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1 Introduction

An important aspect of voluntary actions is the timing of elementary movement se-
quences composing it. The problem of timing was investigated by Stevens already in
[1886] through an experiment of synchronization with a metronome and continuation
of tapping (i.e. performance of the rhythm without acoustic reference). The control
of periodic single-handed movements synchronously to a metronome is theoretically
described by linear stochastic processes [Vorberg & Wing 1996].

The timing of movements involving bimanual coordination is investigated using sim-
ple rhythm tasks [Deutsch 1983, Jagacinski et al. 1988, Summers et al. 1993,
Krampe et al. 1999]. The synchronization with a metronome is described with the
help of a first order autoregressive process [Box & Jenkins 1976].

The production of polyrhythm is an ideal task for the investigation of bimanual coor-
dination. In producing a polyrhythm, the hands carry out two different isochronous
rhythms, which are in a non-integer relation (for example 3:2, 4:3, 7:5). The diffi-
culty of this task lies in the non—-isochrony of the resulting polyrhythm. This leads
to strong interaction between the two hands [Krampe et al. 1999] and makes this
task suited for the investigation of bimanual coordination. The transition from com-
plicated to easier polyrhythms induced by increasing tempo [Peper et al. 1995] can
be modeled using coupled nonlinear oscillators [Haken et al. 1996].

Here, polyrhythmic time series produced by four subjects are analyzed. The tempo
of the performance is the control parameter which is externally varied. This analysis
extends previous investigations of Krampe et al. [1999] and Engbert et al. [1997],
who detected phase transitions in a shorter polyrhythm task (12 cycles) produced
on an electric keyboard. In the following, recordings of trials composed of 61 cycles
are analyzed in order to check the occurrence of transitions in longer trials. Further-
more, the stationarity of the data will be tested. This will lead to the identification
of the control parameter of the dynamical model which describes the qualitative
transitions, proposed by Engbert et al. [1997].

In Sec. 2 the experiment will be explained, while the data will be described in
Sec. 3. In Sec. 4 the method of symbolic dynamics is introduced and applied to the
data. Order—disorder transitions induced by the externally varied tempo are clearly
revealed in the symbol patterns. The transitions detected will be quantitatively
characterized using the Shannon entropy, in Sec. 5. In Sec. 6, the stationarity of
the cycle durations will be tested. Due to the observation of phase transitions in
fluctuating data, interesting considerations about the control parameter of the model
can be derived (Sec. 7). A representation of the data using relative phases will be
proposed in Sec. 8. Finally, in Sec. 9, the results obtained will be discussed.
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Figure 1: Scheme of a 4:3 polyrhythm with cycle duration of 1200 ms. Right hand and
left hand perform 4 and 3 isochronous intervals R and L, respectively. The indices on the
bottom indicate the position within the cycle. The latter is indicated by the index k. Each
cycle starts and terminates with the simultaneous strokes of both hands. The polyrhythmic
time series produced by the two rhythms consist of 6 intervals I* of different durations.
Experimentally a small asynchrony I¥ between the two simultaneous strokes at the end (or
at the beginning) of each cycle is additionally recorded.

2 Experiment

A polyrhythmic task consists of two different isochronous rhythms, simultaneously
performed by the hands. The two rhythms are in a non—integer relation. In Fig. 1
the scheme of a 4:3 polyrhythm with cycle duration 7' = 1200 ms is shown. In each
cycle k (k = 1,...,61), the right hand produces 4 intervals R, i = 1,2, 3, 4, while the
left hand produces 3 intervals L";-j, 7 =1,2,3. The cycle starts with two simultaneous
strokes. The difficulty of the task is due to the combination of the two rhythms. In
fact, in the resulting rhythm the successive strokes are not equidistant, so that the
produced polyrhythm is not isochronous.

Polyrhythmic time series produced by four subjects are investigated. The exper-
iment was carried out on electric drums connected with a Macintosh PowerPC
computer by means of a MIDI-interface. Using this equipment, the data could
be recorded with a precision of 1 ms. The experiment is based on the continuation
paradigm. At the beginning of each trial, the subject listens to the polyrhythm
generated by the computer as long as wished. After that, he or she starts drumming
while the computer keeps on producing the polyrhythm for one more cycle before
it stops. The data were recorded in three sessions. Each subject performed the



3:4 polyrhythm starting with initially given cycle duration 7' which ranged from
1100 ms to 2100 ms, varied in steps of 100 ms. For each tempo, about 6 trials, that
lasted for 61 cycles, were carried out. At the end of each trial, detailed information
about the performance was displayed on the computer screen: the durations of the
produced R and L intervals, the averaged cycle duration and the related standard
deviation. This way, the subject could receive a feedback about the quality of his or
her performance.

