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1 Introduction

1.1 Tikhonov-Phillips Regularization of Ill-Posed Problems

Many technical and physical problems can be mathematically modeled by oper-
ator equations (1) of the first kind,

Az = vy, (1)

where z is the searched-for information under observed data y. We mention only
a few typical examples: medical imaging, see e.g. [16, 20], and inverse scattering
problems, see e.g. [6].

To fix the mathematical setup we consider A (throughout the paper) as a
compact non-degenerate linear operator acting between the real Hilbert spaces
X and Y. In this setting the problem (1) is ill-posed, that is, its minimum norm
solution z1 does not depend continuously on the right hand side y. Small pertur-
bations in y may cause dramatic changes in z*. This instability has to be taken
into account by any solution technique for (1). The more as only a perturbation
y® of the exact but unknown data y is available in general. The perturbation of
y is caused by noise which can not be avoided in real-life applications due to the
specific experiment and due to the limitations of the measuring apparatus. The
perturbed data y® are assumed to satisfy || y —y° ||y < 6 with an a-priori known
noise level § > 0.

One of the theoretically best understood and most often used stabilization
techniques for (1) is Tikhonov-Phillips regularization where the linear equa-
tion (1) is replaced by the minimization problem

find %, € X which minimizes
Ta(z) = Az — " [} + izl

(2)
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Here, a > 0 is the regularization parameter. The idea of Tikhonov-Phillips reg-
ularization (2) is to control the influence of the data error in the regularized
solution z¢, by adding a penalty term. The unique minimizer of (2) is given as
the unique solution of the regularized normal equation

(A*A + al)z® = A%y . (3)

The high art of regularization is the determination of the regularization pa-
rameter a = (6, y%) such that z® converges to z as § — 0. Examples for such
parameter selection strategies are presented in Section 3.

In this paper we introduce two methods to speed up the solution process
of (3) which even can be combined. Both methods employ wavelet techniques.
For the reader’s convenience we therefore give a brief overview on the wavelet
theory in the next subsection.

In Section 2 we present a fast multilevel iteration for the solution of a discrete
version of the normal equation (3). The theoretical results we achieve are illus-
trated by numerical examples where the abstract operator equation (1) will be
an integral equation. Finally, we discuss the potential of our multilevel method
for solving the 3D-reconstruction problem in computerized tomography.

Any iterative scheme for solving (3) requires the multiplication of a vector by
the operator A*A + a I (resp. a matrix version thereof). Typically, this operator
(matrix) will be dense. Therefore, operator compression techniques will speed up
any iterative solver. Such methods are considered in Section 3. First, we study
compression schemes from a theoretical point of view and then we discuss two
ways of computing such compressions. We report on results obtained by applying
this approach to hyperthermia treatment planning.

1.2 A Compact Course to Wavelets

We give a brief overview to the univariate theory. Multivariate wavelets, for
instance, can be generated from univariate ones by tensor products. We refer to
e.g. [10, 17] for a comprehensive introduction to wavelets.

The starting point is the concept of a refinable or scalable function ¢ € L?(IR)
which is compactly supported and satisfies the following refinement or scaling
equation

o() = V2 hi o2 —k) . (4)

ke
The finite sequence {hy}, .z of real numbers is called mask or filter correspond-
ing to . Taking the Fourier transform on both sides of (4) we realize that any

non-trivial scaling function has a non-vanishing mean value. Without loss of
generality we therefore assume

/IR o(t)dt = 1 . (5)
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Further, we require that the integer translates of ¢ generate a Riesz system
in L2(IR), i.e. we have the norm equivalence

H 3 ap (- — k) HL ~ |lallez for all a € £2(Z) . (6)
ke

We use the notation f ~ g to indicate the existence of two positive constants c;
and ¢y such that ¢; f < g <es f.

Typical examples for scaling functions with the above requirements are B-
splines, several kinds of box-splines and the Daubechies scaling functions whose
integer translates are even orthonormal.

Using the scaling function ¢ we define subspaces V; of LZ(IR) by

V= span{g017k|k€Z}, leZ, (7
where
fir () = 212 f(20 - k)
for any f € L%(IR). The closure in (7) is taken with respect to the L2-norm. The

spaces V; are nested by (4), Vi C Vi41, and { oL |k e”Z } is a Riesz basis of V}
by (6). By (4), (5) and (6) it follows that

(N vi={0} and [JWV=L*R).
1eZZ e

To any scaling function ¢ satisfying (5) and (6) there exists a function % such
that

wy = span{¢l7k|k€Z}, leZ,

coincides with the orthogonal complement of V; in Vi41: Vi1 = V; @ W;. More-
over,

{ip|lez, kez} (8)

is an orthonormal basis of LZ(IR). The function ¢ is called orthogonal wavelet.
In general ¥ does not inherit the compact support from ¢. This disadvantage
can be avoided by relaxing the requirements. We speak of pre-wavelets if the
spaces W; are mutually orthogonal and the wavelet system (8) is only a Riesz
basis in L%(IR).

There exists a family, the Daubechies family, of compactly supported orthog-
onal wavelets, see [10]. The smoothness of the Daubechies wavelets increases
monotonically with their support. Also, there exists a family, the Chui-Wang
family, of compactly supported pre-wavelets, see [4]. The Chui-Wang wavelets
are spline functions. Their corresponding scaling functions are the B-splines.

Both wavelet families can be adapted to bounded intervals, see [4, 5].

