGt�
thus

�fg�Hg� GGt�

This can be solved for � provided G has full rank�
The second equation can be reduced to

�fGp�Hg� �GGt�� fGp� �gg� 	
Gp�qG
t �G
Gp�tq�� � fGp� �gGp

Again� for weak invariance� the terms multiplied by g and Gp drop out and we are left
with equations which uniquely determine �� Once � and � are known� the Hamiltonian
function HT is determined and the unconstrained equations of motion can be found
by di�erentiating HT 


�q � p� �tpg � �tpGp� Gt�
���

�p � �rF � �tqg �Gt�� �tqGp� 
Gp�tq�
���

From a computational point of view� it may be quite involved to formulate the
system in this manner� In particular� we now need to to compute third derivatives of g
and second derivatives of F � Below we will consider some simpli�cations in the hopes
of improving the computational e�cacy of Hamiltonian formulation�

In Figure �� a numerical experiment with the Hamiltonian underlying ODE for the
nonlinear pendulum 
����
��� in cartesian coordinates is summarized� We computed
� and � as described above� Starting from the initial con�guration 
q�� q�� p�� p�� �

�� �� ������ the resulting Hamiltonian underlying ODE 
����
��� was solved using the
implicit midpoint method and h � ��� The upper graph in Figure � demonstrates that
the Hamiltonian is approximately conserved over a relatively long time interval� the
lower �gure shows the extent to which the position and velocity constraint residuals
are maintained during integration�

Figure � appears to contradict a result in Cooper 	�� that says that quadratic
invariants are exactly maintained by one step methods 
like the implicit midpoint
method� which are �marginally algebraically stable�� However� the invariants in 	��
are always taken to be strong invariants 
�rst integrals� which implies that the invariant
manifold is in a certain sense locally stable� as we see below� this is not the case for a
weak invariant�

���� A Simpli�cation� The process outlined above for obtaining a weak invari�
ant is not completely well�de�ned� For example� the determination of � from

�fg�Hg� GGt�

can be done in any number of ways if we are allowed to freely use the relation g � �
or Gp � �� For example� taking

�fg�Hg� �g � GGt�

��
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Fig� �� The Dirac underlying ODE for the pendulum� constraint residuals and Hamiltonian

function�

does not cause g � � to cease to be an invariant of the �ow ultimately obtained� but it
may change characteristics of that �ow for points near M where g �� �� We may also
note that if H�q� p� � F �q�	 ptp

�
and g � g�q�� then fg�Hg � Gp which is weakly zero

when we are constraining with respect to both g�q� � � and Gp � �� This means that
we have the obvious choice of taking fg�Hg� � which leads to � � �� or to follow the
derivation as outlined above which would lead to � �� � away from M� There is no
obvious� a priori reason to favor one of these formulations over the other�

If we take � � �� we get

HT � H 	 �tg

so that� after insuring thatM is invariant� we arrive at


q � p	 �tpg����


p � �rF � �tqg �Gt���
�

where � � �GGt����GrF �Gq�p� p��� This system requires the computation of third
derivatives of g and second derivatives of H as before�

Besides providing a simpli�ed Hamiltonian formulation� �������
� has the immedi�
ate and natural consequence of showing that along the constraint �g � ��� the standard

��



underlying ODE generates a Hamiltonian �ow� However� as shown in the next section�
the formulation ����	��
� can posess a somewhat surprising instability which can be
observed in computations whenever numerical discretization induces a perturbation
of the constraint� In Figure �� the implicit midpoint method �a canonical discretiza	
tion scheme� has been applied to solve ����	��
� for the cartesian pendulum discussed
above with �xed stepsize h 
 ��� from t 
 � to t 
 � with the same initial conditions
as for Figure �� Although the wedge product is maintained in this case� the constraint
residuals and the Hamiltonian function are very rapidly growing in time�
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Fig� �� Hamiltonian function and constraint residuals for the simpli�ed Hamiltonian formulation�

���� Stability of the Constraint�Invariants� Let us begin with the case of a
linearly constrained quadratic Hamiltonian with constraint � 
 Gq with G constant�
Here we �nd that the simpli�ed Hamiltonian system based on �HT 
 H � �tGq is

