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Abstract

We have shown that the two-dimensional complex Ginzburg-Landau
equation exhibits supertransient chaos in a certain parameter range. Using
numerical methods this behavior is found near the transition line separating
frozen spiral solutions from turbulence. Supertransient chaos seems to be
a common phenomenon in extended spatiotemporal systems. These super-
transients are characterized by an average transient lifetime which depends
exponentially on the size of the system and are due to an underlying nonat-

tracting chaotic set.
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I. INTRODUCTION

The dynamics of physical, chemical, and biological systems is often described by com-
plicated, nonlinear partial differential equations (e.g., Navier-Stokes equations), and the
general treatment of these equations, analytically and numerically, turns out to be only pos-
sible under special restrictions. A common approach to this systems uses the fact that near
the threshold of an instability the nonlinearities are weak, and the modulations of a basic
pattern can be described by an envelope function. For this function a differential equation
can be derived (amplitude equation), which is easier to treat than the general equations, but
with the disadvantage of being restricted to the vicinity of the threshold. The number of
universal forms of these equations is limited by the classification of different linear instabil-
ities [1]. This envelope formalism plays an important role in a variety of physical systems,
such as oscillatory chemical reactions, Rayleigh-Bénard convection, or plasma waves. In
this paper we consider the amplitude equation derived for an oscillatory uniform instability
describing a system in the vicinity of a Hopf bifurcation in two spatial dimensions, which is
commonly known under the name 2D complex Ginzburg-Landau equation. For the complex
amplitude function in the rescaled form it is

A= RA+ (14 ia)AA — (1+iB)|A]A, (1)



where R, a, and 3 are real parameters. In the following we impose periodic boundary
conditions
Az,y,t) = A(x + L,y,t) = A(x,y + L, t)

and by means of the scaling transformation
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we can restrict our investigation to the the domain © = [0,27] x [0,27]. Since for the
parameter R in Eq. (1) holds R ~ L? applying the rescaling transformation the parameter R
represents a measure for the spatial extension of the medium and has a meaning comparable
to the Reynolds number in the Navier-Stokes equations.
The 2D Ginzburg-Landau equation exhibits, analog to its 1D version, a class of traveling
plane waves

A(r,t) = a(k)expli(k - 7 — wt)], (2)

where |a(k)|? = R—k? and w = (a — 3)k® + RB3. The spatial homogeneous solution (Stokes
solution) with k = 0 becomes unstable at the Benjamin-Feir line 1 + a3 = 0 (see Fig. 1);
all other waves are losing their stability below [2].

Another type of solution is the spiral wave which has the form

A(r, ¢,t) = F(r) exp{i[-wt — mé + ¢ (r)]}; (3)

written in polar coordinates (r, ¢), m = +£1 is the topological charge. The functions F' and
Y can be expressed in analytical form only for » = 0 and r — oo, where F'(0) = ¢(0) = 0
and lim, o F'(1) = /1 — ¢2, ¢ = lim, o ¢'(r) is the asymptotic wave number, which is a
unique function of o and f [3]. Investigations about the stability of this solutions can be
found in [4].

Beside this regular behavior the Ginzburg-Landau equation shows a variety of phenom-
ena known from other dynamical systems such as spatiotemporal chaos [5], intermittency
[6], and transient chaos [7,8]. We focus our interest in this paper on the latter.

Dynamical systems show deterministic chaotic motion not only as an asymptotic long-
term behavior but also as a transient state before reaching a nonchaotic or chaotic attractor
[9,10]. This transient chaos is caused by the existence of a nonattracting chaotic set (chaotic
saddle) in phase space. Nearly every trajectory starting from random initial conditions
wanders to this chaotic set and stays for some time in its vicinity, displaying chaotic motion.
Then the trajectory leaves the saddle and settles down to an attractor, usually a periodic
or quasiperiodic orbit.

