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Abstract

This paper deals with the electrical conductivity problem in geophysics.
It is formulated as an elliptic boundary value problem of second order for a
large class of bounded and unbounded domains. A special boundary condition,
the so called “Complete Electrode Model”, is used. Poincaré inequalities are
formulated and proved in the context of weighted Sobolev spaces, leading to
existence and uniqueness statements for the boundary value problem. In ad-
dition, a parameter-to-solution operator arising from the inverse conductivity
problem in medicine (EIT) and geophysics is investigated mathematically and
is shown to be smooth and analytic.
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1 Introduction

1.1 Inverse problems in geophysics

A major application of geophysical methods is the exploration of the earth’s interior
by means of measurements on the boundary. There are many methods currently in
use, based on the observation of a variety of physical effects: for example, geomag-
netics, seismic approaches and geoelectric methods. Each such method is based on
a special measurement process described by a specific physical model, and in each
case the main task is a more or less sophisticated interpretation of the measured
data. Mathematically, this interpretation is called the inversion of the operator
representing the physical measurement process. In fact, the general theory of in-
verse problems has found applications in many fields, including geophysics, optics,
acoustics, medical and industrial tomography. For a thorough introduction to the
theory of inverse problems we recommend [Lou89] and [EHN96]. This paper deals
with geoelectric methods, where the spatial distribution of electrical conductivity
is the main subject of investigation. The most common geophysical application of
geoelectric methods is in mineral exploration, but such methods also now play an
ever greater role in geophysical engineering and environmental investigations.

The geoelectric measurement process consists of applying various surface current
patterns and then measuring the corresponding surface potentials. The measured
data depend on the (typically unknown) spatial distribution of electrical conduc-
tivity. In the context of inverse problems, the conductivity distribution is called
the parameter distribution. The process which maps the parameter distribution
to the measured data is called the foreward mapping (or the foreward operator)
and is determined in geoelectrics by a special type of boundary value problem. It
turns out that the foreward mapping depends nonlinearly on the conductivity dis-
tribution, and therefore we are faced with a nonlinear inverse problem. In order to
solve this inverse problem, numerical and analytical investigations of the foreward
mapping are necessary; the analytical investigations in a large class of bounded and
unbounded domains are treated in Chapter 4. Chapters 1 - 4 introduce the concepts
and technical tools needed for the analytical discussion. The numerical simulation
of the foreward mapping by means of adaptive finite element methods is the subject
of a forthcoming paper.

The well-known inversion of electrical measurements in medical applications is
called “Electrical Impedance Tomography” (EIT) and aims to detect conductivity
distributions inside the human body. The same partial differential equation gov-
erns the interior behaviour in both the geoelectric and medical applications of EIT.
The difference arises when considering the spatial extension of the domains. The
geophysical domain may be assumed to be unbounded, although the measurement
on the boundary only has finite extension. In medical applications, the domain is
bounded and the measurement covers all of the boundary. In both settings, experi-
mental data result from measurements using a finite set of electrodes placed on the
boundary. Various models describe the physical process of current flux beneath an
electrode. In medical applications, it has turned out that the so-called “Complete
Electrode Model” reproduces experimental data most accurately (see [CING89] and
[SCI92]). In addition, this model leads to an exact description of the singularities
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arising at electrode edges and lends itself to the use of numerical methods. (see
[PBP92], [CIP97] and [CIP96]). The present paper adapts this model to the geo-
physical setting.

2 Function spaces

2.1 Spaces on unbounded domains
2.1.1 Weight functions

A positive, locally Lipschitz continuous function p : R* — R is called a weight, used
in subsequent sections to make functions square integrable by reducing their values at
infinity. The Lipschitz continuity guarantees via the theorem of Rademacher (see for
example [Zie89]) that p and its first partial derivatives are measurable and bounded
on compact subsets. Additionally p has a total derivative almost everywhere. Con-
cerning this paper, we are faced with the simple type of weight p(z) = (1 + |z|)®,
where @ > 1. (The choice of a depends on the context.) It can easily be shown that
this type of weight satisfies the following definition.

Definition 2.1 A weight is called translation and dilation invariant if for all Ky €
Ry and for all zy € R" there exists a real constant § > 0 and a constant C > 1 such
that the inequality C~1p (z) < p(K(z —vy)) < Cp(x) for all z € R™ holds uniformly
for |K — Ko| <6 and |y — yo| < 9.

This property is used in theorems which we cite from [Jan86], and encounters ex-
plicitly only in Appendix A.

2.1.2 Basic definitions

When dealing with the Neumann problem

V-(cVu) = 0 in Q

f on 09,

“on

which represents the physical process of injecting a current f into a domain €2, where
Q) is supposed to be unbounded, one cannot use the usual Sobolev space W(Q),
because in general the solution u for this problem is not square integrable in €.

Example 2.2 Let Q be the half-space R™ (n > 3), set 0 = 1 and f(s) =
(1 + ||8||2)_% for s € 00 = R x {0}. A solution is then u(f) =
I(z1,- -, Zn_1,2n — 1)|| 7", which is not square integrable in R™ .

This problem can be circumvented by introducing weighted Sobolev spaces. We now
introduce some basic concepts of such spaces.
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Definition 2.3 Let Q C R" an open set. We use the following standard notation

C3P(Q) = {f:Q— R|{infinitely often differentiable in 2, supp(f) is compact} ,
Cc*®(Q) := {f:Q— R|f infinitely often differentiable in Q},
8Zf = g;}fv izl,"'?”a
0“ okl h
f = m, where O[—(Oél,"',Oé ) |O[| Zal

Definition 2.4 Let p: R* — Ry be a weight. On the sets C§° and C™ the weighted
scalar product

= )2 f(x)g(x)dz ; i f(x)0;g(x)dx
)= [ o) f@)gla)d +3 | s @aata)ds. 1)

induces the norm

/2 g 1/2
171, = (5. 000,) " = (107 7y + W ) (2)
Note that only the function f itself not its derivative is weighted.

Now we give two definitions of weighted Sobolev spaces on (possibly unbounded)
domains, which correspond to the classical inhomogenious Sobolev spaces. It is well
known that the two definitions are equivalent for bounded domains. In Appendix A
we give a proof of this fact in the case of weighted spaces.

The first definition, which can be found in [Jan86], uses infinitely differentiable
functions which have a finite ||-||; ,-norm and builds the completion of these func-
tions. The second one uses the concept of weak derivatives of integrable functions.

Definition 2.5 The norm (2) is used to define the Sobolev spaces

11y,

H(©Q) = {fec=@]|fl, <=} (3)
HEP(©) = CE®g M, (4)
where C§°(R™)|q denotes restrictions to Q of functions in C§°(R™).

Definition 2.6 The set W?(Q) of all measurable functions u such that p~'u €
L?(Q) and all distributional derivatives satisfy O;u € L%(Q) together with the scalar
product (1) is called weighted Sobolev space of order 1.

Definition 2.7 i) The set W'(2) of all measurable functions u such that u € L*(Q)
cmd all distrz’butional derivatives satisfy 8 u € L%(Q) together with the scalar product
)= Jo f@)g(z)de+370 [ 0if (x)0g(x)dx is called (inhomogenious) Sobolev
space of order 1
ii) The space H () is defined as closure of smooth functions with respect to the
-1, -norm.
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It is well known that the last two definitions are equivalent, i.e., W1(2) = H'(Q).

Remark 2.8 The relation Hy*(Q) C HY?(Q) holds, and the functions of both
spaces need not vanish at the boundary 0. They are even pointwise well defined
there like in the case of the unweighted Sobolev spaces (see Theorem 4.1). For func-
tions in Hé’p(Q) there is a kind of growth condition at infinity.

If the domain € is bounded and p is strictly positive on €, then the sets H'P ()
and HY () are equal and the corresponding norms Iy, and [|-|; are equivalent.

2.2 Lipschitz Boundaries
2.2.1 Definition

In the geophysical context one encounters domains similar to a half-space but with
some topographical deformations. Later on, for the sake of simplicity we assume that
such deformations have local support. In real life, deformations arising from rocks
or electrodes stuck into the earth are not continuously differentiable and therefore
we assume that our domain €2 has a Lipschitz-boundary and we take from [Jan86]
and [Alt92] the following definition.

Definition 2.9 Let Q be a (possibly unbounded) domain. Its boundary OS2 is called
Lipschitz if there exist numbers o, 8 > 0 and a covering {U;},c such that

i) for each U;, there exists an orthogonal transformation A; : U; — R*,

(1, - xp) — (Y1, -+, yn), and a Lipschitz continuous map a; : R*~! — R
such that for the set Uy == {(y1, -+, Yn—1) E R | |yj| <, 1 <j<n—1}
holds:

(1) Al (UZ N aQ) = {'!76 R | (yh e 7yn71) € Ucw Yn = G4 (yh o 7yn71)}
b) A (UinQ) ={F€R" | (y1,"*+,yn—1) € Ua,
ai (Y1, 5 Yn—1) < Yn < @i (Y1, Yn—1) + B}
¢) Ay(UiN(R*\ Q) ={7 € R" [ (y1, -+, yn—1) € Vs,
a; (yh T 7yn—1) - ﬁ <Yn <@ (yh t 7yn—1)}-
The boundary 02 is called locally finite Lipschitz if there exist numbers L,a, 8 > 0,
a positive integer N and a covering {U;};cy such that i) holds,

ii) at most N different U; have nonempty intersection
and

ii1) the maps a; are all Lipschitz continuous with respect to the same constant L.

2.2.2 Flattening of the boundary

Remark 2.10 When considering domains 2 with Lipschitz boundary 02, the fam-
ilies of maps {A;};cy and {ai};cy may be used to define bijective in both di-
rections Lipschitz continuous maps from the set of euclidean coordinates QQq =
Us X (=B,0) to the sets U;. The map K; : Qo — R, defined by (y1,---,yn) —
(Y1, s Yn—1,ai (Y1, Yn—1) + Yn), leads to the bijection h; := Ai_1 oK;:Qua—U;
such that the following properties hold :
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Uoc\%

Figure 1: Flattening of the boundary

i) hi(QuN{yeR" [y, >0}) = UiNQ

i) hi(QaN{7eR" |y, =0}) = U; NN

iii) hi (Qa N {FER gy <0}) = U;n(R?\ Q)

w) hi:Qq — U; as well as h;l :U; = Qo is Lipschitz continuous.

Proof: i) We have to show A; (U; N Q) = K; (Qa N {i € R | y,, > 0}) which follows
directly from the definitions. ii) and iii) are treated analoguously .

iv) Since A; is an orthogonal transformation and therefore Lipschitz continuous, it
suffices to prove that K; and K, L are Lipschitz continuous. We use the following
estimates

n—1
1K (i) = Ki (D)7 = D (wi—2)" + (@i (v, 9n-1) = ai (21,7 20-1) + (Yo —

IN

™

n—1
(yj - Zj)2 + 217 Z (yj - Zj)2 + (yn - Zn)2
j=1

IN

(1+2L2) |7 - 2*

to prove Lipschitz continuity for K;.
The formula K; ' (a (y1,++,4n)) = (Y1, sYn—1,Yn — @ (Y1, -+ ,yn—1)) leads to ana-
loguous arguments for proving Lipschitz continuity of the mapping K ;1. [ |

Remark 2.11 If Q has a locally finite Lipschitz boundary, the Lipschitz constant
V1+2L2 of the map h; : Qo — U; does not depend on i. Due to Lemma A./, the
maps h; are in fact local isomorphisms, straightening out the boundary, which we
use in subsequent sections. (See Figure 1.)

