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Abstract

We consider the numerical treatment of Hamiltonian systems that

contain a potential which grows large when the system deviates from

the equilibrium value of the potential� Such systems arise� e�g�� in

molecular dynamics simulations and the spatial discretization of Ha�

miltonian partial di�erential equations� Since the presence of highly

oscillatory terms in the solutions forces any explicit integrator to use

very small step�size� the numerical integration of such systems provides

a challenging task� It has been suggested before to replace the strong

potential by a holonomic constraint that forces the solutions to stay at

the equilibrium value of the potential� This approach has� e�g�� been

successfully applied to the bond stretching in molecular dynamics simu�

lations� In other cases� such as the bond�angle bending� this methods

fails due to the introduced rigidity� Here we give a careful analysis of

the analytical problem by means of a smoothing operator� This will

lead us to the notion of the smoothed dynamics of a highly oscillatory

Hamiltonian system� Based on our analysis� we suggest a new cons�

trained formulation that maintains the �exibility of the system while

at the same time suppressing the high�frequency components in the

solutions and thus allowing for larger time steps� The new constrained

formulation is Hamiltonian and can be discretized by the well�known

SHAKE method�

�This work was supported in part by DOE�NSF Grant DE�FG������ER������DMS�
�	�
���
 by NIH Grant P
�R�����
 and by NSF�ARPA Grant ASC��	�����
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� Introduction

We are concerned in this paper with the numerical solution of singularly
perturbed Hamiltonian systems of the form

d

dt
q � M��p

d

dt
p � �rV �q��

�

��
G�q�TKg�q�

���

with Hamiltonian function

H�q� p� �
pTM��p

�
� V �q� �

�

��
g�q�TKg�q�

�
���

where � a small parameter� q� p � IRn� and G�q� � gq�q�� Here M is the
positive de	nite mass matrix of the system� V 
 IRn � IR the potential energy
function� and g is the collection of functions gi 
 IR

n � IR� i � �� � � � � m� with
corresponding �scaled� force constant Ki�i� i�e�

g�q�TKg�q�

�
�

�

�

X

i

Ki�i gi�q�
�

and K the m�dimensional diagonal matrix with entries Ki�i�
We assume throughout the paper that the matrix

G�q�M��G�q�T ���

is invertible and both jjGM��GT jj as well as jj
GM��GT ���jj take values
close to one along trajectories of ����

Note that the parameter � has no immediate physical meaning and is
not uniquely determined by the physical problem� It stands for the fact
that the potential g�q�TKg�q������� grows large away from its equilibrium
value g�q� � � compared to V �q� and it allows one to treat the mathematical
consequences of this fact in a relatively elegant way�

Throughout the paper we will use the following convention
 Assume that
the Hamiltonian ��� has been scaled such that

jjVqq�q�jj � � ���

and that the mass matrix M satis	es M � I where I is the identity ma�
trix� �In fact� M � I can always be achieved by the canonical coordinate
transformation �q� p�� �M���q�M����p��� Then � is chosen such that

jjK��jj � � ���
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where we assume that the thus de�ned � satis�es �� ��
Let us demonstrate this for the quadratic Hamiltonian

H�q� p� �
pTp

�
	
qTWq

�
	
qTGTUGq

�

where W is a positive de�nite n�n matrix
 G is a n�m matrix
m � n
 and
U is a diagonalm�mmatrix� Here we would apply the canonical coordinate
transformation �q� p� � �jjW jj����q� jjW jj���p� and then premultiply the
resulting Hamiltonian by jjW jj���� which yields

H�q� p� �
pT p

�
	
qTWq

� jjW jj
	
qTGTUGT q

� jjW jj
�

Then we de�ne � by

� ��
q
jjW jj jjU��jj �

Thus � is proportional to the ratio of the largest eigenvalue of W to the
smallest eigenvalue of U � Provided that � � �
 we would then de�ne the
function g in ��� by g�q� �� Gq
 the matrix K by K �� jjU��jjU 
 and the
potential V �q� by �qTWq���� jjW jj��

Throughout this paper we will also assume that
 along solutions of ���

we have

pTM��p

�
�

n

�
� ���

with

�� � � � � �
�

for the chosen scaling of the Hamiltonian ���� Here n is the number of
degrees of freedom of ��� and � corresponds to kBT in statistical mechanics�
T temperature and kB the Boltzmann constant� ��� is typically satis�ed for
Hamiltonian systems of type ��� with n large� i�e� n� ��

Hamiltonian systems of type ��� arise typically in the context of molecu�
lar dynamics simulations ���� �which provides the main motivation of this pa�
per� and in the spatial discretization of Hamiltonian �hyperbolic� PDEs ����
like
 for example
 the Sine�Gordon equation by spectral or related methods�
In the context of molecular dynamics
 the potential g�q�TKg�q������� stands
for covalent bond stretching and bond�angle bending� i�e�
 gi�q� � r � r�

