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Abstract

In the present dissertation paper we study problems related to synchronization phe-

nomena in the presence of noise which unavoidably appears in real systems. One part of

the work is aimed at investigation of utilizing delayed feedback to control properties of

diverse chaotic dynamic and stochastic systems, with emphasis on the ones determining

predisposition to synchronization. Other part deals with a constructive role of noise, i.e.

its ability to synchronize identical self-sustained oscillators.

First, we demonstrate that the coherence of a noisy or chaotic self-sustained oscillator

can be efficiently controlled by the delayed feedback. We develop the analytical theory of

this effect, considering noisy systems in the Gaussian approximation. Possible applications

of the effect for the synchronization control are also discussed.

Second, we consider synchrony of limit cycle systems (in other words, self-sustained

oscillators) driven by identical noise. For weak noise and smooth systems we proof the

purely synchronizing effect of noise. For slightly different oscillators and/or slightly non-

identical driving, synchrony becomes imperfect, and this subject is also studied. Then,

with numerics we show moderate noise to be able to lead to desynchronization of some

systems under certain circumstances. For neurons the last effect means “antireliability”

(the “reliability” property of neurons is treated to be important from the viewpoint of

information transmission functions), and we extend our investigation to neural oscillators

which are not always limit cycle ones.

Third, we develop a weakly nonlinear theory of the Kuramoto transition (a transi-

tion to collective synchrony) in an ensemble of globally coupled oscillators in presence

of additional time-delayed coupling terms. We show that a linear delayed feedback not

only controls the transition point, but effectively changes the nonlinear terms near the

transition. A purely nonlinear delayed coupling does not effect the transition point, but

can reduce or enhance the amplitude of collective oscillations.
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Zusammenfassung

In der vorliegenden Dissertation werden Synchronisationsphänomene im Vorhanden-

sein von Rauschen studiert. Ein Ziel dieser Arbeit besteht in der Untersuchung der

Anwendbarkeit verzögerter Rückkopplung zur Kontrolle von bestimmten Eigenschaften

chaotischer oder stochastischer Systeme. Der andere Teil beschäftigt sich mit den kon-

struktiven Eigenschaften von Rauschen. Insbesondere wird die Möglichkeit, identische

selbsterregte Oszillatoren zu synchronisieren untersucht.

Als erstes wird gezeigt, dass Kohärenz verrauschter oder chaotischer Oszillatoren durch

verzögertes Rückkoppeln kontrolliert werden kann. Es wird eine analytische Beschreibung

dieses Phänomens in verrauschten Systemen entwickelt. Außerdem werden mögliche An-

wendungen im Zusammenhang mit Synchronisationskontrolle vorgestellt und diskutiert.

Als zweites werden Oszillatoren unter dem Einfluss von identischem Rauschen be-

trachtet. Für schwaches Rauschen und genügend glatte Systeme wird bewiesen, das

Rauschen zu Synchronisation führt. Für leicht unterschiedliche Oszillatoren und leicht

unterschiedliches Rauschen wird die Synchronisation unvollständig. Dieser Effekt wird

auch untersucht. Dann wird mit Hilfe von Numerik gezeigt, dass moderates Rauschen zur

Desynchronisierung von bestimmten Systemen führen kann. Dieser Effekt wird auch in

neuronalen Oszillatoren untersucht, welche nicht unbedingt Grenzzyklen besitzen müssen.

Im dritten Teil wird eine schwache nichtlineare Theorie des Kuramoto-Übergangs,

dem Übergang zur kollektiven Synchronisation, in einem Ensemble von global gekoppel-

ten Oszillatoren mit zusätzlichen zeitverzögerten Kopplungstermen entwickelt. Es wird

gezeigt, dass lineare Rückkopplung nicht nur den Übergangspunkt bestimmt, sondern

auch die nichtlinearen Terme in der Nähe des Übergangs entscheidend verändert. Eine

rein nichtlineare Rückkopplung verändert den Übergang nicht, kann aber die Amplitude

der kollektiven Oszillationen vergrößern oder verringern.
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Introduction

Synchronization phenomena are extremely wide spread in environment (ranging from

nature over engineering to social life) and are attracting great attention not only of sci-

entists, but also engineers. The development of general theories of dynamical systems

and stochastic processes and their mathematical tools has provided recently (in a histori-

cal perspective) opportunities for a systematic and quantitative study of these intriguing

phenomena (see, for instance, [1]).

In spite of the attention to the phenomenon and intense investigations in the field,

some problems still remain opened. Those related to the role of noise which is unavoidably

present in real systems, and to the delayed feedback which provides possibilities of control

of diverse dynamical systems, are subject of this dissertation paper. In details, the paper

is organized as follows.

In chapter 2 we consider utilizing delayed feedback to control coherence (persistence of

oscillation frequency) of stochastic limit cycle systems and deterministic chaotic ones [2, 3].

Coherence is quantified by virtue of the phase diffusion constant. The main point is that

we do not intend to suppress chaos, but to control phase diffusion, and, therefore, use

quite weak feedback.

First, the effect is demonstrated in numerical simulations, it appears to be especially

pronounced for the Lorenz system. Also, the role of coherence for predisposition of systems

to synchronization is illustrated with the Lorenz system entrained by an external periodic

forcing. Then, using the Gaussian approximation, we develop an analytical description

of the effect for stochastic limit cycle systems. The results of the analytic theory are

compared to numerics.

In chapter 3 we turn our attention to the possible constructive role of noise: the

phenomenon of synchronization of oscillators by common (white Gaussian) noise is in-

vestigated. For identical oscillators subject to identical noisy driving, the synchrony is

measured by the Lyapunov exponent: oscillators are perfectly synchronous, when the

Lyapunov exponent is negative, and nonsynchronous otherwise.

First, we derive the expression for the Lyapunov exponent for limit cycle oscillators

within the framework of the phase approximation, and demonstrate that weak noise syn-
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2 1. INTRODUCTION

chronizes systems with a smooth limit cycle [4, 5]. Then we study the role of small

nonidentities either in noisy driving or in oscillators [6] which distort perfect synchrony

observed for a negative Lyapunov exponent in the ideal situation. The results of ana-

lytical description are compared to numerics for a noisy Van der Pol–Duffing oscillator.

Numerical simulation also reveals occurrence of a positive Lyapunov exponent for some

systems under certain circumstances for moderate noise strength, what means desyn-

chronization. Then, in order to check whether the effects observed are specific for withe

Gaussian noise or general for different noises, we extend our investigation to the case of

a telegraph noise [7] and find a good qualitative agreement between results for these two

kinds of noise, providing these results to be general.

Further, we extend our investigation to the case of neuronal oscillators which are not

always limit cycle ones. Here we show possibility of “antireliability” (“reliability” is the

property of a single neuron to give identical responses under repeatedly applied weak

input fluctuations of a prerecorded waveform [39]) and present an analytical model of the

phenomenon [8].

In chapter 4 we consider phenomena related to synchronization in large populations

of coupled noisy oscillators (independent noise for each oscillator). A transition to collec-

tive synchrony in an ensemble of globally coupled oscillators is known as the Kuramoto

transition. An important application of the theory is collective dynamics of neuronal

populations. Indeed, synchronization of individual neurons is believed to play the crucial

role in the emergence of pathological rhythmic brain activity in Parkinsons disease, essen-

tial tremor, and epilepsies. One approach to suppress such an activity is to apply to the

system a negative feedback loop [66, 67, 68]. Specifically, we develop a weakly nonlinear

theory of the Kuramoto transition in the presence of linear and nonlinear time-delayed

coupling terms [9]. This theory allows us to determine the Kuramoto transition point and

the order parameter near the transition.

Chapter 5 ends the thesis with discussion of results and open questions.



Chapter 2

Coherence of Oscillators with

Delayed Feedback

Coherence, or stability of oscillation frequency, is one of the main characteristics of self-

sustained systems. This property determines the quality of clocks, electronic generators,

lasers, etc. Quite often the improvement of the coherence is one of the major goals in

the design of such oscillators. In terms of the phase dynamics, the coherence of a noisy

limit cycle oscillator is quantified by the phase diffusion constant; it is proportional to

the width of the spectral peak of oscillations. Many chaotic oscillators also admit phase

dynamics description, and, hence, their coherence can be quantified by virtue of the phase

diffusion constant as well [1].

In this chapter we demonstrate that the coherence of oscillations is essentially in-

fluenced by an external delayed feedback, thus offering a possibility for its effective con-

trol [2, 3]. Delayed feedback is widely used to achieve a qualitative change in the dynamics,

e.g. to make chaotic oscillators to operate periodically (Pyragas’ control method [10]) or

to suppress space-time chaos [11, 12, 13]. Additionally to Pyragas’ method utilizing a

single delay feedback, there are methods employing multiple delay feedback control: they

can be used either to stabilize fixed points [14, 15] or to make chaotic systems operating

periodically [16, 17]. In our study we concentrate on the quantitative effect of a (single)

delayed feedback on the phase diffusion properties of noisy periodic and chaotic oscillators.

Investigation of effects of irregularities and noise in systems with delay is a complicated

problem, because one cannot apply here such well established tools as the Fokker-Planck

equation, valid for Markov processes. In the case of delay the process is non-Markov

and therefore the problems are treated by ad hoc statistical methods. This has been

accomplished recently for bistable oscillators [18], see also [19, 20, 21]. Below we present

a theory describing the effect of a delayed feedback on noisy self-sustained oscillations.

It is based on the phase approximation of the dynamics, what means that the noise and

3



4 2. COHERENCE OF OSCILLATORS WITH DELAYED FEEDBACK

delayed feedback are assumed to be weak. On the other hand, we consider a full nonlinear

phase dynamics problem, and therefore our approach goes beyond the statistical analysis

of linear stochastic delay-differential equations [22, 23].

2.1 Control of coherence: numerical results

In this section we present a numerical evidence for a possibility to control the diffusion

constant by a delayed feedback. We begin by presenting the results of numerical simulation

for noisy Van der Pol oscillator:

ẍ− µ(1 − x2)ẋ+ Ω2
0x = k(ẋ(t− τ) − ẋ(t)) + ζ(t) , 〈ζ(t)ζ(t′)〉 = 2d2δ(t− t′) . (2.1)

The l.h.s. represents the Van der Pol equation; in the absence of noise and delay

(k = d = 0) and for small nonlinearity µ this model has a limit cycle solution x0 ≈ 2 cosφ,

ẋ0 ≈ −2Ω0 sinφ with a uniformly growing phase φ(t) ≈ Ω0t + φ0 [24]. Under the influ-

ence of noise and in the absence of feedback (k = 0, d > 0), φ(t) diffuses according to

〈(φ(t) − 〈φ(t)〉)2〉 ∝ D0t; the diffusion constant D0 is proportional to the intensity of noise

d2 [see Eq. (2.4) below for an exact relation].

We expect that in the presence of feedback the diffusion constant D generally differs

from D0; this is confirmed by the numerical results, shown in Fig. 2.1 for Ω0 = 1, d = 0.1,

and µ = 0.7. One can see that diffusion can be suppressed or enhanced, depending on the

feedback strength k and the delay time τ . In this chapter the main our goal is to describe

this picture theoretically.

Another numerical example demonstrates the effect of delayed feedback on phase dif-

fusion in the chaotic Lorenz model

ẋ = σ(y − x) ,

ẏ = rx− y − xz , (2.2)

ż = −bz + xy + k(z(t− τ) − z(t)) ,

where σ = 10, r = 32, and b = 8/3. The phase of the Lorenz system is well-defined if one

uses a projection of the phase space on the plane (u =
√

x2 + y2, z) (see [1] and Fig. 2.3

below):

φ(t) = arctan
z(t) − z0

u(t) − u0

+ πn, t ∈ [tn, tn+1),

where the point {u0 =
√

2b(r − 1), z0 = r− 1} corresponds to the nontrivial fixed points

of the Lorenz system, tk is the moment of the k-th trajectory passing through u0 (for odd

k leftwards and for even k rightwards, or conversely — depending on convention). Notice

that there is no noise term in Eqs. (2.2): because of chaos the phase of the autonomous

system grows non-uniformly, with a non-zero diffusion constant.
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Figure 2.1: Diffusion constant D for the phase of the noise-driven Van der Pol oscillator

with delayed feedback (2.1) as the function of τ/T0 and k; T0 ≈ 6.61 is the oscillation

period without delay.

The dependence of the diffusion constant D of the phase on the feedback parameters

k and τ is shown in Fig. 2.2.

Qualitatively this dependence is similar to that for the Van der Pol model. However,

there is an important distinction: the diffusion has a very deep minimum for positive

feedback constant k and the delay time close to the mean oscillation period; here the

rotation of the phase point along the trajectory of the Lorenz system becomes highly

coherent.

Another representation of the effect of the delayed feedback on the coherence of the

process is given by the power spectrum. Indeed, the power spectrum of an oscillatory

observable has a peak at frequency Ω0, and the width of the peak is proportional to the

diffusion constant D. In Fig. 2.3 we show how the feedback changes the spectrum of

the Lorenz system for the cases of maximal enhancement and maximal suppression of

the diffusion constant. In this figure we also demonstrate that the effect is not related

to suppression of chaos: large variations of the diffusion constant (more than 10 times)

are not reflected in the topology of the strange attractor; also the calculated Lyapunov

exponents are very close to those without feedback (Fig. 2.4). This suggests that the effect
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Figure 2.2: Diffusion constant D for the Lorenz system (2.2) as the function of τ/T0 and

k. T0 ≈ 0.69 is the average oscillation period without delay. Note the logarithmic scale

of the D-axis.

of feedback on the coherence can be described in the framework of phase approximation to

the dynamics (this approximation has been used in [25] to describe phase synchronization

of chaotic oscillators).

One of the implications of the coherence control is a possibility to govern synchroniza-

tion properties of an oscillator. Indeed, the ability of an oscillator to be entrained directly

depends on the phase diffusion constant, thus improving coherence means improving of

the synchronization ability [1]. We illustrate this by consideration of the phase synchro-

nization of the Lorenz system by a periodic force E sin νt added to the equation for the

variable z (Fig. 2.5). In the absence of the feedback the force is too weak to entrain the

system, while the coherent oscillator demonstrates synchronization.

2.2 Basic phase model

According to a general theory (see, e.g., [28]), external force acting on a limit cycle

oscillator in the first approximation affects the phase variable, but not the amplitudes,

because the phase is free and can be adjusted by a very weak action, while the amplitude
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Figure 2.3: Spectra of the z component of the Lorenz system and projections of the

phase portrait for the system in the absence of delayed feedback (left column) and in the

presence of feedback with delay τ = 0.3 (middle column) and τ = 0.65 (right column);

feedback strength k = 0.2. Note that feedback makes the spectral peak essentially more

broad (enhanced diffusion, middle column) or more narrow (suppressed diffusion, right

column), whereas practically no changes can be seen in the phase portraits.

variables are stable and thus change only slightly. We follow this idea to derive below our

basic theoretical phase model starting from Van der Pol model (2.1) in the case of small

nonlinearity µ ≪ 1. For small feedback and noise we can use the perturbation theory,
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Figure 2.4: Effect of delayed feedback with strength k = 0.1 on the miscellaneous prop-

erties of the Lorenz system with σ = 10, r = 32, and b = 8/3 (T0 ≈ 0.69). Noteworthy,

while the diffusion constant D varies by 10 times (a), the variation altitudes of the mean

frequency (b) and the Lyapunov exponent (c) are 2% and 4%, respectively.

valid in the vicinity of the limit cycle (see, e.g., [28, 1]). We rewrite Eq. (2.1) as a system

ẋ = Ω0y , ẏ = −Ω0x+ µ(1 − x2)y + k(y(t− τ) − y(t)) +
1

Ω0

ζ(t)

and obtain according to [28, 1]

φ̇ = Ω0 +
∂φ

∂y0

[k(y0(t− τ) − y0(t)) +
1

Ω0

ζ(t)] ,

where x0 = 2 cosφ, y0 = −2 sinφ is the limit cycle solution related to the phase as

φ = − arctan(y0/x0); therefore
∂φ

∂y0

= − x0

x2
0 + y2

0

. Substituting the variables x0, y0 on the

r.h.s. by φ we obtain

φ̇ = Ω0 + k(sinφ(t− τ) − sinφ(t)) cos(φ(t)) +
1

2Ω0

ζ(t) cos(φ) . (2.3)
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Figure 2.5: Entrainment of the Lorenz system by a harmonic force with E = 2. Right

graph: without feedback the mean oscillator frequency Ω is not locked to the driving

frequency ν. Left graph: the feedback with k = 0.2, τ = 0.65 makes the oscillator

coherent, what results in the appearance of the synchronization region Ω ≈ ν (cf. [26, 27]).

Note also that the mean frequency is shifted by the feedback; this effect is theoretically

explained below.

We are mostly interested in the long-time behavior of the phase, therefore we average the

r.h.s. over the period of oscillations. As a result, the r.h.s. contains only the terms de-

pending on the phase differences. Next, we use that ζ is delta-correlated and independent

of φ, so that

〈ζ(t)ζ(t′) cosφ(t) cosφ(t′)〉 ≈ 〈ζ(t)ζ(t′)〉 〈cosφ(t) cosφ(t′)〉 = d2δ(t− t′) .

Finally we obtain our basic phase equation

φ̇ = Ω0 + a(sin(φ(t− τ) − φ(t)) + ξ(t) , (2.4)

where a = k/2 is the renormalized strength of the feedback and ξ(t) is the effective noise

satisfying 〈ξ(t)ξ(t′)〉 = d2

4Ω2
0

δ(t− t′).

We emphasize that, although we derived Eq. (2.4) for the Van der Pol equation, a

similar equation can be obtained for any limit cycle oscillator (if the assumption of weak

perturbations is valid) – the only difference may be in a more complex dependence on

the phase difference, containing not only one sine function, but its harmonics as well.

Moreover, as the phase dynamics of chaotic oscillators is qualitatively similar to the

dynamics of noisy periodic oscillators (see [1]), Eq. (2.4) can serve as a model for chaotic

oscillators in the presence of the feedback loop. In the latter case the term ξ(t) reflects the

irregularity of chaotic amplitudes. Note that Eq. (2.4) has been used in [21] to describe

the evolution of the phase of an optical field in a laser with a weak optical feedback.
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2.3 Statistical analysis of the phase model

As the first step in the theoretical analysis of the model equation (2.4) we separate the

phase growth into the average growth and the fluctuations, according to φ = Ωt + ψ,

where Ω is the unknown mean frequency and ψ is the slow phase. For the fluctuating

instantaneous frequency v(t) = ψ̇ we obtain from Eq. (2.4)

v(t) = Ω0−Ω+ξ(t)−a sin Ωτ cos [ψ(t− τ) − ψ(t)]+a cos Ωτ sin [ψ(t− τ) − ψ(t)] . (2.5)

In the following we analyze this equation using different approximations.