Zn))Q

Z (yj - Zj)2 +2(a; (Y1, -y Yn—1) — ai (21, -, anl))2 + (yn — zn)2
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3 Compact imbeddings

3.1 Compact imbeddings for general domains

Definition 3.1 Let p : R* — Ry be a weight. The mapping M, is defined by the
formula M,(f) := p~'f, for every measurable function f:Q — R.

Theorem 3.2 Let p(z) = (1 + |z|)® be a weight and let « > max{1,n/2}. Then the
mapping M, : HYP(R") — L*(R") (resp. M, : HYP(R™) — L2(R™)) is an injective,
linear, continuous and compact operator with dense image, i.e a compact imbedding.

Proof: See [Jan86]. ]

Theorem 3.3 Let p(z) = (1 + |z|)* be a weight, let « > 1 and the space dimen-
sion n > 3. Then the mapping M, : Hcl’p(]R") — L?(R™) is an injective, linear,
continuous and compact operator with dense image.

Proof: See [Jan86]. ]

The transfer of these two theorems to general domains is achieved by using
extension operators.

Definition 3.4 Let W () any of the previously introduced function spaces (i.e
HYP(Q),WhP(Q), HY(Q),...). A continuous operator F : W (Q) — W (R™) is called
(continuous) extension operator if F(u)|lq = u for all u € W(Q).

Lemma 3.5 Let Q@ C R" be a (possibly unbounded) domain such that there exists
an extension operator F : HLP(Q) — HLHP(R™) (resp. F : HoP(Q) — HEP(R™)) in
the sense of Definition 8.4.

Furthermore, let p(z) = (1 + |z|)® be a weight and let Rg : L*(R") — L?(Q) be the
continuous and linear restriction map defined by Ro(f) := fla for all f € L*(R").
If @ > max{1,n/2}, then M), := Rgo M,oF : H"*(Q) — L*(Q) (resp. M) :
HEYP(Q) — L2(Q)) is an injective, linear, continuous and compact operator with
dense image. If a > 1 and n > 3, then M : H(}’p(Q) — L%(Q) is an injective,
linear, continuous and compact operator with dense image.

Proof: The mapping

M) :=RgoM,oF : H"“*(Q)— L*Q) (5)
(resp. M, := Rgo M,o F : HYP(Q) — L2 (Q))

is linear, continuous and compact by Theorem 3.2 (resp. by Theorem 3.3). Injec-
tivity is immediately verified.

To prove the density of the image we have to show that every test function ¢ € D(Q)
lies in the set Mp(Hcl’p(Q)), because then it follows

>||'||L2(Q)

p(@) = 2@ e o, (i) € e,
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Therefore assume ¢ € D(Q) and define u(z) := p(z)p(z) for all z € Q. Then
M,(u) = up~" = ¢ and hence ¢ € M,(H. *(2)) if we can show u € Hy " ().

Since 0J;p, as well as p, is bounded on compact sets it follows that
lull;,, = Jop ?ulde + Yi [ (Qu)?dz < oo by means of the formula
du = 0ipp + pdi¢p. This formula is valid for every Distribution p and every
infinitely differentiable function ¢ (see for example [Rud91] or [MG92]). Now
corollary A.9 finishes the proof.

F M,
HYP () > HY“P(R") > L?(R")
Rq
MI
’ Y
L*(Q) "

3.2 Application to geophysical domains
3.2.1 Extension operators for geophysical domains

For geophysical problems we consider domains which essentially look like the lower
half-space R” for n > 2. To be more precise we introduce the concept of a simplified
geophysical domain.

Definition 3.6 A domain Q@ C R" for which there exists a compact subset S C R"
such that

i) QN(R*\ S)=R" \ S and
i) QNS has a Lipschitz boundary (see definition 2.9)

18 called geophysical domain.
An illustration of such a domain is presented in figure 2.

Lemma 3.7 Let Q) be a geophysical domain in the sense of Definition 3.6. Further-
more, let p be a translation and dilation invariant weight with respect to Definition
2.1. Then there exists an extension operator Fo : HYP(Q) — HY“P(R™) (resp.
Fo : HYP(Q) — HZP(R™)) in the sense of Definition 3.4.

Proof: From the assumptions, property ii) of definition 3.6 and definition 2.9 fol-
lows the existence of a finite covering {Ui}ie{l,---,no} such that 00N S C U2, U;.
Then, by means of remark 2.10, there are bijective in both directions Lipschitz con-
tinuous maps {h;};c {1, no} Supported in the compact set V' C R", where the set
V := !, U; is bounded and contains all of the disfigured boundary.

Let Uy := U (R"\V) an € - environment of the set R” \ V, where ¢ :=
Tdist ((02NS),0V). Then % U; = R" is an open covering of R" and Theo-
rem 6.20 of [Rud91] provides a partition of one {¥;}, y C D(R") which is sub-
ordinated to {U;},c {0, m0}" Additionally it satisfies the property that for every
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. SN

Figure 2: simplified geophysical domain

compact set K C R™ there exists an open set W O K and a number jy € N such
that ¥y (z) +--- + U () = 1 for all z € W, which particularely implies locally
finiteness of {¥;}, . Now let

go(z):= > Wi(z) VzeR (6)
supp(¥;)CUo
and for each i € {1,---, ng} let
oi(x) = Z () Vx € R™. (7)

supp(¥;)CU; A supp(¥;)Z U, — Uk
Then it is clear that
i) the system {Uy,Uy,---,Upy,} is an open covering of R",
ii) every ¢; lies in D (U;),
i) 0 < ¢i(z) < 1 for all z € R,
iv) ¢o(z) =1 for all z € R" \ V and
v) Y di(z) =1 for all z € R,

Now we decompose every function f € C* (1) into a finite sum : f =Y f¢;. Let
S’ C R" be a compact subset such that V U S C S’ holds. Since iv) above implies
dj¢i(xz) =0 for all z € R \ S’, we have the following estimates :

bl = [ G@H@E @ o+ Y [ @ (@) da

S'NQ

-1 22 - O ; 2 - 9. ; 2
< 1707 i 23 | @@t o423 [ G@oye)? da
< W M 423 [ @5@) do+onC [ fafds

=1
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IN

_ _1\2
196 sy + VAN +20CR [ (£ da

2a)
< Clflly,

where R := sup{p(z)|z € S’ NQ} and C, C’ do not depend on f. Therefore the
mapping M; : H?(Q) — H%? (Q N U;), defined by M;(f) := ¢;f, is continuous for
i€{0,---,np}.

Lemma A.4 states that xh; and *h{l provide the isomorphisms xh;
HYP (QNT;) =2 HY? (Qo N {F|yn > 0}) and #h; ' : HYP(Q,) = HY? (U;) for each
i € {1,---,ng}. Therefore we can apply the method of Hestenes (see for example
[Fol95] Lemma 6.43) to extend the function *h; o M;(f) from Q, N {7 |y, > 0}
to Qo. In the following we, denote this extension operator by Fp,. We have
supp (Fg,, o *hj o M;(f)) C Qo which implies supp (*h;l o Fg, oxhijo M;(f)) C U;
and *h; ' o Fg, oxh;o M;(f) € HY? (U;). Therefore this mapping may be extended
trivially to R™ by zero.

So far, we have constructed operators to extend the functions ¢;f for all i €
{1,---,mn0}. To deal with ¢¢f, which is supported on the unbounded set Uj, we
note that 92N Uy C R*~! x {0} = OR™. Therefore the method of Hestenes extends
the function ¢¢f along the boundary 022 N Uy. ¢of vanishes on 9Q N (R \ Uy)
since supp (¢of) C Uy N 2 and therefore we extend it along 902 N (R™ \ Up) by
zero. We denote the extension operator resulting from the last two steps by Fin.
We summarize these results by defining the extension of a function f € C*°(Q) by
means of the formula

Fo(f) := Fin o Mo(f) + Y #h; " o Fg, o xh; o My(f). (8)

=1

Since each operator on the right hand side of Equation (8) is linear and continuous,
Fo: HHP(Q) N C*®(Q) — HYP(R™) is linear and continuous, too. It is immediately
verified that for z € Q and f € H»?(2) N C®(Q) we have (Fo(f)) (z) = z. There-
fore, the unique linear extension of Fy from H%?(Q) N C>®(Q) to H"*(Q) provides
the desired continuous extension operator.

The extension Fqo : Hy'?(Q) — He'?(RY) is constructed analoguously. [ |

3.2.2 Compact imbeddings for unbounded geophysical domains

Now we are able to formulate and prove an imbedding theorem for unbounded
geophysical domains.

Theorem 3.8 Let Q be a geophysical domain in the sense of Definition 3.6. Fur-
thermore, let p(z) = (1 + |z])® be a weight. If a > max{1,n/2}, then there exists a
compact imbedding M : HYP(Q) — L2(Q) (resp. M : HX*(Q) — L2(Q)). If a > 1
and n > 3, then there ezists a compact imbedding M : Hy' P (Q) — L2(Q).

Proof: Take the extension operator Fo of Lemma 3.7 and apply Lemma 3.5 to
construct the extension operator M := Rq o M, o Fy having the desired properties.
[
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Figure 3: Covering of R"

4 Trace theorems

Theorem 4.1 Let Q be a (possibly unbounded) domain with a locally finite Lipschitz
boundary 0. Further, let p be a translation and dilation invariant weight in the
sense of Definition 2.1 such that p(z) > 1 for all z € R™.

Then there ezists a linear and continuous map v : H-P(2) — L2~ (0€2) (resp.
vt HYP(Q) — L2 (89)) such that v(u) = ulpq for all u € CHQ) N H-A(Q),
where L2”’_1(Q) is the space of measurable functions u, such that up~' € L*(Q).

Additionally, if there exists an extension operator (see Definition 3.4), then the
trace operator y : HYP(Q) — L%¢"' (09) (resp. v : HEP(Q) — L>P~ (99Q)) is
compact.

Proof: The theorem, except the compactness assertion, can be found in [Jan86]
Th.4.6. For proving compactness, we use the inequality
2 ’
uo A7 (¢, aiy)) al')+h _ 2
5/ lwo A WhalvD) 4 o o\ L 0 fwo A7) )’ dndy +
Ua (po A7 (v, ai(y'))) o Jaiy)
2

ai0)48 (uo A7y, yn)
02// ( v )Qdyndy', (9)
wJay)  (po ATHY  yn))

which holds for functions v € C*(Q) N H"*(Q) and can be found in the proof of
[Jan86] Th.4.6.

