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We investigate the cognitive control in polyrhythmic hand movements as a model paradigm for
bimanual coordination. Using a symbolic coding of the recorded time series, we demonstrate the
existence of qualitative transitions induced by experimental manipulation of the tempo. A nonlinear
model with delayed feedback control is proposed, which accounts for these dynamical transitions
in terms of bifurcations resulting from variation of the external control parameter. Furthermore, it
is shown that transitions can also be observed due to fluctuations in the timing control level. We
conclude that the complexity of coordinated bimanual movements results from interactions between
nonlinear control mechanisms with delayed feedback and stochastic timing components.

PACS number(s): 87.10.+€,87.45.Dr,05.45.+b

I. INTRODUCTION

The analysis of dynamical processes underlying brain
functioning and behavior has evolved into a field of ex-
tensive research. In particular, the theory of complex
systems [1] is a promising contribution to these problems
from the viewpoint of theoretical physics. This approach
is based on the notion of qualitative changes induced
by variation of a control parameter of the system. As
a prominent example, the Haken—Kelso-Bunz model [2]
emphasizes the importance of qualitative transitions for
the understanding of the dynamics in the control of mo-
tor behavior.

Timing of bimanual movements is an ideal experimen-
tal framework for the study of cognitive motor control.
The analysis of bimanual polyrhythmic movement tasks
may be looked upon as a case study for the more gen-
eral problem of bimanual coordination [3]. Numerous
studies have shown that bimanual coordination is sub-
ject to strong performance constraints [4]. Experimen-
tal variation of external parameters, like manipulating
the required speed of performance or the difficulty of the
movement pattern, permits the systematic study of how
the human movement control system adapts to these ex-
ternal and its own internal constraints. The use of per-
formance tempo as an external control parameter in the
experiment under consideration [5] yields the new finding
of transitions between qualitatively different dynamical
regimes.

A crucial problem for the analysis of complex natu-
ral systems is the comparison of theoretical models with
experimental data. Different from most experiments in
physics, key observables in living systems are more re-
strictively prescribed by the measurement procedure and
their functional state can be controlled to a much lower
extent. By using symbolic dynamics [6] we demonstrate
that, nevertheless, the comparison of theory and experi-

ment can be achieved even at the level of individual sub-
jects based on short and noisy time series.

The analysis of physiological and psychological sys-
tems using nonlinear methods of data analysis [11,12]
is promising to gain new insights into the complex inter-
actions between subsystems and the resulting dynamical
behavior. The more traditional approach to the analysis
of human movement timing has employed linear models
of covariance structures between the produced time inter-
vals [5,13,14]. Related methods rest on strong statistical
assumptions which are often violated and also require
data aggregation to a degree that precludes investigation
of interesting qualitative phenomena on the basis of indi-
vidual performance which is an important advantage of
our methods of time series analysis.

A considerable number of studies has focused on the
variability in the control of movements. In the framework
of timer—motor or two—level models (for review cf. [14]),
it has been shown that the observed variability can be ex-
ploited to analyze the organization of control structures
in the brain. At the same time nonlinear dynamical mod-
els have explained the occurrence of phase transitions in
behavior [1], at least at a qualitative level.

The typical approach to the study of the stability of
rhythmic performance is the analysis of dynamical transi-
tions which occur when high-order polyrhythms, e.g. 3:8,
fall apart in response to increasing external tempo con-
straints during performance [7-10]. Related experiments
were designed for the observation of transitions between
polyrhythms of different order. In contrast to this we
demonstrate here the existence of qualitative changes in
the stable production of the same polyrhythm when it
is performed at different tempi. The concepts of nonlin-
ear dynamics and timer-motor models are combined. We
propose a stochastic timer for the control of cycle dura-
tions in combination with deterministic feedback control.

In Sec. I we present the design of our experiment.



The analysis of the corresponding data, in particular
the oberservation of qualitative transitions, is given in
Sec. ITII. Our nonlinear model, which is introduced in
Sec. IV, reproduces these dynamical transitions. Fur-
thermore, it permits the inclusion of realistic random
fluctuations in timing.

