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Chapter 1

Introduction

1.1 Polyelectrolytes

Polyelectrolytes (PELs) are polymer chains containing a certain amount of ionizable monomers.

When such polymers are dissolved in a polar solvent like water, the ion pairs dissociate and

the polymer becomes charged. While the one type of charges is localized on the chain, the cor-

responding oppositely charged counterions are scattered in the solution [1]. PELs are present

everywhere in our daily life. On the one hand biopolymers, including DNA and proteins, are

PELs, on the other hand, many artificial water soluble polymers are charged. With these

specific properties PELs acquire big importance in molecular and cell biology as well as in

technology [2, 3, 4, 5]. Despite large effort during the last five decades PELs are still poorly

understood compared to other materials. The complexity arises mainly from the simultane-

ous presence of long-ranged electrostatic interaction and local interactions, but also from the

crucial role of counterions. In the 1950s many of the physical and chemical properties of a

single chain have been understood by the outstanding contribution of the school of Katchalsky

[6]. A second major step forward occurred when de Gennes and collaborators introduced the

scaling approach and and the isotropic model for semi-dilute solutions [7]. During the last

10-15 years, new theoretical, computational and experimental approaches have been used to

receive deeper insight into the behavior of PELs.

The combination of macromolecular properties and long-range electrostatic interaction

results in an impressive variety of phenomena and properties, which makes these systems

interesting from a fundamental as well as technological point of view. Besides fundamen-

tal questions motivated primarily by scientific interest, PELs are intensively concerned in

technological questions and for numerous applications. PELs can be used, e.g., as viscosity

modifiers to reduce drag in oil pipelines and to make low-fat milk products creamy. A better

understanding of PELs becomes increasingly important also in biochemistry and molecular

biology.

Compared to neutral polymers the theory of PELs is less understood. There are several

reasons: The presence of long range interaction makes renormalization group and scaling

techniques difficult to apply. Electrostatic interactions introduce into the system additional

length scales. On the other hand, the complexity makes the study of PELs very interesting.

In particular, this is valid for PELs in poor solvents. A poor solvent environment causes an
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effective attraction between monomers. Hence, for PELs in a poor solvent, there occurs a

competition between attraction and repulsion, which is responsible for the rich phase diagram

of such systems.

One important parameter of PELs is the line charge density along the chain, which is

related to the degree of charging f . With respect to this parameter PELs are classified into

weakly charged (f � 1) and strongly charged ones (f ≈ 1). On the other hand, with respect

to different dissociation behavior one can distinguish between strong and weak PELs, the

classification which is used in chemistry community, or between quenched or annealed PELs,

the classification which is used in physics community [1, 8]. For strong PELs, typically

represented by polysalts, the degree of dissociation is independent of the solution pH and

the distribution of charged groups along the chain is only determined by the synthesis of the

polymer. Therefore strong PELs are also called quenched ones. For weak PELs, i.e., polyacids

and polybases, the average total charge on the polymer is not fixed, but it can be tuned by

the pH of the solution. The positions of the charges along the polymer chain are also not

fixed. The charges can move by recombination and redissociation. That is why weak PELs

are also called annealed ones [1].

1.2 Description of the study

Over the last three decades, computer simulations became a third, independent branch of re-

search complementary to analytical theories and experiments. Although there are limitations

in the accessible time and length scales, computer simulations offer a couple of advantages

such as greater freedom in and control over the preparation of the systems and their mi-

croscopic interactions, direct access to microscopic structure and dynamics, and (within the

statistical error) “exact” results for well-defined model systems.

While most of theoretical and simulation work on PELs in poor solvent was focused to

quenched PELs, in the study presented here the understanding of annealed PELs in poor sol-

vent is addressed. Extensive Monte Carlo simulations have been carried out in a (semi)-grand

canonical ensemble where the charges are in contact with a reservoir of constant chemical po-

tential. For the first time it was proved that an annealed PEL in a poor solvent undergoes a

first-order phase transition, as predicted by theory, from a weakly charged globular structure

to a highly charged stretched configuration. Also for the first time the existence of pearl-

necklace structures could be shown by computer simulations for annealed PELs. Compared

to quenched PELs pearl-necklaces exist, however, only in a rather limited parameter range.

Tuning the screening length of the electrostatic interaction by varying the salt concentra-

tion annealed PELs exhibit a rather unusual non-monotonic stretching behavior which can

include both continuous and discontinuous transitions. The simulation results are compared

with theoretical predictions and, as far as available, with related experimental work.



Chapter 2

Polymer models and theoretical

predictions

A polymer is a large molecule made up of many elementary chemical units, joined together

by covalent bonds. For example, polyethylene (CH3 – (CH2)N – CH3) is a long chain-like

molecule composed of ethylene molecules and DNA is an extremely long molecule built by

(up to) 17 nucleotides.

Most artificially produced polymers are a repetitive sequence of a particular atomic group,

and take the form (–A–A–A–). One unit of this sequence is called the “structural unit” or

“monomer unit”. The number of units in the sequence is called degree of polymerization.

Usually a molecule is called polymer if the degree of polymerization exceeds 100. It is possible

to have polymers containing over 105 units. There are even natural biological polymers with

a degree of polymerization exceeding 109 (see, e.g., Fig. 2.1). Materials composed of this kind

of macromolecules display properties which are completely different from materials composed

of small molecules. Roughly speaking, polymeric materials may be very flexible (like rubber)

and can be easily formed into fibres, thin films, etc. To understand the properties of polymeric

materials, as usually in material science, one has to consider a large assembly of molecules.

However, in the case of polymers, the molecules themselves are quite large. Correspondingly,

the degrees of freedom of one molecule are very large which allows to apply statistical methods

even to a single molecule. One way to investigate the properties of a single polymer is to

study it in a highly dilute solution, so that interaction between the chains can be neglected.

Experimentally, such dilute polymer solutions are used to determine molecular weight (degree

of polymerization).

In this chapter, models and techniques used to study polymers by means of standard

methods of statistical physics are discussed. The physical properties of polymers are governed

by three main factors: (1) The degree of polymerization is large, N � 1. (2) Monomer units

are connected along the chain; i.e., they do not have the freedom of independent motion like

systems of disconnected particles as, e.g., in simple liquids. Therefore polymer systems are

poor in entropy. (3) Polymer chains are generally flexible [10].
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Figure 2.1: Electron microscope picture of bacterial DNA

partially released from its native cell. (Picture from [9].)

2.1 Neutral polymers

Neutral polymers where all structural units are uncharged, have been extensively studied

theoretically, experimentally and in simulations. They are rather well understood.

2.1.1 Ideal chains

An ideal chain consists of N freely-jointed links, each of length b and able to point in any

direction independently of each other (see Fig. 2.2).

The conformation of this chain is represented by the set of (N+1) position vectors {Rn} ≡
(R0, . . . ,RN) of the joints, or alternatively by the set of bond vectors {rn} ≡ (r1, . . . , rN)

where

rn = Rn −Rn−1, n = 1, 2, . . . , N. (2.1)

Since the bond vectors rn are independent of each other, the distribution function for the

polymer conformation can be written as

Ψ({rn}) =
N∏

n=1

ψ(rn) (2.2)
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Figure 2.2: A polymer chain of N + 1 monomers.

where ψ(r) denotes the random distribution of a vector of constant length b:

ψ(r) =
1

4πb2
δ(| r | −b). (2.3)

This distribution is normalized to ∫
drψ(r) = 1. (2.4)

To characterize the size of a polymer, one can consider the end-to-end vector R of the chain,

R = RN −R0 =
N∑

n=1

rn. (2.5)

Since 〈rn〉 = 0, 〈R〉 is zero, but 〈R2〉 has a finite value, which can be used as a characteristic

length of the chain. Let R be defined by

R ≡ 〈R2〉1/2 = 〈(RN −R0)
2〉1/2. (2.6)

From Eqn. 2.5 〈R2〉 is given by

〈R〉2 =
N∑

n,m=1

〈rn · rm〉

=
N∑

n=1

〈r2
n〉+ 2

∑
n>m

〈rn · rm〉

= Nb2 = R2
0. (2.7)

Because the angle ϑnm between two bonds rn and rm (n 6= m) has an uniform distribution

between 0 and 2π, i.e.

〈rn.rm〉 = b2〈cosϑnm〉 = 0.
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Thus R is given by [11]

R = b
√
N. (2.8)

The probability distribution that the end-to-end vector of a chain with N bonds is R can

be written

ϕ(R, N) =

∫
dr1

∫
dr2 · · ·

∫
drN δ

(
R−

N∑
n=1

rn

)
Ψ ({rn}) . (2.9)

Using Eqn.2.2, after some manipulation and a little algebra, in the limit N�1, the distribu-

tion function can be approximated by

ϕ(R, N) '
(

3

2πNb2

) 3
2

exp

(
− 3R2

2Nb2

)
. (2.10)

The distribution of the end-to-end vector is therefore a Gaussian distribution [10, 11].

Eqn. 2.8 and Eqn. 2.10 are well-known results from the theory of random walks. Obviously

the great majority of the conformations taken by the chain during its thermal motion are

strongly coiled in space. Being proportional to the logarithm of the number of configurations,

the entropy S of the chain can be taken as follows:

S(R, N) ' kB lnϕ(R, N) (2.11)

which gives

S(R) ∼ −kB
R2

Nb2
. (2.12)

This result implies that the entropy of the chain decreases if it is stretched (for instance,

considering a fully stretched chain, there remains only one conformation). The random coiled

conformation corresponds to the maximum of entropy and all the conformations lie on the

same equipotential surface (in the phase space).

For models that do not include long-range interactions the overall statistical properties of

the chain do not depend on the details of the model if N is large. Therefore, to obtain an

overall description of the chain, it is convenient to use a model with a simple mathematical

formulation as possible [11, 12]. Among non-lattice models of polymer chains, the Gaussian

model is mathematically the simplest. It assumes that the bond vector r itself possesses some

variability and follows a Gaussian distribution

ψ(r) =

(
3

2πb2

)3/2

exp

(
−3r2

2b2

)
(2.13)

so that

〈r2〉 = b2. (2.14)

The conformational distribution function of such a chain is given by

Ψ(r) =
N∏

n=1

(
3

2πb2

)3/2

exp

(
−3r2

n

2b2

)

=

(
3

2πb2

)3N/2

exp

(
−

N∑
n=1

3(Rn −Rn−1)
2

2b2

)
. (2.15)
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R0

R1

RN

Figure 2.3: Gaussian chain.

The Gaussian chain is often represented by a mechanical model (see Fig. 2.3). (N + 1)

‘beads’ are considered to be connected by harmonic springs the potential energy of which is

given by

U({Rn}) =
3kBT

2b2

N∑
n=1

(Rn −Rn−1)
2. (2.16)

At equilibrium, the Boltzmann distribution for such a model is exactly the same as Eqn. 2.15

[11].

An important property of the Gaussian chain is that the distribution of the vector Rn−Rm

between any two units n and m is Gaussian, being given by

ϕ(Rn −Rm, n−m) =

(
3

2πb2 | n−m |

)3/2

exp

(
−3(Rn −Rm)2

2 | n−m | b2

)
, (2.17)

which follows from the properties of Gaussian integrals. Furthermore it holds for any n and

m

〈(Rn −Rm)2〉 =| n−m | b2. (2.18)

The suffix n of the Gaussian chain is often regarded as a continuous variable. In such cases

Rn −Rn−1 is replaced by ∂Rn/∂n and Eqn. 2.15 is written as

Ψ(Rn) = const × exp

(
− 3

2b2

∫ N

0

dn

(
∂Rn

∂n

)2
)
. (2.19)

This distribution is known as the Wiener distribution [11].

2.1.2 Structure of polymers in solution

The radius of gyration Rg, defined by

R2
g =

1

N + 1

N∑
n=0

〈
(Rn −RCM)2〉 . (2.20)

with the center of mass vector RCM = 1
N+1

∑N
n=0 Rn, is a quantity which can be directly

measured in experiments such as static light, X-ray and neutron scattering. For an ideal

chain, it is [11]

R2
g =

1

6
Nb2. (2.21)
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The shape parameter given by

s =
R2

R2
g

(2.22)

describes the shape of the polymer chain in a relatively simple way. It is 2 for a spherical

globule, 6 for an ideal chain and 12 for a rigid rod. This quantity is very useful especially in

computer simulations, because it offers a quite simple way to estimate the degree of coiling.

As already mentioned above the size of polymer coils can be measured in scattering ex-

periments on polymer in dilute solution. The scattering cross section can be written [13, 14]:

d2σ

dΩ2
≈ Sintra(q)Sinter(q). (2.23)

Because single chain models are considered in this study, henceforth only the intrachain

structure factor or form factor Sintra(q) = S(q)

S(q) =
1

N + 1

N∑
i,j=0

〈
eiq.(Ri−Rj)

〉
(2.24)

is considered, where | q |= (4π/λ) sin (θ/2) = |qf − qi| is the difference of the wave vectors

of scattered and incident beam, with λ being the wavelength and θ the scattering angle. At

N � 1 the sums can be replaced by integrals, and, for the Gaussian chains

S(q) = 1 +
1

N + 1

∑
i6=j

〈eiq·(Ri−Rj)〉

' 1 +
1

N

∫ N

0

dτ

∫ N

0

dτ ′ exp

(
−b

2q2

6
|τ − τ ′|

)
' 1 +ND(q2R2

g), (2.25)

where D(q2R2
g) is the Debye function

D(x) =
2

x2

(
e−x + x− 1

)
. (2.26)

The asymptotic behavior of S(q) is given by

S(q) '


N

(
1−

q2R2
g

3

)
for qRg � 1 (Guinier region),

1 +
2N

q2R2
g

for qRg � 1 (Porod region).

(2.27)

If the chain is not fully flexible, the persistence length Lp is defined as the length scale over

which correlations between the monomer directions are lost. It marks the crossover between

rod-like behavior at length scales smaller than Lp and flexible chain behavior at length scales

larger than Lp (see Fig. 2.4). For a semi-flexible chain, the energy associated with bending

can be written

Ebend = κ̄

∫ L=Nb

0

ds

(
dt(s)

ds

)2

, (2.28)
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(b)(a)

s = 0

θ
L p

s
s = Nb

t(s)

t(s + ∆s)

t(s)

Figure 2.4: (a) Schematic view of a semi-flexible chain. The tangent to the

chain contour is t(s) where s ∈ [0, L]. A typical persistence length Lp is

indicated on the figure. (b) The deflection point θ of a short segment of

length ∆s.

where t(s) is the unit tangent vector to the contour of the chain (t(s) = dR(s)/ds) and κ̄ is

the bending rigidity of the chain which has units of length times energy. The coordinates of

the monomers are R(s) where the position along the chain is denoted by s and 0 ≤ s ≤ L.

This model is called worm-like chain model or Kratky Porod chain model [15]. It can be

shown that the orientational correlation function exhibits an exponential decay

〈t(s)t(s′)〉 = exp

(
− 1

Lp

| s− s′ |
)
, (2.29)

where the persistence length Lp is related to the bending rigidity by

Lp =
κ̄

kBT
. (2.30)

2.1.3 Excluded volume effect

In the models considered so far, the interaction among the polymer segments is limited to

within a few neighbors along the chain. In reality, however, segments distant along the chain

do interact if they come close to each other in space. An obvious interaction is steric: since

the segment has finite volume, other segments cannot occupy the same space (see Fig. 2.5).

This interaction swells the polymer; the coil size of a chain with such interaction is larger

than an ideal chain. Even when there are attractive forces, as long as the repulsive force

dominates, the polymer will swell. This effect is called excluded volume effect.

It had been recognized by Kuhn [16] and Flory [17, 18] that the volume interaction

changes the statistical property of the chain entirely. For example, 〈R2〉 is no longer propor-

tional to N but to a higher power of N

〈R2〉 ∝ N2ν . (2.31)

The exponent ν is about 3/5, so that the excluded volume effect is very important for long

chains.

In real polymers, the nature of the volume interaction is quite complicated: the interac-

tion will include steric effects, van der Waals attraction, and also may involve other specific
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m

n

Figure 2.5: Excluded volume interaction.

interactions mediated by solvent molecules. However, as far as the property of large length

scale is concerned, the detail of interaction will not matter. Thus the interaction between the

polymer segments n and m can be expressed by a short range function [11]

v kBT δ(Rn −Rm), (2.32)

where v is the excluded volume and has the dimension of volume.

The total interaction energy is thus written as

E =
1

2
v kBT

∫ N

0

dn

∫ N

0

dmδ(Rn −Rm). (2.33)

Using the local concentration of the segments

c(r) =
∑

j

δ(r−Rn) =

∫ N

0

dn δ(r−Rn), (2.34)

Eqn. 2.33 may be rewritten

E =

∫
dr

1

2
vkBTc(r)

2. (2.35)

This expression indicates that Eqn. 2.33 is the first term in a virial expansion of the free energy

with respect to the local concentration c(r). Therefore the excluded volume parameter v can

be understood as the second order virial coefficient.

In principle the virial expansion can be continued to include higher order terms such as

E =

∫
dr

[
1

2
vkBTc(r)

2 +
1

6
wkBTc(r)

3 + . . .

]
. (2.36)

However, the higher order terms may be neglected since the segment density inside the poly-

mer coil is small: the segment density is estimated as

c̄ ' N

R3
∝ N1−3ν = N−4/5 (when ν = 3/5) (2.37)

which becomes very small for large N . Therefore the essential features of the excluded volume

effect can be studied using the potential given by Eqn. 2.33.
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For a given combination of polymer and solvent, v varies with temperature and can be

zero at a certain temperature, called the Θ or Flory temperature. At the Θ temperature, the

chain becomes nearly ideal [11] 1.

An appropriate expression for the temperature dependence of v may be obtained as follows.

Suppose that the interaction between the segments is expressed by a potential energy u(r)

which depends only on their separation r. Then the second virial coefficient is evaluated by

the standard formula for an imperfect gas (see, for example, chapter 11 in ref. [22])

v(T ) =

∫
dr

[
1− exp

(
−u(r)
kBT

)]
. (2.38)

In the high temperature limit one has v(T ) = v(0). As T decreases, the value of v is reduced

until it reaches zero at some temperature Θ. Near the Θ point, the excluded volume can be

represented as

v ∝ −v(0)τ, (2.39)

where

τ =
Θ− T

Θ
. (2.40)

2.1.4 Solvent effects

In general, three types of solvents can be distinguished: good, poor (bad) and theta. In a

simple mean-field approach due to Flory [18] one can calculate the size of the polymer at

different solvent quality:

(i) Good solvent: In a good solvent, the effective interaction between the monomers is

repulsive and the polymer chain swells. This effective interaction results from a super-

position of monomer-monomer, monomer-solvent and solvent-solvent interactions. The

repulsive energy is of the form

Egood = kBT

∫
dr
v

2
c2, (2.41)

where c is the local monomer concentration and v is the excluded volume, as discussed

above.

In mean-field approximation and neglecting numerical prefactors, the free energy of a

polymer chain in a good solvent can be written as:

Fgood

kBT
' R2

Nb2
+ v

N2

R3
. (2.42)

The first term in Eqn. 2.42 gives the Gaussian elasticity of the chain while the second

term is a simple estimate of Eqn. 2.41. Minimization with respect to R, with v ' v(0),

gives:

Rgood ' bN3/5, (2.43)

which yields ν = 3/5 which is close to the experimental data [23, 24, 25, 26] (From

renormalization group theories, ν is exactly calculated to be ν = 0.588 . . . [27].)

1Even at the Θ temperature the chain is not ideal since there is a three-body collision term [19, 20, 21].
However, the effect of the three-body collision is quite weak and gives only a logarithmic correction to 〈R2〉.
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(ii) Poor solvent: In a poor solvent (also called “bad”) the effective monomer-monomer

interaction is attractive. This is the case, for example, when the monomers have hy-

drophobic groups and the polymer is immersed in water. In this case the polymer chain

collapses to a dense globule whose size is much less than R0. Because the second virial

coefficient is negative one has to include the third virial coefficient to ensure stability:

Epoor

kBT
=

∫
dr

(
−1

2
| v | c2 +

w

6
c3
)
' − | v | N

2

R3
+ w

N3

R6
(2.44)

The balance between these two terms, with v ' b3τ and w ' b6, gives

Rpoor '
b

τ 1/3
N1/3, (2.45)

which corresponds to a collapsed globule.

