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1 INTRODUCTION

1 Introduction

The Newtonian determinism states that the present state of the universe determines its

future precisely. The belief in the Newton determinism was well summarized by Laplace:

We ought to regard the present state of the universe as the effect of the past and the cause of

the future . This credo was based on Newton’s equation of motion, which has the property

that initial conditions determine the solutions forward and backward in time.

The works of Poincaré, Birkhoff, Smalle and others, and consequently their legacy on

dynamics, have shown that many believes on the natural phenomena can be misguided.

The deeper analysis of the equations underlying Newton laws shed a light in the prediction

of long term behavior of dynamical systems. Many systems in nature present a sensitive

dependence on the initial conditions; orbits of typical nearby points move away exponentially

fast under the evolution of the dynamics. Therefore, the prediction of the future dynamics

is impossible for large time intervals. Such a dynamical behavior characterizes deterministic

chaos. Chaotic behavior has been extensively studied in several areas of physical sciences

[1, 2, 3, 4], economy [5], ecology [6] and applied engineering [7].

In nature, though, one commonly finds interacting chaotic oscillators that through the

coupling scheme form small and large networks, e.g., neural networks. Surprisingly, even

though chaotic systems possess an exponential divergency of nearby trajectories, they can

synchronize, still preserving the chaotic behavior [8, 9, 10]. The emergency of collective

behavior among interacting systems is a rather common phenomenon being found in many

branches of science [11, 12, 13, 14], as ecology [15], neuroscience [16, 17], and lasers [18, 19].

Synchronization ought to imply a collapse of the overall evolution onto a subspace of

the system attractor, reducing the dimensionality of the system. That is, one is able to

understand the dynamics of one oscillator by means of the other. Synchronization can be

enhanced at different levels, that is, the constraints on which the synchronization appears.

Those can be in the trajectory amplitude, requiring the amplitudes of both oscillators to be

equal, giving place to complete synchronization. Conversely, the constraint could also be in a

function of the trajectory, e.g. the phase, giving place to phase synchronization (PS). In this
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2 SYNCHRONIZATION

case, one requires the phase difference between both oscillators to be finite for all times, while

the trajectory amplitude may be uncorrelated. Whereas the former case requires relatively

strong coupling strengths, the latter can arise for very small coupling strengths. PS is

relevant to important technological problems such as communication with chaos [20, 21], new

insights into the collective behavior in networks of coupled chaotic oscillators [22, 17], pattern

formation [23, 12], Parkinson disease [24], epilepsy [25], as well as behavioral activities [26].

In this work, we have analyzed the phenomenon of phase synchronization showing that:

(i) for a broad class of attractors a phase based on the tangent field can be introduced having

a physical meaning, i.e., it gives the correct average period; (ii) for a given phase definition,

the upper bound for the absolute phase difference can be calculated, and is equal to the

product of the average increasing of the phase in typical cycles with average period; (iii)

for a class of oscillators endowed with proper rotations, we have proven that, in PS regimes,

observations of the trajectory of one subsystem at specific times when the trajectory of the

other subsystem crosses a Poincaré section gives places to localized sets in the state-space of

the observed subsystem; (iv) the latter approach can be generalized to a much broader class

of attractors, which has no coherent motion and no proper rotation. We achieve this results

by demonstrating that the observations of trajectory of one subsystem can be done by means

of any typical physical event occurrence. In PS regimes these observations give place to a

localized set. (v) We demonstrate that PS is invariant under time-coordinate changes. (vi)

Finally, we analyze a scenario of torus breakdown via a global bifurcation giving place to a

new transition to chaos. We perform a detailed experiment and numerical investigations

2 Synchronization

Time plays a major role for biological and physical systems. Their dynamical behavior is

governed by cycles of different periods which determines their intrinsic activity. There are a

variety of physical and biological processes which require precise timing between oscillators

for a proper functioning [15, 16]. A phenomenon able to provide such a timing is synchro-
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2 SYNCHRONIZATION

nization [8, 9, 10, 11, 12, 13, 14]. Several types of synchronization may arise depending on

the nature of the oscillator and on the coupling properties. Given two identical oscillators

x1 and x2 properly coupled, for strong enough coupling strengths complete synchronization

can be achieved. This means that both trajectories present the same behavior:

lim
t→∞
|x1(t)− x2(t)| = 0. (1)

Synchronization in this case is associated with a transition of the largest transverse

Lyapunov exponent of the subspace x1 = x2, also known as synchronization manifold, from

positive to negative values. In general, complete synchronization is only possible if the

interacting oscillators are identical. If, however, they present a mismatch parameter the

states can be close x1 ≈ x2, but not equal.