The wavelet space W is a subspace of V1. Therefore, the wavelet ¢ can be
expanded with respect to the Riesz basis {goLk |k € Z} of V3. Consequently,
there exists a unique sequence g € £2(Z) of real numbers such that

()= V2D gk (2 —k) (9)
ke
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holds true. The sequence g¢ is finite if ¥ has a compact support.
Any f € L?*(IR) can be represented by

F= ook + . D dir(f) v - (10)

ke leNo yeZ

If the scaling function ¢ is ¢g-times continuously differentiable then we have the
norm equivalence, see [19, 7],

WA ~ Do lee(HDP + D228 > Jdix(H)I>, 0<s<gq,  (11)

ke leNo ke

where || f||%. = [r(1+]£]?)* |f(§)|2 d¢ is the norm of the Sobolev space H*(IR) =
{f € L*(R)| ||f|lg+ < co}. Here, f denotes the Fourier transform of f.

2 A Multilevel Iteration for Tikhonov-Phillips
Regularization

When it comes to a numerical realization of the Tikhonov-Phillips regularization
one has to project the normal equation (3) to a finite dimensional subspace of X.
The most commonly used projection technique in combination with Tikhonov-
Phillips regularization is the method of least squares, see e.g. [15] and [24]. Here
we get the finite dimensional regularized normal equation

(A4 + al)z = Ay, (12)

with A; = AP, where P; : X — V; is the orthogonal projection onto a finite
dimensional subspace V; C X.

We require two essential properties of the sequence {V;}; of finite dimensional
approximation spaces: it should be expanding, that is, V; C Vj41, and it should
be dense in X, that is, U;V; = X. With these properties at hand the solution
:cf’a of (12) converges to the minimum norm solution z* of (1) as { — oo and
6 — 0, provided « is determined according to the parameter choice strategies
introduced in [24].

In the remainder of this section we will present an efficient multilevel iteration
for the resolution of (12) under the general assumption of a fized noise level 8.

2.1 Multilevel Splitting

The basis of all multilevel iterations is the decomposition of the approximation
space into subspaces. Therefore, we introduce the splitting V;11 = V; @ W; where
W; is the X-orthogonal complement of the approximation space V; with respect
to the larger space Vj41. Here, @ denotes the X-orthogonal sum. Inductively, we
yield the multilevel splitting (13) of Vi,

-1
Vi=Vipn ® P Wi, un<i-1, (13)

J=lmin
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where [y, is called the coarsest level of the splitting. By @; we denote the
X-orthogonal projection from X onto Wj.

The convergence behavior of the multilevel iteration will depend on the decay
rate of the quantity

v = [[A= A4l = ||AI - B)|| (14)

as | — oo. For a proof of 4y — 0 as | — oo see e.g. [14].
In the next lemma we show that compact operators vanish asymptotically
on the complement spaces Wj.

Lemmal. Let V; and W; be the spaces defined above and let A : X — Y be a
compact linear operator. Then,

lAQi|| < m — 0 as I — o0
with v; defined in (14).

Proof. The orthogonality of V; and W; yields PiQ; = 0. Therefore, [|AQ;|| =
lIA(L — P)@i|| < |[A(T = P)|| = - O

For our further considerations and for the description of the iteration it will be
convenient to reformulate (12) as a variational problem

find :cf’a eV a(:cf’a,vl) = <A?y6,vl>x for all v; € V§ (15)
with the bilinear forma: X x X — IR,
a(u,v) 1= (Au, Av)y + a(u,v)x

which is symmetric and positive definite. The form a induces the energy norm
112 = a(:, ) on X.

The operators A; := Af Aj+aP;: Vi — Vi and By := QA AQ+a@Q : W —
Wi are related to the bilinear form a via a(uj, vi) = (Auw, v;) for all w,v; € Vi
and a(wy, z1) = (Bwy, z;) for all wy, z; € Wy, respectively.

The strengthened Cauchy inequalities we present now are crucial for the later
convergence analysis. Basically, they indicate that the spaces V; and W; as well
as W; and W,,, are not only X-orthogonal but also asymptotically orthogonal
with respect to the inner product on X induced by a.

Theorem 2. Let V; and W,, be defined as above and let m > l. The strengthened
Cauchy inequality

la(vr, wim )| < min{1,ym/Va} [Julle |[wnlla (16)
holds true for all v; € Vi and for all w,, € W,,. Further, let j # 1. Then,
la(wj, wi)| < min{1,v/va} min{1,v;/va} [wjlla [wlla  (17)
for all w; € W; and for all wy € W;.
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Proof. Since v; and wy, are X-orthogonal we have that a(v;, wn,) =(Av; , Awy, )y .
Further,

|a(v, wm)| = |<A1Al_1/2All/zvl , AQmB;Ll/ZBTln/Zwm>Y|
< [ aA 2| A 0] (| AQmBRY 2| (1B 2w

< a2 ], [AQu]| B2 o,

Using arguments from spectral theory it is easy to verify that ||4; Al_l/z || <1

and ||B;L1/2|| < o~ 2, Thus, (16) is proved by ||[AQm|| < Ym (Lemma 1). The
second inequality (17) can be proved in the very same way. O

2.2 The Multilevel Iteration

Motivation and Definition. The general idea of multilevel methods is to ap-
proximate the original large scale problem (in our situation: (12)) by a sequence
of related auxiliary problems on smaller scales which can be solved very cheaply.
If the auxiliary problems are designed in a proper way their combination should
result in a fair approximation to our original problem, see e.g. [28].

Now, we introduce the concept of subspace corrections, see [28]. Suppose that
we have a given approximation uf’ld to the solution :cf’a of (12). If the residue
ol = Ay uPld — AFy? is small we are done. Otherwise, we consider the equation

A[ €] = T’?ld (18)

for the error e; := uf!d — :cf’a. Instead of the large scale problem (18) we solve

restricted equations with respect to each of the subspaces of the splitting (13):
Biej =Q; M, for Ly <j<I1—1, (19)
Almin elmin = lein T?Id .