2.3.1 Noise-free case: multistability in oscillation frequency

We begin our consideration with the noise-free case, ξ = ψ = v = 0, when Eq. (2.5)

reduces to

Ω + a sin Ωτ = Ω0 . (2.6)

Thus, the delayed feedback changes the frequency of the oscillator. The transcendent

Eq. (2.6) has a unique solution for any Ω0, if |aτ | < 1, and multiple solutions otherwise.

The latter case is especially difficult and will be considered elsewhere. (Numerical sim-

ulation of the effect of the noise on the multistable states in Eq. (2.4) was performed

in [21].) Below we will consider a situation with weak delayed feedback only, when no

multistability occurs. We will also show that noise can destroy multistability, so that in

its presence the condition |aτ | < 1 can be weakened [see Eq. (2.11) below].

2.3.2 Linear approximation

Here we assume that the fluctuations of the phase are small, i.e. ψ(t) − ψ(t − τ) ≪ 2π.

In this first order in ψ approximation we obtain from (2.5) with account of Eq. (2.6)

v(t) = ψ̇ = ξ(t) + a cos Ωτ(ψ(t− τ) − ψ(t)) , (2.7)

where Ω is a solution of (2.6). This linear equation can be easily solved in the Fourier

domain:

fv(ω) =
fξ(ω)

1 − a cos Ωτ
e−iωτ − 1

iω

,

where v(t) =
∫ +∞
−∞ fv(ω)eiωtdω, ξ(t) =

∫ +∞
−∞ fξ(ω)eiωtdω. As a result the power spectrum

of frequency fluctuations Sv(ω) can be related to the power spectrum of noise Sξ(ω) (note

that no further assumption on the noise statistics is needed):

Sv(ω) =
ω2Sξ(ω)

ω2 + 2ωa sinωτ cos Ωτ + 2(1 − cosωτ)a2 cos2 Ωτ
.
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The diffusion constant can be obtained by considering the limit ω → 0:

Sv(0) =
Sξ(0)

(1 + aτ cos Ωτ)2
.

Thus, the diffusion constant D = 2πSv(0) is obtained in the linear approximation as

D =
D0

(1 + aτ cos Ωτ)2
, (2.8)

where D0 = 2πSξ(0) is the diffusion of the “no control” oscillator.

Below we will obtain a more precise expression for the diffusion constant, however the

simple formula (2.8) allows us to give a qualitative explanation of the numerical results

presented in Figs. 2.1,2.2. As it follows from (2.8), the feedback term can compensate or

amplify the fluctuations in the phase growth, in dependence on the sign of the product

a cos Ωτ (for small feedback this term can be estimated as a cos Ω0τ), because this product

appears in Eq. (2.7) as the effective strength of the feedback regulating the fluctuations

of the phase. This explains the oscillatory dependence of the diffusion constant on the

delay time τ .

2.3.3 Gaussian approximation

Our main statistical approach in the treatment of full nonlinear Eq. (2.4) is based on the

Gaussian approximation for ψ(t). We also assume the noisy term ξ(t) to be Gaussian.

However, contrary to the numerical simulation, where the noise is white, we consider a

general spectrum of the noise. Averaging Eq. (2.5) for the fluctuations of the instantaneous

frequency v(t) = ψ̇ (which is also Gaussian), we come to the equation for the mean

frequency Ω:

0 = Ω0 − Ω − a sin Ωτ 〈cos[ψ(t− τ) − ψ(t)]〉 . (2.9)

The phase difference η(t) = ψ(t − τ) − ψ(t) is Gaussian with zero average, hence

〈cos η〉 = exp[−〈η2〉 /2]. The phase difference η can be represented as an integral of

the instantaneous frequency

η(t) = −
∫ t

t−τ
v(s)ds ,

what gives for the variance of η

〈

η2
〉

= 2

∫ τ

0

(τ − s)V (s)ds ≡ 2R . (2.10)

Here we have introduced the autocorrelation function of the instantaneous frequency

V (u) = 〈v(t)v(t+ u)〉 .
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Using the notation introduced in Eq. (2.10) we rewrite Eq. (2.9) for the average frequency

as

Ω = Ω0 − ae−R sin Ωτ . (2.11)

We note that it is similar to Eq. (2.6), but contains an additional factor e−R which

describes the mentioned above partial suppression of the effect of the delayed feedback

due to phase diffusion.

To obtain equations for the autocorrelation function V (u) we introduce also the au-

tocorrelation function of the noise C(u) and the cross-correlation function S(u), defined

according to

C(u) = 〈ξ(t)ξ(t+ u)〉 , S(u) = 〈ξ(t)v(t+ u)〉 .

Let us multiply Eq. (2.5) with v(t+ u) and ξ(t+ u) and average:

V (u) = 〈v(t)v(t+ u)〉 = 〈ξ(t)v(t+ u)〉 − a sin Ωτ

〈

v(t+ u) cos

(∫ t

t−τ
v(s)ds

)〉

− a cos Ωτ

〈

v(t+ u) sin

(∫ t

t−τ
v(s)ds

)〉

,

S(u) = 〈v(t)ξ(t+ u)〉 = 〈ξ(t)ξ(t+ u)〉 − a sin Ωτ

〈

ξ(t+ u) cos

(∫ t

t−τ
v(s)ds

)〉

− a cos Ωτ

〈

ξ(t+ u) sin

(∫ t

t−τ
v(s)ds

)〉

.

To accomplish the averaging we use the Furutsu-Novikov formula [29, 30] for zero-mean

Gaussian variables x, y:

〈xF (y)〉 = 〈F ′(y)〉 〈xy〉 .

For the case under consideration this means that averages of all terms having the form

〈x cos y〉 vanish, while other terms of type 〈x sin y〉 yield

〈

v(t+ u) sin

(∫ t

t−τ
v(s)ds

)〉

=

〈

cos

(∫ t

t−τ
v(s)ds

)〉〈

v(t+ u)

∫ t

t−τ
v(s)ds

〉

=

= e−R
∫ 0

−τ
V (s− u)ds ,

〈

ξ(t+ u) sin

(∫ t

t−τ
v(s)ds

)〉

=

〈

cos

(∫ t

t−τ
v(s)ds

)〉〈

ξ(t+ u)

∫ t

t−τ
v(s)ds

〉

=

= e−R
∫ 0

−τ
S(s− u)ds .
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This leads to the equations:

V (u) = S(u) − ae−R cos Ωτ

∫ τ

0

V (s+ u)ds , (2.12)

S(u) = C(u) − ae−R cos Ωτ

∫ τ

0

S(u− s)ds . (2.13)

Together with Eq. (2.11) and the definition of quantity R given by Eq. (2.10), they

constitute a closed system.

To proceed it is convenient to consider the spectra according to

V(ω) =
1

2π

∫ ∞

−∞
duV (u)e−iωu ,

and similarly for S and C. Then Eqs. (2.12), (2.13) yield

V(ω) = S(ω) − ae−R cos Ωτ
eiωτ − 1

iω
, (2.14)

S(ω) = C(ω) − ae−R cos ΩτS(ω)
1 − e−iωτ

iω
, (2.15)

what allows us to exclude S(ω) and obtain

V(ω) =
C(ω)

1 + 2aτe−R cos Ωτ
sinωτ

ωτ
+ a2τ 2e−2R cos2 Ωτ

2 − 2 cosωτ

ω2

. (2.16)

Eq. (2.10) in the spectral form reads

R =

∫ ∞

−∞

1 − cosωτ

ω2
V(ω)dω ; (2.17)

here we have used that V(ω) is an even function. The system (2.16), (2.17) is still hard

to solve in the general form, due to integration in (2.17).

The quantity of our main interest is the diffusion constant D of the phase ψ. D

is related to the spectral density of the frequency fluctuations at zero frequency: D =

2πV(0). Using Eq. (2.16) we obtain for this quantity:

D =
D0

(1 + aτe−R cos Ωτ)2
, (2.18)

where D0 = 2πC(0) is the “no control” diffusion constant in the absence of the feedback.

To obtain a closed system for the determination of D we further assume that the spectrum

of the frequency fluctuations V(ω) is very broad. One can expect this if the spectrum

of noise C(ω) is broad, i.e. if the noise is nearly δ-correlated. More precisely, we assume

that the correlation time of frequency fluctuation is much smaller than the delay time τ ,

so that the integral (2.17) can be approximated as

R ≈
∫ ∞

−∞

1 − cosωτ

ω2
V(0)dω =

τD

2
. (2.19)
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As a result we obtain a closed system of equations – the main result of our analysis –

D =
D0

(1 + aτe−
τD
2 cos Ωτ)2

, (2.20)

Ω = Ω0 − ae−
τD
2 sin Ωτ , (2.21)

relating the diffusion constant D in the presence of the feedback to the “no control”

diffusion constant D0 and to the parameters of the feedback τ and a, as well as to the

“no control” frequency Ω0. This is a nonlinear system of two equations for two variables

D and Ω, which can be solved numerically for a given set of parameters. In the case of

small noise, D0τ ≪ 1, we can set e−
τD
2 ≈ 1 and end with Eqs. (2.6), (2.8), obtained above

in the linear approximation.

Another useful approximation is that of small feedback, then we can approximate the

diffusion constant in (2.19) by its “no control” value, this gives

D =
D0

(1 + aτe−
τD0

2 cos Ωτ)2
, Ω = Ω0 − ae−

τD0
2 sin Ωτ . (2.22)

Now only the equation for Ω is implicit, while the diffusion constant depends on the

parameters in an explicit way.

We compare the theoretical results given by Eqs. (2.20), (2.21) with the direct numer-

ical simulations in Figs. 2.6, 2.7. In Fig. 2.6 we present numerical results for the phase

model (2.4). The presented case of relatively strong noise demonstrates a good correspon-

dence with theory. Furthermore, one can see that the effect of delayed feedback decreases

with τ , because of the diffusion. Physically, it can be explained as follows. The feedback

either compensates or amplifies the deviations from the uniform phase growth. If the

diffusion constant is large, then during a large delay time the phases φ(t) and φ(t − τ)

are practically uncorrelated, thus the feedback reduces to a random term which neither

compensates nor amplifies the fluctuations.

Figure 2.7 demonstrates the results for the Van der Pol model (2.1). The only param-

eter we have fitted here is the “no control” frequency Ω0 ≈ 0.95. Here the correspondence

with theory is good for small τ , but fails for large τ . The reason is that in this case the

effective noise is small and therefore the feedback control is effective even for large delays.

However, for large aτ Eq. (2.21) exhibits multistability, what results in an enhancement

of the diffusion; here neither the linear approximation for small noise [Eqs. (2.6), (2.8)]

nor the Gaussian approximation used in derivation of (2.20), (2.21) is valid.

2.4 Summary and discussion

In summary, we have presented the effect of the coherence control by means of the delayed

feedback. The control is possible for noisy limit cycles oscillators as well as for chaotic
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Figure 2.6: Diffusion constant D (a) and mean frequency Ω (b) as functions of delay τ for

the model (2.4) with 〈ξ(t)ξ(t+ t′)〉 = 2δ(t′) and Ω0 = 2π, and different values of feedback

strength. Symbols present the results of the direct numerical simulation of the model

(2.4); solid lines shows theoretical results according to Eqs. (2.20), (2.21).
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Figure 2.7: Diffusion constant D of the Van der Pol model with delayed feedback [pa-

rameters are the same as in Fig. (2.1)]. Symbols present the results of the direct nu-

merical simulation; solid lines show the corresponding theoretical results according to

Eqs. (2.20), (2.21). The delay time is normalized by the average period T0 = 2π/0.95.
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systems, admitting computation of the phase. Next, we have developed a statistical

theory of phase diffusion under the influence of a delayed feedback. Using the Gaussian

approximation, we have derived a closed system of equations for the diffusion constant and

the mean frequency for the case of short-time correlations of the instantaneous frequency.

The theory works if the feedback is not very strong, or if the noise is strong enough

to suppress multistability in mean frequency. An opposite situation, where effects of

multistability are dominant, will be considered elsewhere.

Noteworthy, formally the equations describing the control are the same as in the

Pyragas method of chaos control. However, in our case the delay time τ is not necessarily

equal to the period of some unstable cycle, embedded in chaos. Moreover, we consider

the situation when the feedback is so small that no stabilization of periodic orbits occur.

For the Lorenz system, e.g., such a stabilization by the simplest Pyragas method is not

possible for some cycles due to a special symmetry of the system. The main difference to

the Pyragas approach is that we do not intend to suppress chaos, but to control uniformity

– coherence – of phase growth in a chaotic system.

Note also that our method differs from other possibilities to control the diffusion

properties of the phase. For example, synchronization of oscillations by a periodic external

force reduces or even completely suppresses the diffusion (the relevant model is the noisy

Adler equation [1], or, equivalently, an equation of motion of an overdamped noise-driven

particle in a periodic potential, see [31, 32] for calculation of the diffusion for the latter

problem). In our method no periodic force is needed and the system remains autonomous,

preserving full symmetry with respect to time shifts. In other words, the power spectrum

of the delay-controlled oscillations does not contain delta-peaks but is continuous.

A direction of the future development of this work is aimed at detailed understanding

of the particular features of the control of chaotic systems. Indeed, in this case our theory

provide only qualitative explanation of the effect. This limitation of the theory is related to

the statistical properties of the effective noise in a chaotic system that definitely cannot be

considered as weak or Gaussian. (We remind that effective noise here describes the effect

of irregular, although deterministic, amplitudes, on the phase dynamics.) Particularly, it

is known that for the Lorenz system this noise is not symmetric and possesses nontrivial

correlation properties [26, 27]. Our preliminary numerical investigations show that the

feedback significantly affects these correlations. We illustrate this in the Fig. 2.8, where

we present the autocorrelation function of the Poincaré return times in the Lorenz system.

It is seen that for the case of feedback with τ = 0.65 ≈ T0, the successive return times

become essentially anticorrelated, what apparently accounts for unusually high (by factor

≈ 30) suppression of the phase diffusion. We have demonstrated that this effect is of

particular importance for the control of synchronization. In fact, the delayed feedback

has a twofold effect on synchronization properties. On one hand, the feedback shifts the
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Figure 2.8: Correlation functions ρ(u) for the sequences of the Poincaré return times in the

Lorenz system, in the absence and in the presence of the delayed feedback with k = 0.2.

Note that variances of the return times, given by ρ(0), are practically unchanged, whereas

the anticorrelation between two successive intervals is either decreased (for τ = 0.3) or

increased (for τ = 0.65).

oscillation frequency, thus giving a possibility to facilitate or impede the entrainment (this

effect is important for periodic oscillators as well). On the other hand, synchronization

can be suppressed or enhanced by the regulation of the coherence.



Chapter 3

Synchronization of Oscillators

by Common Noise

The main effect of noise on periodic self-sustained oscillations is phase diffusion: the

oscillations are no more periodic but possess finite correlations [33, 34]. However, noise can

play also an ordering role, e.g., it can lead to a synchronization. If two identical (or slightly

different) systems are driven by the same noise, then their states can be synchronized

by this action. This effect depends on the sign of the largest LE which measures the

exponential growth rate of trajectory perturbations by the given realization of noisy signal.

For autonomous deterministic periodic self-sustained oscillations the largest LE is zero, it

corresponds to a perturbation along the trajectory in the phase space, and there are no

synchronization. In driven systems the largest LE may become negative, what would lead

to a synchronization: both systems driven by the same noise forget their initial conditions

and eventually evolve to a same state.

There are several fields where this effect has been observed, although under different

names. In neurophysiology one describes identical responses of a neuron to a repeat-

ed noisy driving of a prerecorded waveform as “reliability” [37, 38, 39, 40]. In recent

experiments with noise-driven neodymium-doped yttrium aluminum garnet (Nd:YAG)

lasers [41, 42] this synchronization was called “consistency”. When the driving is not

noisy but chaotic, one speaks on generalized synchronization [43, 42].

This problem was first formulated in [44, 45], where the LE has been calculated for a

self-sustained quasiharmonic oscillator driven by a random sequence of pulses (recently,

such kind of noise again has attracted attention, and the problem of phase synchronization

between uncoupled limit-cycle oscillators induced by common random impulsive forcing

has been anew addressed in [46]). In this chapter, we consider general dynamical systems

driven by Gaussian white noise (some results are reproduced for telegraph noise). We

note that the effect considered is a particular case of synchronization in noisy systems

18
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(more general aspects of this phenomenon are presented in [47, 48]).

We start with developing an analytical description of noisy self-sustained oscillators

(limit cycle systems) [5, 6]. The approach used is based on the reduction of the dynamics

to a phase equation. This is valid if the action of noise on the oscillation amplitude is

small. We derive the Langevin equation for the phase and find a stationary distribution of

it. The LE is represented via an integral of this distribution. In particular, we explicitly

demonstrate that for small noise the exponent is negative, i.e., weak noise always leads

to synchrony.

While in the perfect case of identical oscillators and identical driving, a negative LE

leads to perfect synchrony of systems, in real situations this perfect synchrony is distorted

by nonidentities. We pay a particular attention to non-perfect situations [6, 8], when there

is small nonidentity either (i) in systems subject to identical noisy driving or (ii) in noise

driving identical systems (intrinsic noise). The analytical results obtained within the

framework of the phase approximation (for weak noise) are underpinned by numerical

simulation.

For a finite noise strength, an analytical investigation of the problem is generally not

possible and numerical simulation is needed. This simulation discovers a positive LE to

appear for some systems under certain circumstances [6, 7, 8], what means desynchro-

nization of oscillators.

In the main part of investigation we assume noise to be white Gaussian [5, 6, 8].

Another standard kind of noise remarkably different to white Gaussian one in its properties

is a telegraph one. The diversity between these kinds of noise gives opportunity to check

wether the effects observed are robust and general or specific for white Gaussian noise.