For nonidentical oscillators other types of synchronization can appear, for example the

lag synchronization, in which the trajectories of x1 and x2 present the same behavior unless

a lag τ in time, which means:

lim
t→∞
|x1(t + τ)− x2(t)| ≈ 0. (2)

A more complex type of synchronization is the generalized synchronization, where x2 presents

the same behavior of x1 after being transformed by a function ψ:

x2 = ψ(x1), (3)

Note that complete synchronization is a particular case of generalized synchronization

where ψ = 1. One should carefully state what requirements ψ must fulfill. The main idea,

however, is that the entrance in a small ε1-ball in x1 implies the entrance of x2 in a small

ε2-ball. This means that neighborhoods in x1 are mapped into neighborhoods in x2, which

implies the collapse of the solution to a subspace of the full attractor. Therefore, we are able

to predict x2 by knowing x1 and ψ only.

While generalized synchronization, in general, requires relatively large coupling strength,

since the synchronization manifest itself in the trajectories for a small coupling strength

another kind of synchronization may arise, the phase synchronization. In such a case, the
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3 PHASE OF ATTRACTORS

trajectories can be uncorrelated while the phase dynamics are synchronized. Denoting,

ϑ1,2(t) the phase of x1,2 the condition for phase synchronization is given by:

|ϑ1(t)− ϑ2(t)| ≤ %, (4)

where % is a finite real number. The next problem is how to define a phase. Despite of the

large interest of the community driven by the large number of application with PS, there

are still many open questions in the field, namely : (i) Which are the properties that a

function must fulfill to be consider a phase? (ii) What is the boundedness condition for

the phase difference, in other words, the upper bound for the phase difference? (iii) Is it

always necessary to define a phase to measure PS? (iv) What is the relation between PS

and communication in networks? (v) Can a time-coordinate change destroy PS? Some of

these questions have been addressed, namely (iii) has been addressed with recurrence plots

techniques [27], and (iv) by relating the mutual information between oscillators and their

conditional Lyapunov exponent [28]. In this work, we address all these questions by exploring

the natural link between synchronization and recurrence.

3 Phase of attractors

While in an autonomous nonlinear oscillator perturbations in the trajectory may grow or

shrink, perturbations in the phase neither grow nor shrink, due to the fact that phase is

associated with the zero Lyapunov exponent [12]. Therefore, one expect the phase to exist

for a general oscillator. However, there is no general and unambiguous phase definition for a

general attractor. Thus, we ought to study classes of compact attractors which have suitable

properties, such that the notion of phase can be developed. We shall highlight two of them

given by the two following definitions.

Definition 1 Let A be a compact attractor. A is said to have a proper rotation if its

trajectory has a defined direction of rotation (i.e. either clockwise or counterclockwise) and

an unique center of rotation.
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3 PHASE OF ATTRACTORS

Definition 2 Assume that the compact attractor A admits a phase Φ. Let ti be the ith

return time of the trajectory to the section Φ = 0. Then, A is said to be coherent if:

|ti − i〈T 〉| < η � 〈T 〉, (5)

where 〈T 〉 is the average return time to the section Φ = 0.

For a class of attractors endowed with coherent properties, it is possible to transform the

original equation of motion to a new equation of motion that carries the information of the

radius and the phase [29]. This result is given by:

Theorem 1 Let the system ẏ = G(y), where y ∈ Rm and G : Rm → Rm, have a compact

attractor A on which a T -periodic phase coordinate Φ is defined. Assume G to be differ-

entiable and Φ̇ > 0. Then, for any ε > 0 there exist a coordinate change Φ → ϑ in a

neighborhood N of A such that ϑ is T periodic and

Ṙ = G(R, ϑ), (6)

ϑ̇ = 1 + δ(R, ϑ) (7)

where R : N → Rm−1 and ϑ : N → S1, such that (R, ϑ) are the new coordinates, and

|δ| < η + ε, except for ϑ in a set of measure less than η, where η is given by Eq. (5).

