Universitidt Potsdam

Robert Braun, Fred Feudel, Parvez Guzdar

The route to chaos for a two-dimensional
externally driven flow

NLD Preprints ; 46



The route to chaos for a two-dimensional externally driven flow

R. Braun,! F. Feudel,"? and P. Guzdar,?
! Institut fiir Physik, Universitit Potsdam, PF 601553, D-14415 Potsdam, Germany
2 Institute for Plasma Research, University of Maryland, College Park, Maryland 20742

We have numerically studied the bifurcations and transi-
tion to chaos in a two-dimensional fluid for varying values of
the Reynolds number. These investigations have been moti-
vated by experiments in fluids where an array of vortices was
driven by an electromotive force. In these experiments, suc-
cessive changes leading to complex motion of the vortices, due
to increased forcing, have been explored [P. Tabeling et al., J
Fluid Mech. 213, 511 (1990)]. We model this experiment by
means of the two-dimensional Navier-Stokes equations with a
special external forcing, driving a linear chain of eight coun-
terrotating vortices, imposing stress-free boundary conditions
in the vertical direction and periodic boundary conditions in
the horizontal direction. As the strength of the forcing or the
Reynolds number is raised the original stationary vortex ar-
ray becomes unstable and a complex sequence of bifurcations
is observed. Several steady states, periodic branches and a
period doubling cascade appear on the route to chaos. For
increasing values of the Reynolds number, shear flow devel-
ops, for which the spatial scale is large compared to the scale
of the forcing. Furthermore we have investigated the influ-
ence of the aspect ratio of the container as well as the effect
of no-slip boundary conditions at the top and bottom, on the
bifurcation scenario.

47.20.Ft, 47.27.Cn, 47.54+1

I. INTRODUCTION

The transition to chaos from simple laminar flow to
chaotic flow is a fascinating phenomenon in nature. So-
phisticated experiments, with better diagnostics have
been set up to study this transition with the aim to
getting a better understanding of the underlying mecha-
nisms. From the theoretical viewpoint, bifurcation the-
ory provides a proper framework to describe and classify
these instabilities. In a series of papers, the linear stabil-
ity of two-dimensional Navier-Stokes flows with different
geometry [1-6] has been investigated. The application
of bifurcation methods to the NSE, which go beyond a
linear stability analysis, is a relative new area of research
and hitherto has only been applied to the simplest flows,
like the so-called Kolmogorov-flows [7-14]. The objec-
tive of the present paper is to apply methods of nonlin-
ear dynamics to investigate the qualitative behavior of
the two-dimensional NSE, driven by an external forcing,
which can be used as a model for experiments performed
by Tabeling et al. [15-18].

In these experiments the transition to turbulence in
a linear chain of electrically driven vortices was stud-

ied. By increasing the Reynolds number, which was con-
trolled by the strength of the applied current, variation in
the spatial structure and temporal evolution of the flow
was explored. Motivated by these experiments, numer-
ical calculations of the two-dimensional NSE were per-
formed by Finn et al. and Guzdar et al. in Refs. [19,20].
The formation of large scale shear flow patterns, which
could be interpreted as a consequence of the inverse en-
ergy cascade in two dimensions, was observed in these
theoretical investigations, in agreement with the exper-
iments. Independently, Nakamura has also studied the
transition to turbulence for such a linear vortex array
but using a slight different model [21]. He imposed no-
slip conditions for the lateral boundaries and introduced
an additional friction term modeling the influence of the
bottom. These investigations are aimed as comparing
the numerical results with the experimental observations
described in Ref. [22]. An analytical approach to model
these experiments has been proposed by Dauxois et al.
[23] using the Mallier-Maslowe vortex street [24] as an ex-
act solution of the Euler equations. They estimated its
stability both for the ideal and for the viscous situations
and discussed their results in relation to the experimental
observations.