We observe that
a |lwillk < (Bjwj,wij)x = a(wj,w;) < (1+77/a) a |lwill}x  (20)

for all w; € W; which is an immediate consequence of Lemma 1. Hence, B; can
be approximated well by aI on W; and

e = a™t Q; r{’ld, for lpmin <7 <1-1,

may be viewed as reasonable approximations to the e;’s defined in (19). Finally
we are in a position to define the subspace correction of u{'? relative to W; by

new ,__ _.old -~ _ old -1 . old * &
u, = up — & = U — Q](Alu, —A,y)
and relative to V;_. by
min

new . ,.old _ old -1 old * &
uy = up e =W — At P (At - Ay

min min ~ ‘min
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Starting with an approximation uj’ € V; the (Jacobi-like) additive Schwarz
iteration produces a new iterate by performing the subspace corrections simul-
taneously, that is,

Wt = g (Al - 45y), w=0,1,2,... (21)

min

with an arbitrary starting guess u € V; and with

I—1
Gt = AL P t+at Y Q.

»*min min
J=lmin

Algebraic Structure of the Iteration. Here we give a detailed description
of the algebraic structure of the Schwarz iteration (21). Therefore, we assume
that X is a function space over the compact interval [a,b], X = L?(a,b) for
example. The results obtained can easily be generalized to tensor product spaces,
e.g. X = L*([a,b] x [c,d]).

Let ¢ be a compactly supported scaling function satisfying (4). For conve-
nience, we neglect — just for now — necessary boundary modifications and suppose
that

Vi =span{pix |k =0,...,m — 1} C X

for all [ > I* > 0. Further, let W; be spanned by the pre-wavelet v, that is,
W; =span{¢ 5 |k =0,...,m — 1} .

Since the sum of two functions f; = ), cfkgoz,k ceViandg =), d;cl/’hk € W is
in V141, it can be expressed by fi+q = >, c2+1g01+17k. Applying both refinement
equations (4) and (9) we get the relation

I+1 ! !
aft = th—m’ c; + ng—z]' d;
% J

which we write in matrix notation as
Mt = HE &+ Gl d (22)

Clearly, Hj4q : R™*+ — IR™ and Gy : R™* — IR™.
The solution z'* of the variational problem (15) resp. of the normal equation
I

(12) can be expanded in the basis of V; as :cf’a = > .(&)rerk. The vector
& € IR™ of the expansion coefficients is the unique solution of the linear system

A& =06 (23)

where the entries of the positive definite matrix A; and of the right-hand side
[B; are given by

(A1) = (Apri, Avrj )y + a (@i 1) 5

(B); = (¥, Apr )y -
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The following lemma enables matrix representations of the operators @;.A;,
lmin <7 <1—-1,and A ! Py, Ai which are the building blocks of the Schwarz
iteration (21). For a proof see [25].

Lemma 3. Define the restrictions

Mij = Hjp1 Hy --- Hi-g Hy : R™ - R™,
Gij = Gjq1 Hj --- Hi_y Hy : R — R™

for j <1—2 and set Hy;_1 := Hy and Gi1—1 := Gj.
Forvi=3, cf,cgohk € V; we have that
’ILl—l
QA = Z (gfﬂ- B]-_lgz,j A d )k Ok, lmin <j<1-1,
k=0
where B; is the Gramian matriz (B;),s = (Y, ¥js)x, and
’ILl—l
—1 _ t -1 1
AlminleinAlvl - Z (Hlvlmin Almin HlJmin Al ¢ )k YrE -

k=0

Now, the abstract additive iteration (21) translated into an iteration acting on
(23) reads

AT = o, (At - B), =012, ()

with an arbitrary starting guess 2P € IR™ and where

-1
-1 t m-1p.
n Hl,lmin + « Z gl,j B] gl,] .

J=lmin

Cadd — t A- 1
Limin Hlvlmin Imi

Remark. In applying the iteration (24) one has to solve a linear system with
band matrix B; on each level j during the multilevel process. However, this
does not slow down the iteration. Since the entries of B; do not depend on j one
can precompute a Cholesky decomposition of B; independently of j > I*.

Employing the additive structure of C;‘j:ﬂin the multiplication of the residue
by C;‘j:ﬂin can be done in parallel. This leads to a significant speed up if the
iteration is implemented on a parallel machine. Since the subspaces of the split-
ting (13) do not intersect the communication between processors is reduced to
a minimum.
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Convergence Analysis. Provided a mild decay assumption on y; (14) we have
the convergence result stated in Theorem 4.
In general, an exact computation of v; is impossible. However, upper bounds

are often available. In the sequel we will therefore work with such an upper
bound.

Theorem 4. Let n; be an upper bound of v (v < mi) satisfying

-1
m < o1 and Z nj < Cym, (25)

J=lmin

with a positive constant C, which does neither depend on I nor on lyi,. Let {uf‘}u
be sequence generated by the Schwarz iteration (21). If oy . =m . [/ <1
then

Juf = 2], < o i = 27,

with the convergence rate

p=2C(Cp+2)ay (26)

Proof. We roughly sketch the proof. For more details we refer to [25].
It is well known, see e.g. [13], that p, = max{|1 —T1|, |1 —T'2|} where I'; and
I’y are positive constants such that

Pollfolll* < llulle < Tzlllolf? (27)

holds true for all v; € V;. Here, the norm ||| - ||| on V; is given by |||v/]|||? :=
Il P vt 12 + « E;_:} . |l Qjvi ||%- Using the Cauchy inequalities (16), (17) and
the estimate (20) one can show that (27) is satisfied with

Iy =1/(1+2C (1 + (Cp+1)ay

almin )

min )

and

Ly=(1+0i )(1+2Ca

min) :

Numerical Examples. Here we present some numerical experiments to illus-
trate the theoretical result of Theorem 4.
The ill-posed problem under consideration is the integral equation

Af() = / K(,t)a(t) db = y(-) (28)

where A : L%(0,1) — L?(0,1) is the integral operator with the non-degenerate
and square integrable kernel k(z,y) = z —y, if ¢ > y and k(z, y) = 0, otherwise.

