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We have studied the bifurcations in a three-dimensional in-
compressible magnetofluid with periodic boundary conditions
and an external forcing of the ARC type. Bifurcation-analysis
techniques have been applied to explore the qualitative be-
havior of solution branches. Due to the symmetry of the forc-
ing, the equations are equivariant with respect to a group of
transformations isomorphic to the octahedral group, and we
have paid special attention to symmetry breaking effects. As
the Reynolds number is increased, the primary non-magnetic
steady state, the ABC flow, loses its stability to a periodic
magnetic state, showing the appearance of a generic dynamo
effect; the critical value of the Reynolds number for the insta-
bility of the ABC flow is decreased compared to the purely
hydrodynamic case. The bifurcating magnetic branch in turn
is subject to secondary, symmetry breaking bifurcations. We
have traced periodic and quasiperiodic branches until they
end up in chaotic states. In particular detail we have an-
alyzed the subgroup symmetries of the bifurcating periodic
branches, which are closely related to the spatial structure of
the magnetic field.
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I. INTRODUCTION

The generation and maintenance of magnetic fields by
the motion of electrically conducting fluids is the subject
of dynamo theory. One of its main objectives is to explain
the existence of long lasting cosmical magnetic fields, as,
for example, those of the Earth and the Sun. For a recent
account of dynamo theory we refer to Ref. [1].

Usually the magnetohydrodynamic (MHD) equations
are employed to describe the dynamo effect. When the
magnetic energy is small compared to that of the veloc-
ity field, one can consider the kinematic problem, that is,
the induction equation for a prescribed velocity field dis-
regarding the response to the motion of the fluid. In the
kinematic frame the question is, whether a fluid motion
can amplify and maintain weak seed of magnetic field.
One of the successful examples to produce a dynamo ef-
fect are the ABC flows (named after Arnold, Beltrami
and Childress), firstly investigated by Arnold [2],

vapc = (Asinkoz + C coskoy, Bsinkor + Acoskoz,
Csinkoy + B cos kox), (1)

where A, B, C denote constant coefficients and kg is
a (also constant) positive wave number. They are a
strongly helical flows satisfying the Beltrami condition,
V x v = M, with A = kg, a necessary condition for the
existence of chaotic domains in the flow [2]. For these
reasons, they have received much interests [3,4], notably
in the kinematic context as candidates for fast dynamos
[5,6] (for which the growth rate remains bounded from
below by a positive constant as the magnetic diffusivity
tends to zero).

The ABC flows are steady solutions of the incompress-
ible Euler equation. They are also steady solutions of
the incompressible Navier—Stokes equation (NSE) [Eq.
(3) below with the magnetic field, B, dropped] if an ex-
ternal body force

f= —VVQUABC = I/kg'UABC (2)

is applied in order to compensate for viscous losses. But
they are only stable solutions below a critical strength
of the forcing or critical Reynolds number, respectively
— investigations of their linear stability are due to Gal-
loway and Frisch [7]. The nonlinear behavior of solutions
to the NSE with the forcing given by Eq. (2) has been
studied numerically by Zheligovsky and Pouquet [8] and
by Podvigina and Pouquet [9]. These authors report var-
ious bifurcations that occur as the strength of forcing (or
the Reynolds number) is raised and that lead to qualita-
tively different and partially coexisting solution branches,
including chaotic ones.

Imposing the same kind of forcing, Galanti et al. [10]
investigated the complete system of MHD equations by
means of numerical simulations. From kinematic studies
it is known that for small Reynolds number the ABC
flow with no magnetic field is also a stable solution of
the MHD equations. Galanti et al. found that at some
critical value of the Reynolds number, the ABC flow loses
stability to time periodic solutions with a magnetic field,
indicating the occurrence of a dynamo effect.

