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D-10711 Berlin

June 12, 1995

Abstract

We consider the numerical treatment of Hamiltonian systems that
contain a potential which grows large when the system deviates from
the equilibrium value of the potential. Such systems arise, e.g., in
molecular dynamics simulations and the spatial discretization of Ha-
miltonian partial differential equations. Since the presence of highly
oscillatory terms in the solutions forces any explicit integrator to use
very small step-size, the numerical integration of such systems provides
a challenging task. It has been suggested before to replace the strong
potential by a holonomic constraint that forces the solutions to stay at
the equilibrium value of the potential. This approach has, e.g., been
successfully applied to the bond stretching in molecular dynamics simu-
lations. In other cases, such as the bond-angle bending, this methods
fails due to the introduced rigidity. Here we give a careful analysis of
the analytical problem by means of a smoothing operator. This will
lead us to the notion of the smoothed dynamics of a highly oscillatory
Hamiltonian system. Based on our analysis, we suggest a new cons-
trained formulation that maintains the flexibility of the system while
at the same time suppressing the high-frequency components in the
solutions and thus allowing for larger time steps. The new constrained
formulation is Hamiltonian and can be discretized by the well-known

SHAKE method.

*This work was supported in part by DOE/NSF Grant DE-FG02-91-ER25099/DMS-
9304268, by NIH Grant P41R05969, and by NSF/ARPA Grant ASC-9318159
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1 Introduction

We are concerned in this paper with the numerical solution of singularly
perturbed Hamiltonian systems of the form

d

a -1
7l = M™"p

p . (1)
P = —VV(q)—e—zG(q)TKg(q)

with Hamiltonian function

Tar—1 Ty
H(q,p) = piz\g E4vig)+ %‘L) Kot (2)
€ 2
where ¢ a small parameter, ¢,p € R", and G(¢) = g4(¢q). Here M is the
positive definite mass matrix of the system, V : R — R the potential energy
function, and g is the collection of functions g; : R* — R, ¢t =1,...,m, with
corresponding (scaled) force constant K ;, i.e.

w - %Zlﬁk,z’gi(qy

and K the m-dimensional diagonal matrix with entries K ;.
We assume throughout the paper that the matrix

GloM™'G(g)" (3)

is invertible and both ||GM~'GT|| as well as ||[[GM~'GT]~!|| take values
close to one along trajectories of (1).

Note that the parameter ¢ has no immediate physical meaning and is
not uniquely determined by the physical problem. It stands for the fact
that the potential g(¢)T Kg(q)/(2€%) grows large away from its equilibrium
value g(q) = 0 compared to V(g) and it allows one to treat the mathematical
consequences of this fact in a relatively elegant way.

Throughout the paper we will use the following convention: Assume that
the Hamiltonian (2) has been scaled such that

VeIl <1 (4)

and that the mass matrix M satisfies M =~ I where [ is the identity ma-
trix. (In fact, M = I can always be achieved by the canonical coordinate
transformation (g, p) — (1\41/2(]7 M_l/Qp).) Then ¢ is chosen such that

571 <1 (5)
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where we assume that the thus defined ¢ satisfies ¢ < 1.
Let us demonstrate this for the quadratic Hamiltonian

T T T~T
pp ¢ Wq ¢ G UGq
H(q,p) = 5t 5

where W is a positive definite n X n matrix, G is a n X m matrix, m < n, and
U is a diagonal m xm matrix. Here we would apply the canonical coordinate
transformation (¢,p) — (||I/V||_1/4q7 ||W||1/4p) and then premultiply the
resulting Hamiltonian by [|W||~'/? which yields

p'p | d"Wq  "GTUGTq

i - P
@r) = ot 2

Then we define ¢ by

e = IWIHU=HI

Thus € is proportional to the ratio of the largest eigenvalue of W to the
smallest eigenvalue of U. Provided that ¢ < 1, we would then define the
function ¢ in (2) by ¢g(¢) := Gq, the matrix K by K := ||[U7!||U, and the
potential V(q) by (¢"Wq)/(2[|W]]).

Throughout this paper we will also assume that, along solutions of (1),
we have

TM—I
PPy Dy (6)
2 2
with
2 <5< 1 (7)

for the chosen scaling of the Hamiltonian (2). Here n is the number of
degrees of freedom of (1) and § corresponds to kg7 in statistical mechanics;
T temperature and kg the Boltzmann constant. (6) is typically satisfied for
Hamiltonian systems of type (1) with n large; i.e. n>> 1.