3 Data

A time series consists of data recorded during a single trial (61 cycles). Each cycle
is composed of 4 intervals produced by the right hand and 3 intervals produced by
the left hand, so that the length of the related time series is 244 and 183 intervals,
respectively. The data recorded during a trial can be represented separately through
two interval sequences corresponding to the intervals produced by the hands.

right hand (244 values): Ri, R}, R}, R}, R?, ... R§!, R§', (1)
left hand (183 values): Li, L, L L2 ... L§', L§'. (2)

An example of the raw data is shown in Fig. 2.

4 Symbolic dynamics

Generally, temporal dynamics of deterministic system can be analyzed using a
phase space representation. Based on the concept of embedding, the phase space
can be reconstructed from experimental data [Takens 1981, Packard et al. 1980,
Sauer et al. 1991]. Yet, for physiological systems, due to nonstationarity and noise
(intrinsic features of the data produced by many living systems), the related methods
are often not suitable [Schreiber & Kantz 1995].

The methods of symbolic dynamics have applications in many fields. In the last years
they have proved to be useful also for the analysis of complex systems in various
disciplines as geophysics [Witt et al. 1994], astrophysics [Hempelmann & Kurths
1990, Schwarz et al. 1993] and medicine [Kurths et al. 1995, Schiek et al. 1997].

4.1 Symbolic dynamics as a tool for data analysis

Many physical phenomena, continuous in time and space, can be understood by
using a formulation in the real or complex field. Yet, a common approach consist in
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Figure 2: Two examples of R and L intervals. The initially given tempo is T' = 1900 ms,
and the cycle duration averaged over the whole trial is (I') = 2033 ms. Both time series
show fluctuations and periodic structure. The latter is due to the rhythm recurring within
each cycle.

discretizing the data in time, using techniques as for example the Poincaré map or
the stroboscopic representation.

Many systems continuous in space can be treated in the same way as discrete sys-
tems. Once one has chosen a suitable Poincaré surface, a coarse-graining of the
phase space can be obtained using a suitable division into cells. Each cell is la-
beled by a symbol, so that a sequence of symbols is associated to a trajectory
in the phase space. This way, a large amount of information is discarded, but
some of the robust underlying dynamical properties of the system may be kept
[Hao 1989, Hao 1991, Badii & Politi 1997].

In the following, the set X where the motion takes place will be identified with the
phase space. Then, a partition B = (By, ..., By_1) of the phase space is introduced,
which is formed by b subsets. The set of the labels of the partition’s subsets, A =
{0,1,...,b — 1}, is called an alphabet. The partition is defined by the conditions:

BiNB, =0 (disjunction) (3)

for each j,k =0,1,2,...,b — 1 with j # k and
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b—1
U B, =X (completeness) (4)
i=0

Let us consider a system which evolves according to a map

X; = F(Xi_l) (5)

along an orbit O={xg,x1,...,xy} in the phase space X. s; € A denotes the index
(or symbol) of the subset, visited at the time i. The sequence {sg, s1, ..., sy} can be
assigned to the trajectory of the system, such that x; € B,,,¢ =0, ..., N. To extract
the relevant features of the dynamics, a careful choice of the partition B is necessary.
If an infinite sequence of {s1, s2, $3...} is such that the initial point x¢ can be uniquely
determined by the sequence and vice versa, the partition B is called a “generating
partition”. Such a partition exists only in special cases [Beck & Schlogl 1993].

Due to the dynamics, some symbol sequences occur more frequently than others.
One can assign to each sequence S = {sq,..., sy} a probability p(so,...,sy) that it
is observed. The probability distribution obtained in this way defines a stochastic
process [van Kampen 1981], whose features depend on the chosen partition as well
as on the underlying dynamics. The probability p(sg, ..., s5) can be represented by
means of the conditioned probability p(sy|so, ..., SnN—1), denoting the probability of
the event sy, provided that the sequence (sg, ..., sy—1) has occurred:

P(80y s SN) = D(SN[S0y +eey SN—1)P(S05 ooy SN—1)- (6)

The stochastic process related to the probability p(sg,...,sn) is called a Markov
chain if

p(SN|80,...,SN_1) :p(8N|SN_1). (7)

A topological Markov chain is defined by the following property: the transition
probability p(sn|so, ..., Sy—1) is zero, if and only if either it is impossible to reach
the cell iy from the cell iy_1, or the sequence ig,%1,...,2xy_1 is forbidden.

p(sn|sgy -y Sn—1) =0 (8)
if and only if p(sy|sny—1) =0 or p(sny_1|s0,..,snN—2) =0.