The form factor of a uniform hard sphere with radius R reads

S(q) ≈
[
sin(qR)− qR cos(qR)

(qR)3

]2

(2.46)

(see Fig. 2.10). In the high q limit, it becomes

S(q) ≈ 4.5

q4R4
(2.47)

which is known as “Porod law” [28]. Below this scaling law is used as the asymptotic

limit of S(q) for globular structure.

(iii) Theta solvent: The third case is a theta solvent, i.e. the point where the second virial

coefficient vanishes. In this case the leading term in the expansion is the third virial

coefficient w:

EΘ = kBT

∫
dr
w

6
c3. (2.48)

The Flory free energy now reads:

FΘ

kBT
' R2

Nb2
+ w

N3

R6
. (2.49)

Minimizing with respect to R, with w '
(
v(0)
)2

, leads to:

RΘ ' bN1/2. (2.50)

A schematic display of these three cases in shown in Fig. 2.6.

2.1.5 Blob picture

Within scaling theory approaches a very intuitive physical picture can be obtained by intro-

ducing so-called blobs. The blob size is given by a correlation length ξ that sets the distance

below which a certain interaction is suppressed by thermal fluctuations. A neutral chain in
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(a) Good solvent R ∝ N
3/5

(b) Theta solvent R ∝ N
1/2

(c) Poor solvent R ∝ N
1/3

Figure 2.6: A polymer chain in different solvents: (a) in a good solvent, (b) in a Θ

solvent and (c) in a poor solvent.

poor solvent forms a globule as discussed above. The monomer density ρg inside the globule

is defined by the balance of the two-body attraction vNρg = −τb3Nρg and the three-body

repulsion b6Nρ2
g (both interactions measured in units of kBT ) and one obtains

ρg '
τ

b3
. (2.51)

Below the thermal correlation length ξt the two-body attraction plays no role and the chain

obeys Gaussian statistics, i.e.

ξt ∼= g
1/2
t b, (2.52)

where gt is the number of monomers per blob. On the other hand, at length scales larger than

ξt density fluctuations are suppressed and blobs are densely packed to a globule (see Fig.2.7),

ρg '
gt

ξ3
t

. (2.53)

Finally Eqns. 2.51-2.53 yield

ξt

R

Figure 2.7: Globule consisting of thermal blobs.

ξt '
b

τ
(2.54)

and the number of monomers gt becomes

gt '
1

τ 2
. (2.55)
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Figure 2.8: Schematic display of PEL.

Hence, the globule size obeys

R ' ξt

(
N

gt

)1/3

' b

(
N

τ

)1/3

(2.56)

The surface tension of the globule is of order of kBT per thermal blob [7, 29]

γ ' kBT

ξ2
t

' kBT
τ 2

b2
. (2.57)

2.2 Polyelectrolytes

In polar solvents such as water, polymers with ionizable groups can dissociate into charged

macroions and small counterions (Fig. 2.8). Macromolecules of this type are commonly

called polyelectrolytes (PELs) [1], a class which includes proteins and nucleic acids as well as

synthetic polymers such as sulfonated polystyrene and polyacrylic acid. Most PELs are water

soluble due to the gain of translational entropy of the dissociated counterions, an effect which

probably contributes significantly to their importance in biological systems. PEL solutions

are controlled by a complex interplay of short- and long-range interactions. The screening

of the electrostatic interactions (i.e. the tendency of oppositely charged objects to arrange

themselves in such a way that the effective interaction between charges becomes short-ranged)

introduces an additional length scale into the problem. Depending on the ion strength, the

screening length may be comparable to the chain size R as well as to the correlation length

ξt. However, the distribution of counterions around macroions limits not only the range of

their effective interaction but due to the so-called ‘counterion condensation’ [30] it can also

cause a renormalization of the charge of macroions. Therefore, the most general case of

PEL solution can be extremely complex and the general case of flexible PEL chains is not

completely understood so far [31, 32, 33].

Strong or quenched PELs are completely dissociated at any accessible pH. The position of

charges along the chain is fixed by chemical synthesis. On the other hand, in weak or annealed
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PELs dissociation of charges depends on solution pH; therefore the degree of charging is a

function of pH, i.e. f = f(pH). Dissociation or recombination of ion pairs along the chain

causes spatial and/or temporal fluctuations in the local degree of dissociation [34].

2.2.1 Quenched polyelectrolytes

In quenched PELs the charge distribution is frozen. They can be partially as well as completely

charged. Partially charged ones correspond to heterogeneous copolymers with a random

sequence of charged and neutral monomers. The specific sequence of each copolymer is

determined during the polymerization stage and represents one possible realization of the

random distribution [35]. A typical example of these quenched PELs would be a polystyrene

chain with a few sulfonated monomers [36].

2.2.1.1 Electrostatics

The classical approach for treating a solution with ions dissolved in a solvent is to consider

this electrolyte solution as a continuous medium. Let the charge density in solution be ρ(r),

then the electrostatic potential generated by ρ(r) is given by the Poisson equation:

4ϕ(r) = − ρ(r)

ε0ε(r)
, (2.58)

where ε(r) is the dielectric function of the medium. Eqn. 2.58 can be easily solved in the

case of a distribution of M point-like particles of charge Q in an infinite dielectric medium

(ε(r) = const = ε). The charge density of such a system is:

ρ(r) = Q
M∑

j=1

δ(r− rj) (2.59)

and the corresponding electrostatic potential becomes:

ϕ(r) =
Q

4πε0ε

M∑
j=1

1

| r− rj |
. (2.60)

Considering a solution of j ionic species, each of valence zj and bulk concentration cj, within

the mean-field approach, i.e. disregarding local fluctuations and taking the time average of

the electrostatic potential, the local concentrations cloc
j (r) obey a Boltzmann law:

cloc
j (r) = cj exp

(
−zje〈ϕ(r)〉

kBT

)
. (2.61)

The charge density inside the solution is

ρ(r) = e
∑

j

zjc
loc
j (r) (2.62)

and Eqn. 2.58 can be written as:

4〈ϕ(r)〉 = − e

ε0ε

∑
j

zjcj exp

(
−zje〈ϕ(r)〉

kBT

)
. (2.63)
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This is the well-known Poisson-Boltzmann (PB) equation. Explicit general solutions of this

equation are not available. That is why approximations come into play. The first attempt

by Debye and Hückel [37] starts from a linearized form of the PB equation. Expanding

Eqn. 2.63 for weak potential (〈ϕ(r)〉 � kBT/zje) and taking into account the condition of

electroneutrality
∑

j zjcj = 0, one obtains the linearized PB equation:

4〈ϕ(r)〉 =
1

λ2
D

〈ϕ(r)〉 (2.64)

where

λD =

√
ε0εkBT

e2
∑

j z
2
j cj

(2.65)

is the so-called Debye (screening) length. Assuming that the potential is spherically symmetric

around a test ion, the solution of Eqn. 2.64 becomes

〈ϕ(r)〉 =
zje

4πε0ε

e−r/λD

r
. (2.66)

The corresponding pair interaction energy reads:

UDH(rij) = zizjkBT
λB

rij

e−r/λD (2.67)

with the Bjerrum length

λB =
e2

4πε0εkBT
. (2.68)

The Bjerrum length is defined as the distance at which the Coulomb interaction energy

between two elementary charges is equal to the thermal energy [38] and it characterizes the

strength of the electrostatic interactions in the solution. From Eqn. 2.65 immediately follows:

λD =
1√

4πλB

∑
j z

2
j cj

. (2.69)

From Eqn. 2.67 it is evident that the charge cloud around a test ion results in a screening

of the Coulomb interactions. The Debye length λD gives the range of the resulting effective

potential.

Also for intrinsically flexible chains, the electrostatic interaction can cause a finite rigidity

measured by the persistence length. The simplest way to introduce the concept of the per-

sistence length into PELs is the so-called Odijk-Skolnick-Fixman (OSF) theory [39, 40, 41].

They considered a semi-flexible chain with a bare persistence length L0
p and linear charge

density e/b∗, where b∗ is the average distance between charges. The range of electrostatic

interactions is assumed to be given by λD. Thus, at short distances, | s− s′ |� sc, the chain

is unperturbed by the presence of electrostatic interactions and Lp = L0
p = κ̄/kBT . At larger

distances, | s−s′ |� sc, the effective persistence length is decomposed into two contributions:

Lp = L0
p + LOSF

p , (2.70)
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where LOSF
p represents the stiffening of the chain due to long range Coulomb interaction:

LOSF
p ' λBλ

2
D

b∗2 . (2.71)

Note that LOSF
p ∝ λ2

D, i.e. LOSF
p can become larger than screening length λD. This means that

the effect of the charges on the chain stiffness can extend beyond the range of electrostatic

interactions. The crossover sc between the two regimes can be estimated by comparing the

energy needed to bend a small part of the chain whose length is ∆s =| s− s′ | with the excess

electrostatic energy associated with the bending. The bending energy can be estimated from

Eqn. 2.28 and is (up to numerical prefactors) [39, 41]:

Ebend

kBT
' L0

p

(
θ

∆s

)2

∆s '
L0

p

∆s
θ2, (2.72)

where θ is the deflection angle of the curve (see Fig. 2.4(b)). At small angles θ is proportional

to | t(s + ∆s) − t(s) |. In the weakly screened limit, ∆s � λD, and the excess electrostatic

energy of the arc with respect to the straight line is (up to numerical prefactors):

Eel

kBT
' λB

(∆s/b∗)2

(∆s/θ)2 ∆s ' λB

b∗2 ∆s θ2. (2.73)

At the crossover distance, ∆s = sc, the two energies are of the same order of magnitude and

we obtain

sc '

√
L0

p

λB

b∗. (2.74)

The main result of this calculation is that at short length scales the chain keeps its original

characteristics despite the electrostatic interactions. This approach is therefore consistent

only for chains with an intrinsic rigidity L0
p � sc leading to L0

p � b∗2/λB. This is the case,

for example, for DNA molecules where Lp ∼ 500 Å while b∗ ∼ λB/4 and λB ∼ 7 Å, but not

for flexible polymers where Lp is of the order of a few Angstroms. Note that at L� Lp the

chain becomes again flexible. Thus, the structure of PELs may be quite different on different

length scales.

2.2.1.2 Solvent effects

Let us consider a solution of charged flexible chains with degree of polymerization N and

a monomer size b. For simplicity, let us restrict ourselves to monovalent charges on the

chains and monovalent counterions. With f being the degree of charging the total charge

of the chain is fN . In a highly dilute salt-free solution, the counterions are expected to be

homogeneously distributed throughout the system volume, and the Debye screening length

fulfills λD & L. Therefore, the charges on the chain interact via an unscreened Coulomb

potential [42] and the conformation of the chain is expected to be an extended one [43, 44].

At f � 1, each macromolecule can be represented as a chain of electrostatic blobs, with blob

size ξe. Inside the blobs the statistics of the chain is determined by the volume interaction
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between uncharged monomers. In good and Θ-solvents, the electrostatic energy of the blob

is of the order of the thermal energy [43, 44]

g2
ee

2f 2

4πε0ε ξe
' kBT T ≥ Θ, (2.75)

where ge is the number of monomers inside an electrostatic blob. For poor solvent the elec-

trostatic blob size ξe is determined by the balance between the electrostatic energy of a blob

and the polymer/solvent interfacial energy [45]

g2
ee

2f 2

4πε0εξe
' γξ2

e T < Θ, (2.76)

where surface tension γ is given by Eqn. 2.57. The conformation of a macromolecule inside

the electrostatic blob is almost unperturbed by the electrostatic interaction, but depends on

the quality of the solvent for the neutral polymer. Therefore, following Eqns. 2.52, 2.43, 2.45

and 2.50, the size of the electrostatic blob is

ξe ' b



(ge/τ)
1/3 T < Θ

ge
1/2 T = Θ

ge
3/5 T � Θ.

(2.77)

Using Eqns. 2.75, 2.76, 2.77 the number of monomers inside the electrostatic blob is found

to be:

ge '



τ
(
uf 2
)−1

T < Θ

(
uf 2
)−2/3

T = Θ

(
uf 2
)−5/7

T � Θ

(2.78)

where the dimensionless coupling constant u is given by

u = λB/b. (2.79)

Finally, the size of the electrostatic blobs becomes

ξe ' b


(
uf 2
)−1/3

T ≤ Θ

(
uf 2
)−3/7

T � Θ.

(2.80)

On length scales larger than ξe, electrostatic interactions dominate and the blobs repel each

other to form a fully extended chain of electrostatic blobs of total length

R ' N

ge

ξe ' Nb



(
uf 2
)2/3

τ−1 T < Θ

(
uf 2
)1/3

T = Θ

(
uf 2
)2/7

T � Θ.

(2.81)
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Note that the effect of solvent quality is merely to change the electrostatic blobs, but the

conformation of chain is always a rod-like assembly of electrostatic blobs (uf 2 < 1) [42] .

2.2.1.3 Pearl-necklace structure

As discussed above, a polymer chain in a poor solvent forms a globule. If the polymer is

charged, the Coulomb repulsion between charged monomers could change the shape of the

globule, but would not significantly affect its volume. The volume occupied by the molecule

is still defined by the solvent quality, as in the case of the uncharged globule. Khokhlov [45]

argued that if the Coulomb repulsion

FCoul '
e2f 2N2

4πε0εR
(2.82)

becomes comparable to the surface energy

Fsur '
kBTR

2

ξ2
t

, (2.83)

the total energy of the globule can be lowered by elongating it into a cylinder. This deforma-

tion occurs when the total charge fN becomes larger than (Nτ/u)1/2, or

f >
( τ

uN

)1/2

. (2.84)

The size of the cylinder can be found by optimizing the sum of the surface energy [29,

36, 45, 46, 47]

Fsur '
kBTLcylD

ξ2
t

(2.85)

and Coulomb energy

FCoul '
e2f 2N2

4πε0εLcyl

(2.86)

at fixed volume

LcylD
2 ' b3N

τ
(2.87)

determined by the solvent quality. The minimization of the free energy Fcyl = Fsur + FCoul

gives the length of cylinder (see also Eqn. 2.81)

Lcyl '
bN

τ
(uf 2)2/3 (2.88)

and width

D ' b

(uf 2)1/3
. (2.89)

Note that the width D of the cylinder is the length scale at which the Coulomb repulsion

between charges becomes of the order of the surface energy (electrostatic blob in a poor
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lstr

dstr

dbead

Figure 2.9: Schematic diagram of pearl-necklace structure.

Beads are spherical with diameter dbead and consists of gbead

monomers each. Strings are cylindrical with length lstr and

diameter dstr and consists of gstr monomers each. The density

of beads and string is the same-dense packing of thermal

blobs of size ξt.

solvent). The deformation-sensitive part of the free energy of the cylindrical globule of the

optimal size Lcyl and width D given by Eqns. 2.88 and 2.89 is

Fcyl

kBT
' λBf

2N2

Lcyl

' τ(uf 2)1/3N. (2.90)

However, Dobrynin, Rubinstein and Obukhov (DRO) [29] have demonstrated that the

cylindrical globule is not the free energy minimum of a PEL chain in poor solvent (at τ >

(uf 2)1/3). They argued that the total energy of the charged globule is lowered by splitting it

into smaller globules such that neighbors are connected by a narrow string.

The problem of the shape of a charged globule is similar to the classical problem of the

instability of a charged droplet, considered by Rayleigh [48, 49]. He showed that a spherical

droplet with radius R and charge Q > e
(

γR3

kBTλB

)1/2

(where γ is a surface tension) is locally

unstable and will spontaneously split into smaller droplets. The equilibrium state is a set of

small droplets each of which has charge lower than the critical one and placed at an infinite

distance from each other. This state is impossible for PELs because the consist of monomers

connected to chains by chemical bonds. In this case, the system can reduce its energy by

splitting into a set of smaller charged globules connected by narrow strings. Kantor and

Kardar [50, 51] who studied Rayleigh instability for polyampholytes called the resulting

structure pearl-necklaces. Considering a pearl-necklace structure as drawn in Fig.2.9; with

Nbead beads of size dbead containing gbead monomers in each (dbead ' bτ−1/3g
1/3
bead) joined by

Nbead − 1 strings of length lstr and width dstr containing gstr monomers each (gstr ' ρlstrd
2
str),

the free energy is given by

Fnec

kBT
' Nbead

{
λBf

2g2
bead

dbead

+
d2

bead

ξ2
t

}
+ (Nbead − 1)

{
λBf

2g2
str

dstr

+
d2

str

ξ2
t

}
+
λBf

2N2

Lnec

, (2.91)

where Lnec = (Nbead − 1)lstr + Nbeaddbead is the total length of the necklace. The first term

in Eqn. 2.91 is the electrostatic self-energy of the beads and the second term is the surface
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energy of the beads. The third and fourth terms are the corresponding energies for the

strings. The last term is the electrostatic repulsion between different beads and strings (up to

logarithmic corrections). In Eqn. 2.91 all numerical prefactors are omitted. The total number

of monomers in all strings and beads should be equal to the total number of monomers N

Nbead gbead + (Nbead − 1) gstr = Nbead gbead +Mstr = N, (2.92)

where Mstr = (Nbead − 1)gstr is the total number of monomers in all strings. In the limit of

lstr � dbead, Eqn. 2.91 becomes

Fnec

kBT
'

{
uf 2τ 1/3 (N −Mstr)

5/3

N
2/3
bead

+ τ 4/3N
1/3
bead(N −Mstr)

2/3

}
+

+
τb

dstr

Mstr + uf 2τ
N2d2

str

b2Mstr

. (2.93)

The optimal values of Nbead,Mstr and dstr correspond to the minimum of the free energy. In

Eqn. 2.93 only the first two terms depend on Nbead. So, the minimization of Eqn. 2.93 with

respect to Nbead yields

gbead '
τ

uf 2
, (2.94)

and the size of the beads becomes

dbead '
b

(uf 2)1/3
. (2.95)

In the optimal configuration the thickness of a string is of the order of the thermal blob

size dstr ≈ ξt [29]. Balancing the Coulombic interaction between two beads with the surface

energy of the connecting string, one gets the length of a string

lstr '
(

τ

uf 2

)1/2

b. (2.96)

Using the monomer density in a thermal blob given in Eqn. 2.51, ρ ' τ/b3 ' gstr/(d
2
strlstr),

the number of monomers in a string is found to be

gstr '
(
τuf 2

)−1/2
. (2.97)

Because most of the mass is concentrated in beads, the number of beads along the PEL chain

is estimated

Nbead '
N

gbead

' N
uf 2

τ
, (2.98)

where gbead is the same as ge in poor solvent (see Eqn. 2.78). Finally the length of the

pearl-necklace structure becomes

Lnec ≈ Nbead lstr ' Nb

(
uf 2

τ

)1/2

. (2.99)

The free energy of the necklace structure in this equilibrium state reads

Fnec

kBT
' (N −Mstr)τu

1/3f 2/3 +Mstr
u

τ
f 2 +Nf(τu)1/2, (2.100)
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where

Mstr ' fN
(
u/τ 3

)1/2
. (2.101)

The structure factor (Eqn. 2.24) can be rewritten for pearl-necklace structure. After

averaging over all chain orientations, one gets [29]

S(q) ≈ g2
bead

N

(
Nbead + 2

Nbead−1∑
n=1

(Nbead − n)
sin(qlstrn)

qlstrn

)

×
(

3
sin(qRbead)− qRbead cos(qRbead)

(qRbead)3

)2

, (2.102)

with Rbead = dbead/2. The second factor of Eqn. 2.102 corresponds to intrabead scattering

(see Eqn. 2.46 for a sphere). The first factor represents the scattering between beads. Thus

one predicts an increase of the scattering intensity on length scales of the order of

qlstr ≈ 2πk, (2.103)

where k is an integer. Fig. 2.10 shows the structure factor for (i) pearl-necklace calculated

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
log10q
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lo
g 10

S(
q)

dumbbell
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q = 2π
R

q = 2π
lstr

Figure 2.10: Structure factor calculated for a pearl-necklace

with N = 256, Nbead = 2, dbead = 6 and lstr = 8 and for a

solid sphere of N = 256 and with radius R = 3. The arrows

give string length and sphere (or) bead size.

according to Eqn. 2.102 with N = 256, Nbead = 2, dbead = 6 and lstr = 8, where gbead×Nbead ≈
N and (ii) ensemble of solid spheres (N = 256) of radius R = 3 (Eqn. 2.46). The first arrow

from left gives the position for bead-to-bead distance and the second one sphere (or bead)

radius. The oscillations are due to intrapearl scattering, as expected for sphere.