�� � ����
 and � � ��� in case of bond stretching and gi�q� � � � ��

�� � ���
 and � � ��� in case of bond�angle bending� In the context of hy�
perbolic PDEs
 the same expression is related to the high frequency modes
in the Fourier spectrum of the solutions�
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Di�erential equations of the form ��� fall into the class of singularly
perturbed systems of type ���

d

dt
z 	

�

�
f�z� �� �
�

Solutions of �
� satisfy� in general�

jjz�t�jj 	 O���

and

jj
d

dt
z�t�jj 	 O����� �

i�e�� they are bounded but vary rapidly in t� Thus the step
size of a numeri

cal integrator has� in general� to be of order O���� This implies a signi�cant
amount of computational work for the numerical integration over time in

tervals of order O���� For example� the lengths of a molecular dynamics
simulation with an explicit method like Verlet ��
� is for that reason restric

ted to a few tens of picoseconds up to a few nanoseconds� depending on the
size of the problem ����� This means that the time scale of the process that
can be simulated is limited� To simulate processes over longer periods of
time� new integration methods are essential�

Most of the theory has been developed for singularly perturbed problems
that satisfy

�� rank fz�z� �� 	 const�

for all z� This implies that the set M� de�ned by

M� �	 fz � f�z� �� 	 �g

is a smooth manifold� The more stringent requirement is however that

�� M� is an exponentially stable manifold of the di�erential equation

d

dt
z 	 f�z� �� �

Under the Assumptions �� one can show that there exists a family M
�
of

smooth manifolds withM
��� 	 M� such thatM

�
is an exponentially stable

invariant manifold of �
� ���� Furthermore� the solutions on M� re�ect the
long
time behavior of the general solutions of �
� with initial values in a
�
neighborhood of M� up to terms of order O�� ��� Since the solutions on
M� satisfy now dz�dt 	 O���� time
steps of order O��� can be used in a
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numerical integrator provided that the equations are discretized by a proper
�implicit� method �����

However� Assumption 	 is not satis
ed for singularly perturbed Hamil�
tonian systems� In particular� solutions of ��� oscillate highly about the
manifold M�� Thus� as we will show in Section 	� the manifold M� does
not even satisfy the weaker assumption of normal�hyperbolicity �����
�� This
leaves us with the task of 
nding a di�erent approach to the long�time inte�
gration of ���� In this paper� we attempt to do so by introducing the notion
of the smoothed dynamics of highly oscillatory Hamiltonian systems� By
this we mean the following�

Because of ���� the shortest period in the motion of ��� due to the poten�
tial V �q� is of order O���� In contrast to this� the potential g�q�TKg�q���	���
contributes high�frequency terms with period of order O���� To separate
these high frequency components from the slowly varying parts� we intro�
duce the smoothing operator

hwi� �t� ��
�

�

Z
��

��
��
t� t�

�
�w�t�� dt� ���

with � � � � � and w � IR � IR� Here � � IR � IR is an appropriate
weight function such that for any �bounded� continuous function w there is
a smooth �C�� function �w with

hwi��t�� �w�t� � O��s� ����

and for any smooth �C�� function w we have

hwi��t�� w�t� � O��s� ����

where s is a 
xed integer with s � �� One could� for example� chose for
� the Meyer scaling function ���� Note that� in the frequency domain� the
smoothing operator ��� corresponds to a low pass 
lter with cut�o� frequency
�c � O������

From now on we will always identify hwi� with a smooth function �w such
that ���� holds and assume that hwi� is C��

The idea is now to replace the rapidly varying solutions q�t� of ��� by
hqi��t� with

� �
p
�

and then to seek an approximation to the smooth hqip� rather then to
the rapidly varying q�t�� We call the functions hqip��t�� corresponding to
solutions q�t� of ���� the smoothed dynamics of ����
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The aim of this paper is to derive a �constrained� Hamiltonian system
with Hamiltonian H��Q�P � and constraint manifold M� such that the cor�
responding �smooth� solutions �Q�t�� P �t�� satisfy

hqip
�
�t�� Q�t� � O�� ���

and

hpip� �t�� P �t� � O�� ���

over bounded intervals of time�
The approximation of ��� by a constrained Hamiltonian systems has

been considered before �see� for example� 	
���	
���� In a naive approach�
one would introduce the new variable

� 
�
�

��
Kg�q�

and rewrite ��� as

d

dt
q � M��p

d

dt
p � �rV �q�� G�q�T�

��K��� � g�q�

��
�

In the limit �� �� we obtain the constrained system

d

dt
Q � M��P

d

dt
P � �rV �Q��G�Q�T�

� � g�Q�

����

which is Hamiltonian 	��� on the constrained manifold

M� � f�Q�P � � IR�n 
 g�Q� � �� G�Q�M��P � � g ����

provided that the matrix ��� is invertible as assumed earlier�
This approximation has been used� for example� in MD simulations to

remove the bond stretching modes 	

�� 	
���
The solutions on M� are now smooth� However� the approximation ���

introduces� in general� an error of order O��� over bounded time intervals
�see Section ��� While� for example� this error turns out to be not signi�cant
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for the covalent bond stretching the same formulation ���� yields qualita�
tively wrong results when applied to the bond�angle bending or the harmonic
dihedral bending ��	
�

The constrained formulation derived in this paper approximates the
smoothed dynamics of ��� up to terms of order O�� ��� over bounded in�
tervals of time and provides therefore a qualitative improvement over �����
Furthermore� let hA�q�i denote the time average of an observable A�q� along
trajectories q�t� of ���� Then� assuming ergodicity of ���� we show that our
approximation H� also satis
es

hA�q�i � hA�Q�i� O�� ���

where hA�Q�i is the time average of the observable A along the correspon�
ding smooth trajectories Q�t� of H�� Finally� in Section �� we discuss nume�
rical aspects of our new method and demonstrate its properties by means of
a simple numerical example�

Another approach to the long�time integration of highly oscillatory Ha�
miltonian system has been taken by Simo and his collaborators ���
� They
advocate the direct discretization of ��� by an implicit energy�momentum
method and the usage of a large step�size� However� there do not exist ri�
gorous stability and order of convergence results for these methods when
applied to general systems of type ��� with a step�size �t� ��

� Mathematical Background

In the 
rst part of this section we show how to reformulate ��� as a singularly
perturbed problem ���� To do so� we introduce local coordinates �q�� q�� by

q� � g�q�

q� � b�q�

where b�q� is a vector valued function such that B�q�M��G�q�T � ��
B�q� � bq�q�� and the composed matrix �G�q�T B�q�T 
 is invertible and
well conditioned� The existence of such a coordinate system follows� at
least locally� from the Frobenius Theorem ��
� The corresponding conjugate
momenta are given by

�G�q�T B�q�T 


�
p�
p�

�
� p

which results in the Hamiltonian

H�q� p� �
pT
�
GM��GT p�

�
�
pT
�
BM��BT p�

�
� V �

�

��
qT
�
Kq�

�
� ����
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The equations of motion are now given by

d

dt
q� � GM��GT p�

d

dt
p� � �rq�V �

�

��
Kq� � rq�

pT
�
GM��GT p� � pT

�
BM��BT p�

�

����

and

d

dt
q� � BM��BT p�

d

dt
p� � �rq�V �rq�

pT
�
GM��GT p� � pT

�
BM��BT p�

�

��	�

where
 for notational convenience
 we suppressed the arguments in the map�
pings V �q�� q��
 G�q�� q��
 and B�q�� q���

Upon rescaling p� in ���� by �
 the equations ���� become

d

dt
q� �

�

�
GM��GT p�

d

dt
p� � ��rq�V �

�

�
Kq� � rq�

pT
�
GM��GTp� � �� pT

�
BM��BT p�

� �

����

which are now of the form ���� The corresponding manifold M� is given by
q� � p� � 
 or
 in the original variables by ����� Linearization of ���� about
the manifold M� yields a linear system with eigenvalues on the imaginary
axis� Thus the manifold M� is not normally hyperbolic and the persistence
of Mo for � � 
 cannot be concluded ����

Now we want to derive a few important properties of the smoothing operator
���� We assume that � � IR � IR is a smooth function that goes to zero
 as
jtj � �
 faster than any inverse power of t
 ��
� � �
 and

Z
�

��

��t�dt � �

The proper construction of a �
 such that in addition ��
� and ���� hold

falls into the subject of �lter design and wavelet analysis ����

The following four propositions will be used for the derivation of the
smoothed dynamics of ����

Proposition �� Let w�t� be a di�erentiable function� then

h
d

dt
wi� �

d

dt
hwi�
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Proof� We have

d

dt
hwi� �t� �

d

dt

�

�

Z
��

��

��
t� t�

�
�w�t�� dt�

�
�

�

Z
��

��

�
d

dt�
���

t� t�

�
��w�t�� dt�

Now� since ����� � 	� integration by parts yields

�

�

Z
��

��

�
d

dt�
��
t� t�

�
�w�t�� dt� �

�

�

Z
��

��

��
t� t�

�
�
d

dt�
w�t�� dt�

� h
d

dt
wi� �t�

�

Proposition �� Let w�t� � IRn be an arbitrary function such that the matrix
correlation function of 
w �� w � hwi� satis�es

h
w
wTi� � O��l�

Let us also assume that the higher order momenta of 
w�t� w�r�t� the smoo�
thing operator ��� are small compared to O��l�� then

hf�w�i� � f�hwi�� � O��l�

where f � IR� IR is a smooth function and l a positive real integer�

Proof� Taylor expansion of f about hwi� yields

f�w� � f�hwi�� � f ��hwi��
w�
�




wTf ���hwi��
w � � � �

Applying our smoothing operator and noting that h
wi� � 	 and
hf�hwi��i� � f�hwi�� etc�� we obtain

hf�w�i� � f�hwi�� � O�h
w
wTi��

and the desired result follows� �

Proposition �� Let w�t� � IRn be an arbitrary function� As before� we
write w�t� as

w�t� � hwi��t� � 
w�t� �

Then� up to terms of order O��s��

hwwTi� � hwi�hw
T i� � h
w
wT i�



Smoothed Dynamics ��

Proof� Since� up to terms of order O��s�� hhwi��w
T i� � hwi�h�w

T i� � �
and hhwi�hwiT�i� � hwi�hwiT�� �

Proposition �� Let w�t� � IRn be an integrable function� We write w�t�
again as w�t� � hwi� � �w�t�� If �w�t� � O��l� and ��w��� �� �w�����
is smooth� then Z