The purpose of the present paper is to continue the
study of Guzdar et al. [20] but for the case of eight
driven vortices. As a model we have used the two-
dimensional NSE with periodic boundary conditions in
horizontal direction and stress-free boundary condition
in vertical direction. It should be noted that the ideal-
ized two-dimensional model cannot capture all details of
the experiment mentioned above, but it can demonstrate
typical features of fluid dynamics on its route to chaos.
The goal of the present paper is to examine the qualita-
tive changes employing special bifurcation techniques. In
Sec. IT we introduce the basic equations and explain the
forcing term, modeling the Lorentz force applied to the
electrolyte in the experiments. Then, in Sec. IIT we start
our investigations imposing stress-free boundary condi-
tions at the top and bottom. We present the bifurcation
scenario on the route to chaos and describe the corre-
sponding qualitative changes of the flow. In Sec. IV we
study the variations of the bifurcation structure and the
resulting dynamics, using no-slip boundary conditions in-
stead of the free-slip conditions. Finally, Sec. V gives a
short discussion about the practical importance of the
theoretical results and provides arguments for the neces-
sity to extend the model to three dimensions.



II. BASIC EQUATIONS AND NUMERICAL
METHODS

To model the experiment of Tabeling we have used the

in our studies. In other words we will study the transition
from a simple motion to chaotic dynamics of the fluid
for increasing values of the Reynolds numbers, both for
stress-free and no-slip boundary conditions, as well as for

two-dimensional NSE with an external forcing which imi-
tates the Lorentz force due to the current flowing through
the electrolyte in a plexi-glass cell with an array of alter-
nating north and south pole magnets at the bottom of
the cell. We start with the incompressible NSE in the
rescaled form

g—:+(v-r)vzv2v—rp+f, (1)

different aspect ratios of the driven cells, determined by
the second free parameter L,.
For the case of stress-free boundary conditions

Oy
ay = 07 vy(xvyO) =0 for Yo = OvLya (5)
Y=Yo
which in turn implies w(z,yo,t) = 0, we have used a

pseudospectral code based on a Fourier expansion of the
vorticity in the form of

r -v=0, (2)

where v is the fluid velocity field, p is the thermal pres-

w= Z Ok(t)e™®=Tsin(kyy), k = (2mky/Ly,2mky/Ly).
ke ky€Z

sure and v represents the external force which is chosen
to be

sin k1 x cos kay > 3)
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To obtain the NSE in the nondimensional form of
Egs. (1-3) a rescaling transformation to the typical
length and time scales, which can be found explicitly in
Ref. [14], has been applied. The two constants k; and
ks in Eq. (3) are fixed to ky = 87/L, and ky = w/L,
thereby driving an array of eight counterrotating eddies
on the set ! = [L,, L,]. By means of a further rescaling
transformation the length L, can be normalized to = and
there remain only two free parameters in the equations.
They are the horizontal length L, and the strength of
the forcing f which is in turn related to the Reynolds
number. For weak forcing, the term f in Eq. (1) can be
evaluated to be equal to the Laplacian term. Hence the
Reynolds number can be estimated to be Re ~ f. For
strong forcing, on the other hand, this term is approxi-
mately balanced by the convective term and it turns out
that Re ~ f'/2 [25]. For the sake of simplicity we con-
sider periodic boundary conditions for the velocity field
in the horizontal direction, v(z,t) = v(z + L,,t), but
impose both stress-free and no-slip boundary conditions
at top and bottom of the two-dimensional fluid with the
aim to study their influence on the bifurcations.

In our numerical computations we did not directly in-
tegrate Eq. (1) but rather the corresponding equation for
the vorticity ! = r x v. By restriction to two spatial
dimensions, this equation reduces to one scalar equation
for the only nonvanishing component w = w, of the vor-
ticity:
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5 + (v-r Jw=Vw+ f(k + ko) sinkyzsinkay. (4)

Successive bifurcations of an array of counterrotating
vortices, produced by the external forcing in the form of
Eq. (3), will be analyzed by changing the scalar control
parameter f. This is the essential bifurcation parameter

(6)

Inserting this Fourier ansatz into Eq. (4) leads to an in-
finite system of ordinary differential equations for the
real and complex components of the Fourier compo-
nents @, which has been studied numerically by a finite-
dimensional truncation using a pseudospectral code with
a resolution of 64 x 32 gridpoints.

Beside the pseudospectral code we have used a finite
difference code with the same resolution, mainly to study
the dynamics for the no-slip conditions, but also to cross-
check the results for the stress-free boundary conditions
for which the finite-difference code can be easily modified.