Hamiltonian systems of type (1) arise typically in the context of molecu-
lar dynamics simulations [14] (which provides the main motivation of this pa-
per) and in the spatial discretization of Hamiltonian (hyperbolic) PDEs [13]
like, for example, the Sine-Gordon equation by spectral or related methods.
In the context of molecular dynamics, the potential g(q)” K g(q)/(2¢?) stands
for covalent bond stretching and bond-angle bending; i.e., g;(¢) = r — ro,
€2 2 0.01, and § =~ 0.1 in case of bond stretching and ¢;(q) = & — oo,
€2 ~ 0.1, and § ~ 0.1 in case of bond-angle bending. In the context of hy-
perbolic PDEs, the same expression is related to the high frequency modes
in the Fourier spectrum of the solutions.
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Differential equations of the form (1) fall into the class of singularly
perturbed systems of type [6]

d 1
%Z = zf(z,e) (8)

Solutions of (8) satisfy, in general,

and

1=l = o),

i.e., they are bounded but vary rapidly in ¢. Thus the step-size of a numeri-
cal integrator has, in general, to be of order O(¢). This implies a significant
amount of computational work for the numerical integration over time in-
tervals of order O(1). For example, the lengths of a molecular dynamics
simulation with an explicit method like Verlet [28] is for that reason restric-
ted to a few tens of picoseconds up to a few nanoseconds, depending on the
size of the problem [14]. This means that the time scale of the process that
can be simulated is limited. To simulate processes over longer periods of
time, new integration methods are essential.

Most of the theory has been developed for singularly perturbed problems
that satisfy

1. rank f,(z,0) = const.

for all z. This implies that the set Mg defined by
Mo = {z: f(z,0)=0}
is a smooth manifold. The more stringent requirement is however that

2. My is an exponentially stable manifold of the differential equation

%z = f(%0).

Under the Assumptions 2, one can show that there exists a family M, of
smooth manifolds with M.—_¢ = Mg such that M. is an exponentially stable
invariant manifold of (8) [6]. Furthermore, the solutions on M, reflect the
long-time behavior of the general solutions of (8) with initial values in a
o-neighborhood of M, up to terms of order O(o¢). Since the solutions on
M, satisfy now dz/dt = O(1), time-steps of order O(1) can be used in a
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numerical integrator provided that the equations are discretized by a proper
(implicit) method [15].

However, Assumption 2 is not satisfied for singularly perturbed Hamil-
tonian systems. In particular, solutions of (1) oscillate highly about the
manifold Mg. Thus, as we will show in Section 2, the manifold Mg does
not even satisfy the weaker assumption of normal-hyperbolicity [6],[8]. This
leaves us with the task of finding a different approach to the long-time inte-
gration of (1). In this paper, we attempt to do so by introducing the notion
of the smoothed dynamics of highly oscillatory Hamiltonian systems. By
this we mean the following:

Because of (4), the shortest period in the motion of (1) due to the poten-
tial V' (q) is of order O(1). In contrast to this, the potential g(¢)7 K g(q)/(2¢%)
contributes high-frequency terms with period of order O(e). To separate
these high frequency components from the slowly varying parts, we intro-
duce the smoothing operator

t—t
«

1 oo
Walt) = = [ o Sutyar g
with 0 < o« € 1 and w : R — R. Here p : R — R is an appropriate
weight function such that for any (bounded) continuous function w there is
a smooth (C'*°) function w with

(w)a(t) —w(t) = O(a”) (10)
and for any smooth (C'*°) function w we have
(w)a(t) —w(t) = O(a”) (11)

where s is a fixed integer with s > 1. One could, for example, chose for
p the Meyer scaling function [5]. Note that, in the frequency domain, the
smoothing operator (9) corresponds to a low pass filter with cut-off frequency
we =0(1/a).

From now on we will always identify (w), with a smooth function w such
that (10) holds and assume that (w), is C'*°.

The idea is now to replace the rapidly varying solutions ¢(¢) of (1) by

(q)a(t) with
a = e

and then to seek an approximation to the smooth <q>\/g rather then to

the rapidly varying ¢(t). We call the functions (g) /(t), corresponding to
solutions ¢(t) of (1), the smoothed dynamics of (1).
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The aim of this paper is to derive a (constrained) Hamiltonian system
with Hamiltonian H,.(Q, P) and constraint manifold M. such that the cor-
responding (smooth) solutions (Q(t), P(t)) satisfy

(et —Q) = 0@e)

and

() = Pt) = 03¢

over bounded intervals of time.

The approximation of (1) by a constrained Hamiltonian systems has
been considered before (see, for example, [21],[27]). In a naive approach,
one would introduce the new variable

L
A= 6—239(‘])
and rewrite (1) as

d

—qg = M™!

dtq p

d

b = ~VV() -G (12)
EKTIN = g(g)

In the limit € — 0, we obtain the constrained system

d
—Q = M7'P
dtQ

P o= V@) - G@)"A (13)

0 = 9(Q)

which is Hamiltonian [13] on the constrained manifold
Mo = {(QP)€R™:g(Q)=0,GQM 'P=0} (14)

provided that the matrix (3) is invertible as assumed earlier.

This approximation has been used, for example, in MD simulations to
remove the bond stretching modes [22], [26].