Moreover, telegraph noise has an evident periodic analogue: a piece-constant 2τ -periodic

signal, where τ is the mean switching time for corresponding telegraph noise. Comparison

of effects of these two piece-constant signals on self-sustained oscillators could give an

additional insight to the mechanism of synchronization by common noise, and has been

performed [7]. An additional investigation of a similar problem can be also found in [49].

As mentioned above, one of important applications of the theory is “reliability” of neu-

rons [39]. In our terms, a “reliable” neuron is a neuron with a negative LE. As neuronal

oscillators possess some specific properties, we reproduce for them our investigation per-

formed for limit cycle oscillators [8]. The effects are characterized not only via calculations

of the LE, but also the event synchronization correlations [61]. We construct a theory

that explains the observed in numerics “antireliability” as a combined effect of a high

sensitivity to noise of some stages of the dynamics and nonisochronicity of oscillations.

Geometrically, the antireliability is described by a random noninvertible one-dimensional

map.
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3.1 Limit cycle systems: White Gaussian noise

3.1.1 Phase approximation

We start with general stochastic equations for the dynamics of an N -dimensional oscilla-

tory system xj, j = 1, . . . , N , in presence of uncorrelated forces ξk(t), k = 1, . . . ,M ≤ N :

dxj
dt

= fj(x) +
M
∑

k=1

Qjk(x)ξk(t) . (3.1)

If in the noiseless system there exists a limit cycle x0 = x0(t + 2π/ω0), it can be param-

eterized by the phase variable ϕ(x0) [28] which grows linearly in time: ϕ̇ = ω0. For a

stable limit cycle the phase, satisfying the same equation, can be introduced also in its

vicinity. In presence of noise the evolution of the phase in a small vicinity of the cycle is

governed by equations

dϕ

dt
= ω0 +

N
∑

j=1

M
∑

k=1

∂ϕ(x)

∂xj
Qjk(x)

∣

∣

∣

∣

x=x
0(ϕ)

ξk(t). (3.2)

The deviations from the cycle are small in two cases: (i) if the noise intensity is small, or

(ii) if the leading negative Lyapunov exponent (LE) is large whereas the noise is moderate.

Below we normalize time in such a way that the frequency of the limit cycle is one. A

particular form of the stochastic equation for the phase depends on how the noise enters

the original system (3.1). If there is a single noise source, i.e. only for one k ξk 6= 0, then

dϕ

dt
= 1 + εf(ϕ)ξ(t), (3.3)

where ξ(t) is a δ-correlated Gaussian noise with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′ + t)〉 = 2δ(t′),

parameter ε describes the noise intensity (as a result of time normalization ε ∼ ω
−1/2
0 ).

f(ϕ) is a normalized periodic function of the phase: f(ϕ) = f(ϕ+ 2π),
2π
∫

0

f 2(ϕ)dϕ = 2π.

A more complex equation appears if there are several noise sources in the original system

(we call this multi-component case):

dϕ

dt
= 1 +

M
∑

k=1

εk fk(ϕ) ξk(t), 〈ξi(t) ξk(t′ + t)〉 = 2 δ(t′) δi k. (3.4)

Our goal in this section is the analytical analysis of stability of solutions of stochastic

equations (3.3), (3.4) (cf. [50]). For this we consider the linearized Eq. (3.3) for a small

deviation α:
dα

dt
= εαf ′(ϕ)ξ(t). (3.5)
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The LE measuring the average exponential growth rate of α can be obtained by averaging

the corresponding velocity

λ = 〈 d
dt

lnα〉 = 〈εf ′(ϕ)ξ(t)〉. (3.6)

For the multi-component noise the corresponding expression reads

λ =
M
∑

k=1

〈εkf ′
k(ϕ)ξk(t)〉. (3.7)

Note that the LE determines the asymptotic behavior of small perturbations, and

in our case describes whether close initial points diverge or converge in course of the

evolution. This process must not be monotonous, i.e. close trajectories can diverge at

some time intervals while demonstrating asymptotic convergence, and vice versa.

3.1.2 Fokker-Planck equation and its stationary solution

The Fokker-Planck equation for the stochastic Eq. (3.3), interpreted in Stratonovich sense,

reads [51, 52]

∂W (ϕ, t)

∂t
+

∂

∂ϕ

(

W (ϕ, t) − ε2f(ϕ)
∂

∂ϕ
(f(ϕ)W (ϕ, t))

)

= 0. (3.8)

In a stationary state the probability flux S is constant:

W (ϕ) − ε2f(ϕ)
d

dϕ
(f(ϕ)W (ϕ)) = S. (3.9)

This allows us to express the solution for periodic boundary conditions as

W (ϕ) = C

ϕ+2π
∫

ϕ

dψ

f(ϕ) f(ψ)
exp



− 1

ε2

ψ
∫

ϕ

dθ

f 2(θ)



 , (3.10)

where C is determined by the normalization condition:

C−1 =

2π
∫

0

dϕ

ϕ+2π
∫

ϕ

dψ

exp

(

− 1
ε2

ψ
∫

ϕ

dθ
f2(θ)

)

f(ϕ) f(ψ)
. (3.11)

The probability flux reads

S =



1 − exp



− 1

ε2

2π
∫

0

dθ

f 2(θ)







C. (3.12)
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The analogous expression for the multi-component noise is

∂W (ϕ, t)

∂t
+

∂

∂ϕ

(

W (ϕ, t) −
M
∑

k=1

ε2
k fk(ϕ)

∂

∂ϕ
(fk(ϕ)W (ϕ, t))

)

= 0. (3.13)

Remarkably, this formula is equivalent to the single-component one (3.8), if one sets

f 2(ϕ) =

M
∑

k=1

ε2
k f

2
k (ϕ)

M
∑

k=1

ε2
k

ε2 =
M
∑

k=1

ε2
k. (3.14)

Thus, the stationary solution presented above is valid in this case as well.

3.1.3 Lyapunov exponent

For the calculation of the LE (3.6),(3.7) we have to find averages of the type 〈F (ϕ)ξ(t)〉.
Such expressions for stochastic equations (3.3), (3.4) with delta-correlated noise can be

calculated using the Novikov-Furutsu formula:

〈F (ϕ)ξ(t)〉 = ε〈F ′(ϕ)f(ϕ)〉. (3.15)

Writing the average as the integral over the stationary phase distribution we obtain for

the single-component case

λ = ε2〈f ′′(ϕ)f(ϕ)〉 = ε2C

2π
∫

0

dϕ

ϕ+2π
∫

ϕ

dψ

∂2f(ϕ)
∂ϕ2

f(ψ)
exp



− 1

ε2

ψ
∫

ϕ

dθ

f 2(θ)



 . (3.16)

The corresponding result for the multi-component noise reads

λ =
M
∑

k=1

ε2
k

2π
∫

0

d2fk(ϕ)

dϕ2
fk(ϕ)W (ϕ)dϕ. (3.17)

Prior to the analysis of the obtained expressions we mention that in the limit of small

noise the LE is always negative: in the leading order in ε

λ ≈ −
M
∑

k=1

ε2
k

2π

2π
∫

0

(

dfk(ϕ)

dϕ

)2

dϕ < 0 . (3.18)

(M can be equal to 1, what corresponds to a single-component noise.)



3.1. LIMIT CYCLE SYSTEMS: WHITE GAUSSIAN NOISE 23

–1.0

–0.8

–0.6

–0.4

–0.2

0.0

λ/ε2

1 2 3 4 5
ε

Figure 3.1: Linearly polarized noise. Dependence of the Lyapunov exponent (normalized

by ε2) on the noise amplitude ε. For small and large noises λ0 quadratically depends on

ε, with different coefficients.

Example: Linearly polarized homogeneous noise

If in the original system the noise is additive and forces only one variable of the system,

and the limit cycle is nearly a circle with nearly constant phase velocity on it, then one

obtains a single-component stochastic phase equation with f(ϕ) =
√

2 sinϕ. In this case

ϕ+2π
∫

ϕ

dψ

f(ψ)
exp



− 1

ε2

ψ
∫

ϕ

dθ

f 2(θ)



 =

π+π[ϕ

π ]
∫

ϕ

dψ

exp

(

cotψ − cotϕ

2ε2

)

√
2 sinψ

,

where [...] denotes the integer part. For the chosen function f(ϕ) the distribution has

period π and for ϕ ∈ [0, π)

W (ϕ) =
C

2

π
∫

ϕ

dψ

exp

(

cotψ − cotϕ

2ε2

)

sinψ sinϕ
;

S = C =









∞
∫

−∞

dy

y
∫

−∞

dx

exp

(

x− y

2ε2

)

√
1 + x2

√

1 + y2









−1

,

λ = −ε
2C

2

∞
∫

−∞

dy

y
∫

−∞

dx

exp

(

x− y

2ε2

)

(1 + x2)
1

2 (1 + y2)
3

2

. (3.19)
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Figure 3.2: Superposition of two independent linearly polarized noise terms. Depen-

dence of the Lyapunov exponent (normalized by ε2) on the noise amplitude ε and on the

normalized ratio of noise intensities ∆.

In the transformation to last expression, which makes the convergence of the integrals

clear, the ansatz (x, y) = (cotψ, cotϕ) has been used. A further simplification appears

to be not possible, and formula (3.19) has been used for numerical calculation. The

obtained dependence of the LE on the noise intensity is presented in Fig. 3.1.

Example: superposition of two independent linearly polarized noise terms

If we use the same conditions as above (nearly circular limit cycle with uniform rotation

on it) but consider the effect of two independent noisy forces acting on two variables

shifted in phase by π/2, then naturally we get an equation with a multi-component

noise with f1(ϕ) =
√

2 sinϕ and f2(ϕ) =
√

2 cosϕ. The effective coupling function

f(ϕ) =
√

1 + ∆ cos 2ϕ and the noise intensity ε2 = ε2
1 + ε2

2, where ∆ ≡ ε2
2 − ε2

1

ε2
2 + ε2

1

(evi-

dently ∆ ∈ [−1, 1]) should be inserted in the stationary distribution (3.10)–(3.12). From

the expression for f(ϕ) follows the symmetry (∆, ϕ) ↔ (−∆, ϕ+ π/2). In this case

∫

dθ

f 2(θ)
=

1√
1 − ∆2

(

π

[

θ

π

]

− arctan

(

cot θ

√

1 + ∆

1 − ∆

))

,
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what gives the following expressions for the probability density, flux, and the normalization

constant

W (ϕ) = C

ϕ+π
∫

ϕ

dψ

exp

(

− 1
ε2

√
1−∆2

(

π
[

θ
π

]

− arctan
(

cot θ
√

1+∆
1−∆

))∣

∣

∣

ψ

ϕ

)

√
1 + ∆ cos 2ϕ

√
1 + ∆ cos 2ψ

,

C =









2

π
∫

0

dϕ

ϕ+π
∫

ϕ

dψ

exp

(

− 1
ε2

√
1−∆2

(

π
[

θ
π

]

− arctan
(

cot θ
√

1+∆
1−∆

))∣

∣

∣

ψ

ϕ

)

√
1 + ∆ cos 2ϕ

√
1 + ∆ cos 2ψ









−1

,

S =

(

1 − exp

(

− π

ε2
√

1 − ∆2

))

C.

The final expression for the LE reads

λ = −2ε2C

π
∫

0

dϕ

ϕ+π
∫

ϕ

dψ

√
1 + ∆ cos 2ϕ√
1 + ∆ cos 2ψ

× exp



− 1

ε2
√

1 − ∆2

(

π

[

θ

π

]

− arctan

(

cot θ

√

1 + ∆

1 − ∆

))∣

∣

∣

∣

∣

ψ

ϕ



 . (3.20)

The dependence on the noise intensity and the essential parameter ∆ is shown in Fig. 3.2.

3.1.5 Non-perfect cases: Different oscillators

Above we have evaluated the Lyapunov exponent (LE) which completely describes syn-

chrony of oscillators in the perfect case (identical oscillators under identical driving):

oscillators are perfectly synchronous for a negative LE. But in real situations this perfect

synchrony is distorted by nonidentities in oscillators and noisy forces. Here we consider

the role of small nonidentities.

Deriving LE, we do not assume noise to be necessarily small, and note that the phase

approximation can be still valid for limit cycle systems with large leading negative LE

even for moderate noise. Nevertheless, henceforth, using the phase approximation, we

restrict ourselves to the case of weak noise because in this case the approximation used is

most reliable.

Within the framework of this approximation the evolution of N slightly different limit

cycle oscillators can be described by the following generalization of (3.3)

ϕ̇j = ω + σj + εf(ϕj)ξ(t), j = 1, 2, ..., N, (3.21)

where σj are deviations of frequencies from the mean frequency,
∑N

j=1 σj = 0. Note that

the differences in functions f can be neglected due to smallness of ε. We expect the states
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of the oscillators to be close if the mismatch is small compared to the LE |σj| ≪ |λ| ≪ 1,

then it is appropriate to introduce new variables ϕ = N−1
∑N

j=1 ϕj and θj = ϕj − ϕ,

j = 1, 2, ..., N − 1. Then system (3.21) for small θj can be written as

ϕ̇ = ω + εf(ϕ)ξ(t) , (3.22)

θ̇j = σj + εf ′(ϕ)θjξ(t). (3.23)

Noting that the deviations θj with different j are independent, we can study the evolution

of each deviation θj separately and drop index j. Thus the evolution of ϕ and θ is the

same as for two slightly different oscillators.

The following from (3.22), (3.23) Fokker–Plank equation for the probability density

distribution W (ϕ, θ, t) reads

∂W

∂t
+ ω

∂W

∂ϕ
+ σ

∂W

∂θ
− ε2Q̂2W = 0, (3.24)

where Q̂g ≡ ∂

∂ϕ
(f(ϕ)g) +

∂

∂θ
(f ′(ϕ)θ g). Performing expansion of the stationary solution

in powers of ε2 [we can here consider σ as of the same order as ε2, due to a possibility to

renormalize θ in (3.24)] we obtain in the zeroth order W0 = w(θ) and in the first order

ω
∂W1

∂ϕ
+ σ

∂w

∂θ
− ε2Q̂2w = 0. (3.25)

Substituting for Q̂2w(θ) and integrating Eq. (3.25) over ϕ ∈ [0, 2π), we obtain (due to

2π-periodicity of W1 in ϕ)

σ
dw

dθ
= ε2 f ′2

(

θ2d
2w

dθ2
+ 4θ

dw

dθ
+ 2w

)

. (3.26)

For σ = 0 the solution of (3.26) is a δ-function. When σ 6= 0, this equation can be

rewritten as

x2d
2w

dx2
+ (4x− 1)

dw

dx
+ 2w = 0, (3.27)

where x ≡ ε2 f ′2σ−1θ = |λ|σ−1θ. Solving this differential equation by virtue of the sub-

stitution w(x) = h(x)/x2 and accounting for the normalization condition
∫ +∞
−∞ w(θ)dθ =

(2π)−1, we find

w(θ) =







|σ|
2π|λ|θ2

exp

(

− σ

|λ|θ

)

, σθ > 0;

0, σθ ≤ 0.

(3.28)

This function is infinitely smooth at θ = 0. Noteworthy, for any pair of oscillators driven

by the same noise, the phase of the faster oscillator never lags behind that of the slower

one.
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One can also evaluate the moments

〈|θ|k〉 =

( |σ|
|λ|

)k

Γ(1 − k), (3.29)

and the most probable value θmp = σ/(2|λ|). From this formula we see again that the

phase difference θ is small provided |σ| ≪ |λ|. Formula (3.29) gives finite moments for

k < 1 only. Higher moments diverge due to the power-law distribution of θ; to obtain finite

moments one has to go beyond the linear in θ approximation even for small mismatches

σ.

In the thermodynamical limit N → ∞ one can also evaluate the ensemble averages

for moments of |θ|

〈|θ|k〉ens =
Γ(1 − k)

|λ|k

+∞
∫

−∞

|σ|kF (σ) dσ.

Here F (σ) is the distribution of σj.

3.1.6 Non-perfect cases: Different noises

Quite oftenN identical systems that are driven by a common external noise ξ(t) experience

also influences of different independent (e.g., thermal) noises ηj(t). The phase dynamics

in this case is given by

ϕ̇j = ω + εf(ϕj)ξ(t) + γjgj(ϕj)ηj(t), (3.30)

where j = 1, 2, ..., N , the functions f and gj are normalized f 2 = g2
j = 1, ε and γj

are the noise amplitudes, and 〈ξ(t) ξ(t + t′)〉 = 2δ(t′), 〈ηj(t) ηk(t + t′)〉 = 2δjk δ(t
′), and

〈ξ(t) ηj(t+t′)〉 = 0. Similar to the case of mismatch, we can introduce a phase ϕ satisfying

(3.22) and obtain for small deviations θj

θ̇ = εf ′(ϕ)θξ(t) + γg(ϕ)η(t), (3.31)

where we omitted index j. In this case the relevant Fokker–Plank equation takes the form

∂W

∂t
+ ω

∂W

∂ϕ
− γ2g2(ϕ)

∂2W

∂θ2
− ε2Q̂2W = 0. (3.32)

The stationary distribution can be found with the same approximative method as that of

Eq. (3.24). Instead of (3.26) we now obtain

γ2d
2w

dθ2
+ ε2 f ′2

(

θ2d
2w

dθ2
+ 4θ

dw

dθ
+ 2w

)

= 0, (3.33)

where due to the condition g2 = 1 the dependence on the function g disappears. With

rescaling x ≡ εγ−1

√

f ′2 θ =
√

|λ| γ−1θ the last equation can be rewritten as

(x2 + 1)
d2w

dx2
+ 4x

dw

dx
+ 2w = 0, (3.34)
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Figure 3.3: The time dependencies of the difference D ≡
√

(x1 − x2)2 + (ẋ1 − ẋ2)2 be-

tween two Van der Pol–Duffing oscillators (3.37). Left panel: common white noise acts on

oscillators with small mismatch [Eq. (3.38) with σ = 10−4]. Right panel: two identical os-

cillators are driven by slightly different noises [Eq. (3.39) with γ/ε = 2·10−4]. Parameters:

µ = 0.2, b = 1, ε = 0.2.

and solved by virtue of the same substitution w(x) = h(x)/x2. Accounting for the nor-

malization condition, we find the solution

w(θ) =
γ

2π2
√

|λ|

[

1 +
|λ|
γ2
θ2

]−1

(3.35)

in the form of the Cauchy distribution. Similar to (3.28) it has a power-law tail what

indicates on large fluctuations even for small values of γ. In both cases of small mismatch

and small nonidentity of noise these fluctuations have a form of intermittent bursts (see

Fig. 3.3, cf. [4]), similar to other cases of imperfect synchronization [1].

