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Abstract

The stability of the quiescent ground state of an incompressible viscous fluid
sheet bounded by two parallel planes, with an electrical conductivity varying
across the sheet, and driven by an external electric field tangential to the
boundaries is considered. It is demonstrated that irrespective of the conduc-
tivity profile, as magnetic and kinetic Reynolds numbers (based on the Alfvén
velocity) are raised from small values, two-dimensional perturbations become

unstable first.
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One of the basic configurations in magnetohydrodynamics (MHD) is the pinch, namely,
an electrically conducting fluid confined by the action of an electric current passing through
it, such that pressure gradients are balanced by the Lorentz force.

In the geometry of a plane sheet, the pinch with the fluid at rest is stable if the electrical
conductivity is infinite, but may be destabilized by resistivity [1].

In this Brief Communication we demonstrate that for increasing Reynolds numbers the
quiescent ground state of a voltage-driven resistive plane sheet pinch becomes first unstable
to two-dimensional perturbations. This is a generalization of Squire’s theorem in hydrody-
namics [2,3]. For the special case of a spatially uniform resistivity and no dc magnetic field
in the sheetwise or “toroidal” direction (the direction of the driving electric field) a proof
was given in Dahlburg and Karpen [4].

If the resistivity is spatially uniform, the equilibrium current is also uniform and the
equilibrium magnetic field must be a linear function of the cross-sheet coordinate (by equi-
librium we mean a stationary state with the fluid at rest). To admit cross-sheet profiles of
the equilibrium magnetic field deviating from the linear one, one has to allow for variation
of the electrical conductivity across the sheet. This is important, since, as found recently
[5], in a voltage-driven incompressible sheet pinch with spatially and temporally uniform
kinematic viscosity and magnetic diffusivity and with impenetrable stress-free boundaries,
the quiescent ground state with uniform current density and a linear profile of the mag-
netic field across the sheet remains stable, no matter how strong the driving electric field.
This agrees with the observation made in studies of quasiequilibria, that is of states with
a nonuniform current density in a fluid with uniform resistivity (these states thus decay
resistively), that seemingly inflection points in the magnetic field (or current) profile are
necessary for instabilities to appear [6].

We use the nonrelativistic, incompressible MHD equations,

,0(2—;,+(V-V)v> = pvViv - Vp+J x B, (1)



0B
5 =~V % (nped — v x B), (2)

V.v=0, V-B=0, (3)

where v is the fluid velocity, B the magnetic induction, J the electric current density (=
V x B/, po denoting the magnetic permeability in a vacuum), p the mass density, p the
mechanical pressure, v the kinematic viscosity, and 7 the magnetic diffusivity [(uon)~" is the
electrical conductivity]. No externally applied force appears in Eq. (1). While p and v are

assumed constant, 7 is allowed to vary spatially:

n(x) = no7(x), (4)

where 7 is a dimensional constant and 7(x) a nondimensional function of position.
Let L and By denote arbitrary units of length and magnetic induction. Writing v4 =
By/\/iop for the Alfvén velocity corresponding to By, we transform to nondimensional

quantities according to

L
x/L —x, B/By— B, v/ivy—v, t/— —1t,

VA
B
p/pvy — p, J/—OL—>J, E/Byvs — E. (5)
Ho
E is the electric field. Egs. (1) and (2) then become
v 12
B
a—:—Vx (S7'73J — v x B), (7)
ot
where
L L
R="A% and § = A~ (8)
v Mo

are Reynolds numbers based on the Alfvén velocity, namely R the kinetic Reynolds number

and S the Lundquist number. The nondimensional Ohm’s law reads
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ST =E+v x B. (9)

We use Cartesian coordinates x1, xo, x3 and consider our magnetofluid in the slab 0 <
1 < 1. In the x5 and x3 directions periodic boundary conditions are applied.
We assume that there is no mass flow and no magnetic flux through the boundary planes,

ie.,
() :Bl =0 at T :O,l (10)

To allow for nontrivial time-asymptotic states, the system is driven by an electric field of
strength E* in the x3 direction, which can be prescribed only on the boundary. Condition
(10) implies that the tangential components of v x B on the boundary planes vanish, so

that according to Eq. (9)

*

- at ¥ = 0, 1. (11)
b

My is the value of 77 on the boundaries. The boundary conditions for the tangential compo-

nents of B then become (J =V x B in the nondimensional units)

0By, E*S  0Bs
= =0 atz; =0,1. 12
0xy m  0x abn ’ (12)

Stationary state with the fluid at rest are given as solutions of the equations

-Vp+JxB=0, (13)

V x (7J) = 0. (14)

We assume 77 to depend only on the coordinate z;. Eq. (14) and the boundary conditions

are then satisfied with

J=7J°=(0,0,77'E*9), (15)

B = B¢ = (0, B*SIy(2,) + B, BY), (16)
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where overbars denote spatial averages and Io(x1) = [~ dx; — [H~Ldxy.

E* can be formally eliminated by the still free choice of the magnetic field unit, By. Let,
for instance, 77 be symmetric about the midplane z; = 0.5, so that in the case of B§ = 0,
B¢ is correspondingly antisymmetric. We have the freedom to choose By in such a way that

then |BS| = 1 on the boundary planes, and consequently
E* =[SI(1)]". (17)

There is a Lorentz force in the x; direction,

OB3

J¢x B¢ = (—B$§J;,0,0) = (—B5—=,0,0) (18)
81'1
and Eq. (13) is satisfied with
B¢
=p°=— . 19
p=p 5 (19)
So the quiescent ground state is exactly defined.
We use the decomposition
1
(VxB)xB=(B-V)B - §VB2 (20)
and write
1 2 e : e
P:p—i—§B, b=B-B¢ j=J-J° (21)

v and b are our dynamical variables.