The solutions on Mg are now smooth. However, the approximation (8)
introduces, in general, an error of order O(d) over bounded time intervals
(see Section 6). While, for example, this error turns out to be not significant
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for the covalent bond stretching the same formulation (13) yields qualita-
tively wrong results when applied to the bond-angle bending or the harmonic
dihedral bending [26].

The constrained formulation derived in this paper approximates the
smoothed dynamics of (1) up to terms of order O(J¢?) over bounded in-
tervals of time and provides therefore a qualitative improvement over (13).
Furthermore, let (A(q)) denote the time average of an observable A(qg) along
trajectories ¢(t) of (1). Then, assuming ergodicity of (1), we show that our
approximation H,. also satisfies

(Alg)) = (A@)+0()

where (A(Q)) is the time average of the observable A along the correspon-
ding smooth trajectories Q(t) of H.. Finally, in Section 8, we discuss nume-
rical aspects of our new method and demonstrate its properties by means of
a simple numerical example.

Another approach to the long-time integration of highly oscillatory Ha-
miltonian system has been taken by Simo and his collaborators [25]. They
advocate the direct discretization of (1) by an implicit energy-momentum
method and the usage of a large step-size. However, there do not exist ri-
gorous stability and order of convergence results for these methods when
applied to general systems of type (1) with a step-size At > e.

2 Mathematical Background

In the first part of this section we show how to reformulate (1) as a singularly
perturbed problem (8). To do so, we introduce local coordinates (¢1,¢2) by

n = g(q)

@2 = blqg)
where b(q) is a vector valued function such that B(q)M~'G(¢)T = 0,
B(q) = by(q), and the composed matrix [G(q)T B(g)?] is invertible and
well conditioned. The existence of such a coordinate system follows, at

least locally, from the Frobenius Theorem [2]. The corresponding conjugate
momenta are given by

(Gla)" B(o)'] [ - ] = p

which results in the Hamiltonian
plTGM_lGTpl L pQTBM_lBTpQ

H
(q7p) 2 2 62 2
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The equations of motion are now given by

d

7 = GM™'GT p 1)
16
d 1. pPGMGTpy + pI BM-tBTp,
%pl = —Vq1V—€—21(q1—Vql L 5 2
and
d _
a2 = BMTBTp
17
d oy PLGMTGpi+py BMTIB p a7
dtp2 = 92 92 9

where, for notational convenience, we suppressed the arguments in the map-

pings V (g1, q2), G(q1,q2), and B(q1, q2).
Upon rescaling p; in (16) by ¢, the equations (16) become

d 1
—q = -GM'GTp
Cfit ‘ 1 ToM1GTp, + 2 pI' BM-1 BT (18)
b = —eVy V- —Kq - Vqlpl h 26 P P
€ €

which are now of the form (8). The corresponding manifold My is given by
¢1 = p1 = 0 or, in the original variables by (14). Linearization of (18) about
the manifold Mg yields a linear system with eigenvalues on the imaginary
axis. Thus the manifold My is not normally hyperbolic and the persistence
of M, for € > 0 cannot be concluded [8].

Now we want to derive a few important properties of the smoothing operator
(9). We assume that p : R — R is a smooth function that goes to zero, as
|t| — oo, faster than any inverse power of ¢, p(0) = 1, and

/_O; p()dt = 1

The proper construction of a p, such that in addition (10) and (11) hold,
falls into the subject of filter design and wavelet analysis [5].

The following four propositions will be used for the derivation of the
smoothed dynamics of (1).

Proposition 1. Let w(t) be a differentiable function, then

(G0)a =
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Proof. We have

T = S °°p<t;t'>w<t'>dt'
= [T e
dt’ «@

Now, since p(:l:oo) = 0, integration by parts yields

o0 t—t’ o 1ot =t d
—/ dt, V() di = E/_oo p(—) () di

= (S

Proposition 2. Let w(t) € R" be an arbitrary function such that the matriz
correlation function of Aw := w — (w), satisfies

(AwAwh), = 0

Let us also assume that the higher order momenta of Aw(t) w.r.t. the smoo-
thing operator (9) are small compared to O(c!), then

(f(w)a = f((w)a)+O(a')

where f: R — R is a smooth function and | a positive real integer.

Proof. Taylor expansion of f about (w), yields

Fw) = Fwha) + S ()M 80T () Aw

Applying our smoothing operator and noting that (Aw), = 0 and
(f({w)a))a = f({(w)y) etc., we obtain

(fw))a = fl(w)a) +O(AwAWT),)

and the desired result follows. O

Proposition 3. Let w(t) € R" be an arbitrary function. As before, we
write w(t) as

wlt) = (whalt) + Au(t).
Then, up to terms of order O(a*),

<wa>a = <w>a<wT>a—|—<AwAwT>a
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Proof. Since, up to terms of order O(a?®), ((w),Aw?), = (w) (AwT), =0
and ((w)a{w)5)a = (w)a(w)s. O

Proposition 4. Let w(t) € R™ be an integrable function. We write w(t)
again as w(t) = (w), + Aw(t). If Aw(t) = O(a!) and Aw(r) := Aw(a’r)

is smooth, then

/ Aw(t)dt = O(al*?).