II. EXPERIMENTAL SET-UP

The 3:4 polyrhythmic task (Fig. 1) was performed on
an electronic piano with a weighted keyboard mechanic
hooked to a computer which monitored the experiment
and recorded time-stamped data with a resolution of 1
ms. Fourteen different metronome tempi ranging from
600 ms per cycle to 8200 ms per cycle were presented in
a randomized order. Error trials or trials with more than
10% deviation from the prescribed timing pattern were
discarded. The data reported in this paper came from
well-trained amateur pianists (for details cf. [5]).
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FIG. 1. Schematic illustration of the 3:4 polyrhythmic task
used in the study by Krampe et al. (1996); here for a cycle
duration of 1200 ms. “R” and “L” in the top panels denote the
intervals produced by right and left index fingers, respectively.
Each cycle starts with simultaneous strokes of the two hands.
Three isochronous intervals, i.e. equidistant strokes in time, in
the left hand are performed against four isochronous intervals
in the right hand within each cycle. The position of intervals
within a certain cycle k is indicated by sub-indices.

In each trial, subjects listened to the exact rhythm gen-
erated by the computer as long as they wanted, and then
played along (synchronized) with the beat for four cycles
after which the computer beat stopped. Participants had
to continue for another 12 cycles during which the time
series were recorded. Hence, a single time series consists
of 12 bars or cycles. The recorded data are the intervals
between successive keystrokes produced by both hands,

Li? L%? Lé? L‘f? Lg? A L%‘Z? Lé27 (]')
Ry, Ry, Ry, Ry, Ri, ... Ry®, R;® . (2)

III. DATA ANALYSIS

Our method to analyze these data consists of two main
parts: First, we transform the recorded time series into

a sequence of symbols. This can be used as a powerful
visualization technique. If a transformation to symbolic
strings is applied to a time series, a considerable amount
of information is discarded, but nevertheless characteris-
tic properties of the underlying dynamics can be captured
by the symbol sequence [15]. In a second step, we apply
the concept of measures of complexity [16] to the symbol
sequences in order to get a quantitative evaluation of the
distribution of symbols [17].

A. Symbolic dynamics as a visualization technique

A straightforward coding of the time series would be to
assign a ‘0’ to those intervals which are too short and a
‘1’ for those which are too long. This symbolic transfor-
mation, however, is sensitive to fluctuations and trends
of the cycle duration, which are considerable within a
single trial. We compare the produced intervals with the
realized tempo for each cycle. Let us denote the realized
duration of the k" cycle (k = 1,2,3,...,12) by t*, de-
fined as the sum of the subintervals of the corresponding
hand (t§ and t% respectively). The relative deviations
are defined as
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where ¢ = 1,2,3 and 7 = 1,2,3,4. These are the devi-
ations from the prescribed rhythm regardless of the ac-
curacy in overall tempo. The motivation for this trans-
formation is as follows: If a subject holds the prescribed
tempo within acceptable tolerance, then the relative de-
viations (3) quantify the precision of the rhythmic struc-
ture of the performance. However, it must be kept in
mind that this is not an absolute measure of performance
accuracy.

We further reduce the amount of data by a transforma-
tion into symbol sequences. This simplifies the investiga-
tion to the analysis of the symbol patterns. Our strategy
is to use such a coarse-graining of the data in order to
explore important structures of the underlying dynamics.

In the following we use only two symbols (‘0” and ‘1’).
Let us consider the transformed left hand time series (3)
as an example. To each value of the relative deviation (¥
(1=1,2,3; k=1,2,...,12) we assign a symbol s, in the
following way:

Sp = 0,
n — 17

where n = 3(k — 1) +¢ = 1,2,3,...,36. This coding
scheme is called static, since we use a fixed threshold in
the conditional part. Such a symbolic description can be
progressively refined by introducing more symbols. The
appropriate number of symbols is practically limited by
the length of the time series from which the symbol se-
quence is derived, because the statistical confidence level

if ¥ <0
otherwise

(4)



of the occurrence of the symbols drops down. Further-
more, plots with many different symbols (e.g. more than
5) are much more difficult to interpret visually.

The symbol sequences obtained by the coding of all
trials produced by subject A, a well-trained amateur pi-
anist, are shown in Fig. 2(a). Any type of regularity
in the symbol sequences indicates a systematic deviation
from the prescribed rhythm. On the other hand, near-
perfect performance would yield a completely random
pattern, since the relative deviations (3) would be ran-
domly negative or positive with a small absolute value.
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FIG. 2. Symbol sequences of all trials of one indi-
vidual A. The time is increasing on the ordinate,
where 36 symbols are plotted for left hand time
series and 48 symbols for the right hand. The
trials are sorted with respect to the realized cy-
cle duration. The cycle durations T[ms] are in-
dicated by the vertical labels between the plots.
2-symbol coding (a), defined in (4), in comparison
with 3-symbol coding (b). Irregular symbol pat-
terns correspond to accurate performance which is
demonstrated by the accumulation of grey symbol
in (b). These results are qualitatively stable; the
symbol patterns are in good agreement with those
obtained by dynamic coding rules (c).