Unfortunately or fortunately, the phase and the radius coordinates are not unique, which

means that one can consistently define more than one phase for A. Indeed, if ϑ and ϑ̃ are

two phase definitions for the attractor A, so that, ϑ̇ = 1 + δ(R, ϑ), and
˙̃
ϑ = 1 + δ̃(R̃, ϑ̃), for

a sufficiently coherent attractor they give equivalent results. Indeed, note that:

ϑ− ϑ̃ =

∫ t

0

[δ(R, ϑ)− δ̃(R̃, ϑ̃)]dt. (8)

Then, |ϑ−ϑ̃| ≤ |
∫ t

0
δ(R, ϑ)dt|+|

∫ t
0
δ̃(R̃, ϑ̃)dt|, therefore, we get: |ϑ−ϑ̃| ≤ 2Tmax(|δ(R, ϑ)|, |δ̃(R̃, ϑ̃)|).

The term max(|δ1(R, ϑ1)|, |δ2(R̃, ϑ2)|) can be made small enough.
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3 PHASE OF ATTRACTORS 3.1 General phase definition

3.1 General phase definition

The former theorem guarantees the existence of a phase coordinate. However, as we have

discussed this phase coordinate is not unique. Indeed, many phases have been introduced,

for example: (i) the phase θ based on the angular displacement of the vector position; (ii) the

phase φ based on the angular displacement of the vector velocity; (iii) the phase introduced

by Hilbert transformer [12], (iv) the phase given by the interpolation between events where

the phase is assumed to increase 2π.

As a consequence, a question is raised: Which could be a general phase for a compact

attractor? Up to now, it seems to be hopeless the efforts to answer this questions. However,

we have pursued a positive answer to some classes of attractors. Since we want to construct

an approach exclusively dependent on the equations of motion we only consider the phases

which are vector-field-dependent, e.g., φ and θ.

In our work Phase and average period of chaotic oscillators [30] we analyze which phase

could be regarded as the most general one. We have done some contributions towards this

direction:

1. Using basic concepts of differential geometry, we have analyzed the geometrical mean-

ing of the phase φ. We showed that φ is equal to the length of the Gauss map, the

generator of the curvature in differential geometry. Such a phase definition can be

interpreted as follows: the center of rotation is the trajectory itself. Thus, given the

trajectory at a time t+∆t the center of rotation is the trajectory at a time t. Therefore,

one avoids the need of a proper rotation

2. We demonstrate, for attractors with proper rotations, that PS is invariant under the

phase definition. Moreover, we discuss to which classes of oscillators the defined phases

can be used to calculate quantities as the average frequency and the average period of

oscillators.

3. Since the phase φ allows negative frequencies, it is not an one-to-one function with

the trajectory. We overcome this problem by introducing a phase ψ, where ψ̇ = |φ̇|.
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4 UPPER BOUNDS FOR PHASE SYNCHRONIZATION

As a consequence of the positiveness of ψ its average increasing per cycle might be

bigger than 2π. However, we have shown that, for oscillators with proper rotations,

this deviation can be obtained from an equation, which allows the use of ψ as well.

4. Homo(hetero)clinic Chaotic Attractor: For such attractors the phases φ and ψ cannot

be used to calculate the average period. That is so, due to the fact that the trajectory

of these attractors gets arbitrarily close to the “rest” state, i.e. near the unstable ho-

moclinic point. The phase depends on the derivatives of the trajectory which vanishes

in the homoclinic points causing the phase to diverge, misleading the results. We have

shown that this problem can be overcome by a translation of the attractor on the ve-

locity space (ẋ, ẏ), such that after the translation the trajectory has a proper rotation

in the velocity space.

4 Upper bounds for phase synchronization

PS implies that the phase difference is bounded, that is, there is a number % > 0 such

that the phase difference is always smaller than this number. In order to detect PS, one

must analyze the boundedness condition in the phase difference. The main difficulties rely

on the fact that the phase definition is not general and % is arbitrary. This means that after

introducing a phase and given threshold c, which bounds the phase difference, and a number

α > 1, % = α × c also bounds the phase difference. In computer and lab experiments one

wishes to know the upper bound of the phase difference c, so, computation time in the PS

detection can be saved.