One can evaluate the moments

〈|θ|k〉ens =
1

|λ| k
2 cos(πk/2)

+∞
∫

0

γkG(γ) dγ , (3.36)

and in the thermodynamical limit N → ∞ the ensemble averages for moments of |θ| are

〈|θ|k〉ens =
1

|λ| k
2 cos(πk/2)

+∞
∫

0

γkG(γ) dγ .

Here G(γ) is the distribution of γj.

3.1.7 Desynchronization by strong noise

Although a small noise in all considered cases synchronizes the self-sustained oscillators,

a desynchronization is possible for large noise intensities. This has been demonstrated
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in [44, 45] for a noise in the form of a sequence of random pulses. In [4] a positive

Lyapunov exponent (LE) has been reported for a discontinuous integrate-and-fire neural

model. Here we demonstrate that a desynchronization by noise is possible for white

Gaussian noise source and a smooth oscillator, provided the latter has a sufficient degree

of non-isochronicity.

As a model we use a standard Van der Pol–Duffing oscillator

ẍ− µ
(

1 − x2
)

ẋ+ x+ bx3 = εξ(t), (3.37)

where ξ(t) is normalized white Gaussian noise. Here µ describes closeness to the Hopf

bifurcation point and the “Duffing parameter” b describes nonisochronicity of oscillations.

In Fig. 3.4 we show the dependencies of the LE on the noise amplitude ε for µ = 0.2

and different values of b. One can see that at b & 0.5 (of course, this critical value

depends on µ) positive LEs appear in a certain range of ε, while the asymptotic law

limε→0 λ/ε
2 = const < 0 is valid for all b. The region of positive LEs extends for large b.

To characterize the synchronization-desynchronization transition in system (3.37)

quantitatively, we have performed numerical simulation of two weakly nonidentical Van

der Pol–Duffing oscillators under common white Gaussian noise

ẍ1,2 − µ
(

1 − x2
1,2

)

ẋ1,2 + (1 ± σ)x1,2 + bx3
1,2 = εξ(t) , (3.38)
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Figure 3.4: For the Van der Pol–Duffing oscillator (3.37) driven by white Gaussian noise,

the dependencies of the Lyapunov exponent on the noise amplitude ε are plotted for

µ = 0.2 and different values of b.
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Figure 3.5: The dependencies V12(ε) are plotted for µ = 0.2 and σ = 0.002 for the pair of

nonidentical Van der Pol–Duffing oscillators under common white Gaussian noise (3.38).

The values of b are marked as in the Fig. 3.4.
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Figure 3.6: The dependencies V12(ε) are plotted for µ = 0.2 and γ/ε = 0.01 for the pair of

identical Van der Pol–Duffing oscillators driven by different white Gaussian noises (3.39).

The values of b are marked as in the Fig. 3.4.
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Figure 3.7: The snapshots of the ensemble of 10000 Van der Pol–Duffing oscillators whit

homogeneous distribution of σj within [−0.01; 0.01] under common white Gaussian noise

are presented at µ = 0.2 and b = 1. The three chosen values of noise amplitude ε

correspond to negative [ε = 0.2, the states in the vicinity of the point (1.82; −2.07); and

ε = 2.5, the states in the vicinity of the point (1.76; −3.29)] and positive (ε = 1) LEs.

and of two identical Van der Pol–Duffing oscillators driven with slightly different noisy

forces

ẍ1,2 − µ
(

1 − x2
1,2

)

ẋ1,2 + x1,2 + bx3
1,2 = εξ(t) ± γη(t) . (3.39)

The quality of synchronization have been measured by the average difference V12 = 〈(x1−
x2)

2 + (ẋ1 − ẋ2)
2〉. In dependence on the noise amplitude ε this quantity has a maximum

in the region of positive values of the LE, see Figs. 3.5, 3.6.

We have also performed simulations with a large ensemble of slightly different oscil-

lators driven by the same noise. Here the distribution of the systems states on the plane

(x, ẋ) at a certain moment of time is concentrated for a negative LE and is extended for

a positive LE, see Fig. 3.7. These distributions correspond to different types of snapshot

attractors in system (3.37), see [54].

3.2 Limit cycle systems: Telegraph noise

While in [44, 45] the Lyapunov exponent (LE) was calculated for oscillators driven by a

random sequence of pulses, and in the first section of this chapter (see also [1, 4, 5, 6])
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the white Gaussian noise was considered, here a noise of other nature is considered, the

telegraph one. By a normalized telegraph noise we mean the signal having values ±1

and switching instantaneously between these values time to time. The distribution of

time intervals between consequent switchings is exponential with the average value τ .

The case of telegraph noise may be interesting not only because it completely differs

from the previous two, but also because it allows to “touch” the question of relations

between periodic and stochastic driving, e.g. to compare results for telegraph noise with

the average switching time τ and the piece-constant periodic signal of the same amplitude

and the period 2τ . This is why we consider synchronization by telegraph noise here.

A limit cycle oscillator subject to a small external force is again described by the phase

approximation [28], where only dynamics of the system on the limit cycle of the noiseless

system is considered:

ϕ̇ = ω + εf(ϕ)ξ(t) . (3.40)

Here 2π/ω is the period of the limit cycle in the noiseless system, ε is the amplitude of

noise, f(ϕ) is the normalized sensitivity of the system to noise [ (2π)−1
∫ 2π

0
f 2(ϕ)dϕ = 1],

and ξ is a normalized telegraph noise.

3.2.1 Master equation and its stationary solution

Studying statistical properties of the system under consideration, one can introduce two

probability density functions W±(ϕ, t) defining the probability to locate the system in

vicinity of ϕ with ξ = ±1, correspondingly, at the moment t. Then the Master equations

of the system reads

∂W+(ϕ, t)

∂t
+

∂

∂ϕ
[(ω + εf(ϕ))W+(ϕ, t)] =

1

τ
W−(ϕ, t) − 1

τ
W+(ϕ, t), (3.41)

∂W−(ϕ, t)

∂t
+

∂

∂ϕ
[(ω − εf(ϕ))W−(ϕ, t)] =

1

τ
W+(ϕ, t) − 1

τ
W−(ϕ, t). (3.42)

In the terms of W ≡ W+ +W− and V ≡ W+ −W− the last system takes the form of

Ẇ = −ωWϕ − ε (f V )ϕ , V̇ = −ωVϕ − ε (f W )ϕ −
2

τ
V. (3.43)

For steady distributions the probability flux S is constant:

S = ωW (ϕ) + εf(ϕ)V (ϕ);

and system (3.43) with periodic boundary conditions has the solution

V (ϕ) = − εω C

ω2 − ε2f 2(ϕ)

ϕ+2π
∫

ϕ

dψ f ′(ψ) exp





2

τ

ψ
∫

ϕ

d θ

ω2 − ε2f 2(θ)



 , (3.44)
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where C is defined by the normalization condition:

C−1 = 2π



exp





2

τ

2π
∫

0

d θ

ω2 − ε2f 2(θ)



− 1





+ε2

2π
∫

0

dϕ

ϕ+2π
∫

ϕ

dψ
f(ϕ) f ′(ψ)

ω2 − ε2f 2(ϕ)
exp





2

τ

ψ
∫

ϕ

d θ

ω2 − ε2f 2(θ)



 . (3.45)

The probability flux reads

S = ω



exp





2

τ

2π
∫

0

d θ

ω2 − ε2f 2(θ)



− 1



C.

3.2.2 Lyapunov exponent

Studying stability of solutions of the stochastic equation (3.40), one has to consider be-

havior of a small perturbation α:

α̇ = εf ′(ϕ)α ξ(t).

The LE measuring the average exponential growth rate of α can be obtained by averaging

the corresponding velocity

λ = 〈 d
dt

lnα〉 = 〈εf ′(ϕ)ξ(t)〉 = ε

2π
∫

0

f ′(ϕ)V (ϕ)dϕ

= −ε2ω C

2π
∫

0

dϕ

ϕ+2π
∫

ϕ

dψ
f ′(ϕ) f ′(ψ)

ω2 − ε2f 2(ϕ)
exp





2

τ

ψ
∫

ϕ

d θ

ω2 − ε2f 2(θ)



 . (3.46)

When τ ≪ 1 or ε≪ ω, the eq. (3.46) can be simplified:

λapp = − ε2

2πω

(

exp

(

4π

τω2

)

− 1

)−1
2π
∫

0

dϕ

2π
∫

0

dψ f ′(ϕ)f ′(ψ + ϕ) exp
2ψ

τω2
. (3.47)

The last expression is strictly negative. Indeed, in the Fourier space it reads

λapp = −ωτε2

∞
∑

k=1

|Ck|2
k2

1 + (kτω2/2)2
,

where Ck = (2π)−1
2π
∫

0

f(ϕ) e−ikϕdϕ.
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Figure 3.8: Samples of dependencies λ(ε, τ) for the modified Van der Pol oscillator (3.48)

at µ = 0.1. The solid lines present the analytical results of phase description, the triangles

plot results of the approximation (3.47), the circles correspond to numerical simulation of

the noisy modified Van der Pol oscillator, and the dashed line corresponds to numerical

simulation of the periodically driven one.

3.2.3 Comparison to numerical simulation

We found that both for weak noise and frequent switching the LE is negative regardless

to the properties of the smooth function f(ϕ) (as for weak white Gaussian noise in sim-

ilar systems considered in the previous section, cf. [4, 5]). Also in the previous section

(cf. [6]), moderate white Gaussian noise is shown to be able to lead to instability even in

smooth systems. The following issues appear to be interesting (i) what is the region of

validity of the analytical theory developed here, (ii) whether there are some footprints of

the synchronization by periodic forcing in the stochastic synchronization, and (iii) whether

telegraph noise can desynchronize oscillators.

To address the first two questions we performed simulation of a modified Van der Pol
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Figure 3.9: Samples of dependencies λ(ε, τ) for the Van der Pol–Duffing oscillator (3.49)

at µ = 0.1. The values of the parameters b and τ are indicated above the plots.
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oscillator:

ẍ− µ(1 − x2 − ẋ2)ẋ+ x = ε
√

2ξ(t), (3.48)

where ξ(t) is either a telegraph noise with the average switching time τ or a periodic

stepwise signal with the period 2τ , i.e. the constant switching time τ . The forcing-free

modified Van der Pol oscillator has the round stable limit cycle of the unit radius for

all µ > 0. Nevertheless, the phase equation (3.40) with ω = 1 and the simple function

f(ϕ) =
√

2 cosϕ may be correctly adopted only if the phase speed is near-constant all

over the limit cycle, which is valid at small µ only.

In Fig. 3.8 one can see that our analytical theory is fortunately in good agreement with

the results of analytical simulation not only for weak noise; and the dependence λ(ε, τ)

for the stochastic driving has no footprints of the one for the periodic driving.

While the dynamical system (3.48) does not exhibit positive LEs at any noise intensity

and any µ, they can be observed for a Van der Pol–Duffing model (a similar situation

occurs for white Gaussian noise):

ẍ− µ(1 − 2x2)ẋ+ x+ 2bx3 = ε
√

2ξ(t), (3.49)

where the “Duffing parameter” b describes nonisochronicity of oscillations. In Fig. 3.9

one can see that at large enough b positive LE appears in a certain range of parameters.

Having considered the phenomenon of synchronization of limit cycle oscillators by

common telegraph noise, we may summarize:

— Both for weak noise and frequent switching the Lyapunov exponent is negative;

— For some systems, the phase model gives quite adequate results even for moderate

noise levels and values of the average switching time;

— The dependence λ(ε, τ) for stochastic driving appears to have no footprints of the one

for periodic driving;

— In some systems, moderate telegraph noise can desynchronize oscillations.

Here we do not present results for the non-perfect situations (like in the previous

section, cf. [6]): slightly nonidentical oscillators driven by an identical noise signal, and

identical oscillators driven by slightly nonidentical noise signals. The reason is that for

weak noise these results appear to be the same as in the previous section but with λapp

given by Eq. (3.47) instead of λ.

3.3 Antireliability of neural oscillators

Recently, the reliability property of spiking neurons has attracted large attention [39]. The

effect appears as a coincidence of responses of a single neuron subject to repeatedly applied

weak input fluctuations. From the theoretical viewpoint, reliability is a manifestation of
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Figure 3.10: The phase space of the FitzHugh–Nagumo system (3.50) for (a) v0 < −1,

and (b) v0 > −1.

the synchronization of nonlinear systems by common noisy driving [44, 45, 53, 55, 56,

57, 4, 5, 6, 7]. Indeed, a usual protocol in the reliability experiment, when a particular

fluctuating waveform is repeatedly used to force a neuron, is equivalent to the driving of

an ensemble of identical neurons by the common fluctuating force. The intrinsic noise is

a source of non-identity, and may lead to a non-perfect reliability.

Reliability means that the response of a nonlinear system on the fluctuating forcing

is stable. As mentioned above, quantitatively, this stability is measured by the largest

Lyapunov exponent (LE) in the presence of noise. For a limit cycle in a smooth dynamical

system we have shown that a small noise results in a negative LE, thus leading to syn-

chronization and reliability (cf. [44, 45, 4, 5]), while a larger noise can result in a positive

LE (cf. [44, 45, 58, 6, 7]; a positive exponent was also reported for a non-smooth system

in [4]). Noteworthy, neurons are limit cycle oscillators only in the regime of periodic

spiking, thus requiring a particular investigation close to the transition from excitable

behavior to periodic spiking. (Additionally, the dynamics of a spiking system is crucially

characterized by the time series of firing events, what makes peculiarity of neural systems

more pronounced.)

Here we perform such an investigation and demonstrate an antireliability, i.e. a tran-

sition to a positive LE, for a model of a neuron in an excitable state. We show that a

FitzHugh–Nagumo (FHN) neuron responds to a fluctuating forcing of a certain intensity

in a non-reliable manner, while reliability is observed for very small and very large inten-

sities of driving noise. Furthermore, we develop an analytical approach, allowing us to

calculate the LE for moderate noise amplitudes. We explain the transition to antirelia-

bility geometrically as a chaotic transition due to random stretchings and foldings of the

phase mapping.
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3.3.1 Simulation for FHN

The basic model we use to describe a spiking neuron is the FHN system [59, 60]:

v̇ = α−1[(3 − v2)v − w] + ξ(t), ẇ = v − v0, (3.50)

where α is a small parameter (below in numerical simulations we fix α = 0.05), and ξ(t)

is a white Gaussian noise: 〈ξ(t)ξ(t + t′)〉 = 2ε2δ(t′). For v0 < −1 the only attractor

in the noiseless system is a stable fixed point (see Fig. 3.10a), i.e. the system is in the

excitable regime, and the LE is negative: limε→0 λ = const < 0. For v0 > −1 this fixed

point becomes unstable, and the stable limit cycle appears (see Fig. 3.10b), i.e. periodic

spiking takes place, and limε→0 λ = 0. Due to smallness of parameter α the oscillation

transition is very sharp, and already for v0 > −1+O(α1/2) the cycle takes a characteristic

for relaxation oscillations form, not depending on v0.

Lyapunov exponent

In a vicinity of the transition value v0 . −1 the system is mostly sensitive to external

noise, which evokes a spike train. The latter can be more or less regular, but here we focus

on the stability properties of the dynamics, and characterize them in Fig. 3.11 with the

largest LE. One can see that the region of moderate noise intensities, where LE is positive,

exists both when the dynamics is excitable (v0 < −1 and LE is negative for vanishing

noise) and when the system is oscillating (v0 & −1 and LE vanishes for vanishing noise).

Only outside the vicinity of the transition (for |v0 + 1| & 0.005) the LE remains negative

for all ε.

We denote the regime with positive LE as an antireliable one, and illustrate it in

Fig. 3.12. Here the same realization of noise drives 10 uncoupled identical neurons. While

for λ < 0 the perfect synchrony of spikes is observed, for λ > 0 one can see an alternation

between the epochs of asynchronous and relatively synchronous behavior. The latter

epochs, which look in middle row of Fig. 3.12 as vertical stripes, are in fact not perfectly

synchronous, but slightly different in the spike timings (∆ti ≈ 0.01 − 0.1). We will give

an explanation for this intermittency below.

In real situations, the perfect synchrony (for λ < 0) is distorted by small nonidentities

in the oscillators or in the noisy driving (e.g. by an additional noise specific for each

oscillator, in the context of neuron reliability one speaks on intrinsic noise). We illustrate

this imperfect synchrony in Fig. 3.12, right column.

Event synchronization approach

Fig. 3.12 provides a qualitative frame for observations of antireliability in experiments,

because there typically the same protocol as above and the same representation of data is
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Figure 3.11: The Lyapunov exponent vs the noise amplitude for the FHN system (3.50)

for different values of v0.

used. To characterize the reliability and antireliability quantitatively, we adopt the event

synchronization approach [61]. For the observed sequence of spikes, one can introduce the

“reduction” function xτ (t) = c
∑M

j=1(Θ(t− tj)−Θ(t− tj − τ)), where Θ is the Heaviside

function, tj is the time of j-th firing event, and c is a normalization constant defined by

〈xτ 〉 = 1. The synchrony of firing events for two systems with the reduction functions xτ (t)

and yτ (t) can be quantified by the event synchronization correlation function Cτ
xy(t

′) =

〈xτ (t)yτ (t+ t′)〉. In the case of a perfect event synchrony,

Cτ
xy(t) =

{

1 − |t/τ |, |t| < τ ;

0, |t| ≥ τ .
(3.51)

We present the calculations of the event synchronization in Fig. 3.13. In panel (a) identical

neurons are considered. One can see that the regions of perfect event synchrony (Cτ (0) =

1) coincide with the ones of negative LE in Fig. 3.11. For regions of antireliability (λ >

0), the event correlation function Cτ (0) is small, but does not vanish: this is due to

intermittent synchronous epochs seen in Fig. 3.12. The persistence of synchrony against

the intrinsic noise nonidentity may be estimated from Fig. 3.13b.

3.3.2 Mechanism of antireliability and analytical model

We now turn to an analytical description of the effect and to revealing its mechanism.

