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ABSTRACT

The ill-posed problem of aerosol size distribution determination from a small number of backscatter and extinction
measurements was solved successfully with a mollifier method which is advantageous since the ill-posed part is
performed on exactly given quantities, the points r where n(r) is evaluated may be freely selected. A new two-
dimensional model for the troposphere is proposed.
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1. INTRODUCTION

Atmospheric aerosols play an important role in many atmospheric processes, e.g. in the complex processes of
tropospheric ozone production and of stratospheric ozone destruction. Aerosols provide surfaces for example for
chemical reactions which activate Cl from CFCs. One of the key aspects in a further understanding of the importance
of aerosols is the investigation of the spatial and temporal variability of their microphysical properties, e.g. parameters
describing their mean size and surface-area concentration, see [Weidauer et al] Ref. 1. The problem of determining
the aerosol size distribution function n(r), by multispectral lidar measurements, belongs to the class of problems in
mathematics called nonlinear inverse ill-posed problems.

2. MULTIWAVELENGTH LIDAR FOR AEROSOL INVESTIGATIONS
2.1. Scattering processes

The scattering of light by aerosols depends on their abundance, size distribution, composition and phase. As typical
atmospheric aerosols have sizes in the range from 0.1 micron to several microns, their size is comparable to the
wavelength of light. Therefore, their scattering and extinction properties show a wavelength dependence. This
allows to investigate the properties of aerosols by the observation of backscattered light from laser pulses (lidar
principle at various wavelengths). A multi channel detector collects the backscattered photons simultaneously on the
emitted wavelengths and on others corresponding to inelastic backscattering. The elastic backscatter signal at the
emitted wavelengths usually depends on the Rayleigh and Mie scattering processes only. (Absorption by trace gases
will be neglected here.) Therefore they carry information about the air density (Rayleigh or molecular scattering)
and about the aerosol backscatter coefficient (from aerosol scattering, which in simple cases can be described by
Mie’s theory). This is described by the ”lidar equation” given in formula (1).
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The inelastic backscatter signals originate from vibrational Raman scattering with the water, nitrogen and/or
oxygen molecules of the atmosphere. They are recorded simultaneously with the corresponding elastic backscatter
signals. While the Raman scattering process itself does not produce information about aerosols, the light intensities
available for Raman scattering depend on the extinction experienced on the way between the light source (laser),
the Raman scattering altitude, and the detector. Therefore the aerosol extinction coefficient can be obtained from
these observations.

The purpose of aerosol investigations by lidar are to determine properties of the aerosols, which are deductible
from their optical effects. In equations (1), (2), and (3), which describe the scattering and extinction processes, the
particle number densities n(r) (r is the particle radius and n(r) describes the size distribution function) and the
refractive index m appear. The problem of inverting the lidar equation is to obtain these functions from measured
lidar data. Until recently this was done by assuming a shape of the size distribution function, usually a log-normal
distribution, and by calculating according to Mie’s theory synthetic lidar data at the wavelengths used. A fitting
procedure is then employed to determine, which set of parameters describes the measured data best, see e.g. [Hamill
et al] Ref. 2, [Larsen] Ref. 3, [Beyerle] Ref. 4, [Stein] Ref. 5. As this procedure depends on a priori assumptions, it
is not satisfactorily and we want to present an alternative here.

2.2. Experimental set up

A multiwavelength aerosol lidar, as it is used by the Alfred Wegener Institute at the German Arctic station on
Spitsbergen, employs wavelengths as given in the following Table 1. Wavelengths denoted with * are the corresponding

Table 1. Typical wavelengths employed in a multi wavelength lidar system.

laser wavelengths
type in nm

XeCl excimer 308, 332* 353, 385*
Nd YAG 532, 607*, 1064
titanium sapphire 779

nitrogen Raman lines. The backscattered signals at 532 nm are also analysed with respect to their polarisation
characteristics. The lasers emit pulses alternately and their signals are recorded simultaneously in a multiwavelength
detector. A typical altitude resolution is 30 m and signals are accumulated for 1 min before storage on a computer.