As finite dimensional approximation space V; C L%(0, 1) we choose the space
of piecewise linear functions with respect to the discretization step-size s; = 2%
Then, the splitting (13) becomes just the pre-wavelet splitting of the linear spline
space, see [3].
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Remark. The numerical realization of (21) for the solution of (28) based on spline
spaces and on the spaces of the Daubechies scaling functions can be found in
some detail in [25]. Also, implementation issues as well as the computational
complexity are discussed.

We provide numerical approximations to the convergence rate p (26). In the
present situation the assumptions (25) are met with m; = Cy, s? and C,, = 4/3
resulting in
b < Cu ol IVa (29)

with a constant C4 independent of I, I, and a.

By our first experiment we check the decay rate 2 of p as ljyj, — oo. Figure 2.2
displays approximations to p = p(I) and the quotient ¢; := p(I)/p(l — 1) as
functions of the approximation level { with lpin =1 — 5 and a = 1074,

0.6

0.4

0.2

0.0 T ; * * * l
7 8 9 10 11 12

Fig. 1. Approximations to the convergence rate p = p(!) (solid curve) and the quotient
a1 = p(1)/p(1 — 1) (dashed curve) for Iy, =1 —5 and o = 107%. The theoretical bound
0.25 for g; is drawn as a dashed straight line.

Now we show approximations to p = p(l) where the coarsest level Iy, is fixed
to be 2, see Fig. 2.2. In the latter setting the iteration converges for @ = 0.001
and a = 0.005 and Theorem 4 predicts convergence rates which are uniformly
bounded in I.

0.2

0.1

0.0 T T T T T T l

Fig. 2. Convergence rates p = p(l) for l,;, = 2. Solid curve: o = 0.001, dashed curve:
a = 0.005.

2.3 Multilevel Approach to Cone Beam Reconstruction

The ultimate goal is an implementation of the above introduced multilevel it-
eration for the reconstruction of a three-dimensional object from finitely many
cone beam X-ray projections.
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In the following we investigate what we may expect in this application from
a theoretical point of view.

Speaking in mathematical terms the reconstruction problem can be formu-
lated as the operator equation (30) of the first kind,

Df = ¢°, (30)

where the cone beam (or divergent beam) transform D is given as
Df(a,w) ::/ fla+tw)dt, acR’ wesS*.
0

Physically, one can think of a as the position of the X-ray source emitting an
X-ray into the direction w (S% denotes the unit sphere in IRS). In the sequel we
assume that the searched-for density function f has compact support in the unit
box O = [0, 1]? and is square integrable, i.e. f € L?(0O).

If T, the set of all source points a, is compact and does not intersect O then
D maps L%(0) continuously to L%(T x S?), see e.g. [20].

Now we apply the method of least squares together with a Tikhonov-Phillips
regularization to (30). As approximation space V; we choose tensor product
B-spline spaces with respect to the step-size s; = 2~!. Thus we have to solve

(D Dy +al) fi = Dig’, (31)

where Dy = DP; and P; is the orthogonal projection from LZ(D) onto Vj.

To set up our multilevel iteration we need the complement spaces Wi, cf.
Sect. 2.1. But these spaces are just the tensor product spline wavelet spaces,
see [3]. Hence, the multilevel iteration (21) for solving (31) is well-defined.

Lemma5. Suppose that we have complete data, that is, ' = OB where OB is the
boundary of an open Ball B containing the box: O C B. Then, the convergence
rate p (26) of the multilevel iteration (21) acting on (31) fulfills

p < Cp /s, [a (32)

where ly,in is the coarsest level in the underlying wavelet splitting of the tensor
product B-Spline space V;. The positive constant Cp does neither depend on I,
{min MOT ON .

Consequently, the iteration converges if Iy s sufficiently large.

Proof. The assertion follows by Theorem 4 as soon as we are able to verify that
=D - P < Cys.

To establish such an estimate we note a relation between the cone beam
transform D and the parallel beam transform L defined by

Lf(z,9) ::/f(:c—}—tﬂ)dt, de 8% zedt .
R
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Let the radius of B be r. Then,

D ? dadw = L ? dad
. [pf@or (@e)ldado = 20 [ [ (05(e,0) dodo

which follows by a change of coordinates in the inner integral on the left-hand
side: set @ = = + (a,w)w where z is the orthogonal projection of @ onto w' and
where |{a,w)|da = r dz. By our assumptions on B and O there is an € > 0 such
that Df(a,w) = 0 for |[{a,w)| > €. Hence,

IDfllz2(rxs2) < V2r/€ [|Lf||La(T)

where T is the tangent bundle T = {(z,9) |9 € §?, z € 9*}.
As in the proof of Theorem 5.1 in [20] we show that

ILfllzz¢ry < Cr ||fllg-12 forall feCg°(0),

where || f||%5 = [Rrs (1 + ||§||2)ﬁ |f(§)|2 d¢. Here, fis the Fourier transform of f.

Denoting the closure of C§°(0) with respect to ||-||g-1/2 by Ho_l/z(D), we finally

have

IDfllzsrxsey < V2r/e Cp ||fllg-v» forall fe Hy'*(D) .