The partition that makes the corresponding stochastic process a topological Markov
chain is called a Markov partition.

Generally, it cannot be shown whether a Markov partition exists. Even if it exists,
there is no constructive method to find it. One can choose between two different
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strategies: choose a complicated partition in order to get symbol sequences which
correspond to simple stochastic processes, or apply straightforward transformations
giving symbol sequences with complicated statistical properties [Beck & Schlogl 1993].
In the following, robust characteristics of the dynamics will be extracted from the
data by using simple symbolic transformations.

Symbolic dynamics has turned out to be suitable also for the analysis of short
polyrhythmic data (12 cycles) [Engbert et al. 1997]. Polyrhythms are sequences of
intervals, i.e. discrete time series. They will be shrewdly transformed into symbols
in order to extract the dynamical properties of the underlying processes controlling
the rhythmic structure within the cycles.

4.2 2-symbols coding

In order to transform the data into symbol sequences, a straightforward coding rule
could be used: to each interval, a ‘0’ or a ‘1’ is assigned if its duration is smaller
or larger than prescribed (% for the right hand and % for left hand). T is the
initially given cycle duration. Due to the drift of the cycle duration along the tri-
als, through this symbolic transformation, the information regarding the dynamics
within the single cycles would be lost. In fact, if the instantaneous realized tempo
increases (or decreases) with respect to the initially given tempo, the most of the
R and L intervals would be shorter (or longer) than their prescribed value. In this
way, the symbol sequences would be mainly composed of a unique symbol, so that
the rhythmic structure within a cycle could not be kept by the symbol pattern.
The same would happen if the mean realized cycle duration (T') would be chosen
as reference interval. For these reasons, the intervals R and L are compared with
the instantaneous realized cycle duration and transformed into relative deviations
[Engbert 1998]. The instantaneous durations t% and t% ! of the k-th cycle, cor-
responding to the right and left hand respectively, are computed by summing the
subintervals R¥ and L";-j within the k—th cycle:

right hand: th =51  RF (9)
left hand: th =3, Lk, (10)

Then, the relative deviations rf and lf are computed as follows:

ko 4k
right hand: rk = 4R —tp

7

, i=1,2,3,4; (11)
tr

Due to the small asynchrony I7 (see caption of Fig. 2) t% £ ¢&.
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L 3LE 4k .
left hand: Iy = —tk; , j=1,2,3. (12)
L

Such a transformation cannot reveal the overall accuracy of the performance; it
rather focuses on the dynamics of the rhythmic structure within the cycles. By
means of the transformation defined in Eqs. (11-12), it is possible to quantify the
deviation of the produced intervals from the prescribed rhythmic pattern. In this
sense, the relative deviations assess locally the accuracy of the performance.

Now, a 2-symbol transformation can be applied to the sequences of the relative
deviations according to the following rule:

7

0, if rForif <0
= ’ J
Sn { 1, otherwise ’ (13)

where n = 4(k — 1) +14 = 1, 2,3, ..., 244 (right hand) and n = 3(k — 1) +j =
1,2, 3, ..., 183 (left hand).

Since the threshold in the conditional part of Eq. (13) is constant, this transformation
would be static. Nevertheless, in the transformation of Egs. (11-12), the value of the
instantaneous cycle duration, (i.e. the information related to the neighbor intervals)
is used. Therefore, the illustrated symbolic transformation is not really static.

The transformed relative deviations can be visualized as follows: white is assigned
to the symbol ‘1’ (“too long” interval) and black to the symbol ‘0’ (“too short”
interval). This way, for each time series one obtains a sequence of 244 symbols for
the right hand and a sequence of 183 symbols for the left hand.

In experimental psychology, it turns out to be difficult to keep the conditions con-
stant during the experiment. In the 3:4 polyrhythm experiment, the initial tempo
produced by the computer at the beginning of each trial is the parameter which is
externally manipulated. During the synchronization phase, subjects listen to the
rhythm produced by the computer as long as they want. During the continuation
task (performance of the polyrhythm without any reference), they inevitably deviate
from the initially given tempo, so that the realized tempo neither equals the initial
one nor it is constant. Engbert [1997], showed that the regularity of patterns where
the trials are ordered according the mean realized tempo is higher than if they were
sorted with respect to the initially given tempo. The symbol patterns obtained in
these two ways are, however, consistent. For these reasons, in the graphic represen-
tations of the symbol sequences, they have not been sorted on the x axes according
to the initial given tempo T but with respect to the realized tempo averaged over
the whole trial < T >. In the following, the mean realized tempi will be indicated
on the top of the patterns using a ms scale.