2.3. Depolarisation measurements

As the laser light at 532 nm is linearly polarised, we can determine the depolarisation characteristics of the involved
scattering processes. The small depolarisation effect of Rayleigh scattering is well known, see [Young] Ref. 6. The
depolarisation effect of aerosol scattering depends on the shape of the particles. According to Mie’s theory, spherical,
homogeneous particles do not change the polarisation state of the incident radiation. However, as soon as the
particles become aspherical or inhomogeneous, the polarisation state of the scattered light changes with respect to
that of the incident light. This effect is used here to discriminate measurements of aerosol scattering at spherical
and non-spherical particles.

2.4. Refractive index

The scattering and extinction coefficients of aerosols depend on their refractive index, which in turn reflects the
material composition. In the case of stratospheric aerosols, only a limited number of compositions have to be
considered. Volcanic aerosols consist of sulphuric acid, which condenses following the oxidation of gaseous sulphuric
dioxide. This is by far the main component of stratospheric aerosols, as solid volcanic material sediments already
after a very short time after a volcanic eruption event. Accordingly also the stratospheric background aerosol layer
consists of sulphuric acid (the Junge layer). The refractive index of these aerosols can be calculated by the Lorentz-
Lorenz formula from known atmospheric temperatures and water contents. In the stratosphere of the polar regions
at least two more types of aerosols exist, so called Polar Stratospheric Clouds of types I and II. Type II consists of



water ice only, of which again the refractive index is known. Type I PSCs contain various mixtures of water, nitric
acid, and sulphuric acid. Expressions to calculate their compositions have recently been published by [Carslaw et
al] Ref. 7 and a calculation of the corresponding refractive indices can be found in [Luo et al] Ref. 8. For all of the
stratospheric aerosols mentioned, however, the imaginary part of the refractive index is in the order of 10E — 6 and
can therefore be neglected. For tropospheric aerosols the situation is different. They appear in a multitude of classes
and many of them contain black materials like soot, which are good absorbers and therefore have imaginary parts of
their refractive indices, which can exceed 0.05.

3. NUMERICAL SMOOTHED INVERSION
3.1. Inversion of backscatter and extinction integral equation in the stratosphere
3.1.1. Description of the problem

The mathematical model for such a LIDAR messuring process consists of one nonlinear and two linear integral
equations. These are the LIDAR equation

POL2) = CO) P B0, 2) Ziz exp{—Z/za()\,z')dz'}, (1)

(where X is the wavelenght, z the height, C' is a specific quantity of the messuring apperatus, P, the intensity of the
emitted signal, P the intensity of the detected signal, 8 is the backscattering coefficient, o the extinction coefficient)

and the Fredholm integral equations of the first kind for backscattering and extinction coefficients 84¢" and 4"
Ty Ty
pAer (N, 2) = / Kr(r,A;m) n(r,z) dr = / 712 Qr(r,\;m) n(r, 2) dr , (2)
Ty Ty
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where 7 is the particle radius, m the refractive index, n the aerosol size distribution we are looking for, K, the
backscattering and K., the extinction kernel. We have g = g4¢" + %% and o = a“*" + of% with known gFev
and afey.

We want to consider the kernel functions K, and K.+ of these integral equations. The kernel function reflects
shape and material composition of particles. We assume Mie-particles. Following formulas hold for extinction and
backscattering cross sections, see [Bohren/Huffman] Ref. 9,

Qr = sl 2o (1) an — b)) (@
Qi = oz 20+ DRe(an+by) (5)
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The mathematician Hadarmard wrote: A mathematical problem is said to be well-posed if it has a unique solution
and the solution depends continuously on the data. A problem which is not well-posed is said to be ill-posed.

The conclusion is simple. The application of standard numerical techniques might yield nonphysical ”solutions”.
The integration with K in (2) and K¢z in (3) has a ”smoothing” effect on n in the sense that high-frequency
components, cusps and edges in n are ”smoothed out” by integration. We can therefore expect that the reverse
process, i.e. that computing n from 34¢" or a?°" will tend to amplify any high-frequency components in 4" or
aAer_

First, we replace the original ill-posed problem of finding n(r,z) by a new problem of finding n(r,z). The new
problem is well-posed, depends on a parameter v > 0, and in the absence of noise in the data, is consistent with the
original problem.