III. BIFURCATION SCENARIO FOR
STRESS-FREE BOUNDARY CONDITIONS

In this section we present a detailed bifurcation anal-
ysis of Eq. (4) for the case of stress-free boundary con-
ditions in the transverse direction and for a fixed aspect
ratio given by the conditions, Ly = 7w and L, = 4w. To
find out the qualitative behavior of the solutions we have
applied bifurcation techniques on the truncated finite di-
mensional system of ODEs for the Fourier coefficients wk.
For instance, the steady state branches have been traced
as a function of the bifurcation parameter f by means
of a special continuation program. Simultaneously the
eigenvalues of the Jacobian matrix were calculated in or-
der to detect bifurcations, when some eigenvalues cross
the imaginary axis.

For a small forcing, i.e. for small values of f, the ar-
ray of eight counterrotating vortices (see Fig. 1a)) is the
only time-asymptotic state. Here only the forced modes
are excited and the solution of Eq. (4) can be expressed
analytically in the form of

fkr + k2)

opy sin(ky z) sin(kay). (7)

w(z,y) =

Increasing the strength of the forcing, this primary steady
state loses its stability producing a secondary steady flow



with a shear component. The formation of the shear flow
is already described in detail by Guzdar et al. for the case
of four driven vortices [20]. This secondary steady state
branch consists of four co-rotating vortices and a shear
component, which are separated by heteroclinic lines con-
necting the fixed points of the flow (c.f. Fig. 1b)).
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FIG. 1. Streamlines of the steady state branches: a)
Steady I (f = 26.7), b) Steady II (f = 43.3), c¢) Steady III
(f =44.7), d) Steady IV (f = 100.0).

Tracing this secondary steady branch a further pitch-
fork bifurcation takes place. It creates tertiary steady
states, for which the shape of the flow is changed such,
that the middle points of neighbouring co-rotating vor-
tices are shifted up and down. This branch is only stable
within a small interval of the bifurcation paramter f and
is finally terminated by a Hopf bifurcation.

A complete overview on all solution branches, which
we have found, are compiled in Tab. I and are presented
schematically in Fig. 2.

Branch Stability interval Remerks

Steady I f<29.7 8 counterrotating vortices
Steady II 29.7 < f < 43.7 4 co-rotating vortices
Steady IIT 43.7 < f < 45.7 4 tilted vortices

Period I 45.7 < f < 54.7 created by a Hopf point
Steady IV 47.7 < f < 106

Period IT 106 < f < 227

Period doubling 227 < f < 240

Chaos 240 < f

TABLE I. The different solution branches.

Steady IV Period IT Chaos
Steady II t

J Period I Period doubling

1 Steady 11
Steady I

y
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FIG. 2. Schematic bifurcation diagram

The three steady state branches described above are
labelled here as Steady I, Steady II and Steady III, re-
spectively.

The Hopf bifurcation at Steady III produces a periodic
solution branch Period I, for which the streamlines are
subject to a complex reconnection process. In Figs. 3a)-
3f) the contours of the streamline portrait are plotted at
a few instants of time during a period. This helps to vi-
sualize the time evolution of the velocity field. For most
of the time, the pattern consists of two pairs of com-
bined eddies which are separated by slender vortices as
presented in Fig. 3a) and Fig. 3f). A rapid reconnection
process, demonstrated in Figs. 3b)-3e), transforms both
of the states, quasi-stable in time, into one another.

FIG. 3. Snapshots of streamlines belonging to a periodic
solution (Period I) at different time points.

For increasing Reynolds number the basin of attraction
of this periodic branch shrinks and finally disappears for
f=254.7.



As seen in Fig. 2, for higher Reynolds number, an-
other branch dominates the dynamics of the system. So
we have found a further steady state (Steady IV), partly
coexisting with the periodic branch Period I. Its stream-
lines are drawn in Fig. 1d). This steady state ends up
again in a Hopf bifurcation creating the periodic branch
Period II, which in turn undergoes a period doubling cas-
cade leading finally to chaos. In Figs. 4a)-4c) the projec-
tion of the trajectory onto the real parts of certain Fourier
modes are depicted for the original periodic orbit and for
the orbits after the first two period doublings. The final
chaotic attractor, projected in this sub-space, is shown
in Fig. 4d).
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FIG. 4. Projection of the trajectory onto the real parts
of the mode k = (0,1) and k = (0,2) in the period doubling
cascade on the route to chaos for (a) periodic orbit (Period II),
(b) orbit after first period doubling, (c) orbit after second
period doubling (d) chaotic attractor (Chaos).

