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We have numerically studied the bifurcation properties of a
sheet pinch with impenetrable stress-free boundaries. An in-
compressible, electrically conducting fluid with spatially and
temporally uniform kinematic viscosity and magnetic diffusiv-
ity is confined between planes at 1 = 0 and 1 = 1. Periodic
boundary conditions are assumed in the z» and x3 directions,
and the magnetofluid is driven by an electric field in the x3
direction, prescribed on the boundary planes. There is a sta-
tionary basic state with the fluid at rest and a uniform cur-
rent, J = (0,0, J3). Surprisingly, this basic state proves to be
stable, and apparently to be the only time-asymptotic state,
no matter how strong the applied electric field and irrespec-
tive of the other control parameters of the system, namely,
the magnetic Prandtl number, the spatial periods L2 and L3
in the z» and x3 directions, and the mean values Bs and Bz
of the magnetic field components in these directions.
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I. INTRODUCTION

One of the basic configurations in magnetohydrody-
namics (MHD) is the pinch, namely, an electrically con-
ducting fluid confined by the action of an electric cur-
rent passing through it. Gradients of thermal pressure
arising in the confinement region, notably a sheet or
a cylinder or torus, are balanced by the Lorentz force.
For instance, plasma confinement in toroidal devices for
controlled thermonuclear fusion, such as the tokamak, is
based on the principle of the pinch.

Static pinch configurations are subject to various in-
stabilities, which have been studied extensively [1,2].
Of special interest here are the tearing modes, which
belong to the class of the finite-resistivity instabilities
[3,4]. By destroying magnetic surfaces, they can shorten
the confinement time of fusion plasmas. Tearing modes
are also thought to play a role for the explosive release
of magnetic energy in space and astrophysical plasmas,
e.g., substorms in the terrestrial magnetosphere and solar
flares.

Pinch configurations may be maintained by external
voltages. Alternatively, pinch-like dynamic structures
may come about in a variety of circumstances, for in-
stance, by mechanically forcing together two volumes
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of magnetofluid containing oppositely directed magnetic
fields. This is the basic scenario for one of the two main
directions of reconnection theory (where ‘reconnection’
is used as a synonym for the fast conversion of magnetic
energy into kinetic and thermal energies, in a process for
which the the violation of the frozen-in-field condition of
ideal MHD is essential) [5-9]. The other main direction
has concentrated on the evolution of resistive instabili-
ties. A review of work along the lines of both approaches
may be found in the monograph of Biskamp [10].

In addition to analyzing the linear stability of spec-
ified equilibria, pinch configurations have been stud-
ied by numerically simulating the full nonlinear MHD
equations. In general, the simulations were started
from near-equilibrium states [11-14], but also relaxations
from broad-band—noise initial conditions to certain quasi-
equilibrium states were studied [15,16].

Besides linear stability analysis and numerical simu-
lation, a useful tool for gaining insight into the global
solution structure of a dynamical system is provided by
bifurcation analysis. The main objective of a bifurcation
analysis is the determination of all attractors, i.e., of the
set of possible time-asymptotic states for a given set of
external system parameters. It is then imperative that
dissipative (Ohmic and viscous) losses are compensated
for by some kind of permanent external forcing — oth-
erwise the only time-asymptotic state is the trivial one
with the fluid at rest and no magnetic field. In many nu-
merical MHD simulations such an external forcing, which
may be imposed in the form of an explicit external force
or via appropriate boundary conditions, is absent, so that
altogether relaxations towards the trivial state are stud-
ied.

Furthermore, in a bifurcation analysis the equilibrium
states have to be really stationary. By contrast, it is
common to apply linear stability analysis, in particular
tearing mode analysis, to approximate equilibria, namely,
to states in which the fluid is at rest but the magnetic
field diffuses away.

In general, the set of the attractors and the changes of
its composition and of the character of single attractors
(the bifurcations) can, if at all, only be explored by nu-
merical means. Under certain conditions, however, cen-
ter manifold theory [17-19] can be used to obtain a low-
dimensional system of amplitude equations, valid close to
a bifurcation point and asymptotically in time. Grauer
[20], Chen and Morrison [21], and Wessen [22] used center
manifold reduction to study the time-asymptotic states
of tearing mode evolution. Related preceding studies are



due to Maschke and Saramito [23,24].