�w�t� dt � O��l��� �

Proof� Note that� by assumption� � �w��� is smooth in � and
R
��w��� d� �

O��l�	 Thus
Z

�w�t� dt � ��
Z

�w����� d�

� ��O��l� �

�

Let us 
nally review a few results from statistical mechanics	 A Hamiltonian
system with Hamiltonian H is called ergodic ��
� if the time average

hAi �� lim
T��

�

�T

Z
T

�T

A�q�t�� p�t��dt ����

of an observable A�q� p� is equal to the microcanonical �constant energy
E � H�q� p�� ensemble average ��
�

hAiens ��
Z Z

�ens�q� p�A�q� p� dqdp ����

with the microcanonical density function

�ens�q� p� ��
��H�q� p��E�R R
��H�q� p�� E� dqdp

where ��x� denotes Dirac�s delta function	

Remark� �i� If the Hamiltonian H possesses 
rst integrals� ergodicity is
always understood as ergodicity on the level sets of these 
rst integrals	

�ii� Because of �
�� the microcanonical ensemble average of ��� is almost
identical to the macrocanonical �constant temperature� ensemble average
with density function

�ens�q� p� ��
exp ��H�q� p����R R
exp ��H�q� p���� dqdp

�
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This is always true for systems with n very large� n the number of degrees
of freedom ���� Note that identifying microcanonical and macrocanonical
ensemble averages is common practice in molecular dynamics ����

Under the assumption that a given Hamiltonian system is ergodic� equipar�
tition of energy ��	� implies then that

hpi
�H

�pi
i 
 � ���


and

hqi
�H

�qi
i 
 � ���


where qi and pi� i 
 �� � � � � n� denote the ith component of the vector q� p
respectively� Here H is the Hamiltonian of the system and� as introduced in
�	
� � corresponds to kBT in statistical mechanics� T the temperature and
kB the Boltzmann constant�

Now� if the Hamiltonian happens to be a quadratic function of its coor�
dinates� so� through a canonical transformation� it can be brought into the
form

H 

X

i

Ai

�
��pi


� �
X

i

Bi

�
��qi


�

and each solution component ��qi�t
� �pi�t

 is Gaussian with h�qii 
 h�pii 
 ��
h��qi
�i 
 ��Bi� and h��pi
�i 
 ��Ai� Of course� linear systems cannot be er�
godic� But� upon assuming that the linear system is the local approximation
of a nonlinear system� the assumption of equipartitioning of energy among
the harmonic degrees of freedom is justi�ed�

� The Quasi�Stationarity Assumption

In this and the following section we conduct an analysis of the Hamiltonian
formulation ��	
 and ���
 in terms of our smoothing operator ��
� Let us
denote the non�smooth solution component of q�t
 by �q�t
� i�e�

�q �
 q � hqip
�
�

Note that �q���
 is smooth in the fast time � � We also write Q�t
 instead
of hqip

�
or approximations thereof� �The same notations are used later on

for the momentum p�t
�

It follows from the equations ���
 that dq��dt 
 O��
 and d�q��dt

� 

O��
� Thus d��q��dt

� 
 O��
 and Proposition � implies that �q� 
 O���
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and q� is smooth up to terms of order O����� This and Proposition � yield
then that

hf�q��ip�
� f�Q�� �O����

for any smooth function f � Since we are only interested in an order O�����
approximation of the smoothed dynamics� we identify from now on q� with
Q� � hq�ip�

�
The analysis is more complicated for the variable q�� Here the above

simple argument yields only �q� � O���� Thus we have to analyse the fast
subsystem �	
� in more detail� To make such an analysis tractable� we make
the following crucial assumptions�

Let us assume for a moment that we keep �q�� p�� in �	
� constant� We call
�	
� ergodic in the fast variable �q�� p�� if for any observable A�q�� p��

hAip
�
�t� � hAi���ens�q�� p�� �O�� ��� ����

where hAi���ens denotes the microcanonical ensemble average over the variable
�q�� p��
 i�e�

hAi���
ens

�q�� p�� ��
Z Z

A�q�� p������ens
�q�� p�� q�� p�� dq�dp�

with the reduced density function

�
���
ens

�q�� p�� q�� p�� ��
��H�q�� p�� q�� p���E�R R

��H�q�� p�� q�� p��� E� dq�dp�
�

Note that the solutions �q��t�� p��t�� vary on a time�scale of order O��� and
hAip

�
can be considered as the time�average over a time interval of order

O�
p
��� Thus it seems reasonable to assume that hAip

�
� hAi which� to�

gether with the standard ergodicity assumption� yields �����
Now solutions �q��t�� p��t�� are not constant but vary on a time�scale of

order O�	� and we assume that� along solutions �q�t�� p�t�� of �	�� we have

hAip
�
�t� � hAi���

ens
�q��t�� p��t�� �O�� ���

or� in other words� the solution component �q��t�� p��t�� is always in ther�
modynamic equilibrium on time�scales of order O�

p
��� We call this the

quasi�stationarity of �	
��

Quasi�Stationarity Assumption� From now on we assume that the fast
system ���� is quasi�stationary along solutions �q�t�� p�t�� of ����
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� Smoothed Dynamics � The Fast Subsystem