To summarize the overall behavior of PEL chains in poor solvent the phase diagram in

the (τ, f)-space is sketched in Fig. 2.11 (N = 128, u = 1).
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Figure 2.11: Diagram of states of a PEL chain N = 128 monomers in a poor solvent.

The normalized Bjerrum length is u = λB/b = 1.0 (following [29]).

In region (I), close to the Θ temperature at weak charging, i.e.,

τ < N−1/2 and f < τ 1/2N−1/2u−1/2, (2.104)

the short-range attraction between monomers and the electrostatic repulsion between charges

are too weak to deform the chain and it behaves like a Gaussian chain.

In region (II), deep in the poor solvent regime at low charge density, i.e.,

τ > N−1/2 and f < τ 1/2N−1/2u−1/2, (2.105)

the size of the thermal blob ξt is smaller the the Gaussian chain size R0 ' bN1/2, and the

short-range attraction causes a collapse of the chain into a spherical globule. This globule is

stable as long as its surface energy is larger than the electrostatic energy (see Eqn. 2.98 for

Nbead = 1). The electrostatic free energy of such a globule is

Fel

kBT
' f 2N5/3τ 1/3u. (2.106)

At higher charging, region (III), (f > τ 1/2N−1/2u−1/2), the spherical globule is unstable

with respect to capillary waves and first splits into a dumbbell with two smaller globules

joined by a string of thermal blob width ξt. As the charge density f increases further, the

necklace with two globules (dumbbell) splits into one with three smaller globules connected

by two strings of diameter ξt and so on. This cascade of abrupt transitions between necklace
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states with different numbers of pearls occurs at the boundaries given by Eqn. 2.98. At the

upper boundary f ' τ 3/2u−1/2, the size of the beads dbead is comparable to the width of the

strings ξt.

Region (IV) above the cascade zone at higher charging f > τ 3/2u−1/2 and smaller effective

temperature τ corresponds to a Θ−like state of the PEL chain which exhibits now a cylinder-

like shape, the electrostatic free energy of which is

Fel

kBT
' Nf4/3u2/3. (2.107)

In this regime the electrostatic blob size is the length scale at which electrostatic repulsion is

of the order of thermal energy kBT , but still given by Eqn. 2.89 [7, 10, 29]. On length scales

smaller than D, the chain is Gaussian. On larger length scales, the electrostatic repulsion

forces the PEL into a linear array of electrostatic blobs. The length of the PEL in this regime

is R ' bN(uf 2)1/3 (see Eqn. 2.81). Note that at the boundary between regions (I) and (IV)

(at f ' u−1/2N−3/4), the length of the chain crosses over its Gaussian size. To define the

upper boundary of this region, at larger charging f one expects Manning condensation [30].

This condensation of counterions occurs at a linear charge density along the cylinder axis

larger than λ−1
B : f > u−2.

In region (V) of the diagram, the strong electrostatic attraction between counterions and

charged groups on the polymer chain also results in counterion condensation. The crossover

condition between condensed and free states of counterions can be found by comparing the

thermal energy kBT with the electrostatic interaction between a bead and a counterion for the

necklace globule in regime (III) (E(III) ' e2gbeadf/4πε0εdbead) and between the globule and

a counterion for a spherical globule in regime (II) (E(II) ' e2Nf/4πε0εR). These conditions

give the upper, f ' τ 3u, and lower, f ' τ−1/3u−1N−2/3, boundaries of regime (V) in the

diagram of states.

In this work PELs are studied within the Debye-Hückel model at infinite dilution. There-

fore the generic quantities concern (i) the behavior at finite polymer concentration and (ii)

the effect of counterions. In dilute and semidilute solutions, hydrophobic PELs form pearl-

necklace structures. With increasing polymer concentration, the solutions of hydrophobic

PELs may phase separate into concentrated and dilute phases or stay homogeneous depend-

ing on the value of the parameter εc ≈ (u/f)1/3τ , which is the strength of the electrostatic

interaction in units of the thermal energy kBT between a bead and a counterion at its surface.

At εc � 1 hydrophobic PELs are predicted to show phase separation into concentrated and

dilute phases. The polymer concentration in the dilute phase is exponentially low for large

values of the counterion condensation parameter εc. This phase separation is triggered by the

counterion condensation inside beads. However, hydrophobic PELs, for which the value of

the parameter εc is smaller than unity, are stable with respect to phase separation throughout

the entire concentration interval [52].

At the phase boundary of ion condensation the fraction of intruded and condensed ions can

be quite high. In the regime that scaling theory refers to as “free counterions” a considerable

fraction of ions has penetrated the beads or is condensed. Since the point at which ion

condensation becomes relevant and the point at which the bead radius becomes infinite scale
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identically, the range of stable beads in between is not accessible by scaling arguments which

neglect prefactors [53].

2.2.2 Annealed polyelectrolytes

As mentioned above, for weak PELs, the total number of charges along PEL chain is not fixed,

but it is tuned by changing the pH of the solution. Because of dissociation and recombination

of ion pairs along the chain, one expects spatial and/or temporal fluctuations in the local

degree of dissociation [34]. Such titrating PELs exhibit an annealed inhomogeneous charge

distribution. In good and Θ solvents, a pronounced charge accumulation appears at chain

ends because there are fewer neighbors for the charges to interact with and the penalty in

energy is reduced. Although, at the level of scaling laws describing the statistical properties of

polymer chains, the local charge distribution has only a weak effect on numerical prefactors [1],

the extra degree of freedom for the charges leads to new and non-trivial features. The charge

inhomogeneity can have a strong impact on process dominated by end-effects, such as the self-

assembly of weakly charged linear micelles [54] and weak adsorption on charged surfaces [55].

An acid is a substance which produces hydrogen ions (H+) by dissociation. For example

HCI−→H++CI−. The dissociation of a low molecular acid (HA) in an aqueous medium is

given by the equilibrium reaction

HA + H2O 
 H3O
+ + A− (2.108)

or more simply

HA 
 H+ + A−. (2.109)

The law of mass action yields the equilibrium constant (or dissociation constant)

Ka =
[H+][A−]

[HA]
, (2.110)

where [A−], [HA], [H+] are the (monomolar) concentrations of dissociated and undissociated

acid and dissociated hydrogen, respectively. An interesting and extremely useful relationship

between pH, and the dissociation constantKa can be obtained simply by taking the logarithms

of Eqn. 2.110. Using the standard notation pH = − log10[H
+], pKa = − log10[Ka] and defining

the degree of dissociation by

f =
[A−]

[HA] + [A−]
, (2.111)

Eqn. 2.110 gives the well-known relation between the pH of the solution and degree of

dissociation f of a simple acid

pH = pKa + log10

(
f

1− f

)
, (2.112)

where f =< f >=
〈
(1/N)

∑N
i=1 fi

〉
is the overall degree of dissociation. By using pKa values,

one is able to express the strength of an acid (i.e. its tendency to dissociate) with respect to

the pH scale.
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The dissociation behavior of polyacids can be described in a similar way, but the resulting

pKa value is now an apparent one (in the physico-chemical literature denoted by pKapp) [6].

In contrast to low-molecular-weight acids, the charged groups of polyacids are linked together

along the chain. Therefore, the dissociation of one acid group is correlated in a complex way

to the position and the number of other charged groups of the chain resulting in a masking

of the intrinsic pK0
a of a (polyelectrolyte) monomer (pK0

a =
(
µ0

H+ + µ0
A− − µAH0

)
/kBT ).

One may consider annealed PELs in very dilute solutions and focus on the potentiometric

titration of a weak polyacid (HA) by a strong base. The monomer concentration is c and the

concentration of small ion of species i (i=OH−, H+ and Na+) is ci. The two concentrations

c and cNa+ are fixed by the experimental conditions. The overall neutrality of the solution

requires that (∑
i

εici − fc

)
= 0, (2.113)

where εi = ±1 is the charge of the ions of species i. The thermodynamic potential that one

has to minimize in order to obtain the equilibrium values of cH+ , cOH+ and f is [36]

F

kBT
=

∑
i ci

[
log ci +

µ0
i

kBT
− λεi

]
+ c

[
f log f + (1− f) log(1− f) + f

µ0
A−

kBT
+ (1− f)

µ0
AH

kBT
+ λf

]
+

c

N

[
log c+

Fel(f)

kBT

]
, (2.114)

where Fel is the electrostatic energy of the chain given by Eqns. 2.90, 2.100, 2.106 and 2.107.

µ0
AH, µ

0
A− and µ0

i are the standard chemical potentials of an undissociated acidic group, of

a dissociated acidic group and of an i-ion group, respectively. The free energy includes the

translational entropy of the various small ions and of the polymer but also the entropy of the

charged groups along the chain. The electroneutrality constraint has taken into account by

introducing a Lagrange multiplier λ [36, 56].

Minimizing Eqn. 2.114 with respect to f one obtains the relation between the pH and the

degree of dissociation f of a polyacid

pH = pK0
a +

1

kBT
µ(f), (2.115)

where the chemical potential is given by

µ(f) = kBT log10

(
1

1− f

)
+

1

N

∂Fel

∂f
. (2.116)

Note that in the presence of screening of electrostatic interaction, in Eqn. 2.115 there appears

an additional term λB/λD [57, 58]. Eqn. 2.115 shows that by imposing the pH of the solution,

one imposes the chemical potential of the charges. The chemical potential µ(f), which gives

the free energy one has to pay for adding one extra charge at constant number of monomers,

has two contributions:
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1. An entropic one related to the mixing of charged and non-charged monomers along the

chain,

2. An electrostatic one related to the interaction with charged monomers which form the

local charge environment of an ionizable site.

If the solvent is not too poor (τ < N−1/5u−3/5), the entropic term dominates and similarly

to the good solvent case µ smoothly increases with f . Therefore, under this condition one

would expect a continuous conformation of the globule which was thought to be described by

Khokhlov’s blob-cylinder model [45]. However later it was understood that such a structure is

unstable with respect to the Rayleigh instability which drives the formation of pearl-necklaces

[29].

On the other hand, in a rather poor solvent (τ > N−1/5u−3/5) the chemical potential is a

nonmonotonic function of f with a minimum value for

fmin = τ 3u

and a maximum value for

fmax =
τ 1/2

N1/2u1/2
.

In between these two limits a given value of µ would correspond to three value of f . This result

is clearly unphysical, the decreasing part of the curve is thermodynamically unstable. It is the

signature of a first-order phase transition between collapsed chains with a charge density f1

of order fmax and extended chains with a charge density f2 of order fmin. The precise values

of f1 and f2 are obtained by the classical Maxwell equal-area construction. If the chemical

potential is just a plateau value, one expects an equilibrium between extended and collapsed

chains. This first-order transition could provide an explanation both for the behavior of the

intrinsic viscosity that increases strongly when the chains are stretched and for the titration

curve. Thus, annealed PELs in poor solvent are expected to undergo a discontinuous first-

order collapse transition (in the limit of infinite molecular weights) between an extended state

and globular one.

As mentioned above, in annealed PELs pearl-necklace can be stable if the solvent is not

too poor (τ < N−1/5u−3/5). The free energy of the annealed PEL in a necklace conformation

reads:
F

(nec)
annealed

kBT
=
F

(nec)
quenched

kBT
+Nf(ln f − 1)− µelNf, (2.117)

where the second term is the entropy of the charges along the chain and the third term is

associated to the exchanges with reservoir of charges of constant chemical potential. F
(nec)
quenched

is given by Eqn 2.100. Minimizing Eqn. 2.117 with respect to f , the charge chemical potential

reads [59]
µ

kBT
' ln f +

N −Mstr

N

τ 1/3

f 1/3
+
Mstr

N

u

τ
f + (τu)1/2 . (2.118)

The charge fraction obtained from Eqn. 2.118 corresponds to a minimum of the free energy

if
1

f
− N −Mstr

N

τu1/3

f 4/3
+
Mstr

N

u

τ
> 0. (2.119)
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fstr =< f > +δf ′
fbead =< f > −δf

Figure 2.12: Necklace conformation: the inhomogeneity in charge distribu-

tion is observed by different charging of beads f − δf and string f + δf ′.

Up to lowest order in ξt/dstr, this inequality is rewritten as:

f 1/3 > τu1/3, (2.120)

i.e., the model is correct as long as the system is far from the transition to stretched Gaussian

chain behavior where the pearls disappear.

Castelnovo et al. [59] have discussed the equilibrium of charge distribution along the chain

for pearl-necklace structures (see Fig. 2.12). They make the following simple estimation: Each

monomer of the beads has a charge f − δf and each monomer of strings has a charge f + δf ′.

The choice of the sign of the deviation around the average value f is motivated by the fact

that charges are closer in beads than in stings.

Evaluating the change in the free energy

∆F = F nec
annealed(f, δf, δf

′)− F nec
annealed(f, 0, 0)

up to second order in δf and δf ′ and minimizing ∆F with respect to δf and δf ′, the reduction

of the fraction of charged monomers in the pearls was found to be

δf

f
≈
(
f 2u

τ 3

)1/2

(
τ3u
f

)1/3

1−
(

τ3u
f

)1/3
, (2.121)

where any numerical prefactor is neglected. The quantity (τ 3u/f)
1/3

is the electrostatic energy

of a counterion at the surface of a pearl in units of kBT . If this energy is smaller than one (see

Eqn. 2.120), the charge inhomogeneity δf/f is small and the charge is almost uniform. For

a finite value of this quantity (within the model the value is one), however, the denominator

in Eqn. 2.121 becomes zero and the perturbation of charge distribution diverges. This is the

signature of an instability of the pearl-necklace structure.

2.2.3 Effect of additional salt

When a finite concentration of salt is present in the solution, which is always the case in

experiments at least because of water dissociation, the solution becomes a conducting, rather

than a dielectric medium. The fundamental implication is that the Coulomb interaction
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between charged monomers is screened by salt ions, i.e. the electrostatic potential created

by a monomers, or a group of monomers, falls off exponentially rather than algebraically

with distance. Thus distant parts of the chain do not interact, and in the asymptotic limit

N → ∞ the chain can be expected to behave as a random walk with short-ranged repulsive

interactions [1].

It is a general result from the theory of charged solutions that charge fluctuations become

uncorrelated (or, equivalently, that an external charge distribution is screened) over a typical

distance λD, where λD is related to the thermodynamic properties of the solution [60]. In the

case of dilute salt solutions, the Debye-Hückel theory can be used and the salt can be treated

as ideal gas. Assuming a 1:1 monovalent salt as well as monovalent counterions, following

Eqn. 2.69 the screening length is given by

λD =
1√

4πλB(2cs + cci)
(2.122)

where cs and cci are salt and counterion concentration (number density), respectively. The

short-range interaction potential, Eqn. 2.66, is the starting point of many theoretical studies

on PEL solutions. However, the application of an effective Debye-Hückel potential requires

two conditions: (i) the ionic solution is dilute, (ii) the perturbation of the ion distribution

caused by the macroion is weak. While condition (i) is more or less under control, condition

(ii) requires a careful consideration. Although the potential in Eqn. 2.66 is short-ranged, its

range λD can be much larger than the monomer size, which is typically interaction length in

neutral polymers. Depending on the ionic strength, λD can vary typically from less than 1

nm to larger than 100 nm.

2.2.3.1 Quenched polyelectrolytes

(i) Good solvent: When the electrostatic screening length λD is smaller than the size of

the chain, a new hierarchy of electrostatic screening blobs of size λD is introduced (each

blob consists of gsc monomers) (Fig.2.125) [61]. The structure of the chain at distances

smaller than the screening length is the same as unscreened case where N is replaced

by gsc. The number of monomers inside one electrostatic screening blob is written

gsc '
λD

ξe
ge. (2.123)

Using Eqns. 2.80 and 2.78 for T � Θ,

gsc '
λD

b(uf 2)2/7
. (2.124)

Since the repulsion between these electrostatic blobs acts on the same length scale as

their radius it can be treated as excluded volume repulsion and the total size of the

chain R scales as [42]

R ' λD

(
N

gsc

)3/5

. (2.125)

Inserting Eqn.2.124 into 2.125, one gets
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R

ξe

λD

Figure 2.13: Blob picture in the presence of screening. Inside

the electrostatic blobs, at length scales r . ξe, the behav-

ior is dominated by the short-range monomer-monomer in-

teractions and is solvent-dependent. Inside the electrostatic

screening blobs, at length scales ξe . r . λD, electrostatic

interactions dominate and the interaction blobs line up in an

extended conformation. At larger length scales λD . r . R

the electrostatic interactions are screened and the electro-

static screening blobs interact via a short-range excluded vol-

ume interaction.

R ' λ
2/5
D (Nb)3/5(uf 2)6/35. (2.126)

When λD ∼ ξe = b(uf 2)−3/7, electrostatic interaction is fully screened and Eqn. 2.126

yields R ' bN3/5: the PEL chain behaves the same as a neutral chain. At λD & R,

one obtains the same size as in Eqn. 2.81 ( for a simulation work see, for example, ref.

[62]).

(ii) Slightly below the Θ point: Now a PEL chain conformation is considered at 0 < τ <

(uf 2)
1/3

, where according to Eqn. 2.104 it is supposed to be an elongated blob chain.

For small salt concentrations one expects the salt to affect the flexibility of the chain of

blobs rather than changing the behavior on the level of the blob. Thus, the short-range

behavior of the blob chain should remain independent of the salt concentration as long

as λD > ξe. However, the salt affects the long range behavior of the chain by introducing

a finite persistence length Lp for the chain of blobs. For τ = 0, this has been calculated

by Khokhlov and Khachaturian [44] by modifying the original theory of Odijk and

Houwaard [40] for strongly charged PELs. Following Odijk and replacing b by ξe/(fge)

the persistence length reads

LOSF
p ' λB

(
λD

b

)2

⇒ λBλ
2
Df

2g2
e

ξ2
e

' (uf 2)1/3λ2
D

b
. (2.127)

As long as λD > R0 ∼ N1/2b, one has LOSF
p > R and the conformation of the blob chain is

not effected. For λD < R0, the blob chain becomes flexible with a persistence length LOSF
p

given by Eqn. 2.127. When λD equals the blob size ξe the persistence length shrinks to

ξe and the notion of electrostatic blobs looses its meaning. If the concentration of added
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Figure 2.14: Conformations of a PEL chain in Θ and poor solvent as a

function of solvent quality τ and inverse screening length (according to

[46]).

salt increases more and the screened Coulomb interaction becomes rather short-ranged.

The theory predicts that it may be replaced by an excluded volume pseudopotential

(vel δ(r)) and the chain behaves like a swollen chain with electrostatic excluded volume

[44]

vel = 4πλBλ
2
Df

2. (2.128)

At τ > 0 and ξe/λD > 1, the electrostatic excluded volume competes with the short-

range attraction. Then the chain is governed by an effective excluded volume [46]

veff ' b3(4πuf2λ2
D/b

2 − τ). (2.129)

For small τ , this quantity is positive but if b2/λ2
D > uf 2/τ it becomes negative. The

chain therefore changes smoothly from swollen to collapsed on the addition of salt,

passing through an effective Θ point (see Fig. 2.14).