A completely random pattern would also emerge in the
case of large (but random) fluctuations around the pre-
scribed timing pattern. Therefore, we introduce a sec-
ond (more refined) symbolic coding to our data in or-
der to check our interpretation that the subject performs
the rhythm more exactly in the irregular regions of the
symbol plot (Fig. 2(a)). This can be done by adding
a third symbol to the transformation (4) for a rather
exact performance. It is related to the case of a devia-
tion of less than 5% from the realized interval duration,
i.e. s, is defined as in (4), but additionally s, = 2, if
|I¥] or |r¥| < 5%. The corresponding symbol patterns
(Fig. 2(bS) demonstrate that the transition from nearly
periodic symbol sequences to irregular ones in the right
hand of subject A occurs simultaneously with a signifi-
cant increase in the mean accuracy which is indicated by
the increase in the number of grey symbols (s, = 2) for
increasing cycle durations.

We observe two order—disorder transitions in Fig. 2(a).
One transition occurs in both hands at a cycle duration
of about 1.9 s. When the tempo is increased, a second
transition to irregular symbol sequences happens in the
left hand at about 1.2 s. This indicates that the left hand
performs more accurately for a faster tempo.

The technique of symbolic codings is a visualization
tool which can extract structures from rather short (12

tain NI = 23 — 2 = 6 possible words for the left and
NI =2* — 2 = 14 words for the right hand.

The relative frequency p; = N;/N,, of word i is calcu-
lated using all cycles generated during several trials at
a certain tempo. The corresponding relative frequency
distribution is denoted by p. For the data in Fig. 2(a)
the fact that the subject uses almost exclusively the word
‘0110’ in the right hand leads to a strongly peaked prob-
ability distribution.

To distinguish different kinds of probability distribu-
tions, we calculate the well-known Shannon entropy of
the distribution p,

Ny
S(p) =—cY pilnp;, (5)
i=1

here normalized with respect to the number of all words
N, using ¢ = 1/In N,,. The qualitative changes in the
symbol pattern are correctly described by the Shannon
entropy (Fig. 3(a,b)). In particular, the two transitions
in Fig. 2(a) (left hand, above) are reflected in two sharp
transitions in the Shannon entropy. Applying algorithmic
complexity (cf. [16]) to the symbol sequences leads to
comparable results.

It is important to note that linear measures for the
ﬂn(‘hmﬁnnq or 2PPI]Y’2Py7 e g CQOV 2Y’i2n(’PQ7 QhﬂW a mn(’h

cycles) and noisy time series. To obtain clear results one
has to find a suitable class of coding rules. The qualita-
tive structure of the symbol patterns, however, turns out
to be rather stable. This can be demonstrated by a dy-
namic coding scheme, which represents a different type
of symbolic transformation [16]. In this coding we map
an interval R;?, Lk of the original time series (1,2) to a
‘0%, if the actual value is smaller than its preceding value,
and to a ‘1’, if it is larger. In the corresponding symbol
plot (Fig. 2(c)) we observe transitions at the same posi-
tions. In contrast to Figs. 2(a,b) this dynamic symbolic
coding is more sensitive to noise, since its threshold in
the coding rule is not fixed at a certain value.

B. Statistics of symbols and measures of complexity

Now we outline the main ideas how the symbol se-
quences can be used for a quantitative study of the dy-
namics of polyrhythms. Due to the fact that the basic
rhythmic structure is a cycle, it is appropriate to subdi-
vide the time series into substrings or ‘words’ of 3 (left
hand) or 4 (right hand) symbols and to study the oc-
currence of these words. To give an example, subject A
(Fig. 2(a)) uses almost exclusively the right hand word
‘0110’ for bar durations T' < 2 s, i.e. the first and last
interval of each bar is too short, whereas the two other
intervals are too long. From the definition of the rela-
tive deviations (3) it is clear that 3°_ 1% = Z;zl rk =
0 (k=1,2,...,12) , implying that words consisting en-
tirely of ‘0’s or ‘1’s are impossible. Therefore, we re-

smoother transition which cannot be identified reliably
at the level of individuals. The significance of our results
has been tested by analyzing computer-generated ran-
dom patterns of the same data length. For each experi-
mentally observed time series we simulate a Monte-Carlo
time series using the same variances of intervals as in the
original data (Fig. 3(a,b)). The corresponding Shannon
entropy (dashed line) is significantly higher than the en-
tropy of the original data in those regions where regular
symbol sequences occur.