The typical time 7 (lifetime) of a trajectory in the vicinity of the chaotic saddle can be
defined by the number N (t) of trajectories, which still display chaotic motion at time ¢ when
starting at ¢ = 0 with Ny different initial conditions



N(t) = Ngexp|—t/7]. (4)

For extended spatiotemporal systems it seems to be common that the lifetimes of the
chaotic state can be extremely long. In these systems it was also found that the lifetime 7
increases quickly with increasing system size, which will make it impossible to observe the
nonchaotic attractor in a large system in practice, and such systems cannot be distinguished
from systems containing a real chaotic attractor. If the lifetime depends exponentially on the
system size the dynamics is also called supertransient chaos. This supertransient behavior
is still not fully understood, and there are still only a few results available.

Investigations of the scaling of average transient lifetime 7 in a 1D coupled map lattice
(CML) were carried out in [11]. Depending on the coupling strength ¢ three different scaling
behaviors were found. For weak coupling 7 seems to be independent from the size L of the
system. An increase of the coupling strength leads to a polynomial power law of the form
7 ~ L7 up to a critical value d,. Further increase of § yields supertransient chaos,

T ~ exp(al?)

with ¢ ~ 1. Exponential scaling was also found in the investigation of the dynamics of
complex interfaces [12], modeled by a 2D CML, with ¢ = 3/2. A first example for super-
transient behavior of a partial differential equation has been found by Wacker et al. in [13]
for a special reaction-diffusion system. On the other hand, the system investigated in [14]
shows a nearly linear growth of 7 depending on its length.
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FIG. 1. Phase diagram of the 2D complex Ginzburg-Landau equation. The calculations pre-

sented here were carried out for « = —0.5 and § = 1.07 (filled circle).



The transient chaotic behavior in the Ginzburg-Landau equation was investigated mod-
eled by a coupled map lattice in [7,8] in the parameter range —2 < a < 0, 0 < § < 2.
Figure 1 shows the schematic phase diagram. The line I'(«) is the transition line between
transient and permanent chaos. Above I'(«) there exists a chaotic attractor [in the region
between I'(«) and the Benjamin-Feir line BF this attractor coexists with periodic orbits],
which changes into a chaotic saddle below I'(«v) as a result of a crisis [10]. In the transient
region the trajectory settles finally down to a periodic attractor which is in the most cases
not a simple plane wave (2) but consists of a finite number of randomly distributed spirals.
This final periodic state is often called a frozen state, because |A| becomes time independent.
Bohr et al. [7,8] investigated the scaling behavior of the transient lifetime in dependence of
the parameter (3 for a fixed value of the parameter R. Approaching I'(«) from below, they
discovered an exponential dependence of the form 7 ~ exp{[['(cg) — B8]~} for ap = —1. In
contrast our aim is to examine the scaling behavior for fixed values of o and 3 to determine
the dependence on the parameter R. As remarked above R can be interpreted as a length
scale for the system.

II. NUMERICAL RESULTS

For the numerical simulation of the Ginzburg-Landau equation a pseudospectral method
has been used applying a Fourier decomposition for the complex function A(z,y,t) of the
form

Az, y,t) = Z ak(t)ei(k”+kyy), k= (kg ky),
ko ky €Z
leading to a system of ordinary differential equations for the real and imaginary parts of the
Fourier modes a(t).

All computations were performed on a CRAY Y-MP EL computer. Depending on the
parameter R in the equation different resolutions consisting of 128 x 128, 64 x 64, or 32 x 32
gridpoints, respectively, were choosen, and the time integration was carried out by a fourth-
order Runge-Kutta scheme.

We restrict ourselves to the parameter set o« = —0.5, § = 1.07 (see filled circle in Fig. 1)
and vary R within the interval 10 < R < 100. In this range of R the final periodic attractor
is for nearly all choosen initial conditions a single spiral [15].