(iii) Deep in the poor solvent region: For τ > (uf 2)1/3, in the absence of salt, the chain

exhibits a collapsed conformation. For small salt concentrations, again the salt affects

the flexibility of the chain of blobs rather than changing the behavior on the level of one

blob. In the poor solvent case the persistence length of the blob chain reads [46]

LOSF
p ' λBλ

2
Df

2g2
e

ξ2
e

' λ2
Dτ

2

b(uf 2)1/3
. (2.130)
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Again at very low salt concentrations one has LOSF
p > R and the conformation of the

chain is not affected by screening. Using Eqns. 2.130 and 2.81, one finds that LOSF
p

equals Rpoor at

τ ∼
(
Nuf 2b2/λ2

D

)1/3
, (2.131)

shown as dashed line in Fig. 2.14. When the salt concentration increases, LOSF
p shrinks,

but at ξe/λD = 1 or b/λD = (uf 2)
1/3

, the persistence length is still larger than ξe. In

fact on the upper part of the line at b/λD = (uf 2)
1/3

in Fig. 2.14, i.e. at τ > (uf 2)1/3,

one has LOSF
p > R and the chain exhibits still a quite elongated configuration. When

ξe/λD > 1 or b/λD > (uf 2)1/3, the repulsion between neighboring blobs is screened

and the argument leading to blob size ge makes no further sense. Furthermore, the

effective excluded volume is negative at this point and it should result in a collapsed

conformation. So, one concludes that there occurs a discontinuous change at ξe/λD = 1

from a cylindrical configuration (or chain of blobs with large persistence length) to a

spherical collapsed configuration with excluded volume veff.

Supposing N � ge, the axial ratio L/D of the cylinder is large and one can neglect end

effects. Omitting numerical prefactors, the free energy of the cylinder can be written

Fcyl

kBT
' −Nτ 2 + τ 2LD

b2
+ f 2τ 2λBLD

4

b6
, (2.132)

here the first term is the gain in energy (kBT per thermal blob) when the chain collapses,

which is the same as it would be for a neutral polymer. It is the real excluded volume

−τb3 which counts here, and not veff, because the diameter is assumed to be smaller than

the screening length. The second term is the surface energy, which is significant due to

the large surface area of the cylinder. The charge inside the cylinder is feρ, hence an

electrostatic energy of order (feρ)2D4L/4πε0ε, which is the third term of Eqn. 2.132.

Note that a logarithmic factor has been neglected in the third term (∼ ln L
D

in absence

of salt, or ln λD

D
in presence of salt) because it will not significantly effect the scaling

behavior. This is equivalent to Khokhlov’s argument [45] that the electrostatic energy

is dominated by the repulsion between nearest neighbor blobs of size D. Minimizing

Eqn. 2.132 with respect to D at fixed volume LD2 ' Nb3τ−1 gives D = ξe while L is

given by Eqn. 2.81. The minimum energy of any cylindrical configuration is therefore{
Fcyl

kBT

}
min

' −Nτ 2 +Nτ(uf 2)1/3. (2.133)

On the other hand, for a sphere of radius R > λD, screening is effective inside the sphere.

Hence, the modified excluded volume relevant in this case (Eqn. 2.129). The sphere

radius is therefore R ' (Nb3/veff)
1/3
b. The energy gained on collapse reads

Fsph

kBT
' −N

(
τ − uf 2λ2

D

b2

)2

' −Nτ 2 + 2Nτ
uf 2λ2

D

b2
− . . . . (2.134)

The surface energy for the sphere can be also ignored compared to other terms. However,

due to the surface energy the sphere will always have a minimum in energy relative to
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small increases of the axial ratio L/D. On the other hand, if the axial ratio is increased

to such an extent thatD/λD < 1, Eqn. 2.132 is applicable for the energy, not Eqn. 2.134.

Therefore there is a second minimum in free energy as a function of L/D corresponding

to the cylinder of Eqn. 2.133, provided ξe/λD < 1. Comparing Eqns. 2.133 and 2.134,

it is evident that the cylinder is preferred if

Nτ
(
uf 2
)1/3

< Nτuf 2λ2
D/b

2, (2.135)

i.e., the elongated configuration is stable at λD > ξe. For ξe/λD > 1, the sphere is

preferred. Hence, a discontinuous transition is expected at ξe/λD = 1 [46]. Note that

the elongated cylinder conformation might be unstable with respect to pearl-necklace

conformation as pointed out by Dobrynin et (see Sec. 2.2.1.3).

2.2.3.2 Annealed polyelectrolytes

Above the degree of charging f was considered to be fixed while solvent quality τ and elec-

trostatic screening length λD were variables. To derive corresponding relations for annealed

PELs, let us assume τ to be fixed while f and λD are variables. The conjugated variable to

the degree of charging f is the charge chemical potential µ which consists of an entropic part

and an electrostatic one µel (see Sec. 2.2.2). The crucial point is that µel(f) is a nonmono-

tonic function for PELs in a poor solvent. This leads to the possible coexistence of two chain

species with different charge fraction f which may result in a first-order phase transition (see

Sec. 2.2.2). In absence of salt µel is a decreasing function of f in the range τ/N < uf 2 < τ 3

[63]. In the presence of salt the same arguments may be repeated. The results are [46]:

1. If τ > N−1/2 and f < u−1/2N−3/4, the electrostatics is weak and the PEL forms a

globule (see Sec. 2.2.1.3). Following Eqn. 2.45 the size of the globule is

R ' Rglob ' b
N1/3

τ 1/3
.

If the screening length is larger than Rglob the interaction is unscreened inside the

globule. Thus, at λD > bN1/3τ−1/3 the behavior is identical to that without salt.

2. If the screening length is smaller than the globule size, but larger than the thermal blob

size, i.e., at

b/τ < λD < bN1/3/τ 1/3, (2.136)

the range of f in which a cylindrical or pearl-necklace configuration exists is reduced,

due to the abrupt collapse discussed above. Therefore µel decreases with f only in the

range

(
b

λD

)3 < uf2 < τ 3. (2.137)

When b/λD > τ , this range shrinks to zero because the pearl-necklace configurations do

not occur for any value of f .

Strictly speaking the presence of a region where µel is decreasing with f is not sufficient

to cause the instability, since it may be dominated by entropic factors [63]. In any case,
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the first-order phase transition upon tuning µel and the anomalies in the titration curves

should disappear in the presence of sufficient salt.



Chapter 3

Model and Simulation method

From a statistical physics point of view, one of the most important feature of polymers is

that chain molecules can adopt a very large number of different conformations. Many of

the unique properties of polymeric systems, such as flexibility and elasticity, originate in

their large conformational entropy, which is a consequence of the large number of degrees of

freedom. Moreover, different degrees of freedom can be related to quite different length and

time scales; from highly localized bond vibrations, to long-range molecular relaxation and

translation. The great advantage of simulations is to formulate a methodology which is, at

least in principle, capable to sample effectively all degrees of freedom of an arbitrarily large

system. A Monte Carlo (MC) simulation of a simple fluid is generally a rather straightforward

task. However with increasing degrees of freedom a molecule has, one needs a more complex

recipe for an efficient MC route.

3.1 Simulation method

Generally speaking, the Monte Carlo approach is a numerical technique making use of random

numbers to solve a problem. Historically, the first large scale Monte Carlo work carried out

dates back to the middle of the 20th century. Stanislav Ulam, John von Neumann and Enrico

Fermi were the first who proposed and applied the Monte Carlo method as a numerical

technique for solving practical problems. The earliest published work on Monte Carlo is

probably the paper by Metropolis and Ulam from 1949 [64].

Thus, for carrying out a Monte Carlo simulation, a sequence of numbers is required, which

have to be random, independent, real and uniformly distributed (in the range zero to one). In

early Monte Carlo studies tables of random numbers have been used, which were generated

directly from real random processes, e.g. radioactive decay or thermal noise in electronic

devices. However such an approach is only practicable as long as Monte Carlo calculations

are carried out manually. For computer calculations, the use of any predefined table seems to

be impractical. Hence it is often desired to generate random numbers when required at certain

steps of calculation, employing simple arithmetic operations that do not take much computer

time. These numbers, generated by deterministic algorithms, are therefore predictable and

reproducible. Hence, by no stretch of imagination they can be called, in a strict way, random.

If they are uniformly distributed and independent over a rather large sequence, they are
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considered to be pseudo-random. However, one has to bear in mind that the quality of

random numbers generated by certain random number generator using a particular set of

parameters can be quite different. That is, it is a good practice to check their quality by

standard test of randomness before using them in real simulations.

3.2 Basic definition

Statistical physics deals with systems with many degrees of freedom. A typical task in statis-

tical physics is to compute average values of macroscopic observables of systems, the Hamilto-

nianH(x) of which is known. In the canonical ensemble, the thermal average of any observable

A(x) is defined by

〈A(x)〉T =
1

Z

∫
dx exp [−H(x)/kBT ]A(x), (3.1)

where Z is the partition function

Z =

∫
dx exp [−H(x)/kBT ] . (3.2)

Note that x denotes the set of coordinates necessary to fix completely a point in the phase

space. For a N -particle system, one has

dx = dx1 dy1 dz1 dx2 . . . dzN dpx1 dpy1 dpz1dpx2 . . . dpzN
. (3.3)

The normalized Boltzmann factor

p(x) =
1

Z
exp [−H(x)/kBT ] (3.4)

plays the role of a probability density describing the statistical weight with which the config-

uration x occurs in thermal equilibrium.

In equilibrium statistical mechanics the Monte Carlo method starts from the idea of ap-

proximating the exact equation 3.1, where one integrates over all states {x} with their proper

weights p(x), by a finite sum integration using only a characteristic subset of phase space

points {x1,x2, ...,xM} which are used as statistical sample. Clearly, if one considers the limit

M −→∞, the discrete sum

〈A(x)〉 =

∑M
l=1 exp [−H(xl)/kBT ]A(xl)∑M

l=1 exp [−H(xl)/kBT ]
(3.5)

must approximate Eqn. 3.1, just as in a numerical integration routines integrals are replaced

by sums.

3.2.1 Simple sampling

Unlike to standard routines for solving one-dimensional integrals
∫
f(x)dx, where f(x) is a

function of one real variable x only instead of a high-dimensional vector x, here it makes

no sense to chose the points xl according to a regular grid. A much better uniform and
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representative distribution of grid points is obtained if the points xl are chosen at random.

This Monte Carlo method is called simple sampling. It works quite well for non-thermal

problems, e.g. random walks, self-avoiding walks and percolation [65]. Besides its simplicity,

the most important advantages of the simple sampling method are: (i) that the individual

configurations are statistically independent of each other and therefore standard error analysis

applies, (ii) that, for chain-like problems, in one simulation run one obtains information on

the full range of values for chain length N up to some maximum length.

3.2.2 Importance sampling

Simple random sampling techniques are, however, not so useful for evaluating thermal averages

such as Eqn. 3.5. See for example the case where in Eqn. 3.5 A(xl) is the Hamiltonian H(xl)

itself. In this case, the specific heat C per bond of the chain is given by

C

kB

=
1

N

∂ (〈H〉T )

∂ (kBT )
=
〈H2〉T − 〈H〉2

N(kBT )2
, (3.6)

which implies for the relative fluctuation

〈H2〉T − 〈H〉2

〈H〉2T
∝ 1

N
.

Hence, for large N , the probability distribution p(E) of the energy E per degree of freedom

defined as

p(E) =
1

N

∫
dx δ (H(x)−NE) exp [−H(x)/kBT ] (3.7)

is expected to be very sharply peaked. Writing

〈H〉T = N

∫ +∞

−∞
E p(E) dE, 〈H2〉T = N

∫ +∞

−∞
E2 p(E) dE (3.8)

it becomes evident that p(E) must have a peak of height
√
N and width 1/

√
N near E =

〈H〉T/N . In fact, off second- or first-order phase transitions one can show that p(E) is actually

Gaussian. Therefore, using simple sampling, the probability of generating states with E in

the relevant region near 〈H/N〉 is exponentially small. Or in other words: Most of the phase

space prints {xl} enter Eqn. 3.5 with an exponentially small weight factor p(x). So what is

needed is a more efficient technique that samples the configurations xl included in the average

Eqn. 3.5 not completely random, but preferentially from that regime of phase space which is

important at temperature T . Suppose we consider a process where the phase space points xl

are selected according to some possibility P (xl). Choosing the set {xl} according to a given

probability distribution P (xl) one has to correct the averaging for the bias and

〈A(x)〉 =

∑M
l=1 exp [−H(xl)/kBT ]A(xl)/P (xl)∑M

l=1 exp [−H(xl)/kBT ] /P (xl)
. (3.9)

A simple and most natural choice for P (xl) would be P (xl) ∝ exp [−H(xl)/kBT ]; then the
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Boltzmann factor cancels out, and Eqn. 3.9 reduces to a simple arithmetic average

〈A(x)〉 =
1

M

M∑
l=1

A(xl). (3.10)

The problem is, of course, to find a procedure which practically realizes this so-called im-

portance sampling [66]. Metropolis et al. suggested not to choose the successive states {xl}
independently of each other, but to construct a Markov process where each state {xl+1} is

constructed from a previous state {xl} via a suitable transition probability

W (xl → xl+1).

They pointed out that it is possible to choose the transition probability W such that in the

limit M →∞ the distribution function of the states generated by this Markov process tends

towards the equilibrium distribution

Peq(xl) =
1

Z
exp

(
−H(xl)

kBT

)
(3.11)

as desired. A sufficient condition to achieve this is to impose the principle of detailed balance

Peq(xl)W (xl → xl′) = Peq(xl′)W (xl′ → xl). (3.12)

Eqn. 3.12 implies that the ratio of transition probabilities for a “move” xl → xl′ and the

inverse move xl′ → xl depend only on the energy change δH = H(xl′)−H(xl),

W (xl → xl′)

W (xl′ → xl)
= exp

(
− δH
kBT

)
. (3.13)

Eqn. 3.13 obviously does not specify W (xl → xl′) uniquely, and some arbitrariness in the

explicit choice of W remains. The most frequently used choice is [67, 68]

W (xl → xl′) =


exp (−δH/kBT ) if δH > 0,

1 otherwise.

(3.14)

Thus, the importance sampling algorithm looks as follows: At any given time the current

state of the system (i.e. its position in the search space) is denoted state-0. It has an energy

of ε0 and a property value of A0. After a random move the system will be in a new trial state

(state-1) with an energy of ε1 and a property value of A1. The simulation proceeds as follows.

Independently whether this trial state will be accepted or rejected the attempt is counted as

one Monte Carlo step. The acceptance criterion is given by Eqn. 3.14, i.e.,

− if ε1 < ε0: the trial state is accepted with probability 1 and becomes the new state-0.

In addition, the property of the new state is added to the sum (Asum = Asum + A1),
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− if ε1 > ε0: the trial state is accepted with probability exp [−(ε1 − ε0)/kBT ], i.e., if ac-

cepted the trial state becomes the new state-0, if it is rejected then the system remains

in the old state-0 which is counted once more. Technically the acceptance with proba-

bility exp [−(ε1 − ε0)/kBT ] is solved by comparing it with a random number 0 ≤ ζ ≤ 1.

If exp [−(ε1 − ε0)/kBT ] > ζ the trial state is accepted.

Note that now, i.e., using importance sampling, the different states are not independent any

more. Hence, standard error analysis cannot be applied directly.

3.3 Model

A freely-jointed bead-spring chain [69] of N beads (monomers) is considered. Neighboring

monomers are connected by a harmonic spring, the potential of which is given by Eqn. 2.16,

Ubond(r) =
3kBT

2

r2

b20
,

with b0 being the (bare) average bond length. The nonelectrostatic interaction between all

the monomers is described by a modified Lennard-Jones potential [70]

U
(m)
LJ (r) =


4ε
{[(

σ
r

)12 −
(

σ
r

)6
+ 1

4

]
+ β [cos (2πr/rc)− 1]

}
, r < rc

0, r > rc

(3.15)

with rc = 21/6σ. For β > 0, this potential includes a very narrow attractive part such that

the range of interaction remains short; making a significant advantage in simulation time.

The quality of solvent or the strength of the attractive part is tuned by parameter β (see Fig.

3.1). The scaled temperature in Eqn. 2.40 reads now

τ =
β − βΘ

βΘ

, (3.16)

where βΘ is the β value corresponding to the Θ point. b0 is used as the unit of length, ε as

the unit of energy, and the monomer mass m as the unit of mass. All quantities are expressed

in this unit system. The simulations are performed at kBT = 1.2. To ensure that the bond

length distribution will be only weakly perturbed by the short-range interaction, but remains

almost Gaussian, σ is set to 1/2. In Fig. 3.2, the bond length distribution function of a

neutral chain is shown at different values of σ. The bold line is plotted according to Eqn.

2.10; i.e., the theoretical bond length distribution of the Gaussian chain.

In addition to the short-range interaction, all charged monomers interact with each other

via the screened Coulomb (Debye-Hückel) potential

UDH = kBTλB
e−r/λD

r
.

The PELs are considered at infinite dilution and therefore the screening length λD is deter-

mined only by the concentration of added salt but not by the charges on the polymer or the
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Figure 3.1: Modified Lennard-Jones potential between one

pair of monomers. β establishes the quality of solvent. σ =

0.5, ε = 1.0 and kBT = 1.2.
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Figure 3.2: Bond length distribution of a neutral chain, of

N=1000 monomers, for different values of σ and comparison

to the theoretical bond length distribution of the ideal chain.

σ = 0.5 is the value chosen in this study.
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counterions. Because the study is focused to annealed PELs, the monomer charge density and

distribution along the chain is not fixed. However, within the framework of the model, the

screening length can be kept constant while the chemical potential µ and the average degree

of charging are varying (Sec. 4.1.2). Except otherwise mentioned, throughout sections 4.1

and 4.2, λD is set to 10b0 and N = 256. The exponentially decaying interaction enables the

introduction of a cutoff which is chosen as rc = 5λD. The chain is simulated in a (semi-)grand

canonical ensemble where it is in contact with a reservoir of charges of constant chemical

potential µ.

3.4 Simulation details

Adopting a freely jointed bead-spring model with a dynamic distribution of charges along the

chain, a set of different MC moves must be included to equilibrate the system. A set consisting

of local displacement, pivot, reptation and charge moves was found to be appropriate to

produce equilibrium values at reasonable times:

• Local displacement move: A monomer of the chain is chosen at random and moved

by a random displacement vector (see Fig. 3.3(a)). This move is required to equilibrate

bond length distribution. Local displacements are very effective especially for compact

structures as, e.g. neutral chains or very weakly charged PELs in poor solvent. Some-

times one needs to tune the maximum amount of displacement in order to accelerate

the simulation.

• Pivot move: One monomer is picked randomly and one chain end, e.g. to the right of

the picked monomer is rotated as a rigid body at a random orientation and angles (see

Fig. 3.3(b)). This move is very effective in simulating highly diluted polymer solutions.

It is the fastest way to equilibrate large length scales. But, the acceptance rate drops

down at higher polymer densities. That is why one can omit it if the system is close to its

equilibrium as a compact structure. However, if the system is swollen or the simulation

have just started from an elongated state, the pivot move is highly preferable.

• Reptation move: One end of the chain is randomly chosen, it is cut and appended to

the other end with a random orientation (segment length is kept fixed) (see Fig. 3.3(c)).

• Charge move: Additionally to the configurational MC moves introduced above the

algorithm is completed with a charge move by which the charge state of a randomly

chosen monomer is switched; Fig. 3.3(d).

The energy change of a complete MC move reads

∆E = ∆Econf ± µ, (3.17)

where ∆Econf is the change in configurational energy due to ∆Ubond, ∆ULJ, and ∆UDH.

The plus sign is used when the monomer is to be neutralized (protonated) and the minus

sign when it is to be charged (deprotonated).
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(a)

(b)

(c)

(d)

Figure 3.3: Trial moves used in the simulation; (a) local move, (b) pivot

move, (c) reptation move and (d) charge move. Red color denotes charged

monomers and yellow color denotes uncharged monomers.

It is noted that in the simulations at different values of β, including good, Θ and poor

solvent regimes, the maximum displacement vector is tuned. For this process, the acceptance

rate of the local displacement move can be used to tune the maximum length of local dis-

placement during the simulation. For example, the maximum displacement length was set

0.5 for β = 2.40 and 2.615, but 0.1 for β = 3.0 and higher β.