Proof. Note that, by assumption, Aw(7) is smooth in 7 and [ Aw(r)dr =

O(a). Thus
/Aw(t)dt = /Awar

= ?0(dh).

a

Let us finally review a few results from statistical mechanics. A Hamiltonian
system with Hamiltonian H is called ergodic [16] if the time average

W = Jim o [ A (19)

of an observable A(q,p) is equal to the microcanonical (constant energy
E = H(q,p)) ensemble average [16]

dens = / / pens (4, p)A(q, p) dgdp (20)
with the microcanonical density function
._ 0(H(q,p) - )
pensl0P) = TS5 (q,p) = ) dadp

where §(x) denotes Dirac’s delta function.

Remark. (i) If the Hamiltonian H possesses first integrals, ergodicity is
always understood as ergodicity on the level sets of these first integrals.

(ii) Because of (6), the microcanonical ensemble average of (1) is almost
identical to the macrocanonical (constant temperature) ensemble average
with density function

— exp (=1 (¢, p)/9)
pens( 0] = e (T, p)/9) dadp
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This is always true for systems with n very large; n the number of degrees
of freedom [1]. Note that identifying microcanonical and macrocanonical
ensemble averages is common practice in molecular dynamics [1].

Under the assumption that a given Hamiltonian system is ergodic, equipar-
tition of energy [16] implies then that

- OH
f—) = § 21
=3 (21)
and
- OH
' 5o (22)
where ¢* and p*, i = 1,...,n, denote the ith component of the vector ¢, p

respectively. Here H is the Hamiltonian of the system and, as introduced in
(6), & corresponds to kg7 in statistical mechanics; 7" the temperature and
kp the Boltzmann constant.

Now, if the Hamiltonian happens to be a quadratic function of its coor-
dinates; so, through a canonical transformation, it can be brought into the
form

A . B; .
H o= > 5500+ 30 5 (@)
7 7
and each solution component (g;(t), p;(t)) is Gaussian with (¢;) = (p;) = 0,
((q:)?) = 6/Bi, and {(p;)?) = 6/A;. Of course, linear systems cannot be er-
godic. But, upon assuming that the linear system is the local approximation
of a nonlinear system, the assumption of equipartitioning of energy among

the harmonic degrees of freedom is justified.

3 The Quasi-Stationarity Assumption

In this and the following section we conduct an analysis of the Hamiltonian
formulation (16) and (17) in terms of our smoothing operator (9). Let us
denote the non-smooth solution component of ¢(t) by Ag(t); i.e.

Aq = q—{q) -

Note that Ag(er) is smooth in the fast time 7. We also write Q(¢) instead
of (q) s or approximations thereof. (The same notations are used later on
for the momentum p(t).)

It follows from the equations (17) that dqz/dt = O(1) and d*qz/dt* =
O(1). Thus d?*Aqz/dt* = O(1) and Proposition 4 implies that Agz = O(€?)
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and ¢y is smooth up to terms of order O(e?). This and Proposition 2 yield
then that

<f(f]2)>\/2 = f(Q2) +O(h

for any smooth function f. Since we are only interested in an order O(J¢?)
approximation of the smoothed dynamics, we identify from now on ¢y with
Q2 = (2) /-

The analysis is more complicated for the variable ¢;. Here the above
simple argument yields only Ag; = O(¢). Thus we have to analyse the fast
subsystem (16) in more detail. To make such an analysis tractable, we make
the following crucial assumptions:

Let us assume for a moment that we keep (gz, p2) in (16) constant. We call
(16) ergodic in the fast variable (q1,p1) if for any observable A(q1,p1)

(A ) = (ASs(g2,p2) +O(E ) (23)

where <A>f§1)s denotes the microcanonical ensemble average over the variable
(q1,p1); ie.

(A (2, p2) = //A(qupl)p&)s(thhqzmz) dgqidp
with the reduced density function

S(H(q1,p1,q2,p2) — E)
[ [6(H (q1,p1,q2,p2) — E) dgrdpy

Note that the solutions (¢ (¢), p1(t)) vary on a time-scale of order O(¢) and
(A).z can be considered as the time-average over a time interval of order
O(y/€). Thus it seems reasonable to assume that (A) z ~ (A) which, to-
gether with the standard ergodicity assumption, yields (23).