Second, in the presence of noise in the data, with a fixed value of the parameter v > 0, we solve the new problem -
not the original one - which is stable with respect to perturbations in the data.

Any Fredholm integral equation of the first kind is inherently ill-posed, see also [Castelletto/Rastello] Ref. 10 for



Figure 1. The functions (5) left and (4) right

a similar problem. The kernel functions in (2) and (3) are square integrable in [rq,rs] X [Ag, Ap]. The degree of
ill-posedness depends on the smoothness of the kernel function, i.e. the "smoother” the kernel K, the faster the
singular values o; decay to zero (where smoothness is measured by the number of continuous partial derivatives of
K). The degree of the decay is a measure for the ill-posedness of the operator, see [Hofmann] Ref. 11.

So the two integral equations (2) and (3) are extremly different from each other, see Fig. 1 and Fig. 2 (left). The
degree of ill-posedness of (3) is higher.

3.1.2. The mollifier method

Now we want to answer the following question. Is it possible to form a reasoned estimate of inaccessible values of a
function from a few indirect measurements? This is of course at the heart of inverse theory and the mollifier method
is designed to provide such estimates.

The altitude z and the refractive index m are fixed values for the moment. Suppose N measurements 1, ..., uy. We
start from Y
uOy) = / K(s,\) n(s) ds, j=1,.,N (6)
Ta
or shorter expressed as a linear, continuous operator equation
p = Kn (7)
between Hilbert spaces X and Y, i.e.
K : X =1Ly[ra,m]) — Y=RN. (8)

X is a space of functions and Y is a finite-dimensional space of measurements. We use X = Ly([rq,rs]) for a
suitable intervall [rq, 7] C R. Suppose N measurements pi, ..., py are available which represent values of linearly
independent functionals on an unknown function n. Now we replace the original ill-posed problem of finding n(r)
by a new well-posed problem of finding n(7), i.e. instead of n we compute the approximation n. with a suitable
mollifier e., thus reducing the high-frequency components in the solution which are mostly affected by the data noise.
The idea is to estimate a smoothed version n~(r) = E, n(r) of n(r) by a linear combination

Ny = Pyip1t ..+ PyNEN (9)



by appropriately shaping the coefficients ¢.1(7), ..., ¢yn () which means that we have to compute the reconstruction
kernel . (r) € RN for all reconstruction points r. These values are precomputed independently of the data, i.e. the
inversion operator is precomputed without using the data p, see [Louis] Ref. 12. v > 0 is the so called smoothing
parameter acting as a regularization parameter. In order to obtain a stable approximation of n(r), we select a
smoothing operator E, with lim,_,o Eyn(r) = n(r), see [Louis/Maafl] Ref. 13. Then we have
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and

n(r) =~ wh—% n(s) wyn(r,s) ds .

The first motivation of the method is based on the following idea. We recognize, that for v = 0 wyn(7,s) has to
approximate the delta distribution d(r — s). We have to look for min || wn(r,s) — §(r —s) || . Since this problem
can not be solved in the function space Ly, we replace the delta distribution by an approximation e., the so called
mollifier function.

The second motivation of the method, see [Louis/Maafi] Ref. 13, follows. A smoothing operator E., : La[rq, 7s] —
La[rq, rp] with limy_o Eyn(r) = n(r) is selected and represented by

N
ny(r) = Eyn(r) = /ev(r, s) n(s) ds  with ey (r,s) ngw VK (s, 05).

Then
ZS"W/AS)‘ ds_Zgow

Minimising the error leads to

[y (r) Zsow D1l ([ e s Zsow (1)K (s, )7 ds)?.

There are different possibilities for mollifier functions, e.g.