The dual space to Ho_l/z(D) is H/2(0) = {v |there is a u € L*(IR®) such that
|[ull /2 < 00 and u|o = v} with norm ||v]| g2 (o) = inf {||ull g1z | ule = v}, see
e.g. [27, Chap. 17.2]. The norm in H/%(0) can also be expressed by

lollzz:/2ay = sup{ (v, )| / lullar-ve | w € HG2(0) }

where (-, -) denotes the duality pairing which can be considered as an extension
of the L?(O) inner product onto H/2(0) x Ho_l/z(D). This yields

1D gllgrrz(y = sup { (D" 9, £)1 /1 Fllgr-vs= | £ € Hg (0 }
= sup { (g, Df)zzoxsn)| /I f - | £ € Hy V(D) |

< V2r/e CL ||glp2rxs) -

Relying on approximation results for tensor product B-splines, see e.g. [26], the
proof ends by

I~ P)D"gllzz(@ < Cs T 1D llzraco
< Cs \/2r/e Cr ||g||r2(rxs2) V41

which implies that v, = ||(I — P)D*|| < Cs /2r/e CL +/s1. O
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Remark. Compared to the decay rate 2 of p in (29) (as s;, — 0), the decay
rate 1/2 of p in (32) is poor. This difference comes from the different smoothing
properties of the operators A (28) and D expressed in Sobolev scales.

The assumptions of Lemma 5 are somewhat unrealistic. In commercial scanners
finitely many source positions are distributed on a curve I' surrounding the
object and at each source position only finitely many X-ray projections are
taken. Mostly, I' is a planar circle.

From now on we therefore consider the cone beam transform as a mapping
with finite dimensional image space, i.e.

D: L*(0) — RPY,

where p is the number of source positions on I' and ¢ is the number of X-rays
emitted at each source position.

In this setting the structure of the linear system being equivalent to (31),
cf. (23), is suited in particular for applying an iterative solver. Let {¢; 1 |k € I}
be the B-spline basis of V;. The system matrix A; can be written as

A =DiD; +aG
with
(D1)Gi )k = Derp(ai,wij) and (Gi)mr = <801,m,s01,k>L2(D) .

Here, a;, 1 < ¢ < p, are the discrete source positions on I' and w; ;, 1 < j < g,
are the directions of the X-rays emitted at source position a;. Since the basis
functions in V; have a local support (the width of the support is proportional
to s1), both matrices D; and Gy are sparse, that is, almost all of their entries
are zero. This is obvious for the Gramian Gj. At the source position a; only a
few X-rays hit the support of ¢; which explains the sparsity of Dj.

So, we can employ sparse matrix techniques to store D; as well as G; and
hence A;. Additionally, the evaluation of the residue, which has to be done at
each iteration step, cf. (24), can be realized very efficiently.

Our theoretical results indicate that it might be worth to tackle the cone
beam reconstruction problem by the introduced multilevel iteration. However,
only an implementation on a parallel computer can finally settle the question
whether this algorithm yields satisfactory results in a reasonable run-time.

3 The use of approximating operators
Again we consider Tikhonov regularization for solving (1), i.e. we consider

! = (A*A+al)7 14y (33)
where ||y — ¥°|| < § and A is a compact operator between Hilbert spaces X,Y

A: XY
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Now assume that a family of approximating operators {Ap} is given with
|A—Apl| <A (34)

and that A is replaced by Aj, in (33). Hence we study the approximation prop-
erties of

2l = (A5 A+ o) A5y (35)

The introduction of the operators {Ax} serves two purposes. First of all any
numerical method for computing (33) always requires a finite dimensional ap-
proximation of the operator equation (1), cf. Section 2. Secondly we may aim
at choosing a sparse or compressed approximation Ay which will yield faster
algorithms — this is our main intention for introducing Ap.

The choice of & and h determine the approximation properties of :c‘;’h. We will
choose « according to a discrepancy principle of the form (or some modification

thereof)
| 4nze, 5 — o'l = 76, (36)

where 7 > 1. This still describes an idealized situation: in practice one never aims
at solving (36) precisely, one rather chooses « from a sequence of test parameters
and determines ay € {a, = ¢"ag|n € IN} by requiring

l4az?, s — 3ll < 78 (31)
|Anzl,, n — || > 76 for n< N . (38)

Hence the overall algorithm for computing :c‘;ﬁ requires to solve (N +1) operator
equations

AL Ay +ap)e = Aly®, n=0,1,...,N . 39
h h

Thus an efficient procedure for obtaining sparse approximations Ay in connec-
tion with a reliable strategy for selecting the approximation level A will greatly
reduce the numerical cost of the algorithm. Our main objective in this chapter
is to determine an approximation level h(é, o) such that :c‘;ﬁ exhibits optimal
convergence rates. Note that the approximation level (6, «) may change with
a during the search process for the optimal regularization parameter ap. This
will later be used to choose coarser approximations for larger values of «.

As usual we assume that the generalized solution zt lies in the range of
(A* A, that is,
zt = (4"A)v, |l <e . (40)

Moreover we restrict ourselves to smoothness assumptions of the order

0<rv<

N | =
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since higher order regularity of z¥ does not further improve the convergence
rate of ||z%® — zT|| . This is consistent with the theory of a posteriori parameter
selection for classical Tikhonov regularization since — even when using the ex-
act operator A — applying a discrepancy functional of type (36) limits optimal
convergence rates to the range 0 < v < 1/2. To avoid unnecessary notation we
furthermore assume that Ay is a compact operator and that

range(4) =Y, |I°ll > ¢ Al lAnll <1 . (41)

Notation. A missing index of :c‘;ﬁ indicates that the related quantity is zero, for
instance, x4 p denotes the solution of (35) with exact data y.