Continuing these studies by Galanti et al. [10] we have
investigated the MHD equations with the imposed ABC
forcing, for the special case of A = B = C and kg = 1,
by applying methods of the numerical bifurcation analy-
sis as well as group-theoretical methods. The aim of the
present paper is to describe the bifurcation structure in
dependence on the Reynolds number as control param-
eter. The MHD equations with our special forcing are
equivariant with respect to a group of transformations
isomorphic to the octahedral group. We have paid spe-
cial attention to symmetry breaking effects of the bifur-



cations. In particular, we have determined the subsym-
metries of bifurcating solution branches. In a companion
paper [11] a generalized ABC forcing is applied to investi-
gate the influence of the degree of helicity in the forcing
on the character of the first bifurcation of the primary
non-magnetic stationary state.

In Sec. IT we cast the three-dimensional MHD equa-
tions into spectral form and explain the kind of trunca-
tion used, while in Sec. III the external forcing and its as-
sociated symmetries are explained. In Sec. IV we present
the results of our numerical bifurcation analysis, i.e., the
bifurcations and their symmetry breaking effects. Then
in Sec. V, the spatio-temporal structure of the magnetic
field as well as its symmetry properties are considered.
Sec. VI, finally, contains a brief discussion.

II. BASIC EQUATIONS AND TRUNCATION

We start from the equations for a non-relativistic, in-
compressible, electrically conducting fluid with constant
material properties (cf., e.g., Roberts [12]),
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V.v=0, V-B=0, (5)

where p is the mass density, p the thermal pressure, v
the kinematic viscosity, uo the magnetic permeability in
a vacuum, 1 the magnetic diffusivity (n = (poo)™!, o
denoting the electrical conductivity), and f an external
body force. The third and fourth terms on the right-hand
side of Eq. (3) constitute the Lorentz force. Transforming
to non-dimensional quantities according to
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where P,, is the magnetic Prandtl number, P, = v/n.

We impose periodic boundary conditions and consider
the equations in the domain Q = [27 X 27 X 27], where
the mean values of v, B, p and consequently of f are
assumed to vanish. The solutions can be expanded into
to the complete set of orthogonal eigenfunctions of the
Stokes operator,

v()= Y (v ey + ol el explik-x),  (9)
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where we have used polarization vectors ege ), ek) per-

pendicular to k,

egf) -k =0, eg) -ef) =0, egf) -eg) =1, e(_lze = eg)
fori=1,2, (13)

such that Eq. (5) is satisfied automatically. Because of
the last condition in Eq. (13) we have

v, =v,", B,=By (14)
(an asterisk indicates the complex conjugate). By means
of the above Fourier ansatz, Eqgs. (9)—(12), we easily get
rid of both the thermal, Vp, and magnetic, V.B? /2, pres-
sure terms in Eq. (3) and arrive at the following system
of ordinary differential equations (ODE):

d’l}(j) o
5 =k
—i Z Z e(&) . (]) ( )pk)[ (a) (B)p
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In the numerical calculations we have applied an isotropic
truncation in wave number space and taken into account
wavenumbers k with k? < 12. This corresponds to 89
k-vectors, which amounts to studying a system of 712
ODE.



III. FORCING AND SYMMETRY

In order to compensate for viscous and ohmic losses,
some kind of external forcing has to be applied in Eq. (3).
We have used the (non-dimensional) forcing

f = kivagc, (17)
vapc defined by Eq. (1), with the restriction

A=B=C=R, k=1 (18)
In the following the number R introduced here will be
referred to as the Reynolds number (in accordance with
the definition of the Reynolds number used in previous
studies [10,9]). In the numerical calculations we have
restricted ourselves to the case P, = 1 and R has been
our bifurcation parameter.

For this special ABC forcing the MHD equations are
equivariant with respect to a discrete transformation
group which contains 24 elements and is isomorphic to
the octahedral group O (the rotation group of a cube)
[2,13,4]. For details of the group, namely, a list of the co-
ordinate transformations, comments on the general group
structure as well as an explicit group table, we must re-
fer to the Appendix. The whole symmetry group is, for
instance, generated by the two transformations 75 and
Ts (see in the Appendix). A number of bifurcations ob-
served in the system are related to the symmetries.