Most relevant for the present paper is recent work by
Shan, Montgomery, and Chen [25-29], who studied nu-
merically the bifurcation properties of an incompressible
voltage-driven cylindrical pinch with circular cross sec-
tion, periodic in the axial direction. For increasing an
externally applied axial electric field, which can be pre-
scribed on the boundary, transitions were observed from
static equilibria to stationary states with flow, charac-
terized by paired helical vortices and helical distortions
of the electric current (which is axially directed in the
quiescent state). If the driving electric field is raised fur-
ther, the helical stationary states in turn lose stability,
and eventually turbulent states are observed. Such a be-
haviour is found for spatially uniform [25] as well as non-
uniform [26,27] electrical conductivity.

In the present paper we report on a bifurcation study of
an incompressible sheet pinch with spatially uniform elec-
trical conductivity, driven by an electric field prescribed
on the boundary. Somewhat surprisingly, and in contrast
to the behaviour of the cylindrical pinch, a static basic
state with uniform current density proves to remain sta-
ble, and apparently to be the the only time-asymptotic
state, no matter how strong the driving electric field and
irrespective of the values of other system parameters.

In Sec. II, after introducing the governing equations
and their normalization, we explain system geometry,
boundary conditions, and forcing by the external electric
field. Then in Sec. III, we describe our numerical method
and the calculations and present the result. Sec. IV, fi-
nally, contains a brief conclusion.

II. BASIC EQUATIONS, SYSTEM GEOMETRY,
AND FORCING

We start from the equations for a non-relativistic, in-
compressible, electrically conducting fluid with constant
material properties (cf. e.g., Roberts [30]),

p(a_v+(vv)v> :pyvzv—Vp—l—i(VXB) X B,
ot Mo

(1)

%_?: V?B +V x (v x B), (2)

V-v=0, V-B=0, (3)

where v is the fluid velocity, B the magnetic induction, p
the mass density, p the thermal pressure, v the kinematic
viscosity, po the magnetic permeability in a vacuum, and
n the magnetic diffusivity (np = (uoo)~!, o denoting the
electrical conductivity). No externally applied force ap-
pears in Eq. (1). Transforming to non-dimensional quan-
tities according to
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Eqgs. (1)-(2) become

aa—itj =—(v-V)v+ P,V - Vp+ (V x B) x B, (5
%—?:V2B+Vx(va), (6)

where P, is the magnetic Prandtl number,

v
Pm = —. (7)
n

The transformations for the electric field, F, and the
electric current density, J (= V x B/uo in dimensional
units), corresponding to the above normalizations are

2
1 n P

and the non-dimensional Ohm’s law reads
J=FE+vx B. (9)

We use Cartesian coordinates x1, 2, £3 and consider
our magnetofluid in the slab 0 < z; < 1 (that is, lengths
are normalized to the thickness of the slab). In the x5 and
x3 directions periodic boundary conditions, with spatial
periods Lo and L3, are assumed.

In order to compensate for viscous and Ohmic losses,
and thus to admit non-trivial time-asymptotic states,
there must be a net energy input through the boundary
planes x1 = 0, 1 = 1. In the present paper we consider
the case that only electromagnetic energy, in the form of
a Poynting flux, can penetrate the boundary. In partic-
ular, we assume that there is no mass flow through the
boundary, i.e.,

vp=0 atxz =0,1. (10)

With respect to the tangential velocity components,
stress-free boundary conditions are used,

61}2 61}3
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The system is forced by applying an electric field of
strength E* in the z3 direction. Of course, E can be
prescribed only on the boundary, while in the interior of
the volume considered it is determined by the governing

equations. We further assume that there is no magnetic
flux through the boundary,

B1 =0 at I = 0, 1. (12)



Conditions (10) and (12) imply that the tangential com-
ponents of v X B on the boundary planes vanish, so that
according to Eq. (9)
:]2 = 0, Jg =FE* at Tr = 0, 1. (13)
The boundary conditions for the tangential components
of B then become
0Bs3

0B>
=F" =0 atz; =0,1. 14
afL'l ) axl at 1 ) ( )