Now solutions (gz(¢), p2(t)) are not constant but vary on a time-scale of

order O(1) and we assume that, along solutions (¢(t), p(t)) of (1), we have

Ayl = (ASk(@), p(1) + 05 E)

or, in other words, the solution component (qq (), p1(t)) is always in ther-
modynamic equilibrium on time-scales of order O(y/€). We call this the
quasi-stationarity of (16).

1
p((%n)s(thhq?va) =

Quasi-Stationarity Assumption. From now on we assume that the fast
system (16) is quasi-stationary along solutions (q(t),p(t)) of (1).
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4 Smoothed Dynamics — The Fast Subsystem

Let us now start with the analysis of (1) by applying the smoothing operator
(9) to the fast system (16). In this section we will derive an order O(§ €?)
estimate of (1 = <q1>\/g which will provide us with the proper constraint
function for our approximation of the smoothed dynamics of (1). In the fol-
lowing section we will then derive the corresponding Hamiltonian H.(Q, P).

Applying the smoothing operator (9) and Proposition 1 to (16), we ob-

tain
L0 = (GMTET )
e ! Ve
d .
%Pl = —<Vq1 V>\/E - 6—2[( Ql_ (24)
plGM™'G"py + p] BM~' BT p,
Since (Q1(t), Pi(t)) is smooth, we have dP,;/dt = O(1) and Q; has to satisfy
Q1 = 0. (25)
which is equivalent to
g(@Q) = 0 (26)

up to terms of order O(¢?). Note that (26) is the constraint used in (13).

(25) and equipartitioning of energy in the variable ¢; (which is a con-
sequence of our Quasi-Stationarity Assumption) allows us now to derive an
estimate for <Aq1Aq1T>\/g. In particular, (6) and equipartitioning of energy
imply that

iz<g(q)TKfJ(q)>¢z = ;2<‘]1TK(]1>\/E = O(m$é).

€

Thus
(al) =006,
Knowing that ¢4 QlT = 0(64), we conclude from Proposition 3 that
(A Aql) z = O(5€).

This result and the similar result for the slow variable ¢o, as derived in
the previous section, allow us now to conclude from Proposition 2 that

(Fla @) e = f(@Q1,Q2)+0(6€%)
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for any smooth function f. Furthermore, it also follows that
(GlOMTIG(g) ) e = (GQMTEQ) (P +Ap)) 2405
= GQM'GQTP+0(5%).

Hence, (24) can now be rewritten as

Lo = GG R

d L
%H = Vo, V(@) - 67[(@1 -
plGM™'GTpy 4 pf BM~' BT py
2 NG
Since Q1 = O(¢?), we also have d@Q;/dt = O(e*) which, with the above
equations, implies that P = O(€*) and dPy/dt = O(e?). Thus

- <Vq1

Oy = —KQ -V, V(Q) -

2 pIGM=GTp, + pt BM =BT p,
—€ <Vq1 9 >\/E :

Now

P GM I GTpy +pi BM™ BT py, = pTM™'p

and, therefore,

T —1T T -1 T
pr GM~—'G*py+p; BM~ B p
1 - he = 00) @)

(Vi
which finally yields the estimate
Qi+ EKVeV(Q) = 0.
In the original Cartesian coordinate (), this can be written as
0 = 9@ +EKTGQMIGQTTICQMTIVVQ)  (28)

up to terms of order O(8 €?).

This equation will provide the holonomic constraints for our approxima-
tion of the smoothed dynamics of (1). In contrast to the hard constraint
(26) which introduces an error of order O(€?), we call (28) soft constraints.

In the following section we will derive the Hamiltonian that describes
the smoothed dynamics on

M, = {(Q,P)eR™: 5(Q)=0,G(QM'P=0}
with G(q) := do(Q) and the soft constraint function
9Q) = 9@+ KTGQMTGQTGQMTIVV(Q).
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5 Smoothed Dynamics — The Slow Subsystem

In this section we derive the smoothed equations of the slow subsystem (17).
First we want to obtain an estimate for Ap,. Because of (27) and

(V. Vg1, 2)) e = V@, VI(Q1,Q2) + O(5 €%), dApy/dt satisfies the estimate

d

which, according to Proposition 4, implies that
Ap; = 0O(d¢).
Thus
(fp2)) e = F(P2)+0(3%€)

for any smooth function f and we can identify from now on p; with P (as
done before for the variable ¢3). With this in mind, the smoothing of (17)
results, up to terms of order O(d€?), in

L0 = BQMBQ P,

T -1
TG M—IG T
(v, b (9) . (9) Py

This leaves us with the task of finding the smoothed expression for

T -1 T
P G@M=—G(q)"p
<vq2 1 () 5 () 1>\/E

To do so we have to make use of the Quasi-Stationarity Assumption which
implies equipartitioning of energy in the variable p;. In our case here, equi-
partitioning of energy means that
_ OH
PLGOM™'G(q) Py e = (o] Fpy 1P ve
= mé

with m the dimension of p;. Now let W (g) be an orthogonal matrix such that
W()TG(g)M~'G(q)TW (q) is a diagonal matrix D(q) with entries d;;(q)
and define p; := W(q)Tp;. Then