Let us now start with the analysis of ��� by applying the smoothing operator
��� to the fast system ����� In this section we will derive an order O�� ���
estimate of Q� � hq�ip�

which will provide us with the proper constraint
function for our approximation of the smoothed dynamics of ���� In the fol	
lowing section we will then derive the corresponding Hamiltonian H��Q�P ��

Applying the smoothing operator ��� and Proposition � to ����
 we ob	
tain

d

dt
Q� � hGM��GT p�ip�

d

dt
P� � �hrq�V i

p
� �

�

��
KQ��

� hrq�

pT
�
GM��GTp� � pT

�
BM��BT p�

�
ip�

��
�

Since �Q��t�� P��t�� is smooth
 we have dP��dt � O��� and Q� has to satisfy

Q� � O���� � ����

which is equivalent to

g�Q� � � ����

up to terms of order O����� Note that ���� is the constraint used in �����
���� and equipartitioning of energy in the variable q� �which is a con	

sequence of our Quasi	Stationarity Assumption� allows us now to derive an
estimate for h�q��q

T
�
ip�� In particular
 ��� and equipartitioning of energy

imply that

�

��
hg�q�TKg�q�ip� �

�

��
hqT

�
Kq�ip� � O�m�� �

Thus

hq� q
T
�
ip� � O�� ��� �

Knowing that Q�Q
T
�
� O����
 we conclude from Proposition � that

h�q��q
T
�
ip� � O�� ��� �

This result and the similar result for the slow variable q�
 as derived in
the previous section
 allow us now to conclude from Proposition � that

hf�q�� q��ip� � f�Q�� Q�� � O�� ���
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for any smooth function f � Furthermore� it also follows that

hG�q�M��G�q�Tp�ip� � hG�Q�M��G�Q�T �P� ��p��ip� �O�� ���

� G�Q�M��G�Q�T P� �O�� ��� �

Hence� �	�� can now be rewritten as

d

dt
Q� � G�Q�M��G�Q�T P�

d

dt
P� � �rQ�

V �Q��



��
KQ��

� hrq�

pT
�
GM��GTp� � pT

�
BM��BT p�

	
ip�

Since Q� � O����� we also have dQ��dt � O���� which� with the above
equations� implies that P� � O���� and dP��dt � O����� Thus

O���� � �KQ� � ��rQ�
V �Q��

� ��hrq�

pT
�
GM��GTp� � pT

�
BM��BT p�

	
ip� �

Now

pT
�
GM��GTp� � pT

�
BM��BT p� � pTM��p

� O�n ��

and� therefore�

hrq�

pT
�
GM��GTp� � pT

�
BM��BT p�

	
ip� � O��� �	��

which �nally yields the estimate

Q� � ��K��rQ�
V �Q� � O�� ��� �

In the original Cartesian coordinate Q� this can be written as


 � g�Q� � ��K�� �G�Q�M��G�Q�T ���G�Q�M��rV �Q� �	��

up to terms of order O�� ����
This equation will provide the holonomic constraints for our approxima�

tion of the smoothed dynamics of �
�� In contrast to the hard constraint
�	�� which introduces an error of order O����� we call �	�� soft constraints�

In the following section we will derive the Hamiltonian that describes
the smoothed dynamics on

M� �� f�Q�P � � IR�n � �g�Q� � 
� �G�Q�M��P � 
 g

with �G�q� �� �gQ�Q� and the soft constraint function

�g�Q� �� g�Q� � ��K�� �G�Q�M��G�Q�T ���G�Q�M��rV �Q� �
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� Smoothed Dynamics � The Slow Subsystem

In this section we derive the smoothed equations of the slow subsystem �����
First we want to obtain an estimate for �p�� Because of ���� and

hrq�V �q�� q��i
p
� 	 rQ�

V �Q�� Q�� 
O�� ���� d�p��dt satis�es the estimate

d

dt
�p� 	 O���

which� according to Proposition 
� implies that

�p� 	 O�� �� �

Thus

hf�p��ip� 	 f�P�� 
 O��� ���

for any smooth function f and we can identify from now on p� with P� �as
done before for the variable q��� With this in mind� the smoothing of ����
results� up to terms of order O�� ���� in

d

dt
Q� 	 B�Q�M��B�Q�T P�

d

dt
P� 	 �rQ�

V �Q� 
rq�

PT
�
B�Q�M��B�Q�

�
�

� hrq�

pT
�
G�q�M��G�q�Tp�

�
ip�

����

This leaves us with the task of �nding the smoothed expression for

hrq�

pT
�
G�q�M��G�q�Tp�

�
ip� �

To do so we have to make use of the Quasi�Stationarity Assumption which
implies equipartitioning of energy in the variable p�� In our case here� equi�
partitioning of energy means that

hpT
�
G�q�M��G�q�Tp�ip� 	 hpT

�

�H

�p�
�q� p�ip�

	 m�

withm the dimension of p�� Now letW �q� be an orthogonal matrix such that
W �q�TG�q�M��G�q�TW �q� is a diagonal matrix D�q� with entries di�i�q�
and de�ne �p� �	 W �q�Tp�� Then