Each transformation T is a combination of a rigid ro-
tation with a translation and can be written as

' = Te = Dz + a, (19)

where a prime denotes transformed quantities, D is an
orthogonal 3 x 3 matrix and a a constant vector. As-
sociated with this transformation of the position vector
x is a transformation of the vector field v(x) (B(x) is
transformed in the same way) according to

v'(x) = Du(T ). (20)
In Fourier space Eq. (20) takes the form
vy, = Dvj, - exp(—ik - a), (21)
where
=Dk, (22)

and for the quantities v,(el) and v,(f) one obtains

2
v;e(j) = exp(—ik - a) Z vlga)(Deg‘)) . eg). (23)

a=1

By using this relation (and the corresponding one for the
magnetic field) it can be checked numerically with respect
to which transformations of the symmetry group, if any,
a particular solution is symmetric.

IV. BIFURCATION STRUCTURE

Table I gives an overview of the detected stable-
solution branches and their symmetries. For small
Reynolds numbers (weak forcing) only the directly forced
modes (with |k| = 1) are excited and the pure ABC
flow with vanishing magnetic field is a stable station-
ary solution. In our truncation (with 89 k vectors), the
ABC flow loses stability at R = 5.7 and a stable peri-
odic solution with a non-vanishing magnetic field is born.
Since only a single pair of complex-conjugate eigenvalues
crosses the imaginary axis at this Hopf point, the new
periodic branch, Per—1, retains the full symmetry. More
precisely, the solution is no longer point symmetric with
respect to all symmetry transformations; under the ac-
tion of some of them a time shift is produced, but the
periodic orbit as a whole is invariant. In this special case
the time shift can be interpreted as the action of the re-
flection group Z, mapping the orbit onto itself. In our
numerical calculations we mainly examined the symme-
try properties of the orbits as a whole, not also the time
shifts in all details, and thus Table I refers only to the
total symmetry of the orbits.

TABLE I. Overview of the different solution branches.

Branch Interval of Symmetry
stability for R

ABC flow 0< R<5H.7 0]

Per-1 5.7< R<11.5 0]

Per-3 77< R<16.0 Dy

Per—4 115 < R<17.3 D3

Torus—3 16.0 < R < 20.0

Torus—4 173< R<17.9

Chaos—3 R >20.0

Chaos—4 R>17.9




The numbers in the branch designations in Table I in-
dicate the multiplicity of the branches, i.e. the number
of coexisting branches that can be transformed into each
other by elements of O. So, for instance, Per—3 stands
for three coexisting branches.

For R = 7.8 anew (three-fold) periodic branch (Per-3)
appears. This branch is from its appearance only par-
tially symmetric. Each orbit is invariant with respect to
one of the three conjugate subgroups (cf. Appendix)

Déll = {T17T27T37T47T67T227T97T20} (24)
D3 = {Ty,Ts, Ts, Tr, T3, Toa, Ty, Toz } (25)
D} = {T\,Ts, Ty, Tr0, T3, T, Ts, To1 }- (26)

These subgroups are isomorphic to the dihedral group
Dy (the rotations and reflections of a square in a plane
which leave the square invariant). Namely, the first four
elements correspond to rotations about one coordinate
axis and form a subgroup isomorphic to the cyclic group
Z4, while the remaining elements correspond to the four
reflections of the square perpendicular to the rotational
axis of the first four elements. In the octahedral group
O (rotation group of the cube), which does not contain
reflections, these last four elements actually correspond
to rotations by 180° about axes lying in the plane of the
square.