To ensure that the simulation generates equilibrium data the simulation runs were started

with different configurations: random coil and straight line (good solvent) or random coil,

dumbbell and globule (poor solvent). After appropriate relaxation, these runs yield identical

averaged quantities. Depending on the type of starting configuration different mixing of the

configurational MC moves is necessary [71]. Furthermore, in particular for not too large τ

and Nb/λD � 1, during relaxation one has to take care that the chains are not accidentally

charged up while the structure becomes trapped in local energy minima corresponding to

highly stretched states. That is why the frequency of charge moves is temporarily reduced at

such points.

Doing so, equilibrium structures were obtained after typically 3 · 106 (combined) Monte

Carlo steps per monomer (MCM). After reaching extended equilibrium states a pivot move is

added after 200 (combined) MC moves. In collapsed equilibrium states pivot move is omitted

because of its vanishing acceptance rate. To estimate the statistical inefficiency of the runs,

the autocorrelation function (see Sec. 3.5 ) of the end-to-end distance is calculated. In the

highly charged extended state the corresponding correlation time is about 15 MCM. In the

globular state it can become substantially larger ranging from about 15 MCM (at τ = 0.19)

up to about 200 MCM (at τ = 0.26). Ensemble-averaged properties are taken as average over

trajectories of lengths between 10 · 106 MCM and 25 · 106 MCM corresponding to renewal
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times between 4 · 104 and 170 · 104. In this way the relative error of the m.s. end-to-end

distance R = 〈R2〉 = 〈(rN − r1)
2〉 was found to be less than 1% in the collapsed state and

less than 8% in the extended state. The number of charges are reproducible within less than

1% independently of the conformation of the polyelectrolyte.

3.5 Analyzing simulation results

As mentioned already above, MC simulation data generated by importance sampling are no

statistically independent. Therefore error analysis has to be done carefully [67, 68]. Suppose

n successive observations Ak, k = 1, ..., n of a quantity A have been stored, with n� 1. One

can consider the expectation value of the square of the statistical error

〈
(δA)2〉 =

〈[
1

n

n∑
k=1

(Ak − 〈A〉)

]2〉
=

1

n2

n∑
k=1

〈
(Ak − 〈A〉)2〉

+
2

n2

n∑
k1=1

n∑
k2=k1+1

(
〈Ak1Ak2〉 − 〈A〉2

)
. (3.18)

Changing the summation index k2 to k2 + k, Eqn. 3.18 can be written as

〈
(δA)2〉 =

1

n

[
〈A2〉 − 〈A〉2 + 2

n∑
k=1

(
1− k

n

)(
〈A0Ak〉 − 〈A〉2

)]
. (3.19)

A time tk = δtk is associated with the Monte Carlo process, δt being the time interval between

two successive observations Ak, Ak+1. Transforming the summation into a time integration

and dropping index k from tk, one obtains

〈
(δA)2〉 =

1

n

[
〈A2〉 − 〈A〉2 + 2

1

δt

∫ tn

0

(
1− t

tn

)[
〈A(0)A(t)〉 − 〈A〉2

]
dt

]
=

1

n

(
〈A2〉 − 〈A〉2

) [
1 +

2

δt

∫ tn

0

(
1− t

tn

)
〈A(0)A(t)〉 − 〈A〉2

〈A2〉 − 〈A〉2
dt

]
. (3.20)

Next the normalized relaxation function (autocorrelation function) of the quantity A is intro-

duced

CA(t) =
〈A(0)A(t)〉 − 〈A〉2

〈A2〉 − 〈A〉2
. (3.21)

Note that CA(0) = 1 and CA(t) decays to zero as t → ∞. Assuming that CA(t) decays to

zero on a time-scale tR

tR =

∫ ∞

0

CA(t)dt, (3.22)

called correlation time with tR � tn, Eqn. 3.20 can be approximated. Because CA(t) differs

from zero appreciably only for time t� tn, the term t/tn in Eqn. 3.20 can be neglected and

the upper limit of the integration is replaced by infinity. This yields〈
(δA)2〉 =

1

n

[
〈A2〉 − 〈A〉2

](
1 + 2

tR
δt

)
. (3.23)
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If δt � tR, then the last factor in Eqn. 3.23 is unity to a very good approximation and the

statistical error has just the same from as encountered due to standard error analysis. In the

inverse case, where δt� tR, one finds instead (nδt = tobs is the time over which the averaging

is extended) 〈
(δA)2〉 ≈ 2tR

nδt

[〈
A2
〉
− 〈A〉2

]
= 2

tR
tobs

[〈
A2
〉
− 〈A〉2

]
, (3.24)

which shows that the statistical error is independent of the choice of the time interval δt

[67, 72]. Although for a given averaging time tn a choice of a smaller value δt results in a

correspondingly larger value of the number n observations, it does not increase the statistical

error; only the ratio between the relaxation time tR and the observation time tobs matters. The

fact that 〈(δA)2〉 in general is not given by the simple sampling result [〈A2〉 − 〈A〉2] /n, but is

enhanced by some factor and therefore the enhancement factor is also called the “statistical

inefficiency” of the method [73].
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Simulation results

The behavior of annealed PELs in a poor solvent has been studied by Monte Carlo simulation.

To equilibrate the system in a reasonable CPU time and to prevent possible bottlenecks the

Monte Carlo moves described above are mixed in a optimized way depending on the specific

evolution of chain structure. The code has been written in Fortran90 language and the

simulations were carried out on Compaq Alpha servers, with EV67/883 MHZ processors.

First the code was verified by reproducing well-known features of uncharged polymers and

quenched PELs.

4.1 Development and testing of the code

4.1.1 Neutral chain

4.1.1.1 Gaussian chain

A Gaussian chain is the simplest polymer system one can imagine (Sec. 2.1.1). A chain of

N = 1000 monomers connected by harmonic springs has been simulated. The bond potential

is given by Eqn. 2.16. Only local displacement and pivot moves are applied in a 1:1 mixing.

For a Gaussian chain, the scaling relation predicts that the size of the coil grows with the

square root of the chain length, i.e.

〈R2〉1/2

b
∝ N1/2.

Evaluating the intrachain form factor in the Porod region 2π/Rg < q < 2π/b the predicted

behavior reads

S(q) ∝ q−1/ν ∝ q−2.

Fig. 4.1 shows the chain length dependence of the end-to-end distance which exhibits a

perfect fitting with exponent ν = 1/2. The spherically averaged intrachain structure factor

(see Eqn. 2.24) is plotted in Fig. 4.2. In the Porod region, S(q) shows a perfect asymptotic

behavior with ν = 1/2. Additionally, the intersecting point with y-axis gives the degree of

polymerization.
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Figure 4.1: Coil size dependence R versusN of an ideal chain.

The line indicates a power law N1/2.
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Figure 4.2: Spherically averaged intrachain structure factor

of an ideal chain (N=1000). The line indicates the asymp-

totic behavior S(q) ∝ q−2.

Performing numerical simulations in statistical physics one importing problem is: Are

equilibrium states reached in reasonable times? This test is done, for example, by starting the

simulation with quite different configurations, e.g., with one starting from a random coil and

another one starting from an elongated chain. Independently from the starting configuration,

all simulation runs should approach the same equilibrium structure. In Fig. 4.3, the running
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Figure 4.3: Running averages of m.s. end-to-end distance,

starting with a random conformation and with a straight

line, N = 1000.

averages of m.s. end-to-end distance versus Monte Carlo steps per monomer (MCM) are

shown. The two runs from a random coil configuration and a completely stretched chain,

respectively approach each other after about 1000 MCM. To estimate the typical relaxation

times this kind of test has been always performed whenever the physical system was changed.

4.1.1.2 Swollen chain with excluded volume

Including excluded volume effects, i.e., simulating a polymer chain in a good solvent one

expects a swelling of the coil which is reflected by a Flory exponent ν ≈ 0.6.

The good solvent is modeled by setting β = 0.0 in Eqn. 3.15, i.e. no attraction at all. A

mixing of local displacement moves and pivot moves is appropriate to equilibrate the system

in reasonable times. The acceptance rates of both local displacement and pivot moves are

about 30%.

In Fig. 4.4, the chain length dependence of the m.s. end-to-end distance is collected for

three different values of σ. The corresponding spherically averaged form factors are plotted

in Fig 4.5. For σ = 1.0 and σ = 0.5 the behavior fits rather well the scaling theoretically

expected, i.e. ν ≈ 0.6, while for σ = 0.3, the chain exhibits a cross over to the behavior of an

ideal chain. Note that σ = 0.5 was used in order to allow a bond length distribution which

is almost Gaussian (see Sec. 3.3). To include both features in our main study, σ = 0.5 is

preferred in the investigation of annealed PELs in poor solvent.
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1000) in good solvent for different σ.
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Figure 4.5: Spherically averaged structure factor of a neutral

chain in good solvent for different σ (N=1000).

4.1.1.3 Determination of the Θ point

Within the model used in this study the quality of the solvent is tuned by parameter β (see

Eqn. 3.15). To determine the Θ point one can use the different chain length dependences

below, above and at the Θ point, respectively. For large β, the attractive part of the potential

(Eqn. 3.15) dominates the behavior of the chain which will collapse into a globular structure.

On the other hand, at sufficiently small β the attraction becomes rather weak and the chain
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is expected to form a swollen coil due to repulsive excluded volume. In between, i.e., at βΘ

both interactions cancel each other and the chain exhibits the behavior of an ideal chain.

Hence, following the general scaling predictions (see Eqns. 2.43, 2.45 and 2.50), one expects

the asymptotic behavior

R ∝ bN ν with ν


≈ 0.6 at β < βΘ,

= 1/2 at β = βΘ,

= 1/3 at β > βΘ.

Thus, plotting 〈R2〉/(Nb2) versus 1/N for varying β the curves should flatten off at β = βΘ

in the asymptotic region 1/N → 0. The simulation results for chains of length N=4, 8, 16,

32, 64, 128, 256 at 2.0 ≤ β ≤ 2.8 are plotted in Fig. 4.6 and 4.7. In fact, both for the m.s.

end-to-end distance and the radius of gyration the chain length dependences obey Gaussian

behavior 〈R2〉/Nb2 = const at a certain β. In this way, it is found that

βΘ = 2.615± 0.015.

Due to (i) different bond potential and (ii) different setting of σ, βΘ is slightly larger than

that obtained in ref. [70].
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Figure 4.6: Chain length dependence of the normalized end-

to-end distance for a neutral chain at different values of β.

The value of βΘ can be counterchecked by plotting 〈R2〉/Nb2 versus β for different chain

lengths. For large N , all curves should have a common intersection point at β = βΘ where the

order of the curves is changing [74, 75]: at β < βΘ the ratio 〈R2〉/b2N is increasing while N

becomes larger, since the exponent 2ν − 1 is positive, while at β > βΘ the ratio 〈R2〉/b2N is

decreasing while N becomes larger. In this way, Fig. 4.8 proves that βΘ = 2.615, corresponds

to the Θ point indeed.
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Figure 4.8: The normalized end-to-end distance 〈R2〉/b2N
vs. β at different chain lengths. For large N , all the curves

intersect in a common point βΘ = 2.615.

4.1.1.4 Varying solvent quality

For β values larger than βΘ, the neutral chain will collapse into a globular structure. However,

for β very close to βΘ, the globular structure is yet not realized for the model of a flexible

chain used here. The first clear globule could be observed at β ≈ 2.90, which corresponds to
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Figure 4.9: The normalized radius of gyration of a neutral

chain of N = 256 versus τ in poor solvents.

τ ≈ 0.10. For poor solvents, the scaling relation on τ reads

〈R2
g〉1/2

bN1/3
∝ τ−1/3. (4.1)

Fig. 4.9 displays the corresponding plot. In the region 0.10 ≤ τ ≤ 0.15 one obtains agreement

with the scaling predictions. At larger τ the dependence of 〈R2
g〉1/2 on τ deviates from the

theoretically predicted one given by Eqn. 4.1. The reason is that for strong attraction the

monomers become effectively close-packed, such that no further shrinking is possible. Using

the corresponding radius of gyration Rg ≈ 1.6 and taking into account that for a spherical

globule with uniform density the relation between the radius R and Rg reads Rg = (3/5)1/2R,

the radius of the globule is estimated as R = 2.1, which corresponds to a very high density

where typically simulations of polymer melts are performed [76] (Note that the end-to-end

distance measured directly in the simulation is 2.0).

Fig. 4.10(a) shows the single chain structure factors at different β close to Θ point. While

the behavior at the good solvent side is very close to that in Θ solvent, at the poor solvent

side the behavior is drastically changed. Fig. 4.10(b) exhibits the conformational features of

chains in rather poor solvents. There appears a new length scale in the problem: The peak

seen at log10 q ≈ 0.5 gives the size of the globules:

R =
2π

q
=⇒ R ≈ 2.0,

which agrees well with the estimation made above and confirms that the globule is becoming

more compact, up to a certain limit, for poorer solvent. Note that depending on τ , the end-to-

end distances measured directly range from 1.9 to 2.2. Starting from Θ point and increasing

β the first stable globule was found at β = 2.90 or τ = 0.10. However at such a relative
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Figure 4.10: Structure factor of a neutral chain at differ-

ent solvent qualities (N = 256). (a) close to Θ point;

τ = −0.08, 0.0, and 0.07; (b) far below Θ point; τ =

0.15, 0.19, and 0.22. Arrow points peak corresponding to

globule size. Straight lines indicate certain asymptotic scal-

ing.
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(b) (c) (d)(a)

Figure 4.11: Sample pictures of a neutral chain in different solvent conditions; (a)

β = 2.40, (b) β = 2.615, (c) β = 2.90 and (d) β = 3.0.

small distance from Θ point the fluctuations of the structure are still large. This feature is

also indicated in the snapshots shown in Fig. 4.11. On the other hand, deeper in the poor

solvent region at β = 3.0, τ = 0.15, there remain only weak fluctuations of the globule. To

estimate the statistical inefficiency of the simulation data, the correlation function of 〈R2〉 is

calculated at different solvent quality. Fig. 4.12 shows the autocorrelation function of 〈R2〉 of

neutral chains with different chain lengths; Fig. 4.12(a) for β = 2.40 which corresponds to a

good solvent (τ = −0.08), Fig. 4.12(b) for the Θ-solvent and Fig. 4.12(c) for β = 2.75 which

corresponds to a poor solvent (τ = 0.05). For simplicity, the correlation times are taken as

the intersecting points with 1/e. The corresponding correlation times tR in units of Monte

Carlo steps are given in Table 4.1. Because the relaxation is slowing down for the compact

structures (see Fig.4.12(c)) it becomes more and more difficult to calculate the correlation

function, especially for larger chains when β is increased.

N τ = −0.08 τ = 0.0 τ = 0.05

tR ≈ tR ≈ tR ≈
256 8 22 120∗

128 16 57 200∗

64 35 71 280

32 65 121 330

16 124 194 417

8 250 264 545

4 445 829 1195

Table 4.1: Correlation times in units of MC steps for various neutral chains

at different β. (*: the corresponding tR’s are obtained by extrapolation of

the simulation data).

Before finishing the discussion of neutral chains in a poor solvent, the time evolution of the

structure of a neutral chain after immersing in a poor solvent is illustrated in Fig. 4.13. The

starting configuration is a random coil (good solvent). The equilibrium state of the globule is
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Figure 4.12: Autocorrelation function of 〈R2〉 of a neutral chain under different

solvent conditions. (a) τ = −0.08 (β = 2.40, good solvent), (b) τ = 0.0 (β =

2.615,Θ-solvent) and (c) τ = 0.05 (β = 2.75, poor solvent) for various chain lengths.

(Note the different scale of x-axes.)

reached via a deformed compact structure. This coil-globule transition process is reversible.

The snapshots were taken at β = 3.0, τ = 0.15 and N = 256.

4.1.2 Quenched polyelectrolytes

In the case of quenched PEL, the polymer chain is charged with a certain degree and the

positions of the charges are fixed, i.e., the system has no freedom in the charge distribution.

In a good solvent, PELs are stretched on different length scales depending on the degree of

charging. Provided strong charging and vanishing screening the chain can be almost fully

stretched. If the PEL chain is in a poor solvent, it can exhibit so-called pearl-necklace

structures [29, 70].
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Figure 4.13: Evolution of coil-globule transition. The snapshots were taken from

the simulation of a neutral chain (N = 256) in poor solvent (τ = 0.15). MCM is

one (mixed) Monte Carlo step per monomer.

4.1.2.1 Completely charged PELs in good solvent

All monomers are charged (f = 1) carrying one elementary charge and interacting with the

Debye Hückel potential (Eqn. 2.67). The good solvent is modeled by a purely repulsive

Lennard-Jones potential given in Eqn. 3.15 with β = 0.0. Depending on the degree of

screening the chain is expected to be stretched on a varying length scale. Fig. 4.14 displays

the chain length dependence of the m.s. end-to-end distance of a fully charged PEL chain

at different λD. At weak screening, when almost all charged units are interacting with each

other, in the asymptotic region the size of the chain scales as

〈R2〉1/2 ' bN,

i.e., the chain is strongly stretched and its end-to-end distance is proportional to contour

length. On the other hand, at strong screening the PEL chain behaves more or less like a

neutral one, i.e.

〈R2〉1/2 ' bN0.6.

The corresponding spherically averaged structure factors S(q) are shown in Fig. 4.15.

In the Porod region, 2π/R � q � 2π/b, the behavior of S(q) is predicted in analogy to the

neutral chain case, where S(q) scales as q−1/ν , with ν being the exponent of the N dependence

of the chain radii. The exponent ν estimated from S(q) are given in Table 4.2. Except the

case λD = 500, S(q) clearly indicates different scaling on different length scales. This behavior

appears due to the finite range of the screened Coulomb interaction. At large length scales

r � λD the PEL chain scales scales like a neutral one.

Additionally to the stretching at large length scales discussed above, also the bond length

distribution differs substantially with increasing screening length. The bond length distribu-

tions at different screening are shown in Fig. 4.16. In the highly stretched case, the bond

length distribution is shifted to larger b with an average bond length increased by about

∼ 40%. Note that this is a feature of the Gaussian chain model used in this study. At strong

screening the distribution function is almost unperturbed compared to a neutral chain.

The snapshots of the simulations at the four different Debye lengths are presented in Fig.

4.17. Note the different scale used to plot the snapshots.
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Figure 4.14: Chain length dependence of the end-to-end dis-

tance of a fully charged PEL chain at varying Debye length

(N = 1000).

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
log10q

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

lo
g 10

S(
q)

λD=1
λD=5
λD=10
λD=500

ν=1.0 ν=0.6

Figure 4.15: Spherically averaged structure factor for a fully

charged PEL chain (N = 1000) at varying Debye lengths.

The straight lines give the two limiting scaling relations.
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λD λD/b λD/L λD/R ν

1 0.95 0.001 0.013 0.61

5 4.13 0.005 0.029 0.85

10 7.94 0.01 0.039 0.93

500 357.14 0.5 0.65 0.99

Table 4.2: Estimated exponent ν for a fully charged PEL chain (N = 1000)

at different screening lengths. In the second column λD is scaled by bond

length, third one by contour length of the chain and in the fourth one by

m.s. end-to-end distance of the chain.
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Figure 4.16: Bond length distributions for a fully charged

PEL chain (N = 1000) at different Debye lengths.

4.1.2.2 Weakly charged PELs in poor solvent

In this section simulations on weakly charged, quenched PELs in a poor solvent are reported.

The case of weak interaction strength, uf 2 � 1 and at rather poor solvents τ > N−1/2 is

considered (N = 128 and N = 256). The solvent quality is tuned between τ = 0.0, i.e.

Θ-solvent, and τ = 0.26, which is a rather poor solvent quality indeed.

In sufficiently poor solvents, the chain forms a compact structure if the electrostatic inter-

action is weak. With increasing Coulomb interaction the chain starts to change its shape. De-

pending on the electrostatic interaction, the chain passes through a number of pearl-necklace

states toward a stretched configuration [29].

Fig. 4.18 shows the normalized end-to-end distance versus the scaling variable uf 2. It is

obvious that the chains behave quite differently depending on the solvent quality. At small τ

and not too small uf 2, the chain structure follows the behavior of a PEL chain in Θ-solvent,
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(a)

(c)

(b)
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Figure 4.17: Simulation snapshots of a fully charged PEL chain of

N = 1000 monomers in a good solvent at different Debye length: (a)

λD = 1, (b) λD = 5, (c) λD = 10, and (d) λD = 500.

i.e., following Eqn. 2.81,

R ' bN
(
uf 2
)1/3

.