The dynamical transitions can also be visualized by an
analysis of the relative phases (e.g. [7]). If we define the
phase of the left (slow) hand as linear increasing from 0
to 2w between two successive strokes, then we can deter-
mine the relative phase of the three strokes of the right
hand with respect to the phase of the left hand. If the
performance is perfect, then we can read off these rela-
tive phases directly from the task sketch in Fig. 1. We
obtain a relative phase of %w for the first stroke of the
right hand, 7 for the second, and $m for the third stroke.
In the plot of relative phases (Fig. 3(c)) we observe that
these predictions are fulfilled by subject A in the range of
slow tempi (trial index greater than 100). For faster per-
formance considerable deviations occur. In particular,
the relative phase of the third stroke of the right hand is
increasing from %w to m. For trials 60 to 85 we notice a
plateau region of the relative phase. Therefore, the analy-
sis of relative phases also proves the existence of dynam-
ical transitions. A comparison with Fig. 3(a,b) shows,
however, that the plots of the Shannon entropy can ex-
tract three different dynamical regimes more clearly.
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FIG. 3. Shannon entropy (5) of the distribution of words obtained from the data of subject A (left hand (a),
right hand (b)). A low value of the S(p) corresponds to highly regular symbol sequences. The dashed line shows
the Shannon entropy for simulated data (surrogates) using the variances as in the experimental time series. (c)
A plot of the relative phases (in units of 7) also indicates the dynamical transitions.

C. More examples

The data produced by two other subjects are visualized
in Fig. 4 using the 2-symbol coding (4) and the corre-
sponding Shannon entropies. As for subject A, the vari-
ation of tempo or cycle duration T', our external control
parameter, enables us to observe qualitative transitions.

An example of a rather sharp transition occurring in
the right hand is the one at cycle duration 7' &~ 2 s in
Fig. 4(a), approximately at trial number 90. In Fig. 4(c),
a transition can be seen in the left hand at T =~ 1.5 s
(trial 60). Transitions can occur in the left or right
hand, or even in both hands at the same tempo (sub-
ject A Fig. 2(a)). Preliminary investigations on a larger
study indicate that there is no straightforward relation
to handedness. All subjects tested were right-handed.
This demonstrates a complex dynamical interaction of
the hands.

The fact that the transitions do not always occur in the
fast range of tempi is very important. As an example, a
regular symbol pattern in an intermediate range of

cycle durations (between 1.5 s and 3.5 s) is observed in
the data set produced by subject C (Fig. 4(c)). It implies
that the transitions are a consequence of nonlinearity in
the human movement control system, rather than a re-
sult of increasing biomechanical constraints at fast tempi
(T < 2 s). Furthermore, the Shannon entropy for the
left hand of subject B (Fig. 4(b)) and for the right hand
of subject C (Fig. 4(d)) indicate that the correspond-
ing symbol patterns are not completely random. Instead
these patterns show subtle periodic structures which we
also see by visual inspection. In these cases the dynamics
may be close to a qualitative transition.

We now use the results of our data analysis to develop
a dynamical model which exhibits the same type of tran-
sitions as found in the experiments. We stress the im-
portance of the finding of qualitative changes and their
description by appropriate techniques as an ideal starting
point for deriving conceptual models.
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A. Nonlinear error correction

A considerable amount of theoretical work on the pro-
duction of rhythmic movements focuses on stochastic
models without error correction. In this framework, the
dynamical structures, e.g. the patterns of covariances be-
tween intervals, are explained by different stochastic vari-
ables operating in a hierarchical organization (cf. [14] for
a review). Qualitative transitions cannot arise from the
dynamics of these models.

Different from this purely stochastic approach, we aim
at a dynamical explanation of the observed qualitative
transitions. Therefore, we have to include a nontrivial
deterministic component of the dynamics, comparable to
the well-known Haken-Kelso-Bunz model [2]. We start
with an equation for error correction of single-handed
movements,

Tiy1 = 5i+1 + ktanh[a(wi - 51)] . (6)

In this model an interval z;; is produced by a stochastic
variable (timekeeper) d;41 and an error correction term.
The error correction operates with respect to the devia-
tion x; — §; of the last interval from the last timekeeper
value. For small deviation we assume a linear error cor-
rection. For larger deviations there is a saturation effect.
This is a common type of nonlinearity in biological sys-
tems which could be motivated in our case by a constant
rate of information processing in the human movement
control system. With the two parameters o and k we can
adjust the slope and the asymptotic value of the correc-
tion function separately.