When traced backwards (i.e., for decreasing Reynolds
number), the branches Per-3 disappear for R =
7.7, probably due to saddle-node bifurcations (turning
points) for the periodic solutions. For increasing val-
ues of the Reynolds number, the branches Per—3 undergo
secondary Hopf bifurcations at R = 16.0, generating the
torus branches Torus-3. Fig. 1 shows a corresponding
torus solution, namely, the projection of a trajectory onto
a plane spanned by one velocity and one magnetic field
(Fourier) component.
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FIG. 1. Torus solution for R = 16 (branch Torus-3).

At R = 20 these torus branches lose stability to chaotic
states (see Fig. 2).

0.020 F T T
0.010F )
, Y
F \ ‘\“!’N
= R
g ;\ W
s 0.000f \'
S : y
@ : ‘(\ /
§ //
, E W2
0010 N Vo
_OO7OE \\\\\\\\\ | Lo v naas Lovvvvnaas Lovvvvnaas Lovv vy
~0.080 —0.070 —0.060 —0.050 —0.040 —0.030 —0.020

Re (vmf:,)o))

FIG. 2. Trajectory on chaotic attractor for R = 20 (branch
Chaos-3).

The chaoticity of the solutions has been verified by
calculating the largest Lyapunov exponents for selected
values of the bifurcation parameter using an algorithm by
Shimada and Nagashima [14]. For instance, Fig. 3 shows
for the branch Chaos-3 at R = 20.0 the cumulative value
of the five largest Lyapunov exponents in dependence on
the integration time.
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FIG. 3. The five largest Lyapunov exponents versus inte-
gration time for the branch Chaos-3 at R = 20.

It demonstrates a good convergence, as well as that at
least one of the exponents is positive.

We now return to the periodic branch Per—1, which
in a symmetry breaking bifurcation at R = 11.5 splits
up into four periodic solutions forming the new branches
Per—4. The symmetry breaking bifurcation retains the
invariance of the solutions with respect to the following
conjugated subgroups, each of which is isomorphic to the
dihedral group Ds:



D} ={T1,T11, T2, Taz, Tho, Tos} (27)
Dj = {T\,Ti3,Tia, Too, Toa, To1 } (28)
D§ = {Ty,Ti6,T15, Tao, To1, Tos} (29)
Dj = {Ty,Tis,Ti7, T20, To3, T1o} (30)

The branches Per—4 bifurcate to the torus branches
Torus—4, which are stable only for a relatively small in-
terval of the Reynolds number, with a final transition
to chaos at R = 17.9 (generation of branches Chaos—
4). For a certain interval of the Reynolds number these
chaotic solutions exist simultaneously with the torus
branch Torus—3.

An overview of the whole bifurcation structure is de-
picted schematically in Fig. 4.

3 branches

—————————— —a "
4 branches
P - oNS
F---=- J
— 9
R! : -
0 5 10 Is 20
stable ABC flow unstable ABC flow

--- periodic branches [C— torus branches

N chaos o

Hopf bifurcation

FIG. 4. Schematic bifurcation diagram

To test the sensitivity with respect to the degree of
truncation, we calculated the critical Reynolds number of
the first Hopf bifurcation for different truncations. There
is a tendency to higher values of the critical Reynolds
number for weaker truncation (more modes taken into
account); a more detailed description for the dependence
on the number of included modes is given in Ref. [15]. For
comparison, we have also made calculations by means of a
pseudospectral code, with the (compared to the spherical
truncation) relatively high resolution of 16® grid points
in real space. In these calculations the first bifurcation
was observed at R = 8.9. This value coincides with the
critical Reynolds number for the magnetic instability in
the corresponding kinematic dynamo problem [5].

We have restricted ourselves to the forcing of the
largest modes, kg = 1 [cf. Eq. (2)], and have observed
an instability of the ABC flow on this largest scale. It
should be noted that a forcing of higher modes, ky > 1,
reduces the critical value of the Reynolds number by an
order of magnitude which has been demonstrated for the
MHD equations by Galanti et al. [10] and for the purely
hydrodynamic case by Wirth et al. [16]. For instance,
Wirth et al. have found a negative-viscosity large-scale
instability at R = 1.92.