Here, 3/ denotes the vector of the n — 1 euclidean coordinates 3’ € U, arising
from the orthogonal coordinate transform A; : ¥ — ¢ corresponding to Definition
2.9. Integration is done with respect to the new coordinates 4/, y,,. Let {¢;};; be
a partition of unity subordinated to the covering {U;};.;. Due to Definition B.1 we
have

/B . u’p ?ds =y / (giup™2) 0 ANy ai(y" )\ 1+ | Vai(y)*dy'.  (10)

el
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Since there exists a fixed real and positive constant L such that 9d;a;(y') < L for
almost every y' € U,, it follows from Equation (9) and (10) :

2 =2 o a
| witas < CZ/ w2p7?) o ATV aily'))dy’

i€l
y)+ﬂ

< C'ﬁZ/ / (w0 A7) (' ym))” dyndy’ +

el ai(y')

ai(y)+6 ( ANy, 2
/ / (o ll(yl,y ))2dyndy,

icl /Ua (po A, (y Yn))
< C’ﬁZ/ \Vu(z)*de + = 2/ )~ 2da

iel p iel U”Q
< C"ﬁ/qu )2 de + ﬁ/ )"2dz, (11)

where the last inequality results from the locally finiteness of the Lipschitz bound-
ary (see Definition 2.9). Further, we have used the fact that the Jacobian of the
orthogonal transformation A; equals 1, i.e |J4,| = |JA;1| = 1. Now let {u;},  be
a sequence in HY?() (resp. in HE”()) such that uj — g for n — oo, where
g € H7(Q) (resp. g € Hy?(Q)) without loss of generality may assumed to be the
zero function. Since H?(Q) is a Hilbert-space and therefore reflexive, we have to
show 7 (uj) = v(g) =0 for n — occ.

Equation (11) extends by continuity to all of He'”(Q) and due to Lemma A.11
also to all of H?(Q). Therefore we have

) rrony = [ wdo72d8 < 0" [ [Vuy(o) e

1

/ uj()?p(z) "2dz . (12)

J

Since the mapping M, : HY“*(Q) — L2(Q) (resp. M, : Hy"(Q)
L%*(Q)) is compact, (see Theorem 3.2 and Lemma 3.5) we get ||M, (“J)”LQ(Q)

4

Jo (u;(x))? p(z)~2dz — 0, i.e. term IT of Equation (12) converges to 0 as j — oo for
every 0 > 0.

Since weakly convergent sequences are bounded, we have [, |Vuj(a:)|2dx <
lujll; , < K for all j € N and for a fixed positive constant K. This implies con-
vergence of Term I to zero as § approaches zero. Therefore, the left hand side of
Equation (12) must converge to zero as j — oo. ]
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Figure 4: Complete Electrode Model

5 The Complete Electrode Model in geophysics

In medical impedance tomography different physical models were investigated and it
turned out that the so-called “Complede Electrode Model” reproduces experimental
data most accurate (see [SCI92] or [JS97]).

We want to generalize this model in some directions :

e switching from bounded domains to unbounded geophysical domains,
e using arbitrary contact impedance layers instead of constant layers,

e providing more general normalizations for solutions .

5.1 Definition

In this chapter © denotes an unbounded geophysical domain (see Definition 3.6),
i.e, one which has a Lipschitz boundary (see Definition 2.9) and [ electrodes stucked
into it. In the following, the part of the surface which is beneath the i*P-electrode is
referred to as I'; .

First of all, we give a description of the boundary value problem within the
classical formulation. Therefore let o : € — R, be a conductivity distribution ,
u : © — R the potential function , (I, - -, I;) the discrete vector of applied currents
and (u1,---,u;) the discrete vector of measured voltages .

i) The interior differential equation is the usual one :

V-(oVu)=0 inQ, (13)

where V- denotes the well known “div” operator from vector analysis. Physically,
Equation (13) states that inside the domain there are no current sources.
ii) The total current applied to the iP-electrode is

/ a@,,udS = IZ', (14)
r;
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where dv denotes the derivative in outer normal direction.
iii) No current crosses the surface area which hasn’t any contact with electrodes :

!
cOyu=0 ondQ\ U r;. (15)
i=1

iv) There exists a thin resistance layer z; : I'; — Ry between the ith-electrode and
the surface 0f2, coupling the potential distribution of the interior function u to the
measured electrode voltage Uj; :

u+ zjoo,u=u; onl}. (16)

In the following, z; : I'; — Ry is called contact impedance .

5.2 Weak formulation of the boundary-value problem

In [SCI92] a weak formulation for the Complete Electrode Model was derived, as-
suming bounded domains € and constant contact impedances, i.e., z;(s) = const for
all s € T';.

A solution to the (weak) boundary value problem with respect to the Complete
Electrode Model consists of a differentiable potential function and a discrete vec-
tor of measured electrode voltages. Therefore we introduce the following spaces of
functions (similar to those defined in [SCI92]) :

Definition 5.1 The space of solutions to the boundary value problem with respect to

the Complete Electrode Model is the direct sum of a space of differentiable functions
and the vector space of discrete electrode voltages :

H/(Q):=H""(Q) e R (17)

HPE(Q) = HP(Q) @ R, (18)

where the order of smoothness subscript 1 is omitted, because in the following, we

do not encounter spaces of higher order differentiable functions. The scalar product
on these spaces which induces the natural product topology is the following :

l
<(U,, ﬁ)? (Q), 17))[ = <u7 v)l,p + Z UiV
i=1

!
= /pzuvdx +/ VuVudz +Zuivi. (19)
Q Q

=1

The space H[(Q) (resp. H["“(Q)) as a product of Hilbert spaces is a Hilbert space,
too. The induced norm reads as follows :

1
! 3 1
|w@m:OwL+Zﬁ>:0wm+m®4 (20)
=1
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Before presenting the Hilbert space theory of boundary value problems, we introduce
the following frequently used linear and bilinear forms.

Definition 5.2 For (u, ), (v,7) € H(Q) (resp. (u,@), (v,7) € H“(Q)) the bilin-
ear form b : H(Q) x H'(Q) — R (resp. b: H"(Q) x H"“(Q) — R) is defined
by

b((u, @), (v,v)) = /QU(:I;)VU(:L‘)VU(x)dx + (21)
l

/ z;l(s)(u(s) —u;)(v(s) —v;)dS.
1/

1=

For each vector of applied currents I= (It,---,1;) the linear form gy is defined by
' !
g7 ((w, @) ="y Lju; (22)
i=1

Now we are sufficiently prepared to generalize the concept in [SCI92] of weak
solutions to boundary value problems with respect to the Complete Electrode Model.

Definition 5.3 An element (u,@) € HJ(Q) (resp. (u,@) € H"(Q)) is called weak
solution to the boundary value problem (13), (14), (15) and (16) if the equation

b((uﬂﬁ)? (1)717)) = gf((vaﬁ)) (23)
holds for all (v,v) € Hf () (resp. (v,7) € H}(Q)).
Lemma 5.4 Let Q be a (possibly unbounded) domain, o € C*(Q) and z € C(T;)
for each i € {1,---,1}. Further, let (u,@) € (C*(Q)NCHQ)) &R be a classical

solution to the boundary value problem (13), (14), (15) and (16). Then it is also a
weak solution with respect to Definition 5.3, i.e., it satisfies the weak formulation

b((u, ), (v, 7)) = g7 ((v,9) ¥(v,9) € HP (). (24)
Furthermore, if  is a bounded domain the sum of currents necessarily vanishes,

i.e.,

I =0. (25)

l
=1

J

Proof: The starting point for such proofs is usually the Gauss-theorem (see Theorem
B.3) :

/(m, o(s)v(s)o,u(s)dS — /, o(z)Vu(z)Vu(z)dr = / v(z) V- (o(x)Vu(z))ds = 0,

!

=0

where v € C{°(R")|q and € C ©Q is any bounded open subset such that
supp(v) \ 9Q C Q. Since v vanishes on that part of 9Q' lying inside Q, the last
equation can be written as

/ o(s)v(s)d,u(s)dS — / o(z)Vu(z)Vu(z)dz = 0. (26)
0N

Q
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Boundary condition (15) and (16) together with equation (26) provides

l
Z /F 21 (8) (u(s) — ui)v(s)dS + / o(z)Vu(z)Vu(z)dz = 0. (27)

Q

Boundary condition (16) together with condition (14) yields

—1 ; — Uuls = o(s)o,ul(s = 1I;
/F ()i = u(s))d8 = [ o(s)0,u(s)as = I

Iy

which leads directly to

! !
S [ v ) = uls)ds = Y- oo
i=1 7T i=1
and together with equation (27) we conclude

b((uaﬁ)7(v7ﬁ)) :gf((vaﬁ))7 (28)

which extends by continuity of the biliner form (see Theorem 5.7) to all (v,v) €
H“(©). To prove 2321 I; = 0 for bounded € let v = 1. Equation (26), (14) and

(15) immediately provides 22:1 Ij = [,q0(s)0,u(s)d8 = 0. ]

5.3 Poincaré inequalities

Ellipticity is a key criterion in proving the existence and uniquenes of solutions
to boundary value problems raised by operators of second order. Inequalities of
Poincaré-type play an essential role in proving the ellipticity of such operators. In
the paper [SCI92] quotient spaces were used to obtain a normalization which provides
unique solutions. We prefer to show appropriate Poincaré-type inequalities, valid
even if the domain € is unbounded, involving terms which allow us later to introduce
a suitable normalization.

Theorem 5.5 Let Q be a (possibly unbounded) domain with a locally finite Lipschitz
boundary (see Definition 2.9) disfigured by | electrodes stucked into  such that
there exists an extension operator F : H“P(Q) — HVP(R™) (resp. F : Hcl’p(Q) —
HYP(R™)) (see Definition 3.4). Furthermore, let p(z) := (1 + |z|)* be a weight and
denote the measure of the surface area fl“f 1dS beneath the i"-electrode by |T';|. Then
the following conditions lead to Poincaré inequalities :

i) If a > n/2 and {i1,---,1,} C {1,---,l}, then there exists a constant C > 0
such that

2
l lo

I(w,@)ll} < C |||VUII|%2(Q)+Z/F (u(s) —u;)?d$ + |y |T, fus, (29)

i=1 T j=1

is valid for all (u,@) € H () (resp. (u,@) € H"“(Q)).
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i) If n > 3,
pt g L2 (Q

< a < n/2 and Q is really an unbounded domain such that
, then there exists a constant C' > 0 such that

1

)
!

[(u, @)} < C (IIIVUIII%%Q) +Z/ (u(s) _Ui)2d8> (30)
i=1 7T

holds for all (u,@) € H"“().

Proof: i) If we assume the assertion is false, then we can find a sequence
(un,@™) € HJ(), such that for each n € N the inequality ||(un,ﬁ”)||l2 >

2
n <|||vun|||§2(m + 00 [, (n(s) —u)2dS + |30, [Ty, |l > holds.  Dividing

both sides by ||(un,@")||? we can summarize the assumption to

l

-n — 2 n
1= s @) = o iy + V220 + D (0 (31)
=1
and
1 Lo i
> IVl + 3 | (o) = s + |30 T (32)
i=1 7L j=1

for each n € N.

Equation (31) leads to 22:1 (u)? < 1 for all n € N and therefore exists a
subsequence (denoted again by {(un,@")},.y) and an element § € R’ such that
limy, 00 Zé:l (uf — gi)2 = 0.

