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Preface

The mathematical models used in natural and human sciences to describe dynamical
processes often possess, despite their sometimes simply looking form, very complicate
patterns of behavior. This fascinating property of dynamical systems, also called self-
organization, is due to the nonlinear interactions between the system’s components.
The transition from one pattern to another appears suddenly if some parameter that
describes the environment or some property of the system is changing. Very small
changes in the vicinity of such a parameter value may cause large qualitative changes
in the behavior of the system, a phenomenon which is called bifurcation. This is a
problem of high relevance in many systems which are studied in physics, chemistry,
biology, or ecology.

The investigation of nonlinear effects has been rapidly developed over the last two
decades. One of the main aspects in the study of such phenomena is the computa-
tion of stationary states and periodic solutions, their stability with respect to small
perturbations, and their dependence on some characteristic model parameters. It is
important to note that, in general, nonlinear dynamical systems cannot be solved an-
alytically. As a first powerful tool, simulations have been used to study numerically
the behavior of nonlinear dynamical systems. In many applications, however, it is
not sufficient to look at a single trajectory, and enormous computer time is wasted to
gain a general idea of the global behavior of the system using simulation only. More-
over, this computational effort is multiplied because of the many parameter values for
which the system has to be studied to get an insight into the long term limit behavior.
Additionally, unstable solutions cannot be obtained with this approach.

Therefore, a lot of numerical nonsimulative methods have been developed by several
authors to study bifurcation phenomena occuring in these model systems [8, 27, 29,
33, 44, 34]. The purpose of this manual is to describe the interactive software system
CANDYS/QA: its facilities including theoretical and numerical background, and how
to manage it. CANDYS/QA is an abbreviation of Computer Analysis of Nonlinear
DYnamical Systems/Qualitative Analysis. CANDYS/QA was originally written in
the programming language MODULA-2 and it had been implemented on the VAX
under VMS. Later, using the MODULA-2 to C translator ExTACY©? also a version
in ANSI-C was available for workstations under UNIX. Now, this version has been
revisited and reprogrammed in C++. The last version is described in this manual.

The heart of this report is Part II, the user’s manual of CANDYS/QA. The preceding
Part I gives the theoretical and algorithmic background. It can be skipped in a first
reading by users who are familiar with the bifurcation theory and its algorithms, only

2ExtacY© is a software product of Real Time Associates Ltd.
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the chapter about graphs should be studied. Part I is a revisited version of [11] includ-
ing new developments since that publication.



Contents

1.1
1.2

1.3
1.4

2.1

2.2

2.3
24

Algorithms

Theoretical Background

Model classes . . . . . . . . .

Qualitative properties as properties of invariantsets . . . . . ... .. ..
Local qualitative properties . . . . . ... ... .. ... . ... L.
Parameter dependency — bifurcations . . . ... ... ... ... .....

141 OvVerview . . . . . . v v i e e
1.4.2 Co-dimension-1 bifurcations . . ... ... ... .. ... .....
143 Co-dimension-2 bifurcations . . ... .. ... ... ... .....

144 Otherspecialpoints . . . ... ....................

Numerical Procedures

ThePoincarémap . . . .. ... .. ... ... .. ..
21.1 Constructionofthemap . . . ... ... ... ... .. .. .....
212 Artificial bifurcations . . . . . ... ... o oL Lo
Gettingafirstpoint . . . . ... ... ... .. L oL o
221 Overview . ... ...
222 Newton'smethod. ... ... ....... .. ............
2.2.3 Monte-Carlo search and evolutionary search . . . ... ... ...
224 Homotopymethod . . .. ... ...... ... ... . ... ...
225 Simulation . . ... ... o oL oo
Parameter dependent solutioncurves . . . .. ... ... ... ......
Special points . . . . .. ... L L
241 Generalscheme . . . . ... ... ... ... ... ... ...
242 Extended equationssystems . . ... ................
243 Branching-offcurves . . .. .. ... ... .. ... .. .. ... ..
244 Detection of special points . . . . .. ... ... ... . L.