BLD(@)p) e = PIGOMT'G(g) ' p) e

= md
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and equipartitioning of energy between the degrees of freedom yields
(7)) dii(q)y g = 6
i=1,...,m. Now, up to terms of order O(d€?),
() diila)) e = (1)) e dii(@)

and

: 5
~1\ 2 2
. = —I— O (S € .
With, up to terms of order O(4 €?),

TG M—IG T TG M—IG T
v, (9) . (9) Py (vl (@) . (@) ny

= > @Jv%dm(@) ;

7

we finally obtain

GlM~'G(9)"p

P1T g 2
<Vq2 >\/E = §VQ2IH [det D(Q)] + 0(56 )

which, in terms of the original matrix G(Q)M ~'G(Q)7, leads to the poten-
tial

Vr(Q) = § I det [G(Q)M'G(Q)"] (30)

where we used that

det D(Q) = det [W(Q)D(Q)W (Q)"].

Summarizing the results of this section, we find that smoothing of (17)
yields the system

20, = BQMBQ" P

T -1 T
%P2 = _VQ2V(Q) + VQ2VF(Q) + VQ2 P2 B(Q)M2 B(Q) b

(31)

Remark. The potential (30) has been introduced before by Fixman [7] in
the context of statistical mechanics. He showed that (30) has to be included
into the constrained formulation (13) to make sure that, in the limit ¢ — 0,
the unconstrained system (1) and the constrained system (13) possess the
same reduced density function pens(gz,p2). Similar results can be found in

[27] and [17].
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6 Constraint Formulations

The coordinates (¢1, p1, g2, p2) were only introduced for theoretical purposes.
This leaves us with the task of reformulating (31) in terms of the Cartesian
coordinates (q,p). In fact, this turns out to be straightforward and we ob-
tain

Theorem 1. The constrained Hamiltonian equations

d
—Q = M7'P
dtQ

%P - —VV(Q)—VVF(Q)—éG(Q)TKg(Q)—G(Q)TA (32)

0 = 9@

provide an order O(4€?) approvimation to the smoothed dynamics of (1)
over bounded periods of time. The corresponding Hamiltonian is

Tar—1 T
o= P vig) v + O E0CQ

~ T
5 +9(Q)" A

with the (soft) constraint manifold

M. = {(Q.P)eR™:3(Q)=0, QM P=0}.

Proof. In terms of the variable (Q1, P1, @2, P2), (32) is equivalent to

d

- = BM'BTP
dth )
d

%Pz = Vo,V -Vo,Vi— [BM'BT]7'BM~1GTA - (33)
PlGM='GTP, + P BM~' BT P,
- VQ2 2
and
Q1 = —€K Vo, V(Q)
i d

Po= [GQMTEQT L0

where we used in (33) that

Vo.f = [BM7'B']'BM'Vgf
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for any differentiable function f: R" — R.

Furthermore, the Lagrange multiplier A is obtained by differentiating
the constraint G(Q)M_IP = 0 with respect to time and replacing the time
derivatives d@Q/dt and dP/dt by the corresponding expressions in (32). This
vields, in local coordinates,

O(?) = A+Vo,(V+Ve)+e?KQ, +
PlGM='GTP, + P BM~' BT P,
2
PrGM='GTP, + PfBM~' BT 1,
2

+ Vg,

= A+Vg,Vr+ Vg,
and
A = 0()

where we used that GM~'GT = GM~'GT 4 O(¢?) and

0 = §(Q) = KV, V(Q) + Q1.
Thus

BQMT'G@QA = 0(¢)

and, since

PlGQMT'GQ)TP = O,

the equations (33) are equivalent to (31) up to terms of order O(d €?). Stan-
dard perturbation results for differential equations (see, e.g., [23]) imply that
the same is true for the solutions over bounded intervals of time. O

Corollary 1. An order O(e?) approvimation of the smoothed dynamics of
(1) over bounded intervals of time is given by the constrained Hamiltonian
system

d
—Q = M7'P
dtQ

%P = —VV(Q) - VVr(Q) - G(Q)TA (34)
0 = ¢g(@Q)
with Hamiltonian
T -1
H(Q,P) = M+V(Q)+VF(Q)+Q(Q)TA

2
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and the (hard) constraint manifold
M. = {(QP)eRY™: g(Q) =0,GQM'P=0}.

Furthermore, if the potential Vi is set equal to zero in (34), then the appro-
zimation is only of order O(§).

Proof. Same as proof of Theorem 1, except that

Qi = 0

provides only an approximation of order O(€?*) to (q1) /e O

Remarks. (i) Corollary 1 implies that the smoothed dynamics of (1) cannot,
in general, be approximated by the slow solutions of (1) as introduced by
Kreiss in [9]. One can show that, up to terms of order (¢?), the slow solutions
of (1) are given by the constrained equations (13) which differ from (34) by
the Fixman potential (30) and thus by a term of order O(9).