In the deterministic case, i.e. var(d) — 0 or d; = Jp for
all 4, a linear transformation of variables, z; = a(x; —do),
leads to the system

zi+1 = ¢ tanh(z;) , (7)

where ¢ = ka is the control parameter. The qualitative
behavior of this equation can be described by a bifurca-
tion diagram [18]. For |¢| < 1 model (6) generates the
same qualitative behavior as a model with linear error
correction (Fig. 5). The asymptotic solution is z = 0, a
fixed point. If |¢| > 1, then this solution becomes unsta-
ble. Different from linear models, equation (6) creates
two additional fixed points. For ¢ = 1 there is a pitch-
fork bifurcation with a positiv and a negativ branch. The
asymptotic value of z depends on the initial conditions.
For ¢ = —1 there is a period—doubling bifurcation which
creates an oscillatory solution. This period—doubling bi-
furcation of period 2 can explain the occurrence of peri-
odic symbol patterns in the experiments. Therefore, we
use basically two equations of type (7) for our modeling
of bimanual movements.
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FIG. 5. Bifurcation diagram of the nonlinear error correc-
tion model (6). A pitchfork bifurcation occurs at ¢ = +1.
The period—doubling bifurcation (¢ = —1) creates oscillating
solutions for ¢ < —1 which are the basis for reproducing the
periodic symbol sequences obtained from the experiments.

B. A nonlinear model for the production of
polyrhythms

Our model is formulated for the production of
polyrhythmic movements of arbitrary order, i.e. N”
strokes per cycle with the right hand versus N! strokes
with the left hand. For the experiments discussed here,
we fix N” = 4 and N = 3. The tempo (or cycle duration)
is denoted by d. Because of considerable fluctuations §
is used as a random variable, where d. is its realization
in cycle ¢. The stochastic properties of § will be treated
below. The required interval durations for the hands are
8" =6./N" and 6L = 6. /N'.

The deterministic control loop of our model consists of
two coupled maps which generate the interval durations
of the subsequent strokes for the right z7 and the left al
hand respectively,
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xfyy = 67 —ATK] tanhaf («_, — 07_,)]
— ©jk5 tanh[aj (67 — OL)] ,
(1)
(1)

A
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zh,y =0, — ALk} tanh[a (2} _, — 6,_,)]
— Ok} tanh[ab (6L — 7)),
(D)

where ¢ = |(j —1)/N"| +1=|(i —1)/N'] + 1 is the cy-
cle index and |.| denotes the integer part of the included
expression. To each subinterval x:’l we assign the value
of the stochastic duration 67! according to (20), with re-
spect to the actual tempo . of the cycle. This value
is then corrected by two feedback mechanisms: The first
correction term (I) is active within the cycle and the cou-
pling term (II) is only active at the end of each cycle.



This is fulfilled by defining

1, if (i+1) mod N™ #0
AT‘,I — )
g { 0, otherwise ’ ©)
1, if (i+1) mod N =0
oyl =1¢ " : 10
! {0, otherwise (10)

Now we discuss the different terms in the model equa-
tions (8) in detail:

(I) The first correction operates within a cycle, i.e. dy-
namical correction is performed separately for each
hand. Previous investigations [19] have shown that
this correction has to incorporate two essential
properties in order to reproduce the experimentally
observed symbol patterns.

(a) The first property is a nonlinear correction
function. As in (6) we have chosen a tanh-
function here, a piecewise linear function or
any sigmoid function would also be a possible
choice. This nonlinearity enables the model
to reproduce the bifurcations underlying the
experimentally observed periodic symbol se-
quernces.

(b) The second important feature is that the cor-
rection operates with a time delay d. In some
cases d = 0 yields to the observed symbol pat-
terns. On the other hand, a delay time d > 2
would lead to symbol patterns with a period
longer than a cycle which is never found in the
experimental data [19]. Therefore, to explain
almost all of the observed periodic symbol pat-
terns, we fix d = 1.

(IT) The coupling mechanism aims at the synchroniza-
tion of the movements of the hands and is per-
formed at the end of each cycle with a strength
given by parameters k5 and kb. The coupling of
the hands is done on the basis of a prediction of
the estimated cycle durations 52 and Sé of the cycle
c. Here we use

S ATT T
(Sc - Ti—d >

oL = Nzl . (11)
The explicit form of these estimations determines
the type of symbol pattern that are produced by
the model. The correction function is the tanh-
function as in (I).