Therefore, the natural questions is whether one could estimate the smaller value of the

number c that bounds the phase difference given a phase definition. Since there are many

phase definitions, one should estimate the minimum bound for a given phase definition.

For weak coherent attractors, that is, coherent attractors disregarding its topology and the

number of time-scales; given that at least one time-scale is coherent, it is possible to define

an event, such that the time ti at which the ith event occurs is coherent. Note that ti is the
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5 PHASE SYNCHRONIZATION DETECTION

return times for a given time-scale. Therefore, given two weak coherent oscillators, namely

x1 and x2, we have |ti1 − i〈t1〉| � 〈T1〉 and |ti2 − i〈T2〉| � 〈T2〉. If the two oscillators are in

PS, then, 〈T1〉 = 〈T2〉, and we have: |ti1 − ti2| � 〈T1,2〉. This condition guarantees that the

number of events can differ at most by one, either both events occur at the same time, or

one event occurs shortly after the other. Taking this into account we were able to estimate

the bound constant c for the given phase definition

In our work Upper Bounds for Phase Synchronization in Weak Coherent Attractors [31]

we have given an upper bound value for the absolute phase difference in Eq. (4), in terms of

a defined phase. We have shown that this upper bound value 〈r〉 is the average growing of

the phase per cycle in one of the subsystems. Particularly, 〈r〉= 〈W 〉×〈T 〉, where 〈W 〉 is the

average angular frequency associated to a subsystem x1, and 〈T 〉 is the average returning

time of trajectories in this same subsystem, calculated from the recurrence of events of the

chaotic trajectory.

5 Phase synchronization detection

In order to state the existence of PS, one has to introduce a phase φ(t) for the chaotic

oscillator, what is not a straightforward task. Therefore, approaches to PS detection that

overcome the need of a phase are required if one wants to detect PS to a general oscillator.

First, we focus our attention on attractors whose phases are well defined, namely attractors

with proper rotations and coherent motion, to develop a technique to PS detection that does

not require explicitly a phase.

There is an interesting approach, for periodically driven oscillators, very useful and easy

to implement that overcomes the need of a phase, the stroboscopic map technique. It consists

in sampling the chaotic trajectory at times nT0, where n is an integer and T0 is the period

of the driver. The stroboscopic map was used to detect PS [12, 32, 33]. The basic idea is

that if the stroboscopic map is localized in the attractor, there is PS.

Inspired by the stroboscopic map technique we developed its generalization to coupled
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6 GENERAL FRAMEWORK FOR PHASE SYNCHRONIZATION
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chaotic oscillators. The stroboscopic map is generalized to the Conditional Poincaré

Map. Given two oscillators the conditional Poincaré map is constructed by collecting points

in one oscillator at the moment at which the other completes one period. Note that for

an attractor with proper rotation this is equivalent to observe one subsystem whenever the

other crosses a Poincaré section. If the set generated by this conditional Poincaré map does

not visit any arbitrary region of the subsystem, then, there is PS.

This generalization not only allows us to detect PS in coupled chaotic oscillator, with-

out the introduction of a phase, but also allows us to explore the natural link between

synchronization and the ergodic properties of one parameter family of transformations. In

our work Non-Transitive Maps in phase synchronization [34] we have done the following

contributions:

1. We formally introduce the conditional Poincaré map and the sets generated by it. We

show that phase synchronization induces the lost of transitiveness of the conditional

Poincaré map in the attractor of the subsystem.

2. We show that for coherent dynamics the localized sets exist if, and only if, there is PS.

In other words, PS implies the existence of localized sets and vice-versa.

3. We illustrate how the conditional Poincaré map can be used to detect PS, without

actually having to measure the phase, in the forced Chua’s Circuit, experimentally

and numerically, and in the coupled Rössler oscillator.

6 General framework for phase synchronization detec-

tion

The results concerning the conditional Poincaré Map, as introduced in the previous sec-

tion, hold only for oscillators with proper rotations and coherent motion. That is so, because

the conditional Poincaré map requires the definition of a particular Poincaré section, in which

the trajectory crosses only once per cycle, such that the phase can be meant to increase 2π
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6 GENERAL FRAMEWORK FOR PHASE SYNCHRONIZATION
DETECTION 6.1 Lost of localization

between the crossings. The definition of such a section is always possible for attractors with

proper rotation. However, there is a broad class of oscillators that does not have a proper

rotation, and such sections cannot be defined. Therefore, a generalization of the conditional

Poincaré Map is needed.

