
Institut für Mathematik
Arbeitsgruppe Allgemeine Algebra und Diskrete Mathematik

Arborescent Numbers:
Higher Arithmetic Operations and Division Trees

Dissertation
zur Erlangung des akademischen Grades

“doctor rerum naturalium”
(Dr. rer. nat.)

in der Wissenschaftsdisziplin “Algebra”

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät

der Universität Potsdam

von
Dipl.-Math. Henryk Trappmann

Tag der Disputation: 27. September 2007

Betreuer: Prof. Dr. Klaus Denecke
Gutachter: Prof. Dr. Günter M. Ziegler

Prof. Dr. Hans-Jürgen Vogel

Potsdam, den 6. Oktober 2007

Elektronisch veröffentlicht auf dem
Publikationsserver der Universität Potsdam:
http://pub.ub.uni-potsdam.de/volltexte/2007/1524/
urn:nbn:de:kobv:517-opus-15247
[http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15247]

Arborescent Numbers:
Higher Arithmetic Operations and Division Trees

Henryk Trappmann

October 6, 2007
Rev. 1338

Contents

1 Motivation 2
1.1 Chapter Overview . 5

2 Conventions and Preliminaries 6
2.1 Conventions . 6
2.2 Multisets . 7
2.3 Free Algebras . 8

3 Tree Arithmetic and Higher Operations 9
3.1 Left-commutative binary trees . 13

4 Power-Iterated Functions 17

5 Coppices 20
5.1 Fractional Numbers . 24
5.2 Division Binary Trees . 27
5.3 Fractional Trees . 30

5.3.1 Deciding Equality in the Fractional Trees 41
5.4 Miscellaneous Observations on Coppices 45

5.4.1 Prime Factorisation with Non-Reducing Multiplication 47

6 Order and Topology 51
6.1 Ordered Trees . 51
6.2 Order and Topology on Coppices . 56

7 Power-Inverse-Iterated Functions 62
7.1 Regarding Conjecture 15 . 62
7.2 Regarding Conjecture 16 . 64

8 Prospects 65

9 Glossary of Special Symbols 69

1

1 Motivation

The original question leading to this work was: Why does the sequence of operations
“addition”, “multiplication”, “exponentiation” (on R) not continue and how can it be
made to be continuable? This question is not new, instead it is repeatedly requested
(by pupils and lay mathematicians) in mathematical newsgroups, (essence: “What is π
times the power of π?”) and there are also publications (see [4], [5], [6]) dealing with
this theme. The completion of the program “arborescent numbers” could possibly give a
satisfying answer to such questions. Let us become familiar with the subject:

Usually the next higher or successor operation with a natural-numbered operand is
defined by repetition of the operation itself, for example multiplication and exponentiation
are defined by

n · x := x+ · · ·+ x︸ ︷︷ ︸
n×x

,

xn := x · · · · · x︸ ︷︷ ︸
n×x

.

For an arbitrary binary operation ∗ one would hence define the successor operation ∗′ as

n ∗′ x = x ∗ · · · ∗ x︸ ︷︷ ︸
n×x

.

Then n ·x = n+′x and xn = n ·′x = n+′′x. For addition and multiplication this natural-
numbered repetition makes sense because the operations are associative and so bracketing
does not matter. For non-associative operations one naturally would use binary trees,
i.e. a structure that reflects the bracketing. For example

∗′ x = (1, ((1, 1), 1)) ∗′ x := x ∗ ((x ∗ x) ∗ x).

Let B be the set of binary trees in the above sense, i.e. the structure recursively built
by taking ordered pairs, starting with 1. Then formally one would define ∗′ : B×X → X
for ∗ : X ×X → X recursively by

1 ∗′ x := x,

(aL, aR) ∗′ x := (aL ∗′ x) ∗ (aR ∗′ x).

So we can define an unlimited number of successor operations for each operation
that is already defined on X = B. We define, starting with the native pair-operation
on the binary trees, the operations nn on B inductively by a n1 b := (a, b) and a nn+1

b := a n′
n b. We detect that only for the indices 1 (addition), 2 (multiplication) and 3

(exponentiation) the operation nn can be homomorphically defined on N (see proposition
12 and proposition 22). It may be mentioned that the idea of binary tree arithmetic
(though with a different addition than under consideration here) was already intriguing
to Loday (see [22]) who used it to construct the free dendriform algebra. The manifest
idea, to define higher operations on binary trees, was independently conceived by Blondel
[6].

2

The other way to work around the obstacle of bracketing a repeated nonassociative
operation is to use fixed bracketing. So the hyperpower (also called tetration) uses right-
first bracketing:

1x := x
n+1x := x

nx.

There is much interest in hyperpowers, they are for example addressed in [2], [23] and
[19]. The left-first bracketing for powers n∗x := ((xx) · · ·)x is not very interesting because
it is equal to xx

n−1
. The original Ackermann’s function (as defined in [1]) — though not

used for investigation of higher operations — repeats a left-first bracketing for arbitrarily
high operations, in the following way. Let the successor operation be defined by

n ∗′ x = ((· · · (x ∗ x) ∗ · · ·) ∗ x)︸ ︷︷ ︸
n×x

and the higher operations by

n ∗0 x := n+ x,

n ∗m+1 x := n ∗′m x

then the original Ackermann’s function is mainly defined by A(x,m, n) := m ∗n x. It
is easily seen, that m ∗1 x = m · x, m ∗2 x = xm and m ∗3 x = mx. (Because in
m ∗2 x = xm the operand order is swapped, left-bracketing of ∗2 corresponds to right-
bracketing of powers.) So we have definitions of arbitrarily high operations from the
Ackermann’s function. But the main hassle is that there is no unique or preferable
way to (continuously) extend this definition to fractional and then real numbers, as it
is possible with multiplication and exponentiation. This is reflected by some concurrent
definitions of continuous hyperpowers scattered across the Internet (see [14], [13] and
[25]). The question whether to extend the original Ackermann’s function to a continuous
one (presumably in “the” natural way) was also raised by Wolfram in [33].

Lets have a look why there is “the” unique extension of exponentiation and multipli-
cation to fractional exponents and multipliers, respectively. Consider n ∗ x being nx on
X = R or being xn on X = R+ in

Proposition 1. Let ∗ : N × X → X be an operation which satisfies the multiplicative
translation equation

1 ∗ x = x

m ∗ (n ∗ x) = (mn) ∗ x,

and that fn(x) := n ∗ x is bijective for each n ∈ N. Then there exists a unique extension
of ∗ to ~ : Q+ ×X → X which satisfies that translation equation.

The reader may prove that the following definition of extension is well-defined, valid
and unique. For p, q ∈ N, x ∈ X define

p

q
~ x := (fp ◦ fq−1)(x).

3

Because this translation equation is satisfied for multiplication (i.e. (ab)x = a(bx)) and
for exponentiation (i.e. xab = (xb)a) the respective extensions are unique (on X = R and
X = R+ respectively).

Interestingly Frappier investigated in [12] an exponential operation � : N × C → C
using another bracketing system rather than hyperpowers, namely

0 � z = z,

(n+ 1) � z = (n� z)n�z.

It satisfies a similar equation (apart from the problem of uniqueness of exponentiation in
the complex number plane here), the additive translation equation:

0 ∗ x = x,

m ∗ (n ∗ x) = (m+ n) ∗ x.

It provides for unique extension to Z (under corresponding conditions of proposition
1). He additionally extends the operation to the rational, real and complex numbers, a
problem that is well-known under the name fractional/real/complex iteration of functions
(to see the equivalence let f(x) = 1∗x then n∗x for n ∈ N is the n-th iterate of f usually
written as fn(x), in Frappier’s case for example f(z) = zz and n� z = fn(z)). However,
the additive translation equation often has the problem of non-unique extensions too (as
� has), see [31]. On the other hand see [21] and [28] for uniqueness conditions. For
further references on this interesting topic see [18], [29] and [30] to selectively mention
only a few contributions.

The lack of the multiplicative and even the additive translation equation for hyper-
powers may be the reason that there is no unique (or natural) extension for them. This
is different with higher operations on binary trees, where the multiplicative translation
equation

(an2 b) nn x = ann (bnn x)

is satisfied for each n ≥ 2 (see proposition 9). This kernel plants the motivation for
an N → Q+ → R+ similar construction beginning with the binary trees, whereto all
higher operations can be uniquely extended. A first step for this aim is pointed out here,
this step corresponds to the extension of N to Q+. We introduce the division structures
division binary trees and fractional trees which are the corresponding extensions of the
binary and the left-commutative binary trees. The main result presented here is the
resolution of the word decision problem in the division binary trees and the fractional
trees (the latter was the hard part, taking two years to solve).

The left-commutative binary trees are the binary trees under the equation (a, (b, c)) =
(b, (a, c)). We will call them short lcb-trees and the pairing of two binary trees (a, b) as
their addition. The concept of (labelled) left-commutative binary trees with this addition,
was by the way already used in [10] to construct the free Novikov-Algebra. It seems
that left/right-commutativity up to now was considered only for semigroups and the
multiplication in an algebra or ring. Here the left-commutative addition plays a key
role as the base operation (comparable to the addition of a ring) in the investigation of
higher operations, because it is compatible with all higher operations (in the sense of
proposition 17). Further the set of lcb-trees equipped with n1 and n2 is isomorphic to

4

the set of functions f : R>1 → R>1 generated from id by the process of raising a function
to the power of another function equipped with the swapped power yx and function
composition (see proposition 35). They allow easy inversion of multiplication by taking
inverse functions, leading to another representation of the fractional trees.

To finish the motivation let us summarise the overall intentions in the following di-
agram. In the top row the initial algebraic structures are listed which become spe-
cialised/factored by the equations listed in the left column.

1-magma division−−−−−−−−−−→
embed

coppice
convergence−−−−−−−−−−−−−→

embed
complete
coppice

no ⊕-equations B −−−−→ B◦ −−−−→ B◦(?)y factor
y y y

a⊕ (b⊕ c) = b⊕ (a⊕ c) P −−−−→ F −−−−→ F(?)y factor
y y y

(a⊕ b)⊕ c = a⊕ (b⊕ c) N −−−−→ Q+ −−−−→ R+

The term “magma” was established by Bourbaki in [7] and denotes simply a set with
an operation ⊕ on it. “1-magma” simply adds the constant 1 to the magma. Coppice
is an algebraic structure introduced in this work to reflect invertible multiplication with
1-magmas/trees. B are the binary trees (the same as the initial 1-magma), P are the
left-commutative trees, F stands for fractional trees. B◦ is called the division binary
trees. The addition ⊕ on B is the first operation n1 in our sequence of arbitrarily high
operations.

The constructions N → Q+ → R+ are already well known. The overall program “ar-
borescent numbers” aims to similarly repeat these constructions beginning with (specific)
binary trees instead of the natural numbers. The trees mainly considered are P and B.
The program is completed if the higher operations (nm, m ≥ 2) defined at P (and B)
are extended to (possibly a subset of) F (and B◦) so that they are continuous (and hence
x 7→ ani x bijective for all a) and satisfying the defining equations on the extended set.
For a more precise description see definition 45 and the following conjecture 21.

At last and at least the fractional trees can be seen in the company of quaternions,
octonions and Conway numbers in that they are beautiful number systems, having some
exotic flavour though.

1.1 Chapter Overview

Chapter 2 “Conventions and Preliminaries” clarifies the general notation used, introduces
the multiset notation which is frequently used later and reviews the concept of an initial
algebraic structure which is needed in the later constructions.

In chapter 3 “Tree Arithmetics and Higher Operations”, the binary trees B are prop-
erly introduced and the higher operations defined on them. A property of the higher
operations is shown that naturally leads to the definition of the left-commutative binary
trees (short lcb-trees) P on which all higher operations ni are still definable (contrary
to the natural numbers which are the associative binary trees). A prime factorisation
theorem for the binary and lcb-trees enables us to show that all higher operations are
injective as functions in the right operation argument.

5

Chapter 4 “Power-Iterated Functions” shows that the power-iterated functions (with
the swapped power as addition and function composition as multiplication) are isomorphic
to the lcb-trees. These power-iterated functions can be easily extended with inverses, i.e.
embedding the multiplicative/compositional semigroup structure into a group structure
by adding inverses.

This motivates the definition of a precoppice and a coppice and the question of em-
bedding a precoppice into a coppice in chapter 5 “Coppices”. The natural numbers/the
lcb-trees/the binary trees are the initial/initial left-commutative/initial associative pre-
coppices and each is embeddable into the initial/initial left-commutative/initial asso-
ciative coppice which are the division binary trees/fractional trees/fractional numbers
respectively. In each of these initial coppices equality can be decided, the most difficult
part however is to show it for the fractional trees in chapter 5.3.

In order to further follow the program “arborescent numbers”, chapter 6 investigates
order and topology as it is assumed to be necessary for the arborescent equivalent of the
extension Q+ → R+. Though this chapter has a noticeable lack of striking, constructive
results, a negative result for the tree structures is already given, i.e. the tree structures
can not be linearly ordered right-compatibly with all higher operations. However they
can be non-trivially partially ordered compatibly with all higher operations.

Still on the hunt for orders and topology, in chapter 7 “Power-Inverse-Iterated Func-
tions” we have a look at the coppice of the power-inverse-iterated functions regarding
some conjectures. In particular the question is open as to whether the power-inverse-
iterated functions are isomorphic to the fractional trees.

In chapter 8 “Prospects” attempts to render more precisely which tasks should be
solved in the future, by introducing the concept of a higher operations coppice.

2 Conventions and Preliminaries

2.1 Conventions

Let us adopt the following most basic determinations. Further explanations can be found
in the text after these points. You should also become acquainted with the non-standard
indexing notation in 2.2.

• “initial” means “free over the empty generating set” (which is useful of course if
there are constants in the signature).

• A factor of an algebraic structure A is the image of an homomorphism from A, or
equivalently the quotient of A by some congruence relation.

• Expressions like x⊕ y, xy, yx, x∼, . . . denote the whole operation, and are short for
(x, y) 7→ x⊕ y, (x, y) 7→ xy, (x, y) 7→ yx, x 7→ x∼ respectively.

• fn means multiplicative power as opposed to f ◦n which means the n-times iteration
of f (for a function f : X → X). However f−1 means the inverse function as opposed
to 1

f
.

• “order” always means “partial order”, as opposed to “linear order”.

6

• N, Q+ and R+ do not contain 0.

• r.h. means induction/recursion hypothesis

• A \◦ B means A \B together with B ⊆ A.

Instead of writing only an operation symbol +, or (x, y) 7→ x+ y we will write x+ y,
which denotes the whole operation and not a certain value. This is particularly useful
when writing the invisible operation symbol (x, y) 7→ xy as xy or writing the inversion
symbol x 7→ x∼ as x∼ for example in an algebraic structure (X, 1, x + y, xy, x∼) we can
see directly the arity and usage of the symbols (up to trinary operations with x, y, z). It
is also quite intuitive if we do not mistake it as a certain value.

The term binary tree is always used in short for full ordered binary tree which is also
referred to as planar binary rooted trees. (full binary means that each node has exactly
zero or two children; ordered that the order of the children matters).

Q+ denotes the fractional/rational numbers x > 0 and R+ denotes the real numbers
x > 0, N0 := N∪ {0}. Application of the function f to x is mainly written as usual f(x)
but for homomorphism ϕ to avoid parentheses we will also write xϕ. For two functions
f, g : X → X and an arbitrary operation x∗y on X let (f ∗g)(x) := f(x)∗g(x) particularly
(f g)(x) = f(x)g(x). id : X → X is the identity function on X, defined by id(x) = x for
all x ∈ X.

2.2 Multisets

We can regard a multiset M (with elements of X) as its characteristic function, mapping
from the set of allowed elements X to their count/multiplicity in M . Let Mχ : X → N0

denote that characteristic function of the multiset M . We are only concerned with finite
multisets here. Multisets are written using brackets instead of the curly braces used
for sets, for example [1, 2, 2] = [2, 1, 2] 6= [1, 2]. We can convert multisets to sets by
pairing each n-time occurring element with the indices 1 . . . n. For example σ([a, b, b]) =
{(a, 1), (b, 1), (b, 2)}, generally σ(M) :=

⋃
x∈M{x}×{1, . . . ,Mχ(x)}. And we can convert

back each set P ⊆ S × N to the multiset µ(P) by µ(P)χ(x) := |{i : (x, i) ∈ P}|. When
using a set operation x∗y (particularly x∪y, x∩y, x\y) on multisets L and M it means
by default L ∗M := µ(σ(L) ∗ σ(M)) if applicable. And if using a set relation R(x, y)
(particularly x ⊂ y, x ⊆ y) on multisets L, M it means R(L,M) ⇐⇒ R(σ(L), σ(M)).
Beside this we use the operation x] y on multisets defined by (L]M)χ := Lχ +Mχ.

For finite sequences, multisets and sets we often have to deal with indexing. For
convenience we use the index-context notation: For each indexable element a, mainly
a = 〈a1, . . . , ak〉 or a = [a1, . . . , ak] or a = {a1, . . . , ak}, when writing a∗ then let expand
the index until the next indexable context. If we want to expand to a certain context,
we name the index, for example with i, and mark the context with the same variable i.
The following examples shall convey that notation:

〈a∗〉 means 〈a1, . . . , ak〉
〈a∗b〉 means 〈a1b, . . . , akb〉

〈a∗, b∗〉 means 〈a1, . . . , ak, b1, . . . , bl〉

7

Π∗(a∗ ⊕ c) and Π∗
i (ai ⊕ c) means (a1 ⊕ c) ∗ (a2 ⊕ c) ∗ · · · ∗ (ak ⊕ c)

Πi(ai ⊕ ai) ∗ b means ((a1 ⊕ a1)(a2 ⊕ a2) · · · (ak ⊕ ak)) ∗ b
Π]
i {ai ⊕ b∗} means {a1 ⊕ b1, . . . , a1 ⊕ bl}] · · ·] {ak ⊕ b1, . . . , ak ⊕ bl}

Of course it makes no sense to expand a set to a sequence (i.e. to write 〈a∗〉 for a =
{a1, . . . , ak}), because the index order is lost. The opposite expansion on the other hand
is useful.

2.3 Free Algebras

From universal algebra we only need the following adapted content for the later consid-
erations. We stick to the presentation in [8]. Particularly constants are considered to be
first class (0-ary) operations, and are not separately treated. Outside this chapter we will
use the term “algebraic structure” instead of “algebra” here (which is here meant in the
sense of universal algebra, but which is ambiguous outside of this context).

In [8] the free algebra (over X) is defined for a class of algebras K, as being the
term-algebra T (over X) factored by the intersection of all congruence relations θ on T
induced by a homomorphism from T into some algebra of K. For the case of K being
the class of all algebras satisfying a certain set of equations Σ and the set of generating
variables being empty, we gather:

Definition 1 (initial algebra). The initial algebra FF,Σ of type F with equations Σ is
the quotient of the term algebra TF of type F (in no variables) by the congruence that is
the intersection of all the congruences θ for which TF/θ satisfies Σ.

The previously mentioned congruence relation between the terms of the term algebra
is the same as the following: Two terms s and t are congruent iff there is a sequence of
terms s = s1 = . . . = sn = t such that sn+1 is made from sn by substituting a subterm of
sn matching one side of an equation of Σ by the corresponding other side.

For each algebra A of type F the evaluation of a term by the operations in A yields
a homomorphism TF → A. In the same way into each algebra A of type F satisfying
Σ exists an unique so called universal homomorphism ϕ from the corresponding initial
algebra. This is the specialisation of the universal mapping property of a free algebra for
the case of the empty generator set.

Definition 2 (generated). An algebra A of type F is called to be G-generated, G ⊆ A,
if every element of A is an evaluation of a term of type F in the variables {xg : g ∈ G} by
substituting the variable xg by g. This is equivalent to A being isomorphic to a factor of
the term algebra in the variables {xg : g ∈ G}.

If the algebra A of type F is ∅-generated then the universal homomorphism from the
initial algebra of type F is surjective and we call it the universal epimorphism.

Proposition 2. Let A be an algebra of type F that satisfies Σ. If A is ∅-generated (i.e.
a factor of TF) and there exists a homomorphism ψ : A → FF,Σ then A is isomorphic to
FF,Σ.

8

Proof. From an ∅-generated algebra there is at most one homomorphism to another alge-
bra because the homomorphism is already determined by the generation. Let ϕ : FF,Σ →
A be the universal homomorphism. Then ψ ◦ ϕ : FF,Σ → FF,Σ and ϕ ◦ ψ : A → A. By
uniqueness ψ ◦ ϕ = id and ϕ ◦ ψ = id. So ϕ and ψ are isomorphisms.

By the way it makes a difference whether to speak of a free algebra generated by {c}
or a free algebra with constant c generated by ∅. By the universal mapping property every
map of the generating set of a free algebra satisfying Σ to an other algebra satisfying Σ
can be extended to a homomorphism between them. So if the generating set is empty
generally not every map of the constant can be extended but only the map to the constant
in the other algebra.

Further conventions: An embedding is not merely an injective map but an injective
homomorphism. The relation symbol ≡ means “is isomorphic to”.

3 Tree Arithmetic and Higher Operations

In this chapter we will construct the initial, the initial left-commutative and the initial
associative 1-magma. We define the higher operations on the binary trees (alias the
initial 1-magma) and notice that they are definable on the initial left-commutative 1-
magma (which is equivalent to the rooted trees of graph theory) but not on the natural
numbers (alias the associative initial 1-magma). We show that the higher operations are
all injective in the right variable.

We start with some easy propositions to become familiar with the universal algebra
preliminaries.

Definition 3 (1-magma). A set M equipped with a constant 1 ∈ M and a binary
operation x⊕ y : M ×M →M — referred to as addition — is called an 1-magma.

Proposition 3. N (with 1 and x+y) is (isomorphic to) the initial associative 1-magma.

Proof. Let (N , 1, x⊕y) be the initial associative 1-magma. We first show that 1⊕x = x⊕1
in N by recursion over the terms of N . For x = 1 it holds trivially. Let it be shown
already for x = a and x = b and show it for x = a⊕ b by

1⊕ (a⊕ b) = (1⊕ a)⊕ b = (a⊕ 1)⊕ b = a⊕ (1⊕ b) = a⊕ (b⊕ 1) = (a⊕ b)⊕ 1.