The patterns obtained applying the symbol transformation of Eq. 13 on the data
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produced by the four subjects are shown in (a) in Figs. 3-6 (the plots shown in
(b) illustrate results which will be introduced in Sec. 5). Irregularity and order in
the pattern correspond to different strategies used in performing the task. If the
subject is able to perform the task accurately, the R and L intervals oscillate by
chance around the prescribed value. In this case, one observes irregular alternation
of white and black symbols in the pattern. Vice versa, a regular or periodic symbol
pattern (i.e. a pattern presenting recurrent sub-strings) corresponds to a systematic
error. Therefore, regularity in the symbol pattern has to be interpreted as a poor
performance and irregularity as a good one.

In Fig. 3 (a) the symbol patterns of the R and L intervals produced by subject 101
are shown. Order—disorder transitions occur in both patterns for increasing values
of the control parameter. A first transition occurs around (T") ~ 1300 ms for both
hands. The transition in the pattern of the right hand is sharper than the transition
in the pattern of the left hand. For very slow tempi ((T) > 2000 ms) a periodic
structure arises again.

One could form the hypothesis that poor performances, that is the occurrence of
systematic errors in drumming, is simply due to biomechanical constraints. For ex-
ample, in very fast trials, the fastest tempo a subject is motorically able to drum
correctly could be exceeded. If this happens, one should observe periodicity in the
symbol patterns only for faster tempi (short realized cycle duration). On the con-
trary, periodic structures occur also in an intermediate range of tempi. An example
of this behavior is given by subject 102 whose 2-symbol patterns are represented in
Fig. 4 (a). The pattern related to the left hand shows a disorder—order transition for
(T'y ~ 1400 ms. For slower tempi, the regularity of the pattern reveals a systematic
error in the rhythm. This fact excludes the possibility that regular patterns (poor
performances) are solely due to motoric restrictions. The pattern of the right hand
does not show any clear transition.

The symbol patterns of subject 103, shown in Fig. 5 (a), is similar to the patterns
of subject 101. The rhythmic structure of both hands undergoes a transition from
a regular (fast tempi) to an irregular (slower tempi) pattern.

In Fig. 6 the data produced by subject 104 are shown. No transitions are visible in
dependence on the realized tempo. A periodic structure can be recognized overall in
both patterns. In Sec. 8, the graphic representation of the relative phases will focus
on dynamical characteristics of bimanual coordination of this subject which cannot
be revealed by the symbolic representation of the R and L intervals

The finding of qualitative transitions in the symbol patterns extends one of the main
results of the previous study [Engbert et al. 1997], where the same polyrhythmic
task was performed on a piano over 12 cycles. The stability of the rhythmic structure
along the trial (e.g. the vertical profile of the transitions) demonstrates that the
observed transitions exclusively depend on the realized tempo.
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Similarly to the 2-symbol representation of the visually delayed tracking data, the
correspondence between accuracy of the performance and disorder in the symbol
pattern, can be proved using a refinement in the coding rule. In fact, like a good
performance, also a time series with irregular but large oscillations around the re-
quired values, i.e. a very poor performance, would produce an irregular pattern.
This ambiguity can be solved with the help of a 3—symbols coding.

4.3 3—symbols coding

In order to visualize the accuracy of the performances of the task, a third symbol is
introduced in the symbol transformation of the relative deviations of Egs. (13): ‘2’
is assigned to relative deviations whose absolute value is smaller than 5%:

0, if ¥ or l’i < —0.05
={ 1, if rforlf  >005 (14)
2, if  |rfor |l <0.05

where againn = 4(k—1)+i =1, 2,3, ..., 244 for the right handor n = 3(k—1)+j =
1, 2, 3, ..., 183 for the left hand. ‘2’ in the 3—symbols patterns corresponds to grey.
As before, to ‘0’ and ‘1’ black and white are assigned, respectively. The three—
symbols pattern of subject 101 (the same as in Fig. 3 (a)) is shown in Fig. 7. The
correspondence between the disordered regions of the 2—symbols patterns and the
frequency of grey symbols in the 3—symbols patterns is evident. Thus, the irregular
structure observed for small values of the control parameter corresponds to a more
accurate performance of the task. The 3—symbol patterns produced by subject 102
are shown in Fig. 8. The disordered structure revealed for fast tempi in Fig. 4
(a) corresponds to a more accurate performance. The relation between disordered
structures in two—symbols patterns and accuracy has previously been demonstrated
for the 12—cycles polyrhythmic data [Engbert et al. 1997], too.