A few remarks concerning the suitability and physi-
cal realizability of our boundary conditions seem to be in
order (needless to say, we are considering a strongly ideal-
ized model). If there are rigid walls at z; = 0 and z; = 1,
no-slip boundary conditions on the velocity (v = 0) are of
course more appropriate than stress-free ones. Stress-free
boundaries are commonly assumed in order to circum-
vent the formation of viscous boundary layers (and thus
to avoid the need to resolve small spatial scales). Now
the main result of the present study will be the stabil-
ity of a quiescent basic state. In this respect, stress-free
boundaries are more general than rigid walls, since the
latter, by impeding fluid motions, act stabilizing. On the
other hand, there are physical situations to which stress-
free boundary conditions are actually well suited, notably
in astrophysics. For instance, plasma loops and promi-
nences in the solar corona are surrounded by a very ten-
uous plasma exerting practically no mechanical stresses
on them (of course, in more realistic models also the de-
formation of free surfaces should be taken into account).

Still more delicate than the mechanical are the elec-
tromagnetic boundary conditions (cf. discussion in Ref.
[31]). The vanishing of the normal component of the
magnetic field on the boundary planes [Eq. (12)] is most
easily ensured by placing perfectly conducting rigid walls
at z1 = 0 and x1 = 1. In this case, however, also the tan-
gential component of the electric field has to vanish there
(so that there is no Poynting flux through the boundary).
In toroidal pinch devices in the laboratory, gaps in the
(highly conducting) shell permit electric fields (as well as
externally generated magnetic fields) to penetrate into
the plasma, a situation which needs to be idealized to
allow mathematical treatment. Shan, Montgomery, and
Chen [25-29], who use boundary conditions slightly dif-
ferent from ours, namely, vanishing normal components
of velocity, vorticity (V X v), magnetic field, and elec-
tric current density, idealize the boundary by a perfectly
conducting wall coated inside with a thin layer of insulat-
ing dielectric. Our boundary conditions can be approx-
imately realized if the wall is simply finitely conducting
(and uncoated): Provided the homogeneous tangential
electric field [E; = 0, Es = E*; E; is not presribed]
can somehow be maintained in the wall, then the normal
component of the magnetic field is independent of time
[since 0By/0t = —(0FE3/0xs — 0E2/0x3)], so that one
merely has to ensure that it vanishes initially. The main
difficulty, then, is to maintain the electric field at the

boundary. In the laboratory the external electric field is
usually provided inductively, which is possible only for a
limited time. This time has to be long enough to allow
the fluid or plasma to relax to its time-asymptotic state,
in which we are primarily interested. Alternatively, since
the two infinite plane walls have to be finite in reality,
voltage drops could be directly applied between opposite
edges; also the use of an array of thin electrodes held on
potential values increasing linearly with x3 is conceivable.
The imposed tangential electric field leads to a tangential
current in the wall, which in turn generates a magnetic
field whose component normal to the wall vanishes.

Finally, the magnetic field in the fluid may contain
a dc component, namely, a homogeneous field parallel
to the boundaries. For our boundary conditions, this
dc component is independent of time (cf. Sec. III and
Appendix) and thus a relic of the formation phase of
the pinch. If a certain dc field is desired, the formation
process has to be managed such as to generate it. For
instance, applying first at one of the two boundaries a
tangential electric field in the x5 direction and then at
both boundaries the permanent one in the z3 direction
will result in the presence of a dc magnetic field in the
3 direction.

Our boundary conditions differ from those utilized by
Shan, Montgomery, and Chen [25-29]. Their condition
on the vorticity (the vanishing of its normal component)
is implied by, but does not imply, no-slip boundary condi-
tions; so this condition seems to be intermediate between
stress-free and no-slip conditions. The vanishing of the
normal components of magnetic field and electric current
density required by Shan et al. still permits them to im-
pose a (mean) tangential electric field at the boundary.
So the driving mechanism is the same as in our case. We
have preferred to assume conducting boundaries, which
allow currents to flow normal to the boundary. But |Ji]
will be small if the conducting wall is thin and, say, sep-
arates the fluid from a vacuum or an insulating dielec-
tric; then the two kinds of boundary conditions should
be equally appropriate. It seems unlikely to us that the
slight differences in the boundary conditions play a role
for the observed fundamental difference between our re-
sults and those of Shan, Montgomery, and Chen [25-29].