(ii) A similar result to Corollary 1 has been published before, e.g., by van
Kampen [27] and Pear & Weiner [17] in the context of statistical mechanics.
In [21], Rubin & Unger considered in detail the case p;(0) = 0 which leads
to the formulation (13) and the case p;(0) # 0 for a single constraint; i.e.
m=1.

An important aspect of Hamiltonian systems is the presence of symmetries
which imply the conservation of the corresponding momentum maps (first
integrals) [13]. Here we have the following

Theorem 2. Let a Lie group I' be a symmetry of (1) [13], i.e.,
H(vq,v"Tp) = H(q,p) for all v € T, then T is also a symmetry of the
constrained system (32), (34) respectively.

Proof. We have to show that H.(vQ,vy~TP) = H.(Q, P) for all v € T'. Since
GQ) =Gy "My =M™, VV(7Q) = v TVV(Q), and

GHQM'GHQ)" = Gy MY TGQ)T
= GQM'GQ),

we indeed have Vy(Q) = Vr(vQ) and §(Q) = ¢(7Q). O

Example 1. To show the effect of our two approximations (34) and (32)
to the slow dynamics, we looked at a one-dimensional chain of two soft and
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Figure 1: Natural frequencies of the unconstrained system as a function of
the parameter 1/¢2.

three hard springs with both ends of the chain held fixed. The Hamiltonian,
we used, is given by
p'p

Hiq,p) = 5~

+ %([QI — 1P+l -2 -1 +[—q—11)
—I-%([f]z —q = 1P+ e — g3 — 1)

We computed the natural frequencies of the corresponding (linear) uncons-
trained system (1) (Fig. 1) and compared those to the ones obtained for the
(linear) constrained system (34) with hard constraints (Fig. 2) and those
with flexible constraints (32) (Fig. 3). Note that the smoothed dynamics is
given by the smallest natural frequency of the unconstrained system; i.e.,
(9) acts here as a low-pass filter cutting off all frequencies except the lo-
west one. While both constrained methods correctly eliminate the three
highest frequencies in the system, the low frequency component is far better
approximated by the system (32) with flexible constraints. This is crucial
especially for moderate values of 1/¢%. (Note that for linear problems the
Fixman potential is constant and does not need to be included into the
constrained dynamics and that Theorem 1 applies with § = €%.)

7 Smoothed Dynamics and Time Averages

In this section we want to investigate how accurate the smooth solutions
of (32) approximate time averages of the highly oscillatory system (1). To
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10 20 30 40

Figure 2: Natural frequency of the constrained system with hard constraints
compared to the lowest frequency of the unconstrained system (dashed line)
as a function of the parameter 1/¢2.

30 40

Figure 3: Natural frequency of the constrained system with flexible cons-
traints compared to the lowest frequency in the unconstrained system (das-
hed line) as a function of the parameter 1/¢2.
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be more precise, let A(g) be an observable of the system (1) and let (A(qg))
denote its time-average along a solution ¢(t) of (1). Here we assume that
(1) is ergodic and, thus, (A(¢)) does not depend on the chosen trajectory
q(t). We are interested how accurate, if at all, the time-average (A(Q)) of
A along trajectories of (32) approximates (A(qg)).

We have first to review a few more facts from statistical mechanics. Let
H(q1,p1,q2,p2) be an arbitrary Hamiltonian in the variables (q1, p1, ¢z, p2).

Asin Section 3, pgl)s(ql, P1, 2, p2) denotes the corresponding reduced density
function and we consider the ensemble average over the variable (¢1,p1); i.e

(A (g2, p2) = //A(qhqz)p&)s(thhq%m)dqldpl-

The free energy H(qz,p2) of the remaining variables (g¢z,p2) is a function
that satisfies

V(g2 p2) = (Vo H)ok(g2, po)

and
Vo H(g2,2) = (Vi H) s (g2, p2)

[10]. Furthermore, let pgl)s(qg, p2) denote the density function corresponding
to the (Hamiltonian) free energy 7 (qz, p2), then the total ensemble average

<-A>ens = ////A(QhPhQ27P2)Pens(f]17]717Q27P2) dqidpidgadpy

satisfies
(Aens = (A
with
<<A>ens A // s(q2, p2) P<(en)s(‘]27p2) dqadpy
[10].