By proposition 2 it suffices to present a homomorphism ψ : N → N . Define ψ induc-
tively by ψ(1) := 1 and ψ(n + 1) := ψ(n)⊕ 1. Then we show ψ(m + n) = ψ(m)⊕ ψ(n)
for all m ∈ N by induction over n.

n 7→ 1 ψ(m+ 1) = mψ ⊕ 1

n 7→ n+ 1 ψ(m+ (n+ 1)) = ψ((m+ 1) + n) = ψ(m+ 1)⊕ nψ = (mψ ⊕ 1)⊕ nψ

= mψ ⊕ (1⊕ nψ) = mψ ⊕ (nψ ⊕ 1) = mψ ⊕ ψ(n+ 1)

Definition 4 (B). Let B be the initial 1-magma.

9

It has the usual representation as binary trees:

Definition 5 (binary trees BB,xL,xR). Let the set of binary trees BB be the smallest
set containing the element 1 and for each a, b ∈ BB also containing the ordered pair (a, b).
Equip BB as 1-magma with the constant 1 and the addition (x, y). For each a ∈ BB \{1}
define the indices L and R by (aL, aR) := a.

Proposition 4. BB is isomorphic to B.

Truly this was a trivial representation, lets have a look at a more interesting one
(which we will use later): the representation as ordered trees.

Definition 6 (ordered trees BR). Let the set of ordered trees BR be the smallest set
containing for each elements a1, . . . , an ∈ BR (n ∈ N0) also the sequence 〈a1, . . . , an〉.
Equip BR as 1-magma with the constant 1 := 〈〉 and the addition a⊕ b := 〈a, b∗〉.

Proposition 5. BR is isomorphic to B by the homomorphism % : BR → B defined recur-
sively as %(〈a1, . . . , an〉) = %(a1)⊕ (· · · (%(an)⊕ 1) · · ·), n ∈ N0, (particularly %(〈〉) = 1).

Proof. We prove the proposition by picture. Every binary tree b can be written in the
form

b = (b1, (b2, (. . . , (bn, 1) · · ·)))

for some n ≥ 0 which corresponds to 〈b1, . . . , bn〉 in BR. The addition on BR is depicted
below.

a b a

b1

b2

bn 1

bn−1

a ⊕ b = = = 〈a, b1, . . . , bn〉 = 〈a, b∗〉

Definition 7 (successor operation ′). For an operation x ~ y : X ×X → X define
the successor operation x ~′ y : B×X → X by

1 ~′ x := x,

(aL ⊕ aR) ~′ x := (aL ~′ x) ~ (aR ~′ x).

Definition 8 (x nn y, xy, higher operation). For each n ∈ N we define the operation
xnn y on B as the (n−1)-times application of ′ to x⊕y, or more formally by induction
as

x n1 y := x⊕ y,

x nn+1 y := x n′
n y.

Define xy := xn2y and call it multiplication. By convention xy binds stronger than x⊕y.
All operations x nk y with k ≥ 3 will be called higher operations.

10

Proposition 6. Let 2 := 1⊕ 1 then 2 nn 2 = 2⊕ 2 for each n ∈ N.

Proposition 7. 1a = a1 = a for all a ∈ B.

Proposition 8. ann 1 = 1 for all n ≥ 3 and a ∈ B.

Proposition 9 (Translation Equation). (ab) ~′ x = a ~′ (b ~′ x) for any operation
x ~ y on X and all a, b ∈ B and x ∈ X.

Proof. We prove this by recursion over a. First let a = 1. Then

(1b) ~′ x = b~′ x = 1 ~′ (b~′ x).

Secondly let a = aL ⊕ aR and (aib) ~′ x = ai ~′ (b~′ x) for i ∈ {L,R} already be shown.
Then

((aL ⊕ aR)b) ~′ x

= ((aLb)⊕ (aRb)) ~′ x

= ((aLb) ~′ x) ~ ((aRb) ~′ x)

= (aL ~′ (b~′ x)) ~ (aR ~′ (b~′ x))

= (aL ⊕ aR) ~′ (b~′ x).

In the special case x ~ y := x⊕ y we obtain

Proposition 10 (Associativity). (ab)c = a(bc) for all a, b, c ∈ B.

So we also can define an for n ∈ N in the usual way.

Definition 9 (numeric value |x|). The numeric value of a binary tree |x| : B → N is
recursively defined by |1| := 1 and |a⊕ b| := |a|+ |b|.

It is clear that |a| counts the number of leaves of the binary tree a and that |x| is the
universal epimorphism B → N.

Proposition 11. an3 x = x|a| for all a, x ∈ B.

Proof. We prove the proposition by recursion over a.

1 n3 x = x = x1

(aL ⊕ aR) n3 x = (aL n3 x)(aR n3 x) = x|aL|x|aR|

= x|aL|+|aR| = x|aL⊕aR|

Proposition 12. |x| maps the first 3 operations on B to addition, multiplication and

exponentiation on N: |a⊕ b| = |a|+ |b|, |ab| = |a| |b| and |an3 b| = |b||a|.

11

Proof. The equality |a⊕ b| = |a| + |b| follows from the definition. The equality |ab| =
|a| |b| follows from the recursion

|1x| = 1 |x| ,
|(aL ⊕ aR)x| = |aLx|+ |aRx|

= |aL| |x|+ |aR| |x| = |aL ⊕ aR| |x| .

The equality |an3 b| = |b||a| follows from the use of proposition 11 together with the
multiplication compatibility.

The following two propositions show how multiplication and all higher operations can
be directly defined on the right oriented representation BR (see proposition 6). We avoid
using back and forth isomorphisms by identifying BR = BB.

Proposition 13. ax = 〈a∗x, x∗〉 for all a, x ∈ BR.

Proof. Let a = 〈a1, . . . , ak〉 and x = 〈x1, . . . , xm〉 then

(a1 ⊕ (· · · ⊕ (ak ⊕ 1) · · ·))x = a1x⊕ (· · · ⊕ (akx⊕ 1x) · · ·)
= a1x⊕ (· · · ⊕ (akx⊕ (x1 ⊕ (· · · ⊕ (xm ⊕ 1) · · ·) · · ·)) · · ·)
= 〈a∗x, x∗〉 .

Proposition 14. a ∗′′ x = Π(a∗ ∗′′ x) ∗′ x for any operation x ∗ y on B and a, x ∈ BR.

Proof.

a ∗′′ x = a1 ⊕ (· · · ⊕ (ak ⊕ 1) · · ·) ∗′′ x
= (a1 ∗′′ x) ∗′ (· · · ∗′ (ak ∗′′ x))) ∗′ x

by proposition 9: = Π(a∗ ∗′′ x) ∗′ x

Proposition 15 (Corollary). ann x = Π(a∗ nn x) nn−1 x for n ≥ 3 and a, x ∈ BR.

This gives rise to the following proposition, which may be easily proved by the reader.

Proposition 16. Each higher operation x nn y can be written as

ann x = xκn(a,x)

where κn : B× B → N for n ≥ 3 is recursively defined by

κ3(a, x) := |a| ,
κn(1, x) := 1,

κn(a, x) := κn−1

(
x

P
κn(a∗,x), x

)
.

Proposition 17 (Theorem). (a ⊕ (b ⊕ c)) nn x = (b ⊕ (a ⊕ c)) nn x for n ∈ N≥3 and
for a, b, c, x ∈ B.

12

Proof.

by proposition 9 (a⊕ (b⊕ c)) nn x = ((ann x)(bnn x)) nn−1 (cnn x)

by proposition 16 = xκn(a,x)+κn(b,x) nn−1 (cnn x)

= ((bnn x)(ann x)) nn−1 (cnn x)

by proposition 9 = (b⊕ (a⊕ c)) nn x

Proposition 18 (Corollary). For n ≥ 2 and for all a, b, c, x ∈ B

(ann+1 x) nn ((bnn+1 x) nn (cnn+1 x)) = (bnn+1 x) nn ((ann+1 x) nn (cnn+1 x)).

3.1 Left-commutative binary trees

Because we are particularly interested in investigation of higher operations, it seems
natural to regard the 1-magma B under the equation a⊕ (b⊕ c) = b⊕ (a⊕ c) that was
detected for higher operations in proposition 17.

Definition 10 (left-commutative, lcb-trees P). An operation x ∗ y on X is called
left-commutative if x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X. Define the lcb-trees P to be
the initial left-commutative 1-magma.

By repeated left-commutation we get

Proposition 19. a1 ⊕ (· · · ⊕ (an ⊕ 1) · · ·) = aα(1) ⊕ (· · · ⊕ (aα(n) ⊕ 1) · · ·) for each
permutation α : {1, . . . , n} → {1, . . . , n} and a1, . . . , an ∈ P.

So we can use multisets to construct P.

Definition 11 (rooted trees PR). Let the set of rooted (also called unordered) trees
PR be the smallest set that for each elements a1, . . . , an ∈ PR (n ∈ N0) also contains the
multiset [a1, . . . , an] as an element. Equip PR as 1-magma with the constant 1 := [] and
the addition a⊕ b := [a, b∗].

Proposition 20. PR is isomorphic to P.

Proof. Define ψ : PR → P (recursively) as [a1, . . . , an]
ψ := aψ1 ⊕ (· · · ⊕ (aψn ⊕ 1) · · ·). By

proposition 19 ψ : PR → P is well-defined. It is easily seen too, that ψ is a homomorphism
and x⊕ y on PR is left-commutative so the assertion follows from proposition 2.

We will see now that the multiplication and the higher operations on B can be com-
patibly defined on PR.

Definition 12 (π). Let π be the universal homomorphism from BR to PR. It is recursively
defined by π(〈a∗〉) := [π(a∗)].

Definition 13 (homomorphically definable). Let A and B algebraic structures such
that ϕ is the only epimorphism that maps A to B. We say an operation x ∗ y on the set
A is homomorphically definable on B if there exists an operation x ~ y on B such that
ϕ(x ∗ y) = ϕ(x) ~ ϕ(y) for each x, y ∈ A.

13

If for an operation x∗y on B there is an operation x~y on P with π(a∗b) = π(a)~π(b),
then the operation x ~ y is already uniquely determined. We have to show that there
actually exists such an operation x ~ y.

Proposition 21. Addition, multiplication and all higher operations on B can be homo-
morphically defined on P, in the following way.

an1 x = a⊕ x = [a, x∗]

an2 x = ax = [a∗x, x∗]

ann x = Π(a∗ nn x) nn−1 x for n ≥ 3

Proof. The compatibility of the addition follows directly by application of π to the BR

addition (definition 6), that of the multiplication by proposition 13 and that of the higher
operations by proposition 14. The higher operations on P are well-defined because of
proposition 16.

Proposition 22. The operation xn4 y (on B or P) can not be homomorphically defined
on N.

Proof. Regard the two trees a = (1, (1, 1)) and b = ((1, 1), 1) with |a| = |b| = 3 and
suppose we could define x n4 y homomorphically on N. Then |an4 x| = |a| ∗ |x| =
|b| ∗ |x| = |bn4 x| (for x ∗ y being the homomorphic image of x n4 y) and further

|an4 x| = |xn3 (xn3 x)| = (|x||x|)|x| = |x||x|
2

,

|bn4 x| = |(xn3 x) n3 x| = |x||x|
|x|
,

|x||x|
2

= |x||x|
|x|
,

which is not true for example for x = a or x = b.

We saw that the multiplication plays a unique role because of its associativity and
translation equation.

Proposition 23 (Right Cancellation for B). ac = bc =⇒ a = b for each a, b, c ∈ B.

Proof. If a = 1 and b 6= 1 then |bc| > |c| = |ac| hence b = 1; vice versa for b = 1. So
let a = (aL, aR) and b = (bL, bR) then aLc = bLc and aRc = bRc by distribution. By r.h.
aL = bL and aR = bR, yields a = b.

The following unique prime factorisation propositions are not only interesting by
themselves, but provide us a tool for proving the injectivity (in the right variable) of
all operations x nn y (proposition 30).

Definition 14 (prime). An (lc)binary tree a 6= 1 is called prime if there are no (lc)binary
trees b, c 6= 1 such that a = bc.

Proposition 24 (Unique Prime Factorisation for B). For each binary tree a there
is a sequence of prime binary trees p1, . . . , pk (k ≥ 0) such that a = p1 · · · pk, where the
empty product is as usual defined as 1. k = m and (p1, . . . , pk) = (q1, . . . , qm) already for
each other sequence of prime binary trees q1, . . . , qm (m ≥ 0) with a = q1 · · · qm.

14

Proof. Existence: If a = 1 then we choose the empty sequence, if a is prime we choose the
one-element sequence (a) as prime factorisation. Otherwise a = a1a2 with |a1| , |a2| < |a|.
By r.h. we have a prime factorisation for a1 and for a2 and we choose the concatenation
of them as prime factorisation for a.

Uniqueness: If a = 1 then each prime factorisation p1 · · · pk with k > 0 would have a
numeric value > 1 in contradiction to |a| = 1. For a 6= 1 let each of p, q be the last prime
of a factorisation of a, say bp = a = cq. If b = 1 then c = 1 because p is prime and hence
p = q, similar for c = 1. Otherwise let b = (bL, bR) and c = (cL, cR) then bLp = aL = cLq.
By r.h. aL has a unique prime factorisation so p = q. b = c by proposition 23 and they
must have the same prime factorisation by r.h. (knowing that |b| , |c| < |a|). So all prime
factorisations of a are equal.

Proposition 25 (Right Cancel in P). ac = bc =⇒ a = b for all a, b ∈ P.

Proof. If [a∗c, c∗] = [b∗b, c∗] then [a∗c] = [b∗c] so we have a bijection i 7→ j with aic = bjc,
then ai = bj by r.h. and so a = b.

Proposition 26 (Unique Prime Factorisation for P). For each lcb-tree a there is a
sequence p1, . . . , pk (k ≥ 0) of prime lcb-trees such that a = p1 · · · pk. For each other se-
quence of prime lcb-trees with q1 · · · qm = a already k = m and (p1, . . . , pk) = (q1, . . . , qm).

Proof. To show the existence is the same as in proposition 24. Uniqueness: Let again
each of p and q be the last prime in a prime factorisation of a, say bp = a = cq, i.e.
[b∗p, p∗] = [c∗q, q∗]. There are the cases b∗p = c∗q, b∗p = q∗, p∗ = c∗q and p∗ = q∗ for
contemplation. Assume now that there are i, j with bip = cjq then we already know by
r.h. that p = q. If there are no such i, j but there are i, j with pi = cjq then it were
|b∗p| > |pi| = |cjq| > |q∗| which indicates that b∗p 6= q∗ and forces [b∗p] = ∅ and so b = 1.
Because p is prime then also c = 1 and further p = q. The same reasoning applies to the
case bip = qj for some i, j. When we exclude all previous cases then already [p∗] = [q∗]
which is p = q too. So we can always conclude that p = q. By proposition 25 we have
b = c and know again that b and cmust have the same prime factorisation by r.h. (because
|b| , |c| < |a|).

Proposition 27 (Corollary). In B and P we can cancel left elements, i.e. ca = cb =⇒
a = b.

Proposition 28. If am = bn for some a, b ∈ B (or a, b ∈ P), n,m ∈ N, then there exists
c ∈ B (or c ∈ P) such that a = cn/ gcd(m,n) and b = cm/ gcd(m,n).

Proof. If 1 < gcd(m,n) =: d then we can consider (ad)m/d = (bd)n/d with gcd(m/d, n/d) =
1. So let gcd(m,n) = 1. If m = n then m = n = 1 and we finish by setting c = a = b.
Otherwise let m < n without restriction.

Let a be in (unique) prime factorisation of length k and b in prime factorisation of
length l. Because km = ln and relative primeness of m and n, n divides k and m divides
l. So we can group each k/n prime elements of a into ai, such that a = a0 · · · an−1, and
do it for b = b0 · · · bm−1 similarly. Then ai and bi have the same length k/n = l/m. Now
let us compare am with bn. The element a0 occurs at the places 0, n, 2n, . . . , (m − 1)n
in am. For illustration let us look at an example m = 2, n = 3.

(a0a1a2)(a0a1a2) = (b0b1)(b0b1)(b0b1)

15

At the place i in bn we find the element bi mod m (where i mod m computes the remainder
in {0, . . . ,m − 1} of i divided by m as usual). So particularly a0 = bin mod m for i =
0, . . . ,m − 1. Because m and n are relatively prime f(i) := in mod m is a bijection on
{0, . . . ,m − 1}. And hence a0 = b0 = . . . = bm−1 =: c and further c = a0 = . . . = an−1,
a = cn and b = cm.

Proposition 29 (κn Exponent Monotony). For trees a, x ∈ B (or a, x ∈ P) and
p, q, k, l ∈ N and for all n ≥ 3

p ≤ q, k ≤ l =⇒ κn(a
p, xk) ≤ κn(a

q, xl).

Proof. We prove the proposition by the induction of the definition (proposition 16) of κ.
The induction base is

κ3(a
p, xk) = |ap| = |a|p ≤ |a|q = κ3(a

q, xl),

κn(1, x
k) = 1 = κ3(1, x

l).

First notice that ap = 〈a∗ap−1, . . . , a∗a
1, a∗〉, where we can use the r.h. on the elements

because |a∗ap−i| < |ap| for each a∗ and each i ∈ {1, . . . , p}.

κn(a
p, xk) = κn−1

(
xk(

P
κn(a∗ap−1,xk)+···+

P
κn(a∗,xk)), xk

)
≤ κn−1

(
xl(

P
κn(a∗ap−1,xl)+···+

P
κn(a∗,xl)), xl

)
≤ κn−1

(
xl(

P
κn(a∗aq−1,xl)+···+

P
κn(a∗ap−1,xl)+···+

P
κn(a∗,xl)), xl

)
= κn(a

q, xl)

Proposition 30 (Operations Injectivity1). All maps x 7→ ann x are injective (on B
and P, n ≥ 1).

Proof. For n = 1 it is clear by definition, for n = 2 we have proposition 27. Now take a
look on the higher operations. By proposition 16 we have to show: if x

κn(a,x1)
1 = x

κn(a,x2)
2

then x1 = x2. By our previous proposition 28 we know x1 = yk, x2 = yl. If x1 6= x2

assume without restriction k < l. To satisfy the precondition must kκn(a, y
k) = lκn(a, y

l).
But by the exponent monotony of κn (proposition 29) we have κn(a, y

k) ≤ κn(a, y
l) and

so kκn(a, y
k) < lκn(a, y

l).

Of course the other-sided statement that x 7→ x nn a is injective is not true simply
by taking a = 1. (1, (1, 1)) n3 a = a3 = ((1, 1), 1) n3 a is true even independent of a. So
it seems interesting to regard the equivalence relations x 'n y on B defined by: a 'n b
iff ann x = bnn x for all x ∈ B.

It is already clear that

B/'1 = B, B/'2 = B, B/'3 = N

and that B/'n for n ≥ 4 is a factor of P (by proposition 17). The next chapter shows
that for each a, b ∈ P if an4 x = bn4 x for all x ∈ N, then a = b. So this is particularly
valid when taking elements x ∈ B. So we can already provide B/'4 = P.

1A similar result (though merely for the binary trees) was independently found by Duchon [9].

16

Conjecture 1 (medium2). B/'i
= P for all i ≥ 3.

4 Power-Iterated Functions

Definition 15 (power-iterated functions PI, swapped power f). Let the set of
power-iterated functions PI be the smallest set of functions f : R>1 → R>1 that contains
id : R>1 → R>1 and for each f, g ∈ PI contains gf . Equip PI as 1-magma with the
constant id ∈ PI and the swapped power yx (as operation on functions) as addition. To
also have an operation symbol we introduce the swapped power symbol x f y := yx.

In this chapter we consider the relation between the power-iterated functions and the
lcb-trees. It is clear that there is an epimorphism x from (the initial 1-magma) PR to PI
because PI is an ∅-generated left-commutative 1-magma: f f (g f h) = g f (f f h).

Definition 16 (x). Let x : PR → PI be the universal epimorphism.

Proposition 31. This epimorphism x : PR → PI is explicitly given by

a := (Πa∗) f id = idΠa∗ .

Proof. We simply translate 1 and x⊕ y on PR to id and x f y on PI in

[a1, . . . , an] = (a1 ⊕ (· · · ⊕ (an ⊕ 1) · · ·)
= (· · · (idan) · · ·)a1

= idan···a1 .

As an example consider [1, 1, [1]] = (id2(id f id)) f id = idid2idid

.
Note however that we equivalently could have defined x : B → PI by a(x) = a f′ x

(see definition 7, for example (1, (1, 1)) f′ x = x f (x f x)), and then recognised that
a f′ x = xΠ(a∗f′x). This is independent of the order of the a∗ and so conferred to P. By
defining this so, it is immediately seen that 1 = id and a⊕ b = a f b on P because it is
the definition in B.

Now we want to prove that the epimorphism is injective too (yielding an isomorphism).
To distinguish the elements we recursively equip PR with the reverse lexicographic order.
This means when we sort the elements of a and b with the greatest first (therefrom the
naming “reverse”), we compare lexicographically by cutting off the first respectively equal
elements and then respectively looking at the first remaining element if any. Where there
remains no more element or where there is the smaller element, this is the smaller lcb-
tree, for example [[1, 1], 1] <M [[1, 1], 1, 1] and [[1, 1], 1] <M [[1, 1], [1]]. Putting this into
notation:

Definition 17 (<M). For a, b ∈ PR define recursively a <M b as: one of the following
cases occurs.

2The difficulties of some conjectures (as they appear to the author) are estimated by the keywords
“straight” (sophisticated exercise), “medium” (exercise with some more effort) or “difficult” (needs some
good investigation).

17

1. a ⊂ b.

2. There exist a0 ∈ a \ b and b0 ∈ b \ a such that x ≤M a0 <M b0 for each x ∈ a \ b.

Proposition 32. The relation <M on PR is a linear order. Particularly either a <M b,
b <M a or a = b.

Proof. First notice that the second case in the definition is equivalent to max(a \ b) <M

max(b \ a) using the linear order from the r.h. Now let us show the two conditions of a
linear order. For trichotomy assume that a 6= b and show either a <M b or b <M a. If
b 6⊂ a and a 6⊂ b (in each case already a <M b or b <M a) then (a \ b) 6= ∅ 6= (b \ a).
We can choose a0 := max(a \ b) and b0 := max(b \ a) while the maximum exist by r.h.
Further by r.h. we know that either a0 <M b0, b0 <M a0 or a0 = b0. The last case cannot
occur because (a \ b) ∩ (b \ a) = ∅ and the first both cases imply a <M b or b <M a.

To show transitivity, we regard the four cases:

1. a ⊂ b and b ⊂ c:
Then a ⊂ c.

2. a ⊂ b and max(b \ c) <M max(c \ b):
Then max(a \ c) ≤M max(b \ c) <M max(c \ b) ≤M max(c \ a).