In our works Detecting phase synchronization by localized maps: Application to neural

networks [35] and General Framework for Phase Synchronization through localized sets [36],

we have extended our previous results by demonstrating that localized sets can be con-

structed while in PS by means of the observation of any typical event, which has a strong

impact in the field of experimental physics, since in the laboratory measurements are re-

stricted to the limitations of the experiment. Our results demonstrate that for two coupled

oscillators x1 and x2, if one defines a typical event in an oscillator x1 and then observes

the oscillator x2 whenever this event occurs, these observations give rise to a localized set

in the accessible phase space of x2, if PS exists. We apply our theory to investigate the

mechanism for losing PS in oscillators that possess multiple time-scales as well as the PS

onset in networks of such oscillators. Finally, we relate the localized sets from our theory

to the information exchange between coupled chaotic oscillators. These topics are further

described in more details.

6.1 Lost of localization

We have shown that the lost of PS is caused by the existence of non-locked unstable

periodic orbits (UPOs). This result can be proven by means of the localized sets. First, one

defines an event, e.g. the entrance in the ε-ball, close enough to an UPO in x1, and in x2

one chooses an initial condition close enough to another UPO. The dynamics of both chaotic

flows are governed by the UPOs for a time inversely proportional to the largest eigenvalue

of the UPOs. By observing the oscillator x2 whenever the event in x1 happens (we have the

same dynamics as observing x2 every period of the UPO of x1), our results show that if the

UPOs are unlocked the observations spread over the UPO of x2, implying that the sets are

nonlocalized. This result corroborates the numerical analysis of Ref. [12].
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6 GENERAL FRAMEWORK FOR PHASE SYNCHRONIZATION
DETECTION 6.2 PS in bursting neurons connected via chemical synapses

6.2 PS in bursting neurons connected via chemical synapses

Bursting neurons present naturally a non-coherent dynamics due to the existence of two

time-scales provided by the bursting and spiking dynamics. As we coupled them via a

chemical inhibitory synapses, they undergo to an even more non-coherent state, due to the

competition between the multi-scale dynamics. Therefore, it is unclear how to introduce a

phase.

The majority of approaches to detect PS is based on the increasing in the phase of 2π

between two bursts or between two spikes. Moreover, when chemical synapses are used the

bursts and spikes amplitudes are modulate by the coupling. Thus, it is rather difficult to

define a threshold to detect the burst or spike occurrence. In general, bursts are missed,

which can mislead the detection of PS by using approaches that are threshold dependent.

Since our approach is not threshold dependent we can analyze the onset of PS in both

scales, the bursting and the spiking scales. This is done by defining a threshold in the

membrane potential in one neuron, and then, observing the other whenever the membrane

potential reaches the threshold. In our work Onset of Phase Synchronization in Neurons

Connected via Chemical Synapses [37] we have shown that PS is a common behavior in

Hindmarsh-Rose neurons with inhibitory chemical synapses.

6.3 Clusters of phase synchronization in networks

The ideas introduced herein are also useful to analyze the onset of synchronization in

neural networks. We consider networks up to 100 non-identical HR neurons coupled via

excitatory synapses. Our numerical analysis has shown that it is possible to achieve clusters

of PS for parameters far smaller than the ones needed to achieve PS in the whole network.

We have found that clusters of PS appear for 10% of the coupling strength necessary to have

PS in the whole net.

Such clusters may offer a suitable environment for information exchanging mainly for

two reasons: (i) each cluster may be used to transmit information in a particular band-
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width, which may provide a multiplexing processing of information. (ii) They provide a

multichannel communication, that is, one can integrate a large number of neurons (chaotic

oscillators) into a single communication system, and information can arrive simultaneously

at different places of the network. This scenario may have technological applications, e.g. in

digital communication [20, 21], and it may also guide us towards a better understanding of

information processing in real neural networks [24, 25, 26].