First, we give a general argument that a positive LE cannot be explained within the one-

dimensional phase approximation [28] to the oscillation dynamics (a statistical evidence
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Figure 3.12: Samples of firing patterns for the ensemble of 10 neurons (3.50) driven by

common noise. Each spike is depicted as a short vertical stripe, so a long vertical stripe

corresponds to a synchronous, reliable firing. Left column: the neurons are perfectly

identical, right column: there is small intrinsic noise with amplitude εint = 5 · 10−5. For

ε = 0.01 and ε = 0.08, the LE is negative (reliability), for ε = 0.013 the LE is positive

(antireliability).

of this fact has been presented in the first section of this chapter; see also [4, 5]). Indeed,

a time-continuous evolution of the phase (and of any one-dimensional variable) under

arbitrary forcing, on a finite time interval can be reduced to a monotonous transformation

of the phase. Because an attracting set of a monotonous transformation has a negative

LE, a positive LE is excluded. Therefore, we have to go beyond the usual one-dimensional

phase approximation for the dynamics of perturbed oscillatory systems. This makes the

problem nontrivial, because in higher dimensions one cannot obtain the LE by a plain

averaging. For simplicity, we assume that the noise-free system is periodic, and model

the two-dimensional perturbed dynamics with the system

ϕ̇ = ω + a(ϕ)r, ṙ = −γ(ϕ)r + f(ϕ)ξ(t). (3.52)

Here ϕ is the oscillation phase and r is a transversal deviation from the limit cycle (here-

after referred as an amplitude), ω = 2π/T is the oscillation frequency. We have introduced

three functions: a(ϕ) describes the nonisochronicity of the system, γ(ϕ) is the relaxation

rate of the amplitude perturbations, f(ϕ) is the sensitivity to noise; all these functions

of ϕ are 2π-periodic. We have omitted noise in the equation for the phase because of its,
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Figure 3.13: The correlation function Cτ
xy(t) for two FHN systems driven by (a) identical

noise signals, and (b) by nonidentical ones, with the intrinsic noise of amplitude εint =

5 · 10−5. Parameters v0 = −1.001, τ = 0.1.

already mentioned, purely stabilizing effect.

For a relatively small noise the dynamics is close to the limit cycle, on which, at

the noiseless limit, ϕ(t) = ϕ0(t) = ϕ(0) + ωt and r(t) = 0. The infinitesimally small

perturbations obey the linearized equations which, to the main order with respect to

noise, take the form

δϕ̇ = a(ϕ0)δr, δṙ = −γ(ϕ0)δr + f ′(ϕ0)ξ(t)δϕ. (3.53)

We now make two assumptions that are typically valid for spiky systems under consider-

ation. First, let us suppose that the system is especially sensitive to noise on some short

part of the limit circle near ϕ = Φ, and neglect the effect of noise for the rest of the cycle.

This means that f ′(ϕ0) is non-zero only in some interval [ϕ−, ϕ+] ∋ Φ. For the FHN

system with v0 ≈ −1 this is exactly the region near the tip of the slow branch v = −1,

w = −2. Here the trajectory slowly passes close to the unstable steady state and is highly

sensitive to perturbations. The next assumption is that the relaxation rate γ is large at

least on some pieces of the limit cycle. For the FHN system this is ensured due to the

separation of slow and fast motions.

As a result of these two assumptions, we can separate the dynamics of perturbations

in two stages: (i) a noise-induced evocation in a vicinity of Φ, and (ii) a relaxation. Prior

to stage (i) we take a phase perturbation, i.e. δr = 0, δϕ = δϕ0. During the evocation we

can neglect all terms in (3.53) except the noisy one, which yields a perturbation in the

amplitude

δr0 = Sδϕ0, S =

∫ ϕ+/ω

ϕ−/ω

f ′(ωt)ξ(t)dt.

As ξ(t) is a Gaussian white noise, S is a Gaussian random variable with zero average and
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the variance

〈S2〉 =
2ε2

ω

∫ ϕ+

ϕ−

[f ′(ϕ)]2dϕ .

The next, relaxation stage, where the effect of noise can be neglected, starts with the

perturbation δr0, δϕ0 at the time t0. According to Eqs. (3.53)

δr(t) = δr0e
−
∫ t

t0
γ(ωt′)dt′ ≈ δr0e

−γ(Φ)(t−t0),

δϕ(t) ≈ δϕ0 + δr0

∫ t

t0

a(ωt′)e−γ(Φ)(t′−t0)dt′

≈ δϕ0 + δr0
a(Φ)

γ(Φ)

(

1 − e−γ(Φ)(t−t0)
)

.

Thus, the amplitude relaxes to zero, and for the phase perturbation we obtain the map-

ping:

δϕn+1 = δϕn (1 +R) , (3.54)
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Figure 3.15: Samples of the distribution of the derivatives dvn+1/dvn for the FHN system

at v0 = −0.998. The squares present results of numerical simulation, the solid line fits

them with a Gaussian distribution.
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where we have introduced index n indicating repetitive passages through the noise-

sensitive region. The quantity R = Sa(Φ)/γ(Φ) is a zero-mean Gaussian variable with

the variance

V 2 =
2ε2a2(Φ)

ωγ2(Φ)

∫ ϕ+

ϕ−

[f ′(ϕ)]2dϕ. (3.55)

The LE for the random mapping (3.54) is

λth = T−1〈ln |1 +R|〉

=
1√

2πTV

∫ +∞

−∞
ln |1 +R|e− R2

2V 2 dR. (3.56)

In Fig. 3.14 we depict the dependence λth(V ). The LE changes sign at V ≈ 1.5560, what

corresponds to the onset of desynchronization and antireliability. According to formula

(3.55), V is proportional to the amplitude of noise ε, to the sensitivity of the dynamics to

the noise ∝ [f ′(ϕ)]2, and to nonisochronicity of the oscillations a, and inverse proportional

to the relaxation rate γ.

Above we have assumed that the neuron is in the oscillating regime, and that there

is no noise acting directly on the phase in (3.53). A violation of both these conditions

leads to an additional contraction of the phase (which is, of course, much stronger for a

neuron in excitable state with small noise, because there the trajectory spends a lot of

time in a vicinity of the stable fixed point). Thus, the resulting curve Fig. 3.14 should be

shifted down. It becomes then similar to numerically observed dependencies of Fig. 3.11.

A negative LE for very large noise intensities, observed in Fig. 3.11, cannot be explained

by the theory above, as the underlying assumptions are not valid for strong noise.

We now compare the theoretical predictions with the numerics. To check the map-

ping for the phase perturbations (3.54), we fix a region on the branch of slow motions of

system near v∗ ≈ −
√

3, w∗ ≈ 0. Here, due to the strong contraction of the fast variable

v, only perturbations along the slow branch are present. We characterize these pertur-

bations with their projection on coordinate v. In Fig. 3.15 we present the histograms of

the derivatives dvn+1/dvn for pieces of trajectories starting at (v∗, w∗) and returning to its

vicinity. These quantities, which are the multipliers for infinitesimal perturbations, ac-

cording to the theory above correspond to the quantities 1+R in (3.54). One can see that

the distribution of these multipliers is nearly symmetric around dvn+1/dvn ≈ 1. For small

noise the Gaussian distribution fits very well, while for larger noise one observes “heavy

tails” [∝ (dvn+1/dvn − 1)−2], which are presumably due to violations of the assumptions

used in the derivation of (3.54).

In order to clarify the geometric nature of the transition to positive LE, we have

followed the evolution of finite but small segments of the slow branch, starting in a vicinity

of (v∗, w∗). All the points evolve under the same realization of noise for a fixed time
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v0 = −0.998, ε = 0.01 (positive LE). An offset on the vertical axis is arbitrary.

interval ≈ T . The resulting mappings of the segment are shown in Fig. 3.16. Of course,

the mapping is random, therefore we have different realizations that depend on the noise

waveform. The crucial point is that many of these mappings are not one-to-one. This

reveals the geometrical mechanism of chaotization: during the evolution, the segments of

the cycle are stretched and folded, so that the resulting mapping is non-monotonous.

The distribution of multipliers Fig. 3.15 allows us also to explain the intermittent

character of the anti-reliability. According to eq. (3.54) and Fig. 3.15, there is a finite

probability to observe a vanishing multiplier dϕn+1/dϕn (geometrically, these events corre-

spond to extrema of the random mapping Fig. 3.16). If such an event happens, the states

of different identical neurons become very close to each other, thus they fire nearly simul-

taneously. Only after a certain number of cycles with large multipliers |dϕn+1/dϕn| > 1,

the close states diverge and the difference in the responses of identical neurons to the

common noise becomes visible.

3.4 Summary and discussion

In this chapter we have considered synchronization of oscillators by common noise (white

Gaussian or telegraph). The effect of synchronization is quantified by the Lyapunov

exponent (LE). Identical (or slightly different) oscillators are synchronized by common

noisy driving when the LE is negative, and desynchronized otherwise. For limit cycle

oscillators the LE vanishes in the noiseless limit and is proven to be negative for weak

noise: limε→0 λ/ε
2 = const < 0 (ε is the noise amplitude). For this purpose the approach
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of the phase approximation has been used.

While for a negative LE, identical oscillators are perfectly synchronous under identical

driving, nonidentities distort perfect synchrony. For limit cycle oscillators driven by weak

noise the role of nonidentities either (i) in oscillators or (ii) in noise is studied analytically.

This study has revealed a crucial role of finite deviations between the states of subsystems

even for arbitrary small nonidentities, and a strongly intermittent character of synchrony.

The analytical results obtained within the framework of the phase approximation are

underpinned by the results of numerical simulation for the Van der Pol–Duffing oscillator.

This simulation also allows us to consider the effect of finite amplitude noise, where

no analytical investigation is possible. In some systems under certain circumstances,

moderate noise appears to be able to lead to desynchronization: a positive LE is observed.

The results obtained for limit cycle oscillators appear to be general for different kinds

of noise, because they do not diverse much even for such different noises as white Gaussian

and telegraph ones.

Neural oscillators being interesting from the practical viewpoint (for them the reliabil-

ity property [39], directly related to the phenomena we consider, appears to be important)

can not be always considered as limit cycle ones. This fact makes a particular considera-

tion of such systems necessary.

We have performed such an investigation and have shown, within the framework of the

noise-driven FitzHugh–Nagumo model, that identical neurons can respond antireliably to

the noisy evocation. Antireliability, which manifests itself as a non-correlation of spikes,

is observed when the neurons are close to the transition excitability–oscillations, where

the dynamics is mostly sensitive to perturbations. Quantitatively, the antireliability is

characterized as a state with a positive largest LE. The latter is purely noise-induced,

as the noiseless FitzHugh–Nagumo system does not posses even a transient chaos. We

explain the transition to the antireliability within the approximate analytical theory for

small noise-induced deviations from the deterministic trajectory, which goes beyond the

one-dimensional phase approximation. This is crucial, because only due to the evocation

of transversal to trajectory perturbation, the stretchings and foldings that lead to chaos,

can occur. The final formulae (3.55), (3.56) give an explicit dependence of the LE on

physical properties of the neuron, such as nonisochronicity and sensitivity, thus guiding an

experimental search for the effect. The theoretical expression for the random multiplier of

phase deviations explains also the intermittent character of the antireliable state: during

the epochs where the multiplier is close to zero, a temporarily synchronous firing of

neurons is observed.



Chapter 4

Effects of Delayed Feedback on

Kuramoto Transition

A transition to collective synchrony in an ensemble of globally coupled oscillators is known

as the Kuramoto transition [63]. An important application of the theory of this transition

is collective dynamics of neuronal populations. Indeed, synchronization of individual

neurons is believed to play the crucial role in the emergence of pathological rhythmic

brain activity in Parkinson’s disease, essential tremor, and epilepsies (for instance, see [64,

65, 71]). One approach to suppress such an activity is to apply to the system a negative

feedback loop [66, 67, 68, 69, 70].

In [66, 67] a linear delayed feedback has been employed in order to stabilize the ab-

solutely nonsynchronous state. Another approach has been proposed in [68], where the

authors have suggested a nonlinear suppression of collective oscillations. There giant val-

ues of the nonlinear feedback coefficient are used resulting in a crucial diminishing of the

amplitude of collective oscillations. In such circumstances the stability of the absolutely

nonsynchronous state becomes out of the author interest.

In this chapter we develop a weakly nonlinear theory of the Kuramoto transition in the

presence of linear and nonlinear time-delayed coupling terms [9]. First, we establish the

relationships between phase models and original limit cycle systems, of particular interest

are physically relevant feedback terms within the framework of phase dynamics. Second,

we treat a linear delayed feedback, and show that such a feedback not only controls the

transition point, but effectively changes the nonlinear terms near the transition. Third,

we study a purely nonlinear delayed coupling, which does not effect the transition point,1

but can reduce or enhance the amplitude of collective oscillations.

We heavily rely in our analysis on the corresponding treatment of the system without

1We do not use large values of the nonlinear feedback coefficient like in [68]; therefore have to take

care of linear stability properties.

45
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delay by Crawford [62].

4.1 From limit cycle systems to phase models

Here we introduce our basic model — an ensemble of autonomous oscillators subject to

different types of global coupling. We take individual oscillators as Van der Pol ones and

write the model as

ẍi − µ(1 − x2
i )ẋi + ω2

i xi = 2
√

2ωiξi(t) + ε′F (x, y) (4.1)

where ξi(t) is a δ-correlated Gaussian noise: 〈ξi(t)ξj(t− t′)〉 = 2D δij δ(t
′). The ensemble

averages are defined as

x =
1

N

N
∑

j=1

xj , y =
1

N

N
∑

j=1

ẋj
ωj

.

In the reduction to phase equations we use the smallness of parameters µ and ε′, and

suppose the natural frequencies ωi to be distributed in a relatively close vicinity of the

mean frequency ω0 ≡ N−1
∑N

j=1 ωj. Because µ≪ ωi, the solution of the autonomous Van

der Pol oscillator can be written as xi(t) ≈ Ai(t) cos(ϕi(t)) where on the limit cycle Ai ≈ 2

and ϕ̇i = ωi. Because ε′ ≪ µ, coupling does not affect the amplitude (which remains ≈ 2),

but only the phase. It is convenient to introduce the complex order parameter

R(t) = |R|eiθ(t) =
1

2
(x+ iy) =

1

N

∑

j

eiϕj(t) (4.2)

and to represent the global coupling in terms of R. The absolute value of the order

parameter is close to zero for nearly uniform, nonsynchronized distributions, and reaches

1 for strongly synchronized states.

Below we will be interested in linear coupling with and without time delay [66, 67],

and in a nonlinear coupling:

ε′F (x, y) = 2ω0εy(t) + 2ω0εfy(t− T ) +
d

dt
(x2(t− T ))(Kxx(t) +Kyy(t)) .

Here we use the simplest form of nonlinear coupling which does not effect linear stability

of the absolutely nonsynchronous state. As a result, the phase equations for the oscillators

read

ϕ̇i = ωi +
ε

N

N
∑

j=1

sin(ϕj(t) − ϕi(t)) +
εf
N

N
∑

j=1

sin(ϕj(t− T ) − ϕi(t))

+εof |R(t− T )|2|R(t)| sin[ 2θ(t− T ) − θ(t) − ϕi(t) + ν] + ξi(t), (4.3)
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where εofe
iν = 2(Kx + iKy). Here three coupling parameters describe different types of

coupling: ε describes collective linear coupling without delay, as in the original Kuramoto

model; εf describes linear coupling with delay, as has been proposed in [66, 67]; εof

describes nonlinear coupling with delay.

4.1.1 Thermodynamic limit

In the thermodynamic limit N → ∞ we can introduce a distribution of natural frequencies

g(ω) and rewrite system (4.3) as

ϕ̇(ω) = ω + ε

+∞
∫

−∞

g(ω′) sin (ϕ(ω′, t) − ϕ(ω, t)) dω′

+εf

+∞
∫

−∞

g(ω′) sin (ϕ(ω′, t− T ) − ϕ(ω, t)) dω′

+εof |R(t− T )|2|R(t)| sin[ 2θ(t− T ) − θ(t) − ϕ(ω, t) + ν] + ξ(ω, t) .

(4.4)

For a statistical description we introduce a probability density ρ(ω, ϕ, t) (normalized as
∫ 2π

0
ρ(ω, ϕ, t) dϕ = 1) that is governed by the Fokker-Planck equation:

∂ρ

∂t
+

∂

∂ϕ
(ρ v) −D

∂2ρ

∂ϕ2
= 0, (4.5)

where

v(ω) = ω + ε

2π
∫

0

dθ

+∞
∫

−∞

dω′g(ω′) sin(θ − ϕ)ρ(ω′, θ, t)

+εf

2π
∫

0

dθ

+∞
∫

−∞

dω′g(ω′) sin(θ − ϕ)ρ(ω′, θ, t− T )

+εof |R(t− T )|2|R(t)| sin (2θ(t− T ) − θ(t) − ϕ+ ν) .

(4.6)

The order parameter introduced in (4.2) now takes the form

R(t) =
1

N

∑

j

eiϕj(t) =

+∞
∫

−∞

dω g(ω)

2π
∫

0

dϕ ρ(ω, ϕ, t) eiϕ. (4.7)

Mathematically, our problem is the problem of behavior of small perturbations ρ1 of

the absolutely nonsynchronous state

ρ0 =
1

2π
(4.8)
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in the vicinity of the threshold where this state becomes linearly unstable and collective

oscillations onset. Below we work with Eq.(4.5).

4.2 Linear delayed feedback

The case of linear delayed feedback is described by Eqs.(4.5),(4.6) with εof = 0.

4.2.1 Linear stability of the absolutely nonsynchronous state

Infinitesimal perturbations ρ1 of the state (4.8) are governed by the linearization of

Eq.(4.5):
∂ρ1

∂t
+ ρ0

∂v1

∂ϕ
+ v0

∂ρ1

∂ϕ
−D

∂2ρ1

∂ϕ2
= 0, (4.9)

with

∂v1

∂ϕ
= −ε

2π
∫

0

dθ

+∞
∫

−∞

dω′g(ω′) cos(θ − ϕ)ρ(ω′, θ, t)

−εf
2π
∫

0

dθ

+∞
∫

−∞

dω′g(ω′) cos(θ − ϕ)ρ(ω′, θ, t− T ).