5 Measures of complexity

The Shannon entropy has proved to be appropriate for the characterization of phase
transitions in polyrhythm [Engbert et al. 1997]. In the next section, the probability
distribution of words composing the symbol sequences obtained by means of the
Eq. (13) will be assessed. Then, the transitions between different regimes will be
quantitatively distinguished using the Shannon entropy [Shannon & Weaver 1949].
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rately at fast tempi (T' < 1490 ms). This shows that a poor performance cannot be solely
due to motoric constraints.
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5.1 Word statistics

In order to obtain the probability distribution of words in the symbol patterns, the
frequency of all possible words of a certain fixed length are counted. The possible
combinations one can get with 2 symbols are 2* = 16 words of length 4 (right hand)
and 23 = 8 words of length 3 (left hand). The design of the task leads to a “natural”
word length: 4 symbols for the right hand and 3 for the left hand. Due to the
transformation of Eqgs. (11-12), words composed exclusively of ‘0’ or ‘1’ (all intervals
within a cycle are too long or too short) cannot occur, since from the definition of
the relative deviations it follows that:

ZT?ZZZ"?Z(L k=1,..,61. (15)

Consequently, the possible words occurring in the 2-symbol sequences are Nt =
2% —2 = 14 for the right hand and N = 23 —2 = 6 for the left hand. The frequency
Py of a given word w at a certain realized tempo is computed by counting how many
times N/“" this word occurs in the sequence and dividing by N (number of words
contained in a sequence): pfr = N, /N. Since the length of the words is 4 (right
hand) and 3 (left hand) respectively, the number of (non overlapping) words in a

sequence is equal to the number of cycles.

The probability distribution of the words is estimated using the relative frequency
pw- About the confidence of such evaluation see [Grassberger 1990]. In general,
given a sequence coded using an alphabet of o symbols, o is the number of possible
words of length [ one can find in the sequence. The exponential increasing of this
number with [ causes a restriction in the choice of [ in the case of limited sequences
(it should not happen, for example, that N/I ~ o, where N is the length of the
sequence) [Herzel et al. 1994, Ebeling et al. 1995].

5.2 Shannon entropy

Different probability distributions p = (p1,pe,...pn, ) in the symbol sequences are
assessed using the Shannon entropy [Shannon & Weaver 1949]:

NTH
S(p) = _czpwlnpw' (16)

w=1
S(p) is normalized with respect to the number of possible words by the coefficient
¢ =1/In N,,. The Shannon entropy vanishes for a —shaped distribution consisting of
one word wy (Pw = wuwy,), and has its maximal value (1) for the uniform distribution

(pw = 1/Nw)'
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The Shannon entropy of the word distributions related to the symbol patterns of
the four subjects is shown in Figs. 3-6 in (b). The transitions visually revealed
in the symbol patterns (Figs. 3-6 in (a)) are well described by the curve of the
Shannon entropy: the word distribution characterizing irregular regions corresponds
to a large value of the Shannon entropy. Vice versa, small values of the Shannon
entropy correspond to regular structures. The Shannon entropy is actually ideal to
assess the chance in a distribution. Therefore it suites to the characterization of
the transitions from irregular to regular patterns. The transitions of the curve of
the Shannon entropy account for transitions in the rhythmic structure due to the
variations of the tempo.

Other linear measures for the accuracy of the performance, as for example covari-
ance, do not reveal the transitions as clearly as it can be done using the Shannon
entropy [Engbert 1998] . Other measures of complexity like algorithmic complex-
ity [Wackerbauer et al. 1994] have been also applied on these data and have given
consistent results.

6 Testing for stationarity

In transforming a time series into a symbolic string, a considerable amount of in-
formation is discarded. Nevertheless, if the transformation is shrewdly chosen, the
main properties of the underlying dynamics can be captured by the symbol sequence
[Hao 1991]. In Sec. 4.2, the R and L intervals have been at first transformed into
sequences of relative deviations. Each interval was compared with the instantaneous
realized cycle (see Egs. (11-12). In this way, trends and fluctuations within the trials
are not considered. Then, the relative deviations have been transformed into symbol
strings, by assigning ‘0’ or ‘1’ to each relative deviation: negative (“too short” in-
terval) or positive (“too long”), respectively. In the symbol patterns obtained using
this coarse—graining procedure, phase transitions occur, depending on the external
control parameter. These transitions reflect qualitative changes in the behavioral
dynamics. Due to the transformation of Egs. (11-12), the relative deviations reflect
the rhythmic structure within the single cycle and do not represent an absolute
measure of accuracy of the performance. In other words, the information regarding
the dynamics of the overall performance is discarded. Thus, the stationarity of the
polyrhythmic data will be investigated in the following.