3. max(a \ b) <M max(b \ a) and b ⊂ c:
Then max(a \ c) ≤M max(a \ b) <M max(b \ a) ≤M max(c \ a).

4. max(a \ b) <M max(b \ a) and max(b \ c) <M max(c \ b):
Let d = a ∩ b ∩ c and (x, y) ∈ {(a, b), (b, c)}. If max(x \ y) = max(x \ d) then
max((x ∩ y) \ d) ≤M max(x \ y) <M max(y \ x) = max(y \ d). If otherwise
max(y \ x) <M max(y \ d) then max(x \ y) <M max(y \ x) <M max((x ∩ y) \ d) =
max(y \ d) = max(x \ d). We get that only either max(x \ d) <M max(y \ d)
or max(x \ d) = max(y \ d) can occur. The case max(a \ d) = max(b \ d) =
max(c \ d) =: m is not possible because then would m ∈ d. The remaining 3 cases
all yield max(a \ d) <M max(c \ d). We see that max((a ∩ c) \ d) ≤M max(c \ a)
because otherwise would max(c \ d) = max((a ∩ c) \ d) ≤M max(a \ d). Hence
max(c \ d) = max(c \ a) and finally max(a \ c) ≤M max(a \ d) <M max(c \ d) =
max(c \ a).

We want to establish an equivalent order on PI . The idea is that in f = idf1···fk

the maximal fi dominates the behaviour of f for large x. Be aware that mainly for the
seamless use of the constant function 1, we define the order on R+ and not on R>1 which
is the domain of the functions of PI .

Definition 18 (<↑). For f, g ∈ R+ → R+ define f <↑ g as: there exists an x0 ∈ R+ so
that f(x) < g(x) for each x > x0. We also say then f is ultimately smaller than g. We
define f ≤↑ g as f <↑ g or f = g.

Proposition 33. <↑ is a strict partial order on {f : R+ → R+}, which is compatible with
the (function) multiplication, and which has the following properties for all f, g : R>1 →
R>1.

18

1. hf <↑ h
g is equivalent to f <↑ g for 1 <↑ h and f, g, h : R+ → R+.

2. c <↑ f for each constant function c and any f ∈ PI .

Proof. Showing <↑ to be a strict partial order compatible with multiplication is left to
the reader. For assertion 1 consider r > 1 and s, t > 0:

rs < rt ⇐⇒ s log(r) < t log(r) ⇐⇒ s < t.

Assertion 2 follows from strict increase of all the functions of PI .

Proposition 34 (Lemma). For each a, b ∈ P if a <M b then ap <↑ b for each p ∈ R+.

Proof. We prove the proposition by recursion over P. We show that it holds again for a
and b assuming it is already pairwise proved for all c∗ ∈ a] b =: c.

In the case a ⊂ b we show ap <↑ b by the following equivalences.

ap <↑ b ⇐⇒ idpΠa∗ <↑ idΠb∗ ⇐⇒ p · Πa∗ <↑ Πb∗ ⇐⇒ p <↑ Π(b \◦ a)∗

The last statement is true because b \◦ a 6= ∅ and all (b \◦ a)∗ ∈ PI .
In the remaining case there are a0 ∈ a and b0 ∈ b with a0 <M b0 and (a \ b)∗ ≤M a0.

Let f = a0 and g = b0, by recursion assumption we know then that fn <↑ g for each

n ∈ N and (a \ b)∗ ≤↑ f . That in mind make the following conclusions for each p ∈ R+,
where n = card(a \ b) + 1.

fn <↑ g

use p <↑ f : p · fn−1 <↑ g

(a \ b)∗ ≤↑ f : p · Π(a \ b)∗ <↑ g

multiply Π(a ∩ b)∗ : p · Πa∗ <↑ g · Π(a ∩ b)∗
multiply 1 ≤↑ (b \ a)∗ : p · Πa∗ <↑ Πb∗

f id : ap <↑ b

For p = 1 we gain:

Proposition 35 (Theorem). For each a, b ∈ P if a <M b then a <↑ b (and vice versa).
Hence P is isomorphic to PI .

Proposition 36 (Corollary). <↑ is a linear order on PI .3

The interesting fact of representing P as (bijective) functions is that we can easily
embed it into a structure with invertible composition/multiplication by adding inverses.

Definition 19 (power-inverse-iterated functions P◦I). Let the set of power-inverse-
iterated functions P◦I be the smallest set containing id : R>1 → R>1 and for each f, g ∈ P◦I
also containing f g, the function composition f ◦ g and the inverse function f−1. Equip
P◦I with the constant id, the binary operations yx, x ◦ y and the unary operation x−1.

3This proposition may also be concluded from paragraph III.2 in G. H. Hardy’s Monograph [16].

19

If f, g : R>1 → R>1 are continuous, strictly increasing and (above and below) un-
bounded (for bounds in R>1), then f g is too (strictly increasing because: f(x1)

g(x1) <
f(x2)

g(x1) < f(x2)
g(x2) for x1 < x2, previous inequality because f(x2) > 1). A continuous,

strictly increasing and unbounded function f : R>1 → R>1 is bijective. The inverse of a
continuous and strictly increasing and unbounded function is again continuous, strictly
increasing and unbounded and so is the composition. So the above definition is valid.

Proposition 37 (Theorem). P (even with the multiplication xy) is embeddable into P◦I
via x.

5 Coppices

In generalisation of the process of making the multiplication invertible we define:

Definition 20 (precoppice, coppice). X = (X, 1, x ⊕ y, xy, x∼) is called a coppice iff
(X, 1, xy, x∼) is a group and the multiplication is right-distributive over the addition, i.e.
(x⊕y)z = xz⊕yz for all x, y, z ∈ X. If x⊕y has a property abc we call X an abc coppice.
A precoppice is just a coppice without x∼, i.e. (X, 1, xy) is a monoid and multiplication
is right-distributive over addition. The operation x⊕ y is called the addition, xy is called
the multiplication and x∼ is called the inversion of the coppice.

The relation “precoppice to coppice” resembles the relations “commutative ring to
field”, “ring to skew field”, “semiring to semifield”, “near-ring to near-field”, i.e. the
associative multiplication becomes a group. However the pair precoppice/coppice is more
general than the other pairs mentioned, in that there are no restrictions — not even
associativity — on the addition. A near-ring/near-field is a precoppice/coppice where the
addition forms a group (and the multiplicative inversion is defined only on the nonzero
elements) a semiring/semifield is a precoppice/coppice where the addition is associative
and the multiplication is additionally left-distributive over the addition.

For overview reasons here the defining set of equations of a coppice. A precoppice
just omits (4).

(r ⊕ s)t = rt⊕ st (1)

(rs)t = r(st) (2)

1r = r (3)

r∼r = 1 (4)

As it is already well-known for groups the following equations are consequences in a
coppice.

r1 = r (5)

rr∼ = 1 (6)

(rs)∼ = s∼r∼ (7)

Our first example of a coppice is P◦I .

Proposition 38. P◦I is a left-commutative coppice.

20

We embedded the precoppice PI into P◦I . In this chapter we will also perform the
embedding of the initial precoppice into the initial coppice for our 3 main types:

1. Associative: The natural numbers N into the fractional numbers Q+.

2. Left-commutative: The lcb-trees P into the fractional trees F.

3. No equations: The binary trees B into the division binary trees B◦.

But before doing that let us cast our eyes on some precoppice/coppice examples.
Though verifying the embeddability of an associative system into a group can already
be a difficult task (see [24]), there is a whole class of interesting precoppices where the
embedding is possible and straight. Recall the construction of PI and P◦I (definition 19).

Definition 21 (U(I), ciu-, CA, U(I, A), U◦(I, A)). Let U(I) be the set of continuous,
strictly increasing functions I → I having neither an upper nor a lower bound in I, where
I is one of R, R+ or R>1. Call U(I) the ciu-functions of I. Call a binary operation x⊕ y

on I a ciu-operation if f⊕g is a ciu-function for any two ciu-functions f, g. For a set A of
ciu-operations on I and a subset F of U(I) let CA(F) be the set generated by application
of the operations of A to members of F (the closure of F with respect to the operations
of A). Let U(I, A) := CA({id}) and let U◦(I, A) be the set generated by id, application of
operations of A, application of the function composition and taking the inverse function.

The definition of U◦(I, A) is valid, because the ciu-functions are closed under compo-
sition and inversion and A are ciu-operations. The constructions of PI and P◦I are just a
special case, namely

PI = U(R>1, {yx}) P◦I = U◦(R>1, {yx}).

Of course U(I) is itself a precoppice for every ciu-operation as addition on it (◦ as mul-
tiplication) and U◦(I, A) is a coppice for every operation of A as addition. Note that
the function composition is right-distributive over every pointwise operation of functions
((f ∗ g) ◦ h)(x) = (f ◦ h)(x) ∗ (g ◦ h)(x). Every operation ∗ : I × I → I is a ciu-operation
if (but not only if) x 7→ x ∗ y and y 7→ x ∗ y are ciu-functions. Particularly the operations
x + y on R, xy on R+ and xy on R>1 are ciu-operations.

Proposition 39. The precoppice U(I, {x ⊕ y}) (with the operations id, x ⊕ y, x ◦ y) is
embeddable into the coppice U◦(I, {x⊕ y}) (with the operations id, x⊕ y, x ◦ y, x−1) for
each ciu-operation x⊕ y.

We can construct the U◦(I, {x⊕y}) in a more sophisticated manner (rather than sim-
ply throwing all operations id, x⊕y, x◦y, x−1 over each other) by the following induction.
The idea is to apply right-distributivity until no more is possible.

Proposition 40. U◦(I, A) =
⋃∞
n=0 Un for the following by induction defined Un, n ∈ N0,

U0 := {id}
Un+1 := {f−1 ◦ g : f, g ∈ DA(Un)}

where DA(X) is the set of elements that are built by terms that contain at least one
operation and that contains id, i.e. DA(X) = CA{a(x, y) : a ∈ A, x, y ∈ X} ∪ {id}.

21

Proof. Because every Un only contains generated elements, we merely need to show the
closure of

⋃∞
n=0 Un. Each Un is closed under inversion as (f−1 ◦ g)−1

= g−1 ◦ f . Next we
assure ourselves that DA is a monotone operator and show that Uk ⊆ Ul whenever k ≤ l
by induction on Un ⊆ Un+1. We get the induction base by id ∈ DA(U0):

U0 = {id−1 ◦ id} ⊆ {f−1 ◦ g : f, g ∈ DA(U0)} = U1.

The induction step Un+1 ⊆ Un+2 or

{f−1 ◦ g : f, g ∈ DA(Un)} ⊆ {f−1 ◦ g : f, g ∈ DA(Un+1)}

follows then by applying monotony of DA on the induction assumption.
Next we show closure under addition. If there are some h1 ∈ Uk and h2 ∈ Ul then

h1, h2 ∈ Um where m is the maximum of k and l. So a(h1, h2) = id−1 ◦ a(h1, h2) ∈ Um+1

for any a ∈ A.
At last we show the closure under composition. We want to show that h1 ◦ h2 ∈ Uk+l

by induction over k. The induction base at k = 0 is satisfied because h1 = id and so
h1 ◦ h2 = h2 ∈ U0+l. Let now k > 0 and h1 = f1

−1 ◦ g1 with f1, g1 ∈ DA(Uk−1). Then
g1 ◦ h2 ∈ DA(Uk−1+l) by r.h. and distributivity (for g1 6= id) or monotony (for g1 = id).
So f1

−1 ◦ (g1 ◦ h2) ∈ Uk+l by f1 ∈ DA(Uk−1) ⊆ DA(Uk−1+l).

With this lens we can take a closer look at some examples for coppices by choosing
appropriate additions A and an appropriate domain I for U◦(I, A):

1. I = R, A = {x + y}. The coppice is entirely comprised of the functions m
n
x

(m,n ∈ N) and so isomorphic to Q+.

2. I = R+, A = {xy}. The restriction to R+ is necessary because multiplying negative
or null values destroys strict increase. The coppice is entirely comprised of the
functions x

m
n (m,n ∈ N) and so isomorphic to Q+ too.

3. I = R+, A = {
√
x2 + y2}. The restriction to R+ is again necessary. The coppice

is entirely comprised of the functions
√

m
n
x (m,n ∈ N) and so again isomorphic to

Q+. As the reader might already have recognised, whenever the operation x⊕ y is
associative then U◦(I, {x⊕ y}) is isomorphic to Q+ (see proposition 48).

4. I = R, A = {2x + y}. This is now a non-associative operation, but it is left-
commutative.

f ⊕ (g ⊕ h) = 2f + 2g + h = 2g + 2f + h = g ⊕ (f ⊕ h)

It turns out that the functions of the coppice are the linear functions with an uneven
fraction as slope

2m+ 1

2n+ 1
x for m,n ∈ N0.

The proof is left to the reader. Indeed we show (proposition 56) that every element
of a left-commutative coppice can take the form

(r1 ⊕ · · · ⊕ rk ⊕ 1)∼(s1 ⊕ · · · ⊕ sl ⊕ 1).

For a coppice not isomorphic to Q+ it is rare to have a commutative multiplication.

22

5. I = R>1, A = {yx}. Our well known power-inverse-iterated functions which are
left-commutative too.

6. I = R+, A = {
√
x +

√
y}. This time the operation is commutative but not asso-

ciative. The 1-magma already is an intricate structure consisting of certain nested
sums of roots. I would conjecture it is isomorphic to the commutative binary trees
(i.e. the initial commutative 1-magma.)

7. I = R>1, A = {xyyx} yields a commutative coppice too. Though we will not regard
non-associative commutative coppices here anymore. Each associative ∅-generated
coppice is by the way commutative, because every associative ∅-generated coppice
is either Q+ or the trivial coppice (see proposition 48 and proposition 50).

8. I = R+, A = {x + y, xy}. In this case instead of generating only with one binary
operation x⊕ y we generate with x⊕1 y := x+ y and x⊕2 y := xy. U(I, A) consists
of all polynomials with natural numbered coefficients and lacking constant. The
coppices of the examples 1, 2 and 4 are all subsets of this multi-coppice (i.e. it is a
coppice regarding each addition).

9. I = R>1, A = {xy, yx}. There is the bijection f 7→ idf between U(R>1, {xy, yx})
and PI = U(R>1, {yx}) and the injection f 7→ ididf

of U(R+, {x + y, xy}) into PI .

Conjecture 2 (medium). Each function f ∈ U◦(R+, {x + y, xy}) can be assigned a
polynomial Pf (x, y) with integer coefficients such that f is the only function of U◦(R+, {x+
y, xy}) with f ⊆ {(x, y) : Pf (x, y) = 0}. Particularly f 6= id can have at most a finite
number of fixed points.

The above conjecture should be no big problem to prove with some background in
algebraic geometry.

Conjecture 3 (difficult). Every function of U◦(R>1, {xy, xy}) \ {id} has merely a finite
number of fixed points.

These fixed point propositions are connected with the linearity of the <↑ order (see
section 7.1) which in turn points towards the topological completion of those coppices
(see proposition 115).

Now we finish considering examples and address the aim of this chapter to com-
putably construct the initial associative coppice, the initial coppice, and the initial left-
commutative coppice, respectively and to embed the corresponding initial precoppices
into them. But before doing that we have to show that B, P and N are indeed the
corresponding initial precoppices.

Proposition 41. B together with the multiplication xy is the initial precoppice.

Proof. Let us consider the term algebra T (in no variables) of the operations {1, x⊕y, xy}.
We show recursively that every term ab of T is equal to a term of B (i.e. only consisting
of operations {1, x ⊕ y}) in the initial precoppice: So let the subterms a and b already
shown to be in B, but (3) and (1) are a recursive definition for xy in B, hence ab ∈ B.
On the other hand B is actually a precoppice (xy satisfies associativity).

23

For the following propositions we consider a homomorphism between two algebraic
systems of different types, as the homomorphism between the algebraic systems restricted
to the type referring to the common operation names.

Proposition 42 (Corollary). Each ∅-generated precoppice is already generated by its
addition (and 1). Or, in other words, each ∅-generated precoppice is isomorphic to a
∅-generated 1-magma.

Proof. Let P be the precoppice and ϕ : B → P the universal precoppice epimorphism.
Then for every element y ∈ P there is an x with ϕ(x) = y and hence y is made up of
additions of 1.

Proposition 43 (Corollary). The initial 1-magmas B, P and N are equal to their
corresponding initial precoppices.

Proposition 44. Let P be a ∅-generated precoppice and C be a (pre)coppice. Each
homomorphism h from the 1-magma of P to C is a homomorphism from the precoppice
P to C.

Proof. We prove h(ab) = h(a)h(b), a, b ∈ P by induction over B. Let ϕ : B → P the
universal epimorphism, ϕ(B) = P.

h(1b) = h(b) = 1h(b)

h((aL ⊕ aR)ϕbϕ) = h((aLb)
ϕ ⊕ (aRb)

ϕ)

= h((aLb)
ϕ)⊕ h((aRb)

ϕ)

by r.h. = h(aϕL)h(bϕ)⊕ h(aϕR)h(bϕ)

by distributivity of C = (h(aϕL)⊕ h(aϕR))h(bϕ)

= h((aL ⊕ aR)ϕ)h(bϕ)

Proposition 45 (Corollary). An ∅-generated precoppice is embeddable into a coppice
if (and only if) its 1-magma is embeddable.

5.1 Fractional Numbers

Definition 22 (Q). Let (Q, 1, x⊕y, xy, x∼) temporarily be the initial associative coppice.

Because of associativity of x⊕ y we have also left-distributivity:

Proposition 46 (Left-Distributivity). r(s⊕ t) = rs⊕ rt for all r, s, t ∈ Q.

Proof. We prove by recursion over r taking on all coppice terms. Assume that it is
already shown for r = r1, r2 and arbitrary s, t ∈ Q. Show that it is also valid for
r = 1, r1 ⊕ r2, r1r2, r1

∼.

1(s⊕ t) = s⊕ t

= 1s⊕ 1t

24

(r1 ⊕ r2)(s⊕ t) = r1(s⊕ t)⊕ r2(s⊕ t)

= (r1s⊕ r1t)⊕ (r2s⊕ r2t)

= (r1s⊕ r2s)⊕ (r1t⊕ r2t)

= (r1 ⊕ r2)s⊕ (r1 ⊕ r2)t

(r1r2)(s⊕ t) = r1r2(s⊕ t)

= r1(r2s⊕ r2t)

= r1r2s⊕ r1r2t

= (r1r2)s⊕ (r1r2)t

r1
∼(s⊕ t) = r1

∼(r1r1
∼s⊕ r1r1

∼t)

= r1
∼r1(r1

∼s⊕ r1
∼t)

= r1
∼s⊕ r1

∼t

Proposition 47 (Commutativity). rs = sr for all r, s ∈ Q.

Proof. Assume that it is already shown for r = r1, r2 and arbitrary s ∈ Q. Show that it
is valid for r = 1, r1 ⊕ r2, r1r2, r1

∼.

by (3) and (5) 1s = s = s1

by (1), r.h. and proposition 46 (r1 ⊕ r2)s = r1s⊕ r2s = sr1 ⊕ sr2 = s(r1 ⊕ r2)

by r.h. and associativity (r1r2)s = r1(sr2) = s(r1r2)

by r.h. and (7) r1
∼s = (s∼r1)

∼ = (r1s
∼)∼ = sr1

∼

Proposition 48 (Theorem). The coppice of (positive) fractional numbers Q+ is (iso-
morphic to) the initial associative coppice.

Proof. That Q+ is an associative coppice is already known. By proposition 2 it suffices
to show that there exists a homomorphism ψ : Q+ → Q. We first define ψ on N ⊂ Q+

inductively by

1ψ := 1,

(n+ 1)ψ := nψ ⊕ 1.

Then (m+ n)ψ = nψ ⊕mψ (proof similar to proposition 3) and (nm)ψ = nψmψ by

((n+ 1)m)ψ = (nm+m)ψ = (nm)ψ ⊕mψ

= nψmψ ⊕mψ = (nψ + 1)mψ

= (n+ 1)ψmψ.

Now define ψ on Q+ by (m
n
)ψ := mψ(nψ)

∼
(for m,n ∈ N). ψ is well-defined because

(km
kn

)ψ = (km)ψ(kn)ψ
∼

= mψkψ(nψkψ)
∼

= mψkψkψ
∼
nψ

∼
= mψnψ

∼
. We show that ψ is a

homomorphism by the following calculations.(
1

1

)ψ
= 11∼ = 1

25

(
m1

n1

+
m2

n2

)ψ
=

(
m1n2 +m2n1

n1n2

)ψ
= (m1n2 +m2n1)

ψ(n1n2)
ψ∼

=
(
(m1n2)

ψ ⊕ (m2n1)
ψ
)
(n1n2)

ψ∼

=
(
mψ

1n
ψ
2 ⊕mψ

2n
ψ
1

)
nψ2

∼
nψ1

∼

= mψ
1n

ψ
2n

ψ
2

∼
nψ1

∼ ⊕mψ
2n

ψ
1n

ψ
2

∼
nψ1

∼

= mψ
1n

ψ
1

∼ ⊕mψ
2n

ψ
2

∼

=

(
m1

n1

)ψ
⊕
(
m2

n2

)ψ
(
m1

n1

m2

n2

)ψ
=

(
m1m2

n1n2

)ψ
= (m1m2)

ψ(n1n2)
ψ∼

= mψ
1m

ψ
2n

ψ
2

∼
nψ1

∼

= mψ
1n

ψ
1

∼
mψ

2n
ψ
2

∼

=

(
m1

n1

)ψ (
m2

n2

)ψ
 1(

m1

n1

)
ψ

=

(
n1

m1

)ψ
= nψ1m

ψ
1

∼
=
(
mψ

1n
ψ
1

∼)∼
=

((
m1

n1

)ψ)∼

Proposition 49 (Theorem). The initial associative precoppice N is embeddable into the
initial associative coppice Q+ which can be computably constructed as cancelled fractions.

Proof. This is already well-known.

Proposition 50. The only proper factor coppice of Q+ is the trivial coppice.

Proof. Assume we have a coppice C and an epimorphism ϕ : Q+ → C such that there
are different elements p0, q0 ∈ Q+ with p := ϕ(p0) = ϕ(q0) =: q. We can use all laws of
Q+ (as a coppice) in C for the following conclusions.

p = q

choose m0, n0 ∈ N 1 = q/p =: ϕ(n0/m0)

ϕ(m0) = ϕ(n0)

without restriction m0 < n0 m0 + k0 = n0

m := ϕ(m0), k := ϕ(k0) m+ k = m

divide by m 1 + k/m = 1

26

repeated auto application 1 + ik/m = 1 ∀i ∈ ϕ(N)

substitute i by mi 1 + ik = 1 ∀i ∈ ϕ(N)

keep for k0 = 1 otherwise add ϕ(k0 − 1) k + ik = k ∀i ∈ ϕ(N)

k + ik = (i+ 1)k ik = k ∀i ∈ ϕ(N≥2)

divide by k 1 = i ∀i ∈ ϕ(N≥2)

1 = r ∀r ∈ ϕ(Q+) = C

5.2 Division Binary Trees

Definition 23 (B◦). Let B◦ be the initial coppice. Call its elements the division binary
trees.