�q 
 p

�p 
 ��I �H�rF �D�FHq

where D�F is the Hessian matrix of F � Multiplying both equations by the �here
constant� projector H� we obtain

H �q 
 Hp

H �p 
 HD�FHq

��



Since H � H�� we can change to variables r � Hq� s � Hp and write

�r � s����

�s � Br��	�

where B � HD�FH
 Invariance of the constraints translates to r � s � �
 If the
Hessian is constant and positive de�nite� as is the case near a stable equilibrium� B is
positive semide�nite� and the equilibrium position in �������	� will be a saddle point

In this situation� one can expect an instability under perturbation of the constraint�
invariants introduced via discretization


If we perform a similar analysis starting from the Hamiltonian HT � ptp
�


F �q��
�tGq � �tGp of Dirac� we arrive at equations�

�q � �I � �H�p

�p � ��I �H�rF �D�FHq

Multiplying the equations by H� we get

H �q � H�I � �H�p � �Hp

H �p � HD�FHq

Hence the corresponding system of di	erential equations for the constraint residuals
is

�r � �s����

�s � Br��
�

Now the equilibrium position r � s � � has become a stable center under the assump�
tion that D�F is positive de
nite�

���� Nonlinear Constraints� We begin the discussion by writing the equations
of motion for both formulations in the case of a single position constraint �� We
derive a constraint of the form � � f��Hg� Assuming f�� �g �� �� we arrive at the
Hamiltonian HT � H � �t�� �t�� The conditions on � and � reduce to

f��HTg � � � f��Hg� f�� �g� � �

f��HTg � � � f��Hg� f�� �g�� f�� �g� � �

Since f�� �g is an invertible matrix� and using f��Hg � �� we have

� � �f�� �g���

� � �f�� �g��
h
f��Hg� f�� �gf�� �g���

i

Now f�� �g � �� Also� because the constraint is scalar� f�� �g � �� Next� we
write di	erential equations for the constraint residuals� thus

�� � f��HTg � � � f���f�� �g��
h
f��Hg� f�� �gf���g���

i
g�

�f���f�� �g���g� � f�� �g
h
�f�� �g���

i

�� � f��HTg � f��Hg� f���f�� �g
��

h
f��Hg� f�� �gf���g���

i
g�

�f�� �g
h
�f�� �g���f��Hg� f�� �gf���g����

i

�f���f�� �g���g�� f�� �g��f���g����

��



This simpli�es to the system

�� � �f�� f�� �g��f��Hgg�� f�� f�� �g���g�����
�� � �f�� f�� �g��f��Hgg�� f�� f�� �g���g���	�

Now by employing the product rule for Poisson brackets �Prop
 �
���

f�� f�� �g���g� � f�� f�� �g��g�� 
 f�� �gf�� �g��� � � 
O����

Similarly� we have

f�� f�� �g���g� � f�� f�� �g��g�� 
 f�� �gf���g��� � O����

Thus� in the neighborhood of the constraint manifold� we have the following driving
di�erential equations for the residuals�

�� � �� � f�� f�� �g��f��Hgg�����
�� � �f�� f�� �g��f��Hgg�����

On the other hand� if we start with �HT � H 
 �t� then we obtain via the same
sort of calculations

�� � � � f�� f�� �g��f��Hgg�����
�� � �f�� f���g��f��Hgg�����

Note that the only di�erence between ��������� and ��������� is the sign that
appears with � in the �rst equation of each system


Let�s turn to an example
 For the cartesian pendulum with zero gravity� � �
�qtq � ���� and � � qtp
 The Dirac Hamiltonian becomes

HT �q� p� �
ptp

�



�

�

ptp

qtq
�qtq � ���

�qtp��

qtq

and the corresponding ODE system is�

�q �

�
�qtq � �

qtq
I �

�

qtq
qqt
�
p

�p � �
ptp

�qtq��
q 
 �

qtp

qtq
p� �

�
qtp

qtq

�
�

q

Equations for �� and �� follow immediately�

�� � qt �q � qtp� �qtp

qtq � �

qtq
qtp � �� 


��

�
 ���

�� � qt �p
 pt �q � �
ptp

qtq

 ptp� �

�qtp��

qtq

 ptp

qtq � �

qtq

� �ptp
�

�
 ���
�

��

�
 ���

��



The term ptp is a nuisance� If we treat it as a time dependent coe�cient� linearizing
at � � � � �� we get