A similar result for a charged chain near Θ point was obtained in ref. [47]; Higgs et al.

simulated the chains of 10-100 monomers and plotted < R2 > versus u (f was set to 1) and

they observed that < R2 >1/2 is independent of u for small u and increases with u1/3 for large

u.

At τ � N−1/2, which becomes roughly τ > 0.10 for N = 128, the chain structure is drasti-

cally changed: For small uf 2, the electrostatic interaction is too weak to perturb significantly

the poor solvent behavior, i.e., similarly to neutral chain one obtains globular structures

which become independent of the value of uf 2. With increasing strength uf 2, however, the

chain undergoes a transition into a coil structure. This sharp increase is interpreted as the

formation of a necklace out of the globule. This increase is seen well in Fig. 4.19, which

shows the reduced radius of gyration as a function of the parameter Nuf 2/τ . The rescaling

is done for pearl-necklace scaling (see Eqn. 2.99). Hence, for pearl-necklace structures there

should appear a constant plateau (see dashed line). The transition point from globule to

pearl-necklace structure is located at Nuf 2/τ ≈ 11, which means that one requires more

electrostatic strength for larger τ to split the globule to smaller beads connected by strings.

At Nuf 2/τ > 90 in Fig. 4.19, the PEL chain behaves like in a Θ solvent. The parameter

range where pearl-necklaces occur agrees with the theoretical prediction (see Sec. 2.2.1.3).

Also the parameter ranges where the other regimes exist (Gaussian coil, globule and extended
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Figure 4.18: Normalized end-to-end distance versus the elec-

trostatic interaction strength for different values of τ at

f = 1/8 (N = 128, except one case stated in the legend).
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Figure 4.19: Reduced radius of gyration as function of

Nuf 2/τ . The normalization is done such that the curve

should be one constant for pearl-necklace scaling (N =

128, f = 1/8). (Dashed line shows the plateau according

to the pearl-necklace scaling).

PEL) are in agreement with predictions given in Fig. 2.11, which was drawn for N = 128

and u = 1 (one should bear in mind that any prefactor has been ignored in Fig. 2.11).

Finally, in the limit of large uf 2 one finds again the universal behavior of PEL chains in a
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Θ-solvent and the chain size becomes independent of τ . This behavior is in good agreement

with scaling theory predictions which claim that Θ-solvent conditions are realized if ξe � ξt,

i.e., at uf 2 � τ 3. Note that obviously both for chain length N = 128 and N = 256 the

coil-globule transition is influenced by finite size effects.

Fig. 4.20 shows the spherically averaged structure factor of the N = 128 chain at different

solvent conditions for various uf 2 values; Fig. 4.20(a) for the Θ point and 4.20(b) for a poor

solvent. At the Θ point, when the electrostatic interaction is rather weak, the behavior of PEL

chain in the Porod region is similar to that of Gaussian one. With increasing electrostatic

interaction, the chain is extended. On the other hand, the chain in a rather poor solvent

looks like a compact globule if Coulomb interaction is weak. In the structure factor plot,

Fig. 4.20(b), the curve at uf 2 = 0.001 corresponds to a globular structure for the PEL chain.

However, a peak which one expects at a high q value for a globular structure is now slightly

smeared: although the global view of the chain at this weak electrostatic interaction is a

compact globule, now the structure is deformed at some level compared to the neutral globule

in a poor solvent (see Fig.4.10(b)). On the other hand, a shoulder, seen at log10 q ≈ −0.07

for uf 2 = 0.033, corresponds to a pearl-necklace conformation and one can go into a more

refined analysis of the structure (see, for example, Sec. 4.2.2).

The snapshots shown in Fig. 4.21 give typical chain conformations of PELs in a poor

solvent over the whole range of interaction strength uf 2 (The scaling of the snapshots is

different).

4.2 Annealed polyelectrolytes in poor solvent

PELs can be distinguished in terms of their dissociation behavior [1, 8]. For annealed PELs,

i.e., for polyacids and polybases, the total charge on the polymer is not fixed, but it can be

tuned by changing the pH of the solution. The positions of the charges along the polymer

chain are also not fixed, but self-adjusted due to the local environment.

In this section, the simulation results for annealed PEL chains in a poor solvent will be

represented. Three topics are discussed in the following three subsections:

(i) the behavior in a rather poor solvent, where a first-order phase transition occurs between

a weakly charged globule and a strongly charged stretched conformation,

(ii) the behavior close to Θ-temperature, where pearl-necklace structures are observed,

(iii) the influence of additional salt ions.

4.2.1 Rather poor solvents

Depending on the distance from the Θ point the behavior of annealed PELs in poor solvents

can be quite different (see Sec. 2.2.2). Theory predicts that, as long as the solvent quality is

not too poor, i.e., at

τ < τ ∗ ' N−1/5u−3/5, (4.2)
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Figure 4.20: Spherically averaged structure factor (N = 128)

for different values of uf 2: (a) at the Θ point (β = 2.615),

(b) for τ = 0.15 (β = 3.1). The dashed lines indicate the

limiting scaling laws.
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(a) (b) (c)

(e)(d)

Figure 4.21: Typical snapshots from the simulation of a weakly charged, quenched

PEL (f = 1/8, N = 256) in a solvent (τ = 0.15). (a) uf 2 = 0.0063, (b) uf 2 = 0.0078,

(c) uf 2 = 0.0094, (d) uf 2 = 0.0156 and (e) uf 2 = 0.031. Charged monomers are

red colored while uncharged ones are yellow.

the entropic term still dominates the charge chemical potential µ which remains a smooth

increasing function of f . Pearl-necklaces (or any other sub-structures) can occur in this region.

However, at τ ≥ τ ∗ the chemical potential becomes a non-monotonic function of f due to the

electrostatic contribution to µ, resulting in a first-order phase transition between a collapsed

weakly charged conformation and an extended strongly charged state.

Titration experiments are an widespread approach to characterize weak PELs. The over-

all shape of the titration curve depends on the nature of the PEL that is titrated [77]. In

particular, PELs in poor solvent show a pronounced plateau [78, 79] where the pH remains

almost constant. This plateau has been related to a discontinuous transition between col-

lapsed and stretched states [36]. Pronounced anomalies of the titration curves, which has

been assigned to a conformational change, were found for poly(methacrylic acid) and related

copolymers [80] as well as for copolymers of maleic acid [81].

On the other hand it has been shown that peculiarities of the titration curves can be also

explained by including correlations between the charges without relying on conformational

transitions. There are both studies for rigid rods with nearest-neighbor interaction [82, 83, 84]

as well as with the full (screened) long-range one [58] and studies for semi-dilute solutions [79].

In this subsection simulations of annealed PELs in sufficiently poor solvents (τ ≥ τ ∗) are

reported. Because PELs are studied at infinite dilution the screening length λD is determined

only by the concentration of added salt but not by the charges on the polymer or the coun-

terions. That is why λD can be considered to be constant at varying µ. In the simulations

reported here Debye screening length has been set λD = 10. If not otherwise stated the chain
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length is N = 256.

The results demonstrate clearly the relation between the transition in the degree of dissoci-

ation and the conformational one which occur simultaneously at a certain chemical potential

µ∗(τ, λB) [85]. Contrary to a previous simulation [86], which claimed that the transition

between weakly charged globules and strongly charged stretched chains is continuous, it is

shown that it is indeed of first order as predicted by theory [36]. Analyzing finite size effects,

it becomes evident, that previous results were strongly influenced by the relatively short chain

length used in ref. [86].

Simulations have been done in a parameter range sufficiently deep in the poor solvent

region, i.e., the corresponding neutral chain is collapsing into a globular state. Here data

obtained for τ values between 0.19 and 0.26 are reported. At Bjerrum length λB = 1 the

variation of the chemical potential between µ = 4.0 and µ = 9.0 was found to be appropriate

to cover all the substantial changes in the structure of the PEL.
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Figure 4.22: Running averages of end-to-end distance, starting with random con-

figuration, dumbbell and globule. (a) µ = 4.0 where the equilibrium state is a

compact globule, (b) µ = 8.0 where the equilibrium state is a stretched configura-

tion (N = 256, τ = 0.19).

Fig. 4.22 displays running averages of end-to-end distance at τ = 0.19 with three different

starting configurations: random coil, dumbbell and globule. In Fig. 4.22(a) µ = 4.0 at

which the equilibrium state is a compact globule, while in Fig. 4.22(b) µ = 8.0 at which the

equilibrium is a stretched configuration. The different runs from random coil, dumbbell and

globule approach each other after about 40000 MCM.

Fig. 4.23 shows both degree of charging and m.s. end-to-end distance as a function of

chemical potential, which is the pH of the solution except a trivial additive constant (see Sec.

2.2.2). At small µ a weakly charged globular state is obtained. A corresponding simulation

snapshot is shown in Fig. 4.24 a). On the other hand, a completely charged, highly stretched

state (see Fig. 4.24 b)) is found in the large µ limit. The discontinuous transition between
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Figure 4.23: Simulation results at λB = 1 and varying solvent

quality: τ = 0.19 (circles), τ = 0.22 (squares), and τ = 0.26

(diamonds). a) Degree of charging vs. chemical potential

(titration curves), b) m.s. end-to-end distance vs. chemical

potential.
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Figure 4.24: Simulation snapshots at constant solvent quality (τ = 0.22):

a) weakly charged, collapsed chain at µ = 4.0 (charged monomers are

colored red and uncharged ones are colored yellow), b) completely charged,

extended chain at µ = 9.0.

the two states takes place simultaneously in the degree of charging and in the conformation

of the PEL at a well-defined chemical potential µ∗ the value of which depends of the solvent

quality τ . It is found that µ∗ = 5.9971±0.0010 at τ = 0.19, µ∗ = 6.9977±0.0008 at τ = 0.22,

and µ∗ = 7.6501± 0.0001 at τ = 0.26.

A simple and direct way to determine the order of a phase transition is the histogram

method of Lee and Kosterlitz [87] for the energy distribution function P (E). Since the

partition function is given by the sum of the Boltzmann factors, one can directly estimate

free energy barriers. For a canonical ensemble, the normalized distribution function P (E) is

related to the free energy via
F

kBT
= − lnP (E). (4.3)

For a second-order transition, at the transition point P (E) displays a broad single maximum

around the mean value of E. Off the transition point the distribution function becomes more

narrow. For first-order transitions there is not such a continuous shift and broadening but a

second peak develops at lower/higher energy. The phase transition point can be determined

as the point where the states have the same free energy (or the same peak height in the energy

distribution function). Note once more that the simulations reported here are done within

a semi-grand canonical ensemble where the number of particles is fixed, but the charges are

in contact with a reservoir of constant chemical potential µ. Hence, in this case the relevant

energy is E = Econf + µNc with Nc being the number of charged monomers. Applying Eqn.

4.3 the distribution function P (E) is related to the semi-grand potential (or semi-grand free

energy). In Fig. 4.25 the distribution function is plotted for three chemical potentials close

to the transition point.

The double-minima structure provides direct evidence for the first-order nature of the

transition in agreement with the theoretical prediction by Raphael and Joanny [36]. The

minimum at small values of E is related to the globule and the one at larger E corresponds

to the stretched chain. As µ increases, the global minimum jumps from the collapse to the

stretched state. At the transition point the two minima have the same depth, i.e., both

states have the same semi-grand canonical free energy. In the case presented in Fig. 4.25 this

appears at µ∗ = 4.093 (N = 64). For larger chains µ∗ is increased.

Fig. 4.26(a) shows the degree of charging as a function of µ for different chain lengths while

Fig. 4.26(b) shows the normalized m.s. end-to-end distance versus the chemical potential for

different chain lengths. For shorter chains the influence of finite size effects is evident. In

particular, at N = 32 there remains no indication of a discontinuous transition. This explains
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Figure 4.25: Simulation results at λB = 1 and τ = 0.19.

Energy distribution function P (E) at µ = 4.05 (dashed),

µ∗ = 4.093 (solid), µ = 4.13 (dot-dashed) for chain length

N = 64,

why in a former simulation study [86] with chains of length 40 were considered the authors

claimed to see a continuous transition, contrary to the theoretical expectation.

According to Raphael and Joanny [36] a phase transition is expected to occur at τ > τ ∗.

Taking into account enlarged average bond length in the stretched conformation, Eqn. 4.2

yields a characteristic distance from the Θ point τ ∗ ≈ 0.28 ... 0.33, i.e., values which are of the

same order of magnitude as the τ ’s considered in the simulations. Note that Eqn. 4.2 is based

on a scaling theory approach, i.e., any numbers are omitted. Thus, the transition observed is

in qualitative agreement with theory. Across the phase transition the theory predicts a jump

from f1
∼= τ 3u to f2

∼= τ 1/2N−1/2u−1/2 [36]. For the lower value, the simulation data yield

f1 ≈ 5% which is in a good agreement with the theoretical prediction that gives f1 ≈ 1%−2%.

For the upper value f2, there appears an obvious disagreement between scaling theory and

simulation data. While the simulations yield almost complete charging with f2 > 99% the

theory predicts f2 ≈ 3%− 4%.

In Fig. 4.27 the spherically averaged form factor is plotted for four different chemical

potentials (at τ = 0.22): (i) one far below and one just before the transition, (ii) one just

after and one far above the transition point. The corresponding pairs of curves below or above

the transition point, respectively, map almost perfectly onto each other reflecting the discrete

nature of the phase transition.

Quite similar to the behavior of neutral chains discussed in Sec. 4.1.1.4 the peak in the

structure factor at log10 q ≈ 0.50 occurring below the transition point is a fingerprint of a

globule of size R ≈ 2.0. Above the transition one obtains a chain which is almost completely
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Figure 4.26: Simulation results at λB = 1 and τ = 0.19: a)

degree of charging and b) normalized chain size vs. chemical

potential atN = 32 (triangles), 64 (diamonds), 128 (circles),

256 (squares).



68 Simulation results

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
log10q

-0.5

0

0.5

1

1.5

2

2.5

3

lo
g 10

S(
q)

µ=4.0
µ=6.9969
µ=6.9984
µ=9.0

ν=1.0

Figure 4.27: Spherically averaged form factor (τ = 0.22, N =

256, λB = 1.0) for various chemical potentials. The straight

line gives the scaling behavior of a completely stretched

chain. The arrow indicates the q value giving the size of

globule.

stretched.

Performing MC simulations of annealed PELs in poor solvent, it has been shown that

discontinuous transitions in the degree of charging are closely associated with discontinuous

conformational transitions. For the first time, the first-order nature of the transition has been

proved by simulation. The PEL can be caused to collapse by decreasing the charge chemical

potential µ, which can be easily done in experiment by reducing the pH of the solution, as

well as by increasing the coupling strength u. Experimentally the latter route can be attained

by reducing the distance between the ionizable groups in, e.g., block-copolymers.

4.2.2 Close to Θ point

To detect possible substructures like pearl-necklaces one has to approach the region close to

Θ point τ < τ ∗. Obviously, there are two choices to do that: (i) reducing τ , i.e., coming

really closer to Θ point or (ii) increasing τ ∗, i.e., fixing the absolute distance to Θ point,

but enlarging the width of the specific region close to Θ point. The first route is difficult to

realize in simulation studies: Close to Θ point the simulation becomes unstable due to huge

fluctuations. However, the second route seems promising. According to Eqn. 4.2 τ ∗ can be

enlarged both by reducing chain length N and coupling strength u. The use of shorter chain

lengths obviously would restrict the search for pearl-necklaces. Therefore, in the following

the coupling strength u is varied to study the behavior of annealed PELs close to Θ point.

Weaker coupling strengths are easily attained in simulations by reducing Bjerrum length λB.

In experimental studies a realistic way to reduce u is to enlarge the distance between ionizable
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groups by synthesizing block copolymers.
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Figure 4.28: Degree of charging versus the coupling parame-

ter for τ = 0.26 and µ = 9.0 (N = 256).

Fig. 4.28 shows the degree of charging versus coupling strength in the range 0.08 . u . 1.5

for a relatively large chemical potential (µ = 9.0). The distance from Θ point is τ = 0.26

(N = 256). With these parameters and following Eqn. 4.2 the critical coupling strength

above which pearl-necklaces are unstable becomes

u∗ ' N−1/3τ−5/3 ' 1.5.

Hence, within the range of u considered here pearl-necklaces might appear.

In Fig. 4.29 the corresponding behavior of the m.s. end-to-end distance is plotted. Typ-

ical snapshots are presented in Fig. 4.30. From the snapshots one can see that there occur

pearl-necklaces indeed. Beside that, the influence of coupling strength exhibits various inter-

esting features: Although the chain is completely charged due to the large µ value at weak

interaction strength it is collapsed into a globule (point I). With increasing u the globule

becomes deformed and splits into several pearls. Pearl-necklace structures are formed be-

tween points II (u0 = 0.016) and III (u0 = 0.05). Note that the m.s. end-to-end distance

is drastically enlarged in this region. Beyond point III all the pearls are pulled out and the

chain exhibits a stretched but more or less homogeneous configuration. Following de Gennes

et al. [43] the chain extension is expected to grow as R ∝ (uf 2)1/3 which is nicely confirmed

by the simulation result. Up to that point there is no difference to the behavior of quenched

PELs (Note that for a completely charged chain there is no difference between annealed and

quenched case). However, at a certain u∗ the Coulomb energy per charged monomer becomes

larger than the penalty for neutralizing a charge. Consequently the PEL minimizes its en-

ergy by neutralizing almost all charges and collapsing back into a nearly uncharged globule
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Figure 4.29: End-to-end distance versus the coupling param-

eter for τ = 0.26 and µ = 9.0 (N = 256).
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Figure 4.30: Snapshots demonstrating the transitions which oc-

cur when the coupling strength is increased at constant τ, µ (τ =

0.26, µ = 9.0). Charged monomers are colored red, uncharged

ones yellow.

(point V, u0 = 1.53). Similarly to the discontinuous transition discussed above a simultaneous

transition both in degree of charging and chain stretching is observed. In Fig. 4.31 S(q) is
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Figure 4.31: Spherically averaged structure factor at τ =

0.26, µ = 9.0 and varying coupling strength: Circles for point

I, squares for II, diamonds for III, triangle-ups for IV and

stars for point V. The straight line indicates the limiting

scaling law. The arrows point to the additional peaks, solid

for globular structure and dashed for dumbbell.

plotted for the five points discussed above: I at zero coupling parameter; i.e. no electrostatic

interaction and compact globule, II at very small coupling strength with a nice dumbbell

structure, III coupling a bit stronger, forming a number of pearls connected by strings, IV

just before the discontinuous coil-globule transition, a highly stretched chain and V at any

coupling strength beyond the point IV; chain collapsed back a compact globule. Note that for

the cases I to IV, the chain is almost fully charged while at point V, the charge on the chain

can be neglected. In terms of weakness of electrostatics, points I and V can be considered

as identical ones. In these globular cases, where S(q) is almost identical, an additional peak

occurs at log10 q ≈ 0.54 which is related to a globule diameter R ≈ 1.8. Note that globule

size is the same as discussed for neutral chain at τ = 0.22 in Sec. 4.1.1.4. For point II,

one observes a pronounced shoulder at q ≈ 0.7, which is related to the string length in the

dumbbell structure (for detailed consideration see below).