A\

10
12
15



vi Contents
3 Graph Representation of the Solutions 41
3.1 k-parametergraphs . . . . ... ... ... L L o L 41
32 Themetagraph . . ... .. ... ... .. ... ... 43

3.3 Graphinteractions . .. ... ... ... ... .. ... L .. 44

4 Applications and Example 49
II Users’ Manual 53
5 About the Program 55
51 Licenseandwarranty . . . . ... ... ... ... ... .. ... 55
52 Features of implementation . . . ... ... ... ... ... .. .. ..., 56
53 Versionchanges . . . ... ... ..... ... ... ... ... .. ... 57
54 Installation . . . . . . ... L 59
5.4.1 Hardware and softwareneeds . . ... ... ... ......... 59

5.4.2 Installation of shared objects and the post-processor . . . . . . .. 59

54.3 Installation of an executable program . . ... ... ........ 61

5.4.4 Running the executable program . . . . . ... ... ... ..... 61

6 The Course of a Qualitative Analysis 63
6.1 Scenarios . . . . . ... 63
6.2 Loopsofwork . .. .. ... ... .. .. .. 64

6.3 Treatment of constant and extreme quantities . . . . . ... ... .. ... 65

6.4 The scenario and node-selectionlevels . . . . .. ... ... ... ..... 66

6.5 Themethodslevel . . . . . .. ... .. . . ... .. .. 67

6.6 The graph-manipulatinglevel . . . . ... ... ............... 68
6.7 The path-followinglevel . . . . .. .. ... ... ... .. .. .. ... ... 69

7 The Model Module 71
71 Generalremarks . . . . . . . ... 71

72 Modeldescription. . . . . ... Lo L 71
72.1 Includes and global variables . . . . .. ... ... ......... 71

7.2.2 Initializationpart . . . . .. ... .. o Lo oo 71

7.2.3 Righthand side and Jacobian . . . . .. ... ............ 73

724 Quantities . . . . .. .. e 74

725 Correctionphase . .. ... .. ... .. ... .. ... ..., 74



Contents vii
73 Useof MATHEMATICAO . . . . . . . ... . .. 75

74 User defined pointhandling . . . ... .................... 77

8 Input Description 79
81 Overview . . . . . . . . . e 79
8.2 Navigating through the program . . . ... ................. 81
8.2.1 Program start and the scenariolevel . . . . . ... ... ... ... 81

8.2.2 The methods level - computation of a first point . . . . . .. ... 81

8.2.3 The graph-manipulatinglevel . ... ... ... .......... 83

8.2.4 The path-followinglevel . . . . .. ... ... .. ... ...... 83

8.3 Numerical control parameters . . . . . ... ... .. ... ... ..., 84
831 Newton’smethod. .. ... ....... ... ... .......... 84

8.3.2 Monte-Carlo method and evolutionary search . . . .. ... ... 84

833 Simulation . ... ... . ... . 85

834 ThePoincarémap. . ... ... ..... ... ............ 85

8.3.5 Integrationprocedures . .. .. ... ... ... ... ... ... .. 86

84 Choiceofanode. . ... ... ... ... ... ... o 87
85 Programinterrupt. . ... . ... ... ... L L o 89

9 Output Description 91
91 Overview . . . . .. . .. e 91
9.2 Resultpresentation . . ... ... .... ... ... ... .. ... 92
93 Messages . . . . ... 94
9.4 Structure of several outputfiles . . . . ... ... .. .. o 0L 96
941 Generalremarks . .. ... ... ... ... ... . L. 96

9.4.2 Simulationfiles . . .. ... .. ... . o oo 97

943 Connectionfiles. . . ... ... ... ... L oL 98

10 Example 101
10.1 The main course of qualitative analysis . . . . ... ... ... .. ... .. 101
10.1.1 The model: Lorenz system . . . . .. ... .............. 101

10.1.2 The methodslevel . ... .. ... ... .. ... .. ..... ... 101

10.1.3 The graph-manipulatinglevel . ... ... ... .. ........ 104

10.1.4 The path-following-level . . . . ... ... ... ... ........ 105

10.1.5 A 2-parametergraph . . . . ... ... ... ... .. ... L. 111

11 Graphics 115



viii Contents

11.1 Introduction . . . . . . . . . . 115
11.2 Use of online graphics . . . . ... ... . ... .. ... ... ... 115
11.2.1 Graphics outputwith’og” . . . . .. ... ........ .. .. .. 116
11.2.2 Graphics output with 'PGPLOT” . . . .. ... .. ... .. .... 118

11.3 Post-processor for ‘gnuplot” . . . . .. ... ... .. oo L L 119
11.3.1 OVerview . . . . . . . i i e e e e 119
11.32 Dialogue . . . ... ... .. ... 119
1133 Example . . . .. .. . 120

114 Thelmffile . . . . . . . ... 121
11.4.1 Overview . . . . . . . i i e e e 121
1142 Syntax . ... ... .. ... e 122
1143 Example . . . .. .. .. L 123
11.44 Renderingkeywordss . . . ... ... ... .. ... ........ 123
11.45 Errormessages . . .. .. .. ... .. .. ... ... ... ..., 124

A Prototype of the Model module 127

References 131



Part1

Algorithms

In this part the algorithms are described that are implemented in CANDYS/QA and
that are specific for the qualitative analysis of dynamical systems. It is hoped that these
descriptions enforce the understanding of the capabilities of the program, its function-
ing, but also its failures. This part includes the necessary theoretical background from
bifurcation theory.