1 1 .1
evi(z) = — x[—v,y] or ey2(x) = — sinc(—=x 10
w@) = 5o o) or (o) = — sinc(Za) (10)
where x is the characteristic function, here local averages of the solution are computed. The mollifier e,y is a
band-limiting filter eliminating the high-frequency components in the solution, see Fig. 2. To get the coefficients
©~y1(7), ...y oy () We have to minimise

I ZI{(S¢)‘J') i (r) = ey(r—s) llz2(r) (11)
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Figure 2. The degree of the decay (left) and the mollifier function e,z (right)

which is obviously minimised, see APPENDIX A, by ¢ (r) with

B oy (r) = by(r) (12)
where Bj; = /rb K(s,Ai) K(s,A;) ds (13)
and  by;(r) = /Trb K(s,Aj) ey(r—s) ds. (14)

It is important to mention that no artificial discretization of n is needed as introduced by projection methods, see
[Bockmann] Ref. 14.

3.1.3. Application of mollifier method

Firstly, we carry out a simple application. There are given N; measurements of ﬁAe"(Af),i =1,...,N1, and Ns
measurements of oer"()\“;‘),j =1,..., Ny with \? = (308, 353,532,779, 1064)[nm] and \* = (332,385,532, 607)[nm].

Then we have
N,

Zﬂ Jehi(r) and  n%(r) = Y a(Af)es,;(r) (15)
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The reconstructed size distribution follows from
1
n(r) = 5 (7(r) + n(r) . (17)
We study two examples with
ni(r) = exp(—0.5 In*(r/rpeq)/ In®c)  and  no(r) = LN exp(—0.5 lnz(@)) (18)
' me r /27 Ino ' Ino 77’

see [Grabowski/Latosinska] Ref. 15, where ryeq = 0.18, 0 = 1.75, m = 1.4676, r, = 0.001 and 75, = 1.0 (75, = 0.5).
Reconstructions with eys and y3 = v, = 1/17 for the first size distribution nq(r) are shown in Fig. 3 (left) with
noisy data, 3% noise. We use a truncated singular value decompostion for the solution of the linear equation system
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Figure 3. Numerical results with the simple method

(16). If we solve the block system seperatly, we recognize that for the backscatter system no truncation has to
be used. But for the extinction system we have to truncate two singular values. The reason is the high degree of
ill-posedness of equation (3). The discrete equation (16) inherits the instability of the integral operator, which means



that the matrix is ill-conditioned, see [Bockmann/Niebsch] Ref. 16. In fact of this, the ¢S are computed by using
truncated singular value decomposition, i.e. by discrete regularization with a rather small regularization parameter.
The fine regularization is achieved by the parameter v in e,. The backscatter-reconstruction with eys (v = 1/50)
and truncation of four singular values for the second size distribution ny(r) with exact data is shown in Fig. 3 (right).
The extinction reconstruction was not successfull. The conclusion is that the inversion via the backscatter integral
equation is more stable. It is important to mention that we do not require an initial size distribution, i.e. we start
without a special shape of the size distribution and we execute no fit.

Secondly, we carry out a new connecting application. We take the same assumptions as before. There are N;
measurements of ﬁ()\f), i =1,..., N1, N2 measurements of a(A%), j =1,..., N and N3 measurements of ﬁ()\;:ﬁ) and
a(A2F), k = 1,..., N3 with \? = (308, 353,779,1064)[nm], A\* = (332,385, 607)[nm] and A% = (532)[nm]. Now we
describe a more general and connecting application. We have

By = /K7T n(rydr, i=1,..,N; (19)

a()\;?‘) = /Kext n(r)dr, j=1,..,Ns (20)
BT + o) = /(KW + Kegt) n(r) dr, k=1,..,N3 (21)
(22)

or shorter expressed
uN) = / & n(r) dr (23)

with
K, : X\E€ P
K = Kege @ XN ENXY
Kp + Kege : X\ €XFP

Now it is possible to start the mollifier method again with

Bt = and nln) = 36,0 ulh). (24)

Computer simulations are running.