The pearl-necklace structures around point II are analyzed by using a cluster search al-

gorithm (see Appendix A), which is optimized for analyzing pearl-necklace structures up to

five pearls. The results are collected in Table 4.3, with gbead being the averaged number of

monomers in a bead and gstr the number of monomers in a string. dbead is the bead size, lstr
the length of a string, fbead is the average degree of charging of beads and fstr corresponding

charging of strings. In the table, only the structures are included with a weight of at least 1

%. The number of pearls increases with the coupling parameter u. With increasing u0 there

occurs more fluctuations between necklace structures with different pearl numbers, since the
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energy difference between them is reduced. (Note that the case Nbead = 6 is beyond the range

where the cluster search routine gives reliable results). Using the theoretically predicted re-

u0 Nbead weight gbead gstr dbead lstr fbead fstr

(%)

0.016 2 99.9 124.1 7.7 3.36 4.87 0.999982 1.0

± 7.9 ± 0.1 ± 0.04 ± 0.03

0.023 3 70.9 77.3 11.2 3.16 5.61 0.999979 1.0

± 5.1 ± 0.1 ± 0.04 ± 0.07

4 27.8 58.8 6.9 2.90 3.45 0.999997 0.999960

± 3.8 ± 0.1 ± 0.03 ± 0.03

0.030 3 10.3 62.52 34.21 3.30 10.49 0.998462 0.999159

± 4.6 ± 0.7 ± 0.05 ± 0.1

4 65.0 51.91 15.90 2.95 6.11 0.998651 0.999316

± 3.6 ± 0.1 ± 0.05 ± 0.09

5 24.0 43.43 9.72 2.72 4.11 0.99842 0.999488

± 2.9 ± 0.1 ± 0.02 ± 0.04

0.040 2 2.5 40.3 175.2 3.62 36.54 1.0 1.0

± 4.5 ± 1.3 ± 0.02 ± 0.06

3 20.7 37.6 71.6 3.22 17.89 0.999986 0.999987

± 3.5 ± 0.2 ± 0.02 ± 0.11

4 38.8 34.5 39.3 2.97 11.23 0.999992 0.999994

± 2.9 ± 0.1 ± 0.02 ± 0.08

5 28.6 32.0 23.9 2.79 7.75 0.999979 0.999997

± 2.5 ± 0.1 ± 0.02 ± 0.06

6 8.2 29.9 15.2 – – 0.999974 0.999980

± 2.2 ± 0.1

Table 4.3: Analysis of pearl-necklace structures at τ = 0.26 and µ = 9.0. The third

column gives the weight of the various peal-necklace structures, gbead is the number

of monomers per bead and gstr the number of monomers per string, dbead is the size

of one bead, lstr the length of one string, fbead is the average degree of charging of

beads and fstr that of strings.

lations for Nbead, gbead, gstr, dbead and lstr given in Sec.2.2.1.3 (Eqns. 2.98, 2.94, 2.97, 2.95 and

2.96, respectively) and choosing u0 = 0.016 as reference state, for calculating the prefactors

omitted in the scaling relations, one obtains the quantitative predictions collected in Table

4.4.

Comparing simulation results (Table 4.3) and theoretical predictions (Table 4.4), good

agreement is observed for the number of pearls Nbead. The behavior of both gbead and dbead is

found to be in agreement; both have a tendency to decrease with increasing coupling strength.

However, disagreement appears for gstr and lstr: while the theory (see Eqn. 2.96) predicts

that they should decrease with increasing coupling strength, the simulation results show
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u0 Nbead gbead gstr dbead lstr
0.023 2.9 86.36 6.33 2.99 4.03

0.03 4.0 66.21 5.55 2.73 3.53

0.04 5.1 49.66 4.80 2.49 3.06

Table 4.4: According to Eqns. 2.98, 2.94, 2.97, 2.95 and 2.96

predicted quantities for pearl-necklace structures at τ = 0.26 and

f = 1 (N = 256). Nbead is the number of beads, gbead the number

of monomers per bead, gstr the number of monomers per string,

dbead the size of one bead and lstr the length of of string. The pref-

actors are calculated by choosing the case u0 = 0.016 as reference

state.

the opposite tendency. Nevertheless, considering the total size of the pearl-necklace structure

which is basically given by the total string length, one obtains a rather nice agreement between

theory and simulation data. According to Eqn. 2.99 the pearl-necklace length should grow

as R ' Nbeadlstr ∝ (uf 2/τ)1/2. Plotting the average m.s. end-to-end distance vs. (uf 2)1/2,

which is shown in Fig. 4.32 (τ is constant), one obtain a nearly linear behavior. This is
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Figure 4.32: Average m.s. end-to-end distance for pearl-

necklace structures vs. (uf 2)1/2 (τ = 0.26, N = 256).

rather surprising because the higher order structures at large u exhibit strong fluctuations.

Note that this discrepancy, i.e., agreement in the total size but disagreement in the string

quantities is already known from simulation results on quenched PELs [88].

The average degrees of charging in Table 4.3 are in qualitative agreement with the theo-

retical discussion by Castelnovo et al.. In many cases the average charge of beads is observed

to be smaller than the corresponding charge of strings.

At this point, one experimental work on the pearl-necklace structures is mentioned: In a



74 Simulation results

recent work Kirwan et al. [89] gave the first direct experimental evidence that the variation

of charge on an annealed PEL can be a direct tool to induce pearl-necklaces between globular

and coil-like structures. Conformational changes of poly(vinylamine) (PVA) upon adsorption

onto mica from solution with varying pH were determined by AFM. PVA is a weak cationic

PEL. Its charge density can be tuned by the pH from completely neutral (pH > 10) to fully

ionized (pH < 3) as demonstrated by titration experiments [90]. In Fig. 4.33, the original

(a) (b)

Figure 4.33: Configuration of an annealed PEL at varying pH. (a) AFM images show-

ing the extended coil-to-globular conformational transition of poly(vinylamine) (PVA),

achieved by adsorption onto mica from solutions of varying pH. (b) Expanded view of

selected molecules highlights the structural transition as a function of solution pH. The

pearl-necklace structures can be clearly seen at pH = 4.0 and 4.9 (Figures from [89]).

figures from ref. [89] are shown: Fig. 4.33(a) shows representative AFM images (1 × 1 µm

scans) visualizing the coil-to-globule transition of PVA as a function of pH. Selected zoomed

sections of these scans are given in Fig. 4.33(b). At pH = 3.0 and 4.0, the PVA is fully

ionized. The extended conformations of the chains can be noticed. At pH = 4.9 a significant

decrease in the degree of ionization of PVA sets in and a marked change in conformation is

observed. This picture clearly confirms the existence of pearl-necklace structures during the
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conformational coil-to-globule transition. At pH = 7.1 about half of the groups are ionized,

and more elongated, globular conformations are observed. At pH = 9.4 and 10 the chain is

only weakly charged, and collapsed globular structures can be seen 1.

Above it has been shown that pearl-necklaces exist indeed in annealed PELs provided the

solvent quality is not too poor. The width τ ∗ of the region close to Θ is determined by chain

length N and coupling strength u (see Eqn. 4.2). For small u, τ ∗ can become rather large. In

this way, at a given solvent quality τ one can shift the system from “rather poor” behavior

(no pearl-necklaces) to “close to Θ” behavior (stable pearl-necklaces). This is easily done

in simulation, but obviously it requires large effort in experiment. Therefore the interesting

question is, will globule-necklace transitions also occur in a kind of titration “experiment”,

i.e., simulating the system at constant u and τ < τ ∗, but varying µ. This problem which is

similar to the experimental study discussed above is addressed in the remaining part of the

section.

At τ = 0.26 two coupling strengths are chosen: (i) u0 = 0.016, (ii) u0 = 0.03. For both

cases the condition τ < τ ∗ is fulfilled. Fig. 4.34 shows the average degree of charging as a

function of chemical potential µ. The corresponding behavior of the m.s. end-to-end distance

is plotted in Fig. 4.35 and typical snapshots are given in Fig. 4.36.

The unusual behavior represented in the figures can be summarized as follows:

(i) At small µ the degree of charging increases linearly with growing chemical potential

(pH). The larger the coupling constant u the smaller is the slope. Note that the slope

is very small at u0 = 1 (see Sec. 4.2.1). While increasing the degree of charging from

zero up to about 0.5 (at u0 = 0.03) or 0.77 (at u0 = 0016), respectively, the shape of

the chain is not changed. It remains a globule independent of u, only the size of which

is very weakly growing with f .

(ii) Reaching a certain degree of charging f ∗ the globule becomes unstable. It splits into

several pearls the number of which depends on coupling strength u. However, for an-

nealed PELs the structure instability is coupled with a charge instability. At µ = µ∗(f ∗)

the chain jumps into a completely charged state. This transition is very similar to the

first order transition discussed in Sec.4.2.1. However, now the interaction is too weak to

stretch the chain completely and it stays in the multi-pearl state corresponding to com-

plete charging at the specific coupling strength. For u0 = 0.016, one obtains a dumbbell.

A higher-order pearl-necklace appears for u0 = 0.03. The positions of the globule-to-

1To mention experimental works on pearl-necklace structures in strong PELs: Partially sulfonated
polystyrenefulfonate (PSS), a typical hydrophobic PEL, was studied by ref [91] and pearl-necklace size was
observed to be related to the charge fraction. In ref. [92] migrosegregation in individual single chains of T4
DNA in solutions of poly(2-vinylpyrrolidone) (PVP) was observed by fluorescent microscopy. After mixing
solutions of DNA with PVP, single chains exhibited intrachain segregation with multiple mini-globules con-
nected by narrow flexible chains. Similar results were obtained when DNA was induced by polyethylene glycol
with pendant amino groups (PEG-A) in ref. [93]. Refs. [94, 95] also include similar results from fluorescence
images of large DNA molecules. Besides these ref. [96] gives an indirect evidence for the case of cationic
PELs by small angle X-ray scattering. Recently such structures have been also visualized for linear PELs by
imaging adsorbed poly(2-vinyl pyridine) and poly(methacryloyloxyethyl dimethyl benyl ammonium chloride)
(PMB) with atomic force microscopy (AFM) [97, 98].
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Figure 4.34: Average degree of charging versus chemical po-

tential at small coupling strength ( N = 256, τ = 0.26).
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Figure 4.35: End-to-end distance versus chemical potential

at small coupling strength (N = 256, τ = 0.26).

necklace transition are given in Table 4.5. Since the instability occurs at f ∗ ' (τ/uN)1/2

the critical degrees of charging are expected to obey

f ∗1
f ∗2

=

(
u2

u1

)1/2

' 1.4

which is fulfilled indeed quite well.
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Figure 4.36: Weak coupling region, typical snapshots at dif-

ferent charge chemical potentials (see also Figs. 4.34 and

4.35).

u0 µ∗ 〈f ∗〉
0.016 2.19 ± 0.01 0.77

0.03 2.76 ± 0.01 0.54

Table 4.5: Position of globule-to-necklace transition. Chem-

ical potential µ∗ and averaged degree of charging 〈f ∗〉 at the

coupling strengths u0 = 0.016 and u0 = 0.03 (τ = 0.26,

N = 256).

(iii) Because complete charging is reached no changes occur at µ > µ∗. Note the strong

fluctuations on the number of pearls in the case u0 = 0.03. Fig. 4.37 represents the

frequency of the various pearl-necklace states during the simulation together with the

corresponding m.s. end-to-end distance. The chain fluctuates basically between pearl-

necklaces with 3 pearls at minimum and 5 pearls at maximum. The weight of the

four-pearl structure is 65%, five- and three-pearl chains appear with about 24% and

10%, respectively. The end-to-end distance is correlating in a reasonable way with the

structure type: R fluctuates basically between about 19 and 33.

The m.s. end-to-end distances R measured directly from the simulation data are 9.6

and 26.7 for u0 = 0.016 and 0.03, respectively. The total length of the pearl-necklace

structures given by

Lnec = Nbead × dbead + (Nbead − 1)× lstr (4.4)

are calculated as 10.7 and 30.2 for u0 = 0.016 and 0.03, respectively. Basically, the
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Figure 4.37: Occurrence of different pearl-necklace states

and corresponding end-to-end distances during the simula-

tion (N = 256, u0 = 0.03, µ = 4.0).

deviations from the chain m.s. end-to-end distances have the following reason: The

pearl-necklace chain is mostly not in a straight conformation as assumed in Eqn. 4.4.

Therefore the real end-to-end distance obeys R < Lnec.

To get more information on the structure of pearl-necklaces the form factor is considered.

In Fig.4.38 the spherically averaged structure factors are shown; for u0 = 0.016 (a) and

u0 = 0.03 (b). In both figures, solid lines represent the structure before the transition (globule)

while dashed lines give the structure after the transition (pearl-necklace). Firstly, let us

consider the globular structures, corresponding to µ = 2.175 in Fig. 4.38(a) and µ = 2.7585

in Fig. 4.38(a). Both curves show a pronounced peak at q ≈ 3.1 that is related to a globule

size Rglobule ≈ 2.0. Note that directly calculated from simulations one obtains R ≈ 2.1. The

pronounced oscillations at large q indicate that the globule has sharp boundaries and does

not fluctuate strongly. Let us consider the structure factor of the dumbbell case at u0 = 0.016

(dashed line in Fig. 4.38(a)). The shoulder seen at q ≈ 0.75 gives bead-to-bead distance.

Thus one obtains l = 8.37 (see Eqn. 2.103). This length can be identified as the distance

between the beads’ centers of mass. Using the data given in Table 4.3 one obtains

lstr + 2

(
dbead

2

)
= 4.87 + 3.36 = 8.23,

which is found in a fair agreement with the shape of the form factor. The second shoulder

seen at q ≈ 3.65 is related to bead size. dbead = 4π/q ≈ 3.44 which is in a good agreement

with Table 4.3. Due to the strong fluctuations of the number of pearls the pearl-necklace form

factor seen in Fig. 4.38(b) (dashed line) shows only one broad (smeared) shoulder. Therefore

from the structure factor one cannot deduce anything specific for the pearl-necklace structure
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Figure 4.38: Single chain structure factors plotted for glob-

ules (black solid line) and pearl-necklaces (red dashed line)

at (a) u0 = 0.016 (dashed arrows point the shoulder corre-

sponding to string length and the peak corresponding to bead

size) and (b) u0 = 0.03 (solid arrow denotes peak position

that gives globule size).
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in this case. Note that this is also a typical problem in scattering experiments on pearl-

necklace structures.

One may also sample the density distribution function ρ(r) of monomers around the

center of mass of the chain. Fig. 4.39(a) shows the monomer density distribution function

at u0 = 0.016 for µ = 2.175 and µ = 2.20, while Fig. 4.39(b) displays the monomer density

distribution function at u0 = 0.03 for µ = 2.7585 and µ = 2.76. The narrow peaks seen

at µ = 2.175, u0 = 0.016 and µ = 2.175, u0 = 0.03 correspond to the globular structures.

However, for u0 = 0.016 and µ = 2.20 (Fig. 4.39(a)) the peak becomes broader and its

location is shifted away from the center of mass, corresponding to the formation of a dumbbell.

At u0 = 0.03 and µ = 2.76 (Fig. 4.39(b)) the distribution function exhibits two broad peaks.

The existence of two peaks corresponds to a chain which has has four pearls. The distance

between the peaks (about 6.9) is related to the string length (directly measured 6.11, see

Table 4.3).

4.2.3 Influence of additional salt

In this section effects of additional salt are discussed for annealed PELs in poor solvent.

Considering chains of length N = 256 at λB = 1.0, τ = 0.19 one studies the behavior in a

rather poor solvent. Adding low molecular salt ions to the solution the screening length of the

electrostatic interaction λD = (8πλBcs)
−1/2, with cs being the concentration of a (monovalent)

salt, will be reduced. In this way, one has a simple tool to vary the range of interaction. For

very large salt concentration, i.e., at very short screening length λD < b the interaction can be

completely suppressed and the PEL chain becomes like a neutral one. In Fig. 4.40 the degree

of charging is plotted as a function of the rescaled screening length for different chemical

potential.

The corresponding behavior of the normalized m.s. end-to-end distance is shown in Fig.

4.41. In Fig. 4.42 one finds typical snapshots which illustrate the chain structure in the differ-

ent regions. In the snapshots charged monomers are represented by red color and uncharged

ones by yellow color.

Although solvent quality τ , coupling strength u and chemical potential µ are fixed, ob-

viously there is another way to switch the configuration of the PEL chain between a highly

charged stretched state and a weakly charged globule by tuning λD. In contrast to quenched

PELs this is not a continuous crossover, but a discontinuous transition. At λD < b the

Coulomb interaction is almost fully screened, i.e., at any finite µ the chain will be completely

charged. Nevertheless it forms a globule like neutral chains in a poor solvent. With growing

λD the chain becomes continuously stretched. However, there appears a certain screening

length λ∗D where the penalty in interaction energy becomes larger than the penalty upon

neutralizing almost all the charges which is Nc × µ. At those points the chain undergoes a

discontinuous transition back into a globule which is now only weakly charged in contrast to

the globule at small λD. Obviously, the transition point λ∗D depends on the chemical potential.

The transition points λ∗D for various chemical potentials are given in Table 4.6. For larger

µ, there appears an interesting feature: increasing λD the PEL chain exhibits non-monotonic

stretching. Beyond a maximum stretching at a certain screening length the chain becomes
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Figure 4.39: Density distribution function of monomers

around the center of mass of chain (N = 256) at (a)

u0 = 0.016 and (b) u0 = 0.03.
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Figure 4.40: Degree of charging versus screening length at

different charge chemical potentials (N = 256, u0 = 1, τ =

0.19).
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Figure 4.41: Normalized end-to-end distance versus screening

length at different charge chemical potentials (N = 256, u0 =

1, τ = 0.19).

again more and more wiggled before finally undergoing the transition into a weakly charged

globule. This behavior is due to a partial neutralization of monomer charges with increasing
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Figure 4.42: Snapshots taken from the chain N = 256 and with µ = 7.41

for various values of screening length (τ = 0.19).

µ λ∗D

5.0 4.27

6.0 10.03

7.0 38.98

7.41 74.50

Table 4.6: Transition point λ∗D at different chemical po-

tentials (N = 256, τ = 0.19).

λD (see Fig. 4.40 at µ ≥ 7.0), which corresponds to a growing distance between neighboring

charges.

At solvent quality τ = 0.19, the maximal chemical potential at which there occurs a

sharp transition is found 7.41. For larger chemical potentials, one cannot observe any sharp

transition and the chain remains in an extended state. To enlarge the range of µ where a

coil-to-globule transition occurs at large λD one has to reduce solvent quality and to go to

larger τ .

The spherically averaged structure factors are given in Fig. 4.43. In this figure, the

structure factor is plotted for different chemical potentials at the specific Debye lengths just

before the transition. One curve shows the behavior after the transition which is quite the

same for all chemical potentials as long as λD > λ∗D(µ). At screening lengths λD < λ∗D for
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behavior just before the transition and the case shown with

plus symbol is the behavior above the transition. Note that

for λD > λ∗D all curves map almost perfectly each other.

all chemical potentials the PEL chain is found to be highly stretched, S ∝ q−1. At screening

lengths λD > λ∗D the chain is in a collapsed state. The peak at log10 q ≈ 0.50 gives the globule

size R ≈ 2.0.

Fig. 4.44 displays the spherically averaged structure factors at varying λD for chemical

potential µ = 7.41. This plot is quite illustrative to see the effect of added salt. The chain

expands with increasing screening length. At λD = 4, i.e., λD/b ≈ 3.7, the chain is swollen

with ν ≈ 0.6. At λD = 35, i.e. λD/Nb ≈ 0.14 the chain is highly stretched with ν ≈ 1. At

λD > λ∗D ≈ 74.5 the chain collapses back into a weakly charged globule. For stretched, highly

charged chains just before the transition back to a globule the local charge distribution along

the chain is shown in Fig. 4.45. The contour distance in the plot, s, is measured in the units

of b0 from the middle of the chain;

−N/2 ≤ s ≤ N/2. (4.5)

Very similarly to annealed PELs in good solvent there appears a charge accumulation at chain

ends. The width of that region is given by the Debye length [34, 59].
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Chapter 5

Conclusions

Polyelectrolytes (PELs) are polymer chains containing a certain amount of ionizable monomers.

When such polymers are dissolved in a polar solvent like water, the ion pairs dissociate and

the polymer becomes charged. While the one type of charges is localized on the chain, the cor-

responding oppositely charged counterions are scattered in the solution [1]. PELs are present

everywhere in our daily life. On the one hand biopolymers, including DNA and proteins, are

PELs, on the other hand, many artificial water soluble polymers are charged. Generally speak-

ing, the understanding of PELs is relatively poor compared to neutral polymer systems. In

the case of PELs in a poor solvent, the complexity arises from the competition between repul-

sive long-ranged electrostatic interaction and local attractive volume interaction. Annealed

PELs are even more complex due to the additional degree of freedom in charge distribution.