In search for a normal form we may encounter the possibility to reduce every addition
to multiplication and the (right) addition of 1.

v ⊕ w = (vw∼ ⊕ 1)w

More generally we can even state

Proposition 51. For each group (X, 1, xy, x∼) there is a bijection between all operations
x⊕ y on X for which (X, 1, x⊕ y, xy, x∼) is a coppice and all functions [x] on X.

Proof. Let A be the set of all binary operations a : X ×X → X such that the structure
(X, 1, a(x, y), xy, x∼) is a coppice and let I be the set of all functions i : X → X. We
choose the following two mappings ϕ : I → A and ψ : A→ I given by

iϕ(x, y) := i(xy∼)y,

aψ(x) := a(x, 1).

First we prove that ϕ indeed maps each function i into A, i.e. that the multiplication is
right-distributive over iϕ.

iϕ(x, y)z = (i(xy∼)y)z

= i(xzz∼y∼)(yz)

= i((xz)(yz)∼)(yz)

= iϕ(xz, yz)

To show that ϕ (and ψ) is a bijection it suffices to show that ϕ ◦ ψ = id and ψ ◦ ϕ = id.

(aϕ)ψ(x, y) = iψ(xy∼)y = a(xy∼, 1)y = a(x, y)

(iψ)ϕ(x) = aϕ(x, 1) = aϕ(x1∼, 1)1 = i(x)

27

There is also the other-sided bijection between A and I given by the ϕ′ and ψ′ below.

iϕ
′
(x, y) := i(yx∼)x

aψ
′
(x) := a(1, x)

We favour the original bijection because a(x, a(y, 1)) = a(y, a(x, 1)) for left-commutative
coppices.

So we can present a coppice also by the signature (X, 1, [x], xy, x∼) only requiring
that (X, 1, xy, x∼) is a group. One says that both structures (as varieties) are termwise
definitionally equivalent, or that they have the same clone. This implies for example that
they have the same subalgebras, congruences and homomorphisms.

Definition 24 (additive/incremental coppice). To nevertheless distinguish between
the two, we call the usual coppice with addition an additive coppice and a group equipped
with the increment (X, 1, [x], xy, x∼) an incremental coppice.

Definition 25 (words, letters, W(X), x�y, cW(X)). For a setX and an element x ∈ X
call the syntactic construct [x] and [x]∼ a letter of X. For letters l1, . . . , ln (n ≥ 0) call
the sequence l1 · · · ln a word of X. Let W(X) be the set of words of X. W(X) is equipped
with the empty word 1 (which always belongs to W(X)), the usual concatenation x � y,
and the inversion x∼ : W(X) → W(X) which is defined by

([a])∼ := [a]∼,

([a]∼)∼ := [a],

(w1 · · ·wn)∼ := wn
∼ · · ·w1

∼.

We say a word w1 · · ·wn is cancelled if there is no i ∈ {1, . . . , n− 1} with wi = wi+1
∼, let

cW(X) be the cancelled words of W(X).

Definition 26 (cancelled multiplication xy on cW(X)). We equip cW(X) with the
multiplication xy by concatenation with cancelling: Let v = v1 · · · vm, w = w1 · · ·wn ∈
cW(X), m,n ∈ N0, let k ∈ N0 be the maximal index i ∈ N0 where vm−j+1 = wj

∼ for all
j ≤ i. Then define

vw := v1 · · · vm−k � wk+1 · · ·wn.

Clearly this is a cancelled word and so again element of cW(X).

Proposition 52. (cW(X), 1, xy, x∼) is a group.

Proof. x∼ of W(X) is restrictable to cW(X). It is already well known that cW(X) with
the above operations is the free group generated by X.

Definition 27 (cancelled recursive words B◦
w). Let W0 := ∅ and Wn+1 := cW(Wn),

it is clear by induction that Wn ⊆ Wn+1 (Imagine the Wk as onion with Wi, i < k as
subonions and W1 as core. The application of cW shifts onion i, i ≤ k, to onion i + 1
and a new core appears) and each of the operations x∼ and xy on Wn is the restriction
of the operation on Wn+1. So let B◦

w =
⋃∞
i=1Wn and equip it with the empty word 1, the

increment [x], the multiplication xy and the inversion x∼ inherited from the Wi.

28

As example we explicitly write down

W1 = {1}, W2 = {1} ∪ {[1]n : 1 ≤ n} ∪ {[1]−n : 1 ≤ n}.

Proposition 53 (Theorem). B◦
w ≡ B◦.

Proof. We first see that B◦
w is actually a coppice, because the group properties are in-

herited from the Wi. Because B◦
w is ∅-generated, by proposition 2 we only need to show

that there is a homomorphism ψ : B◦
w → B◦. It is however evident how to define this

homomorphism, namely by

ψ([a]) := [ψ(a)], ψ([a]∼) := [ψ(a)]∼, ψ(w) := Πψ
i (wi).

The constant 1 and [x] are compatible by definition, xy is compatible by equation (4)
and (6) (cancelling), and x∼ by (7).

Proposition 54 (Theorem). B is embeddable into B◦
w.

Proof. We have to show that there is an injective homomorphism ι : B → B◦
w. We define

it recursively by

ι(1) := 1,

ι(aL ⊕ aR) := ι(aL)⊕ ι(aR) := [ι(aL)ι(aR)∼]ι(aR)

compatible with x⊕y. We have to show that ι is injective. To do this we verify that each
ι(a) has only positive letters, and is empty iff a = 1. This is easily done by recursion,
ι(1) = 1 is trivially valid, in the other case

ι(aL ⊕ aR) = ι(aL)⊕ ι(aR)

= [ι(aL)ι(aR)∼]ι(aR)

= [ι(aL)ι(aR)∼] � ι(aR)

6= 1.

By r.h. the right multiplicand ι(aR) consists only of positive letters, so this multiplication
is a simple concatenation and ι(a) again consists of only positive letters. Let us now
finish the proof by showing a = b whenever ι(a) = ι(b). We discern the following cases.

1. a = 1 and b = 1: Then the conclusion a = b is already true.

2. a = aL ⊕ aR and b = 1: then a 6= b and already ι(a) 6= 1 = ι(b).

3. a = 1 and b = bL ⊕ bR: as for the last case.

4. a = aL ⊕ aR and b = bL ⊕ bR: Comparing

[ι(aL)ι(aR)∼] � ι(aR) = [ι(bL)ι(bR)∼] � ι(bR)

yields ι(aR) = ι(bR) and ι(aL)ι(aR)∼ = ι(bL)ι(bR)∼ and hence ι(aL) = ι(bL). By
r.h. aR = bR and aL = bL and hence a = b.

29

Proposition 55 (Power Injectivity). If rn = sn for some r, s ∈ B◦ and n ∈ N then
r = s.

Proof. First let us have a look at cancellation when raising to powers. For example in r2

let p be the elements, which are removed by cancellation, i.e. r = r1 � p and r = p∼ � r2
such that r2 = r1 � r2. The two representations of r can be put into one: r = p∼ � v � p for
some cancelled v. The same holds for rn (with n > 1). So the problem is reduced to

p∼ � v�n � p = rn = sn = q∼ � w�n � q.

Without restriction q is longer than p and so q = a � p for some (possibly empty) a.

p∼ � v�n � p = p∼ � a∼ � w�n � a � p

v�n = a∼ � w�n � a

We show that a is empty (and hence v = w and r = s). If v is longer than a we have
v = a∼ � v1 and v = v2 � a for some words v1 and v2. But this means that v�n was not
cancelled (and it must be cancelled as part of rn) unless a was already empty. Otherwise
a = a1 � v and a∼ = v � a2

∼ for some a1, a2. But this would mean that v = v∼ and hence
v = 1 and a = 1.

5.3 Fractional Trees

Definition 28 (fractional trees F,|x|). Let F be the initial left-commutative coppice.
Let |x| : F → Q+ be the universal epimorphism (because Q+ is also left-commutative).

Because of left-commutativity of F we can use a similar bracket notation as in P, i.e.
write

[a1, . . . , ak] for a1 ⊕ (· · · ⊕ (ak ⊕ 1) · · ·).

As we know from proposition 53 each element of F is equal to a product of (possibly
inverted) terms ri ⊕ 1, or written as [ri] and [ri]

∼ (ri ∈ F). While each element of B◦

has a unique representation as such a reduced product, the elements of F have not. For
example if we apply the left-commutativity

s⊕ (r ⊕ 1) = [r, s] = r ⊕ (s⊕ 1)

s⊕ [r] = r ⊕ [s]

(s[r]∼ ⊕ 1)[r] = (r[s]∼ ⊕ 1)[s]

we get

[s[r]∼][r] = [r[s]∼][s] (8)

If we further multiply with inverses we get (see also proposition 83)

[r][s]∼ = [s[r]∼]∼[r[s]∼]. (9)

Despite the inconspicuous appearance of this formula, it is the key for transforming
expressions into a normal form in F. Equation (9) gives us a way to swap inverses in a

30

word to the left. In a word we can change each sequence of two letters of the form [r][s]∼

into a sequence of the form [r2]
∼[s2].

By repeated application of this change, we can transform each word into the form
[sk]

∼ · · · [s1]
∼[t1] · · · [tl]. By distributivity [s1] · · · [sk] can be written as [u1, . . . , uk], sim-

ilarly for ti. So we finally can write all elements in F as [u1, . . . , uk]
∼[v1, . . . , vl] where

ui, vj ∈ F. So we realise that F consists of (quasi) fractions! From this observation the
name fractional trees is derived.

Proposition 56. For each r ∈ F there are k, l ≥ 0 and a1, . . . , ak, b1, . . . , bl ∈ F such
that r = [a1, . . . , ak]

∼[b1, . . . , bl].

On the other hand it is not always possible to write an r ∈ F as

r = [a1, . . . , ak][b1, . . . , bl]
∼

(ai, bj ∈ F) or swap inverses to the right (see proposition 81).
The next step is to decide whether two fractions are equal. For fractional numbers

one way to do this is by a/b = c/d ⇐⇒ ad = cb. This doesn’t work for fractional trees
because they are not commutative, we perhaps would get b∼a = d∼c ⇐⇒ db∼ = ca∼

which leads to nowhere.
Another possibility is to extend the fractions to share a common denominator and then

to compare the extended nominators. This is indeed also possible for fractional trees and
in some way equivalent to the third possibility: to cancel each and then directly compare
both nominators and denominators, respectively. Though we have to start moderately
by defining the multiset fractions with appropriate operations and congruence on it.

Definition 29 (multiset fractions F(X), lower/upper elements, [x�] 8 [x�], ϕ, x̆,
value). Let (X, 1, [x], xy, x∼) be a left-commutative coppice. Define F(X) as the set of
the (formal) multiset fractions

r :=
[y∗]

[x∗]
,

where x∗, y∗ ∈ X. The brackets as usual denote multisets (i.e. sequences where order does
not matter). We write r� for x∗ and r� for y∗. Call r� the lower elements and r� the upper
elements of the multiset fraction r. We have the value homomorphism ϕ : F(X) → X
defined by

ϕ(r) := [r�]∼[r�]

for all r ∈ F(X). For more readability we write also r̆ for ϕ(r) and for better layout we
also write the multiset fraction r as [x∗]

8 [y∗] inside text.
For convenience we define all multiset operations and relations also for multiset frac-

tions in the natural way (a8b) ~ (c8d) = (a~ c)8(b~ d) and (a8b)R(c8d) ⇐⇒ aRc ∧ bRd.

To become familiar with the new notation let us start with verifying some simple
computation laws.

31

Proposition 57. For all r, s ∈ F(X) the following two rules apply.

r̆∼ = [r�]∼[r�] (10)

r̆s̆ = [s�r̆∼, r�]∼[r�s̆, s�] (11)

Proof. Equation (10) is trivial:

([r�]∼[r�])∼ = [r�]∼[r�]∼∼ = [r�]∼[r�].

To show (11) we use an extended variant of equation (9), let a = [a∗], b = [b∗], a∗, b∗ ∈ F:

ab∼ = [b∗a
∼]∼[a∗, b∗]b

∼ = [b∗a
∼]∼[a∗b

∼]. (12)

The proof is left as an exercise. Then we finish (11) with

r̆s̆ = [r�]∼[r�][s�]∼[s�]

= [r�]∼[s�[r�]∼]∼[r�[s�]∼][s�]

= ([s�[r�]∼][r�])∼[r�[s�]∼][s�]

= [s�[r�]∼[r�], r�]∼[r�[s�]∼[s�], s�]

= [s�r̆∼, r�]∼[r�s̆, s�].

We model coppice operations on F(X) on the previous laws in

Definition 30. On F(X) define:

1 ∈ F(X) [x] : F(X) → F(X) x ∗ y : F(X)× F(X) → F(X) x∼ : F(X) → F(X)

1 :=
[]

[]
[r] :=

[r̆]

[]
r ∗ s :=

[r�s̆, s�]

[s�r̆∼, r�]
r∼ :=

[r�]

[r�]

Proposition 58. ϕ : (F(X), 1, [x], x ∗ y, x∼) → (X, 1, [x], xy, x∼) is a homomorphism.

Proof. ϕ(1) = 1, ϕ[r] = [ϕ(r)], ϕ(r ∗ s) = ϕ(r)ϕ(s) and ϕ(r∼) = ϕ(r)∼ is easily seen by
the previously said.

These operations on F(X) do not constitute a coppice. The only coppice condition
that is not satisfied is r∼ ∗ r = 1 because we have no suitable equivalence defined. We
will do that after verifying the other coppice conditions.

Proposition 59. (r ∗ s)∼ = s∼ ∗ r∼ for all s, r ∈ F(X).

Proof.

(r ∗ s)∼ =

(
[r�s̆, s�]

[s�r̆∼, r�]

)∼

=
[s�r̆∼, r�]

[r�s̆, s�]
= s∼ ∗ r∼

Proposition 60 (F(X) Associativity). (r ∗ s) ∗ t = r ∗ (s ∗ t) for all r, s, t ∈ F(X).

32

Proof.

(r ∗ s) ∗ t =
[r�s̆, s�]

[s�r̆∼, r�]
∗ t

=
[(r�s̆)t̆, s�t̆, t�]

[t�(r̆s̆)∼, s�r̆∼, r�]

=
[r�(s̆t̆), s�t̆, t�]

[(t�s̆∼)r̆∼, s�r̆∼, r�]

= r ∗
[s�t̆, t�]

[t�s̆∼, s�]
= r ∗ (s ∗ t)

Proposition 61 (F(X) Left-Commutativity). r⊕ (s⊕ t) = s⊕ (r⊕ t) for all r, s, t ∈
F(X), where r ⊕ s := [r ∗ s∼] ∗ s.

Proof. For easier verification we first calculate the defining term of x ⊕ y as a multiset
fraction.

r ⊕ s =
[r̆s̆∼]

[]
∗ s =

[r̆, s�]

[s�[r̆s̆∼]∼]

And now we apply it twice to the ternary term.

r ⊕ (s⊕ t) = r ⊕
[s̆, t�][

t�
[
s̆t̆∼
]∼]

=
[r̆, s̆, t�][

t�
[
s̆t̆∼
]∼[

r̆
([
s̆t̆∼
]
t̆
)∼]∼]

=
[r̆, s̆, t�][

t�
[
s̆t̆∼
]∼[

r̆t̆∼
[
s̆t̆∼
]∼]∼]

=
[r̆, s̆, t�][

t�
([
r̆t̆∼
[
s̆t̆∼
]∼] [

s̆t̆∼
])∼]

=
[r̆, s̆, t�][

t�
[
r̆t̆∼, s̆t̆∼

]∼]
The last term is symmetric in r, s.

Let us now have a look at the equality of fractions with respect to their value. As we
already saw, there are fractions with equal value, that are not equal as multiset fractions
(for example 1 6= r∼ ∗ r but 1 = r̆∼r̆ = ϕ(r∼ ∗ r)). Let us have a look at this issue. Let
r̆ = s̆ (r, s ∈ F(X)), then

1 = r̆∼s̆ = ϕ (r∼ ∗ s) = ϕ
[r�s̆, s�]

[s�r̆, r�]
= [s�r̆, r�]∼[r�s̆, s�]

⇐⇒ [s�r̆, r�] = [r�s̆, s�].

33

Before continuing let us mention that this result can also be achieved by extending r and
s to get a common denominator.

[r�]∼[r�] = [r�]∼[s�[r�]∼]∼[s�[r�]∼][r�]

= ([s�[r�]∼][r�])∼[s�[r�]∼[r�], r�]

r̆ = [s�, r�]∼[s�r̆, r�]

s̆ = [r�, s�]∼[r�s̆, s�]

If now r̆ = s̆ then the nominators must be equal:

[s�r̆, r�] = [r�s̆, s�].

Under the slight assumption (though we can not show it before proposition 67) that both
sides must then be equal as multisets, there are 4 cases of element equality:

1. r� = s�.

2. r� = r�s̆. It is equivalent to r�∼r� = s̆.

3. s�r̆ = s�. It is equivalent to s�∼s� = r̆.

4. s�r̆ = r�s̆. It is equivalent to s� = r�.

If we remove the equal pairs of case 4 and case 1, there must be a multiset bijection
between the remaining r� and r� satisfying case 2, and a multiset bijection between the
remaining s� and s� satisfying case 3. In other words: between the lower and upper
elements of r \ s there must be a multiset bijection satisfying case 2, and with s \ r
correspondingly. This motivates the next definition.

Definition 31 (x-distant, B, '). Call r ∈ F(X) u-distant (u ∈ X) — symbolic r B u
— iff [r�u] = [r�]. (By definition the empty multiset fraction 1 is u-distant for every
u ∈ X). For r, s ∈ F(X) define r ' s as r̆ = s̆ =: u and s \ r and r \ s are u-distant.

r B u induces a multiset bijection δ : [r�] → [r�] with x∼y = u for all (x, y) ∈ δ,
we say r B u via δ. For convenience we define mixed set operations between multiset
fractions and multiset bijections by first converting each multiset bijection δ : [a∗] → [b∗]
to the multiset fraction [a∗]

8 [b∗].

Note, that from the conventions chapter we will regard a multiset bijection δ between
multisets a and b as a bijection between σ(a) and σ(b). Which in turn is equivalent to
regarding δ as a multiset of pairs (x, y) such that a = [π1(δ∗)] and b = [π2(δ∗)]. (π1 and
π2 are the projections defined by π1((x, y)) = x and π2((x, y)) = y.)

Proposition 62. If r and s are u-distant then r ∩ s, r ∪ s and r \ s are also u-distant.

Proof. Because f(x) := xu is a bijection onX the multiplicities in a multiset are preserved
under applying f to the elements, i.e. for a∗ ∈ X:

[a∗u]
χ(x) = [a∗]

χ(xu∼) for all x ∈ X.

34

Further we derive

[a∗u] ∩ [b∗u] = [(a ∩ b)∗u], [a∗u] ∪ [b∗u] = [(a ∪ b)∗u], [a∗u] \ [b∗u] = [(a \ b)∗u]

by

([a∗u] ∩ [b∗u])
χ(x) = min{[a∗u]χ(x), [b∗u]χ(x)}

= min{[a∗]χ(xu∼), [b∗]
χ(xu∼)}

= (a ∩ b)χ(xu∼)

= [(a ∩ b)∗u]χ(x),

([a∗u] ∪ [b∗u])
χ(x) = max{[a∗u]χ(x), [b∗u]χ(x)}

= max{[a∗]χ(xu∼), [b∗]
χ(xu∼)}

= (a ∪ b)χ(xu∼)

= [(a ∪ b)∗u]χ(x),

and

(a \ b)χ(x) = (a \◦ (a ∩ b))χ(x) = aχ(x)− (a ∩ b)χ(x).

Hence for © being any of the 3 operations we get

[(r© s)�u] = [r�u]© [s�u] = [r�]© [s�] = [(r© s)�].

Proposition 63. x ' y is an equivalence relation on F(X).

Proof. That r ' r and (r ' s ⇐⇒ s ' r) are trivial. We show transitivity (r ' s∧ s '
t =⇒ r ' t for all r, s, t ∈ F(X)). From r ' s and s ' t we conclude r̆ = s̆ = t̆ =: u.
Then r \ s, s \ r, t \ s and s \ t are each u-distant and so are both the following terms.

r \ t = ((r \ s) \ (t \ s)) ∪ ((s \ t) \ (s \ r)) B u

t \ r = ((t \ s) \ (r \ s)) ∪ ((s \ r) \ (s \ t)) B u

Proposition 64. x ' y is a congruence relation on F(X).

Proof. We have to show the compatibility with the 4 operations 1, [x], x∼ and x ∗ y. For
the constant 1 is nothing to show, [r′] = [r] holds trivially for r′ ' r. Let now r ' r′ by
r̆ = r̆′ =: u, r \ r′ B u, r′ \ r B u. From x B u ⇐⇒ x∼ B u∼ for arbitrary x follows
r∼ ' r′∼ by substituting x with r \ r′ and r′ \ r.

At last we show the compatibility of x∗y. It suffices to show r∗s ' r′ ∗s for arbitrary
s, because the left-compatibility follows then from s∗r = (r∼ ∗ s∼)∼ ' (r′∼ ∗ s∼)∼ = s∗r′
(by proposition 59).

r ∗ s \ r′ ∗ s =
[r�s̆, s�]

[s�u∼, r�]
\

[r′�s̆, s�]

[s�u∼, r′�]
=

[(r \ r′)�s̆]
[(r \ r′)�]

B us̆

Similarly r′ ∗ s \ r ∗ s B us̆ yields r ∗ s ' r′ ∗ s.

35

Proposition 65. F(X)/' is an lc-coppice.

Proof. Associativity and left-commutativity are already shown (in proposition 60 and
proposition 61) even with x = y instead of x ' y; 1 ∗ r = r is trivial. Mainly we have to
show that r∼ ∗ r ' 1 (this was the equation for which we defined x ' y):

1 '
[r�r̆, r�]

[r�r̆, r�]
.

The bijection between the lower and upper elements is obvious and it is always guaranteed
that r�i

∼r�i = 1 and (r�j r̆)
∼r�j r̆ = 1.