h�pT
�
D�q��p�ip� 	 hpT

�
G�q�M��G�q�Tp�ip�

	 m�
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and equipartitioning of energy between the degrees of freedom yields

h��pi
�
�� di�i�q�ip� � �

i � �� � � � � m� Now� up to terms of order O�� ����

h��pi
�
�� di�i�q�ip� � h��pi

�
��ip� di�i�Q�

and

h��pi
�
��ip� �

�

di�i�Q�
	 O�� ��� �

With� up to terms of order O�� ����

hrq�

pT
�
G�q�M��G�q�Tp�



ip� � hrQ�

pT
�
G�Q�M��G�Q�Tp�



ip�

�
X

i

h��pi
�
��ip�



rQ�

di�i�Q� �

we �nally obtain

hrq�

pT
�
G�q�M��G�q�Tp�



ip� �

�



rQ�

ln �det D�Q�
 	 O�� ���

which� in terms of the original matrix G�Q�M��G�Q�T � leads to the poten�
tial

VF �Q� �
�



ln det �G�Q�M��G�Q�T 
 ����

where we used that

det D�Q� � det �W �Q�D�Q�W �Q�T 
 �

Summarizing the results of this section� we �nd that smoothing of ����
yields the system

d

dt
Q� � B�Q�M��B�Q�T P�

d

dt
P� � �rQ�

V �Q� 	rQ�
VF �Q� 	rQ�

PT
�
B�Q�M��B�Q�TP�




����

Remark� The potential ���� has been introduced before by Fixman ��
 in
the context of statistical mechanics� He showed that ���� has to be included
into the constrained formulation ���� to make sure that� in the limit �� ��
the unconstrained system ��� and the constrained system ���� possess the
same reduced density function �ens�q�� p��� Similar results can be found in
�
�
 and ���
�
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� Constraint Formulations

The coordinates �q�� p�� q�� p�� were only introduced for theoretical purposes�
This leaves us with the task of reformulating ���� in terms of the Cartesian
coordinates �q� p�� In fact� this turns out to be straightforward and we ob�
tain

Theorem �� The constrained Hamiltonian equations

d

dt
Q 	 M��P

d

dt
P 	 �rV �Q�� rVF �Q��

�

��
G�Q�TKg�Q�� �G�Q�T�

� � �g�Q�

��	�

provide an order O�� ��� approximation to the smoothed dynamics of ���
over bounded periods of time� The corresponding Hamiltonian is

H� �
PTM��P

	

 V �Q� 
 VF �Q� 


g�Q�TKg�Q�

	 ��

 �g�Q�T�

with the �soft� constraint manifold

M� � f�Q�P � � IR�n � �g�Q� � �� �G�Q�M��P � � g �

Proof� In terms of the variable �Q�� P�� Q�� P��� ��	� is equivalent to

d

dt
Q� � BM��BTP�

d

dt
P� � �rQ�

V � rQ�
VF � 
BM��BT ���BM�� �GT��

�rQ�

PT
�
GM��GTP� 
 PT

�
BM��BTP�

	

����

and

Q� � ���K��rQ�
V �Q�

P� � 
G�Q�M��G�Q�T ���
d

dt
Q�

where we used in ���� that

rQ�
f � 
BM��BT ���BM��rQf
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for any di�erentiable function f � IRn
� IR�

Furthermore� the Lagrange multiplier � is obtained by di�erentiating
the constraint �G�Q	M��P 
 � with respect to time and replacing the time
derivatives dQ�dt and dP�dt by the corresponding expressions in ��
	� This
yields� in local coordinates�

O���	 
 � �rQ�
�V � VF 	 � ���KQ� �

�rQ�

PT
�
GM��GTP� � PT

�
BM��BTP�





 � �rQ�
VF �rQ�

PT
�
GM��GTP� � PT

�
BM��BTP�




and

� 
 O��	

where we used that GM�� �GT 
 GM��GT �O���	 and

� 
 �g�Q	 
 ��K��
rQ�

V �Q	 �Q� �

Thus

B�Q	M�� �G�Q	� 
 O�� ��	

and� since

PT
�
G�Q	M��G�Q	TP� 
 O���	 �

the equations ���	 are equivalent to ���	 up to terms of order O�� ��	� Stan�
dard perturbation results for di�erential equations �see� e�g�� �
��	 imply that
the same is true for the solutions over bounded intervals of time� �

Corollary �� An order O���	 approximation of the smoothed dynamics of
��� over bounded intervals of time is given by the constrained Hamiltonian
system

d

dt
Q 
 M��P

d

dt
P 
 �rV �Q	�rVF �Q	� G�Q	T�

� 
 g�Q	

���	

with Hamiltonian

H��Q�P 	 

PTM��P



� V �Q	 � VF �Q	 � g�Q	T�
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and the �hard� constraint manifold

M� � f�Q�P � � IR�n � g�Q� � �� G�Q�M��P � � g �

Furthermore� if the potential VF is set equal to zero in ����� then the appro�
ximation is only of order O����

Proof� Same as proof of Theorem �� except that

Q� � �

provides only an approximation of order O���� to hq�ip�	 �

Remarks� �i� Corollary � implies that the smoothed dynamics of ��� cannot�
in general� be approximated by the slow solutions of ��� as introduced by
Kreiss in 
��	 One can show that� up to terms of order ����� the slow solutions
of ��� are given by the constrained equations ���� which di
er from ���� by
the Fixman potential ���� and thus by a term of order O���	