Some additional remarks on these assumptions are nec-
essary: First, if the within-hand correction is the only
type of feedback control, then a stochastic detuning e
would lead to a desynchronization of the hands. As a
consequence, the simultaneous stroke at the end of each
cycle would fail. In contrast to this, our experiments
show that subjects were able to perform the simultane-
ous (last) stroke of the cycle. This is the motivation for
the coupling mechanism (IT).

Second, to understand the form of the estimated cycle
duration, we compare the within-hand correction (I) with
the coupling mechanism (II). For the within-hand correc-
tion in cycle ¢ the value of the tempo §”! is assumed to
be unaccessible for the control system due to delay and
fluctuations. For the coupling mechanism (II) the control
system has to compare the instantaneous cycle durations
o7 and 6L. Since their realized values are unaccessible in
cycle ¢, we assume that those intervals which would be
the basis for the within-hand correction, z]_, and mL &
are also used for the coupling. Therefore, the form of
the estimated cycle durations (11) is consistent with the
form of the within-hand correction. Since the choice of
the estimates determines the periodic symbol patterns,
which can be produced by numerical simulations of the
model, additional constraints arise from symbol patterns
observed in the experimental data (Figs. 2(a) and 4(a,c)).

C. Analysis of the model

To demonstrate that our model can explain the struc-
ture of the symbol patterns derived from the experimen-

tal data, we now present some analytical results on the
dynamics for d = 1. This is done in the deterministic case
and for strongly nonlinear control, i.e. & — oo, where
tanh(ez) — sgn(z). We fix k"' = —1 and |[k5'| = 1. Fur-
thermore, we assume that the dynamics is stationary and
the maximal period length of the symbol sequences is a
cycle, i.e. 2 = af — 0 = 2}, 4, and 2z} =} — 6 = 2l 4,
foralln =0,1,2,.... Under these assumptions the model
gives seven equations for the relationship of subintervals,

2] = —sgn(z3) , (12)
zy = —sgn(2y) (13)
25 = —sgn(z1) , (14)
27 = kb sgn(4z5 — 321) , (15)

for the right hand and

2 = —sgn(zh) (16)
2= —sgn(zh) | (17)
2t = kb sgn(3z! — 425) , (18)
for the left hand. These equations lead to

four different symbol sequences in the right hand
(‘0011°,/0110°,1001°,1100°) and two for the left hand
(‘010°,101’). Which of the these patterns are combined
is determined by the coupling. If k} = ki, then we get
27 = —24, and if k5 = —k), then we will observe symbol
sequences with zf = z{. These symbolic structures are
in correspondence with the experimental data. In the
symbol patterns of subject A (Fig. 2(a)) we observe the
periodic symbol sequences ‘0110’ produced by the right
hand for trials 1-50 and in combination with ‘010’ pro-
duced by the left hand for trials 50-90. For subject B
we also observe the pattern ‘0110’ in the right hand for



the fast range of tempi. Additional symbol patterns, like
‘100’ in the left hand of subject C for trials 1-50, can
also be explained dynamically by the model. This can
be demonstrated by numerical simulations.

An important feature of the symbol patterns is their
stability, which is found in the experimental data. This
has to be investigated by simulations of the model below.
Now we address the stochastic properties of our model.

D. Stochastic fluctuations in timing

A realistic model of human movement timing has to
include the random fluctuations observed in related ex-
periments. We now specify the stochastic properties of
the tempo variable §. A second source of randomness is
the motor system, which is discussed below.

The tempo variable § is treated as an uncorrelated ran-
dom process. For the study of qualitatively different dy-
namical regimes, it is important that the variance var(d)
of § is a monotonously increasing function of the mean
value < § >. This fact is in good agreement with the hy-
pothesis that the interval duration is produced by some
elementary counting mechanism. The explicit form in
the production rhythms, however, depends on the exper-
imental design.

For numerical simulations of our model we estimate the
relation between the mean value < 0 > and the variance
var(d) from the experiments. Under the assumption that
the noise produced by the motor system is small com-
pared to the fluctuations in the timing control, the bar
duration t¢ of cycle ¢ can be used as an approximation
to d.. For simplicity we assume a polynomial relation of
second order [14],

var(§) =a < 6 > +b < § >%, (19)

which includes the two parameters a and b (Fig. 6). For
the simulations we use gamma—distributed random vari-
ables with the required relation between mean and vari-
ance.