Proposition 66 (Theorem). F ≡ F(F)/'.

Proof. By proposition 2 we only need to show that there is a homomorphism F(F)/' → F.
But x ' y has additional requirements to ϕ(x) = ϕ(y) (i.e. possibly more pairs are
unequal). So ϕ/' is the searched for homomorphism.

Proposition 67 (Corollary). If [a∗] and [b∗] (a∗, b∗ ∈ F) are equal as elements of F
then they are equal as multisets. Particularly if [v] = [w] then v = w for all v, w ∈ F.

Proof. Let r := [] 8 [a∗] and s := [] 8 [b∗] then equality as elements of F means r̆ = s̆ =: u.
By proposition 66 we know that then r \ s, s \ r B u. Unfortunately neither r \ s nor s \ r
contains any pairs, so they must be empty. Hence r = s.

We are on the way to a cancel concept for F, i.e. is there a unique smallest subfraction
s ⊆ t ∈ F(F) with s ' t? Let us first have a look at the opposite direction, how we can
expand a fraction (without changing its value).

Proposition 68 (Fraction Expansion).

v∼w = [a∗]
∼[b∗] =⇒ v∼w = [v, a∗]

∼[w, b∗]

for elements v, w, a∗, b∗ of an lc-coppice.

Proof. Consider [u, c∗] for some lc-coppice elements u, c∗. By (8) we can “pull out” u to
the left:

[u, c∗] = [uc∼]c

and apply this to [v, a∗] and [w, b∗]:

[v, a∗]
∼[w, b∗] = ([va∼]a)∼([wb∼]b)

= a∼[va∼]∼[wb∼]b.

The middle two elements vanish because from the precondition we conclude:

v∼w = a∼b

w = va∼b

wb∼ = va∼.

So finally

[v, a∗]
∼[w, b∗] = a∼b = v∼w.

36

Definition 32 (removable, remove, added, reduced, cF(X)). We call (v, w) ∈
X × X a removable pair in t ∈ F(X), or say that (v, w) can be removed from t, iff
removing the pair keeps the value of the fraction, i.e. iff ϕ(t) = ϕ(t \◦ [v] 8 [w]). We call
(v, w) ∈ X × X an added pair in t ∈ F(X), iff it was added by fraction expansion, i.e.
iff v∼w = ϕ(t \◦ [v] 8 [w]). We call t ∈ F(X) reduced iff there are no added pairs in t. Let
cF(X) be the reduced elements of F(X).

First we see directly from proposition 68 that every added pair is also a removable
pair (whether every removable pair is also an added pair will be answered for X = F in
proposition 69.), i.e. if we have any multiset fraction r we can remove any added pair
(r�i, r�j). So we can always remove added pairs until the fraction is reduced. The problem
we will solve next is whether the result reduced fraction depends on which added pairs
and in which order we remove, and whether we can remove several added pairs at once.
For example assume we have 2 added pairs in [a∗]

8 [b∗]:

a1
∼b1 = (a \◦ [a1])

∼(b \◦ [b1]),

a2
∼b2 = (a \◦ [a2])

∼(b \◦ [b2]).

Now it would be nice to know that (a2, b2) is also an added pair in (a \◦ [a1])
∼(b\◦ [b1]) and

(a1, b1) an added pair in (a \◦ [a2])
∼(b\◦ [b2]). So that we can remove both pairs regardless

of the starting pair and have a1
∼b1 = a2

∼b2 = (a \◦ [a1, a2])
∼(b \◦ [b1, b2]). Because — the

other way around — if we had that

a1
∼b1 = a2

∼b2 = (a \◦ [a1, a2])
∼(b \◦ [b1, b2])

then already (a1, b1) and (a2, b2) would be added pairs in [a∗]
8 [b∗] (see proposition 70).

This possibility to remove added pairs of t in any order from t could be achieved by the
opposite direction of the fraction expansion (which we thats why call cancellativeness):

v∼w = [v, a∗]
∼[w, b∗] =⇒ v∼w = [a∗]

∼[b∗]. (13)

As property of a left-commutative coppice it is by the way equivalent to the injectivity
of 1 ⊕ x and the left-cancellativeness of the addition (see proposition 84). So the name
“cancellativeness” has by incidence a twofold meaning here.

Proposition 69 (Remark). For each fraction t of F(F) every removable pair is also an
added pair.

Proof. Consider a removable pair (v, w) of t = [v, a∗]
8 [w, b∗]. We have the following

equivalences, where the first line depicts the pair as removable and the last line as added.

[v, a∗]
∼[w, b∗] = [a∗]

∼[b∗]

a∼[va∼]∼[wb∼]b = a∼b

[va∼]∼[wb∼] = 1

[va∼] = [wb∼]

va∼ = wb∼ (by proposition 67)

a∼b = v∼w

37

Proposition 70. If r \◦ s B s̆ via δ then all (v, w) ∈ δ are added pairs in r.

Proof. Consecutively adding pairs of δ to s keeps the value of s unchanged (by fraction
expansion proposition 68). For a fixed pair (v, w) ∈ δ we simply consecutively add all
the other pairs of δ to s:

v∼w = s̆ = ϕ(s] (δ \◦ {(v, w)})) = ϕ(r \ [v] 8 [w]).

The following definition and intermediate properties are slightly customised for use
in our main theorem proposition 75, that F is cancellative.

Definition 33 (cancellative). We call a pair (v, w) ∈ X × X of an lc-coppice X
cancellative iff it satisfies (13) for all a∗, b∗ ∈ X. We say r ∈ F(X) is cancellative iff every
pair (r�, r�) of r is cancellative. We say the lc-coppice X is cancellative iff every pair of
X is cancellative.

Proposition 71. If r \◦ s B r̆ via δ and all pairs of δ are cancellative then s̆ = r̆, or in
other words: δ can be removed from r (yielding s).

Proof. Let δ := [(a1, b1), . . . , (an, bn)], by induction the pairs (a1, b1), . . . , (ak, bk) ∈ δ
(k < n) are removable from r, then for the next pair (ak+1, bk+1)

ak+1
∼bk+1 = r̆ =

(
r \◦

[b1, . . . , bk]

[a1, . . . , ak]

)ϕ

By cancellativeness (ak+1, bk+1) can be removed from the right side fraction, which means
that [(a1, b1), . . . , (ak+1, bk+1)] can be removed from r.

Proposition 72. If r ' s for two reduced cancellative fractions r, s ∈ cF(X) then r = s.

Proof. Suppose r 6= s. Then r \ s 6= 1 or s \ r 6= 1. Without restriction assume r \ s 6= 1.
Because r \ s B r̆ there is some pair (v, w) ∈ r \ s with v∼w = r̆. The pair (v, w) is added
in r because (v, w) is cancellative. This contradicts r being reduced.

The next proposition looks a bit technical but has a simple motivation. For r, s ∈ F(X)
we know that

r ∗ s =
[r�s̆, s�]

[s�r̆∼, r�]
.

The next proposition states that we can remove any set of pairs (s�ir̆∼, r�j s̆) from r ∗ s
whenever s�i = r�j. So the cancellativeness is already supplied for those pairs, i.e. let
v = s�ir̆∼, w = r�j s̆ in definition 33 and notice that v∼w = (r ∗ s)ϕ. For simpler later
use we regard r∼ ∗ s instead of r ∗ s.

Proposition 73 (Lemma).

If r =
[r′�]

[a∗, r′�]
and s =

[s′�]

[a∗, s′�]
then r̆∼s̆ =

(
(r∼ ∗ s) \◦

[a∗s̆]

[a∗r̆]

)ϕ

for all r′, s′ ∈ F(X) and a∗ ∈ X.

38

Proof.

r̆∼s̆ = [r�]∼[r�][s�]∼[s�]

= [r�]∼[r′�a∼]aa∼[s′�a∼]
∼
[s�]

= [r�]∼[r′�a∼][s′�a∼]
∼
[s�]

= [r�]∼
(

[r′�a∼]

[]
∗

[]

[s′�a∼]

)ϕ

[s�]

= [r�]∼
(

[r′�a∼[s′�a∼]∼]

[s′�a∼[r′�a∼]∼]

)ϕ

[s�]

= [r�]∼
(

[r′�([s′�a∼]a)∼]

[s′�([r′�a∼]a)∼]

)ϕ

[s�]

= [r�]∼
(

[r′�[s�]∼]

[s′�[r�]∼]

)ϕ

[s�]

= ϕ
[r′�[s�]∼[s�], s�]

[s′�[r�]∼[r�], r�]

= ϕ
[r′�s̆, s�]

[s′�r̆, r�]

=

(
(r∼ ∗ s) \◦

[a∗s̆]

[a∗r̆]

)ϕ

Definition 34 (tree fractions F ∗, recursively reduced, cF ∗, ϕ, ϕ′, n). Let F ∗ be the
smallest set that for each a1, . . . , ak, b1, . . . , bl ∈ F ∗ (k, l ∈ N0) contains also the multiset
fraction [a1, . . . , ak]

8 [b1, . . . , bl]. Call its elements tree fractions. We define recursively the
following (coppice similar) operations.

1 :=
[]

[]
a∼ :=

[a�]

[a�]
a ∗ b :=

[a� ∗ b, a�]
[b� ∗ a∼, a�]

a� b := [a ∗ b∼] ∗ b

Define the value functions ϕ : F ∗ → F and ϕ′ : F ∗ → F(F) recursively by

ϕ
[r�]

[r�]
:= [ϕ(r�)]∼[ϕ(r�)], ϕ′

[r�]

[r�]
:=

[ϕ(r�)]

[ϕ(r�)]
.

Call r ∈ F ∗ recursively reduced iff ϕ′(r) is reduced and all r� and r� are recursively
reduced. Let cF ∗ be the recursively reduced elements r of F ∗. For recursion define the
following natural value function n: F ∗ → N recursively by

n(r) := 1 +
∑

n(r�) +
∑

n(r�).

Proposition 74. ϕ : F ∗ → F is surjective.

39

Proof. Let G ⊂ F ∗ be the subset which is generated from ∅ by the operations 1, x�y, x∗
y, x∼ of F ∗. Then ϕ : G→ F is surjective because F is also only generated by ∅. And so
ϕ : F ∗ → F is surjective.

Proposition 75 (Theorem). F is cancellative.

Proof. We prove the proposition by recursion over r, s ∈ F ∗ that for v := ϕ(r) and
w := ϕ(s)

v∼w = [v, t�]∼[w, t�] =⇒ v∼w = [t�]∼[t�]

for every t ∈ F(F), i.e. that (v, w) is cancellative. Because ϕ : F ∗ → F is surjective
it is then proven for all elements of F. For convenience write v� for ϕ(r�) and v̀ for
[ϕ(r�)] 8 [ϕ(r�)] and correspondingly for w and s. We already know that F ≡ F(F)/' (was
proposition 66), so the following statement is equivalent to the above.

v̀∼ ∗ ẁ '
[w, t�]

[v, t�]
=⇒ v̀∼ ∗ ẁ '

[t�]

[t�]

We assume that the claim was already shown for all elements r2, s2 ∈ F ∗ with n(r2) +
n(s2) < n(r) + n(s). We can further assume that r and s are recursively reduced.
Otherwise we simply remove an added pair from (a subelement of) r yielding r2 with
ϕ(r) = ϕ(r2) and n(r2) < n(r). By r.h. then the claim is already shown (s respectively).
Let us start by expanding the precondition:

[v�w,w�]

[w�v, v�]
'

[w, t�]

[v, t�]
.

For each lower fraction element x on the left side that is not equal to a lower fraction
element on the right side, there must be an upper element y on the left side such that
x∼y = ϕ(v̀∼ ∗ ẁ) = v∼w (and similar for an upper fraction element y on the left side) by
definition 31. There are 4 cases of such x and y:

1. x = v�i and y = w�j, then by r.h. (v�i, w�j) is cancellative.

2. x = v�i and y = v�jw, then

v∼w = x∼y = v�i
∼v�jw,

v∼ = v�i
∼v�j,

v = v�j
∼v�i.

And by r.h. this means that v̀ was not reduced (in contradiction to our assumption).

3. x = w�iv and y = w�j, similar to the previous case.

4. x = w�iv and y = v�jw, then:

v∼w = x∼y = v∼w�i
∼v�jw,

1 = w�i
∼v�j,

w�i = v�j.

Some such (w�iv, v�jw) can then be removed from v̀∼ ∗ ẁ by proposition 73.

40

Let now q := [v, t�] 8 [w, t�] be the right side and let (v̀∼ ∗ ẁ) \ q B v∼w via δ. We have
shown that δ can be split into δ1 (according to case 1) and δ4 (according to case 4). And
that v∼w = (v̀∼ ∗ ẁ \◦ δ4)ϕ by proposition 73. By cancellativeness of δ1 and proposition
71 we can remove the pairs of δ1 from (v̀∼ ∗ ẁ) \ δ4, i.e. v∼w = p̆ where p := v̀∼ ∗ ẁ \◦ δ.
p is the common part of v̀∼ ∗ ẁ and q.

q \◦ p B v∼w = p̆

Therefore if [v] 8 [w]∩(q\◦p) 6= 1 then already (by proposition 62) [v] 8 [w] ⊆ q\◦p, resulting
(by proposition 70) in (v, w) being an added and so a removable pair in q (that was to
be proved).

If otherwise

[w]

[v]
⊆ p ⊆

[v�w,w�]

[w�v, v�]

then for w there are two possibilities, either w = v�w or w = w� (for some v� or w�,
respectively). If w = w�i then ẁ ' ẁ�i. Because ẁ�i and ẁ are reduced and since by r.h.
they are both cancellative we get by proposition 72 that ẁ = ẁ�i and by repetition even
s = s�i. But s ∈ F ∗ can not be an element of itself. So w 6= w� and similarly v 6= v�.

It remains that v = w�iv and w = v�jw for some i and j. But then w�i = 1 = v�j
already and again with the previous arguments

p′ := p \◦
[w]

[v]
= (v̀∼ ∗ ẁ) \◦ (δ4] [(v, w)]) \◦ δ1 ' q,

q \◦ p′ B (p′)ϕ,

[v] 8 [w] ⊆ q \◦ p′

(v, w) is removable in q.

Proposition 76 (Corollary). If ϕ(r) = ϕ(s) and r, s ∈ F ∗ are recursively reduced then
by proposition 72 already r = s.

5.3.1 Deciding Equality in the Fractional Trees

We now construct an algorithm that decides whether ϕ(r) = ϕ(s) for r, s ∈ F ∗. To do
this we first define computable coppice operations on cF ∗. For elements r, s ∈ cF ∗ we
already know that ϕ(r) = ϕ(s) ⇐⇒ r = s. Though we have no algorithm yet to get the
reduced fraction from an arbitrary recursive multiset fraction.

For the sake of precision we first introduce a computable linear order � on F ∗ that
we initially need to define xy. The order merely has to be linear and computable, so we
can choose a kind of lexicographic order, or whatever the reader fancies.

Definition 35 (x ∗ y, x ? y and xy on F ∗). Define the reducing multiplication xy,
the semi-reducing multiplication x ? y and the non-reducing multiplication x ∗ y on F ∗

41

recursively by

r ∗ s :=
[r�s, s�]

[s�r∼, r�]
,

r ? s := r ∗ s \◦
[h∗s]

[h∗r∼]
, where h := [s�] ∩ [r�],

rs := (r ? s) \ t,

where t ⊆ [r�] 8 [s�] is the �-smallest ⊆-maximal subfraction such that there is a multiset
bijection δ : [t�] → [t�] with x∼y = (r ? s) \◦ t for all (x, y) ∈ δ.

The definition is valid because the used terms r�s, s�r∼ and r�∼s� (in x∼y) are all
defined by r.h. We will see later (in the proof of proposition 78) that there is anyway at
most one such non-empty t, so we can drop the usage of � then.

Proposition 77. ϕ(r ? s) = ϕ(r)ϕ(s) and ϕ(rs) = ϕ(r)ϕ(s) for all r, s ∈ F ∗.

Proof. As usual we prove the proposition by recursion over r and s. Let c := [r�] ∩ [s�],
a := [r�] \◦ c and b := [s�] \◦ c then

r̆s̆ =

(
[r�ϕ]

[r�ϕ]
∗

[s�ϕ]

[s�ϕ]

)ϕ

= [s�ϕr̆∼, r�ϕ]∼[r�ϕs̆, s�ϕ]

= [b∗
ϕr̆∼, c∗

ϕr̆∼, r�ϕ]∼[a∗
ϕs̆, c∗

ϕs̆, s�ϕ]

by proposition 73 = [b∗
ϕr̆∼, r�ϕ]∼[a∗

ϕs̆, s�ϕ]

by r.h. = [(b∗r
∼)ϕ, r�ϕ]∼[(a∗s)

ϕ, s�ϕ]

= ϕ(r ? s).

Now consider t and δ in the definition of the reducing multiplication. ϕ′(t) is equidistant
to ϕ(r ? s \◦ t) because ϕ(x∼y) = x̆∼y̆ by r.h.

ϕ′(r ? s \◦ t) = ϕ′(r ? s) \◦ ϕ′(t)
ϕ′(t) B ϕ(ϕ′(r ? s) \◦ ϕ′(t))

By expansion (proposition 68) we can add the valued pairs of δ consecutively to ϕ′(r ?
s) \◦ ϕ′(t), then

ϕ(ϕ′(r ? s)) = ϕ(ϕ′(r ? s) \◦ ϕ′(t)),
r̆s̆ = ϕ(r ? s) = ϕ(ϕ′(r ? s \◦ t)) = ϕ(r ? s \◦ t) = ϕ(rs).

Proposition 78. If r, s ∈ F ∗ are recursively reduced then rs is also recursively reduced.

Proof. The elements r�s and s�r∼ of rs are by r.h. recursively reduced, so all elements
of rs are recursively reduced and by proposition 76 and proposition 77 we do not need to
care about the application of the value function and can use xy of F instead of xy of F ∗

42

on them (which we will do). Further we are trained enough in the correct application of
the value function so for convenience we omit it also on r or s.

We have to show that ϕ′(rs) is reduced. So let us look out for possibly added pairs
in ϕ′(rs) (that would invalidate it being reduced). By expansion (proposition 68) also
x∼y = rs for an added pair (x, y) in ϕ′(rs). There are again four cases for added pairs
in ϕ′(rs):

1. (s�ir∼, r�js). Then conclude

(s�ir
∼)∼r�js = rs,

rs�i
∼r�js = rs,

s�i
∼r�j = 1,

r�j = s�i.

But all those elements were already removed in x ? y.

2. (s�ir∼, s�j). Then conclude

(s�ir
∼)∼s�j = rs,

rs�i
∼s�j = rs,

s�i
∼s�j = s.

By cancellativeness of F (proposition 75) the pair (s�i, s�j) would be an added pair
of s.

3. (r�i, r�js). Similar to the previous case.

4. (r�i, s�j). Then conclude

r�i
∼s�j = rs = ϕ(ϕ′(r ? s) \◦ ϕ′(t)).

If t was not empty, i.e. there exist x ∈ [r�] and y ∈ [s�] with

x∼y = ϕ′(r ? s) \◦ ϕ′(t),

then by r.h. the left side is reduced and so must be the right side. But by cancella-
tiveness of F (proposition 75) (r�i, s�j) would be an added pair of the right side. If
otherwise t was the empty fraction,

r�i
∼s�j = ϕ(ϕ′(r ? s)) (14)

consider all added pairs in ϕ′(r?s), i.e. the pairs that satisfy (14), and put them in δ′

(we know that two of those pairs are either completely equal or both pair elements
differ, so δ′ is a multiset bijection too) and t′ respectively. By cancellativeness

x∼y = ϕ(ϕ′(r ? s) \◦ ϕ′(t′))

for all (x, y) ∈ δ′. The term ϕ′(r ? s) \◦ ϕ′(t′) is then reduced (the added pairs of
both possible cases are removed), so

x∼y = ϕ′(r ? s) \◦ ϕ′(t′)

for all (x, y) ∈ δ′ 6= ∅. The empty t was not ⊆-maximal.

43

Proposition 79 (Theorem). The reducing multiplication xy is an operation on cF ∗

and
(cF ∗, 1, [x], xy, x∼) ≡ F.

Proposition 80 (Corollary). The outcome of the reducing multiplication xy does not
depend on the initially chosen linear order �.

With this knowledge we can define a cancel function c : F ∗ → cF ∗

c(r) :=
[]

[c(r�)]

[c(r�)]

[]
.

We can see by simple recursion with the previous propositions, that it keeps the values
(as expected of a cancel function).

Proposition 81 (Remark). There are elements v, w ∈ F such that [v]∼[w] 6= [a∗][b∗]
∼

for any a∗, b∗ ∈ F. Moreover any elements v, w with |v| 6= |w| and |v| |w| ≥ 1 satisfy this
property.

Proof. Assume there are b∗, a∗ ∈ F with r̆ = ab∼, by proposition 66:

[w]

[v]
'

[a∗b
∼]

[b∗a∼]
.

We first see that v∼w 6= [v]∼[w] because otherwise |w| / |v| = (|w| + 1)/(|v| + 1) and
so |v| = |w|. Without restriction suppose a1b

∼ = w, b1a
∼ = v. The remaining right

fraction must be equidistant to ab∼ what in turn means that a \◦ [a1] = b \◦ [b1] =: c by
the definition of reducing multiplication.

b = [b1, c∗] = [va, c∗] = [v[wb, c∗], c∗]

|b| = |v| (|w| |b|+ |c|) + |c| = |v| |w| |b|+ |v| |c|+ |c|
(1− |v| |w|) |b| = |v| |c|+ |c|

Because |b| , |v| and |c| are always positive this is a contradiction.

Proposition 82 (Embeddability). We can embed P into F.

Proof. We simply can embed PR into cF ∗ via the homomorphism ι([a∗]) := [] 8 [ι(a∗)].
Because there is no denominator the fraction is always reduced and so ι is injective.

On the other hand we could have shown the embeddability long before the construction
of cF ∗ by using the power-inverse-iterated functions P◦I . We already know that P can be
embedded into P◦I , say via ι, (though we still not know whether P◦I ≡ F), we know that
P◦I is a ∅-generated coppice, and that we have a homomorphism α : P → F.

F
ϕ

��
P ι //

α

??��������
P◦I

Because ϕ ◦ α = ι is injective, also α is injective.

Conjecture 4 (difficult). The function x 7→ xn on F is injective for each n ∈ N.