Chapter 1

Theoretical Background

1.1 Model classes

A dynamical system is, in a strong mathematical sense, a map f : M x G — M where
M is a nonempty set and G is a semi-group with a neutral element “0” such that

f(z,0) = =z
f(m7t+5) = f(f(il)‘,s),t)

forall z € M and all s,t € G. The argument ¢ € G of F is called the time variable of
the dynamical system, while the argument € M is its space variable. In practice, the
semi-group G is nothing else then one of the following sets:

1. the set of real numbers R,
2. the set of nonnegative real numbers R,
3. the set of integer numbers Z,

4. the set of natural numbers (including 0) N.

The first two classes are called time-continuous systems, the latter two time-discrete
systems. The systems of classes 1. and 3. are invertible (the semi-group is really a
group), while the systems of classes 2. and 4., in general, are not. Moreover, also the
set M is often restricted to be the Euclidean space R" or a Banach space B, and the
map F has to satisfy specific continuity and differentiability conditions. Throughout
this report we apply the following convention:

e vectors in R" (n may be equal to 1) are denoted by boldface letters, e.g. x;
e vector components are indicated by subscripts, e.g. x;;

e an index for the whole vector is written as a superscript, e.g. £°.

Within that general context, CANDYS/ QA treats three families of dynamical systems:

3



4 Chapter 1. Theoretical Background

1. autonomous systems with continuous time
¢ = f(z,p) (1.1)
2. periodically forced systems with a period 7'
z=f(t,z, p) (1.2)
where f(t+ T, x,p) = f(t,z, p) holds;
3. autonomous systems with discrete time steps k - At
' =z((k+1) At) = f(z(k- At), p) (1.3)
(after a transformation of the time variable ¢ the time step At is assumed to be

equal to unity).

In these formulae, £ = (z1,...,z,) denotes the R"-vector of the state variables,
p = (p1,...,px) € R¥ the parameter vector of the system, and & the derivative ‘f]—f
Clearly, systems of class 1 are invertible time-continuous while those of class 3 are,
in general, non-invertible time-discrete systems. The periodically forced systems of
class 2 are invertible time-discrete systems on the additive group of the numbers
{0,£T,42T,...}: the differential equation should be understood as an algorithmic
rule to compute the map F.

We suppose throughout the report that the model satisfies the following two condi-

tions.

e The functions f; are continuously differentiable with respect to all variables (in-
cluding the parameters), i.e. that the Jacobians

_ afz . afl
J = <8xj> and Jp = <8pj> (1.4)

exist. Moreover, for treating bifurcation analysis we assume that the functions
are at least three or even four times continuously differentiable.

e The model does not possess symmetries or first integrals such as Hamiltonian
systems do. If it did then its bifurcations had a higher “co-dimension” than
parameters are variable (c.f. Sec. 1.4 for the definitions). The algorithms of
CANDYS/QA do not work in this case, one has to use specifically developed
algorithms (see [14] and [16] for an overview).

1.2 Qualitative properties as properties of invariant sets

After defining the term “dynamical system” in Sec. 1.1, it is time to define the term
“qualitative property”. We will consider system properties which do not depend on
the investigator’s point of view, especially, which do not depend on the coordinate
system. This means, we look for properties which are invariant with respect to coor-
dinate transformations.



1.2. Qualitative properties as properties of invariant sets 5

The state space M of the dynamical system can be transformed one-to-one in differ-
ent ways. One can demand that the transformations possess additional properties,
e.g. to be continuous or differentiable. All transformations with specific properties
constitute a group if also the inverse transformation and the concatenation of trans-
formations have these properties. Prominent examples are the group of all continuous
transformations as well as the group of differentiable transformations such that

det <a—$>’ >e>0. (1.5)
Oy

We say, a property of the dynamical system is a qualitative property if it is maintained
under all transformations of a group. Thus, the term “qualitative” characterizes a
property that does not depend on arbitrary model features as the chosen coordinate
system. Whether a property is a qualitative one depends on the group of transfor-
mations in question. As an example, the eigenvalues \; of the matrix J computed at
a steady-state * are invariant with respect to the differentiable transformations but
they are not invariant with respect to arbitrary continuous transformations. In this
report we will always suppose that the transformation group defining the qualitative
properties is the group of continuous transformations. But the group of differentiable
transformation is an important subgroup, and when discussing normal forms, firstly,
we apply a transformation out of this subgroup and, secondly, a continuous transfor-
mation.