�� � ��

�� � �ptp�

which makes the origin a center	 this agrees with the numerical experiment shown in
Figure 
�

By contrast� if we had only made use of constraints on q in formulating the system�
we would have had after following the above analysis and linearizing�

�� � �

�� � �ptp�

meaning that the origin has become a saddle point	 this is exactly the situation we
would expect from viewing Figure ��

Although the general nonlinear case can be quite complicated� some generalization
of the comparative analysis for linear systems of the �rst part of this section is possible
via linearization of nonlinear constraints if we bear in mind that a potential energy
function always has a positive de�nite Hessian at least in the neighborhood of a stable
equilibrium �
�� On the other hand� all we can conclude from the stability of the
linearized system is the absence of an exponential instability in the nonlinear system
����

���� Weakly Hamiltonian Underlying ODE� Dirac�s process requires the
di�erentiation of the constraint multipliers � and �	 since � and � depend on second
derivatives of g and �rst derivatives of H � construction of a Hamiltonian underlying
ODE along the lines of Dirac�s theory in general requires third derivatives of g and
second derivatives of H � However� along the constraint manifold M� which is an
invariant under the �ow of �������
�� the terms multiplying the partial derivatives of
� and � vanish� and we are left with a simpli�ed system�

�q � rpH �Gt��
��

�p � �rqH � Gt� � �Gp�tq��
��

This system �referred to as the �Weakly Hamiltonian Dirac formulation�� behaves like
a Hamiltonian system for initial values chosen on the constraint manifold	 in fact� any
underlying ODE is a Hamiltonian system along the constraint manifold� But under
numerical discretization we cannot in general expect the constraints to be maintained
exactly� so that a canonical ODE discretization scheme applied to �
����
�� would not
result in a canonical step�to�step map� On the other hand� �
����
�� requires only
the computation of second derivatives of g and �rst derivatives of H � hence it may be
much more easily computed for certain problems� This formulation has been treated
in the literature regarding Lagrangian formulations of the equations of motion �see e�g�
����� The stability of the constraints is well understood for the weakly Hamiltonian
formulations �
����
�� and the standard underlying ODE �see� e�g�� ������ For linear
constraints� �
����
�� leads to�

�q � �I �H�p

�p � ��I � H�rF

��
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Fig� �� Standard underlying ODE formulation of the Pendulum� energy and constraint residuals�

and hence� in the previously used notation�

�r � �

�s � �

for the projections r � Hq� s � Hp� For the standard underlying ODE� on the other
hand� one obtains

�r � s

�s � �

In other words� the constraints are weakly unstable� From this analysis� if one is not
concerned with maintaining the symplectic structure� the formulation ���	
���	 would
seem to be the more desirable formulation� Since this formulation �as well as the
standard underlying ODE	 corresponds to the restriction of a Hamiltonian system to
the constraint manifold� it is natural to ask whether we could not get away with solving
one of these two simpli�ed systems using a canonical integration method without too
much damage to the energy� Numerical experiments with� respectively� the standard
underlying ODE and ���	
���	 formulations are summarized in Figures 
 and �� We
used a stepsize of h � �� and solved the equations to tolerance �����

��
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Fig� �� The weakly Hamiltonian Dirac formulation for the pendulum�

These experiments seem to indicate that direct integration of the weakly Hamil�
tonian formulations with a canonical integrator may o�er a practical� although non�

symplectic� alternative to the true Hamiltonian formulation� even on relatively long
intervals� Note that the energy conservation observed in Figure � is far better than

that observed in Figure �� and somewhat better than that of Figure �� It turns out
that this is exceptionally good behavior due to the fact that the original Hamiltonian

H is a 	rst integral of the reformulation in this case� This topic is addressed in a
forthcoming paper 
����
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