To verify that the state is truly chaotic, we have calcu-
lated the largest Lyapunov exponents for selected values
of the bifurcation parameter, using an algorithm devel-
oped by Shimada and Nagashima [26]. Fig. 5 shows for
f = 245 the cumulative values of the five largest Lya-
punov exponents as a function of the integration time.
It demonstrates the good convergence of the algorthm
and reveals that one of the expontents is positive. This
proves that for this value of the forcing parameter, the
state is indeed chaotic.

FIG. 5. The five largest Lyapunov exponents versus inte-
gration time for f = 245.

The streamline portraits of the upper branches of the
bifurcation diagram in Fig. 2 are much the same and the
structure of the corresponding velocity fields are compa-
rable to that of Steady IV as in Fig. 1d), varying only
weakly in time, even for the chaotic state.

To study the influence of the aspect ratio on the bi-
furcation we have modified the horizontal length L, of
the box to 37 and to 57. In both cases we have found
the same bifurcation scenario as described above. We
conclude, that the bifurcation structure is relatively in-
sensitive to the changes in the aspect ratio. Only the
bifurcation points are shifted to higher values of the forc-
ing parameter for a smaller value of L, and they shift to
lower values of the forcing parameter for larger values of
L.

IV. COMPARISON WITH NO-SLIP BOUNDARY
CONDITIONS

In this section we report on the bifurcations when no-
slip boundary conditions are imposed at the top and bot-
tom of our computation box,

V(w7y07t):0 for y0=07Ly' (8)
The lengths of the computation box have been chosen,
as in the previous section, to be L, = 47 and L, = 7,
respectively. We are interested in the influence of the
boundary conditions on the bifurcation behavior in gen-
eral, even though the boundary conditions that have been
realized in the experiments, performed by Tabeling et al.,
are nearly stress-free [16].

For a small forcing strength the only stable solu-
tion, satisfying the no-slip boundary conditions, is again
the flow consisting of eight counterrotating vortices (c.f.
Fig 6a)).
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(f = 170), c) tertiary steady state (f = 180), d) additional
steady state (f = 250).

In contrast to the the case of stress-free boundary con-
ditions, the no-slip conditions have a stabilizing effect on
this primary steady state, which loses its stability for a
much higher value of the forcing parameter, f = 138. In
the vicinity of the bifurcation point the changes of the
streamlines are very similar to the stress-free boundary
conditions and, as described in more detail by Guzdar et
al. [20], every alternate vortex is compressed compared
to its neighbour. But due to the no-slip boundary condi-
tions no shear flow has been created and the secondary
steady state branch finally settles down to a streamline
portrait very similiar to the one presented in Fig. 6b).
Tracing this branch for larger forcing, a further pitchfork
bifurcation leads to a tertiary steady state for which the
center points of neighbouring vortices are shifted into op-
posite directions away from the horizontal center line of
the fluid region (6¢). Again the situation is analogous to
that of Steady III in Tab. I. This branch in turn ends
up in a Hopf bifurcation at f = 188 producing a periodic
solution.

It is not the intention of this section to determine all
the bifurcation points exactly but just to study the qual-
itative behavior of different bifurcations in comparison
to the case of stress-free boundary conditions. Similar to
the bifurcation diagram in Fig. 2 the periodic branch is
only stable for a certain interval of the forcing parame-
ter and another steady state, at first coexisting with the
periodic solution and finally forming the global attrac-
tor, appears. The corresponding streamline portrait is
presented in Fig. 6d). This branch is comparable with
the upper branch (Steady IV) in Fig. 2 but its solutions
doens’t show the dominating large scales of a shear flow
as in the case of stress-free boundary conditions.

For increasing values of the the strength of the forcing,
qualitative changes of the flow occur, which are different
from those bifurcations observed in the case of stress-free

boundary conditions. In Figs. 7a) - e) the time history at
one spatial location point is plotted with the aim to iden-
tifying and classifying the different dynamical regimes.

b)

time

FIG. 7. Time history of the vorticity at a spatial location
point x = 0,y = w/2 for a) f =277, b) f =282, c¢) f = 287,
d) f =296 and e) f = 350.