6.4 Communication and localized sets

We have also analyzed the relationship between the localized sets and the capacity of

information transmission between chaotic oscillators. The amount of information that two

oscillators x1 and x2 can exchange is given by the mutual information I(x1,x2) [38]:

I(x1,x2) = H(x1)−H(x1|x2), (9)

where H(x1) is the entropy of the oscillator x1 and H(x1|x2) is the conditional entropy

between x1 and x2 , which measures the ambiguity of the received signal, roughly speaking

the errors in the transmission.

As pointed out in Ref. [28] the mutual information can also be estimated through the

conditional exponents associated to the synchronization manifold. Thus, the mutual infor-

mation is given by:

I(x1,x2) =
∑

λ+
‖ −

∑
λ+
⊥ (10)

where λ+
‖ are the positive conditional Lyapunov exponents associated to the synchronization

manifold, the information produced by the synchronous trajectories, and λ+
⊥ are the positive

conditional Lyapunov exponents transversal to the synchronization manifold, related with

the errors in the information transmission. In general, we expect
∑
λ+
‖ ≤

∑
λ+, where λ+

are the positive Lyapunov exponents. Thus I(S,R) ≤ ∑λ+ −∑λ+
⊥. In order to estimate

an upper bound for I(S,R), we need to estimate λ+
⊥, what can be done directly from the

localized sets.
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7 PHASE SYNCHRONIZATION IS TIME COORDINATE INVARIANT

The conditional transversal exponent can be estimated from the localized sets by a simple

geometric analysis. Let ti1 be the time at which the oscillator x1 reaches the Poincaré plane

at x∗1 while the oscillator x2 is at xi2 = x2(ti1). Conversely ti2 is the time at which the oscillator

x2 reaches the Poincaré plane at x∗2 while the oscillator x1 is at xi1 = x1(ti2). Our analysis

has shown that the local transversal exponent is given by:

λ⊥ = lim
N→∞

1

N

N∑

i=1

1

|ti1 − ti2|
`n

∣∣∣∣
x∗1 − xi2
x∗2 − xi1

∣∣∣∣ , (11)

where we use the convention 0 × log0 = 0. Of course, we only estimate a local conditional

exponent, close to the defined event. Using this approach, we have shown in our paper [39]

that if two neurons are synchronous in the bursting scale, information about one neuron can

be retrieved using both the bursting and spiking scale with minimal amounts of errors

7 Phase synchronization is time coordinate invariant

Properties of synchronization between dynamical systems with a reparametrizable time-

coordinate are important not only in physical theories without an absolute time, but also in

biological oscillators which have their own intrinsic time, and technological applications that

require their own time coordinate. After a time coordinate change a fundamental question

arises: Can synchronization be destroyed or can one suitablely define a new time where the

timing properties are even more precise? Time reparametrizations cause no change in the

topological dynamics, the direction of the flow does not change and the paths of the orbits

remain unaltered, but the duration of the cycles can be drastically modified.

In our paper Phase Synchronization is time coordinate invariant [40] we have investigated

the effect of general time reparametrizations on the phase synchronization phenomenon. We

have shown that for general dynamical oscillators it is not possible either to introduce or to

lose PS through such a transformation. Furthermore, we have discussed possible application

of these ideas to important technological problems such as nonlinear digital communication

[20, 21]. Moreover, we have illustrated these results namely in unsynchronized oscillators,
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8 TORUS DESTRUCTION VIA GLOBAL BIFURCATIONS

showing that the enhancement of zero phase diffusion does not enhance PS. In a second

example we showed that breaking the boundedness condition imposed on λ PS can be en-

hanced. However such a transformation has no physical meaning. Finally, in our last example

we have shown that the time reparametrization can introduce the presence of distinct time

scales, which can feign PS.

8 Torus destruction via global bifurcations

Nonlinear phenomena are abundant in nature. The behavior of a nonlinear oscillator

may change as we vary a control parameter; the oscillator undergoes a bifurcation, causing

a change in the topological picture of the solution in the phase space, thus altering the

dynamics. Bifurcations can be local (changing only locally the behavior of the oscillator

in the phase space) or global (changing the behavior of phase space as a whole). The

understanding of the bifurcation scenario for an oscillator is particularly important for the

characterization of its dynamical behavior. Surprisingly, there are just a few bifurcation

scenarios in which a nonlinear oscillator initially presenting a periodic behavior can undergo

transition to chaos. Among the routes to chaos are the bifurcations of a quasi-periodic

attractor with 2 incommensurate frequencies, also known as torus T 2.