There exists an up to a constant magnetic field unique
stationary state with the fluid at rest: For this case Egs.
(5)—(6) simplify to the equations

-Vp+(V x B) x B=0, (15)

V?B =0, (16)

of which the last one, in connection with the boundary
conditions given by Egs. (12) and (14), implies

B = (0,E*z1 + C5,C5), (17)

with constants C; and C3. Thus, the static equilibrium
field, B¢, can be written as



B¢ = (0,E*z; — E*/2 + By, B3), (18)

where overbars denote spatial averages over the periodic-
ity volume, 0 < 1 < 1,0 < 29 < Lo, 0 < 3 < L3. The
equilibrium current is uniform and in the x3 direction,

J¢ =V x B°=(0,0,E%), (19)
and there is a Lorentz force in the z; direction,
J¢ x B°=(-BSE*,0,0). (20)
Eq. (15) is satisfied with
B*?
p=p°=-— 5 (21)

Obviously we could allow for a mean flow v¢ =
(0,73,73) in the equilibrium state (77 has to vanish as
a consequence of the boundary conditions in conjunc-
tion with the incompressibility) — Eqgs. (15)—(21) would
remain valid; merely an electric field component F; =
—(v¢ x B¢); would appear. But in a coordinate system
co-moving with the mean flow, we would again observe
our static equilibrium.

We shall use the decomposition

(VxB)xB=(B-V)B - %VB2 (22)
and write
P=p+ %BQ. (23)
Furthermore, the notations
b=B - B°, (24)
and
j=J—-FE* (25)

will be used. v and b will be our dynamical variables, for
which the complete boundary conditions read

8112 81}3 8bg ab3
al'l al'l ! al'l al'l 0 at o 07

v =
(26)
The total energy flow S into the periodicity volume is
given by
La Ly

§= 0/0/ [(E X B)1|r1=O - (E X B)1|z1:1] dzodxs

Lo L3
= E* //[BQ(.’L‘l = ].) — B2($1 = 0)] d.’L‘Qd.’L‘g

0 0
Lo L3

=FE* / /[bg(lﬁl = 1) - b2($1 = 0)] d$2d.1‘3
00

+E*?LyLs. (27)
The term E*2L2L3 just compensates for the Ohmic

losses, given by fol 0L2 f0L3 J? dzdzedes, in the static
equilibrium.

III. NUMERICAL METHOD, CALCULATIONS,
AND RESULT

The boundary conditions given by Eq. (26) can be sat-
isfied by expanding v; and b; in pure sine series and vy,
vz, by, and b3 in pure cosine series with respect to xq;
with respect to x5 and x3 expansions into exponential
functions can be used:

V1 = Z Vik sin(klxl) exp{i(kzl'z + k‘3$3)},
k

Vo = ZUQk COS(kll'l) exp{i(k2x2 —+ k3£L'3)},
k

v = ngk cos(kiz1) exp{i(kazo + ksx3)},
k

b1 = Z blk Sin(k1$1) exp{i(kzl'z + kgl‘g)},
k

b2 = Z ka COS(kl.’L'l) eXp{i(kQ.'IIQ + kg.’L';g)},
k

b3 = Z bgk cos(klxl) exp{i(k2m2 + k’gib’g)}. (28)

k
Here k = (k1, ko, k3) with
ki1 =0,m, 27, 3m,---

2 2 2
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L27 L_27
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In Fourier space Eqgs. (5)—(6) take the form
b1k = —(v- V1) + k1 Pr — Pok*vig + (B - VB1)g,
Vol = —(U . V’Ug)k — 1k P — Pmk2’l)2k + (B . VBQ)k,
U3k = —(v - V) — iks Py — Pnk*vs, + (B - VB3)g,
bie = [V X (v x B)|1k — kb,
bzk = [V X (’U X B)]gk — kagk,
bgk = [V X ('U X B)]gk — k2b3k. (30)

(29)