The first bifurcation, namely a Hopf bifurcation lead-
ing to a periodic solution, c.f. Fig. 7a), which is followed
by a period doubling bifurcation, presented in Fig. 7b),
are still the same as in the scenario described in the previ-
ous section. But for larger values of the forcing parameter
a large time scale modulation of the amplitude, first ob-
served at f = 287 in Fig. 7 c), has an essential influence
on the subsequent nature of the route to chaos. This was
not observed in the no-slip case. The slow modulation
frequency could be a result of a secondary Hopf bifur-
cation, but might also be a consequence of a degenerate
bifurcation, producing traveling wave-like solutions. By
a further increase of the forcing strength this second fre-
quency becomes a bit larger and the time history of the
amplitude looks much more like a generic torus solution
(cf. Fig. 7d)). As seen in Fig. 7e), the motion becomes
eventually more and more irregular and we conjecture
a transition to chaos via a torus destruction, another
well-known route to chaos [27,28]. But the final proof
of the chaotic nature of the attractor, by calculation of
the largest Lyapunov exponent at present remains work
for the future. We are going to develop a separate code
using Chebyshev polynomial expansions in the vertical
direction for a better treatment of the no-slip boundary



conditions. This will allow us to cross-check the resulting
dynamics with those obtained from our finite-difference
code and will also allow us to compare the routes to chaos
with the two codes.

V. DISCUSSION AND CONCLUSION

Motivated by experiments of Tabeling et al. [15-18]
we have investigated the bifurcation scenario for a chain
of eight externally driven vortices in a two-dimensional
Navier-Stokes fluid by increasing the strength of the forc-
ing, which corresponds to an increase of the Reynolds
number. According to the experimental set-up stress-free
boundary conditions at the top and bottom are appro-
priate to model this experiment and in our studies, we
have mainly focussed on this case. We found a com-
plex bifurcation sequence including a period doubling
cascade, which leads finally to a temporally chaotic mo-
tion of the velocity field. A direct comparison of the
numerical results with the experiments is only possible
for the first pitchfork bifurcations. The bifurcations ex-
perimentally observed for higher Reynolds numbers de-
pend strongly on the thickness of the fluid layer, and this
three-dimensional effect can’t be modelled by the two-
dimensional NSE used here. For a more extensive discus-
sion we give a reference to a companion paper in Ref. [20].
Other essential features, as the appearance of large scale
flows dominating the dynamics at higher Reynolds num-
ber, are in good agreement with the observations. Also
for various magnet configurations (four, six and eight),
for large forcing, the experiments of Tabeling et. al have
shown a clear indication of the period-doubling (subhar-
monic) route to chaos, c.f. [16]. To get a more detailed
agreement between experiment and numerical bifurcation
analysis, both the three-dimensional effects as well as dif-
ferent boundary condition in the direction of the array
of vortices need to be considered. We have assumed a
periodic boundary condition. However in the actual ex-
periment, the region beyond the driven vortices is open.
In preliminary investigations in studying the influence of
the bottom friction we showed that this stabilizing effect
shifts the bifurcations to higher values of the Reynolds
number but the qualitative features of the dynamics sur-
vive, at least for moderate Reynolds numbers [29]. We
conclude with this discussion that even with our very
idealised simulations we have captured many interesting
features observed in the experiments.

The influence of no-slip boundary conditions on the
bifurcations are, in our opinion, of general interest.
We demonstrated that, at least for the two-dimensional
Navier-Stokes flow considered here, the bifurcation sce-
nario is relatively robust with respect to variations of the
imposed boundary conditions. As expected, the no-slip
boundary conditions have, in comparison to stress-free
boundary conditions, a stabilizing effect. Up to the first
period doubling, c.f. Fig. 2, we recover the same bifur-

cations for no-slip boundary conditions as we did for the
free-slip case. Only the final route to chaos deviates.
In contrast to the period doubling cascade, observed for
stress-free boundary conditions, a second frequency ap-
pears for the no-slip case and the chaotic motion in this
case is seemingly a result of a destruction of the two-
frequency torus.
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