3.2. Inversion of backscatter and extinction integral equation in the troposphere
3.2.1. Description of the two-dimensional model for multimodal distributions

The determination of the aerosol size distribution in the troposphere is a problem which is a more extensive one.
Since the tropospheric aerosol contains a large number of species, the model process is much more complicated than
in the stratosphere. Aerorols of different compositions has different refractive indices m. The aerosol size distribution
is a multimodal one. In general the number of different particles and their refractive indices are unknown.

In the case of a bimodal log-normal size distribution of one species with m = 1.4 — 0.001¢ [Miiller et al] Ref. 17
demonstrated a successfully simulated inversion with eight optical data points (six backscatter and two extinction
coefficients) via Tikhonov-regularization, i.e. the inversion does not depend on the shape of the underlying size
distribution. We want to generalize this model. We propose two possibilities for a new troposphere model. First, we
describe a new simple model of superposition and second, a new two-dimensional model.

Firstly, we assume that we know the number & and the refractive indices m;, i = 1, ..., k of the k species. Now we
model the first kind Fredholm integral equation as follows

ko oy
pgAer(\) = Z/ Ky (r, A, my) n(r,my) dr
i=1Y"a
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i.e. we approximate the problem via a convex combination, e.g. corresponding to the relative concentration or any
other suitable criterion. The equation for a®" is treated in the same way. As result we get an approximative function
n(r) which represents the superposition of the size distributions of the k different species.

Secondly, in general the number £ of different species and their refractive indices m;, ¢ = 1, ..., k are unknown. From
mathematical view, now we have to solve a two-dimensional ill-posed problem

gAer (A / / (r,\,m) n(r,m) dm dr and a”°" (A / / Kezt(r, A, m) n(r,m) dm dr (25)

in the form of two Fredholm integral equations. This problem can be solved by a two-dimensional mollifier method.
The result, first in the absence of noise in the data, is a two-dimensional size distribution function n(r, m). We obtain
from this function the number k of different species, the refractive indices m;, i = 1, ..., k, and the size distributions
n(r,m;), 1 =1, ..., k of the different species.

3.3. The kernel functions K, and K,

To determine the size distribution of particles in the troposphere and stratosphere with LIDAR mesurements we
have to make assumptions about the shape and material composition (e.g. the refractive index). These properties
are reflected in the kernel functions K, and K..:. We consider spherical particles which can be inhomogeneous and
absorbing. Absorbing particles exist in the troposphere. For absorbing particles the refractive index is complex. We
model the inhomogeneities considering core and cover of a spherical particle and different layers between both, see
[Kerker] Ref. 18. [Stampfli et al] Ref. 19 showed that for Polar Stratospheric Clouds (PSC) of type II the kernel
function for the inhomogeneous model is different from that for the homogeneous model, see Fig. 4. Thus we can
not neglegt the model influence.

If there are light pollutions in the core we hardly have differences to the nonabsorbing model. But additional light
pollutions in the cover lead to a visible decrease for the backscattering efficiency K, see Fig. 5.

In Fig. 4 (right) K.y is represented consisting of a nitrit acid trihydrate (NAT) core (m[1] = 1.5,7[1] = 1um) and
a water ice cover (m[2] = 1.31,7[2] = 1lum...6um). The wavelength is 0.9um. Here the average refractive index for
the homogeneous case, see Fig. 4 (left), is determined by the Lorentz-Lorenz formula.

In Fig. 5 (left) K, is shown as above and on the right hand side the refractive indices are changed to m[l] =
1.5+ 0.017, m[2] = 1.31 + 0.01..

Even for light pollutions we get this big difference. Small soot inclusions in the core can be highly absorbing. An
imaginary component of 0.05 is not extreme, see [Baumgardner et al] Ref. 20. Since especially tropospheric aerosol
consists of absorbing particles, it is very important to have an absorbing model (e.g. algorithms for complex inputs)
especially for K, as we see in Fig. 5 (right).

APPENDIX A. DERIVATION OF EQUATION (12)
We have to minimize
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Figure 4. Homogeneous model (left) and inhomogeneous model (right)
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Figure 5. Inhomogeneous nonabsorbing model (left) and light absorbing core and cover (right)
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This leads to the following linear equation system
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