(4.10)

Substituting ρ1 =
∑

k

ck(ω)eikϕ+λt (k 6= 0), one can find independent equations for

different ck:

(λ+ ikω +Dk2)ck(ω) =
ε+ εfe

−λT

2
(δk, 1 + δk,−1)Ck, (4.11)

where Ck =

∫ +∞

−∞
g(ω)ck(ω) dω. Modes with |k| 6= 1 always decay (λk = −Dk2 − ikω).

The case of k = ±1 (the case of k = −1 can be obtained via complex conjugation from

the case k = 1) requires an analysis. We can find

c1(ω) =
ε+ εfe

−λT

2(λ+D + iω)
C1. (4.12)

Multiplying this equation by g(ω) and integrating over ω, we obtain


1 − ε+ εfe
−λT

2

+∞
∫

−∞

g(ω) dω

D + λ+ iω



C1 = 0.

So, the spectrum of the increments λ for the modes with k = 1 is formed by the roots

of the “spectral function” Λ(λ)

Λ(λ) ≡ 1 − ε+ εfe
−λT

2

+∞
∫

−∞

g(ω) dω

D + λ+ iω
. (4.13)
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Here two situations are possible: (i) a nonsymmetric distribution of natural frequencies

g(ω) 6= g(−ω), and (ii) a symmetric distribution of natural frequencies g(ω) = g(−ω). In

the first case ℑ





+∞
∫

−∞

g(ω) dω

D + iω



 =

+∞
∫

−∞

ωg(ω) dω

D2 + ω2
6= 0 (we do not consider any degenerated

situations but the physically motivated ones, like g(ω) = g(−ω)); therefore real roots of

Λ(λ) (including λ = 0) are not admitted. In the second case Λ∗(λ) = Λ(λ∗); therefore real

roots are admitted, and complex roots appear in pairs (λ, λ∗). So, the critical perturba-

tions (henceforth, the term “critical perturbations” means the infinitesimal perturbations

of the absolutely nonsynchronous state, growing when the state is unstable) have the

following form:

(i) g(ω) 6= g(−ω)

for λ = −iΩ, ρ1 = α(ω)ei(ϕ−Ωt) + c.c. — Hopf bifurcation;

(ii) g(ω) = g(−ω)

for λ = 0, ρ1 = α(ω)eiϕ + c.c. — steady-state bifurcation,

for λ = ±iΩ, ρ1 = α(ω)ei(ϕ−Ωt) + β(ω)ei(ϕ+Ωt) + c.c. — Hopf bifurcation (after Craw-

ford [62]).
According to Crawford, the only symmetric distributions admitting the Hopf bifur-

cation in the absence of a delayed feedback are multimodal ones (for further details on

behavior of ensembles with multimodal distributions consult [72, 73, 74]). The role of

time-delayed feedback in populations with bimodal g(ω) has been studied in [75].

4.2.2 Weakly nonlinear analysis:

Nonsymmetric distribution g(ω)

In this section we use conventional multiple scale analysis to develop a weakly nonlinear

theory of the synchronization transition, considering ε as a bifurcation parameter. We

write ε = ε0 + κ2ε2 where ε0 is the critical value of ε, and κ is a formal small parameter,

represent the probability density as

ρ(x, t) = ρ0 + κρ1 + κ2ρ2 + κ3ρ3 + . . . ,

and introduce “slow times” tk:

∂

∂t
≡ ∂

∂t0
+ κ2 ∂

∂t2
+ κ4 ∂

∂t4
+ . . . .

Here only even powers of κ are used for ε and time scales due to the system symmetry.

Assuming

ρ1 = α1(ω, t2, t4, ...)e
i(ϕ−Ωt0) + c.c.
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and substituting this in Eq.(4.5) we obtain in the order κ2 (there is no secular terms in

this order):
∂ρ2

∂t0
+ ρ0

∂v2

∂ϕ
+

∂

∂ϕ
(ρ1v1) + v0

∂ρ2

∂ϕ
−D

∂2ρ2

∂ϕ2
= 0, (4.14)

where

v1 =

2π
∫

0

dθ

+∞
∫

−∞

dω′g(ω′) sin(θ − ϕ)α1(ω
′)
(

ε0 + εfe
iΩT
)

ei(θ−Ωt0) + c.c.

= iπ

+∞
∫

−∞

α1(ω
′)
(

ε0 + εfe
iΩT
)

ei(ϕ−Ωt0)g(ω′) dω′ + c.c.

= iπ
(

ε0 + εfe
iΩT
)

A1e
i(ϕ−Ωt0) + c.c. ,

(4.15)

Aj ≡
+∞
∫

−∞

αj(ω)g(ω) dω . (4.16)

Noteworthy, from (4.12) it follows that

α1(ω) =
ε0 + εfe

iΩT

2(D + i(ω − Ω))
A1 . (4.17)

The “driving term” in (4.14) has the form:

∂

∂ϕ
(ρ1v1) =

∂

∂ϕ

(

iπ
(

ε0 + εfe
iΩT
)

α1(ω)A1e
i2(ϕ−Ωt0) + c.c.+ . . .

)

= −2π
(

ε0 + εfe
iΩT
)

α1(ω)A1e
i2(ϕ−Ωt0) + c.c. .

Searching for solution of Eq.(4.14) in the form

ρ2 = α2(ω, t2, t4, ...)e
2(ϕ−Ωt0) + c.c. ,

we obtain, making use of (4.17) and v2 = 0 (due to
∫ 2π

0
eiϕρ2(ω, ϕ, t) dϕ = 0 ),

(−i2Ω + i2ω + 4D)α2(ω) = 2π
(

ε0 + εfe
iΩT
)

α1(ω)A1 = π

(

ε0 + εfe
iΩT
)2

D + i(ω − Ω)
A2

1,

i.e.

α2(ω) =
π
(

ε0 + εfe
iΩT
)2
A2

1

2(D + i(ω − Ω))(2D + i(ω − Ω))
. (4.18)

In the order κ3 of Eq.(4.5), secular terms appear:

∂ρ3

∂t
+
∂ρ1

∂t2
+ ρ0

∂v3

∂ϕ
+

∂

∂ϕ
(ρ1v2 + ρ2v1) + v0

∂ρ3

∂ϕ
−D

∂2ρ3

∂ϕ2
= 0. (4.19)
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As mentioned above v2 = 0. For v3 we obtain

v3 = vρ3 + ε2

2π
∫

0

dθ

+∞
∫

−∞

dω′g(ω′) sin(θ − ϕ)ρ1(ω
′, θ, t)

+εf

2π
∫

0

dθ

+∞
∫

−∞

dω′g(ω′) sin(θ − ϕ)

(

(−T )
∂α1(ω

′, t2, ...)

∂t2
ei(θ−Ω(t−T )) + c.c.

)

= vρ3 +

(

iπ

(

ε2A1 − εfe
iΩTT

∂A1

∂t2

)

ei(ϕ−Ωt0) + c.c.

)

,

where

vρ3 =

2π
∫

0

dθ

+∞
∫

−∞

dω′g(ω′) sin(θ − ϕ) (ε0ρ3(ω
′, θ, t) + εfρ3(ω

′, θ, t− T )) ,

and
∂

∂ϕ
(ρ2v1) =

∂

∂ϕ

(

−iπ
(

ε0 + εfe
−iΩT )A∗

1α2(ω)ei(ϕ−Ωt0) + c.c.+ . . .
)

= π
(

ε0 + εfe
−iΩT )A∗

1α2(ω)ei(ϕ−Ωt0) + c.c. .

Therefore Eq.(4.19) can be rewritten as

[

∂α1(ω)

∂t2
− ε2

2
A1 +

εfe
iΩT

2
T
∂A1

∂t2
+ π

(

ε0 + εfe
−iΩT )A∗

1α2(ω)

]

ei(ϕ−Ωt0) + c.c.+ · · · = 0 ,

(4.20)

where “. . . ” denotes terms a fortiori orthogonal to the solutions of the problem conjugated

to (4.9), i.e. non-secular terms.

Defining scalar product of τ -time-periodic fields f(ω, ϕ, t0) and h(ω, ϕ, t0) as

〈f, h〉 ≡
+∞
∫

−∞

dω g(ω)

2π
∫

0

dϕ

2π

τ
∫

0

dt0
τ
f ∗(ω, ϕ, t0)h(ω, ϕ, t0) , (4.21)

we find the problem conjugated to (4.9) in the Fourier space:

(

−λ− ikω +Dk2
)

c+k (ω) =
ε0 + εfe

λT

2
(δk, 1 + δk,−1)

+∞
∫

−∞

g(ω′)c+k (ω′) dω′ (4.22)

( c+k are defined so that the solutions of the conjugated problem are ρ+ =
∑

k

c+k (ω)eikϕ+λt,

k 6= 0). Similarly to (4.12), the required eigensolution of the conjugated problem is

ρ+(ω, ϕ, t) =
ei(ϕ−Ωt)

D − i(ω − Ω)
(4.23)



52 4. EFFECTS OF DELAYED FEEDBACK ON KURAMOTO TRANSITION

(normalization is not important).

Evaluating the scalar product of ρ+ and Eq.(4.20)

+∞
∫

−∞

g(ω) dω

D + i(ω − Ω)

[

∂α1(ω)

∂t2
− ε2

2
A1

+
εfe

iΩT

2
T
∂A1

∂t2
+ π

(

ε0 + εfe
−iΩT )A∗

1α2(ω)

]

= 0

and substituting for αj, we obtain:

[

(ε0 + εfe
iΩT )2

2

+∞
∫

−∞

g(ω) dω

(D + i(ω − Ω))2
+ εfe

iΩTT

]

∂A1

∂t2

−ε2A1 +
π2

2

∣

∣ε0 + εfe
iΩT
∣

∣

2 (
ε0 + εfe

iΩT
)2

×
+∞
∫

−∞

g(ω) dω

(D + i(ω − Ω))2(2D + i(ω − Ω))
A1 |A1|2 = 0 .

(4.24)

For the further analysis, it is convenient to introduce the function

G(z) ≡ i

2π

+∞
∫

−∞

g(ω) dω

ω − z
.

Now Eq.(4.24) can be rewritten in the final form:

Ȧ1 − λ2(ε0, Ω)A1 + P (ε0, Ω)A1 |A1|2 = 0 , (4.25)

where λ2 is the linear growth rate

λ2(ε, Ω) =
ε2

iπ (ε+ εfeiΩT )2G′(Ω + iD) + εfeiΩTT
, (4.26)

and

P (ε, Ω) =
π2
∣

∣ε+ εfe
iΩT
∣

∣

2
(iDG′(Ω + iD) −G(Ω + i2D) +G(Ω + iD))

D
(

iDG′(Ω + iD) + π−1DεfeiΩTT (ε+ εfeiΩT )−2) . (4.27)

Equation (4.25) and the expressions (4.26), (4.27) are the main result of our analysis

for nonsymmetric frequency distributions. They give a full description of the effect of the

delayed global feedback on the synchronization transition in the ensemble of oscillators.

The linear part (4.26) has already been discussed in [66], and the expression (4.27) com-

pletes the description of the synchronization transition. Having determined the amplitude
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A1 from (4.25), one can find the establishing probability density

ρ(ω, ϕ, t) =
1

2π

[

1 +
π
(

ε0 + εfe
iΩT
)

D + i(ω − Ω)
A1(t)e

i(ϕ−Ωt) + c.c.

+
π2
(

ε0 + εfe
iΩT
)2

(D + i(ω − Ω))(2D + i(ω − Ω))
A2

1(t)e
i2(ϕ−Ωt) + c.c.+O(A3

1)

]

, (4.28)

and the order parameter

R(t) = 2πA∗
1e
iΩt(1 +O(A2

1)) .

4.2.3 Weakly nonlinear analysis:

Symmetric distribution g(ω) — steady-state bifurcation

In the case of λ = 0, the critical value of coupling coefficient can be found in an explicit

form:

ε0 =
2

D

[∫ +∞

−∞

g(ω) dω

D2 + ω2

]−1

− εf . (4.29)

Actually, the case of symmetric distribution g(ω) providing Ω = 0 is a special case of

the situation studied in the previous subsection. So, the previous analysis turns into the

analysis for this case as soon as we set Ω = 0. Therefore

Ṙ− λ2(ε0, 0)R + (2π)−2P (ε0, 0)R |R|2 +O(R5) = 0, (4.30)

[λ2(ε0, 0), P (ε0, 0) ∈ R, since for symmetric g(ω), G∗(z) = G(−z∗) ] and the probability

density is

ρ(ω, ϕ, t) =
1

2π

[

1 +
ε0 + εf

2(D + iω)
R∗(t)eiϕ + cc

+
(ε0 + εf )

2

4(D + iω)(2D + iω)
R∗2(t)ei2ϕ + c.c.+O(R3)

]

. (4.31)

Actually, in this case Arg(R) remains constant on the central manifold, nevertheless we

keep it in a complex form for the reason of generality.

4.2.4 Weakly nonlinear analysis:

Symmetric distribution g(ω) — Hopf bifurcation

Considering the perturbation

ρ1 = α1(ω, t2, t4, ...)e
i(ϕ−Ωt0) + β1(ω, t2, t4, ...)e

i(ϕ+Ωt0) + c.c.
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near the threshold, from Eq.(4.5) we obtain in the order κ2 (there are no secular terms in

this order) Eq.(4.14) with

v1 = iπ
(

ε0 + εfe
iΩT
)

A1e
i(ϕ−Ωt0) + iπ

(

ε0 + εfe
−iΩT )B1e

i(ϕ+Ωt0) + c.c. . (4.32)

From Eq.(4.12), α1(ω) =
ε0 + εfe

iΩT

2(D + i(ω − Ω))
A1, and β1(ω) =

ε0 + εfe
−iΩT

2(D + i(ω + Ω))
B1. There-

fore

∂

∂ϕ
(ρ1v1) =

∂

∂ϕ

[

iπ
(

ε0 + εfe
iΩT
)

A1α1(ω)ei2(ϕ−Ωt0)

+iπ
{(

ε0 + εfe
−iΩT )

1
Bα1(ω) +

(

ε0 + εfe
iΩT
)

A1β1(ω)
}

ei2ϕ

+iπ
(

ε0 + εfe
−iΩT )B1β1(ω)ei2(ϕ+Ωt0) + c.c.

]

= −π
[

(

ε0 + εfe
iΩT
)2

D + i(ω − Ω)
A2

1e
i2(ϕ−Ωt0)

+
∣

∣ε0 + εfe
iΩT
∣

∣

2
(

1

D + i(ω − Ω)
+

1

D + i(ω + Ω)

)

A1B1e
i2ϕ

+

(

ε0 + εfe
−iΩT )2

D + i(ω + Ω)
B2

1e
i2(ϕ+Ωt0) + c.c.

]

.

Searching for ρ2 in the form

ρ2 = η(−1)(ω, t2, t4, ...)e
i2(ϕ−Ωt0) + η(0)(ω, t2, t4, ...)e

i2ϕ

+η(1)(ω, t2, t4, ...)e
i2(ϕ+Ωt0) + c.c. ,

we find

(i2lΩ + i2ω + 4D)η(l)(ω) = −Ω

π

Ω−1π
∫

0

e−i2lΩt0
∂

∂ϕ
(ρ1v1) dt0 .

So,

η(±1)(ω) =
π
(

ε0 + εfe
∓iΩT )2

2(D + i(ω ± Ω))(2D + i(ω ± Ω))







B2
1 , l = +1,

A2
1, l = −1;

(4.33)

η(0)(ω) =
π

2

∣

∣ε0 + εfe
iΩT
∣

∣

2

2D + iω

(

1

D + i(ω − Ω)
+

1

D + i(ω + Ω)

)

A1B1 . (4.34)

In the order κ3 Eq.(4.19) with v2 = 0 and

v3 = vρ3 +

(

iπ

(

ε2A1 − εfe
iΩTT

∂A1

∂t2

)

ei(ϕ−Ωt0)

+iπ

(

ε2B1 − εfe
−iΩTT

∂B1

∂t2

)

ei(ϕ+Ωt0) + c.c.

)



4.2. LINEAR DELAYED FEEDBACK 55

is valid. Here vρ3 =

∫ 2π

0

dθ

∫ +∞

−∞
dω′g(ω′) sin(θ − ϕ) (ε0ρ3(ω

′, θ, t) + εfρ3(ω
′, θ, t− T ));

and

∂

∂ϕ
(ρ2v1) =

∂

∂ϕ

(

−iπ
[(

ε0 + εfe
−iΩT )A∗

1η
(−1) +

(

ε0 + εfe
iΩT
)

B∗
1η

(0)
]

ei(ϕ−Ωt0)

−iπ
[(

ε0 + εfe
−iΩT )A∗

1η
(0) +

(

ε0 + εfe
iΩT
)

B∗
1η

(1)
]

ei(ϕ+Ωt0) + c.c.+ . . .
)

= π
((

ε0 + εfe
−iΩT )A∗

1η
(−1) +

(

ε0 + εfe
iΩT
)

B∗
1η

(0)
)

ei(ϕ−Ωt0)

+π
((

ε0 + εfe
−iΩT )A∗

1η
(0) +

(

ε0 + εfe
iΩT
)

B∗
1η

(1)
)

ei(ϕ+Ωt0) + c.c.+ . . . ,

where “. . . ” again denotes certainly non-secular terms [a fortiori orthogonal to the solu-

tions of the problem conjugated to (4.9)].

So, Eq.(4.19) can be rewritten as
[

∂α1(ω)

∂t2
− ε2

2
A1 +

εfe
iΩT

2
T
∂A1

∂t2

+π
(

ε0 + εfe
−iΩT )A∗

1η
(−1) + π

(

ε0 + εfe
iΩT
)

B∗
1η

(0)

]

ei(ϕ−Ωt0)

+

[

∂β1(ω)

∂t2
− ε2

2
B1 +

εfe
−iΩT

2
T
∂B1

∂t2

+π
(

ε0 + εfe
−iΩT )A∗

1η
(0) + π

(

ε0 + εfe
iΩT
)

B∗
1η

(1)

]

ei(ϕ+Ωt0) + c.c.+ · · · = 0(4.35)

(again “. . . ” denotes certainly non-secular terms).