Curry and Yorke [41] showed that chaos, with broadband spectra, could emerge directly

from the destabilization of a torus T 2. This scenario is characterized by a T 2 born from the

destabilization of a stationary solution, followed by a successive series of phase-lockings and,

eventually, the onset of chaos. The emergence of chaotic behavior is generally associated to

the appearance of a localized folded and wrinkled structure, as reported in laser systems [42]

and in line-coupled diodes [43]. A frequency characterization of this type of chaos shows that

the frequencies present before the torus breaks are still dominant in the chaotic trajectory. A

metric characterization shows the appearance of an extremely small and positive Lyapunov

exponent.

Recently, it was shown the appearance of chaotic behavior by a transition directly from
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the torus T 2[44, 45], in which there is a collision of the torus with saddle points originating

a type-II intermittency [46]. In this scenario, there is a mechanism of reinjection associated

to a heteroclinic connection between the central unstable focus and the saddles, which takes

the trajectory back to the vicinity of the focus. This trajectory evolves in a laminar fashion

around the focus towards the saddles. It behaves chaotically in the saddles vicinity, and far

away from the region delimited by these saddles, returning to the focus along the heteroclinic

orbit. This alternance between this type of laminar and chaotic behavior characterizes the

type-II intermittency.

The breakdown of the torus T 2 by a torus-saddle collision differs from the Curry-Yorke

in the sense that it is associated to the appearance of many frequencies, where the old

frequencies no longer play an important role. Additionally, a global bifurcation creates a

robust heteroclinic cycle with the appearance of a very large positive Lyapunov exponent.

As reported by Lethelier et al.[47], this phenomenon is not only restricted to continuous-time

systems but it happens also in spatio-temporal systems.

In our works Global Bifurcation Destroying The Experimental Torus T 2 [48] and A

Scenario for Torus T 2 Destruction via a Global Bifurcation [49], we have presented an ex-

perimental and numerical analysis to pursue a detailed picture of this scenario. We have

shown mainly the following points: (i) The existence of the saddle points. They are experi-

mentally observed by introducing a perturbation in the circuit, at a moment that the saddle

points are close to the T 2 torus. They are numerically detected by the method introduced in

[48]; (ii) The existence of the focus points. (iii) The manifolds of the saddle points. We also

show evidences of the heteroclinic orbit between the saddle points and the focus, by iterating

points at the unstable manifold of the saddle and verifying that they eventually are mapped

in around the focus; (iv) The Fourier and the Lyapunov spectra suffer a sudden transition

at the moment of the torus collision. (v) Verification of a power scaling law for the aver-

age laminar length, 〈T 〉 with respect to the distance between the parameter, fp (perturbing

frequency), and the critical parameter, fc, where the bifurcation takes place. We find that

〈T 〉 ∝ |f − fc|−µ, with µ = 0.96± 0.05 (experimentally) and µ = 0.98± 0.08 (numerically).
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9 Conclusions

In this work we have carried out a dynamical study of synchronization. Through theoret-

ical and numerical analysis we have pursued a general framework for phase synchronization

analysis. Our main achievements are the following:

1. The analysis of a phase based on the tangent field. We have shown that such a phase

has a physical meaning, i.e., it gives the correct average period of an oscillator.

2. We have shown that, for a given phase definition, the upper bound for the absolute

phase difference can be calculated, and it is equal to the product of the average in-

creasing of the phase in typical cycles with the average period.

3. We have shown that in PS regimes the observations of the trajectory of one subsystem,

done by means of any typical physical event occurrence, generate a localized set. This

set can be used to state the present of synchronization and to estimate the synchro-

nization level. Moreover, we have analyzed the relationship between such sets and the

amount of information transmission that can be exchange between coupled oscillators.

4. We have demonstrated that PS is invariant under time coordinate changes. Such a

result may shed light into the synchronization analysis of physical systems, in which a

real time is not an accessible information.

Finally, we have analyzed a scenario of torus breakdown giving place to a new transition

to chaos. We have performed a detailed experiment and numerical investigations in order to

characterize this scenario.
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