�ii� A similar result to Corollary � has been published before� e	g	� by van
Kampen 
��� and Pear � Weiner 
��� in the context of statistical mechanics	
In 
���� Rubin � Unger considered in detail the case p���� � � which leads
to the formulation ���� and the case p���� �� � for a single constraint� i	e	
m � �	

An important aspect of Hamiltonian systems is the presence of symmetries
which imply the conservation of the corresponding momentum maps ��rst
integrals� 
���	 Here we have the following

Theorem �� Let a Lie group � be a symmetry of �	� 
	��� i�e��
H��q� ��Tp� � H�q� p� for all � � �� then � is also a symmetry of the
constrained system ����� ���� respectively�

Proof� We have to show that H���Q� ��TP � � H��Q�P � for all � � �	 Since
G��Q� � G�Q����� ���M���T �M��� rV ��Q� � ��TrV �Q�� and

G��Q�M��G��Q�T � G�Q����M����TG�Q�T

� G�Q�M��G�Q� �

we indeed have VF �Q� � VF ��Q� and �g�Q� � �g��Q�	 �

Example �� To show the e
ect of our two approximations ���� and ����
to the slow dynamics� we looked at a one�dimensional chain of two soft and
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Figure �� Natural frequencies of the unconstrained system as a function of
the parameter �����

three hard springs with both ends of the chain held �xed� The Hamiltonian�
we used� is given by

H�q� p	 

pTp

�
�

�

���
��q� � �
� � �q� � q� � �
� � ��� q� � �
�	

�
�

�
��q� � q� � �
� � �q� � q� � �
�	 �

We computed the natural frequencies of the corresponding �linear	 uncons�
trained system ��	 �Fig� �	 and compared those to the ones obtained for the
�linear	 constrained system ���	 with hard constraints �Fig� �	 and those
with �exible constraints ���	 �Fig� �	� Note that the smoothed dynamics is
given by the smallest natural frequency of the unconstrained system� i�e��
��	 acts here as a low�pass �lter cutting o� all frequencies except the lo�
west one� While both constrained methods correctly eliminate the three
highest frequencies in the system� the low frequency component is far better
approximated by the system ���	 with �exible constraints� This is crucial
especially for moderate values of ����� �Note that for linear problems the
Fixman potential is constant and does not need to be included into the
constrained dynamics and that Theorem � applies with � 
 ���	

� Smoothed Dynamics and Time Averages

In this section we want to investigate how accurate the smooth solutions
of ���	 approximate time averages of the highly oscillatory system ��	� To
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Figure �� Natural frequency of the constrained system with hard constraints
compared to the lowest frequency of the unconstrained system �dashed line�
as a function of the parameter �����
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Figure �� Natural frequency of the constrained system with �exible cons	
traints compared to the lowest frequency in the unconstrained system �das	
hed line� as a function of the parameter �����
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be more precise� let A�q� be an observable of the system ��� and let hA�q�i
denote its time�average along a solution q�t� of ���� Here we assume that
��� is ergodic and� thus� hA�q�i does not depend on the chosen trajectory
q�t�� We are interested how accurate� if at all� the time�average hA�Q�i of
A along trajectories of ���� approximates hA�q�i�

We have 	rst to review a few more facts from statistical mechanics� Let
H�q�� p�� q�� p�� be an arbitrary Hamiltonian in the variables �q�� p�� q�� p���

As in Section �� �
���
ens�q�� p�� q�� p�� denotes the corresponding reduced density

function and we consider the ensemble average over the variable �q�� p��
 i�e�

hAi
���
ens�q�� p�� �

Z Z
A�q�� q���

���
ens�q�� p�� q�� p�� dq�dp� �

The free energy H�q�� p�� of the remaining variables �q�� p�� is a function
that satis	es

rq�
H�q�� p�� � hrq�

Hi
���
ens

�q�� p��

and

rp�
H�q�� p�� � hrp�

Hi
���
ens

�q�� p��

��
�� Furthermore� let �
���
ens

�q�� p�� denote the density function corresponding
to the �Hamiltonian� free energy H�q�� p��� then the total ensemble average

hAiens ��

Z Z Z Z
A�q�� p�� q�� p���ens�q�� p�� q�� p�� dq�dp�dq�dp�

satis	es

hAiens � hhAi
���
ensi

���
ens

with

hhAi
���
ens
i
���
ens

��
Z Z

hAi
���
ens

�q�� p���
���
ens

�q�� p�� dq�dp�

��
��

Let us now return to the system ���� and ����� By our Quasi�Stationarity
Assumption� the smoothed equations ���� are given� up to terms of order
O�� ���� by

d

dt
Q� � �hrp�

Hi
���
ens

�Q�� P��

d

dt
P� � �hrq�

Hi
���
ens�Q�� P��
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The corresponding free energy H�Q�� P�� is� up to terms of order O�� ����
given by the the restriction of H