Evaluating the scalar products of Eq.(4.35) and the solutions of the conjugated prob-

lem ρ+
α =

ei(ϕ−Ωt)

D − i(ω − Ω)
and ρ+

β =
ei(ϕ+Ωt)

D − i(ω + Ω)
, successively, we obtain the governing

equation for A1:




(ε0 + εfe
iΩT )2

2

+∞
∫

−∞

g(ω) dω

(D + i(ω − Ω))2
+ εfe

iΩTT





∂A1

∂t2

−ε2A1 +
π2

2

∣

∣ε0 + εfe
iΩT
∣

∣

2 (
ε0 + εfe

iΩT
)2

×



A1 |A1|2
+∞
∫

−∞

g(ω) dω

(D + i(ω − Ω))2(2D + i(ω − Ω))

+A1 |B1|2
+∞
∫

−∞

g(ω) dω

(D + i(ω − Ω))(2D + iω)

(

1

D + i(ω − Ω)
+

1

D + i(ω + Ω)

)



 = 0 ;

(4.36)
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and the governing equation for B1 into which Eq.(4.36) turns via the substitution

(A1, Ω) ↔ (B1, −Ω). Finally,

Ȧ1 + [−λ2(ε0, Ω) + P (ε0, Ω) |A1|2 + Q (ε0, Ω) |B1|2]A1 = 0 , (4.37)

Ḃ1 + [−λ∗2(ε0, Ω) + P ∗(ε0, Ω) |B1|2 +Q∗(ε0, Ω) |A1|2]B1 = 0 , (4.38)

where we make use of the fact that for symmetric g(ω), G∗(z) = G(−z∗), and, conse-

quently, λ2(ε, −Ω) = λ∗2(ε, Ω), P (ε, −Ω) = P ∗(ε, Ω), Q(ε, −Ω) = Q∗(ε, Ω);

Q(ε, Ω) =
π2
∣

∣ε+ εfe
iΩT
∣

∣

2

iG′(Ω + iD) + π−1εfeiΩTT (ε+ εfeiΩT )−2

×
(

G′(Ω + iD)

Ω − iD
− (Ω + iD)G(Ω + iD)

2Ω(Ω − iD)2

+
G(−Ω + iD)

2Ω(Ω + iD)
+

i2DG(i2D)

(Ω2 +D2)(Ω − iD)

)

. (4.39)

The probability distribution is

ρ(ω, ϕ, t) =
1

2π

[

1 +
π
(

ε0 + εfe
iΩT
)

D + i(ω − Ω)
A1(t)e

i(ϕ−Ωt) + c.c.

+
π
(

ε0 + εfe
−iΩT )

D + i(ω + Ω)
B1(t)e

i(ϕ+Ωt) + c.c.

+
π2
(

ε0 + εfe
iΩT
)2

(D + i(ω − Ω))(2D + i(ω − Ω))
A2

1(t)e
i2(ϕ−Ωt) + c.c.

+
2π2

∣

∣ε0 + εfe
iΩT
∣

∣

2
(D + iω)

(2D + iω)(D + i(ω − Ω))(D + i(ω + Ω))
A1(t)B1(t)e

i2ϕ + c.c.

+
π2
(

ε0 + εfe
−iΩT )2

(D + i(ω + Ω))(2D + i(ω + Ω))
B2

1(t)e
i2(ϕ+Ωt) + c.c.

+O(A3
1 +B3

1)

]

, (4.40)

and the order parameter

R(t) = 2π
(

A∗
1e
iΩt +B∗

1e
−iΩt)+O

(

A3
1 +B3

1

)

.

Analysis of the amplitude equations (4.37), (4.38)

The amplitude equations (4.37),(4.38) coincide with a special case of the amplitude

equations for the co-dimension 2 generalized Hopf–Hopf bifurcation. The peculiarity is
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that here the coefficients in Eq.(4.37) are not independent of the corresponding ones in

Eq.(4.38) but conjugated to them. The generalized Hopf–Hopf bifurcation is well treated

(see, for instance, [76]), but we represent here this equations analysis for our special case.

Evolution of the magnitudes |A1| and |B1| does not depend on the phases argA1 and

argB1. Introducing x = ℜ(P )|A1|2, y = ℜ(P )|B1|2, q = ℜQ/ℜP , r = ℜλ2, and rescaling

time 2t→ t, we can write






ẋ+ x2 + qxy = rx,

ẏ + y2 + qxy = ry.
(4.41)

For ℜP > 0 only the first quadrant of the (x, y)-plane makes sense, while for ℜP < 0

only the third one does. An absence of any limit cycles is guaranteed since the divergence

∇ ·
(

(xy)−
2+q
1+q ~F

)

= −2(1 + q)−1(xy)−
2+q
1+q r

is of fixed sign, where ~F is the phase flow.

The investigation for fixed points yields:

Fixed point coordinates Eigenvalues Eigenvectors

(0, 0) {r, r} {(1, 0), (0, 1)}

(0, r) {r(1 − q), −r} {(1, 0), (0, 1)}

(r, 0) {−r, r(1 − q)} {(1, 0), (0, 1)}
(

r

1 + q
,

r

1 + q

) {

−r, −r1 − q

1 + q

} {(

1√
2
,

1√
2

)

,

(

1√
2
, − 1√

2

)}

In order to investigate the asymptotical behavior of the system for large x and y, we

perform the substitution x = R−1 cosφ, y = R−1 sinφ, [ t ] = R, and consider system

behavior close to R = 0 (see [77]):

Ṙ = R(cos3 φ+ sin3 φ+ q sinφ cosφ(cosφ+ sinφ)) ,

φ̇ =
1

2
sin 2φ(cosφ+ sinφ)(1 − q) .

The last system has the following fixed points: φ∗ = 0, π/4, π/2, π, 5π/4, 3π/2. The

problem of their stability is quite trivial.

The results of the bifurcation analysis of the dynamical system (4.41) are summarized

on Fig. 4.1 [note the system symmetry (ℜλ2, x, y, t) ↔ (−ℜλ2, −x, −y, −t)]. Non-trivial

stable solutions are possible only for ℜλ2 > 0, ℜP > 0, ℜQ > −ℜP . Specifically, there

is one non-trivial stable solution |A1| = |B1| =

√

ℜλ2

ℜ(P +Q)
, at −ℜP < ℜQ < ℜP , and
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 Reλ2 > 0 

 q  1  -1 

 x  x  x 

 y  y  y  ∞ 

 

Figure 4.1: Symmetric distribution g(ω). The regime diagram for the Hopf bifurcation is

plotted. Remember the symmetry (ℜλ2, x, y, t) ↔ (−ℜλ2, −x, −y, −t). External arcs

correspond to infinity.

there is bistability between |A1| = 0, |B1| =

√

ℜλ2

ℜP , and |A1| =

√

ℜλ2

ℜP , |B1| = 0, at

ℜP < ℜQ.

4.2.5 Example: Nonsymmetric Lorentz distribution g(ω)

Let us consider a non-symmetric Lorentz distribution as an example:

g(ω) =
γ

π ((ω − ω0)2 + γ2)
, (4.42)

where γ is the characteristic width of the distribution, ω0 is the average frequency (ω can

be assumed positive, otherwise one should replace ϕ with −ϕ). Therefore

G(z) =
i

2π

+∞
∫

−∞

g(ω) dω

ω − z
=

iγ

2π2

+∞
∫

−∞

dω

(ω − z)(ω − ω0 + iγ)(ω − ω0 − iγ)

=
γ

π

1

(ω − z)(ω − ω0 − iγ)

∣

∣

∣

∣

ω=ω0−iγ
=

i

2π

1

ω0 − iγ − z
,

where ℑz is assumed to be positive [this is fulfilled for (4.26), (4.27), (4.39) as D > 0].

Spectrum. The eq. Λ(µ− iΩ) = 0 takes the form:

1 +
i
(

ε+ εfe
−µT+iΩT

)

2(ω0 − Ω − i(γ +D + µ))
= 0 ,

or

ω0 − Ω − i(γ +D + µ) +
i

2

(

ε+ εfe
−µT+iΩT

)

= 0 .
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Figure 4.2: Nonsymmetric Lorentz dis-

tribution g(ω). The spectrum sample at

ω0 = 3, εf = 1.5, T = 5.7, γ + D = 1.5

is plotted.

Figure 4.3: Nonsymmetric Lorentz dis-

tribution g(ω). The stability boundary

is plotted for different values of ω0.

Extracting the real and imaginary parts, we find

Ω = ω0 −
εf
2
e−µT sin ΩT , (4.43)

ε = 2(γ +D + µ) − εfe
−µT cos ΩT . (4.44)

So, the increments can be parameterized by Ω: µ =
1

T
ln
εf sin ΩT

2(ω0 − Ω)
, ε = 2(µ+ γ +D) −

εfe
−µT cos ΩT . In Fig. 4.2 a sample of spectrum is presented.

γ = 0.1, ω0 = 3, D = 0.1 γ = 0.5, ω0 = 3, D = 1
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Figure 4.4: Nonsymmetric Lorentz distribution g(ω). Samples of the dependence of P on

εf and T . In the left plot additional lines depict zeros of P .
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Hopf bifurcation. The value of Ω providing the minimal critical value ε0 belongs to the

interval

(

π

T
Eint

(

ω0T

π

)

,
π

T

(

Eint

(

ω0T

π

)

+ 1

))

, where Eint(x) is the integer part of

x, and satisfies to the equation system (4.43),(4.44) at µ = 0. Due to the symmetry of this

system at µ = 0: (ω0T, εf ) → (ω0T + π/2, −εf ), it is enough to consider ω0 ∈ (0, π/2].

Stability boundaries for different values of ω0 are plotted in Fig. 4.3.

According to the consideration above,

λ2(ε0, Ω) =
ε2

iπ (ε0 + εfeiΩT )2G′(Ω + iD) + εfeiΩTT

= ε2

[

−1

2

(

ε0 + εfe
iΩT

ω0 − Ω − i(γ +D)

)2

+ εfe
iΩTT

]−1

=
ε2

2 + εfTeiΩT
, (4.45)

P (ε0, Ω) =
π2
∣

∣ε0 + εfe
iΩT
∣

∣

2
(iDG′(Ω + iD) −G(Ω + i2D) +G(Ω + iD))

D
(

iDG′(Ω + iD) + π−1DεfeiΩTT (ε0 + εfeiΩT )−2)

=

π2
∣

∣ε0 + εfe
iΩT
∣

∣

2
(

− D

(ω0 − Ω − i(γ +D))2

D2

(

− 1

(ω0 − Ω − i(γ +D))2

− i

ω0 − Ω − i(γ + 2D)
+

i

ω0 − Ω − i(γ +D)

)

+
2εfe

iΩTT

(ε0 + εfeiΩT )2

)

= −i
[

(ω0 − Ω − i(γ + 2D))

×
(

1 − 2εfe
iΩTT

(

ω0 − Ω − i(γ +D)

ε0 + εfeiΩT

)2
)]−1

= 4
[

(ε0 + εfe
iΩT + 2D)(2 + εfTe

iΩT )
]−1

. (4.46)

Some examples of P (ε0,Ω) are shown in Fig. 4.4. The non-smoothnesses of surfaces

correspond to intersections of different bifurcation surfaces (co-dim. 2 bifurcation), and

occur at ω0T = π

(

n− 1 − Sign(εf )
4

)

, n = 1, 2, 3... . In a vicinity of these intersections,

the weakly nonlinear analysis performed is not sufficient. Indeed, the results of the analysis

performed describe correctly the system’s behavior on the two subspaces (the first one

is the central manifold of the perturbations critical on one side of the intersection, the

second one — on the other side), theis direct product forms the central manifold of the
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bifurcation related to this intersection, but does not describe an interplay between excited

modes. At a relatively small noise intensity D for “narrow” distributions g(ω) (i.e. when

γ/Ω0 is small), parameter regions with negative P appear in close vicinities of some of

above-mentioned intersections (note, negative P corresponds to subcritical bifurcation).

These regions shrink as D and γ/ω0 grow, and collapse when either D or γ/ω0 is of the

order of unity.

Summarizing, Fig. 4.3 shows that a delayed feedback is able to linearly stabilize the

absolutely nonsynchronous state of the system under consideration, and to effectively

change P either enhancing or diminishing the amplitude of collective oscillations close to

the threshold. A strong enough delayed feedback can even turn a supercritical bifurcation

into a subcritical one (simultaneously shifting the linear stability threshold to higher ε).

4.2.6 Example: Symmetric Lorentz distribution g(ω)

One of the simplest examples of symmetric distributions is the Lorentz one:

g(ω) =
γ

π (ω2 + γ2)
. (4.47)

For this distribution, G(λ) =
i

2π

+∞
∫

−∞

g(ω) dω

ω − λ
= − i

2π(λ+ iγ)
.

Spectrum. The equation Λ(λ) = 0 can be rewritten as

ε− 2(γ +D) + εfe
−λT = 2λ. (4.48)

The last equation evidently has only one real root for εf ≥ 0, and zero or two real roots for

εf < 0. Non-real increments can again be parameterized by Ω: µ =
1

T
ln

(

−εf sin ΩT

2Ω

)

,

ε = 2(µ + γ + D) − εfe
−µT cos ΩT . In Fig. 4.5 samples of spectrum are presented. The

real increment branch is depicted by a bold curve.

For positive εf the critical perturbation corresponds to λ = 0, whereas for negative

εf the critical perturbations correspond to λ = 0 if εf > εf∗, and to λ = ±iΩ otherwise.

Here εf∗ is εf at which
∂λ

∂ε
= ∞ for the real increment branch at λ = 0, in other words,

λ2/ε2 = ∞ for the steady-state bifurcation.

Stability boundary is presented in Fig. 4.3 (the curve corresponding to ω0 = 0). The

point of non-smoothness is the point of the intersection of the steady-state bifurcation

curve (the left-hand branch) and the Hopf one (the right-hand branch).
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Figure 4.5: Symmetric Lorentz distribution g(ω). Samples of spectrum. The bold curve

depicts the real increment branch.

Steady-state bifurcation. From Eq.(4.48) we have

ε0 = 2(D + γ) − εf . (4.49)

Substituting in (4.45),(4.46) for ω0 = 0, Ω = 0, we obtain

λ2(ε0, 0) =
ε2

2 + εfT
, (4.50)

P (ε0, 0) =

[

(2D + γ)

(

1 +
εfT

2

)]−1

. (4.51)

From Eq.(4.50), εf∗ = −2/T ; monotonous perturbations are critical for εf > εf∗, and a

small-amplitude unstable monotonous solution exists (within the “supercritical” range of

parameters) for εf < εf∗, ε > ε0 defined by Eq.(4.49). From Eq.(4.51) it follows that,

for steady-state bifurcation, P is positive (supercritical bifurcation) so far as monotonous

perturbations are critical.
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Figure 4.6: Symmetric Lorentz distribution g(ω). The Hopf bifurcation. The dependencies

of ℜP and q−1 on εf and T at γ = 1.0, D = 0.5. The additional bold lines depict zeros

of the coefficients plotted.
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Hopf bifurcation. For the Hopf bifurcation the eq. Λ(Ω) = 0 take the form

Ω = −εf
2

sin ΩT , (4.52)

ε0 = 2(γ +D) − εf cos ΩT . (4.53)

The value of Ω providing the minimal critical value ε0 belongs to the interval (0, 2π/T )

[more precisely, (0, π/T ) if εf < 0, (π/T, 2π/T ) otherwise]. As oscillatory perturbations

are critical one for εf < εf∗ = −2/T , only this parameter range is of our interest.

The expression for P (ε, Ω) coincides with the one given by the final form of Eq.4.46,

and

Q(ε0, Ω) =
π
(

ε0 + εfe
iΩT
)2

2 + εfeiΩTT

[

i

2π(Ω + i(γ +D))2(Ω − iD)

+
i(Ω + iD)

4πΩ(Ω − iD)2(Ω + i(γ +D))
+

i

4πΩ(Ω + iD)(Ω − i(γ +D))

+
−i2D

2π(Ω2 +D2)(Ω − iD)(2D + γ)

]

= − i

Ω(Ω − iD)2(2 + εfeiΩTT )

[

3Ω2 + iΩγ −D(γ +D)

+
(Ω + i(γ +D))2

Ω − i(γ +D)

(

iD +
γ − 2D

γ + 2D
Ω

)

]

(4.54)

Sample dependencies are shown in Fig. 4.6 [for εf ∈ (−π/T,−2/T ) where delayed

feedback stabilizes the absolutely nonsynchronous state]. The surfaces do not undergo

considerable deformation under changing γ and T . One can see, that the solution with

|A1| = |B2| is not stable — when the bifurcation is supercritical, the bistability between

two oscillating regimes appears (the same is for all parameter values we considered).

Summarizing, the delayed feedback linearly stabilizes the absolutely nonsynchronous

state of the system for εf ∈ (−π/T, 0). Collective mode appears via a subcritical steady-

state bifurcation for εf < −2/T , and via a Hopf one otherwise. For εf ∈ (−2/T, 0),

the ratio |R|2/(ε − ε0) decreases as |εfT | increases. At small T , the Hopf bifurcation is

subcritical; at large enough T , it is supercritical, and there is bistability between the two

“pure” oscillatory solutions.
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4.3 Purely nonlinear delayed feedback

4.3.1 Fokker-Planck equation and linear stability

of the absolutely nonsynchronous state

In this section we consider a purely delayed feedback in the ensemble of oscillators. We

set εf = 0 in Eqs.(4.5),(4.6) and write the Fokker-Plank equation of the basic model in

the thermodynamical limit T → ∞:

∂ρ

∂t
+

∂

∂ϕ
(ρ v) −D

∂2ρ

∂ϕ2
= 0 , (4.55)

where

v(ω) = ω + ε

2π
∫

0

dϕ′
+∞
∫

−∞

dω′g(ω′) sin(ϕ′ − ϕ)ρ(ω′, ϕ′, t)

+εof |R|2(t− T )|R|(t) sin (2θ(t− T ) − θ(t) − ϕ+ ν) .

(4.56)

Now the problem of the linear stability of the absolutely nonsynchronous state has

the same form as for the previous case at εf = 0. Here oscillatory critical perturbations

are degenerate as soon as ∃ω0: g(ω − ω0) = g(ω0 − ω) (cf. [62]). And it is convenient to

perform a substitution

(ϕi, ν) → (ϕi + ω0t, ν + 2ω0T ) , (4.57)

where generally ω0 =
∫ +∞
−∞ ω g(ω) dω. Similarly to Sec. 4.2, the critical perturbations

[after the substitution (4.57) has been performed] have the following form:

(i) g(ω) 6= g(−ω)

for λ = −iΩ ρ1 = α(ω)ei(ϕ−Ωt) + c.c. — Hopf bifurcation;

(ii) g(ω) = g(−ω)

for λ = 0 ρ1 = α(ω)eiϕ + c.c. — steady-state bifurcation,

for λ = ±iΩ ρ1 = α(ω)ei(ϕ−Ωt) + β(ω)ei(ϕ+Ωt) + c.c. — Hopf bifurcation (after Craw-

ford).