Another basic idea of qualitative analysis is the investigation of time-invariant sets S
in the state space R" which are mapped onto themselves via evolution equations (1.1)-
(1.3) for all times and which are non-wandering in the following sense: to each point
x € S and each neighborhood U(z) exists a 7' > 0 such that U(z) N U(z(t)) # 0 for
all ¢ > T, i.e. some kind of recurrence holds on non-wandering sets. These invariant
sets remain invariant sets if the space of the state variables is transformed. Therefore,
their existence and count are typical qualitative features of the system.

An important point is the question of stability of these invariant sets with respect to
small perturbations of the state variables. An invariant set S is said to be stable if any
solution z(t) of equations (1.1)—(1.3) starting nearby S remains close to S for all time.
If, in addition, a neighborhood U can be chosen such that any solution z(t) starting
in U approaches § as t — oo then S is said to be asymptotically stable or attractive.
On the other hand, if there is at least one trajectory leaving any neighborhood of S
then the invariant set is unstable. The Jacobian matrix J and the fundamental matrix
H(z,t) = g:é(t); play the essential role for the evaluation of the stability. The second

matrix, H, is defined by the matrix differential equation

%H =J(xz(t))H with H(z,0)=1 (1.6)

or the matrix difference equation

H =J(z(t))H with H(z,0)=1 (1.7)
computed along the solutions of Egs. 1.1, (1.2), or (1.3), respectively. Below we will
need the derivation H,(x,t) of = (t) with respect to parameters. It is given by

d

7 H, = J(@(0))H, + J,(e(t)  with  H,(2,0)=0 (1.8)



6 Chapter 1. Theoretical Background

or

H) = J(x(t)H, + Jy(x(t))  with  H,(x,0)=0. (1.9)

Several kinds of invariant sets are known for nonlinear dynamical systems, e.g.
steady-states, periodic solutions, invariant tori, and strange attractors. According to
their importance in practice and numerical tractability only two of them are taken into
account in the software system CANDYS/QA.

Steady-states (also called stationary points, rest points, or fixed points) of an au-
tonomous system are invariant sets that consist of one point only. The number
of steady-states is a qualitative property of the system. From the definition of a
steady-state the equations of its computation immediately follows:

f(z,p)=0. (1.10)

A steady-state is attractive if all eigenvalues of the corresponding Jacobian ma-
trix have negative real parts, and it is unstable if at Ieast eigenvalue has positive
real part.

Cycles (also called periodic solutions, periodic motions) of any system family:
z(T) = z(0) for some 7' > 0.

This invariant set consists of all points in the state space covered by the solution
z(t) in the time interval [¢,¢ + T7].
In the case of time discrete systems, where z(7T') corresponds to the k-th succes-

sor of z(0) (i.e. T' = k) one point of this set can be obtained as the solution of the
nonlinear equations system

f¥x,p)—z=0 (1.11)

(f* denotes the k-th iterate of f).

In the case of periodically forced systems cycles with the period 7" of the driving
force (or multiples of it) are determined. The system of differential equations
(1.2) has to be solved with the boundary condition (0) = x(kT). The nonlinear
equations system

z(kT)—x(0)=0 (1.12)

results. Herein z(kT') is the solution of Eq. (1.2) starting at z(0).

The most complicated case is the computation of cycles of the system family (1.1)
because the unknown period has to be determined, too. Using Poincaré’s first
return map the search for cycles is transformed into the search for fixed points
of a discrete map. This case will be discussed in more detail in Sec. 2.1.

The solution of the Egs. (1.6), (1.7) (integrated from ¢t = 0 to ¢t = T or iterated k-
times) yields the matrix whose eigenvalues determine the stability of the cycle.
A periodic motion is attractive if all eigenvalues lie within the unit circle and it
is unstable if at least one eigenvalue lies outside.
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At this place one important remark has to be made. Although the qualitative proper-
ties abstract from a concrete coordinate system all numerical computations are done in
the framework of a given coordinate system. Equations (1.10)—(1.11) express this fact.
This way, a couple of quantitative information is gained, and the qualitative properties
have to be extracted from them.