Zheligovsky and Pouquet [8] and Podvigina and Pou-
quet [9] studied a related problem, namely, the purely
hydrodynamic instabilities of the ABC forced NSE (with-
out magnetic field). They described bifurcations, dif-
ferent stable-solution branches and symmetry breaking
effects. Especially, they determined the value of the
Reynolds number where the primary ABC flow (for the
case A = B = () loses its stability: R ~ 13.044. Since
for the MHD equations already for a smaller value of R
a magnetic mode becomes unstable, their resulting bifur-
cation structure is different from that in the case of the
NSE. But a common feature of the bifurcation properties
of both systems (MHD and NSE) is that the dihedral
group Dy is a relevant subgroup, leaving invariant some
secondary branches, as e.g. PER-3 in Table I.

Another interesting point in the comparison of both
systems is the occurrence of a relaminarization window
for the NSE, as reported in Refs. [8] and [9]. A second
stable stationary solution, denoted by Az, different from
the ABC flow, was found there. A» coexists first with the
stable ABC flow and then, after the ABC flow has be-
come unstable, with time-dependent solutions, including
chaotic ones, that have bifurcated from the ABC flow.
For further increased R, A becomes attractive even for
solutions with initial conditions close to the (unstable)
ABC flow (called relaminarization). We must state here
that we have not yet been able to find a second stable
stationary branch for the MHD equations, yet we cannot
exclude its existence, and numerical investigations with a
much higher resolution using the pseudospectral method
are going on.

V. SPATIAL STRUCTURE OF THE MAGNETIC
FIELD

In this section we describe the structure of the mag-
netic field in real space and its changes under the influ-
ence of symmetry breaking bifurcations. In a kinematic
dynamo study using the ABC flow with A = B = C, Gal-
loway and Frisch [7] were the first to observe cigar-like
concentrations of the magnetic field about velocity stag-
nation points. The ABC flow for the case A = B = C
has eight unstable stagnation points. The correspond-
ing eigenvalues are real and have signs (+,—,—) or
(—,+,+). The topological structure of the ABC flow,
and in particular the intersections of the stable and un-
stable manifolds of the stagnation points, which form a
complicated web of heteroclinic lines, were comprehen-
sively discussed by Dombre et al. [4]. Stagnation points
with a two-dimensional stable manifold have been de-
noted as of a type and those with a two-dimensional
unstable manifold as of 3 type. There are four stag-
nation points of each type and any two points of dif-
ferent type are connected by a straight line, forming a
one-dimensional heteroclinic orbit. The cube diagonal
through the points (0,0,0) and (27,27, 27), for exam-
ple, is a one-dimensional invariant manifold belonging



to the stagnation points (37/4,3x/4,3w/4) (B type) and
(7w /4,77 /4,77 [4) (o type). The rest of the ensemble of
stagnation points and associated one-dimensional invari-
ant manifolds may be obtained by applying the symme-
try transformations 75,7T3,T4. The cigar-like structures
of the magnetic field, observed by Galloway and Frisch [7]
as well as by Galanti et al. [10] for the kinematic problem,
are localized about the stagnation points of a type.

For the nonlinear problem, i.e., for the full MHD equa-
tions, one expects that after the first bifurcation, where
the ABC flow loses its stability and a magnetic field
appears, the structure of the fields differs at first only
weakly from that of the kinematic problem. In the last
section we already mentioned that this Hopf bifurcation
retains the original symmetry for the newly created peri-
odic branch Per—1. This symmetry has also an essential
influence on the spatial structure of the corresponding
magnetic and velocity fields, here briefly discussed. A
surprising feature of the new branch is that the eight stag-
nation points of the ABC flow survive, i.e., they remain
time-independent zero-velocity points with the same lo-
cation as for the original ABC flow. In Fig. 5 isosurfaces
of the magnetic field strength for a level of 65% of the
maximum value are drawn.