We will frequently use the singular value decomposition for a compact oper-
ator A, which is denoted by {us, vn, on} where u, € X, v,, €Y are the singular
vectors and o, > 0 are the singular values.

The starting for this investigation is a basic estimate which reveals the three
error contributions in estimating ||:c5a7h — zt||. This result is — in principle —
contained in Lemma 2.5 of [22]. However we include the full proof since we will
need some intermediate steps again later.

Lemma6. Let zT be the generalized solution of Az =y and let :c‘;ﬁ be defined
by (35). Assume that ||y — y°|| < 6 and that zt obeys (40). Then,

5 hlle*]
2J/a | AJa

||1:6a,h - 1:+|| < + aycu,a(v)

where

aln) = 3 £ <v,un>}zs{<1—v>1-”u”g}z .

=6 Uon +a)

Proof. We follow the proof of Lemma 2.5 in [22]. Equation (40) and inserting the
singular value decomposition yields

(A" A+ o) 't < Ea” ™t o]l -

Moreover we need the following estimates for a compact operator T', they follow
from standard estimates using the singular value decomposition of T

1
I(T°T + od)~'T7|| < 2/a’ (T"T +al)7H < o,

(T T + D) 77| < 1,
where T'= A or T' = Aj;. Now we have

1o = 2 ¥ < llzl,n = Tanll + lzan — zall + [lza — 2]
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where those three terms can be estimated as follows
|za —zt|| = || (A*A+ aI)_lA*Aa:+ — x|
= all(4* A+ al) e
< cvalv)a|lpll,
|Zan — zall = [|(AR An + aI) "  Ajy — (A" A+ al) T A%y||
Now we observe that
{(A; Ap +al) ' — (A*A+al) !}
= (A5 Ap +al) " [(A*A) — (AL AR)] (A*A + D)7
= (A5 Ap+al) " {(A" — A5)A+ A5 (A — AR} (A*A+ o)t .
Inserting this identity and y— A(A*A+al)"1A*y = a(AA* +al)~ 1y we obtain
|Zan — zall = [(Af An + aI) 71 (A} — A%) [y — A(A" A+ al) "1 Ay
+ (AL Ap +al) AL (A — AR) (A A+ o) 1A%y

1 1
~h AA* D~ tAzt — hllzt
gholaar +al) et + 5o b 2|

IN

< h|lz*]/Va

Finally,

‘ o

126,n = Zanll = I(474n + )" 45" = y)ll < 5

concludes the proof. O

B

Remark. Lemma 6 describes the different contributions to the error ||:c6a7h -zt

The approximation error a”cq, (v) as well as the influence of the data error #

are the same as for Tikhonov regularization with exact operator A. In addition
+
the operator error introduces a new term of the order MJ%U Of course ||z is

not precisely known, but, since A has been scaled to ||A|| < 1, we have ||z7|] < o.

The total error || :c‘;ﬁ —z* || depends on the choice of h and a. To begin with let
us choose h to be fixed for all @ and let us determine « according to a modified
discrepancy principle:

choose a s.t. || Ay :c‘;ﬁ — || =16+ 0ah . (42)

Various types of discrepancy principles, both in terms of the functional on the
left hand side and the expression on the right hand side have been investigated,
see [11, 12, 15, 22].

Investigating a posteriori strategies of this sort always starts by proving that
choosing a according to (42) is equivalent to a discrepancy principle with exact
data and exact operator, see e.g. [21].
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Lemma?7. Let 7 > 2, 0 > %||1:+||, and assume that a is chosen according
0 (42). Then, z, satisfies a discrepancy principle

|Aza — yll = 76 +5h,
where [T — 7| < 2, lo—7 | < % [z ]|, in particular 7 > 0, & > 0.
Proof. The term ||Azy — y|| can be extended as follows:
Az — yl| = [|A(A"A + o) A%y — 4|

=[|(A—Ap) (A" A+ al) " A"y +An(2a — Tan) + An(Ta,h — To 1)

= Tq
+ [Anean =9+ (" -9) -

These five terms have to be estimated separately,

(A~ Ap)(A" A+ al) " A"y|| < B ||(A"A+ )T A" Az || < R |z

Now we use the same modifications as in the proof of Lemma 6 for ||zq — Za,nl|-
|An(za — zan)ll = ||An [(A"A+al)™ A — (43 A + aI) " 43 ] ]
1

2Va

IN

h af|(A4" +aI)_1A1:+|| + h ||:c+||

1
< Sheti+ Al
| An(zan — 2o n)ll = ||An(A5 AR+ D) A5y — )| < 6,
|Anzd s — V|| = 76+ oh,
ly’ —yll < 6.

Combining these estimates yields
|Azo — y|| < 76 +oh + % lz*]| A + 26
and similarly by the inverse triangle inequality we have
e~ ll > (r = 2)6+ (o Zlle™]) b -
O

Now we can deal with y and A instead of y® and Aj. This gives rise to an
estimate for the a posteriori chosen regularization parameter c.

Lemma8. Let o be chosen according to (42) then
(76 +5h)? =™t d? ,(v)

or equivalently

o = (76 + Gh) ™ do 7 (v)
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Proof. The proof is based on the same type of arguments as used in [21]. Applying
the results of the previous lemmata yields

(76 + 5h)% = ||Azo — y||> = ||(A(A* A + aI) 1A% — I)Az™t|?

o ’ 2012 2
> (Uzia—l) (eno2) |(v, wn)]

n>0 n
4v+2 1-2v
Y T (v w)
(84 v, U
>0 (0-72L+a)2 y Un
= dg,(v)

O

Now we can combine the above estimate for a with Lemma 6. First one should
note that inserting the singular value decomposition shows that dq ,, (v) is bound-
ed for 0 < v < 1/2 and by the Holder inequality one obtains, see e.g. [21],

—2v

Ca(v) daid (v) <c.