6.1 Stationarity

The investigation of natural phenomena is accomplished through experiments based
on measurements of observable quantities. The weakest concept of stationarity re-
quires that the parameters of the system and the parameters of the external set—up
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are constant during the measurement. In dealing with probabilistic processes, sta-
tionarity implies that the probability distributions of the system’s variables does not
depend on time.

In most of cases, one has not direct access to the system of interest, so that it is
difficult to check whether the parameters are constant or not. Thus, an alternative
definition of stationarity is used, which is based on the analysis of the available data
recording the temporal evolution of the relevant variables of the system.

Let us consider a time series X;, a sequence of a real variable, where ¢ € N is the
discrete time—index and N denotes the set of integers. The time series X; is said
to be strictly stationary if for any n-tuple t1, o, 3, ...,t, and for any integer k, the
n—dimensional distribution function F', with n = 1,2, ... satisfies the property:

F(Ztl,ZtQ, veey Ztn) = .F(Zt1 +ky Rtotks ey Ztn-f—k‘) (17)

A less restrictive definition is that of weakly stationary (or second-order stationary,
or wide-sense stationary) which requires that the first two moments exist and are
independent on time:

<Xy >=p < ((Xy = p)? >= 0" (18)

where < - > is the ensamble average, and p and o are independent on ¢. Further,
the autocorrelation function p(s,t) =< (X; — p)(Xs —p) > /o has to be dependent
only on the relative time delay 7 =t — s.

Except for some particular cases, it is generally very difficult to investigate the
distribution function of a series of observables. Thus, in time series analysis, the
concept of stationarity in the weaker sense is mostly used.

The change in the dynamics of the system of interest during the observation pe-
riod can be checked by measuring some statistical properties in different temporal
segments of the signal recording the underlying dynamics of the system itself. If
they are different beyond their statistical fluctuations for the different segments, the
analyzed time series is not stationary.

Due to the limited length of the polyrhythmic time series here analyzed, stationarity
cannot be tested using the standard methods [Isliker & Kurths 1993, Schreiber 1997,
Witt et al. 1998]. In the next sections, the stationarity of the data is checked
using the Chi-square test [Press et al. 1992]. In particular, the cycle durations
Tl, TQ, couy Tﬁl will be tested.
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Figure 9: Time series of the cycle durations. The initial given tempo is 7' = 1900 ms, and
the cycle duration averaged over the whole trial is (') = 2033 ms.

6.2 Time series of cycle durations

The Chi-square test will be applied to the binned distributions of the cycle durations,
in different epochs within the trials.

At first, each series of cycle durations 11,75, ..., Tg1 (see Fig. 9) has been reordered
by means of a ranking procedure [Press et al. 1992], and than rescaled, in order to
gain a normalized time series whose values range from 1/61 to 1. The rescaled cycle
durations of all the trials performed by the four subjects are plotted in Fig. 10 with
the help of a black and white scale (black = 'min’, white = 'max’). The ranking
procedure was necessary in order to visualize the time series produced at different
tempi in a common scale.

Like the symbol patterns, the trials are graded on the abscissa with respect to
the realized tempo. Time is increasing on the ordinate. Arising of dark or light
thickening indicates a faster or slower performance with respect to the averaged
realized cycle length, respectively.

This visualization of the cycle time series already underlines the overall tendency of
the performance within the trials. Nonstationarity is clearly observed in the cycles
durations produced by the subjects 101 and 103. The realized tempo becomes slower
and slower in trials with fast mean realized tempi. In the patterns of the subjects 102
and 104, no clear tendency can be observed in dependence on the control parameter:
the cycle durations become shorter or longer in sequences adjacent in the pattern.
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In the following section, the variations occurring in the distribution of cycle duration
along the trial will be investigated. With the help of the well known Chi-square
test, the stationarity of the data will be checked.

6.3 Chi—square test

Let us consider two distributions consisting of two binned data sets, and let us
suppose one wants to test if the two distributions are different. More precisely, one
is interested in checking the assumption that the two distributions are drawn by the
same distribution function. D,} and Dg are the numbers of events in the b—th bin of
the two distributions. The Chi—square statistics is defined as

Np D1 D2)2
2 ( b b)
= 9 07 19

where Np is the total number of bins. A large value of x? indicates that the two
distributions are different, i.e. that the null hypothesis, affirming that the two sets
are drawn by the same probability function, is unlikely. The significance of the Chi-
square test is estimated using the Chi-square probability function Q(x?|v), giving
the probability that the sum of the squares of v random normal variables of unit
variance and zero mean is larger than x? [Press et al. 1992].