In these equations the Fourier coefficients Py, (v - Vv;)g,
(B-VB;)k, [V x(vxB)]; on the right-hand sides refer to
expansions similar to those in Eq. (28), namely of v- Vv,
B-VBy, and [V X (v x B)]; in pure sine series and of P,
(s V’Ug, (s V’Ug, B- VBQ, B- VBg, [V X (’U X B)]Q, and
[V x (v x B)]s in pure cosine series with respect to x;
(see Appendix). Note that B (and not only b) appears
on the right-hand sides of the system (30), which reflects
the forcing by the boundary electric field.
Equation (3) implies

klvlk + ikzv% + ik3’l)3k = 0, (31)
k1b1k + ikobog + iksbsk = 0, (32)
so that vy can be expressed in terms of vor and vzg
and b1k in terms of bog and bsg (there are no complica-

tions in the case k1 = 0, since v1x and byg then vanish).
Furthermore, by using the time derivative of Eq. (31),



k101, + thovor + iksvse = 0, (33)

in conjunction with the first three equations of the system
(30), the pressure can be eliminated: One obtains

P = %{kl[(v Vo) — (B- VB

+zk2[('v . VU2)k — (B . VBg)k]
+ik3[(’U . V’Ug)k - (B . VBg)k]} (34)

We have numerically studied the resulting system of
ordinary differential equations (ODEs) for the unknown
functions veog(t), vsk(t), bak(t), and bsk(t) by means of
a pseudospectral method [32,33]. The nonlinear terms
(products) on the right-hand sides were calculated in real
space (instead of in Fourier space). This did not merely
save computer time but really made feasible the calcu-
lations. The right-hand side of the first equation of the
system (30), for instance, has to be expanded into a pure
sine series with respect to x;. However, if vy is given in
the form of such a series and vy and vs are correspond-
ingly given in the form of pure cosine series, then, by
directly calculating in Fourier space, v - Vv; becomes
the sum of different products of sine and cosine functions
(which have to be expanded into sine series). These dif-
ficulties are circumvented by Fourier transforming after
having calculated the products in real space (for further
details see Appendix).

It can easily be shown that the spatial means of vs,
v3, B2, and Bj are independent of time (cf. Appendix).
Without loss of generality we have restricted ourselves
to the case of 3 = U3 = 0 (that is, of vanishing Fourier
coefficients v29 and vsg), for, as noted in Sec. IT, the mean
flow can be removed by a Galilean transformation. The
mean values B, and Bj, on the other hand, have been
treated as parameters.

Keeping fixed P, Lo, L3, By, and Bs, and increasing
E*, we have traced the static equilibrium solution. In
each step of the tracing, in order to detect bifurcation
points, the eigenvalues of the Jacobian matrix of our sys-
tem of ODEs were calculated. The surprising result was
that none of the real parts of the eigenvalues became
positive (or at least zero), no matter how strong E* and
irrespective of the choice of the other (fixed) parameters.
Of course, we could not systematically explore the space
of these latter parameters. But they were varied in a
broad range, P,,, in particular, between 0 and 10°. For
Ly and Lj the values 1, 4, and 10 were selected, for Bs
the values 0, 1, 10 and 1000, and for B, finally, the val-
ues 0 and 10. In each tracing, E* was increased up to a
value of 108.

Because of the large amount of computer main storage
needed for the Jacobian matrix, the eigenvalue calcula-
tions were restricted to a resolution of 16% grid points in
real space. But we have also simulated the system for ran-
domly chosen initial conditions. In the simulations, we
could use a resolution of 64 x 32 x 32 grid points, with the
higher resolution in the direction of the equilibrium-field

gradient (x1). To test for aliasing errors [32,33], we also
used a de-aliased version of the subprogram calculating
the right-hand sides of the system of ODEs. For the de-
aliasing the 2/3 rule was employed, namely, for each spa-
tial direction one third of the Fourier coefficients (those
with the largest wave numbers) was set equal to zero
before each transformation from Fourier to real space
(where then the nonlinearities were calculated). In this
way possible aliasing errors can be removed, but at the
expense of a significantly harder truncation — in our
case the number of active modes was reduced to about
one third (8/27). In the simulations, differences between
the simple and de-aliased calculations were observable for
E* 2 10%, but these did not affect the time-asymptotic
state. For the numerical calculation of the elements of the
Jacobian matrix, on the other hand, we could use a lin-
earized version of the subprogram for the right-hand sides
(in which, for example, the term (v - V)v was omitted).
Sources of aliasing errors are solely the product terms. In
our case these were not completely removed by the lin-
earization — the products of v and b with the equilibrium
magnetic field, B¢, survived the linearization. However,
the eigenvalues with the largest real parts, decisive for
the stability, did not seem to be influenced by aliasing.