Let us now return to the system (16) and (17). By our Quasi-Stationarity
Assumption, the smoothed equations (33) are given, up to terms of order

O(6¢€%), by

Q2 = (Ve H)GK(Qa, P)

—P = —<Vq2H><(§1)s(Q27P2)
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The corresponding free energy H(Q2, P) is, up to terms of order O(4€?),
given by the the restriction of H. of Theorem 1 to the constraint manifold
M. and subsequent canonical coordinate transformation (@, P) € M, —
(Q2, ). Thus, using the same notations as above, the ensemble average of
an observable A(q1, q2) is given by

(AJens = <<"4>((§1)S>(e¥1)8 +0(6€%) . (35)
Now, since
(A0 = AQ1,02) + 0

with @1 given as a function of Q3 by (28); i.e.

<f]1><(§1)s(Q27P2)
KTV V(0,Q0) 4 0.

Q1

(35) simplifies to
(Aens = (Ak+0(0 ) (36)
where

A8 = [ [ AQuQ.Q ik(@s. P2 dQuar;.

Formula (36) has a remarkable consequence. Upon assuming that (1) is
ergodic (in the presence of symmetries, ergodic on the level sets of the cor-
responding first integrals); i.e.

<A> = <A>ens (37)

we obtain

Theorem 3. Let A(q) be an observable of the system (1). Assume that (1)
as well as the smoothed system (32) are ergodic. Then the time-average of
A along trajectories q(t) of (1) is reproduced by the time-average of A along
trajectories Q(t) of (32) up to terms of order O(§ €?).

Proof. Ergodicity of (32) implies that

(AQ) = (A@)5.

The result follows from equations (36) and (37). o
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8 Numerical Discretization

Any constrained Hamiltonian system of the form (13) can efficiently be
discretized by the SHAKE extension [22]

Qry1 = Qr+ At M_1Pk+1/2
Piyia = Pioijg — ALVV(Qr) + G(Qr) T Ak (38)

0 = 9(Qrt1)

of the Verlet scheme [28] which requires now the solution of an implicit equa-
tion in the variable Ag. It has been shown [12] that this scheme preserves
the symplectic structure [13],[24] of Hamiltonian flows, is time-reversible,
and conserves first integrals related to symmetries of the system [29],[19].
Furthermore, as shown in [18], the numerical solutions can asymptotically
be considered as the exact solution of a perturbed constrained Hamiltonian
system.

The same scheme can also be applied to the Hamiltonian system (32)
with flexible constraints. This time we obtain

Qry1 = Qr+ At M_1Pk+1/2

Pk-|—1/2 = Pk—1/2 — At[VV(Qk) + VVr(Qk) +

G(QrTKg(Qr) 1 GO0TAL (39)

_I_

0 = 9(Qrt1)

Again the method is symplectic, time-reversible, and momentum conserving.
The method (39) is computational expensive. An effective implementa-
tion of (39) and the discretization of (32) by less expensive methods can be
found in [3] and [11]. Note that one could also discretize (32) by a proper
modification of the energy-momentum methods proposed in [25].

Example 2. In this example we consider a three-bead-two-bond structure
where the structure is restricted to move in a finite volume by the potential

o\ 12
N = TE(2)
Here r; denotes the distance of each of the three beads to the origin, ¢ = 3.0,
and K, = 50.0. We set the mass of all three beads equal to m = 1 and
choose rg = 1 as the equilibrium bond-length and ¢g = 120° as the equili-
brium bond-angle. The force constant for the harmonic bond-angle bending
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Figure 4: Trajectory of the bond-angle for the unconstrained formulation

(dashed line) compared to the one for the formulation with hard constraints

on the bond-lengths and soft constraints on the bond-angle (solid line).

potential was K, = 50deg™? and K; = 500 for the corresponding bond
stretching potentials. Note that these values correspond to force constants
typically found in molecular dynamics simulations [26].

We started the structure from its equilibrium position with the initial
velocities in a-direction equal to p, = 1.0. The impact of the structure
clashing with the potential-wall V,. can be seen in Fig. 4. We computed
the trajectory of the bond-angle (plotted as cos(¢)) for the unconstrained
formulation and compared this trajectory with the one obtained by cons-
training the bond-lengths by hard constraints and the bond-angle by a soft
constraint. Note that for this particular example the Fixman potential (30)
is almost constant and needed not to be included into the calculations. This
implies also that equipartitioning of kinetic energy is not necessary to re-
produce the smoothed dynamics up to terms of order O(d¢). In fact, we
choose this example to demonstrate the effect of using soft constraints in
the bond-angles versus hard constraints which, in our case here, would freeze
the bond-angle at a value cos(¢) = —0.5.

9 Concluding Remark.

We have provided a theoretical framework for removing the fastest degrees of
motion in highly oscillatory Hamiltonian systems as they arise, for example,
in molecular dynamics. Our approach can be understood as a mean force
field approach where the force field is obtained by an averaging process over
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the fastest degrees of motion. As well known from other mean force field
approaches (for example, Brownian motion), fluctuations play an important
role in reproducing correct rate constants [4]. This requires an embedding of
the mean force field into stochastic dynamics [4]. For our particular system
(32), this will be discussed in a forthcoming publication [20].
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