44

5.4 Miscellaneous Observations on Coppices

Proposition 83 (Left-Commutativity). For a coppice X the respectively all-quantified
equations

x⊕ (y ⊕ z) = y ⊕ (x⊕ z),

[x][y]∼ = [y[x]∼]∼[x[y]∼]

are equivalent (where [x] := x⊕1 denotes the corresponding increment function). It shows
that equation (9) is also sufficient for left-commutativity.

Proof.

x⊕ (y ⊕ z) = [x(y ⊕ z)∼](y ⊕ z) = [xz∼[yz∼]∼][yz∼]z

and so left-commutativity will be expressed in terms of [x] by the following equivalences.

[xz∼[yz∼]∼][yz∼]z = [yz∼[xz∼]∼][xz∼]z

[xz∼[yz∼]∼][yz∼] = [yz∼[xz∼]∼][xz∼]

[x[y]∼][y] = [y[x]∼][x]

[y][x]∼ = [x[y]∼]∼[y[x]∼]

Proposition 84 (Cancellativeness). For an lc-coppice having one of the following
(respectively all-quantified) properties implies having all of the properties.

r ⊕ x = r ⊕ y =⇒ x = y (15)

1⊕ x = 1⊕ y =⇒ x = y (16)

x∼y = (x⊕ r)∼(y ⊕ s) =⇒ x∼y = r∼s (17)

x∼y = [x, a∗]
∼[y, b∗] =⇒ x∼y = a∼b (18)

An lc-coppice having (one of) these properties is called cancellative.

Proof. (15)=⇒(16) is a specialisation. For (16)=⇒(17) we make the following implica-
tions.

x∼y = (x⊕ r)∼(y ⊕ s)

(x⊕ r)x∼ = (y ⊕ s)y∼

1⊕ rx∼ = 1⊕ sy∼

rx∼ = sy∼

x∼y = r∼s

The implication (17)=⇒(18) is again a specialisation. For (18)=⇒(15) we make the
following conclusions.

r ⊕ x = r ⊕ y

[rx∼]x = [ry∼]y

xy∼ = [rx∼]∼[ry∼]

(rx∼)∼(ry∼) = [rx∼]∼[ry∼]

(rx∼)∼(ry∼) = 1

x = y

45

Proposition 85 (Corollary). P◦I is cancellative.

Proof. We simply verify equation (16). For f, g ∈ P◦I

f id = gid g>0
=⇒

(
f

g

)id

= 1
id>0
=⇒ f

g
= 1 =⇒ f = g.

Another example for a cancellative lc-coppice is Q+ and the trivial coppice.

Conjecture 5. All finite lc-coppices are cancellative.

Conjecture 6 (straight). There are non-cancellative lc-coppices.

Proposition 86. (y ⊕ r)x∼ = (x ⊕ r)y∼ =⇒ y = x for all elements x, y, r of a left-
commutative coppice.

Proof. We make the following conclusions.

(y ⊕ r)x∼ = (x⊕ r)y∼

(y ⊕ r)x∼ = xy∼ ⊕ ry∼

1⊕ (y ⊕ r)x∼ = 1⊕ (xy∼ ⊕ ry∼)

1⊕ (y ⊕ r)x∼ = xy∼ ⊕ (1⊕ ry∼)

1⊕ (y ⊕ r)x∼ = (x⊕ (y ⊕ r))y∼

x⊕ (y ⊕ r) = (x⊕ (y ⊕ r))y∼x

1 = y∼x

y = x

Proposition 87 (General Expansion). x∼y = r∼s =⇒ x∼y = (x⊕ r)∼(y ⊕ s) for all
elements x, y, r, s of an lc-coppice.

Proof.

x∼y = r∼s

rx∼y = s

y ⊕ rx∼y = y ⊕ s

(1⊕ rx∼)y = (y ⊕ s)

(x⊕ r)x∼y = (y ⊕ s)

x∼y = (x⊕ r)∼(y ⊕ s)

46

5.4.1 Prime Factorisation with Non-Reducing Multiplication

This lengthy section is somewhat unconnected to the rest of this work, but at least it
presents some nontrivial results.

Definition 36 (F+, prime, prime factorisation in F ∗). Let F+ be the set of non-
empty nominators of recursive fractions, i.e. F+ consists of all non-empty elements [a∗]
where a∗ ∈ F ∗. We call c ∈ F+ prime iff there are no a, b ∈ F+ such that c = a ∗ b. A
prime factorisation of an r ∈ F ∗ is a sequence of primes p1, . . . , pk ∈ F+ (k ≥ 0) with a

signature ε : {1, . . . , k} → {+1,−1} such that r = p
ε(1)
1 ∗ . . . ∗ pε(k)k .

Proposition 88 (Side Cancel).

r ∗ t = s ∗ t =⇒ r = s

t ∗ r = t ∗ s =⇒ r = s

for all r, s, t ∈ F ∗.

Proof. From the first equation we get:

[r� ∗ t, t�]
[t� ∗ r∼, r�]

=
[s� ∗ t, t�]

[t� ∗ s∼, s�]
,

[r� ∗ t]
[t� ∗ r∼, r�]

=
[s� ∗ t]

[t� ∗ s∼, s�]
.

So by r.h. [r�] = [s�] =: a (by r�i ∗ t = s�j ∗ t =⇒ r�i = s�j). So we obtain

[t� ∗ a∼ ∗ [r�], r�] = [t� ∗ a∼ ∗ [s�], s�]. (19)

If [r�] 6= [s�] then there are i, j such that r�i = t�j ∗ a∼ ∗ [s�] (or t�j ∗ a∼ ∗ [r�] = s�i).
Because of symmetry we only regard the first case. Then

|t� ∗ a∼ ∗ [r�]| ≥ |[r�]| > |r�i| = |t�j ∗ a∼ ∗ [s�]| ≥ |[s�]| > |s�| ,

hence t� ∗ a∼ ∗ [r�] 6= s�, and so [t� ∗ a∼ ∗ [r�]] ⊆ [t� ∗ a∼ ∗ [s�]]. Because they have the
same number of elements we get even [t� ∗a∼ ∗ [r�]] = [t� ∗a∼ ∗ [s�]]. Removing the equal
elements of both sides in (19) yields [r�] = [s�].

The second equation follows from the first by application of (r ∗ t)∼ = t∼ ∗ r∼ and
(r∼)∼ = r.

Proposition 89 (Lemma). For r, s ∈ F ∗ and primes p, q ∈ F+ from each of the
following conditions follows p = q (and r = s by proposition 88).

r ∗ p = s ∗ q (20)

r ∗ p∼ = s ∗ q∼ (21)

p ∗ r = q ∗ s (22)

p∼ ∗ r = q∼ ∗ s (23)

47

Proof. Let us begin with the positive case (20):

[r� ∗ p, p∗]
[r�]

=
[s� ∗ q, q∗]

[s�]
.

If [p∗] 6= [q∗] then there are i, j such that pi = s�j ∗ q. Then

|r� ∗ p| ≥ |p| > |pi| = |s�j ∗ q| ≥ |q| > |q∗| ,

therefore r� ∗ p 6= q∗ and so [r� ∗ p] ⊆ [s� ∗ q]. If [r�] 6= ∅ then there are k, l such that
r�k ∗ q = s�l ∗ p and by r.h. p = q. But if [r�] = ∅ then p = [p∗] = [s� ∗ q, q∗] = [s�] ∗ q. p
being prime implies [s�] = 1 and then p = q.

Then continue with the negative case (21):

[r� ∗ p∼]

[p∗ ∗ r∼, r�]
=

[s� ∗ q∼]

[q∗ ∗ s∼, s�]
.

If [r�] 6= ∅ and [s�] 6= ∅ then there are i, j with r�i ∗ p∼ = s� ∗ q∼ and by r.h. p = q. Say
[r�] = ∅ then [s�] = ∅ too and we have the equation

[p∗ ∗ [r�], r�] = [q∗ ∗ [s�], s�].

By the previous absolute value argument we can assume [p∗ ∗ [r�]] ⊆ [q∗ ∗ [s�]]. Split q
into qA and qB such that:

[q∗] = [qA∗ , q
B
∗], (24)

[p∗ ∗ [r�]] = [qA∗ ∗ [s�]], (25)

[r�] = [qB∗ ∗ [s�], s�]. (26)

We make the following conclusions.

by (26) [r�] = qB ∗ [s�]

into (25) [p∗ ∗ qB ∗ [s�]] = [qA∗ ∗ [s�]]

by proposition 88 [p∗ ∗ qB] = [qA∗]

]qB [p∗ ∗ qB, qB∗] = [q∗]

p ∗ qB = q

by q being prime p = q

The remaining cases (22) and (23) can be derived by the laws (r ∗ s)∼ = s∼ ∗ r∼ and
(r∼)∼ = r.

There is no unique prime factorisation in F ∗, for example:

[a] ∗ [b]∼ = [b ∗ [a]∼]∼ ∗ [a ∗ [b]∼].

(Note that [x] and [y]∼ are prime for each x ∈ F ∗.) But we will see that the prime
factorisations are unique up to this rule. Call this rule pm-swap.

48

Proposition 90 (Unique Prime Factorisation for F+). Each a ∈ F+ ∪ {1} has a
unique prime factorisation.

Proof. Existence: for a = 1 we have the empty sequence, for a being prime we have the
one-element sequence consisting of a, otherwise a = b ∗ c for some b, c ∈ F+. By r.h. b
and c have such a prime factorisation so a has the concatenation.

Uniqueness: All nonempty products can not be 1. So the only prime factorisation
for a = 1 is the empty sequence. Every prime factorisation can not contain a negative
element otherwise the product would have a denominator. So we know that the signature
of each prime factorisation is purely positive. If p1 ∗ · · · ∗ pk = q1 ∗ · · · ∗ qm for prime
factorisations p1, . . . , pk and q1, . . . , qm then by repeated application of (20) we get either
p1 ∗ · · · ∗ pk−m = 1 or 1 = q1 ∗ · · · ∗ qm−k, hence k = m and pi = qi|1≤i≤k.

Proposition 91 (Unique Prime Bifactorisation for F ∗). For each r ∈ F ∗ there are
unique prime sequences p1, . . . , pk, q1, . . . , qm ∈ F+ such that r = q1

∼∗· · ·∗qm∼∗p1∗· · ·∗pk.

Proof. For existence glue together the prime factorisations for [r�] inverted and [r�]. For
uniqueness let

q1
∼ ∗ · · · ∗ qm∼ ∗ p1 ∗ · · · ∗ pk = q′1

∼ ∗ · · · ∗ q′m′
∼ ∗ p′1 ∗ · · · ∗ p′k′

then repeated application of (20) and (23) leads to either

q1
∼ ∗ · · · ∗ qm−m′

∼ ∗ p1 ∗ · · · ∗ pk−k′ = 1 if m ≥ m′, k ≥ k′,

q′1
∼ ∗ · · · ∗ q′m′−m

∼ ∗ p′1 ∗ · · · ∗ p′k′−k = 1 if m′ ≥ m, k′ ≥ k,

q1
∼ ∗ · · · ∗ qm−m′

∼ = p′1 ∗ · · · ∗ p′k′−k if m ≥ m′, k′ ≥ k,

q′1
∼ ∗ · · · ∗ q′m′−m

∼
= p1 ∗ · · · ∗ pk−k′ if m′ ≥ m, k ≥ k′.

We easily verify that in each case already k = k′ and m = m′ have to be satisfied and so
(p1, . . . , pk) = (p′1, . . . , p

′
k′) and (q1, . . . , qm) = (q′1, . . . , q

′
m′).

Proposition 92. Let p, a ∈ F+, if p is prime then [p∗ ∗ a∼] is prime too.

Proof. Otherwise would [p∗ ∗ a∼] = b ∗ q = [b∗ ∗ q, q∗] for some a, q ∈ F+ and prime q
(denominators in multiplicands would lead to a denominator in the product). So we split
p into pA and pB with

pA] pB = p, (27)

[pA∗ ∗ a∼] = [b∗ ∗ q], (28)

[pB∗ ∗ a∼] = q. (29)

Every pA∗ cannot be purely negative because each b∗∗q has a nominator (because q ∈ F+).
Then let di be the last (positive) prime of (the prime bifactorisation of) pA∗ and make the
following conclusions.

pAi = ci ∗ di (30)

into (28) ci ∗ di ∗ a∼ = bi ∗ q (31)

definition of ∗ ci ∗ [a∗ ∗ di∼]∼ ∗ [di∗ ∗ a∼] = bi ∗ q (32)

r.h. and (20) [di∗ ∗ a∼] = q (33)

49

d1 ∗ a∼ = · · · = dk ∗ a∼ (34)

proposition 88 d1 = · · · = dk =: q′ (35)

(35) into (33) [pB∗ ∗ a∼] = q = [q′∗ ∗ a∼] (36)

proposition 88 pB = q′ (37)

(35) into (30) pA = [c∗ ∗ q′] (38)

p = [c∗ ∗ q′, q′∗] = c ∗ q′ (39)

The last line means that p is not prime in contradiction to the assumption.

Proposition 93. Each prime factorisation of an r ∈ F ∗ has the same number of negative
and the same number of positive elements.

Proof. Application of p ∗ q∼ = [q∗ ∗ p∼]∼ ∗ [p∗ ∗ q∼] for primes p and q in a prime factori-
sation of r leads to a prime factorisation with the same number of positive and the same
number of negative elements (by proposition 92). Repeated application transfers each
prime factorisation into the unique prime bifactorisation of r.

Proposition 94. Let p, a ∈ F+, if [p∗ ∗ a∼] is prime then p is prime too.

Proof. Let b = [a∗ ∗ p∼] ∈ F+. The prime factorisations for a and b only contain positive
elements. Then we know that [p∗ ∗ a∼]∼ ∗ b = a ∗ p∼. The prime factorisation of the left
side has exactly one negative element, so the prime factorisation of the right side must
have exactly one negative element. So p must be prime.

Proposition 95. Each prime factorisation of r is already determined by its signature.
So we will also call a signature a prime factorisation.

Proof. This a direct consequence of proposition 89. The last prime elements of the same
sign have to be equal.

Proposition 96 (Unique Maximal Prime Factorisation for F ∗). Order the signa-
tures by lexicographic order. Then each r ∈ F ∗ has a unique signature-maximal prime
factorisation.

Proof. By proposition 95.

The minimal prime factorisation is where all negative signs are to the left, it is the
same as the unique prime bifactorisation.

If we are now looking for a similar prime factorisation for cF ∗ with the cancelled
multiplication xy, then we first observe that the prime elements are singletons, because
every [a, b] = [a[b]∼][b] and so every [a1, . . . , an] is a product of singletons and not even
a unique product because also [a, b] = [b[a]∼][a]. Till now there has not much light been
shone onto the singleton representation of F, i.e. less is known about the congruence
classes of cancelled words representing F. But we know already that there is no unique
maximal prime factorisation by the above said (there are up to n! different singleton
factorisations for [a1, . . . , an]).

We are again interested in swapping negative singletons to the right (which is not
always possible by proposition 81). The question is about swapping a negative singleton
to the right through different presentations (of some [c1, . . . , cn]) as positive singleton
factorisations.

50

Conjecture 7 (straight). Given the following equations (all variables from F)

[x]∼[a1] · · · [an] = [a′1][x1]
∼[a2] · · · [an] = . . . = [a′1] · · · [a′n−1][xn−1]

∼[an] = [a′1] · · · [a′n][xn]
∼

and some [b1] · · · [bn] = [a1] · · · [an] then there exist b′1, . . . , b
′
n satisfying

[x]∼[b1] · · · [bn] = [b′1][y1]
∼[b2] · · · [bn] = . . . = [b′1] · · · [b′n−1][yn−1]

∼[bn] = [b′1] · · · [b′n][yn]
∼

and xn = yn (and hence [b′1] · · · [b′n] = [a′1] · · · [a′n]).

A more general conjecture would arise if we allowed multiple negative singletons that
all become swapped to the right. Whether this is independent of different presentations
(of the negative and of the positive elements) and swapping orders.

6 Order and Topology

6.1 Ordered Trees

The main result of this section is that there are partial orders on B and P that are
compatible with all higher operations (see proposition 106 and proposition 108), but no
such linear orders (proposition 109). We start with considering a natural partial order
on B.

Definition 37 (≤ on B). We define the relation ≤ on B recursively by

1 ≤ 1,

1 ≤ aL ⊕ aR,

aL ⊕ aR 6≤ 1,

aL ⊕ aR ≤ bL ⊕ bR ⇐⇒ aL ≤ bL ∧ aR ≤ bR

for all aL, aR ∈ B.

Proposition 97. a ≤ b in BR iff ai ≤ bi for each index i.

Proposition 98 (Remark). For each a ∈ B there exists n ∈ N, such that a ≤ 2n.
Particularly (B,≤) is directed.

Proof. aL ≤ 2nL , aR ≤ 2nR , then aL ⊕ aR ≤ 2nL ⊕ 2nR ≤ 2m ⊕ 2m = 22m = 2m+1

Proposition 99 (Remark). (B,≤) is a distributive lattice.

Proposition 100 (Remark). ≤ is the smallest x⊕ y-compatible partial order on B for
which holds: 1 ≤ 2.

Proposition 101 (Remark). The order ≤ is left-compatible with the multiplication on
B, i.e ca ≤ cb follows from a ≤ b for each a, b, c ∈ B.

But it is not right-compatible! Not even c ≤ bc and c ≤ 2c are true. As counterex-
ample consider the following. Let c = ((1, 2), 1), then 2c = (((1, 2), 1), ((1, 2), 1)). For
c ≤ 2c must hold (1, 2) ≤ c, hence 2 ≤ 1 which is false.

The question arises whether one can extend the relation ≤ on B, such that it is also
right-compatible with xy.

51

Conjecture 8 (difficult). There is no distributive lattice on B, which is compatible with
x⊕ y and xy.

Definition 38 (≤LR, ≤L, ≤R, ≤X). For a, b ∈ B define (recursively) a ≤LR b as: (at
least) one of the following conditions is valid.

a = 1 and b = 1 (40)

a ≤LR bL (41)

a ≤LR bR (42)

aL ≤LR bL and aR ≤LR bR (43)

Dropping case (41) (and replacing ≤LR by ≤R) we define ≤R and dropping case (42) (and
replacing ≤LR by ≤L) we define ≤L. We write ≤X if the surrounding proposition is valid
for ≤R, ≤L and ≤LR.

Visually you can imagine a ≤L b, a ≤R b, a ≤LR b as that you can repeatedly contract
left/right/left or right edges with attached subtree x in b resulting in a.

s

t

≤L

s
t

x

u u

ts

u

s t

x

u

≤R

Proposition 102 (Remark). ≤X is a partial order.

Proof left to the reader.

Proposition 103. 〈a1, . . . , ak〉 ≤R 〈b1, . . . , bl〉 for a, b ∈ BR holds exactly if there exists
an injective monotonous α : {1, . . . , k} → {1, . . . , l} with ai ≤R bα(i). Call such an α
order assignment.

Proof. In the following we use the abbreviation K := {1, . . . , k} and L := {1, . . . , l}.
Let us first show the “then”, i.e. in each case of definition 38 there exists this order
assignment α. Let it already be shown for a ≤R bR, aL ≤R bL and aR ≤R bR. In case
(40) α is the trivial order assignment ∅ → ∅. In case (42) by recursion we have an order
assignment β : K → L \ {1} and hence an order assignment α : K → L. In case (43)
a1 = aL ≤R bL = b1 and by recursion there is an order assignment β : K \ {1} → L \ {1}.
Then α = {(a1, b1)} ∪ β is also an order assignment.

Now the direction “if”, i.e. if there exists an order assignment α : L→ K then one of
the cases of definition 38 must occur. If a = 1 then occurs case (42) or (40). Otherwise
α(1) must be defined. If α(1) = 1 then β := α \ {(1, 1)} is an order assignment for
aR ≤R bR, by r.h. then case (43) applies. If otherwise α(1) > 1 then by monotony
β := α|K → L \ {1} is an order assignment and by r.h. case (42) applies.

Proposition 104. x ≤X ann x for all x, a ∈ B, n ≥ 2.

Proof. We prove the proposition by induction over n:

52

1. n = 2: Do recursion over a.

(a) a = 1: x ≤X x = 1x.

(b) a 6= 1: Let it be shown for a := aL and a := aR. Then x ≤X a{L,R}x and by
(41) or (42) x ≤X (aLx)⊕ (aRx) = ax.

2. n > 2: Let it be shown for n := n− 1, do recursion over a.

(a) a = 1: x ≤X x = 1 nn x.

(b) a 6= 1: Let it be shown for a := aL and a := aR, then x ≤X aR nn x ≤X

(aL nn x) nn−1 (aR nn x) = ann x.

Proposition 105. x ≤X xa for all x, a ∈ B.

Proof. Recurse over x: for x = 1, 1 ≤X a = 1a. Let x 6= 1 then x = xL ⊕ xR ≤X

(xLa)⊕ (xRa) = xa.

Proposition 106. The partial orders ≤LR,≤L and ≤R are compatible to all operations
x nn y on B .

Proof. We prove the proposition by induction over n. For a ≤X b we show the two
equations

ann x ≤X bnn x, (44)

xnn a ≤X xnn b. (45)

For n = 1 (44) and (45) are clear by (43). Now assume (44) and (45) are already shown
for n := n − 1. We show (44) and then (45). First let us show (45). We recurse over x.
For x = 1 it is clear. For x 6= 1 assume it is already shown for x := xL and x := xR then
by assumption (45) and (44) for n := n− 1:

xnn a = (xL nn a) nn−1 (xR nn a) ≤X (xL nn a) nn−1 (xR nn b)

≤X (xL nn b) nn−1 (xR nn b) = xnn b.

Now let us show (44), we recurse over (a, b).

1. a = 1, b = 1: true by reflexivity.

2. a = 1, b 6= 1: by proposition 104.

3. a 6= 1, b = 1: Because a ≤X b it must a = 1, hence equal to case 1.

4. a 6= 1, b 6= 1: Let it already been shown for (a, b) := (aL, bL), (aR, bR), (a, bL), (a, bR).
We regard the 4 cases for a ≤X b:

(a) a = 1, b = 1: Handled in case 1.

(b) a ≤X bL, we can assume that ≤X is either ≤L or ≤LR:

53

i. n = 2:

ax ≤X bLx ≤L bLx⊕ bRx = bx

ii. n ≥ 3:

ann x ≤X bL nn x

by proposition 14 = Π(bLi nn x) nn−1 x

by proposition 105 and assumption ≤X (Π(bLi nn x)Π(bRi nn x)) nn−1 x

= bnn x

(c) a ≤X bR:

ann x ≤X bR nn x ≤X (bL nn x) nn−1 (bR nn x) = bnn x

by (43) and (42).