The interval [0:1] has been divided in 10 bin each 1/10 large. The duration of the
whole trial (61 cycles) has been divided in four equal windows each containing 15
cycles (the last was neglected). For each time window, the binned distribution of
the cycle durations of all trials has been computed. This way, four distributions
have been obtained, corresponding to the four windows shown in the sketch on the
left in Figs. 11-14 in (b). The four distributions have been mutually tested in order
to check the null hypothesis of being drawn by the same probability function. The
results of the test for all subjects are shown in Figs. 11-14 in the first column (b).
In the first column (a) the pattern of the tested cycle durations is shown. Two
tested distributions are significantly different if their Chi-square is associated with
a probability smaller than 10~3. The probability is represented in a 4x4 matrix with
the help of three colors: black if the two distributions are not significantly different
(p > 1073), grey and white (107* < p < 1072 and p < 1074, respectively) if they
are significantly different. The test has revealed nonstationarity: each distribution
is significantly different at least from two other distributions.

A lot of methods of data analysis require stationarity of the time series. Symbolic
dynamics is a useful method in dealing with nonstationary data, too. Through the
transformation into relative deviations of Egs. (11-12), due to the coarse-graining
procedure, the phase transitions induced by the external control parameter are
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clearly visualized in the symbols patterns. The Chi-square test has been performed
also on the 2-symbols patterns of the R and L intervals. In this case, the distribu-
tions of the words of length 4 (for the right hand) and 3 (left hand) (see Sec. 5.1)
have been tested. The matrices representing the probability obtained for the same
windows used for the distributions of the time durations are shown in Figs. 11-14 in
(b) in the second and third columns. As expected, the null hypothesis is almost over-
all rejected. In particular, the distributions are not significantly different in all cases
for the left hand (second column) and in almost all cases for the right hand (third
column). The former, in fact, shows generally a more robust rhythmic structure.

Finally, the variations of the distributions along the abscissa has been tested. All
tempi have been divided in four equal subsets (the remainders have been neglected),
and for each subset the distribution of the cycle durations of the whole trial has been
computed ? (see Figs. 11-14 (c) sketch on the bottom left). The results show that
significantly different distributions of cycle durations and 2-symbols words emerge
along the abscissa. As expected, the significant transitions observed in the symbol
patterns (second and third column (c)) do not necessarily correspond to significant
transitions of the distribution of the cycle duration. (first column (c)).

7 Control parameters in the production of rhythms

The observation of phase transitions in the symbol patterns (Sec. 4) and the de-
tection of the nonstationarity of the cycle durations (Sec. 6) are interesting results
for the dynamical model proposed by Engbert et al. [1997]. The model describes
the production of polyrhythms of arbitrary order N“:N®. Nonlinear error is the
basic mechanism for explaining the phase transitions of the system. The duration
of the k—th cycle is given by a stochastic variable (timekeeper). This value is dy-
namically modified by an error correction term, which operates on the deviation of
the previous interval from the target interval. A coupling term maintains the syn-
chronization of the hand movements. The intervals R and L, produced in the k—th
cycle, are generated by coupled maps. The control parameters of the system are
functions of the tempo of performance (the strength of the correction mechanism
and of the coupling). Varying the control parameters, a period—doubling bifurcation
occurs, which generates the periodicity of the symbol patterns observed in the data.

The difficulty in choosing the reliable control parameters in experimental psychol-
ogy has already been pointed out in Sec. 4. Unlike in many physical experiments,
external parameters are more difficult to control in psychological systems. In the
case of rhythms production, the identification of the control parameter inducing the

2Due to the ranking procedure, the distribution of the cycle durations calculated over the whole
trials is a uniform distribution. Therefore, for testing the stationarity of the cycle durations, the
first half of the time series has been investigated (cycles 1 to 30).
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phase transitions is not obvious: is it the tempo the subject is required to perform,
i.e. the tempo initially given by the computer, or the tempo the subject really pro-
duces? In Sec. 4 the symbol patterns of the R and L intervals have shown that the
deviation from the prescribed rhythmic structure is remarkably stable after the first
cycles, although, as the test for stationarity has proved, the cycle duration fluctu-
ates. This finding argues for the dissociation between “intentional” and stochastic
variations of the realized tempo. In other words, the tempo initially realized deter-
mines the rhythmic pattern which is not affected by successive fluctuations of the
cycle duration.

8 Analysis of relative phases

In the case of the polyrhythmic time series, the derivation of the relative phases is
an alternative way to investigate the behavior of the system by varying the control
parameter. Through the relative phases, the dynamics of the coordination of the
hands is taken into account: one locally focuses on the mutual relation between
strokes performed by the hands within a cycle.