At this point the question arises, how the value of the
stochastic variable J. is related to the values of §] and
0L, Let us assume that there is stochastic variation in
the tempo for the right and the left hand. We introduce,
therefore, a detuning parameter € with

1)
00t = 31+ ed), (20)
where ¢ is a uniform random deviate between —1 and
1. Analyzing the symbol patterns obtained by numerical
simulations of our model yields an upper limit for the
detuning parameter: € < 1072, The question whether 7
and 6! arise from two different, but certainly coupled tim-
ing processes is outside the scope of this work. We now
discuss the inclusion of the random fluctuations which
originate from the motor system.
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FIG. 6. Relation between cycle variance var(t) and mean
cycle duration < ¢t > for subject C. As a rough approximation
we obtain a polynomial of second order (19) with a = 1.003
and b = 1.06-1073. Note that the time series consists of only
12 values, which contributes to the scattering of data points
around the regression line.

The variables x’;’l represent the control level. We im-
plement our dynamical timing model into the framework
of the so-called two-level timing [14]. The commands for
the hand movements produced by the control level are
executed by the motor level with some stochastic motor
response. The stroke ¢ of the right hand is performed
with motor response m! (Fig. 7). Therefore, the inter-
vals xf’ observed are bounded by two motor reponses,
ie.

y; = +mi—mi_y, (21)
yi = T+ mp —mi_y (22)

As a first approximation the motor responses m;’l are
assumed to be uncorrelated and gamma-distributed ran-
dom numbers which are statistically independent from
the control level mf’ If the process on the control level,

x?l, is also statistically independent, the two—level timing
yields simple prediction on the covariances. The variance
of the recorded intervals is a sum of terms arising from

the two sources of variability,
var(y;) = var(z;) + 2var(m;) . (23)

. . .
Since each recorded interval y; " is affected by two motor
repsonses, we observe a negative autocovariance function
for lag equal one,

COV(yiayi-‘rl) = COV(SUi,CCi+1)

24
+cov(m; —mi—1,mip1 —m;) = —var(m;) . 24

We can use these two equations for estimating the vari-
ances of the control level and the motor system sepa-
rately,

var(m;) = —cov(yi, Yit1) 5 (25)
var(z;) = var(y;) + 2cov(ys, Yitr1) - (26)
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FIG. 7. Schematic illustration of two-level timing. The
motor delays are uncorrelated. Due to the measurement pro-
cedure, the successive intervals are negatively correlated.

For simple tasks like unimanual tapping, where the
strong assumptions of statistical independence is a valid
approximation, two—level timing predicts that the timer
variance (26) is increasing with the cycle duration,
whereas the motor variance (25) should remain constant.
This prediction has been confirmed in many cases (cf. [14]
for a review), even for the more complicated case of
synchronization of finger movements with a metronome.
Therefore, two-level timing does not exclude error cor-
rection which is an essential property of our dynamical
model.

Furthermore, there is neurophysiological evidence for
the concept of two-level timing. A study of the effects
of neurologic damage to the cerebellum [20] has demon-
strated a dissociation effect between estimates of time-
keeper interval variance and response delay variance.

E. Numerical Simulations

Now we present two examples of numerical simulations
of the model. Our model is a stochastic nonlinear model.
As a consequence, order—disorder transitions in the sym-
bol patterns can be due to increase of fluctuations as
well as bifurcations of the underlying deterministic con-
trol system. Generally, realistic simulations will involve
both types of transitions.

The strengths of the correction mechanism are given by
the value of the parameters lelg (8). Since these param-
eters determine the saturation or maximal correction, it
is reasonable to assume a linear dependence of the pa-
rameters on the cycle duration as a first approximation.

In the first simulation (Fig. 8(a)) we use only one con-
trol parameter (k] = —45, ..., —1), which leads to a clear
transition in the right hand. Because of the linear vari-
ation of the parameter the bifurcation point is at trial
85. The control parameter of the right hand correction
is near the bifurcation point, k{a} = 0.7. The coupling
of the two hands induces subtle structures in the symbol
pattern of the left hand, which is confirmed by the plot of
the Shannon entropy (Fig. 8(b)). The other parameters
are ki = —7, kb = —10, k}, = 10, of = 0.05, o} = 0.1,
ab =03, a0 =005 a=1,b=10"% ¢ = 3-1073,
var(m) = 50, initial values: z{' < 0, 2" > 0. The sim-
ulation in Fig. 8 is qualitatively in agreement with the
experimental data in Fig. 4(a) (subject B).