Lemma 6 now be reformulated as

§-daf(v) | hllzt|| daF (v)

||1:6ah_1:+|| < 1 1
' 2(76 + gh) =+ (76 + eh)=+

+ a’cap(v)

< C(6+ h)=F |

Theorem 9. If 0 < v < 1/2 and if a is chosen according to the discrepancy
principle (42) then

e — 2t = O ((5+h)=5)
If the operator error h is linked to the data error by
h = 0(6),

then an order optimal convergence rate is achieved by the modified Tikhonov-
reqularization.

Remark. As always we can strengthen the estimate if 0 < v < 1/2 to

lehn — 2t = o((8+h)=5)
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Now we consider the algorithm where « is chosen by testing various parameters
a €{an lan =q¢"ao }

according to

l4nato s — Pl <76+ h, (43)
|Anzl, 5, — 4’| >7é+0h for n< N . (44)

As we will see in the following, a little bit stronger assumptions on the choice of
7 and o insure the same convergence properties as in Theorem 9. As the main
ingredient we need the equivalent of Lemma 7.

Lemma10. If ay is chosen according to (43) with 7 > 2/q and o > 9||zt]|/4q
then there exist T > 0 and & > 0 s.t. o, satisfies the discrepancy principle

|[Azay —yl|=T6+GTh .

Proof. We compare o with the parameter a*, which stems from solving the
discrepancy principle (42) exactly. Since the functional ||Ah136a,h — 3°|| increases
monotonically with « (this can be seen by expressing this functional in terms of
the singular functions of Aj) we have

ga" <ay<a®
and
|Anzgasn — ¥'ll < [|Anadyn — ¥l < 76+ 0h

A lower estimate is obtained by (¢ < 1)

410 e — 3 = (Z (oo 1) <<y<’,vz>>2)

>4 (Z (o) <<y<’,vz>>2) "

= ql| Azl 5 — ||

1/2

>q(té+oh) .

Combining both estimates therefore shows that :ng,h satisfies a discrepancy
principle with (7*,0*) where ¢7 < 7 < 7 and go < ¢* < o. In particular 7* > 2
and o* > 9||z71||/4, hence Lemma 7 applies. O

Remark. The above lemma implies that choosing « from a decreasing sequence
a = q"ag, (g < 1), yields optimal convergence rates in connection with the
discrepancy principle (43).
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So far we have discussed to which extend A may be replaced by an approximating
operator Ap, where Ap is kept fixed for all possible values of the regularization
parameter a. However since we choose a by testing different values of the regu-
larization parameter we would also like to link the quality of the approximation
||A — Ap|| to . This will allow us to use coarser approximations for large values
of a. The approximation only has to be refined as « gets small.

Let us consider approximation levels of the type
h = 0(8%af) (45)
where 0 < p,q < 1 and the regularization parameter is assumed to be bounded

above by a < «ag.

All the previous estimates remain valid in this case, in particular we obtain
lebn —2*ll = 0 (@E+m)7) . (46)

But now h depends on « and we need an additional upper bound for the regular-
ization parameter a. Simply using a < ag would yield a suboptimal convergence
rate 0(62”‘1/(2”+1)). But, since we expect that asymptotically the regularization
parameter of our modified scheme behaves similar to the standard Tikhonov
regularization where (0 < v < 1/2)

a =084y < ¢6

we anticipate asymptotically at least @« = O(6). In order to make this statement
precise let us reconsider the relation between 6, h and « as described in Lemma 8,

(76 +5h)? = &+ (da,u(v))?

Up to here we have used this relation to obtain an upper bound on 1/4/a by
proving that dq . (v) itself is bounded for 0 < v < 1/2. Now we need an upper
bound for « itself. The proof of Lemma 8 begins with

442
Ta

2 1a) (v, un ) |

(F6+Gh)? =a>

n>0

Since (02 + «)? < (02 + ap)? < ¢o is bounded we obtain a lower bound for the
right hand side by

(F6+5h)? > a’c D of 2 (v, un)|® = a’c||A(A" A) | = o’cl| Azt .
n>0

Our assumptions on the computability of the discrepancy principle (41) stated
|[AzT|| = ||AzT — y° + ¥°|| > ||¥®]| — 6 > 0. Hence we obtain

(76 +Gh)? > ca® . (47)

Let us now insert the adaptive approximation level A = O(6Pa?).
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Lemmall. If h = O(6Pa?), where we assume that

0<pg p+tg=1,

and if ||AzT|| > 0 then
a=0(%) .

Remark. We expect an even faster decay, namely o« = 0(62/(2”+1)). However,
this is not obvious for a posteriori parameter selection. Nevertheless applying
the above estimate allows us to show optimal convergence rates.

Proof. We have to consider two cases. First assume that 76 > oh. Then we
obtain directly by (47)
a? < cé?

Secondly, assume that 76 < gh. Then,
a® < ch? = 0(6%a?)?
which implies (p + g = 1)
a® 21 =0(6*) or a=0(6) .
O

Theorem 12. If h = O(6Paf), with 0 < p,q, p+q = 1, and if a is chosen by
the modified discrepancy principle (42), then

28— 2* || = 0872+
Proof. Combining (46) and Lemma 11 gives the desired result. O

Remark. The above theorem shows that we can e.g. chose p = ¢ = 1/2 and still
obtain optimal convergence rates. Such a choice is preferable for large values
of a which is the case in the beginning of our iterative search for the optimal
regularization parameter.

Optimal convergence rates cannot be achieved in general if p + ¢ < 1.