In order to characterize the scaling of the transient lifetime with the system size it
is necessary to perform calculations with several different initial conditions. As remarked
above, the lifetime 7, of a transient chaotic trajectory generated by an initial condition {asc” )}
shows a strong dependence on this initial condition. To ensure that the initial conditions
are in the vicinity of the chaotic saddle [16] we choose points on the chaotic attractor above
['(«); the actual runs were carried out with this initial condition for § slightly below I'(«).
To let the computation stop automatically if the motion has become periodic we use that for
a frozen state 0;|A| = 0. It is easy to see that the same holds also for every individual mode
of the Fourier decomposition, d|a(t)| = 0. We choose a time series of a nonzero mode aj,



(Here t is the discrete time ¢ = 0, At, 2A¢, ..., with time step At) of a trajectory and a time
interval T', which is short compared to the lifetime of the chaotic part of this trajectory, but
large compared to the period of the final spiral solution. Then the condition v,,_ = 0 for the

quantity
T/At—1

Vp = Z |ri,n —Ti+1n
=0

) Tin = |aﬁt+”T |

can be used to identify the time interval I = [n,T, (n, +1)T], in which only periodic motion
is displayed for the first time. As an approximation of the transient time we then have used
n, 1.
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FIG. 2. Exponential decay of the number of trajectories displaying chaotic motion after time t.
The graph was obtained by starting at ¢ = 0 with Ny = 200 different initial conditions.

Figure 2 shows the number N(¢) of trajectories which still display chaotic motion at time
t [see Eq. (4)], obtained for R = 30 and 200 different initial conditions. The exponential
decay is clearly recognizable, the slope of the straight line gives the lifetime 7 of the transient
state.

For higher values of the parameter R (larger systems) the transient times turns out to
be very large, and their determination using Eq. (4) fails because of the costly numerical
calculations. For that reason we have estimated 7 by the simple average 7 = 1/N Zﬁf Tis
using for every value of R ten different initial conditions.
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FIG. 3. Scaling of the average transient lifetime with the system size.

The results are shown in Fig. 3. The average lifetime scales exponentially with the linear
system size L
T ~ exp(al?)

with a & 1, but due to the small number (N = 10) of initial conditions it is impossible to
specify the value of ¢ in order to compare it to other results (¢ = 1in [11] or 0 = 3/2 in [12]).
Nevertheless it can be stated that in the considered parameter range of R the 2D complex
Ginzburg-Landau equation develops transient chaotic trajectories with lifetimes that scale
exponentially with the size of the system, a behavior that this equation has in common with
the spatially extended systems investigated in [11-13]. It should be mentioned that this
exponential dependence on the system size may not hold for much greater values of R, when
the final frozen state can consist of a larger number of spirals [8].

The geometric properties of the chaotic saddle responsible for supertransient chaos in a
CML were investigated in [17]. It was found that in these systems the fractal dimension of
the set of intersecting points of a one-dimensional line with the stable manifold of the chaotic
saddle is close to 1. In order to get some information about the phase space structure of the
Ginzburg-Landau system we use the sprinkle method described in [18], in which the stable
manifold of the chaotic saddle is approximated by a set of initial conditions still displaying
chaotic motion after a large time. Due to the high-dimensional phase space we restrict
ourselves to a one-dimensional set of initial conditions distributed on a straight line. In
practice we used again a point on the chaotic attractor slightly above I'(«) and varied only
the real part of the zero mode al¥ between 0 and 1 in steps of 0.005. In Fig. 4 the transient
lifetimes 7 are plotted versus the zero mode af¥. Large values of 7 indicate that the initial
condition was close to the stable manifold. The intermingling appearance suggests a high



dimensional stable manifold of the chaotic saddle in analogy to the results obtained for the
CML in [17], and which seems to be responsible for the occurrence of the supertransients in
the Ginzburg-Landau equation.
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FIG. 4. Transient lifetimes on a 1D line segment in phase space.
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