The spatial means of vy, v3, By, and Bs are independent of time. For the case of spatially
uniform 7 this is shown in Ref. [5], and the arguments given there are easily generalized to
the case of nonuniform 7. Without loss of generality we restrict ourselves to the case of
U5 = 3 = 0, since any mean flow can be removed by a Galilean transformation. The mean
values By and Bs are parameters of the equilibrium field.

We now Fourier expand in the x5 and x5 directions. Let v; and b;x denote the Fourier
coefficients of v; and b; for wavenumber k = (ko, k3). Linearizing about the static equilibrium,

Egs. (6) and (7) become



ik = —Pp — R (K* — D*)uyx + iko BSbyy + ik B§byy,
Vo = —iko Py — R™Y(K? — D?*)vgy + iky BSboy

+iks BSbox + (BS) by,
U3 = —iks Py — R (K? — D?*)vsy + iky BSbay

+iks BSbs,
bix = iky B§vii + iks B§v — S~ ikl jax — iksijox],
box = ko BSvax + ks BSvax — (BS) i

— S iksiju — (Mjak)’],
by = ik By + iks B§usi

— S (7ljox)" — ik, (22)

where a prime denotes differentiation with respect to z; and D = 9/0x;.
Generalizing Squire’s transformation of ordinary hydrodynamics [2,3] to the magnetohy-

drodynamic case, we define

F= (k2 4+ K2)'2, Pk = P/
]N“f’zfc = kovok + k3vsk, U5 = Vik, kR = ko R,

liby = kobax + ksba, by = bu, kS = ksS. (23)

We can assume ko # 0 here, since modes with ky = 0 cannot grow and are bound to decay
if not in addition D and ks vanish. This can be seen from the system (22), where the
only driving terms are those with B¢ (as demonstrated below, a nonvanishing B§ does not
influence growth rates). In the case of D = ko = k3 = 0 also dissipation is absent, so the
corresponding perturbations are neutrally stable.

Multiplying the first of the equations (22) by k/k, we have

oy D1k = —P} — R7'(k* — D*)0,; + ik Bsby

k -
+-—1k3B5b,;, (24)
ko
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while the second and the third of these equations can be combined to give

k. o N .
Vo = —ik Dy — R (k* — D?)ty; + ik BSb,;,
2
l’% 1. Der e\!7,
+k—ll{?3B§b2k + <B2) blfc (25)
2
Similarly, on observing that
Jak = by — ihabix, Jox = iksbic — by (26)

and consequently

kajsi — ksjox = kably, — ik3buc — ik3buc + kably,
= INdN)’zfC — ik2b,;

- ];.;3]}7 (27>

one finds from the last three of the equations (22)

k = 5 e k. e R
k—zbliC = ikB50,j, + k—22k3B§U”~“ — S7ikdja;, (28)

and

k%;’zic = il%B;ﬁzic + %ikg?;fbic - (BS)ITJU%
571 (a7)"- (29)
Now let first B§ = 0. Then up to the factor l;/kg on the left-hand sides, which can be
removed by the additional transformation ¢ = (ko/k)t, the equations (24), (25), (28) and
(29) have the same mathematical form as the system (22) with the x3 dependence dropped,
vy = b3 = 0 and ky = k. And if X is an eigenvalue of the linear operator on the right-hand
side of the original system (22), then (k/ko)\ is an eigenvalue of the linear operator on the
right-hand side of the system (24), (25), (28), (29) (to see this replace on the left-hand side
of the system (22) 0y and bie by Mvic and Aby and apply the manipulations described).

Thus, if there is an unstable eigenmode of the original system, i.e. an eigenvalue A with



positive real part (giving the growth rate of the mode), then, since k/ky > 1, there is an
unstable eigenmode of the derived two-dimensinal system with at least the same growth
rate; if the eigenmode of the original system is really three-dimensional, that is k3 # 0, then
the eigenmode of the two-dimensional system grows indeed faster. Furthermore, and most
important, R < R and S < S. That is, if the Reynolds numbers are raised from small
values, two-dimensional perturbations become unstable first.

To complete the proof, we note that also the conditions (3), which take the form

Uik + ikQUQk + ik31)3k = 0, (30)

Ui + ikobox + iksbsx = 0 (31)
in Fourier space, are satisfied for the derived two-dimensional system: One finds
U+ ikiyg = 0, b + ikby, = 0. (32)

A nonvanishing BS, finally, leads to Alfvénic oscillations, but does not influence the
growth rates of unstable modes. This is most easily seen if Elsisser variables zt = v+ b
are used. If the system (22) is tranformed to these variables, on the right-hand sides of the
equations for the 27 the term +iksBSz, appears, while there is a term —ik3B$z;, on the
right-hand sides of the equations for the z;,. Now let, for prescribed initial conditions at
t = 0, [z, 2] be the solution for the case with BS set equal to zero. Then the solution
for nonvanishing B is given by [z,” exp{iksB§t}, z,. exp{—iksBSt}], that is, the solution
is merely modulated by an oscillation with frequency k3BS. This applies equally to the
solutions of the system (24), (25), (28), (29).

In conclusion we note that, though for increasing Reynolds numbers the equilibrium
becomes first unstable to two-dimensional perturbations, this does not yet imply that also the
bifurcating new time-asymptotic states are two-dimensional. Numerical simulations show
that the initial growth of a two-dimensional perturbation can be followed by an evolution
towards a three-dimensional final state [7]. It is not clear yet, however, whether the quiescent

ground state loses its stability directly to three-dimensional (final) states or whether two-
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dimensional states with flow are stable in certain Reynolds number intervals close to the

primary bifurcation point.
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