3.1 Computing approximating families { A}

Replacing A by Ap serves two purposes: first of all any numerical implementa-
tion of Tikhonov regularization requires a finite dimensional approximation and
secondly one may aim at approximations which have a sparse structure leading
to accelerated algorithms. The conventional way of satisfying the first require-
ment is to replace A by APy, where Py is a projector onto a finite dimensional
subspace, see e.g. [24]. However this leads in general to dense matrices. An excep-
tion arises when using a singular function system of A, which leads to a diagonal
matrix. But those singular functions are in general not known or difficult to
construct.
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In the following we will discuss two possibilities. Truncated singular value
decompositions fall in the class A, = AP,. But — as usual — they are not recom-
mended for practical applications, nevertheless they achieve optimal convergence
rates for a wider range of discrepancy principles. As a second possibility we will
apply wavelet techniques in a lazy fashion: we assume that A has been discretized
and reduced to a matrix formulation by any standard discretization which might
be suitable for the application at hand. Then this matrix is compressed by com-
puting its two—dimensional discrete wavelet transform and discarding small co-
efficients. This yields an approximating operator which cannot be expressed as
Ay = AP,

Truncated singular value decomposition. Let us assume that the singular
value decomposition of A is denoted by {us,,vn,0n} and let n(h) denote the
index s.t. |o5| < h for all n > n(h). Then a family of approximating operators

is defined by
Apz = Z on (T, Un) Un .

n<n(h)

Obviously we have || A—Ap|| < k. In this situation we can describe the regularized
solution explicitly by

5 _ In §

13a7h - Z m <y 7vn> Up - (48)
n<n(h)

In the previous chapter we considered a discrepancy principle with a modified

right hand side, namely 76 + oh. However this modification is not necessary

when using the truncated singular value decomposition.
Theorem 13. Let {Ap} be defined by truncated singular decompositions, choose
h=ci16Pal, 1/2<gq, 1/3 < p,
and determine a by
|Anzen — 'l = 76
Ifr>2and 0 <y <1/2 then

lafn —a*|| = 0@/ +Y)

Proof. The central part of the proofs in the previous section is contained in
Lemma 7, which allows to deal with the exact data and the full operator A.
The proof of this Lemma consists of estimating five terms. All of them can be

expressed with the help of the singular value decomposition. The first term gives
(At =y):
: +
n

z
o2 +a <

g

7un> Un -

(A— Ap)(A"A+al) P44zt = D o,
n>n(h)
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Hence its norm is bounded by a multiple of
h3/a = c16%a171 .

Since p > 1/3 and a < ap this norm can be bounded by c26, where ¢z = O(6°7~1)
can be chosen arbitrarily small as é tends to zero.

The second term vanishes since zo — x4, contains only contributions to
singular values smaller than A which are in the kernel of Aj. The other terms
remain the same. Hence 7 > 2 guarantees that z, obeys the same discrepancy
principle with a 7 > 0. This, via Lemma 8, gives the relation

~2¢2 _ _2v41 g2
T =« dy

Now we have to revise the basic error estimate of Lemma 6 in the light of the
truncated singular value decompositions. Here the second term, the operator

error is given by
|Zan — Tal| < B2 /a = 26213 .

The remaining terms can be estimated in the standard fashion:

letp — ot = O/t .

Wavelet compression techniques. Another possibility for constructing ap-
proximating operators arises from applying wavelet techniques. The theory of
sparsifying or compressing general operators by wavelet techniques has been ex-
tensively studied in [2, 8], for applications to compact operators and inverse
problems see e.g. [9, 23]. Wavelet—vaguelette decompositions are also considered
in the last paper. They can be precomputed and serve as a good compromise be-
tween singular functions and finite elements: they also lead to diagonal matrices,
moreover the wavelets may be chosen compactly supported.

There exist various ways of achieving a wavelet compression of integral oper-
ators with kernel k(s,t). One can e.g. apply a two-dimensional discrete wavelet
transform to k to obtain a two-dimensional version of the expansion (10). Dis-
carding all coefficients on scales [ smaller than A or using a threshold ¢, that is,
discarding those dj p-coefficients on all scales which are smaller than ¢ leads to
compressed operators. In both cases one obtains error estimates by either ap-
plying Lemma 1 or the norm equivalence (11). For a more detailed analysis in
the framework of ill-posed problems see [9].

A lazy method for accelerating the regularization method is to discretize
the operator with an arbitrary Galerkin—type approach. This is rather suitable
for many applications where e.g. a triangular model (or tetrahedral model) has
been build with large effort and a volume integration technique has lead to a full
matrix of large dimension. After computing the wavelet transform of this matrix
one can easily either apply thresholding or truncation.

We will only shortly examplify the order of acceleration which can be achieved
when this approach is used for optimizing hyperthermia treatment planning,
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see [18]. For an introduction to the mathematical problems of hyperthermia we
refer to [1].

The related matrix has been compressed by thresholding using the Daube-
chies wavelet with 6 coefficients. The following table shows the number of zeroes
obtained for various levels of thresholding.

th np €p
0.01 | 47.7% 0.016
0.015| 56.8% 0.026
0.05 | 81.2% 0.0826
0.1 |90.93% 0.146

0.25 | 97.8% 0.27

Different choices t; of the thresholding parameter ¢ lead to different ap-
proximating operators Ap. In the above table m; denotes the percentage of
highpass—coefficients which were set to zero. The deviation ey, is computed by

Ez’,j (aij — a?j)z
2
i %

which only gives a very rough upper bound to the approximation error. Here,
ai; and aZ- denote the entries of A and A", respectively. Typical values for the
threshold (discarding about 90% of the wavelet coeflicients) resulted — due to
the overhead cost for computing the wavelet transforms — in a speed up factor
of about 7, without distorting the result visibly.

e =
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