The next step is reached using the fact that lim, e0 [|[Vunl|l 2y = 0 and
[unll; , <1 for all n € N. Theorem 3.2 and Lemma 3.5 can be applied to pro-
vide a subsequence (denoted again by {(un,@")},cy) such that M,(u,) = p~u,
is L2-convergent to some element in L?(2). Therefore, the sequence {uy,}nen is a
Cauchy-sequence in H'?(Q), and there exists an element g € H''*(Q) such that
limp, 00 flun — glly,,, = 0. Since limp o0 [|[Vun|||2q) = 0 we have d;g = 0 almost
everywhere in Q for each ¢ € {1,---,n}. Corollary A.10 applied to g states that
there exists a constant ¢y € R such that g(z) = ¢¢ for almost every z € Q and
(7(9)) (s8) = ¢p for almost every s € Of2.

Holder’s inequality leads to

lo lo l % l %
SOt — 300y gy | < (Zm-l?) (z w—g»z) )
j=1 j=1 i=1 g

=1

~

~

—0 as n—o0

and together with inequality (32) and the triangle inequality we conclude

lo
ST, lgi,| = 0. (34)
j=1
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In order to estimate |§:Z 1 fr — g;)d8| we execute the following steps. Use
Theorem 4.1 to get

[ o) e < max g0 [ o) Hale)  unle) s
I I

i=111 SGU =111

IA

C'Ilg -

2 2
un||L2,p—1(aQ) <c” g — Un||1,p : (35)

—0asn—o0

Furthermore, we get the decomposition

Z/ —g)%ds < 32/ ) = un(s))*dS + (36)

>

I

[ [
33 /F (un(s) — u)2dS +3 3 [Tyl (ut — g3)?
=1 i =1

~ ~

11 117

and the estimate (due to Holder’s inequality)

ZZO/ —gi;)d8| < Z/I — g:)|dS (37)
< Z |2 ( / (96 = g»%zsf

Inequality (35) leads to the conclusion that term I vanishes as n — oo. For the
second term I7 this holds, too, due to inequality (32). The last term I approaches
zero as n — oo because lim,, 27 | (u — g;)?> = 0. Therefore inequality (36) and

(37) lead to ‘Zj v, (g(s )—gz-].)ds‘ = 0 and we conclude 22.0:1 sz‘j g(s)ds =
ijl [T, |gs,. Further, we have Z = fF 5)dS = ?:1 fpi]_ codS = cqy 22.0:1 T, |.

0, and therefore ¢y = 0. Finally,

From inequality (34) we get ‘Z |F ij|9z']

inequality (36) directly implies fF —g;)?d8 = 0 for each i € {1,---,1}. Hence
gi = g(s) = ¢p = 0 for almost all s E FZ, so that g; = 0 for each i € {1,---,l}. In
summary, the previous calculations lead to the following contradiction :

I
—\ (12 2
(g, DNF = Ngll} , +> g7 =0
=1

2 . 112
1= (@) and T (@) — (0.9)] = 0
ii) Like in the proof of i) we start out from the negation of assertion ii). Then
we get a sequence (uy,,d") € H/”“(Q) such that for each n € N

l
—n, — 2 n
L= [, @7 = N0~ a2y + 11 Van] [7200) + D (ul)? (38)
=1
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and

l
1
> IVl + 3 | (unle) = upas (39)
=1 i

holds. The same conclusions like in i) lead to the fact that there exists a (g,g) €
H{“(2) such that limy, e ||(un, @") — (9,9)|;, = 0 and Vg = 0 almost everywhere
wich implies g(z) = co for almost every x € Q. Since p~! & L?(Q2), the constant
co must vanish and therefore g vanishes almost everywhere in €2, too. Since the
derivation of equation (36) remains true in this case and the terms I, IT and III
reach zero, too, as n — 0o, we also have g;(s) = ¢p = 0 for almost every s € I'; and
all 4 € {1,---,1} and get the same contradiction like in case i). ]

Corollary 5.6 Let Q2 be a geophysical domain (see Definition 3.6). Under the as-
sumptions i) of Theorem 5.5 there exists for each ig € {1,---,1l} a constant C;j; > 0
such that

l
I(w, @)II} < Cig (IIIVUIII%m) + Z/F (u(s) — us)*dS + IFz‘OIQU?O) (40)
=1 ¢

holds for all (u,@) € Hf ().
Proof: Theorem 5.5 i). ]

5.4 Existence and uniqueness theorems

Lemma 5.7 Let Q be a (possibly unbounded) domain with a Lipschitz bound-
ary disfigured by 1 electrodes stucked into $Q. Then the bilinear form
b: H(Q) x H(Q) = R (resp. b : HP(Q) x H"°(Q) — R) from Definition 5.2

18 continuous .
Proof: Let (u, ), (v,7) € H(Q) (vesp. (u,@), (v,7) € H”()). Then
1b((u, @), (v,9))] < ol lVulll 2 [IIVolll2 + (41)

max {ssgg{zi_l(s)}} (il /r lu(s) — ug||v(s) — Ui|d8> :

1

We decompose term I of equation (41) into the sum

l
I < Z / | |u<s>||v<s>|ds; + (42)

7

[ [ [
3 / fu(s) ferldS + 3 / il [o(s)[dS + 3 / g i S,
i=1 7T i—1 7T —Jry

117 1V |4
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and estimate each term separately.
|u(s)] [v(s)|
wax {p(s)?} [
seUimy T Ui, T

C||U||L2,p—1(ag)||U||L2,p—1(ag)
C'ully vl

11

IN

NN

. (43)

where the last equation results from the trace theorem 4.1.

/. . (Zxr |vz|)

=1

117

1 1

’ u(s)? .\°
= ser&a}fr tps) </U1 L Z;Xr )i dS) (/l I p(s)? d8>
! 3
< C(Zlnl”;) ||u||L2,p*1(aQ)
i=1
! 3
< (Zﬁ) lully, - (44)

=1

Term I'V can be estimated analoguous to I71.

1 1
1 ! 2 ! 2
D Milluillvil < max [Ty (> |uil? > il (45)
i=1 el et} i=1 i=1

It follows immediately from Definition 5.1 and Equations (41) - (45) that each term
of the decomposition (41) and (42) can be estimated by C||(u,@)||;||(v,?)]|;. for a
fixed positive constant C'. To be more precise, the estimate

b ((u, @), (v, 7)) < C* max{[lollo, max 2 o gy HI (s @ (0, )

is valid for a fixed positive constant C’. [

If constant functions are allowed to belong to the Hilbert space of solutions,
then the boundary value problem is solved by the sum of any solution and any
constant function. In order to get existence and uniquenes results for solutions
to the boundary value problem, we have to establish appropriate normalization .
Therefore we introduce the following subspaces.

Definition 5.8 Let A := {i1,---,i,} C {1,---,l}. Then define the spaces of solu-
tions

Hf\ () := { (u, @) € Hf(Q Zm}m =0 (46)
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and
lo
H(Q) == (u, @) € HP(Q) | Y |Tyfug; =0 (47)
j=1

where the Hilbert spaces Hf () and H"“(Q) are defined in 5.1.

In the following, we verify the assumptions of Lax-Milgram’s lemma . Bilinear-
forms satisfying ii) of Lemma C.1 are called coercive or elliptic .

Theorem 5.9 Let Q be a (possibly unbounded) domain with a locally finite Lip-
schitz boundary (see Definition 2.9) disfigured by | electrodes stucked into Q such
that there exists an extension operator F : HYP(Q) — HYP(R") (resp. F :
HYP(Q) — HEP(R™)) (see Definition 3.4). Let p(z) := (1 + |z|)* be a weight
and A :={iy,--- i,y CA{L,---,l}. Furthermore, assume a conductivity distribution
o : Q — Ry and contact impedances z; : I'; — Ry such that there exist constants
0<e<C < oo, where

c<o(zx) <C VreQ and
c<z(s) <C Vsel; foreach i€ {l,---,l} (48)

holds. Then, if « > n/2 the bilinear form b : HﬁA(Q) X HﬁA(Q) — R (resp.
b: H{\(Q) x H)(Q) — R) from Definition 5.2 satisfies the assumptions of Laz-
Milgram’s lemma (Lemma C.1). If n > 3, n/2 > o > 1 and Q is such that
p~t & L*(Q), then b : HP(Q) x H(Q) — R satisfies the assumptions of Laz-
Milgram’s lemma, too.

Proof: Theorem 5.5 leads in all cases to the inequality

!
l(u, @) < C’ (IIIVUIII%z(m +Z/ (u(s) —Ui)2d8> (49)
i=1 /1

for all (u,@) € H\(Q) (resp. (u,d) € H/\'(Q)) and a fixed constant C' > 0.
Equation (48) and (49) lead directly to the coercivity esimate

(12 ! 1 2 l -1 .
@ < C'max{1,C) (/Qa(x)|Vu(x)| dz +§;/F 27V (s) (u(s) —ul)2d8>

- ma,x{%, CYo((u, @), (u, 7)) (50)

and therefore condition ii) of Theorem C.1 is verified. Condition i) (i.e. continuity
of the bilinearform b) is satisfied due to lemma 5.7. It remains to prove that g; is
a continuous functional on Hf,(Q) (resp. H/(Q)) which follows easily from the
Cauchy-Schwarz inequality. 7 ’ [ |

Applying Lax-Milgram’s lemma, now we are able to prove existence and unique-
ness for solutions to boundary value problems with respect to the Complete Elec-
trode Model for a large class of bounded and unbounded domains. Nevertheless in
the following, we would like to restrict the theory to (unbounded) geophysical do-
mains in order to prevent the formulations from unnecessarily blowing up. It should
be stressed that the following results remain true in the case of bounded domains.
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Theorem 5.10 Let Q be a (possibly unbounded) geophysical domain and A :=
{i1,--,i,} C {1,---,1}. Further, let ITeRr satisfy Equation (25). Then there
exists a unique weak HJ , (Q)-solution to the boundary value problem (13), (14), (15)
and (16). ’

In addition, there exists a mapping L : R — H{jA(Q) defined by L(f) = (u,4),
for all I € R satisfying Equation (25), where (u,@) is the unique weak solution
to the boundary wvalue problem. The mapping L is continuous and bounded by
C'max{1,C}, where the constants are the same as in Equation (50).

Remark 5.11 By choosing a set A = {i1,---,4;,} C {1,---,l}, we set up a nor-
malization for solutions to the boundary wvalue problem. FEquation (46) and (47)
state that the mean value of certain electrode voltages must vanish. The special case
A = {ip} for a number 1 < iy < I leads to the normalization, where the voltage
of one fized electrode is set to zero. Such an electrode is called ground or reference
electrode .

If we consider the case n > 3, n/2 > a > 1 where Q is such that p~' ¢ L?(Q),
then we get unique solutions in H{”“(Q) due to Theorem 5.9 and Lemma C.1, where
every solution is normalized by setting its values to zero at infinity.

5.5 The parameter-to-solution map

In this subsection the parameter-to-solution map is introduced. This map is of
special interest for solution techniques to the inverse problem and it maps conduc-
tivity distributions and contact impedances to weak solutions to the boundary value
problem.

For the remainder of this section, we consider (unbounded) geophysical domains
Q with [ electrodes stucked into and weights p such that the assumptions of Theorem
5.5 are satisfied.

First of all, we have to choose appropriate (space of function) domains for the
parameter-to-solution map.