In all simulations, independent of the initial conditions
and of the values of the parameters, asymptotically in
time the static equilibrium, v = b = 0, was approached.
This confirms the stability of the basic state. Further-
more, it indicates that coexisting attractors not bifurcat-
ing from the basic state do not exist.

IV. CONCLUSION

In a voltage-driven incompressible sheet pinch with
spatially and temporally uniform kinematic viscosity and
magnetic diffusivity and with impenetrable stress-free
boundaries, the quiescent basic state with uniform cur-
rent density is absolutely stable. Furthermore, it seems
to be the only attractor of the system, though this can-
not be stated with the same confidence. We suppose
the result obtained to be equally valid under rigid-wall
boundary conditions for the velocity.

The complete absence of magnetohydrodynamic activ-
ity in the sheet pinch contrasts with the rich activity
observed in corresponding numerical studies of the cylin-
drical pinch [25]. It seems unlikely to us that this results
from the slight difference between the boundary condi-
tions utilized in both studies. The situation is reminis-
cent of that for the hydrodynamic Couette flow [34-36].
Namely, for the plane Couette flow, the flow between infi-
nite parallel planes with one moving boundary, the basic
state with a linear velocity profile is stable, while in the
rotating Couette flow, the flow between concentric cylin-
ders with the inner cylinder rotating, various bifurcations
are observed.

As anext step, we plan to study the bifurcation proper-



ties of a sheet pinch with spatially non-uniform magnetic
diffusivity.
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same applies to the B - VB;. Thus according to Eq.

(30), the spatial means of vs and v3 (namely, the Fourier

coefficients v29 and v3g) are independent of time.
Correspondingly, the relations

0
a—mg(UQBB - UBB‘Z)

0
_3_$1(le2 - U231)7

[V x (vxB)], =

[V X (’U X B)]q = ,\i(vgBl — ’UlBg)

APPENDIX

The Fourier coefficients Pk, (v - V), (B - VB;)g,
[V x (v x B)]ix on the right-hand sides of the system
(30) are defined by the expansions

P:Z Py, cos(kyx1) exp{i(koxa + k3zs3)}.
k

v-Vu, :Z(v-Vvl)k sin(kyz1) exp{i(koxo + ksx3)},

k
v-Vuy :Z(’U'V’Ug)k COS(k?l.I‘l) eXp{i(kg.ﬁg + k3$3)},
k
v-Vus :Z(’U-V’U3)k cos(kyz1) exp{i(koza + ksx3)},
k
B-VB; =Y (B-VB)gsin(kyz1) exp{i(kaza + k3zs)},
k
B‘VBQ :Z(BVBz)k COS(lexl) exp{i(kgccg + kgl‘g)},
k
B'VB?, :Z(BVBg)k COS(k‘l.Tl) exp{i(kgmz + k‘gl‘g)},
k
R1 :Z R]k Sin(kll'l) exp{i(kgxg + kgib'g)},
k
R, :Z Ry cos(kyx1) exp{i(kexa + k3zs)},
k
R3:ZR3k cos(klxl)exp{i(kgxg + k3$3)}, (Al)
k

where R is an abbreviation for V x (v x B).
For evaluating the terms (v - Vv;)g, (B -V B;)g, it has
been advantageous to use the relations

0 0
v-Vu = Er vy + B (v1v2) + 973 (v1vs)
v - Vu —iv2+i(v v2) + =—(vav3)
2_(9.T2 2 61‘1 172 81‘3 278
0 0 0
v-Vug = Drs + a—xl(UlU?’) + 8—:102(”21)3) (A2)

and the analogous relations for the B - VB;. The
products v;v;, B;B; have been calculated in real space,
Fourier transformed, and differentiated in Fourier space.
Similarly the terms [V x (v x B)]ix were calculated.
Equation (A2) shows that the spatial means of the v -
Vu; vanish (in virtue of the boundary conditions). The

ol
0
_8_302(1]233 — v3By)
(A3)

show that the mean values of [V x (v x B)]y and [V x
(v x B)]3 vanish, so that according to Eq. (30), b2 and
b3 are independent of time.
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