4.3.2 Weakly nonlinear analysis

Let us consider now the Hopf bifurcation for g(ω) = g(−ω). To obtain the case

g(ω) 6= g(−ω) from the one considered, it is enough to set the amplitude of the second

perturbation β(ω) = 0. The steady-state bifurcation for g(ω) = g(−ω) can be obtained

from the last case by setting Ω = 0.

Considering the critical perturbation

ρ1 = α1(ω, t2, t4, ...)e
i(ϕ−Ωt0) + β1(ω, t2, t4, ...)e

i(ϕ+Ωt0) + c.c. ,
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we may write down from Eq.(4.55) in the order κ2 (there are no secular terms in this

order):

∂ρ2

∂t0
+ ρ0

∂v2

∂ϕ
+

∂

∂ϕ
(ρ1v1) + v0

∂ρ2

∂ϕ
−D

∂2ρ2

∂ϕ2
= 0 , (4.58)

where

v1 = iπε0A1e
i(ϕ−Ωt0) + iπε0B1e

i(ϕ+Ωt0) + c.c. . (4.59)

Now from Eq.(4.12), α1(ω) =
ε0A1

2(D + i(ω − Ω))
, and β1(ω) =

ε0B1

2(D + i(ω + Ω))
. There-

fore,

∂

∂ϕ
(ρ1v1) = −πε2

0

[

A2
1e
i2(ϕ−Ωt0)

D + i(ω − Ω)

+

(

1

D + i(ω − Ω)
+

1

D + i(ω + Ω)

)

A1B1e
i2ϕ

+
B2

1e
i2(ϕ+Ωt0)

D + i(ω + Ω)
+ c.c.

]

.

Searching for ρ2 in the form

ρ2 = η(−1)(ω, t2, t4, ...)e
i2(ϕ−Ωt0) + η(0)(ω, t2, t4, ...)e

i2ϕ

+η(1)(ω, t2, t4, ...)e
i2(ϕ+Ωt0) + c.c. ,

we obtain

(i2lΩ + i2ω + 4D)η(l)(ω) = −Ω

π

Ω−1π
∫

0

e−i2lΩt0
∂

∂ϕ
(ρ1v1) dt0 .

So,

η(±1)(ω) =
πε2

0

2(D + i(ω ± Ω))(2D + i(ω ± Ω))







B2
1 , l = +1,

A2
1, l = −1;

(4.60)

η(0)(ω) =
πε2

0

2(2D + iω)

(

1

D + i(ω − Ω)
+

1

D + i(ω + Ω)

)

A1B1. (4.61)

In the order κ3 of Eq.(4.55), secular terms appear:

∂ρ3

∂t
+
∂ρ1

∂t2
+ ρ0

∂v3

∂ϕ
+

∂

∂ϕ
(ρ1v2 + ρ2v1) + v0

∂ρ3

∂ϕ
−D

∂2ρ3

∂ϕ2
= 0 , (4.62)
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where v2 = 0 and

v3 = v1(A1, B1 → A3, B3) + v1(ε0 → ε2)

+εof |R|2(t− T )|R|(t) sin (2θ(t− T ) − θ(t) − ϕ+ ν)

= v1(A1, B1 → A3, B3) + v1(ε0 → ε2)

+εofℑ
(

R2(t− T )R∗(t)eν−ϕ
)

.

As R = 2πA∗
1e
iΩt + 2πB∗

1e
−iΩt,

R2(t− T )R∗(t) = 8π3(A∗2
1 e

i2Ω(t−T ) + 2A∗
1B

∗
1 +B∗2

1 e
−i2Ω(t−T ))(A1e

−iΩt +B1e
iΩt)

= 8π3
(

e−i2ΩT |A1|2A∗
1e
iΩt + 2|A1|2B∗

1e
−iΩt

+2|B1|2A∗
1e
iΩt + |B1|2B∗

1e
−iΩt + . . .

)

,

where “. . . ” again denotes certainly non-secular terms. Therefore

v3 = · · · − 8π3εofℑ
[

(2|B1|2 + |A1|2ei2ΩT )A1e
i(ϕ−Ωt−ν)

+(2|A1|2 + |B1|2e−i2ΩT )B1e
i(ϕ+Ωt−ν)] ,

and

ρ0
∂v3

∂ϕ
= · · · − 4π2εofℜ

[

(2|B1|2 + |A1|2ei2ΩT )A1e
i(ϕ−Ωt−ν)

+(2|A1|2 + |B1|2e−i2ΩT )B1e
i(ϕ+Ωt−ν)] .

The term
∂

∂ϕ
(ρ2v1) can be taken from Sec. 4.2.4: its contribution to P (ε, Ω) is given by the

formula (4.27) with εf = 0, and its contribution to Q(ε, Ω) is given by the formula (4.39)

with εf = 0. Summing up these results, we find that Eqs.(4.37),(4.38) are relevant here,

and

λ2(ε, Ω) =
ε2

iπε2G′(Ω + iD)
, (4.63)

P (ε, Ω) =
π2ε2

D

[

1 +
G(Ω + iD) −G(Ω + 2iD)

iDG′(Ω + iD)

]

+
i4πεofe

i(2ΩT−ν)

εG′(Ω + iD)
, (4.64)

Q(ε, Ω) =
π2ε2

iG′(Ω + iD)

[

G′(Ω + iD)

Ω − iD
− (Ω + iD)G(Ω + iD)

2Ω(Ω − iD)2

+
G(−Ω + iD)

2Ω(Ω + iD)
+

i2DG(i2D)

(Ω2 +D2)(Ω − iD)

]

+
i8πεofe

−iν

εG′(Ω + iD)
.

(4.65)
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The probability density is

ρ(ω, ϕ, t) =
1

2π

[

1 +
πε0A1(t)

D + i(ω − Ω)
ei(ϕ−Ωt) + c.c.

+
πε0B1(t)

D + i(ω + Ω)
ei(ϕ+Ωt) + c.c.

+
π2ε2

0A
2
1(t)

(D + i(ω − Ω))(2D + i(ω − Ω))
ei2(ϕ−Ωt) + c.c.

+
2π2ε2

0(D + iω)A1(t)B1(t)

(2D + iω)(D + i(ω − Ω))(D + i(ω + Ω))
ei2ϕ + c.c.

+
π2ε2

0B
2
1(t)

(D + i(ω + Ω))(2D + i(ω + Ω))
ei2(ϕ+Ωt) + c.c.+O(A3

1 +B3
1)

]

,(4.66)

and the order parameter

R(t) = 2π
(

A∗
1e
iΩt +B∗

1e
−iΩt)+O(A3

1 +B3
1) .

4.3.3 Example: Lorentz distribution g(ω)

For the symmetric Lorentz distribution (4.47), G(λ) = − i

2π(λ+ iγ)
(cf. Sec. 4.2.6).

Spectrum. The characteristic equation Λ(λ) = 0 takes the form [Eq.(4.48) with εf = 0]

ε− 2(γ +D) = 2λ, (4.67)

and has only one real root. So, the only possible bifurcation of the absolutely nonsyn-

chronous state is a steady-state one at ε0 = 2(γ +D) (cf. [62]).

Steady-state bifurcation. Omitting B1 and setting Ω = 0 successively, we find

λ2(ε0, 0) =
ε2

2
, (4.68)

P (ε0, 0) =
1

2D + γ
− 4π2εofe

−iν(γ +D) . (4.69)

Summarizing: In the case of Lorentz distribution g(ω) the delayed feedback considered

diminish or enhance the amplitude of the establishing collective mode depending on the

value of ν:

|A1|2 =
λ2

ℜP =
ε2

2(2D + γ)−1 − 8π2εof (γ +D) cos ν
. (4.70)
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Moreover, for strong enough feedback with cos ν > 0, ℜP can become negative, what

means a subcritical Kuramoto transition. Also, a nonlinear shift of the rotation frequency

of R in the counterclockwise direction appears

ω2 = ℑ(P ) |A1|2 =
ε2ℑ(P )

2ℜ(P )
=
ε2

2

tan ν

[4π2εof (2D − γ)(D + γ) cos ν]−1 − 1
. (4.71)

4.4 Multimodal distributions g(ω)

Considering general cases in the two last sections, we paid considerable attention to the

Hopf bifurcations with a 4-d central manifold. But considering examples of symmetric

distribution g(ω), we did not faced such a bifurcation of the absolutely nonsynchronous

state with the example used in Sec. 4.3.3, and found periodic oscillatory collective modes

to be the only non-stationary collective modes, which can be excited, with the example

used in Sec. 4.2.6. Stable regimes with modulated oscillations of the order parameter

appear (for instance) for bimodal distributions (see [62]). But such kind of distributions

is out of scope of this work.

4.5 Summary

We have developed a weakly nonlinear analysis of the effect of delayed feedback on the

Kuramoto transition. The amplitude equations derived and their coefficients found are

the main result of the current chapter as they give a full description of the effect of the

delayed global feedback on the synchronization transition in the ensemble of oscillators:

Delayed

feedback

Distribution of natural

frequencies

Bifurcation Amplitude

equations

Coefficients of the ampli-

tude equations

Linear g(ω) 6= g(−ω) Hopf (4.25) (4.26), (4.27)

feedback
g(ω) = g(−ω) Steady-state (4.30) (4.26), (4.27) with Ω = 0

g(ω) = g(−ω) Hopf (4.37), (4.38) (4.26), (4.27), (4.39)

Nonlinear g(〈ω〉+∆ω) 6= g(〈ω〉−∆ω) Hopf (4.25) (4.63), (4.64)

feedback
g(〈ω〉+∆ω) = g(〈ω〉−∆ω) Steady-state (4.25) (4.63), (4.64) with Ω = 0

g(〈ω〉+∆ω) = g(〈ω〉−∆ω) Hopf (4.37), (4.38) (4.63), (4.64), (4.65)



Conclusion

In this thesis we have addressed different aspects of synchronization of noisy oscillators.

We have started with Chapter 2 where we consider effects of delayed feedback on the

coherence of oscillations of noisy oscillators and deterministic chaotic systems (to some

extend, the former one may be considered as the simplest approximation to the latter).

Here coherence is quantified by virtue of the phase diffusion constant and qualitatively

defines predisposition of oscillators to synchronization. In Chapter 3 the possible construc-

tive role of noise in synchronization has been considered. Specifically, the phenomenon

of synchronization of identical (or slightly different) oscillators by common noise ha been

addressed. Additionally, in order to consider the “reliability” property of neurons [39],

the theory developed has been extended to the case of neuron-like oscillators. And finally,

in Chapter 4, we have turned our attention to the Kuramoto transition in an ensemble

of globally coupled oscillators in presence of additional time-delayed coupling terms. We

have developed a weakly nonlinear analysis of this transition.

In the following, we discuss the main results of the work and open questions.

Coherence of oscillators with delayed feedback

We have demonstrated the effect of the coherence control by means of the delayed feed-

back [2, 3]. The control is possible for noisy limit cycles oscillators as well as for chaot-

ic systems, admitting introducing the phase-like variable [1]. Noteworthy, formally the

equations describing the control are the same as in the Pyragas method of chaos control.

However, in our case the delay time τ is not necessarily equal to the period of some un-

stable cycle, embedded in chaos. Moreover, we consider the situation when the feedback

is so small that no stabilization of periodic orbits occurs. The main difference to the

Pyragas approach is that we do not intend to suppress chaos, but to control uniformity –

coherence – of phase growth in a chaotic system.

As a quantifier of coherence we have used the phase diffusion constant. (The relation

of this constant to the predisposition of oscillators to synchronization has been also il-

lustrated with the Lorenz system entrained by periodical driving: entrainment becomes

69
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more effective as the diffusion constant decreases.) The effect of the delayed feedback

on phase diffusion appears to be especially pronounced for deterministic chaotic systems,

e.g., the diffusion constant of the Lorenz system may be suppressed by factor 30 without

any visible change in the topology of the strange attractor and with quite small variations

of the Lyapunov exponent.

Next, we have developed a statistical theory of phase diffusion under the influence of

a delayed feedback. Using the Gaussian approximation, we have derived a closed system

of equations for the diffusion constant and the mean frequency for the case of short-time

correlations of the instantaneous frequency. The theory works if the feedback is not very

strong, or if the noise is strong enough to suppress multistability in mean frequency.

In principle, an opposite situation, where effects of multistability are dominant, gives

some opportunities for an analytical investigation. Indeed, there quite rare events of

spontaneous switchings between different phase growth rates take place and determine

the phase diffusion process. But this question will be considered elsewhere.

Another possible direction of the future development of this work is aimed at detailed

understanding of the particular features of the control of chaotic systems. Indeed, in this

case our theory provide only qualitative explanation of the effect. This limitation of the

theory is related to the statistical properties of the effective noise in a chaotic system

that definitely cannot be considered as weak or Gaussian. (We remind that effective noise

here describes the effect of irregular, although deterministic, amplitudes, on the phase

dynamics.) Particularly, it is known that for the Lorenz system this noise is not sym-

metric and possesses nontrivial correlation properties [26, 27]. Our preliminary numerical

investigations show that the feedback significantly affects these correlations.

The last (but not least) open question we would like to note here is the one of a

multiple delay feedback control of coherence (afore the chaos suppression [14, 15, 16, 17]).

Here especially the regions of superharmonic resonances: nτ + m1τ1 + m2τ2 = 0, where

n, m1,2 are integer (the effect is expected to be most pronounced for |n| = |m1,2| = 1),

τ is the average return time of chaotic oscillations, and τ1,2 are the delay times, are of

interest.

Synchronization of oscillators by common noise

We have considered synchronization of oscillators (uncoupled) by common noise (white

Gaussian or telegraph). The effect of synchronization is quantified by virtue of the Lya-

punov exponent (LE): identical (or slightly different) oscillators are synchronized by com-

mon noisy driving when the LE is negative, and desynchronized otherwise. For limit cycle

oscillators the LE has been proven to be negative for weak noise: limε→0 λ/ε
2 = const < 0
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(ε is the noise amplitude) [4, 5]. For this purpose the approach of the phase approximation

has been used.

While for a negative LE, identical oscillators are perfectly synchronous under identical

driving, nonidentities distort perfect synchrony. For limit cycle oscillators driven by weak

noise the role of nonidentities either (i) in oscillators or (ii) in noise has been studied

analytically [6]. This study has reviled a crucial role of finite deviations between states

of subsystems even for arbitrary small nonidentities and strongly intermittent character

of synchrony.

The analytical results obtained within the framework of the phase approximation has

been underpinned by the results of numerical simulation for the Van der Pol–Duffing oscil-

lator. This simulation also allows to consider the effect of finite amplitude noise when no

analytical investigation is possible. In some systems under certain circumstances, moder-

ate noise appears to be able to lead to desynchronization: a positive LE is observed [6].

The results found for limit cycle oscillators appear to be general for different kinds of

noise, because they have been demonstrated to be similar even for such different noises

as white Gaussian and telegraph ones (compare [6] and [7]).

In order to study the “reliability” property of neurons [39] which, on the one hand,

is directly related to the phenomena we have considered, and, on the other hand, appear

to be important in neurosciences, we have extended our investigation to the neuron-

like systems which are not always limit cycle ones. Doing so, we have shown, within

the framework of the noise-driven FitzHugh–Nagumo model, that identical neurons can

respond antireliably to the noisy evocation. Antireliability, which manifests itself as a non-

correlation of spikes, is observed when the neurons are close to the transition excitability–

oscillations, where the dynamics is mostly sensitive to perturbations. Quantitatively,

the antireliability is characterized as a state with a positive largest LE. The latter is

purely noise-induced, as the noiseless FitzHugh–Nagumo system does not posses even

a transient chaos. We have explained the transition to the antireliability within the

approximate analytical theory for small noise-induced deviations from the deterministic

trajectory, which goes beyond the one-dimensional phase approximation. This is crucial,

because only due to the evocation of transversal to trajectory perturbation, the stretchings

and foldings that lead to chaos, can occur. The final formulae obtained give an explicit

dependence of the LE on physical properties of the neuron, such as nonisochronicity and

sensitivity, thus guiding an experimental search for the effect. The theoretical expression

for the random multiplier of phase deviations explains also the intermittent character of

the antireliable state: during the epochs where the multiplier is close to zero, a temporarily

synchronous firing of neurons is observed.

In the course of this study the role of a non-localized distribution of the local Lyapunov

exponents (LLE, “local” means calculated over finite time intervals) has been repeatedly
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exhibiting. Indeed, even when the (global) LE is positive, during the epoches of a nega-

tive LLE one observes relatively synchronous behavior of subsystems, and, on the other

hand, even when the (global) LE is negative, during the epoches of a positive LLE one

observers, in real situations, nonsynchronous behavior of subsystems due to extreme sen-

sitivity (during these epoches) of subsystems to intrinsic noise. Remarkably, in systems

with noise-induced bursting the LLE may be quite adequately treated as a nonsymmet-

ric telegraph noise. This gives opportunities for a systematic investigation of the effects

mentioned in this paragraph, underpinned by an analytical description. But this subject

goes beyond the framework of the present thesis.

Effects of delayed feedback on Kuramoto

transition

We have developed a weakly nonlinear theory of the Kuramoto transition in an ensemble

of globally coupled oscillators in presence of additional time-delayed coupling terms. This

theory allows us to determine the order parameter and the system’s behavior near the

transition point.

We have considered a linear delayed feedback and a purely nonlinear one. For both of

them we treat the general case of a nonsymmetric distribution of natural frequencies when

generally only a Hopf bifurcation is possible, and the case of a symmetric distribution of

natural frequencies when generally a steady-state and a Hopf (according to the Crawford’s

terminology [62]) bifurcations are possible. For all these cases the transition point has

been determined as well as the behavior of the order parameter in vicinity of this point.

Noteworthy, a linear feedback not only controls the transition point, but effectively

changes the nonlinear terms near the transition. A purely nonlinear delayed coupling

does not effect the transition point, but can reduce or enhance the amplitude of collective

oscillations.
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