Definition 5.12 Denote that part of the boundary, having contact with the i*" elec-
trode by I';. Then define the parameter space

Py :={(0,21,...,21) € L®(Q) x L®(T'1) x --- x L°(T}) | 3s > 0:
s<oaeinQands<za. e inl;foreachie {1,...,l}} (51)

and the norm
I 21,2y = max { ol ooy 21 ooy Doy ) (52)
Furthermore, we use the abbreviation
(0,2) = (0,21,...,2])-

Now we are ready to define the parameter-to-solution mapping. Therefore, we
fix some I € R such that 22:1 I; = 0 and we select an arbitrary set of parameters
(0,7Z) € Py. This data constitutes a boundary value problem and the weak solution
to the problem is chosen to be the image of (o, Z) under the parameter-to-solution

mapping.
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Definition 5.13 Fiz I € R such that Z;Zl I; =0 and let (0,2) = (0,21,...,2) €
Pyr. Then the boundary value problem

g7((v, 7)) = b((u,ﬂ'),(v,ﬁ')):/Qa(x)Vu(x)Vv(x)dx +

l
. —u;)(v(s) — v
S [ A0 —uots) —w)as )

for all (v,7) € HﬁA(Q) has a unique solution (u,d) € Hl’jA(Q) (due to Theorem
5.10). The map

Ai((0,2)) :== (u, 1), Ap:Py— HﬁA(Q) (54)

1s called parameter-to-solution map . In the following, we need a slightly modified
version of the map Ay. If we replace z;l by z; in equation (53), the unique solvability
of the boundary value problem is preserved and we can define another parameter-
to-solution map where the contact impedances appear in terms of conductivities and
not in terms of resistances.

Bi((0,2)) := (u,i), Bjy:Py— HﬁA(Q), (55)

where (u,@) € HJ () is the unique solution of

l
9A(v,)) = /Q oVl Vela)ds + 3 /F A)(s) o) ~ )5, (6)
for all (v,7) € Hf\(Q).

5.5.1 Fréchet-differentiability of the parameter-to-solution map

To calculate the Fréchet-derivative of A we have to decompose the map Ay into B
and a simple map which provides the transition from z; to z;” L. Then we have to cal-
culate the derivatives for each map separately. The resulting formula for the Fréchet-
derivative, where € is a bounded domain with smooth boundary, can be found in
[JS97] without proof. For calculating the Fréchet-derivative of the parameter-to-
solution map By : Py — H l’j A(£2), we use a technique introduced in [Cal80]. First
of all, we fix some notation for the isomorphism from Hf, () to its dual Hf ()",
induced by the bilinear form, determined by the right hand side of Equation (56).
To simplify notation, when using operator norms, we ommit subscripts indicating
the type of an operator norm.

Definition 5.14 Let the general assumptions on the domain and the weight be sat-
isfied and let (0,Z) € Px. For every (u,d) € H\(Q) define the linear functional
Ly, 7y(u, @) by the formula

(Lo (1, @) (0,5) 1= /Q o(2)Vau(z) Vo(z)dz +
!

/1“- zi(8)(u(s) — u;)(v(s) —v;)dS (57)

1=
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for all (v, %) € Hf (). Note that the terms z; (not z; ') occur in Equation (57).

Furthermore, define the linear operator Lz : H[\(Q) — Hf ()" by
(u, @) = L(gz7)(u,@). The inspection of the proof of Lemma 5.7 provides the es-
timate

| (L(o,2) (u, @) (v,9)| < Cli(e, 2) |5l (w, DIy | (0, T, (58)

Therefore, L(q 7 (u,u) € HlpA(Q)* and its operator norm can be estimated from
above :

(12020 Dl oy =) Voo D < Clo DI D 69)

Remark 5.15 The operator L, z) : Hf \(Q) — HY,\ ()" is continuously invertible
on HlpA(Q)*. Its inverse is denoted in the following by L(;lz)' Furthermore, the

estimate
11 1
L7} H< M= —=,...,=
H (0,2)|| = ¢ o’ 217 ’ 2 A (60)
1s satisfied.
Proof: Theorem 5.5 provides the estimate
!
(@7 < C { NVulllf2@) + Y | (uls) —wi)*ds |, (61)
i=1 /1

which leads to

l
_, 1 1
I} < 0<H;H lolVulla + 30|15 [ %(s)(u(s)—ui)?ds)
o) i=1 ? lloo i
1 1 1
< = -, ..., = L 74 i). 62
< 0|(Grt)| enmn) wa (62)
Now an application of Lemma C.1 finishes the proof. [ |

Lemma 5.16 The linear operator L.y : Py — L(H!\(Q), H  (Q)") is continuous

oy

as well as the nonlinear operator L(_.yll) : Py — L(HﬁA(Q)*,HﬁA(Q)) .

Proof: Equation (59) provides ||L(,z)|l < Cll(0,Z)|y. Let (0,2),(c',Z") € Pa.
Then we have the following estimate :

1Lz = Ligr )l = 1L 2y Lo,z = Lio,2)) Ll (63)

123 L 2y = Lo LG

11 1 11 1
o a”z'l"“’zl’

where we have used Equation (60). If (¢/,Z') and (0,Z) are uniformly strictly
positive, i.e., if there exists a real constant 0 < c¢g such that ¢y < 0,21,...,2 and
co < 0',21,...,2, then the last equation is sufficent for proving continuity of L(_.l.).
[ |
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A

A



5 THE COMPLETE ELECTRODE MODEL IN GEOPHYSICS 26

Lemma 5.17 Let (0,Z) € Py be a point and let (u,i) = Bp(o,Z). Then the
mapping

(®Bf(o7 Z)) (7 ) = _L(;l’Z)L(,)(uvﬁ) (64)
is the Fréchet-derivative of By at (0,7Z) .

Proof: Continuity of the mapping L. .)(u, @) : Py — H/f, ()" is due to Equation
(59) and therefore the estimate (60) now provides continuity of the composition
—L(_UI,Z)L(.,.)(U, @). Proving linearity of (DByo, Z)) (-,) is trivial and it remains to
show that the asymptotic estimate (123) of Definition C.2 holds.

Let ¢ > 0 be such that the open Ball B.(0,Z2) =
{(,Y) e Py |||(1,Y) — (0,2)||, < e} is contained in Py. Let (7,Y) € B.(0,Z) and
(6,A) :==(7,Y) — (0,7). Note that (u,d) = L(_(T{Z)(gf), set (y,9y) = L(_Tfy)(gf) and
let (w,w) := (y,¥) — (u,@). Then it follows

L(O’,Z) (U’7 ﬁ) = L(T,Y) (U’ + w, i+ u_;) =
Ligy6,7+2) (U, @) + Ligis z4n)(w, W) = (65)
L(U,Z) (U’7 ﬁ) + L(U,Z) (wv u_;) + L((S,A)(”? ﬁ) + L(é,A) (wv u_;)a
where we have used the linearity of the operator L. ). Therefore we get
0= Lisa)(u, @) + Lo, z)(w, W) + Lsa)(w, @), (66)

which actually is an operator equation in Hf,(Q)*. Since L,z : Hf,(Q) —
H} A(Q)* is continuously invertible, (see Remark 5.15), we are allowed to apply
L(*Ul’z) on both sides of Equation (66). Therefore the identity

(Idw;jA(Q) + L(;{Z)L(é,A)> (w, W) = —L@{Z)L(a,m (u, @) (67)

holds. If we assume ||L(_01Z)L(5,A)|| < 1, where ||-|| denotes the operator norm in

L(H} ,(2)), then the left hand side of Equation (67) is invertible and we get a
Neumann series representation :

[e.e] .
— — J — —
(w, @) = Z (‘L(UTZ)L(&AO (‘L(UTZ)L(&A)> (u, )
§=0
= [ (—L(U 2L, A)) (u, @). (68)
j=1
Since ||L(_01’Z)L(5,A)|| < ||L(_01’Z)||C’||((5, A)l|y, due to equation (59), we see that for

sufficiently small ¢ the Neumann series converges and we are able to verify the
estimate :

|Bi(o +6,Z + A) — Bi{o,Z) — (DBj(o, Z)) (6,A) ],
|t w4 ) = () L Ly (.|
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= i (_L(_UTZ)L(&A))]' (u, )

Jj=2 1

IN

TN i LR g NI

Texalt |
IS

~

1

IN

(69)

g

_ 2
C2Lg ) I, AR =

Since fraction I remains bounded as ||(J,A)|, — 0, we conclude that the left
hand side of the estimate (69) is of type o((d,A)), thereby establishing Fréchet-
differentiability of the operator Bj. [ |
Now we consider the mapping p which provides the transition from z; to z; L.

JV PA — PA
M(U,Z) = (072;17"'7zf1)' (70)

Proposition 5.18 The mapping u : Py — Pp (defined by Equation (70)) is differ-
entiable if all z; are strictly positive. .

Proof: It suffices to prove that each component u; of the mapping p is differentiable
(see Lemma C.5). Furthermore, each component is differentiable if and only if all
partial derivatives D, exist and are continuous (see Lemma C.6). Therefore we
calculate the partial derivatives.

i) 1 #£ g :>®i/l,j:0;
i) i=1,j5=1 w(o,z1,...,2) =0 = Dy = Id;

. 2 where —z; 2 has to be understand as a linear
mapping which takes a function h € L®(I;) to —h/z? € L>°(T;). It is an easy
exercise to verify that the mapping —h/z? is the Fréchet-derivative of 1/z;
with respect to the ||| -norm (alternatively one may use Lemma C.8) and
that z; — —h/2? : L®(Q) — L(L®(Q)) is a continuous mapping if in both
cases z; is strictly positive.

i) i > 1,4 = j: = Dy = —2;

[ ]
To summarize the previous calculations, we write down the formula for the Fréchet-
derivative Dy :

(Do, Z)) (6,A) = (6, 61272, ..., =61z 2) . (71)

We have Ay = Byo p and the Fréchet-derivative of Aj is calculated by applying the
chain rule (Theorem C.4) .

(DA[_‘(U? Z)) (6? A) = (DBf(M(Ua Z))) 0 ((DN’(U? Z)) (6? A)

= (@Bf(a,zfl,...,zfl)) (5,—61zf2,...,—6lzf2)
1 .
- _L(U,zl_1,...,zl_I)L((S,fﬁlzfz,...,f&zfz) (u7 u) (72)
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To calculate a perturbation of first order (u’, @) = (DA(o, Z)) (6, A), we therefore
have to solve the problem

0 =0 i
L(U,zfl,...,zfl)(u » U ) = _L(5,761z1_2,...,751zl_2)(U’7U’)7 (73)
which is equivalent to

b((,@),(0,7) = (74)
L bils)
- /Q Wquer; /F l

2i(s)?2
for all (v,7) € Hf () and agrees with the Fréchet-derivative presented in [JS97] for
bounded domains and constant contact impedances. Note that (u,@) € H, () is
the solution of the unpurturbed boundary value problem, i.e. it satisfies the equation

b((uvﬁ)7 (’U,’l?)) = gf((vvﬁ)) )

(u(s) —ui)(v(s) — v;)ds,

for all (v,7) € H ().