The relative phases are computed by taking the right hand as a reference. The
phase of the left hand is supposed to increase linearly from 0 to 27 in the interval
between two strokes. The phases of the left hand with respect to the first, second
and third strokes performed by the right hand are obtained directly from Fig. 15:
phase I = 3/2m, phase II = 7 and phase III = 1/27 (first, second and third stroke
of the right hand, respectively).

In Fig. 16 the relative phases for all the trials produced by subject 102 are plotted
with the help of a continuous color scale. The latter ranges in an interval centered on
the prescribed value of 0.75 (phase I), 0.5 (phase IT) and 0.25 (phase III), respectively.
The scale is expressed in 27, e.g. 1 means 27, 0.75 means 3/4 of 27 and so on. The
prescribed value of the relative phase corresponds to light blue. Green corresponds
to “left hand late” and dark blue to “left hand in advance” with respect to the right
hand. The 2-symbol patterns for the subject 102, plotted in Fig. 4 (a), has shown
the arising of periodic sequences (i.e. inaccurate performance) for slow tempi (after
the first 20 cycles). In the pattern of phase I, one observes that in this region the
left hand is in advance with respect to the right hand. This corresponds to the
thickening of green on the right side of the pattern shown in (a). Phase IT (in (b))
oscillates around the expected value. A slight transition similar to the one occurring
in phase I is visible for slow tempi ((7') > 1800 ms. Phase III (in (c)) shows an
opposite tendency with respect to the pattern of phase I: the left hand is too late
with respect to the second stroke of the right hand.

The patterns of the relative phases of subject 104, shown in Fig. 17, shows a peculiar
systematic error in the phase III (shown in (c¢)). Although no clear order—disorder
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Figure 15: Computation of the three relative phases of the left hand with respect to the
right hand. It is assumed that the phase of the left hand increases monotonously from 0 to
27 between two successive strokes (after: Engbert et al. [1997]).
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transition occurs in the 2-symbol patterns of the R and L intervals produced by
this subject (illustrated in Fig. 6 (a)), the relative phase III does show, in this
representation, a quite sharp transition dividing the pattern in two regions: for slow
tempi ((7") > 1500 ms) it oscillates around the prescribed value. For (T") < 1500 ms
the left hand turns to be systematic in advance with respect to the right hand.

The patterns of the relative phases allow the visualization of the dynamics of the
coordination of the hands. This aspect is softed in the symbol patterns of the
R and L intervals. Preliminary attempts of applying symbolic transformation to
the relative phases did not provide further insights. Future efforts should aim to
investigate the relative phases using other methods of analysis.

9 Discussion

The application of symbolic dynamics to the polyrhythmic data has provided impor-
tant results. Despite the intrinsic fluctuations of the data, using the coarse-graining
transformation applied in Sec. 4, robust properties of the underlying dynamics have
been extracted. In the symbol patterns of the relative deviations, transitions induced
by the externally varied tempo are revealed. Order—disorder transitions in the sym-
bol patterns reflect transitions in the quality of the performance: from an incorrect
to a correct timing of the polyrhythm. The observed transitions are quantitatively
described using the Shannon entropy (Sec. 5).

The qualitative transitions in the production of polyrhythms argue against the
linear statistical models proposed for the description of simple movement tasks
[Vorberg & Wing 1996]: since linear models cannot account for the qualitative changes
observed in the data, a nonlinear mathematical description is necessary [Engbert et
al. 1997].

The stationarity of the data has been tested with the help of the Chi—square test
(Sec. 6). Nonstationarity has been revealed in the cycle durations. The stability
of the rhythmic structure in trials with fluctuating cycle durations proves that the
control parameter has to be identified in the initial tempo carried out “intentionally”
by the subjects. The latter is the parameter which is externally manipulated. Its
variation is dissociated from the stochastic drift of the cycle duration and solely
induces the observed transitions of the symbol patterns.

The analysis of the relative phases of Sec. 8 has focused on characteristics of the
strategy of the performance related to the coordination between hands, which are
not emphasized by the analysis of the relative deviations.
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The Chi-square test has revealed nonstationarity in the data. In a next step,
nonlinearity should be also tested [Theiler et al. 1992, Schreiber & Schmitz 1997,
Voss & Kurths 1998]. A polyrhythmic task where the tempo is varied within a
single trial will be investigated. The tempo will be systematically increased by
the subject and then decreased. This way, one could check whether the rhythmic
structure undergoes tempo-induced transitions within a single trial. The occur-
rence of hysteresis phenomena could also be checked. The success of the analysis
of polyrhythms presented here makes symbolic dynamics a promising tool to be ap-
plied also to other motor control experiments. The derivation of the relative phases
obtained in Sec. 8 has stressed the importance of the aspect of coordination in the
task: thus the relative phases should be deeply analyzed.
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