So far simulation studies on PELs in a poor solvent were mainly focused on quenched PELs.

The theory predicts that the behavior of annealed PELs in poor solvents close to the Θ

point τ < τ ∗ is quite different than that at rather poor solvents τ > τ ∗, where the characteristic

distance from the Θ point is given by τ ∗ ' N−1/5u−3/5.

In this work, extensive semi-grand canonical Monte Carlo simulations have been carried

out to check the theoretical predictions in the different regions. A problem of interest is

the influence of additional salt. This question has been studied by simulations with varying

screening length λD.

In the case of rather poor solvents, the charge chemical potential is a non-monotonic

function of the degree of charging f . The theory predicts that an annealed PEL undergoes

a first-order phase transition in that case [36]. For the first time the simulation results

reported here have given direct evidence that an annealed PEL indeed undergoes a first-order

phase transition when the chemical potential (solution pH) reaches a certain value. The

discontinuous transition occurs between a weakly charged compact globular structure and a

strongly charged stretched configuration. The order of the transition has been determined

using the histogram method of Lee and Kosterlitz [87]. At the transition point, the free

energy has pronounced double minima corresponding to two coexisting phases. One minimum

corresponds to a weakly charged globular structure and the other one to a strongly charged

stretched configuration. The double minima structure provides direct evidence for the first

order nature of the transition in agreement with theoretical predictions. In addition, finite

size effects have been studied. For smaller chains, the transition seems to be continuous, but
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for longer chains the transition is really discontinuous. Hence, it could be shown that former

simulation studies [86] where the authors claimed to see a continuous transition were strongly

affected by finite size effects [85].

Close to Θ point (τ < τ ∗) the entropic term is dominating the chemical potential µ

which remains then a monotonically growing function of f . In that case theory predicts no

phase transition but a deformation of the globule. Later it was understood (to be precise,

for quenched PELs) that the globule would become unstable with respect to the formation

of pearl-necklaces [29]. Thus, it is expected that such inhomogeneous structures are stable

at τ < τ ∗. One may come close to the Θ point via two different routes: one is directly to

reduce the scaled temperature τ . The second one is to enlarge the value of τ ∗, by decreasing

the coupling parameter. In this study the second way has been chosen. The results show

that pearl-necklaces exist in annealed PELs indeed. The pearl-necklace structures have been

quantitatively studied: with increasing coupling parameter, the number of pearls increases

while the number of monomers per bead and the size of one bead decrease. These features

are in a good agreement with theoretical predictions made for quenched PELs. But the

observations for string length and string mass do not agree with theoretical predictions. One

has to note that, for the chain lengths used in this study the strings are rather short objects.

Obviously, asymptotic relations cannot be applied for them as done by theory. In multi-pearl

structures, the fluctuations between states with different pearl numbers are large. This is due

to the relatively small energy difference between these structures.

Qualitatively the charge distribution along pearl-necklace structures agrees with theoret-

ical predictions [59], i.e. pearls are slightly less charged as strings.

Besides the agreement with theoretical prediction, the observation of pearl-necklace struc-

tures in annealed PELs is confirmed by recent experiments: poly(vinylamine) (PVA) exhibits

a coil/globule-to-pearl-necklace transition by changing the pH [89].

Furthermore, as predicted by theory [46], the simulation results have shown that an

annealed PEL displays a sharp transition from a highly charged stretched state to weakly

charged globule at a critical salt concentration. An annealed PEL forms a fully charged

compact structure at strong screening. With increasing screening length the chains start to

swell. At a certain screening length, chain size and degree of charging are at maximum. For

larger screening lengths, the size of chain and degree of charging are reduced before the chain

undergoes a sharp transition into a globular state. The screening length depends on the

chemical potential.

Although the present study could supply new insight into the behavior of annealed PELs

and some features could be shown for the first time there remain open questions for further

work:

(i) The behavior close to the Θ point should be studied by tuning the solvent quality directly

towards the Θ point, i.e., by reducing τ absolutely. Enlarging τ ∗ by reducing coupling

strength induces other effects due to the weak interaction. The study by decreasing

τ itself may bring additional insight which might be directly related to experimental

studies.

(ii) Investigating the influence of additional salt a non-monotonic stretching with growing
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λD was obtained before the chain undergoes a coil-to-globule transition. To enlarge the

region where this interesting behavior occurs one has to reduce the solvent quality, i.e.,

one has to enlarge τ .

(iii) Since in any real system one cannot omit the effects of counterions studies including

counterions would be highly interesting. In the case of quenched PELs the role of the

counterion entropy and its effect to the stability of the various structures is an intensively

discussed question.
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Appendix A

Cluster search algorithm

The specific structure quantities of pearl-necklace structures are studied by using a cluster

search algorithm. Cluster search is important in many research areas, for example in picture

analysis and percolation systems [99]. In such an algorithm, the question whether a group

of monomers forms a cluster is often connected to a distance criterion, e.g. monomers with a

distance smaller than a critical value belong to the same cluster. For a polymer one has to take

into account chain connectivity. This implies that a pure distance criterion is not sufficient.

Therefore, additionally one requires that there is a certain number of bonds between a pair of

monomers along the chain contour [88, 100]. The resulting algorithm is iterative and contains

the following steps:

1. At the beginning every monomer is considered to be a cluster of size 1 (cluster size:

number of monomers belonging to a cluster).

2. Two clusters C1 and C2 are merged if they contain a pair of monomers ij with i ∈ C1,

j ∈ C2 and rij < rc. Along the chain monomers i and j have to have a distance larger

than nc bonds: | i− j |> nc.

3. Step 2 is repeated over all clusters as long as one finds clusters that have to be merged.

4. Elimination of loops: clusters which lie completely or partially within another cluster

are merged.

5. Definition of pearls: all clusters with a size larger than or equal to pc are pearls. Pearls

directly connected along the chain are merged.

6. Definition of strings: all clusters with a size smaller than pc are strings. Strings directly

connected along the chain are merged.

7. Elimination of dangling ends: strings at chain ends are merged to the end pearls.

Thus the algorithm has in principle three free parameters: rc, nc and pc. The used empirical

parameter set in this work is {rc = 1.8, nc = 10, pc = 20}. Small changes of the three

parameters do not have a significant effect on the final result. The parameter set is different

than those in ref. [100], mainly due to the different bond potential and σ value.
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Chem. Soc. 124, 13454 (2002).

[99] D. Stauffer, Introduction to Percolation Theory (1st ed.). Taylor and Franci, London

Philadelphia (1985).

[100] H. J. Limbach, Struktur und Eigenschaften von Polyelektrolyten im schlechten

Lösungsmittel. Ph.D. Thesis, Johannes Gutenberg University Mainz (2001).



98 BIBLIOGRAPHY



List of Figures

2.1 Electron microscope picture of bacterial DNA partially released from its native

cell. (Picture from [9].) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 A polymer chain of N + 1 monomers. . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Gaussian chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 (a) Schematic view of a semi-flexible chain. The tangent to the chain contour

is t(s) where s ∈ [0, L]. A typical persistence length Lp is indicated on the

figure. (b) The deflection point θ of a short segment of length ∆s. . . . . . . . 9

2.5 Excluded volume interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 A polymer chain in different solvents: (a) in a good solvent, (b) in a Θ solvent

and (c) in a poor solvent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Globule consisting of thermal blobs. . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8 Schematic display of PEL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.9 Schematic diagram of pearl-necklace structure. Beads are spherical with di-

ameter dbead and consists of gbead monomers each. Strings are cylindrical with

length lstr and diameter dstr and consists of gstr monomers each. The density

of beads and string is the same-dense packing of thermal blobs of size ξt. . . . 20

2.10 Structure factor calculated for a pearl-necklace with N = 256, Nbead = 2,

dbead = 6 and lstr = 8 and for a solid sphere of N = 256 and with radius R = 3.

The arrows give string length and sphere (or) bead size. . . . . . . . . . . . . . 22

2.11 Diagram of states of a PEL chain N = 128 monomers in a poor solvent. The

normalized Bjerrum length is u = λB/b = 1.0 (following [29]). . . . . . . . . . 23

2.12 Necklace conformation: the inhomogeneity in charge distribution is observed

by different charging of beads f − δf and string f + δf ′. . . . . . . . . . . . . 28

2.13 Blob picture in the presence of screening. Inside the electrostatic blobs, at

length scales r . ξe, the behavior is dominated by the short-range monomer-

monomer interactions and is solvent-dependent. Inside the electrostatic screen-

ing blobs, at length scales ξe . r . λD, electrostatic interactions dominate and

the interaction blobs line up in an extended conformation. At larger length

scales λD . r . R the electrostatic interactions are screened and the electro-

static screening blobs interact via a short-range excluded volume interaction. . 30

2.14 Conformations of a PEL chain in Θ and poor solvent as a function of solvent

quality τ and inverse screening length (according to [46]). . . . . . . . . . . . 31



100 LIST OF FIGURES

3.1 Modified Lennard-Jones potential between one pair of monomers. β establishes

the quality of solvent. σ = 0.5, ε = 1.0 and kBT = 1.2. . . . . . . . . . . . . . . 40

3.2 Bond length distribution of a neutral chain, of N=1000 monomers, for different

values of σ and comparison to the theoretical bond length distribution of the

ideal chain. σ = 0.5 is the value chosen in this study. . . . . . . . . . . . . . . 40

3.3 Trial moves used in the simulation; (a) local move, (b) pivot move, (c) reptation

move and (d) charge move. Red color denotes charged monomers and yellow

color denotes uncharged monomers. . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Coil size dependence R versus N of an ideal chain. The line indicates a power

law N1/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Spherically averaged intrachain structure factor of an ideal chain (N=1000).

The line indicates the asymptotic behavior S(q) ∝ q−2. . . . . . . . . . . . . . 46

4.3 Running averages of m.s. end-to-end distance, starting with a random confor-

mation and with a straight line, N = 1000. . . . . . . . . . . . . . . . . . . . . 47

4.4 Chain length dependence of a neutral chain (N = 1000) in good solvent for

different σ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Spherically averaged structure factor of a neutral chain in good solvent for

different σ (N=1000). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Chain length dependence of the normalized end-to-end distance for a neutral

chain at different values of β. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.7 Chain length dependence of the normalized radius of gyration at different values

of β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.8 The normalized end-to-end distance 〈R2〉/b2N vs. β at different chain lengths.

For large N , all the curves intersect in a common point βΘ = 2.615. . . . . . . 50

4.9 The normalized radius of gyration of a neutral chain of N = 256 versus τ in

poor solvents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.10 Structure factor of a neutral chain at different solvent qualities (N = 256).

(a) close to Θ point; τ = −0.08, 0.0, and 0.07; (b) far below Θ point; τ =

0.15, 0.19, and 0.22. Arrow points peak corresponding to globule size. Straight

lines indicate certain asymptotic scaling. . . . . . . . . . . . . . . . . . . . . . 52

4.11 Sample pictures of a neutral chain in different solvent conditions; (a) β = 2.40,

(b) β = 2.615, (c) β = 2.90 and (d) β = 3.0. . . . . . . . . . . . . . . . . . . . 53

4.12 Autocorrelation function of 〈R2〉 of a neutral chain under different solvent

conditions. (a) τ = −0.08 (β = 2.40, good solvent), (b) τ = 0.0 (β = 2.615,Θ-

solvent) and (c) τ = 0.05 (β = 2.75, poor solvent) for various chain lengths.

(Note the different scale of x-axes.) . . . . . . . . . . . . . . . . . . . . . . . . 54

4.13 Evolution of coil-globule transition. The snapshots were taken from the simu-

lation of a neutral chain (N = 256) in poor solvent (τ = 0.15). MCM is one

(mixed) Monte Carlo step per monomer. . . . . . . . . . . . . . . . . . . . . . 55

4.14 Chain length dependence of the end-to-end distance of a fully charged PEL

chain at varying Debye length (N = 1000). . . . . . . . . . . . . . . . . . . . . 56



LIST OF FIGURES 101

4.15 Spherically averaged structure factor for a fully charged PEL chain (N = 1000)

at varying Debye lengths. The straight lines give the two limiting scaling relations. 56

4.16 Bond length distributions for a fully charged PEL chain (N = 1000) at different

Debye lengths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.17 Simulation snapshots of a fully charged PEL chain of N = 1000 monomers in

a good solvent at different Debye length: (a) λD = 1, (b) λD = 5, (c) λD = 10,

and (d) λD = 500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.18 Normalized end-to-end distance versus the electrostatic interaction strength for

different values of τ at f = 1/8 (N = 128, except one case stated in the legend). 59

4.19 Reduced radius of gyration as function of Nuf 2/τ . The normalization is done

such that the curve should be one constant for pearl-necklace scaling (N =

128, f = 1/8). (Dashed line shows the plateau according to the pearl-necklace

scaling). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.20 Spherically averaged structure factor (N = 128) for different values of uf 2: (a)

at the Θ point (β = 2.615), (b) for τ = 0.15 (β = 3.1). The dashed lines

indicate the limiting scaling laws. . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.21 Typical snapshots from the simulation of a weakly charged, quenched PEL

(f = 1/8, N = 256) in a solvent (τ = 0.15). (a) uf 2 = 0.0063, (b) uf 2 =

0.0078, (c) uf 2 = 0.0094, (d) uf 2 = 0.0156 and (e) uf 2 = 0.031. Charged

monomers are red colored while uncharged ones are yellow. . . . . . . . . . . . 62

4.22 Running averages of end-to-end distance, starting with random configuration,

dumbbell and globule. (a) µ = 4.0 where the equilibrium state is a compact

globule, (b) µ = 8.0 where the equilibrium state is a stretched configuration

(N = 256, τ = 0.19). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.23 Simulation results at λB = 1 and varying solvent quality: τ = 0.19 (circles),

τ = 0.22 (squares), and τ = 0.26 (diamonds). a) Degree of charging vs.

chemical potential (titration curves), b) m.s. end-to-end distance vs. chemical

potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.24 Simulation snapshots at constant solvent quality (τ = 0.22): a) weakly charged,

collapsed chain at µ = 4.0 (charged monomers are colored red and uncharged

ones are colored yellow), b) completely charged, extended chain at µ = 9.0. . . 65

4.25 Simulation results at λB = 1 and τ = 0.19. Energy distribution function P (E)

at µ = 4.05 (dashed), µ∗ = 4.093 (solid), µ = 4.13 (dot-dashed) for chain

length N = 64, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.26 Simulation results at λB = 1 and τ = 0.19: a) degree of charging and b) nor-

malized chain size vs. chemical potential at N = 32 (triangles), 64 (diamonds),

128 (circles), 256 (squares). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.27 Spherically averaged form factor (τ = 0.22, N = 256, λB = 1.0) for various

chemical potentials. The straight line gives the scaling behavior of a completely

stretched chain. The arrow indicates the q value giving the size of globule. . . 68

4.28 Degree of charging versus the coupling parameter for τ = 0.26 and µ = 9.0

(N = 256). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



102 LIST OF FIGURES

4.29 End-to-end distance versus the coupling parameter for τ = 0.26 and µ = 9.0

(N = 256). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.30 Snapshots demonstrating the transitions which occur when the coupling strength

is increased at constant τ, µ (τ = 0.26, µ = 9.0). Charged monomers are colored

red, uncharged ones yellow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.31 Spherically averaged structure factor at τ = 0.26, µ = 9.0 and varying coupling

strength: Circles for point I, squares for II, diamonds for III, triangle-ups for IV

and stars for point V. The straight line indicates the limiting scaling law. The

arrows point to the additional peaks, solid for globular structure and dashed

for dumbbell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.32 Average m.s. end-to-end distance for pearl-necklace structures vs. (uf 2)1/2

(τ = 0.26, N = 256). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.33 Configuration of an annealed PEL at varying pH. (a) AFM images showing the

extended coil-to-globular conformational transition of poly(vinylamine) (PVA),

achieved by adsorption onto mica from solutions of varying pH. (b) Expanded

view of selected molecules highlights the structural transition as a function of

solution pH. The pearl-necklace structures can be clearly seen at pH = 4.0 and

4.9 (Figures from [89]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.34 Average degree of charging versus chemical potential at small coupling strength

( N = 256, τ = 0.26). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.35 End-to-end distance versus chemical potential at small coupling strength (N =

256, τ = 0.26). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.36 Weak coupling region, typical snapshots at different charge chemical potentials

(see also Figs. 4.34 and 4.35). . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.37 Occurrence of different pearl-necklace states and corresponding end-to-end dis-

tances during the simulation (N = 256, u0 = 0.03, µ = 4.0). . . . . . . . . . . 78

4.38 Single chain structure factors plotted for globules (black solid line) and pearl-

necklaces (red dashed line) at (a) u0 = 0.016 (dashed arrows point the shoulder

corresponding to string length and the peak corresponding to bead size) and

(b) u0 = 0.03 (solid arrow denotes peak position that gives globule size). . . . 79

4.39 Density distribution function of monomers around the center of mass of chain

(N = 256) at (a) u0 = 0.016 and (b) u0 = 0.03. . . . . . . . . . . . . . . . . . . 81

4.40 Degree of charging versus screening length at different charge chemical poten-

tials (N = 256, u0 = 1, τ = 0.19). . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.41 Normalized end-to-end distance versus screening length at different charge

chemical potentials (N = 256, u0 = 1, τ = 0.19). . . . . . . . . . . . . . . . . . 82

4.42 Snapshots taken from the chain N = 256 and with µ = 7.41 for various values

of screening length (τ = 0.19). . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.43 Structure factors of the PEL chain at different µ, (N = 256, τ = 0.19). The

cases at λD = λ∗D(µ) show the behavior just before the transition and the case

shown with plus symbol is the behavior above the transition. Note that for

λD > λ∗D all curves map almost perfectly each other. . . . . . . . . . . . . . . . 84



LIST OF FIGURES 103

4.44 Structure factors of the PEL chain at varying λD for µ = 7.41. The straight

lines show certain scaling behavior. . . . . . . . . . . . . . . . . . . . . . . . . 85

4.45 Degree of dissociation in the stretched state as a function of the position along

the chain (N = 256), (1) circles (black): µ = 5.0;λD = 4.27;< f >= 0.995,

(2) diamonds (blue): µ = 7.0;λD = 38.98;< f >= 0.806 and (3) triangle-up

(green): µ = 7.41;λD = 74.87;< f >= 0.696. . . . . . . . . . . . . . . . . . . . 85


	Titelblatt
	Contents
	Introduction
	1.1 Polyelectrolytes
	1.2 Description of the study

	Polymer models and theoretical predictions
	2.1 Neutral polymers
	2.1.1 Ideal chains
	2.1.2 Structure of polymers in solution
	2.1.3 Excluded volume effect
	2.1.4 Solvent effects
	2.1.5 Blob picture

	2.2 Polyelectrolytes
	2.2.1 Quenched polyelectrolytes
	2.2.1.1 Electrostatics
	2.2.1.2 Solvent effects
	2.2.1.3 Pearl-necklace structure

	2.2.2 Annealed polyelectrolytes
	2.2.3 Effect of additional salt
	2.2.3.1 Quenched polyelectrolytes
	2.2.3.2 Annealed polyelectrolytes



	Model and Simulation method
	3.1 Simulation method
	3.2 Basic definition
	3.2.1 Simple sampling
	3.2.2 Importance sampling

	3.3 Model
	3.4 Simulation details
	3.5 Analyzing simulation results

	Simulation results
	4.1 Development and testing of the code
	4.1.1 Neutral chain
	4.1.1.1 Gaussian chain
	4.1.1.2 Swollen chain with excluded volume
	4.1.1.3 Determination of the � point
	4.1.1.4 Varying solvent quality

	4.1.2 Quenched polyelectrolytes
	4.1.2.1 Completely charged PELs in good solvent
	4.1.2.2 Weakly charged PELs in poor solvent


	4.2 Annealed polyelectrolytes in poor solvent
	4.2.1 Rather poor solvents
	4.2.2 Close to � point
	4.2.3 Influence of additional salt


	Conclusions
	Cluster search algorithm
	Bibliography
	List of Figures