FIG. 5. Isosurfaces of the magnetic field with 65% of the
maximal modulus for the symmetric branch (R=10) in the
periodic box (z,y,z between 0 and 27).

The cigar-like structure are clearly recognizable also in
the nonlinear regime. Due to the temporal periodicity,
the magnetic field oscillates and the shape of the isosur-
faces depends also on the time of a snapshot, sometimes
they look much more like blobs. To give an impression
of the dynamics, we consider the fields on the diago-
nal line. As already mentioned, the stagnation points
remain unchanged, but furthermore also their invari-
ant one-dimensional manifolds are formed by the same
straight lines. For the diagonal line, containing two stag-
nation points, this follows directly from the symmetry
of the branch. Namely, as a consequence of the symme-
try with respect to the cyclic group Z3 as a subgroup

of the full symmetry group, the velocity field has to be
aligned with the diagonal direction. The same holds for
the magnetic field.

In Fig. 6 the component of the magnetic field along
the diagonal line is shown for different instants of a time
period (stagnation points are marked by asterisks).

diagonal axis

FIG. 6. Magnetic field component along the diagonal axis
at different instants of time (R=10). Stagnation points are
marked by asterisks.

Strong oscillations with a large amplitude occur
around the stagnation point of « type, and the magnetic
energy is mainly located in its neighborhood. The veloc-
ity field along the diagonal line oscillates only relatively
weakly about the original ABC flow.

Fig. 7 shows a contour plot of the modulus of the
magnetic field in a particular plane through the cube,
z = 1/2(z + y), which contains also the (main) diagonal
axis and its stagnation points. Thick lines correspond to
levels above 65% of the maximum value and the cigar-like
structure becomes again visible.

NN/




FIG. 7. Contour plot of the modulus of the magnetic field
in the plane z = 1/2(z +y) (R=10). The plane is parameter-
ized by the coordinates z and y. The stagnation points on the
diagonal line are marked by asterisks. Thick lines correspond
to contour levels above 65% of the maximum value.

For the asymmetric branch Per—4 only two of the stag-
nation points together with their invariant straight line
survive. The others disappear, but they remain stag-
nation points for other branches obtained by symmetry
transformations. The spatial structure of the magnetic
field has also changed. For some instant of time just one
blob-like structure located about the one « type stagna-
tion point is visible. Then it is shrinking and the three
other cigar-like field concentrations emerge, but without
any stagnation points. This process and its reversal can
be observed approximately two times within one period.

For the other asymmetric branch, Per-3, no stagnation
points are present, but four cigar-like field concentrations
may again be recognized. In contrast to the structures
seen in Fig. 5, they are now deformed and shifted away
from the location of the former stagnation points. The
whole structure is oscillating and at some instants the
magnetic energy seems to be distributed over the whole
cube.

It is not the aim of this section to describe the struc-
tural properties of the magnetic field for all branches
listed in Table I, but at last we would like to discuss
briefly the chaotic branch Chaos—3. It is interesting that
also for this branch, the magnetic energy is on average
mainly concentrated in four tube-like structures. These
oscillate and move irregularly through the cube. The ap-
pearance of just four strong-field regions is still reminis-
cent of the four a type stagnation points of the original
ABC flow.

VI. DISCUSSION

To test the sensivity of the results of our bifurca-
tion analysis with respect to the degree of truncation
in Fourier space, we partially used a much higher reso-
lution by means of a pseudospectral method. The bifur-
cation structure seems to be the same or at least sim-
ilar for all truncations. For instance, the instability of
the primary ABC flow with respect to a periodic solu-
tion with non-vanishing magnetic field and the appear-
ance of other coexisting periodic branches, denoted by
Per-3 in Table I, together with their described symmetry
properties, has been confirmed in high-resolution simu-
lations. Quasiperiodic and periodic solutions have also
been found applying the pseudospectral technique, but
we have not yet been able to classify all solution branches
so systematically as given in Table I. One of our further
aims is to continue the bifurcation analysis for high res-
olutions, i.e., to determine the corresponding bifurcation
diagram and to describe the symmetry breaking effects.