(d) aL ≤X bL and aR ≤X bR:

ann x = (aL nn x) nn−1 (aR nn x) ≤X (bL nn x) nn−1 (bR nn x) = bnn x

Now let us look at a natural order of P.

Definition 39 (≤ on P). Define [a1, . . . , ak] ≤ [b1, . . . , bl] as: there exists an injection
α : {1, . . . , k} → {1, . . . , l} so that ai ≤ bα(i) for each 1 ≤ i ≤ k.

We easily verify that this is a partial order. This order is clearly the image of the
order ≤R on BR under π where the order assignment maps to the α of the definition.
Moreover it is the image of the order ≤ on B under π:

Proposition 107. If a ≤ b in B then π(a) ≤ π(b). If p ≤ q in P then there exist a, b ∈ B
so that π(a) = p, π(b) = q and a ≤ b.

Proof. The first part is easy to see: If a ≤ b for a, b ∈ B then by definition also a ≤X b,
particularly a ≤R b and so π(a) ≤ π(b).

For the reverse direction simply sort p and q such that pi ≤ qi for each pi and regard
both sorted multisets as the elements a, b ∈ BR respectively. Then proposition 97 finishes
the proof.

We have the following corollary of ≤ on P being the image of ≤R on B.

Proposition 108 (Theorem). All higher operations xnn y on P are ≤-compatible, i.e.
for each a, b, c, d ∈ B if a ≤ b and c ≤ d then

ann c ≤ bnn d. (46)

This can not happen with a linear order as the following theorem shows. Note that
a strict linear order can only be compatible with injective functions, but x 7→ x ni a is
mostly not injective, so the non-strict case is the interesting one here.

54

Proposition 109. For B and for P there is no linear order that is right-compatible with
each of the operations x n2 y, x n3 y and x n4 y. (Where the order ≤ is said to be
right-compatible with the operation ∗ iff a ≤ b =⇒ a ∗ c ≤ b ∗ c).

Proof. Without restriction assume that 1 ≤ 2. If ≤ is right-compatible with x n2 y —
which is associative — then by repeated multiplication of 2 at the right sides we verify
that 2m ≤ 2m+1 for all m ∈ N. By repetition m ≤ n always implies 2m ≤ 2n. By linearity
we even get the opposite direction

2m ≤ 2n =⇒ m ≤ n. (47)

Because ≤ should be right-compatible with xn3 y too, we have the following conclusions.

a ≤ b

an3 2 ≤ bn3 2

2|a| ≤ 2|b|

|a| ≤ |b|

Now consider the elements a = (1, (1, (1, 1))) ∈ B (a = [1, 1, 1] ∈ P) and b = ((1, 1), 1) ∈ B
(b = [[1]] ∈ P). If a ≤ b then by right-compatibility with x n4 y it must a n4 c ≤ b n4 c
for all c ∈ B (c ∈ P).

an4 c ≤ bn4 c

|an4 c| ≤ |bn4 c|
af′ |c| ≤ bf′ |c|

nn
3 ≤ nn

n

for all n ∈ N

But we know that 223 ≥ 222
and 443 ≤ 444

(same for case b ≤ a).

This result (conferred to coppices) may sound quite unpromising with regard to com-
pletion. But a look at the complex numbers, that are also not multiplicative linearly
orderable, but are complete, relativises this. Though it is not possible to (right) order,
it might be possible that there is a linear left-compatible order on P. This thought is
also supported by the injectivity of the functions x 7→ a ni x. Unfortunately the only
mentioned linear candidate <M does not meet.

Problem 9 (medium). Is there a linear order on P (or B) such that the functions
x 7→ ani x are strictly increasing for each a ∈ P and i ∈ N?

Proposition 110. <M on P is compatible with xy but it is not left-compatible with xn4y.

Proof. Compatibility follows already from the compatibility of <↑ with x ◦ y. We know
that 2n = [2n−1, . . . , 2, 1]. It is easy to see that for each a ∈ P there is an n ∈ N such
that a ≤M 2n. So for a = 1 it is trivial and by induction there is an n′ ∈ N such that
max{a∗} ≤ 2n

′
and so a ≤M 2n

′+1. Let us use the following notation.

n× a := a, . . . , a︸ ︷︷ ︸
n×

55

Then 2n ≤M [n× 1]n for n ≥ 1 by multiplicative compatibility, particularly also [n× 1]n

surpasses every a ∈ P for n → ∞. But then by left-compatibility of x n4 y we would
conclude:

[n× 1] ≤M [2],

2 n4 [n× 1] ≤M 2 n4 [2],

[n× 1]n+1 ≤M [2]3.

6.2 Order and Topology on Coppices

Definition 40 (coppice order, ordered coppice). A coppice order is a strict (unless
stated otherwise) order on a coppice that is compatible with all its operations except
inversion. An ordered coppice is a coppice with a coppice order on it.

It is necessary to indicate whether the incremental or the additive coppice is used. If
no indication is given it is assumed to be an additive coppice.

For example a coppice with [a] = [b] for some a < b can not be strictly ordered but
maybe non-strictly ordered. Conversely every strictly ordered coppice can also be non-
strictly ordered. Let us write down the defining set of conditions for an ordered coppice
(a strict order only needs to satisfy irreflexivity and transitivity):

Proposition 111. C is an ordered incremental coppice exactly if there exists a set P ⊆ C
such that for all a, b ∈ P and all x ∈ C:

a∼ /∈ P (irreflexive) (48)

ab ∈ P (transitive) (49)

[x]∼[ax] ∈ P (incremental compatible) (50)

x∼ax ∈ P (multiplicative compatible) (51)

If additionally either x = 1, x∼ ∈ P or x ∈ P , it describes a linearly ordered coppice.

Proof. The set P describes the set of all elements x > 1. The compatibility conditions
have all the form “for all x, y ∈ C if x < y then T (x) < T (y)” where the term T (x) is
either c ⊕ x, x ⊕ c, cx or xc. This is directly translated into “for all x ∈ C and a ∈ P
is T (x)∼T (ax) ∈ P”. To write out the proof is neither thrilling nor difficult, so we leave
it.

Proposition 112. C is an ordered (additive) coppice exactly if there exists a set P ⊆ C
such that for all a, b ∈ P and all x ∈ C:

a∼ /∈ P (irreflexive) (52)

ab ∈ P (transitive) (53)

[x]∼[ax] ∈ P (right additive compatible) (54)

[ax]∼[x]x∼ax ∈ P (left additive and multiplicative compat.) (55)

where [x] := x⊕ 1 denotes the coppice’s increment.

56

Proof. The schema is the same as in the previous proof. Right additive compatibility is
equivalent to incremental compatibility by the following equivalences.

∀x, y, r x < y =⇒ x⊕ r < y ⊕ r

∀x, y, r x < y =⇒ [xr∼]r < [yr∼]r

∀x, y, r x < y =⇒ [xr∼] < [yr∼]

∀x, y x < y =⇒ [x] < [y]

And left additive compatibility has the following equivalences.

∀x, y, r x < y =⇒ r ⊕ x < r ⊕ y

∀x, y, r x < y =⇒ [rx∼]x < [ry∼]y

∀x, r, a > 1 [rx∼]x < [r(ax)∼]ax

∀x, r, a > 1 [rx∼] < [rx∼a∼]a

∀x, a > 1 [x] < [xa∼]a

∀x, a > 1 1 < [x]∼[xa∼]a

∀x, a > 1 1 < [xa]∼[x]a

Property (55) has the following equivalences (if assuming the other conditions).

x∼ax ∈ P (multiplicative compatible) (56)

[xa]∼[x]a ∈ P (left additive compatible) (57)

We first get (56) by applying (53) on (54) and (55), and then (57) by substituting a :=
xax∼ in (55) where the left hand a is in P whenever the right hand a is in P by (56).
Back substitution implies (55). The other details are left to the reader.

We see that a (additive) coppice order is a specialisation of an incremental coppice
order.

Proposition 113. B◦ and F can be endowed with coppice orders that extend the orders
of B and P respectively.

Proof. Set simply a < b : ⇐⇒ |a| < |b|, where |x| : B◦ → Q+ is the universal coppice
epimorphism, and Q+ is also a factor of F so we also have a unique coppice homomorphism
|x| : F → Q+. And the orders ≤ and ≤X on B and/or P are all compatible with the order
on N, i.e. |x| : B → N and |x| : P → N are order preserving homomorphisms (that are
extended by |x| : B → Q+ and |x| : F → Q+ respectively).

Though what really interests us are orders that induce (non-trivial) Hausdorff topolo-
gies (see proposition 133). For example the above given orders are completely useless
for convergence because ε∼ < a < ε for all ε > 1 would only imply |a| = 1 and not the
needed a = 1. Elements a with ε∼ < a < ε for all ε > 1 are called pseudo units. So
for convergence concerns we would at least demand that the coppice order does not have
pseudo units. We can render this more precisely in the remaining chapter.

57

Definition 41 (coppice topology, topological coppice). A coppice topology is a
topology on a coppice such that all its operations are continuous. A topological coppice
is a coppice with a coppice topology on it. Or in other words it is a topological group
with continuous increment. A Hausdorff coppice is a topological coppice with a Hausdorff
coppice topology on it.

Note, that the definition is independent of using the incremental or additive coppice
notation (definition 24), because continuous operations of continuous operations are again
continuous and x⊕ y = (xy∼ ⊕ 1)y. Interestingly this is different for an ordered coppice.

Let us write down the complete set of requirements for a Hausdorff coppice:

Proposition 114. C is a Hausdorff coppice iff there is a set E of sets of C such that
for each following condition for each U,U ′ ∈ E and each x ∈ C there exist V ∈ E that
satisfies the condition.

V ⊆ U ∩ U ′ (58)

V ∼V ⊆ U (59)

[xV] ⊆ [x]U (60)

x∼V x ⊆ U (61)⋂
E = {1} (62)

Proof. The main idea is that E describes a neighbourhood base of 1 and by continuity of
the multiplication neighbourhoods U of x translate into x∼U being neighbourhood of 1.
For the details regarding a group see [7], Chapter III, §1, no. 2. The condition (60) is a
direct translation of the continuity of the increment.

There is a natural way to achieve a topology from an order. This is by taking the open
intervals around an element p, i.e. the sets {x : a < x < b} for all a, b with a < p < b, as a
neighbourhood base of each point p. Though this topology only exists if the intersection
of two open intervals around p contains again an open interval around p, we can generally
define:

Definition 42 (interval topology, topological order). Call the coarsest topology on
an ordered space, in which each point has at least the it containing open intervals as
neighbourhoods, its interval topology. Call an order topological if its interval topology is
Hausdorff and the open intervals containing a point form a neighbourhood base of that
point.

Proposition 115. For a coppice order the following conditions are sufficient and neces-
sary to be topological. For each following condition for each ε, ε′ > 1 and each coppice
element x there exists δ > 1 that satisfies the condition.

δ ≤ ε, ε′ (63)

δ2 ≤ ε (64)

[xδ] ≤ [x]ε (65)

x∼δx ≤ ε (66)

{e : ∀x > 1 x∼ ≤ e ≤ x} = {1} (contains no pseudo units) (67)

The # marked items are consequences of being a coppice order, i.e. cancelled.

58

Proof. We first show that under condition (63) the intervals (δ∼r, δr), δ > 1, form a
neighbourhood base for each point r in the interval topology. We show that 1. some
interval of the above form is contained in each interval around r and that 2. these
intervals indeed form a neighbourhood base. 1. Let (a, b) an open interval around r,
take now δa := ra∼ > 1 and δb := br∼ and let δ > 1 with δ ≤ δa, δb by (63). Then
(δ∼r, δr) ⊆ (a, b). 2. For each two intervals (δ1

∼r, δ1r) and (δ2
∼r, δ2r), again the interval

(δ∼r, δr) with δ of (63) is contained in the intersection. Conversely (63) follows from the
demand that the intervals containing the point form a neighbourhood base.

The other conditions are simply a translation of the conditions for an Hausdorff topo-
logical coppice (proposition 114) which is given by a neighbourhood base around 1. The
marked lines however do not contribute. For x∼δx ≤ ε we simply choose δ := xεx∼ > 1
by (56) and for [xδ] ≤ [x]ε we simply choose δ := ε by (57).

Compare also [3], 3. for a similar set of conditions for ordered groups.

Now there is a way to generate coppice orders by proposition 112, i.e. we start with
a set P0. And then we add successively the elements mentioned in the conditions of
proposition 112: ab, [x]∼[ax], [ax]∼[x]x∼ax. Now a first question is what set P0 actually
generates an (strict) order, i.e. such that never x together with x∼ is in P .

Definition 43 (positive closure P (x)). For a coppice C and a set P0 ⊆ C define the
positive closure P (P0) to be the smallest set S such that P0 ⊆ S and that for each a, b ∈ S
and each x ∈ C also ab ∈ S and [x]∼[ax] ∈ S and [ax]∼[x]x∼ax ∈ S.

Proposition 116. Let C a coppice with factor Q+ via a homomorphism |x| : C → Q+

and let P0 ⊆ C. If |x| > 1 for each x ∈ P0, then P (P0) is (the set of positive elements
of) a coppice order.

Proof. If |a| , |b| > 1 and |x| arbitrary then it is clear that

|ab| = |a| |b| > 1,

|[x]∼[ax]| = |a| |x|+ 1

|x|+ 1
> 1,

|[ax]∼[x]x∼ax| = |a| (|x|+ 1)

|a| |x|+ 1
> 1.

Suppose now x, x∼ ∈ P (P0) then |x|, |x|−1 > 1 which is a contradiction.

Proposition 117 (Corollary). P (P \ {1}) is a coppice order of F and P (B \ {1}) is a
coppice order of B◦.

Problem 10. Is the coppice order P (P \ {1}) of F topological? Is the coppice order
P (B \ {1}) of B◦ topological? For what initial sets P0 is P (P0) a topological coppice
order?

Proposition 118. P (B \ {1}) = P ({2}) in B◦ and P (P \ {1}) = P ({2}) in F.

Proof. One applies right additive and left additive rule to recursively show that B ⊆
P ({2}) ∪ {1} in B◦ and P ⊆ P ({2}) ∪ {1} in F.

59

Problem 11. Is the coppice order P ({2}) decidable on F?

Proposition 119. Every coppice order is dense.

Proof. The idea is to take the arithmetic mean as in-between-element, so for all coppice
elements a, b we make the following two lines of conclusions.

a < b a < b

a⊕ a < a⊕ b a⊕ b < b⊕ b

2a < a⊕ b a⊕ b < 2b

a < 2∼(a⊕ b) 2∼(a⊕ b) < b

Proposition 120. A linear coppice order is topological.

Proof. (63) is trivially satisfied by letting δ be the smaller element of ε and ε′. There can
also be no pseudo units (67) because a pseudo unit e would be comparable with 1 but
by denseness (proposition 119) there exists x between e and 1 and so e can no more be
a pseudo unit. For a linear coppice order, (67) implies (64): Assume there would be no
δ with δ2 ≤ ε then ε < δ2 for all δ > 1. Fix a δ′, 1 < δ′ < ε, then ε < δδ ≤ δ′δ for all
1 < δ ≤ δ′. Now 1 < δ′∼ε < δ implies δ′∼ε = 1 by (67), but this is a contradiction.

So to create Hausdorff coppice topologies we have two choices, either we generate
some partial order on the coppice and show that the conditions of proposition 115 are
satisfied, or we extend a partial order to a linear coppice order. The last way seems much
more promising. Though we can only presently show that B◦ allows a linear incremental
coppice order (see proposition 123).

Problem 12 (difficult). Does B◦ allow a linear coppice order?

Conjecture 13 (difficult). F allows a linear coppice order.

There may be even the question whether there is only one (up to swapping direction)
linear coppice order on B◦ and F possible. At least this is true for Q+:

Proposition 121 (Remark). Up to swapping order direction there is only one linear
coppice order possible on Q+.

Proof. Because we consider up to swapping order direction, we assume 1 < 2. By additive
compatibility 2 < 3 < 4 < . . . , i.e. on N the order is already determined as the usual
order of N. But then p1/q1 < p2/q2 is equivalent to p1q2 < p2q1 and so the order is
determined on whole Q+.

Problem 14 (difficult). How many linear coppice orders with 1 < 2 are available on
B◦ and on F?

So these are all problems and conjectures, but what we can at least show is that B◦
w

has a linear incremental coppice order. It is already known (first proofs [26] and [17] in
1948) that each free group can be equipped with a linear group ordering. An elegant way
is to do so with the Magnus expansion, which we will use in the next proof.

60

Proposition 122 (Lemma, <µ). To each linear order < on a set X we can assign a
linear order <µ on cW(X) such that

1. a < b ⇐⇒ [a] <µ [b] for all a, b ∈ X

2. <µ is a linear group ordering on cW(X)

3. Let � be the restriction of < to a subset Y ⊆ X. Then �µ is the restriction of <µ

to cW(Y) ⊆ cW(X).

Proof. Let Z[[X]] be the formal power series with non-commuting variables in X. To be
more precise Z[[X]] is the set of functions, mapping each monomial x1 · · ·xn, n ∈ N0,
x1, . . . , xn ∈ X to its integer coefficient. It is equipped with coefficient wise addition, and
multiplication by distribution, i.e. defined by

(α+ β)(x1 · · ·xn) := α(x1 · · ·xn) + β(x1 · · ·xn),

(αβ)(x1 · · ·xn) :=
∑

0≤k<n

α(x1 · · ·xk)β(xk+1 · · ·xn).

Z[[X]] is known to be a ring. Its units are are all α with α(1) 6= 0 (where 1 denotes the
empty monomial). We have then a homomorphism µ : cW(X) → Z[[X]] (the Magnus
expansion) defined by

µ([x1]
ε1 · · · [xn]εn) := (1 + x1)

ε1 · · · (1 + xn)
εn ,

1

1 + x
= 1− x+ x2 − x3 + x4 ± · · · .

We denote the image of µ by Γ(X) which is a multiplicative subgroup of Z[[X]]. It is
well-known that µ is injective and hence a (multiplicative) group isomorphism between
cW(X) and Γ(X).

Further Γ(X) can be linearly ordered in the following way. We first order the mono-
mials by x1 · · ·xm < y1 · · ·xn iff either m < n or for m = n that x1 · · ·xm is lexicographic
greater than y1 · · · yn (using the linear order on X). This twist in the second part assures
condition 1 in the end. Then we know that each power series of Γ(X) contains only
a finite number of variables, so the order on the monomials is a well-order and we can
define α < β as α(M) < β(M) for the smallest monomial M with α(M) 6= β(M), i.e. it
is the lexicographic order on the functions Γ(X). To show that this order is compatible
with the power series multiplication is left to the reader.

Thus we have assigned a linear group order on cW(X) ≡ Γ(X) to each linear order
on X. This satisfies condition 2. Also condition 1 is satisfied: if x1 < x2 in X then the
monomial x1 is greater than the monomial x2 so the minimum of both monomials is x2

and µ(x1)(x2) = 0 < 1 = µ(x2)(x2) in µ(x1) = 1 + x1 and µ(x2) = 1 + x2. Condition 3 is
satisfied because also Γ(X) ⊆ Γ(Y).

Proposition 123. B◦ has a linear incremental coppice order.

Proof. Define the Wi as in definition 27. We equip each Wi with the order <i, where <0

is defined as being the empty order and <i+1 is defined as being <i
µ. By proposition 122

is <i a restriction of <k to Wi for all i < k. Hence we have a linear order on B◦
w = ∪∞i=1Wi

defined by a < b ⇐⇒ a <i b for i being the minimal index such that a, b ∈ Wi. The
reader may verify that this is a linear group ordering on B◦

w and that [a] < [b] for a < b,
a, b ∈ B◦

w.

61

7 Power-Inverse-Iterated Functions

There are two major open questions regarding the power-inverse-iterated functions. We
dedicate this chapter to approach solutions. These questions are

Conjecture 15 (medium). The order <↑ is linear on P◦I .
Conjecture 16 (difficult). P◦I is isomorphic to F.

In the following we assume f ∈ P◦I to be given by a fractional tree and will write that
in a mixed notation:

f =
(
idf�

)−1 ◦ idf� = π
[f�]

[f�]
.

Where the f� and f� are always regarded to be in a product context, i.e. (f�) is short
for Π(f�), and where π : F → P◦I is the universal homomorphism. We only have to be
conscious about that this may not be a unique representation for f ∈ P◦I even if it is
cancelled.

7.1 Regarding Conjecture 15

Proposition 124. The order <↑ on P◦I is linear if and only if the fixed points of every
function f ∈ P◦I have an upper bound.

Proof. f <↑ g ⇐⇒ id <↑ f
−1 ◦ g =: h. Because h is continuous it crosses id every time

it changes from above id to below id and back. So if it does not ultimately decide being
above or below id it has above unbounded fixed points. Otherwise it has ultimately no
more fixed points.

As a specialisation of the more general conjecture 3 we claim

Conjecture 17 (difficult). Every function of P◦I has only a finite number of fixed points.

The way we proved the linearity on PI does not work for P◦I . The lexicographic order
on P that was the major tool to prove PI linearly ordered, is not valid in P◦I for example
consider the power-inverse-iterated function

f := π
[1, 1]

[1]
=
(
idid
)−1 ◦ idid2

.

We first recognise that id < f (where f < g means f(x) < g(x) for all x of their domain)
because we have the equivalence

idid < idid2

⇐⇒ id <
(
idid
)−1 ◦ idid2

.

So f is the maximum element if we compare [1, 1] and [f] element wise. In PI this would
already mean that [1, 1] <↑ [f]. Not so in P◦I , as we see by the following equivalences.

π([f]) < π([1, 1]) = idid2

apply
ln

ln(x)
f < id2

(
idid
)−1 ◦ idid2

< id2

idid2

< idid ◦ id2 = id2 id2

62

If we however consider the order <↑ not heading to ∞ but heading to 1 we succeed in

proving it a linear coppice order.

Definition 44 (<a↓). For functions f, g : (a,∞) → R, a ∈ R, define the relation f <a↓ g
as: there exists a δ > 0 such that f(x) < g(x) for all x ∈ (a, a+ δ).

Proposition 125. For f, g : (a − ε,∞) → R being real analytic, f <a↓ g is equivalent
to f (n)(a) < g(n)(a) for (existing) n being the smallest i ∈ N0 such that f (i)(a) 6= g(i)(a).
Or, in other words, the sequence of derivatives at a of f is lexicographically smaller than
that of g. Hence either f <a↓ g, f = g or g <a↓ f .