10

Using a linear variation of several parameters, we can
(Fig. 2(a)
two transitions between regular and irregular symbol se-
quences in the left hand, where a regular region of symbol
sequences extends approximately from a cycle duration of
1.2 sto 3 s. The parameters for a simulation with compa-

rable qualitative features (Fig. 9) are k7 = —35, ..., —30,
K= —10, .., —25, k = —8, ..., —15, ki = 1, ..., 25,
ol = ot =0.06,a} =03, a, =008, a=1b=10"3,
e =103, ..., 1072, initial values: 2! < 0, z" > 0).

These two examples demonstrate that the proposed
model is able to reproduce qualitative characteristics of
the dynamical transitions. It is a challenge for future
work to compare numerical simulations with the exper-
imental data in order to extract the control parameters
underlying the performance of individuals. Using this
approach, the complexity of the dynamics of hand move-
ments could be captured in the variation of the control
parameters of the dynamical model (8). To check our
model in a variety of situations it has to be applied to dif-
ferent experimental paradigms, e.g. polyrhythms of dif-
ferent order N” : Nt

V. SUMMARY

The analysis of physiological and psychological time
series [12] is typically obstructed by intrinsic fluctuations
and measurement noise. An additional problem is that
our time series are rather short (12 cycles). Even for
longer experimental observations, instationarities typi-
cally limit the length of data series which can be used
for the analysis. Despite these difficulties we have shown
that a coarse-graining of the data by transformation to
symbol sequences can be successfully used to extract sig-
nificant properties of the underlying dynamics.

In particular, our symbolic coding is well-adapted for
the detection of qualitative changes in the behavioral dy-
namics. A qualitative transition from correct to incorrect
timing of the rhythmic structure is transformed into a
disorder—order transition in the symbol sequences [6,21].
This is quantitatively described by the Shannon entropy
of the distribution of words, as a measure for stochastic-
ity of the symbol sequences.

The existence of qualitative transitions in our exper-
iment is an important finding for the modeling of sim-
ple movement tasks which are typically described by sta-
tistical timer—motor models [14]. These models are lin-
ear. Therefore, it is impossible to reproduce qualitative
changes which we have proven to exist in the experimen-
tal data. The value of the timer—motor approach is to
highlight the stochastic component in movement timing.
This emphasizes the advantage of our model which com-
bines the stochastic description of the timer—motor ap-
proach with a nonlinear control mechanism to account
for both stochasticity and dynamical transitions.
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FIG. 8. Simulation of the model for bimanual production of polyrhythms using a linear variation of k7. (a)
The symbol patterns are in good agreement with those produced by subject B. On the basis of the Shannon
entropy (b) it can be seen that the transition in the experimental data is rather sharp when compared to the
simulation. This is a consequence of the strictly linear variation of the control parameter which may not apply
for the experimental case.
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FIG. 9. Example for a simulation of the model in a more complicated case. The symbol patterns (a) and
Shannon entropies (b) are qualitatively in agreement with those produced by subject A.
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We have shown that our model reproduces the exper-
imentally observed symbol patterns, if the discrete time
delay is fixed at d = 1. The existence of such a time
delay [23] is supported by physiological experiments [22],
which show the ubiquity of delay processes. As an exam-
ple, voluntary movements are initiated by firing of motor
neurons with a time delay of order 100 ms. If these move-
ments are disturbed by some external influence, then an
additional increase of activity in the motor cortex is ob-
served after 20 ms. A reasonable estimate of a time delay
between brain processes and observed movements will be
bounded within these limits. Since the shortest intervals
of the polyrhythm task are about 50 ms, we expect time
delayed error correction, d = 1, in the theoretical model.

Additional support for the concept of time—delayed er-
ror correction arises from an experimental study, where
subjects were required to synchronize their movements
with a metronome. In the analysis based on the con-
cept of two-level timing, time-delayed error correction
has been found for fast tempi [25]. This corresponds to
d =1 for the error correction in our model.

Recently the impact of artificial delays on visually
guided movements was used to analyze the feedback loop
in detail [24]. The importance of time delay in feedback
loops, which is emphasized by our results, suggests that
artificial delays of (auditory) feedback might be a promis-
ing approach for the experimental study of the produc-
tion of rhythms.

In this work we have shown that the stochastic prop-
erties of timing structures interact with the nonlinear
dynamics. Therefore, dynamical models [1] and statis-
tical two—level models [14] were combined to understand
the variability of movement control. In this sense, our
approach may be able to bridge the gap between two
methodological and theoretical traditions in the more
general discussion about stochastic versus deterministic
aspects of simple movement tasks.
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