For the case of the (non-magnetic) NSE, Podvigina
and Pouquet [9] have found a steady-state branch differ-
ent from the ABC flow and coexisting with it (or with
solutions bifurcating from it). The existence of a similar
steady-state branches for the MHD equations remains an
open problem, which we also plan to attack by means of
high-resolution pseudospectral techniques.
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APPENDIX

Here we give a complete list of the symmetry trans-
formations for which the MHD equations with the ABC
forcing (A = B =C = R, ko = 1) given by Egs. (1),
(17), (18) and (7) are equivariant (transformations of the
local coordinates modulo 27):

T : Identity

T 1'1—>£Z'1+71'/2, 1'2—)1'3—71'/2, !L’3—)—£L'2+7T/2
Ts : xry —> X1 + 7, To — —T2, T3 — —xT3+ T
Ty: 1 > 21 —7)2, Xz — —x3+7/2, 23 = 2 +7/2
Ts: 1 = —x3+7/2, 3o = T2+ 72, x3 =21 —7)2
Ts : xry — —x1 + T, XTo — To + T, T3 — —I3

T : 1'1—>£L'3+71'/2, 1'2—)1'2—71'/2, !L’3—)—£L'1+7T/2
Tz : 1 = 22 —7)2, xz — —x1+7/2, 23 = 23+ 7/2
Ty ; 1 — —x1, To = —To+7T, X3 —=>T3+T
Tloi$1—>—1'2+7T/2,l'2—)1'1+7f/2, 1'3—)1'3—71'/2

Ty, : 2y > 23+, To — —T1, T3 = —To+ T
Tys: x1 = —x9, To = —T3+7m, X3 —=>T1+T
T3 : o — T2, T9 — T3, T3 — T1

Ty : x — T3, T9 — T, T3 — To

Ty5: 21 =22+, Ty — —T3, T3 = —T1+ 7
Tyg:21 > —x3+7, 2x2—>x1+T, T3 — —To
Ty7: x4 = —x3, To — —X1 + T, T3 — To + T
Tlgi.’El—)—.’Ez-l-ﬂ', To — T3 + T, T3 — —I1

T1921'1—>Z'2+7T/2, 1'2—)1'1—71'/2, 1'3—)—Z'3+7T/2
T2021'1—>—$1—71'/2, l’g—)—ib’g—ﬂ'/2, m3—>—x2—7r/2
Toy : x1 = —x2 — )2, xo = —x1 — /2, x3 = —23 — 7/2
Tog: xy = —x1 +7/2, x0 > 23 +7/2, X3 — Ty — /2
Tos : o —)Z’g—ﬂ'/2, 1'2—)—Z'2+7T/2, fL'3—)fL'1+7T/2
Tsy : $1—>—l'3—7f/2, !L’Q—)—Z'Q—ﬂ'/2, !L’g—)—ib’l—’lT/Q

In the list the transformations have been arranged such
as to make visible the group structure of of the octahedral
group O, the rotations which leave a cube invariant. It is
known [17] that the group can be decomposed according



to
0 = U 23Ut 2,00 2.

The elements 75, ...,T1o correspond to rotations by 90°
of a cube about the three axes through the middle points
of its faces and form together with 77 three copies of
the cyclic group Z4. The elements Ti1,...,T15 may be
interpreted as rotations by 120° about the four diagonal
axes (four copies of Z3). Each element of the last block,
finally, is together with T} isomorphic to Z» and is related
to rotations by 180° about the axes crossing opposite
edges (all axes mentioned here also cross the middle point
of the cube).

The the following Table VI is the group table for the
octahedral group O, calculated from the transformations
by means of the Mathematica Package [18].
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