�
of Theorem � to the constraint manifold

M� and subsequent canonical coordinate transformation �Q�P � � M� �
�Q�� P��� Thus� using the same notations as above� the ensemble average of
an observable A�q�� q�� is given by

hAiens � hhAi
���
ensi

���
ens 	O�� ��� � ��
�

Now� since

hAi
���
ens�Q�� � A �Q�� Q�� 	 O�� ���

with Q� given as a function of Q� by ����� i�e�

Q� � hq�i
���
ens�Q�� P��

� ��K��rQ�
V �
� Q�� 	 O�� ��� �

��
� simpli�es to

hAiens � hAi
���
ens 	O�� ��� ����

where

hAi���ens �
Z Z

A�Q��Q��� Q�� �
���
ens�Q�� P�� dQ�dP� �

Formula ���� has a remarkable consequence� Upon assuming that ��� is
ergodic �in the presence of symmetries� ergodic on the level sets of the cor�
responding �rst integrals�� i�e�

hAi � hAiens ����

we obtain

Theorem �� Let A�q� be an observable of the system ���� Assume that ���
as well as the smoothed system ���� are ergodic� Then the time�average of
A along trajectories q�t� of ��� is reproduced by the time�average of A along
trajectories Q�t� of ���� up to terms of order O�� ����

Proof� Ergodicity of ���� implies that

hA�Q�i � hA�Q�i
���
ens �

The result follows from equations ���� and ����� �
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� Numerical Discretization

Any constrained Hamiltonian system of the form ���� can e�ciently be
discretized by the SHAKE extension ���	

Qk�� 
 Qk � �tM��Pk����

Pk���� 
 Pk���� ��t �rV �Qk� � G�Qk�
T
k	

� 
 g�Qk���

����

of the Verlet scheme ���	 which requires now the solution of an implicit equa�
tion in the variable 
k� It has been shown ���	 that this scheme preserves
the symplectic structure ���	����	 of Hamiltonian �ows� is time�reversible�
and conserves �rst integrals related to symmetries of the system ���	����	�
Furthermore� as shown in ���	� the numerical solutions can asymptotically
be considered as the exact solution of a perturbed constrained Hamiltonian
system�

The same scheme can also be applied to the Hamiltonian system ����
with �exible constraints� This time we obtain

Qk�� 
 Qk � �tM��Pk����

Pk���� 
 Pk���� ��t �rV �Qk� �rVF �Qk� �

�
G�Qk�TKg�Qk�

��
� �G�Qk�

T
k	

� 
 �g�Qk���

����

Again the method is symplectic� time�reversible� and momentum conserving�
The method ���� is computational expensive� An e�ective implementa�

tion of ���� and the discretization of ���� by less expensive methods can be
found in ��	 and ���	� Note that one could also discretize ���� by a proper
modi�cation of the energy�momentum methods proposed in ���	�

Example �� In this example we consider a three�bead�two�bond structure
where the structure is restricted to move in a �nite volume by the potential

Vr�q� 

X

i

Kr

�
ri

�

���
�

Here ri denotes the distance of each of the three beads to the origin� � 
 ����
and Kr 
 ����� We set the mass of all three beads equal to m 
 � and
choose r� 
 � as the equilibrium bond�length and �� 
 ���o as the equili�
brium bond�angle� The force constant for the harmonic bond�angle bending



Smoothed Dynamics ��

0 2 4 6 8 10 12 14 16 18 20
−0.58

−0.56

−0.54

−0.52

−0.5

−0.48

−0.46

−0.44

time

bo
nd
−a
ng
le

Figure �� Trajectory of the bond�angle for the unconstrained formulation
�dashed line� compared to the one for the formulation with hard constraints
on the bond�lengths and soft constraints on the bond�angle �solid line��

potential was Ka 	 �
 deg�� and Kb 	 �

 for the corresponding bond
stretching potentials� Note that these values correspond to force constants
typically found in molecular dynamics simulations ���
�

We started the structure from its equilibrium position with the initial
velocities in x�direction equal to px 	 ��
� The impact of the structure
clashing with the potential�wall Vr can be seen in Fig� �� We computed
the trajectory of the bond�angle �plotted as cos���� for the unconstrained
formulation and compared this trajectory with the one obtained by cons�
training the bond�lengths by hard constraints and the bond�angle by a soft
constraint� Note that for this particular example the Fixman potential ��
�
is almost constant and needed not to be included into the calculations� This
implies also that equipartitioning of kinetic energy is not necessary to re�
produce the smoothed dynamics up to terms of order O�� ��� In fact� we
choose this example to demonstrate the e�ect of using soft constraints in
the bond�angles versus hard constraints which� in our case here� would freeze
the bond�angle at a value cos��� 	 �
���

� Concluding Remark�

We have provided a theoretical framework for removing the fastest degrees of
motion in highly oscillatory Hamiltonian systems as they arise� for example�
in molecular dynamics� Our approach can be understood as a mean force
�eld approach where the force �eld is obtained by an averaging process over
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the fastest degrees of motion� As well known from other mean force �eld
approaches �for example� Brownian motion�� �uctuations play an important
role in reproducing correct rate constants 	
�� This requires an embedding of
the mean force �eld into stochastic dynamics 	
�� For our particular system
����� this will be discussed in a forthcoming publication 	�
��
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