5.5.2 Analyticity of the parameter-to-solution map

In fact, we are able to show that the maps p, By and A are infinitely often differ-
entiable (see Definition C.3). For Bj we show analyticity (see Definition C.10).

Proposition 5.19 The mapping p : Px — Py (defined by Equation (70)) is of class
C™ in Py (see Definition C.3). Let §',...,0" € Py and n > 2. Then the n'®

derivative of p at (z1,...,2;) is the n-linear mapping
Dnu : Py — L?(PA,PA) (75)
n!(=1)" ", 8 n!(=1)" ", &
(Dn,U,(U,Zl,...,Zl)) (517"'76n) = (07 ( in—ll—_lll_l 17"'7 ( zn}_l[ll l>7
1 l

where L?(Py, Py) denotes the Banach space of all n-linear, symmetric and contin-
uous functions from [[;, Pn to Px. Note that the first derivative is represented by
Equation (71).

Proof: For n = 1 consider Equation (71) and assume the assertion, i.e., Equation
(75) is true for n > 1. We consider each component (D"pu); of the mapping D"
separately. It is sufficient, due to Lemma C.6, to calculate the derivatives of the
partial mappings. We have to distinguish the following three different cases :

i) i #j: = Dj(D"u); =0 for all n € N.

ii) i = 1,5 = 1: Equation (71) shows that the first derivative D'y does not
depend on ¢ and therefore all partial derivatives of higher order must vanish,
i.e., particularly Dq(D"u) =0 for n > 1.
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iii) 4 > 1, 1 = j : We abbreviate the notation for the partial mappings
[D"ul; = P — Lg(Ty,Ty)
[D”,u]l(t) = (’Dn,u)z(a, ZlyeoeysZi—T1, t, Zidtlyeeey Zl).
From Equation (75) and Equation (71) it follows that

nl(=1)"T[?_, 6k
oy = ) i (76)

and since the i*" partial derivative of the i® component is given by
Di ((D"w)i) (0,21, ., 21) = D[D"uli(2i), (77)

we have to calculate the derivative of the right hand side of Equation (76). The
expression there is a product of the following two mappings : ¢ — [[;_, (Sf-C €
LTy, T;) and t — (n!(=1)")/t"*1 € L®(T;), where the first is a constant
mapping and therefore has a vanishing derivative. The derivative of the prod-
uct is calculated using the product rule of differentiation, Lemma C.7. Since
the derivative of the second mapping is (n + 1)!(—1)"*15/t"*2 (which follows
by induction from Lemma C.7 and Lemma C.8), the derivative of the product
is
(n+ (=1 "o ]T5_, oF
{n+2 '

(78)
Setting ¢7"! := §, the formula for the total (n + 1) derivative drops out
immediately.

Definition 5.20 Let E, F be Banach spaces, L*(E, F) the space of k-linear contin-
uous maps of Hle E to F. A k-linear map M € LF(E,F) is called symmetric if
for all permutations o € S,

oM =M (79)

holds, where oM is defined by (o M)(z1,- -, z) := M(2o(1), - - - To))- LY(E,F) C
LF(E, F) denotes the subspace of all symmetric k-linear maps. The symmetrization
operator S¥ : LK¥(E,F) — LE(E, F) is defined by

1
SEM = ol > oM (80)
oESy,
and has operator norm 1.
Lemma 5.21 The mapping
L3L(y s Pax Py — L(H[ () (81)

18 continuous as well as

Lfl

(L0 (U, @) 1 Py x Py — Hf\(9). (82)
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Proof: Let (0,2),(0',2"),(0,A),(8',A") € Py and assume (o, %), (c’,Z') to be
uniformly strictly positive. Then the estimates used in the proof of Lemma 5.16
provide

||L7: L@ .an = L(j,l,Z)L((s,A)” < ||L(’01,,Z,)||||L(5, Ay — Liayll +
||L(5,A)||||L(;1, - L, v ol
C'I(¢", A7) = (8, A) 1, +

16, M), C"|[ (", 2") —

IN

2, (83)

which is sufficient for proving continuity of the operator L )L( .)- The second as-

sertion follows immediately from the first since we have ||M(u, )|, < [[M||||(u, @),
for every continuous linear mapping M : H/, () — H}, (). [ ]

Lemma 5.22 Let E be a Banach space and F be a Banach algebra. Furthermore,
let f1,..., fn: E — F be continuous mappings. Then the mapping

1§ continuous, too.

Proof: Since the mapping z — (f1(x), ..., fn(z)) is continuous, the assertion follows
from the continuity of the product. [ |

Corollary 5.23 Let j be a natural number. Then the mapping

j
(Leh L) Pax Py — LH] A (9) (84)

as well as

j
(Lih L) () s Py Py — HEL(9) (85)

18 continuous.

Proof: Lemma 5.21 together with Lemma 5.22. The second assertion follows from
the first and the fact that ||M(u,@)||, < ||M]|||(u,@)||; holds for every continuous
linear mapping M : Hf , (Q) — H,(©). |

Lemma 5.24 Let E, F be Banach spaces and n be a positive natural number. Fur-
thermore, let f,f' : E — F and g1,...,g, : F — E be continuous linear mappings.
Then the estimate

n—1
1fg1-fgn — g fgnll < (Z ||f||’||f'||"_1_l> Lf = fNlgall- -~ lignll — (86)

1=0

holds, where ||-| denotes the appropriate operator norm.
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Proof: We use induction. The case n=1 follows immediately :

Ifgr = gl < ILf = fllllgl

Assume the assertion is true for n — 1. We have the estimate

lfg1-- fon _flgl"'flgnH <
Ufgl e fon1f — flgl T flgn—lfI|L||gn||- (87)
I

Term I can be estimated separately by

I = |[(f=fafoe- fanrf+Fafoe- fonrf
—flgr- flana(f = F) = florf'g2- - fgnr fll

< I = FMlgall = Ngaot LA+ 1170 +
VEIF Mgl g2 Fgns — Fg2- - F'gurll. (88)
T

Using the assertion for n — 2 we get

n—3 )
< (Z IIfIIiIIf’||”3’> 17 = £llgel -~ lgn-ll (89)

=0

Since
n—3 ) ) n—1 ) )
LA™ 1A+ S = ST, (90)
1=0 1=0

we conclude from Equation (87), (88) and (89) that the assertion holds even for n.
|

Definition 5.25 Let j be a positive integer. Then define the mappings

PA X HPA — L(HZPA(Q))

k=1
j
P ((0,2),(01,A1),..,(05,4y)) = H<_L(_61,Z)L(5k,Ak)> and
k=1
J
Pax[[Pa — H () (91)
k=1

(I’;u’ﬁ) ((07 Z)7 (517 A1)7 ) (6j7 Aj)) = (H <_L(glz)L(6k,Ak)>) (u, ﬁ)
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Lemma 5.26 Let j be a positive integer. Then the mappings ®;(o, Z) : Hi:l Py —

L(H} () and CD(U u)(a Z) : ?ﬁ:l Py — HJ () (see Definition (5.25)) are con-
tinuous. Furthermore if (0,7),(c",Z") € Py are uniformly strictly positive, then
the estimate

||q)J ((07 Z)7 (617A1)7- ) (5J7A])) - q)J ((UI7ZI)7 (617A1)7- ) (5J7A]))||
< COl(o,2) = (o', ZD)I A0, Ay - (85, A0 (92)

15 valid for a fized positive constant C. Therefore the mappings

®; : Py — L(Px, L(H[\()))
S7®; Py — Li(Py, L(H[ \()))
e Py — LI(Py, HY ()
SI\T Py Li(Py, HY () (93)

are continuous.

Proof: Continuity of the mapping ®;(c, Z) follows from Equation (59) and Equation
(60). Due to Lemma 5.24 we have

—1 1 1
1Ly Loran)  Ligrzy Loy a0 = Ligr g Lior,an) - Ligr gy Liasapll - (94)

J
_ —1—3 — _
S (§ ”L ” ||L /Z/ ||n l) ||L(0172) _L(o—l/’Z/)H”L((shAl)H ||L((5j,Aj)”'
1=0

Since (0, 7),(0',Z') € Py are supposed to be uniformly strictly positive, it follows

that | (3,2, 2]
o)z’ 2]

constant C. Then Equatlon (63), (59) and (60) lead to the assertion. If (¢, Z') € Py
is sufficiently close to (o, Z), then (0, Z), (o', Z') are uniformly strictly positive and
therefore the mappings defined by Equation (93) are continuous, too. To provide

H( 7 Z,, .,Z—>H are uniformly bounded by a positive

the previous results for the mappings <I>§ ’ )(a Z) and <I>§u u), additionally we have
to apply the estimate ||M (u, )|, < ||M]|||(u, @)|;, which holds for every continuous
linear mapping M : Hy\ () — H} (). It is immediately verified, that the estimate
(92) holds for the mapping S7®;, too. [

Lemma 5.27 The mapping
SZPA X Py _>H£A(Q) (95)
0o . j B
$((0,2),6,8)) == > (=L 5 Ly ) (s 3) (96)
Jj=0

18 continuous.

Proof: Let (0g,Zy) € Py, R > 0 sufficiently small, i.e., such that for all (o, Z) €
Br ((00, Zy)) and for all (5,A) € Br ((0,0)) ||L(*O}Z)||||L(5,A)|| < ¢p < 1 holds for a
real constant cy. Then we get the estimate

S (<13 b )| <3 [Ealy Lo | Nl < N al, S b ¢
J ;o I=0 Jj=0
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Therefore the series converges uniformly in Bg ((09, Zo)) X Br ((0,0)). Since each
term is continuous (due to Corollary 5.23), it follows from standard arguments that
the limit of the series is continuous, too. [ |

In order to apply the converse Taylor theorem (Lemma C.9), we choose the
symmetric maps S’®; for assembling the appropriate series. Since S7M (z,...,z) =
M(z,...,z) for any j-linear map M, it follows immediately from Equation (68) that

W) = (i) +Y 0" ((0,2),(5,4),...,(5,A) + (98)
J=1 i ti‘I'nes
B n+l [ & 3 j .
(-2 Eoa) (2% (~23Eoa) ) (u, @)
‘7:
= () + Y S0V ((0,2),0,4),...,(5,A)) +
J=1 i ti‘I'nes
an)n((07 Z)?S(;v A)? SRR (57 A)J) ( (71 )L((5 A)) S ((07 Z)7 (67 A))v
n times

—R((0,2),(8,A)) (8,A),..,(8,A))
where the mapping

R :Pyx Py — LY(Py,Hf\(Q)) s defined by (99)
R ((07 Z)7 (57 A)) ((617 A1)7 R (5717 An)) =
S Bl ) (01, 81), -, (0, An)) (— L 4 Lisay ) 8 ((0,2), (6,8)).