Proof. Because the n-th derivative is continuous, f (n)(a) < g(n)(a) implies that there
exists an δ > 0 such that f (n)(x) < g(n)(x) for x ∈ [a, a + δ). But by integrating from a
to x we then get that f (n−1)(x) < g(n−1)(x) for x ∈ (a, a + δ) and so on till f(x) < g(x)
for x ∈ (a, a+ δ). If vice versa f(x) < g(x) already for x ∈ (a, a+ δ) and there would be
no n with f (n)(a) < g(n)(a) then by analyticity f = g. If n exists but f (n)(a) > g(n)(a)
then by the previous consideration would f(x) > g(x) for x ∈ (a, a + δ2). So it must
f (n)(a) < g(n)(a) for some n.

Proposition 126. PI is a by <a↓ linearly ordered coppice for each a ∈ {1} ∪ R>1.

Proof. First we notice that each f ∈ P◦I is real analytic (i.e. its Taylor expansion in
each point has a non-zero radius of convergence and is equal to the function inside that
radius) because it is made up only by composition, inversion and multiplication involving
the base functions exp, ln and id (note that f g = exp ◦((ln ◦f) · g)). The base functions
exp, ln and id are clearly analytic and each composition, inversion and multiplication of
analytic functions is again analytic.

Further note that we can analytically extend the domain of the functions f ∈ P◦I a bit
below 1. One can recursively show the following properties for each f ∈ P◦I : There exists

63

ε > 0 and f̂ : (1− ε, 1 + ε) → R+, with f̂(x) = f(x) for x ∈ (1, 1 + ε), f̂ is real analytic
and f̂ ′(1) = 1. These properties convey from f, g to f ◦ g, to f−1 (by implicit function
theorem) and to f g. By analytic continuation each extension is unique on its domain.

Now linearity is provided by proposition 125. Compatibility with composition is
clear by the direct definition and strict increase of the functions. For additive coppice
compatibility we have to show hf <a↓ h

g and fh <a↓ g
h for f <a↓ g and f, g, h ∈ P◦I .

But these are again clear by the direct definition of <a↓ and the strict increase of the
functions.

Proposition 127 (Corollary). For any f ∈ P◦I there is no accumulation point of its
fixed points except if f = id.

Proof. Because at that accumulation point a neither f <a↓ id nor id <a↓ f .

7.2 Regarding Conjecture 16

Proposition 128. P◦I ≡ F if and only if for every f1, . . . , fm, g1, . . . , gn ∈ P◦I the equation
f1 · · · fm = g1 · · · gn implies m = n and a bijection α : {1, . . . , n} → {1, . . . , n} such that
gi = fα(i) for i = 1, . . . , n.

Proof. Let π : F → P◦I be the universal epimorphism. P◦I ≡ F is equivalent to π(r) =
π(s) =⇒ r = s for every s, t ∈ F, or differently put: π(t) = id =⇒ t = 1 for all t ∈ F.

π(t) = id ⇐⇒ idΠπ(t�) = idΠπ(t�) ⇐⇒ Ππ(t�) = Ππ(t�)

So Ππ(t�) = Ππ(t�) must imply [t�] = [t�] what was the assertion.

The only thing that we can really show is that m = n in the last proposition. This
heavily supports our conjecture. To show m = n let us strike out a bit more. As we
have seen taking the logarithm to base x to show order of elements is a quite natural
transformation. Now there are completely surprising laws for taking logid. Usually these
laws are known from the differentiation of functions!

Proposition 129. For a function f let f ′ := logid f = ln ◦f
ln

then for f, g ∈ P◦I the
following (differentiation type) laws are valid.

id′ = 1 (68)

(f ◦ g)′ = (f ′ ◦ g) · g (69)

(f−1)′ =
1

f ′ ◦ f−1
(70)

(f−1 ◦ g)′ = g′

f ′ ◦ (f−1 ◦ g)
(71)

Proof. (68) is trivial. Then for a usual f ∈ P◦I we conclude(
idf�

)−1 ◦ idf� = f,

idf� =
(
idf�

)
◦ f = f f�◦f =

(
idf

′
)f�◦f

= idf
′·(f�◦f),

f ′ =
f�

f� ◦ f
.

64

For (71) let us continue by applying the multiplication rule of F.

(f−1 ◦ g)′ =
(
id(g�◦f)·f�

)−1

◦
(
id(f�◦g)·g�

)
=

(f� ◦ g) · g�
((g� ◦ f)f�) ◦ f−1 ◦ g

=
(f� ◦ g) · g�

(g� ◦ g) · (f� ◦ f−1 ◦ g)
=

((f� ◦ f) ◦ (f−1 ◦ g)) · g�
(g� ◦ g) · (f� ◦ (f−1 ◦ g))

=
g′

f ′ ◦ (f−1 ◦ g)

The rule (70) is a specialisation and the rule (69) can be derived by:

(f ◦ g)′ =
((
f−1
)−1 ◦ g

)′
=

g′

(f−1)′ ◦ f ◦ g
,

=
g′

1
f ′◦f−1 ◦ f ◦ g

,

= g′ · (f ′ ◦ g).

Proposition 130. For all f ∈ P◦I the function f ′ is : R>1 → R+ and f ′(x) → 1 for
x→ 1.

Proof.

f ′ =
f�

f� ◦ f

Now we know that each f�(x), f�(x), f(x) → 1 for x→ 1 and so does f ′.

Proposition 131 (Corollary). If f1 · · · fm = g1 · · · gn then already m = n for arbitrary
f1, . . . , fm, g1, . . . , gn ∈ PI .

Proof. We apply x′ on both sides and can conclude the following.

f ′1(x) + · · ·+ f ′m(x) = g′1(x) + · · ·+ g′n(x)

f ′1(1) + · · ·+ f ′m(1) = g′1(1) + · · ·+ g′n(1)

m = n

8 Prospects

Having constructed the initial coppices B◦, F and Q+ the next immediate question is
about convergence and completion. There are two candidates for completion, the order
completion and the topological completion (which coincide on R+), see also [3], [27], [20],
[11]. Order completion is roughly taking all supremums and infimums, though there is a
well known statement in order theory (see [15] 9.1.1)

65

Proposition 132. Any order complete directed group is an Archimedian lattice-ordered
group and so commutative.

Without explaining all the details we can say order completion is out of question for
us because the groups we are interested in are not commutative. By the way: an order of
a non-commutative groups can not be integrally closed, i.e. there are always r 6≤ 1 and s
such that rn ≤ s for all n ∈ N.

The topological completion is roughly taking all Cauchy sequences. Uniform structures
arise naturally from the topology of a group. There are the left, the right and the bilateral
uniformity of a topological group. The left uniformity consists of all the entourages W
containing the pairs (x, y) such that x∼y ∈ U for some environment U of 1. Where for
the right uniformity must xy∼ ∈ U and for the bilateral uniformity must x∼y ∈ U and
xy∼ ∈ U .

The most interesting uniformity for us is the bilateral or also called the LR-uniformity
because the following theorem (see [32], theorem 5.9) does neither hold for the left nor
for the right uniformity.

Proposition 133. Each Hausdorff group has a bilateral completion.

Conjecture 18 (straight). Each Hausdorff coppice has a bilateral completion.

We should make a note about the completion of Q+ to R+. As the reader might
already have detected, usually one would regard the completion of Q+ being R+ ∪ {0}
and not R+. But the completion depends on the uniformity. Of course we consider Q+

as being equipped with the interval topology, but we can consider two uniformities on
Q+. The additive uniformity is generated by the entourages

Vε = {(x, y) : − ε < x− y < ε} for ε > 0

and the multiplicative uniformity (which we regard for the topological coppice Q+) is
generated by the entourages

Vε = {(x, y) : 1/ε < x/y < ε} for ε > 1.

The Cauchy completion of the latter is R+, because every sequence converging to zero is
no multiplicative Cauchy sequence (xn/xm becomes arbitrary big for m→∞).

If we now have a non-trivial Hausdorff coppice, then we also have a non-trivial com-
pletion. But what about the higher operations? Our initial idea was to continue the
higher operations.

Definition 45 (n-operations coppice, hypercoppice). A multi-sorted structure H
is called an n-operations coppice, where n ≥ 2 is a natural number or infinity, iff it has
the sorts Hi+1 for 0 ≤ i < n with H := H1 = H2 and Hi ⊆ Hi−1 for i ≥ 3, and has the
operations

1 ∈ H,
x∼ : H → H,

ni : H ×Hi → Hi for each i ≥ 1,

where we write x⊕ y for x n1 y and xy for x n2 y, and it satisfies

66

1. Hi 6= {1} for i ≥ 3 to exclude trivial higher operations.

2. The operations x ni y are related by

(a⊕ b) ni x = (ani x) ni−1 (bni x) (72)

for each a, b ∈ H and x ∈ Hi, i ≥ 2.

3. (H, 1, xy, x∼) is a group and operates on Hi via x ni y for each i ≥ 3, i.e.

1 ni x = x (73)

(ab) ni x = ani (bni x) (74)

for all a, b ∈ H and x ∈ Hi, i ≥ 3.

An ∞-operations coppice is also called hypercoppice. If the operation x ⊕ y has the
property xyz we call it an xyz n-operations coppice. Every coppice can be regarded as
2-operations coppice. We say the n-operations coppice H heightens the m-operations
coppice G iff m < n and xni y is identical on Hi = Gi for i < m. H is called a topological
n-operations coppice iff H is equipped with a topology such that all x ni y and x∼ are
continuous.

Note that an n-operations coppice, n ≥ 3, is not a multi-sorted algebraic structure in
the sense of universal algebra because we have the conditions Hi+1 ⊆ Hi. Particularly
we can not build initial n-operation coppices. The following proposition shows that we
must have at least two non-equal sorts for n ≥ 4. The reason why we can not use just
one sort in a higher operations coppice is similar to why we define xr only for positive x
and why we define P◦I on R>1, i.e. because x2 is not injective on R but on R+ and xx is
not injective on R+ but on R>1.

Proposition 134. There is no 4-operations coppice with H = H3 = H4.

Proof. We show that x 7→ (1⊕ 2) n4 x is not injective over H. It has the same value at
2∼ and 2∼ n3 2∼.

(2∼ n3 x)(2
∼ n3 x) = 2 n3 (2∼ n3 x) = x

(2∼ n3 x) n3 ((2∼ n3 x) n3 y) = ((2∼ n3 x)(2
∼ n3 x)) n3 y = xn3 y

(1⊕ 2) n4 (2∼ n3 2∼) = ((2∼ n3 2∼)(2∼ n3 2∼)) n3 (2∼ n3 2∼)

= 2∼ n3 (2∼ n3 2∼) = (1⊕ 2) n4 2∼

A bit more laxly we can write the previous lines as

(1⊕ 2) n4 (2∼)
1
2 = (2∼)

1
2
(1
2
)
1
2 (1

2
)
1
2 = (2∼)

1
2

1
2 = (1⊕ 2) n4 2∼.

But if we now apply (1⊕ 2)∼n4 on the front of both sides we get 2∼ n3 2∼ = 2∼ then
2∼ = 2∼2∼ then 1 = 2∼ then 1 = 2 then 1 n3 x = 2 n3 x then x = xx then 1 = x then
H4 = {1}.

Though the question remains whether

67

Conjecture 19 (medium). There exists a higher operations coppice with H4 = Hi for
all i ≥ 5.

Conjecture 20 (difficult). B◦ and F can be embedded into a higher operations coppice
(with H4 = Hi for all i ≥ 5).

Conjecture 21 (heavy). There is a topological completion of F, that can be heightened
to a topological higher operations coppice.

Conjecture 22 (straight). The initial mono-sorted (H = H3) associative 3-operations
coppice is isomorphic to the subset of the positive real numbers that is generated by starting
with 1, and taking all sums, products, reciprocals and powers (equipped with xn1y = x+y,
x n2 y = xy, and x n3 y = yx).

Proposition 135. The mono-sorted associative 3-operations coppice (R+, 1,
1
x
, x+y, xy, yx)

can not be heightened.

Proof. Assume we had an element h 6= 1 in H4 then

3 n4 h = (2 + 1) n4 h = h2n4h = hh
h

,

3 n4 h = (1 + 2) n4 h = (2 n4 h)
h = hh

2

,

hh
h

= hh
2 ⇐⇒ hh = h2 ⇐⇒ h = 2.

Now consider

4 n4 2 = ((2 + 1) + 1) n4 2 = 2222

= 224

,

4 n4 2 = (1 + (1 + 2)) n4 2 = 223

.

We see, the study of arborescent numbers opens a rich field for research. These
numbers are always a good deal more complicated than the “associative” numbers, but
it sounds promising being able to perform the major number constructions on them too.
These are the embedding into a division structure — which we showed in this contribution
— and the embedding into topologically complete structures, which awaits investigation.

68

9 Glossary of Special Symbols

B binary trees as initial 1-magma, def. 4, p. 9

BB binary trees as recursive pairs, def. 5, p. 10

BR binary trees as ordered trees, def. 6, p. 10

B◦ division binary trees as initial coppice, def. 23, p. 27

B◦
w division binary trees as cancelled words, def. 27, p. 28

cF(X) cancelled multiset fractions over X, def. 32, p. 37

cW(X) cancelled words over X, the free group over X, def. 25, p. 28

F fractional trees as initial left-commutative coppice, def. 28, p. 30

F(X) multiset fractions over X, def. 29, p. 31

F ∗ recursive fractions, def. 34, p. 39

F+ nominators of recursive fractions, def. 36, p. 47

P left-commutative binary trees, def. 10, p. 13

PI power-iterated functions, def. 15, p. 17

P◦I power-inverse-iterated functions, def. 19, p. 19

U(A), U◦(A) def. 21, p. 21

W(X) words over X, def. 25, p. 28

id the identity function, p. 7

card(x) number of elements in the (multi)set x

n(x) a number expressing the complexity of an element of F ∗, def. 34, p. 39

|x| on B and on F the universal epimorphism to N and Q+ respectively, def. 9, p. 11, def.
28, p. 30

x∼ the multiplicative inverse, def. 20, p. 20

x�, x� lower (and upper) index expansion for multiset fractions, def. 29, p. 31

x∗ index expansion (mainly for multisets), p. 7

x̆ def. 29, p. 31

x ≡ y isomorphic, p. 9

x⊕ y addition in 1-magmas, precoppices and coppices (typically non-associative and non-
commutative), def. 3, p. 9, def. 20, p. 20

69

x nn y the higher operations, def. 8, p. 10, def. 45, p. 66

x ∗ y multiplication on F(X), def. 30, p. 32

x ∗ y, x ? y special uncancelled multiplications on F ∗, def. 35, p. 41

x B y equidistant, def. 31, p. 34

x \◦ y inclusive (multi)set minus, p. 7

x f y swapped power xf y = yx, def. 15, p. 17

x � y concatenation of words, def. 25, p. 28

〈x1, . . . , xn〉 finite sequence, def. 6, p. 10

[x1, . . . , xn] multiset, p. 7

[s1, . . . , sn]

[r1, . . . , rm]
multiset fraction, def. 29, p. 31

[r1, . . . , rm] 8 [s1, . . . , sn] multiset fraction text display, def. 29, p. 31

References

[1] W. Ackermann, Zum Hilbertschen Aufbau der reellen Zahlen, Math. Ann. 99 (1928),
118–133.

[2] J. M. Ash, The limit of xx
..

.x

as x tends to zero, Math. Mag. 69 (1996), no. 3,
207–209.

[3] B. Banaschewski, Über die Vervollständigung geordneter Gruppen, Math. Nachr. 16
(1957), 51–71.

[4] A. A. Bennett, A set of postulates for a general field admitting addition, multiplica-
tion, and an operation of the third grade, Amer. M. S. Bull. (2) 20 (1914), 173.

[5] , Note on an operation of the third grade, Ann. of Math. (2) 17 (1915), no. 2,
74–75.

[6] V. D. Blondel, Structured numbers: Properties of a hierarchy of operations on binary
trees, Acta Informatica 35 (1998), no. 1, 1–15, Available from: citeseer.ist.psu.
edu/blondel97structured.html.

[7] N. Bourbaki, Elements of mathematics. General topology. Part 1, Hermann, Paris,
1966.

[8] S. Burris and H. P. Sankappanavar, A course in universal algebra, Graduate Texts
in Mathematics, vol. 78, Springer-Verlag, New York, 1981, Available from: http://
www.math.uwaterloo.ca/~snburris/htdocs/ualg.html. MR648287 (83k:08001)

70

citeseer.ist.psu.edu/blondel97structured.html
citeseer.ist.psu.edu/blondel97structured.html
http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html
http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html

[9] P. Duchon, Right-cancellability of a family of operations on binary trees, Discrete
Mathematics and Theoretical Computer Science 2 (1998), no. 1, 27–33, Available
from: citeseer.ist.psu.edu/260712.html.

[10] A. Dzhumaldil’daev and C. Löfwall, Trees, free right-symmetric algebras, free
Novikov algebras and identities, Homology Homotopy Appl. 4 (2002), no. 2(1), 165–
190, Available from: http://www.emis.de/journals/HHA/volumes/2002/n2a7/

v4n2a7.pdf.

[11] C. J. Everett and S. Ulam, On ordered groups, Trans. Amer. Math. Soc. 57 (1945),
208–216. MR0012285 (7,4g)

[12] C. Frappier, Iterations of a kind of exponentials, Fibonacci Quart. 29 (1991), no. 4,
351–361.

[13] I. Galidakis, A continuous extension for the hyper4 operator [online], 2003 [cited
13 July 2004], Available from: http://users.forthnet.gr/ath/jgal/math/

exponents4.html.

[14] D. Geisler, Tetration [online], 2004 [cited 13 July 2004], Available from: http:

//www.tetration.org/.

[15] A. M. W. Glass, Partially ordered groups, Series in Algebra, vol. 7, World Scientific
Publishing Co. Inc., River Edge, NJ, 1999.

[16] G. H. Hardy, Orders of infinity, the ’infinitarcalcul’ of Paul du Bois-reymond, 1st
ed., Cambridge Tracts in Mathematics and Mathematical Physics No. 12, Cambridge
University Press, 1910.

[17] K. Iwasawa, On linearly ordered groups., J. Math. Soc. Japan 1 (1948), 1–9.

[18] H. Kneser, Reelle analytische Lösungen der Gleichung ϕ(ϕ(x)) = ex und verwandter
Funktionalgleichungen, J. Reine Angew. Math. 187 (1949), 56–67 (German).

[19] R. A. Knoebel, Exponentials reiterated, Amer. Math. Monthly 88 (1981), no. 4,
235–252.

[20] A. V. Koldunov, Conditions for coincidence of the K-completion of an Archimedean
l-group with its o-completion, Modern algebra (Russian), Leningrad. Gos. Ped. Inst.,
Leningrad, 1980, pp. 50–57. MR589047 (81m:06041)

[21] M. Kuczma, Regular fractional iteration of convex functions, Ann. Polon. Math. 38
(1980), no. 1, 95–100. MR595352 (81m:39008)

[22] J.-L. Loday, Arithmetree, J. Algebra 258 (2002), no. 1, 275–309, Special issue in
celebration of Claudio Procesi’s 60th birthday, arXiv:math.CO/0112034.

[23] J. MacDonnell, Some critical points on the hyperpower functions nx = xx
x·
··

, Internat.
J. Math. Ed. Sci. Tech. 20 (1989), no. 2, 297–305. MR994348 (90d:26003)

71

citeseer.ist.psu.edu/260712.html
http://www.emis.de/journals/HHA/volumes/2002/n2a7/v4n2a7.pdf
http://www.emis.de/journals/HHA/volumes/2002/n2a7/v4n2a7.pdf
http://users.forthnet.gr/ath/jgal/math/exponents4.html
http://users.forthnet.gr/ath/jgal/math/exponents4.html
http://www.tetration.org/
http://www.tetration.org/
http://arxiv.org/abs/math.CO/0112034

[24] A. Malcev, Über die Einbettung von assoziativen Systemen in Gruppen, Rec. Math.
[Mat. Sbornik] N.S. 6 (48) (1939), 331–336 (Russian).

[25] R. Munafo, Extension of the hyper4 function to reals [online], 2000 [cited
13 July 2004], Available from: http://home.earthlink.net/~mrob/pub/math/

ln-notes1.html#real-hyper4.

[26] B. H. Neumann, On ordered groups, Amer. J. Math. 71 (1949), 1–18. MR0028312
(10,428a)

[27] B. F. Sherman, Cauchy completion of partially ordered groups, J. Austral. Math.
Soc. 18 (1974), no. 2, 222–229. MR0472637 (57 #12333)

[28] G. Szekeres, Regular iteration of real and complex functions, Acta Math. 100 (1958),
203–258. MR0107016 (21 #5744)

[29] , Fractional iteration of exponentially growing functions, J. Austral. Math.
Soc. 2 (1961/1962), 301–320. MR0141905 (25 #5302)

[30] G. Targonski, Topics in iteration theory, Studia Mathematica, Skript 6. Göttingen:
Vandenhoeck & Ruprecht, 1981.

[31] M. Ward and F.B. Fuller, The continuous iteration of real functions, Bull. Am. Math.
Soc. 42 (1936), 393–396.

[32] S. Warner, Topological fields, North-Holland Mathematics Studies, vol. 157, North-
Holland Publishing Co., Amsterdam, 1989, Notas de Matemática [Mathematical
Notes], 126. 90i:12012

[33] S. Wolfram, A new kind of science: open problems and projects, 2003, Available from:
http://www.wolframscience.com/openproblems/NKSOpenProblems.pdf [cited 13
July 2004].

72

http://home.earthlink.net/~mrob/pub/math/ln-notes1.html#real-hyper4
http://home.earthlink.net/~mrob/pub/math/ln-notes1.html#real-hyper4
http://www.wolframscience.com/openproblems/NKSOpenProblems.pdf

	Title page
	Impressum

	Contents
	1 Motivation
	1.1 Chapter Overview

	2 Conventions and Preliminaries
	2.1 Conventions
	2.2 Multisets
	2.3 Free Algebras

	3 Tree Arithmetic and Higher Operations
	3.1 Left-commutative binary trees

	4 Power-Iterated Functions
	5 Coppices
	5.1 Fractional Numbers
	5.2 Division Binary Trees
	5.3 Fractional Trees
	5.3.1 Deciding Equality in the Fractional Trees

	5.4 Miscellaneous Observations on Coppices
	5.4.1 Prime Factorisation with Non-Reducing Multiplication

	6 Order and Topology
	6.1 Ordered Trees
	6.2 Order and Topology on Coppices

	7 Power-Inverse-Iterated Functions
	7.1 Regarding Conjecture 15
	7.2 Regarding Conjecture 16

	8 Prospects
	9 Glossary of Special Symbols
	References