~

=¥(5,2),(5,4)
Using the abbreviation Wy . ), we get the estimate
|| (B( ,(6,4)) = R((", Z"), (5", A))) ((61, A1), .., (8, An)) (100)
< ‘ an’?g,z) ((01, A1), (0ny An)) ¥(5,2),5,0)—
S" Py 71y (01, A1), (6n, An)) ‘I’(a/,Z/),((sr,A/)Hl
< ‘ S"®L, 7 (61, A1), -5 (0 A) || |9 (6,2),6.8) = Yo7, 20), (5,80 ||, +

(502 = 5"y 20 ) (01, 80), -+ (5, An) |

H‘II(OJ>Z,)>(6,7A,)||I

n

) (@1, A 10ns An)lla [|W0,2),00.8) = V(o 2y, .80 |l +
T

H‘I’(a/,Zf),((s',A')||,C'l|(07 Z) — (o, Z')HAJ||(51,A1)||A o [10n, Ap) Iy -

~

7

Note that the map ¥ .. as composition of two continuous maps is contin-
uous, too. Since Term I and Il converge to zero as (0',Z') — (0,Z) and
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(0',A") — (4,A), we conclude, after dividing both sides of the estimate (100) by
101, A1) -+ (0, Ap)|l, and taking the supremum for (d;,A;) # 0, that the
mapping R ((o’,Z'), (8',A")) converges to R((0,Z),(0,A)) in L?(Py,H/\(Q)) as
(0',2") — (0,Z) and (0',A") — (4,A). Note that [[¥ i 7 5 anll is uniformly
bounded for sufficiently small (§', A’) and for (o', Z’) sufficiently close to (o, Z).
Therefore the mapping (99) is continuous. Moreover, the estimate

HR ((07 Z)7 (67 A)) ((617 A1)7 R (67“ An))” (101)

[ (u, @)]|
< O (01, Ay - ||(6n,An)||AC'||(5, A)”Al _ HL—I ||||£ I
(0,2) (6,4)

together with the uniform boundednes of the fraction in Equation (101) for suffi-

ciently small (9, A) provides ||R ((o, Z), (5, A))|| — 0 as (d, A) approaches 0. There-
fore, letting d; := j!Sj‘I)g»u’u) for j € {1,...,n}, we have verified all assumptions of

the converse Taylor theorem (see Lemma C.9), which leads to the following results.

Theorem 5.28 The mapping By : Py — HlpA(Q) s of class C™ for every natural
number n, i.e., it is of class C*. The n'™ derivative of By at (0,Z) € Py is the

(u,d) Py — Lg(PA,HﬁA(Q)). Furthermore, By is analytic.

mapping j!S’j(Dj

Proof: It remains to prove analyticity, which follows from the decomposition

(y,7) = (uﬁ)+ZSJ¢§“’E)((U,Z)£5,A)7...,(5,A)) (102)

J

J=1 j times

and the fact that

—~

103)

F8((0,2) (3.4)..... 6. A)| <l D) (|25 [1Ewa]) -

~
j times

Corollary 5.29 The mapping Ay : Py — HlpA(Q) s of class C™ for every natural
number n, i.e., it is of class C.

Proof: Theorem 5.28, Proposition 5.19 together with Theorem C.4. [ |
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A Properties of the function spaces

Lemma A.1 For any Lipschitz continuous transformation T : Q@ — R", whose
inverse T~ : T(Q) — Q exists, and for all measurable functions f : R* — R, the
change of variables formula

/foT|JT|dac _ / fdz (104)
0 T(Q)

s valid, where  C R" denotes an open subset and Jr denotes the jacobian of T,
i.e., Jp = detT'(z).

Proof: [Rud87] Th. 7.26, Lemma 7.25 together with Rademacher’s theorem (see
[Zie89] Th. 2.2.1). n

Lemma A.2 Let Q,Q C R be domains and T : Q@ — Q' a bijective map where T
and T~' are Lipschitz continuous. Then the pullback operators
«T: HLP(Q) = HYPT(Q), ur— uoT and
Tt HYPT(Q) = HYP(Q), ursuoT™!

are continuous and therefore HLP(Q) = HL,°T(Q) . An analoguous statement for
the spaces He'P () holds, too.

Proof: Let ¢ € C°°(2) and [|¢]|, , < oo. We estimate each component of the norm

1,2
TGN, por = o T (p o T) M2y + IV (¢ DlI72(q) (105)

I 7

separately. For the first term Lemma A.1 is applied :

1= [(@)ot@ds = [ (#07?) @r(@)lds
Q ()
< CuLip{T o™ faey-

As an easy consequence of Rademacher’s theorem (see for example [Zie89] Th. 2.2.1)
we conclude that T;, 0;T; are measurable, 0;T; exists and |0;T;] < Lip{T'} al-
most everywhere. It follows also from Rademacher’s theorem that 0; (¢ o T'(z)) =
> 7=10i¢(T'(2))0;T; holds pointwise almost everywhere in 2. Therefore we get the
estimate

; [¢] LEQLE nn 1 IQ"I2I‘
[ otgor@)tas < ;/Qaw( ))? 01T (2)%d

IN

nlLi 2" 0:b(x) 2| Jr—1 (2)|dz
Lip{T} j;/m (2)| I ()]

IA

nCoLip{TPLip{T " }" IVl }2 (s



A PROPERTIES OF THE FUNCTION SPACES 36

which leads to
I+11<Cm,D4l,,, (106)

where the constant C'(n,T) depends only on the space dimension n and the Lipschitz
constant of T'. Now the inequality

KT Iy, por < Cn, TH 4]y, (107)

extends by continuity to all functions ¢ € H-#(Q) (resp. ¢ € H'"()). ]

The following two Lemmas can be found in [Jan86]. For convenience we present
entire proofs for the assertions made there.

Lemma A.3 Let ' C R" be a domain, p a translation and dilation invariant
weight (see Definition 2.1) and T'(x) := Ko(x — xo) for a constant Ko > 0 and some
zg € R". Then the pullback operator T provides the isomorphism
«T : HP(Q) = HYP(T(Q)),
(resp.« T : H-P(Q) = HLP(T(2))).
Proof: Lemma A.2 yields the isomorphism HU? (T(Q)) = HL*°T(Q) (resp.
HE? (T(Q) = HEPT(Q)) and it remains to prove HY2°T(Q) = HL#(Q) (resp.
HEPT(Q) = HYP(9)) which follows directly from the translation and dilation in-
variance of the weight p (see definition 2.1). ]

Lemma A.4 Let Q,Q C R" be domains, p(z) = (1 + |z|)* a weight (o > 1) and
T:Q — Q a bijective map such that T and T~ are Lipschitz continuous.
Then the pullback operators

*T: HLYP(Q) — HYP(Q), ur—uoT and
«T~1: HYP(Q) — HYP(Q), uruoT ™!

are continuous and therefore the relation HP()') = HY?(Q) holds. The statement
remains true if the spaces H?(Q) are replaced by Hy'? ().

Proof: Lemma A.3 allows us to assume without loss of generality 0 € Q N Q.
Because T and T~! are Lipschitz continuous we can find a constant M > 0 such
that M~!|z|| < ||T(z)|| < M]z| holds for all z € Q. Since p is increasing in ||z||
(which means p(z) < p(y) if ||z|| < ||lyl|), we have

p(M~'z) < p(T(z)) < p(Mz) forallz € Q.
The translation and dilation invariance of p provides constants K7, K5 such that
p(z) < Kip(M'z) and K,'p(Mz) < p(z) for allz € Q.
For K := max{Ky, Ky} it follows
K 'p(z) < p(T(z)) < Kp(z) for all z € Q.

Due to the last inequality we conclude Hb#°T(Q) = HL2(Q) (resp. Ho'"T(Q) =
HE (). The case T~ is treated analoguously and Lemma A.2 finishes the proof.
|
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Lemma A.5 Let Q be a domain. For u € H“P(Q) (resp. u € HeP(Q)) (see
Definition 2.5) the following statements hold :

i) u is a measurable function and up~* € L?(12),

i) there exist functions O;u € L*()) such that

/ (Ou)pdr = —/ (Oip)udz  for all ¢ € D(Q) (108)
Q Q
for each i € {1,---,n} (i.e. the O;u are the distributional derivatives of u,).

Proof: Let {uy},cy be a Cauchy-sequence (with respect to the norm |[-[|; ))
of infinitely differentiable functions.  Since ||(un — um)p~!|| 2 — 0 and
IV (un = um)lllp2@) = 0 as m,n — oo, we know that there exist functions
g,9; € L*(Q) such that ||Un,071_g||L2(Q) — 0 and for each i € {1,---,n}
[0iun — gill 12(0) — 0 as n — oo. The function u := gp € L% . is a regular Distri-
bution (since p is measurable and bounded on compact subsets). For any compact

subset K C 2 holds

(max{p(m)}>2 /K (up —u)? < /K (tn —u)*p2dz < flunp™" = gl 120

reK
and therefore we have
lun —ull 2y =0 asn — o0

for every compact subset K C €. Letting ¢ € D(Q) and K := supp(¢) we finally
conclude

/ w(0jp)dx = lim [ wu,(0ip)dx = — lim [ (O;up)pdx = —/ gipdx.

Setting d;u := g; therefore finishes the proof. [

Lemma A.6 Let 2 be a domain, {¢c} ., a Dirac-sequence (i.e. ¢. € C§°(B(0)),
$e > 0 and [pn de(x)dz = 1 for all e > 0), K C Q a compact subset, 0 < 7 <

1/2min{1,dist(K,00)}, K; := U, (K) the closed T-environment of K and

ul (2) = (xp,u) * de(z) = (z =) (X, W)uly)) dy. (109)

be
RTL

Then foru € WHP(Q) (see Definition 2.6) we have ug € C®(R")NL*(R"), dug, €

C™®(R™) N L2(R™), lim,_,o l[ufe —ull — 0, limeo [lu, — u||W1 — 0 and

Wt e(K) (K)

Oy, (z) = (Xx, Oiu) * pe(z) forallz € K. (110)

Proof: The assumption up~! € L?(Q) and the inequality

/TUQ(w)dw < (;relf}(x {p(ﬂc)})2 o™ ull 20
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provides x, u € L?(R"). The well known convolution theorem therefore states
ut, € C°(R") N L*(R™) and du’. (z) = (X, u) * (0ide) (z).

Kr

Now let € < 7 and z € K. Then the function ¢.(z —-) € D(Q), supp(¢e(z —)) C
K, and because d;u is the distributional derivative of u we are justified to apply
integration by parts :

oy 0) = [ @bl =) (v 0)u(w) dy
=~ [ 8o =N Wutwiy

- / bl — y)Bsuly)dy
Q

_ / de(z —y) (xpe. (¥)Buly)) dy

= (X, Ot) * () ().
Since dju € L*(9), it follows dju’, € L?(K) N C*®(R"). Furthermore, we have
”ui{r - U'HLQ(K) (XKT u) * (:be XKTu”LZ K)
(XKTU) * e — XKTUHLQ ®n) 7 0

and similarely
||aiU2,T - alulle(K) S || (XK.,-alu) * Qse - XKTaiullLQ(Rn) - O

as € — 0 which leads to both

lim ||u€ —uH =0 and hmH —uH =0,

e—0 || K7 W1(K) s WL e(K)
because we have ||p*1(u27 —u) ||L2(K) < C;(QH(ufK u)||L2(K) for Cx :=
minge g {p(z)}. ]

Theorem A.7 For an arbitrary domain Q the relation H?(Q) = WH?(Q) (see
Definition 2.5 and Definition 2.6) holds.

Proof: i) H"*(Q) c Wh?(Q) : This is essentially the statement of Lemma A.5. ii)
Whr(Q) c H"?(Q) : Using lemma A.6 the proof works analoguous to a standard
proof for unweighted Sobolev spaces, therefore we present only a brief sketch :

Cover € by at most countably many bounded sets U; such that U; C . Then
there exists a locally finite partition of unity {7;};. subordinated to the covering
{Ui},cn- Lemma A.6 provides functions u; . € C°°(R") such that

. 1
i = ullgroor » N — tllany < €27 max{L, Ik )
holds. For ue := ) ;- nitti,e € CF(R") we get

Hpil (u —u ”L2 < Z ||P i uz € U)HLZ(ﬁi) <e€
€N
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and
10 (ue = w2y < D10 (i (wie = ) 2y
ieN
< D N0mi (wie = w)ll oy + 1305 (e = )l oy < 26,
ieN
which leads to [[ue — ul[y1.0q) < (Vdn + 1)e. [

Corollary A.8 Let u € HYP(Q). Then the claims of lemma A.6 concerning the
reqularization of u remain true.

Proof: Theorem A.7 provides HL2(Q) = WhP(Q). Since HZP(Q) C HLP(Q),
Lemma A.6 can be applied to u € Hy'? (), too. [

Corollary A.9 Letu € WHP(Q) (see Definition 2.6) and supp(u) a compact subset
of Q. Then u € H>P(RQ).

Proof: Let 7 := 1/2min{1,dist(supp(u),0Q)}, K := U, (supp(u)) and apply
lemma A.6 to generate a sequence of functions {u,}, .y such that u, € C§°(€2),
supp(u,) C K C Q and lim, o ||u — un||W61,p(Q) = 0. ]

Corollary A.10 Let Q be an arbitrary domain, u € H-?(Q) or u € HE"(Q) and
diu(z) =0 for almost every x € Q and for all i € {1,---,n}.

Then there exists a constant cg € R such that u(z) = ¢y for almost every x € .
Additionally, if Q has a locally finite Lipschitz boundary OS2, then the well defined
boundary values are also constant : (y(u)) (s) = co for almost every s € 9Q. (For
properties of the trace operator vy see Theorem 4.1).

Proof: Let {K;},.y be a countable compact exhaustion of €, i.e., K; CC Q, K; C
Kii1, K; compact, and (J;cy K; = 2. Then lemma A.6, corollary A.8 and theorem
A.7 provide for each K; constant regularizers :

u; € CP(R"), ui(z) = const Vz € K, lg% llui = wllp2(x,y =0, (111)

since Equation (110) implies 0;u$ = 0 for all j € {1,---,n}. Therefore, we conclude
that there exists a constant ¢y such that u(z) = ¢ for almost all z € K;. Further,
we conclude by induction that ¢y is the same constant for all K;, ¢ € N and therefore
u(x) = ¢o for almost all z € Q.

To deal with the trace operator, we consider the sequence wu;(z) := ¢ for
all z € Q and verify immediately [lu; —ul|; , = 0. Hence, Theorem 4.1 implies
() =YW}y = llco = ()51 < llus =l , = 0. Particularly, this
leads to ||p~!(co — (W)l 1290y = 0 and therefore (y(u)) (s) = co for almost every
s € 09, [

Lemma A.11 Let Q be an arbitrary domain such that there exists an extension
operator F: H“P(Q) — HYP(R™) (see Definition (3.4)). Then

Ly,

HYP(©9) = {f e C=@) | |fll,, <o} . (112)
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— 1111,
Proof: It is clear that the inclusion {f e =) [Ifll,, < oo} " c HY7(Q)

is valid. Therefore let v € H%“?(Q2) and apply the extension operator to pro-
vide F(u) € HY?(R"). Then there exists a sequence {u,}nen such that u, €
C(R") and limpeo [|F(w) — unllyro@ey = 0. It follows immediately that
limy, o0 [lu — unlﬂllwl,p(ﬂ) = 0. u

B Boundary-Integrals, Gauss’ theorem

Corresponding to [A1t92] we use the following definition of integrals along Lipschitz
boundaries.

Definition B.1 Let Q be a domain with a Lipschitz boundary 0Q (see Definition
2.9), {Ui};en the corresponding covering of 02 and {¢;};cn a partition of unity
subordinated to the boundary covering, i.e., such that supp{¢;} C U; for each i € N.
A function f: 0Q — R is called measurable resp. locally integrable if the functions

y = fo AT (Y aily') fory' € Uy (113)

are measurable resp. integrable, where we have used the notation y' := (y1, -+, Yn—_1)
and A; from Definition 2.9. The boundary integral is defined by

ds = i fdS. 114
mf gmw (114)

If supp(f) C U; the boundary integral is defined by

[ gasi= [ o AT a1+ Vasty) P (115)

Spaces of integrable functions on the boundary 02 are defined by
L2(09Q) :== {f : 002 — R f measurable and || f[| ;2(50) < oo} (116)

where

ey = ( [ 11Pas)” (17)

Remark B.2 i) Since the map |Va;(+)| : Uy — Ry is bounded and measurable, the

same holds for the term \/1+ |Va;(y/)|* in Equation (115). Therefore the integral
in Equation (115) is well defined.

ii) The definition of the boundary integral by means of Formula (115) is independent
of the boundaries’ representation by the Lipschitz function a;. If there is another
function b; and another coordinate transformation B; such that

(Ui ﬂ@ﬂ) = Ai_l ({276 R? | y, € Uou Yn = ai(y,)})
= B;1 ({376 R™ | Y €Uy, yn = bi(?/,)}) )
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(see Definition 2.9) then for each f for which holds supp(f) C U;, the equation
/ fo AT Y ai(y)\/1+ [ Vaily)Pdy' =
Ua

. o By bi(y)y/ 1+ [Vbi(y)*dy’ (118)

is valid. A proof can be found for example in [Alt92].

Theorem B.3 Let Q be a bounded domain with a Lipschitz boundary 0Q2 and u,v €
HY2(Q). If p is strictly positive, then for each i € {1,---,n} holds :

/ (u0jv + voju)dx :/ uvv;ds. (119)
Q [219)
Proof: Theorem A 5.9 in [Alt92] combined with Remark (2.8). ]

C Functional analytic tools

The following lemma, of Lax-Milgram can be found in various books. For example
in [Alt92], [MR93].

Lemma C.1 Let X be a Hilbert space and let
b: X xX—>R (120)

be a bilinear form such that there exist positive constants ci,co € R for which the
following is satisfied :

i) [b(z,y)| < allzlixllylly  forallz € X and y € X,

i) co|z)|3 < b(z, ) forall z € X.

Then for every g € X* (i.e., for every functional g on X ) there exists a unique
x € X such that
b(z,y) =g(y) forally e X. (121)

The mapping L : X* — X, defined by L(g) := x, where x is the unique element in
X satisfying (121), is linear, continuous and continuously invertible. Additionally,
the following estimates for the operator norms are valid :

1
Il <— and L7 < (122)

Definition C.2 Let X,Y be two Banach spaces, U C X an open subset and f :
U —Y a mapping. Then fis called (Fréchet-)differentiable at x € U if there esists
a continuous linear map Df(x) € L(X,Y) with the property that

o 12 1) = 7(@) = (D @)Wy

h=0 I[P/l x

If f is differentiable at each x € U and the mapping x — Df(x) : U — L(X,Y) is
continuous, f is called continuously differentiable or of class C.

=0. (123)
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Definition C.3 Let X,Y be two Banach spaces, U C X an open subset, f : U —Y
a mapping and n > 1 a natural number. Then f is called of class C™ if

D" :=D(D"'f):U - L"(E, F) (124)

exists and is continuous. Note that the identification L™(E,F) = L(E,L" Y(E,F))
holds. The space of n-linear maps (see Definition 5.20) is normed by

Azl |
14l :=sup{
ol T

If fis of class C™ for each n € N, then f is called of class C*°. Further details
can be found in various textbooks on functional analysis, for example in [RA83] and

[Lan93].

Ty # 0}. (125)

Theorem C.4 Let X,Y, Z be Banach spaces, U C X open, V CY open andx € U.
Assume that f : U — V is (Fréchet-)differentiable at © and g : V — Z is (Fréchet-
)differentiable at f(x). Then go f is (Fréchet-)differentiable at x and

D(go f)(x) = Dg (f(x)) o Df(x). (126)

Note that o in this formula denotes the composition of linear maps.
Moreover, if f,g are of class C™ for a natural number n, then go f is of class C",
too.

Proof: See [Lan93] Chain Rule in chapt. XIII, §3 and Theorem 6.5 in §6. ]

Lemma C.5 Let X,Y1,...,Y,, be Banach spaces, U C X an open subset, v € U,
fi: U —=Y; maps and f := (f1,...,fm). Then f :U — Y} x --- x Yy, is (Fréchet-
)differentiable at x if and only if each f; is (Fréchet-)differentiable at x. In this case
the formula

Df(z) = (Dfi(z),...,Dfm(z)) (127)
15 valid.

Proof: See [Lan93] Chain Rule in chapt. XIII, §3. [ ]

Lemma C.6 Let Xq,...,X,,,Y be Banach spaces, U; C X; open subsets and f :
U X+ x Uy — Y a mapping. Then fis of class C, i.e., particularly (Fréchet-
)differentiable, if and only if all partial derivatives D;f : Uy x -+ X Up, — L(X;,Y)

(i.e. the derivatives of the partial maps x; — f(x1,...,% ..., %)) exist and are
continuous.
Proof: See [Lan93] theorem 7.1. ]

Lemma C.7 Let X,Y1,Y5,Y be Banach spaces and let - : Y1 X Yo = Y be a con-
tinuous bilinear map. Furthermore, let U C X an open subset, f : U — Y, and
g : U — Yy be (Fréchet-)differentiable at x € U. Then the product map f - g is
(Fréchet-)differentiable at x and

D(f-g)(x) = Df(z) - g(z) + f(x) - Dg(x) (128)
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Proof: See [Lan93] Product in chapt. XIII, §3. ]

Lemma C.8 Let A be a Banach algebra with unit e, and let U be the open set of
invertible elements. Then the map x v+ z~' is (Fréchet-)differentiable on U. Its
derivative at xg € U s the linear map

A T (129)

Proof: See [Lan93] Quotient in chapt. XIII, §3. [
Now we present the very important Taylor theorem in functional analytic context
together with its converse.

Lemma C.9 Let E, F be Banach spaces and U C E an open subset. A map f :
U — F is of class C™ if and only if there are continuous mappings

d;j:U— LI(E,F), forj=1,...,n (130)
and
R:U xB.(0)— LY(E,F), (131)
for a sufficiently small ¢ > 0, such that

fx+h)=f(z)+ dl(:ﬁ(h) + dQ(x)Q(!h’ h) + .-

+W + R(u,h)(h,...,h), (132)

where R(u,0) = 0. Moreover, if f is C", then necessarily d; = Dif forjel,...,n.
Proof: See [RA83] Taylor’s Theorem and the Converse Taylor’s Theorem. ]

Definition C.10 Let X,Y be two Banach spaces, U C X an open subset, f : U —
Y a mapping which is of class C*°. Then f is called analytic if the Taylor series
di(z)(h) | da(z)(h,h) dn(z)(h, ..., h)

A T TR ! L

converges for all h € B.(0) for some real € > 0.
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