1.3 Local qualitative properties

Besides the invariance of a property with respect to transformations of the whole state
space R", often only the local invariance is of interest. This means the following: given
an invariant set S, a property of S is called locally qualitative if a neighborhood U
of S exists such that for all admissible transformations ¢ of U the set ¢(S) has the
same property within ¢(U). For instance, suppose S is an attractive stable steady-
state * and U is a neighborhood of * such that () — «* if * € U. Then for
all continuous transformations of U holds y(t) = ¢(x(t)) — ¢(z*) if y € p(U), ie.
the attractive stability of z* is a locally qualitative property of that point. As in the
global case, the local qualitativeness of a property depends on the group of admissible
transformations.

The numerical methods implemented in CANDYS/QA always compute a single in-
variant set and its stability. This means, that only local qualitative properties of the
dynamical systems can be determined.

The restriction to local qualitative properties has the advantage that, theoretically,
transformations to formally simple systems are known. In the remainder of this sec-
tion, the simplified but, nevertheless, equivalent systems shall be presented. First, we
consider steady-states. If n_, ng, n eigenvalues of J have negative, zero, or positive
real part, respectively, then for almost all systems a differentiable transformation ¢
exists to the system

w = f(w) , weC
g = Jy , yeR- (1.13)
2 Joz , zeR™

Here, J_ and J; are constant quadratic matrices possessing the eigenvalues of J with
negative or positive real part, respectively. The set C is an np-dimensional manifold
in o(U) with ¢(z*) € C and tangential to the eigenspace of the zero eigenvalues,
the so-called center manifold (c.f.[3, 19, 4]). The subsystems in R"-, R, R"+ can be
simplified such that J_ and J have real Jordan normal form, and such that many
coefficients of the Taylor expansion of f(w) vanish (so-called normal form of f(w)).
Moreover, if also continuous transformations are admissible then a transformation to
(1.13) is always possible with J_ = —1I, J = I.

Although the transformation to normal form is only theoretically known it has the
following meaning.

e The numbers n_, np, and n4 are local qualitative properties. If ng = 0 then no
others exist, if ng > 0 then the qualitative properties of f(w) are also those of

f(x).
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e The interesting features of the dynamics are concentrated in the low-
dimensional center manifold, and for a deeper insight into the dynamics one
has to study only the function f(w).

e The numerical procedures that determine steady-states with eigenvalues on the
imaginary axis are constructed such that they implicitly also determine the trans-
formation to the normal form.

In the case of a cycle a similar theorem holds. One has to replace J by H as well as
negative, zero, and positive real parts by modulus smaller, equal, and larger than 1,
respectively, to determine the dimensions n_, ng, and n.

w = f(w) , weC

y = Huy , yeR" (1.14)

z = Hiz , zeR'+

If continuous transformations are admissible then H_ and H. can be chosen as di-
agonal matrices with diagonal elements &4 and +2, respectively, where at most one
minus sign occurs in each of both matrices. After that transformation, the y and z
parts have their simplest form. This means, there are 4n classes of qualitatively differ-
ent cycles if ng = 0.

1.4 Parameter dependency — bifurcations

1.4.1 Overview

In this section we suppose that the dynamical system depends on several parameters
(as mentioned in Sec. 1.1) and that for one parameter vector p° an invariant set z° (i.e.
a steady-state or a point of a cycle) is known together with its Jacobian J or H. The
question is, how do the invariant set and its local qualitative properties change when
the parameter vector is varied.

The answer is simple if no eigenvalue of J or H belongs to the imaginary axis or to the
unit circle, respectively. In this case the Implicit function theorem states the following.

1. There is a neighborhood U, x U, of (z°, p°) in R* x R* where for each p € U,
exactly one steady-state or cycle point z(p) exists. (p) depends differentiably
on p.

2. In this neighborhood the Jacobians J(z(p)) or H(x(p)) and their eigenvalues
depend continuously on p, i.e. if U, is chosen sufficiently small then no eigen-
values belong to the imaginary axis or to the unit circle, respectively.

This means, in the neighborhood U, x U, all systems have the same local qualitative
properties (namely the numbers n_ and n).

We call a point (z*, p*) a local bifurcation point if it is a steady-state or a cycle point
such that in any parameter neighborhood systems exist with different local qualitative
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properties. The observation above says, that at a local bifurcation point at least one
eigenvalue of J or H must belong to the imaginary axis or to the unit circle.

The qualitative properties of the bifurcation point are those of the reduced system
f(w) on the center manifold (including the dimensions n_, ng, n,). As we will see,
these properties are described by specific nonlinear equations and some inequalities
(so-called regularity conditions). If there are s such equations then one says that the bi-
furcation point has co-dimension s. If k > s and if both, the equations and the inequal-
ities, are satisfied at (z*, p*) then there is a (k — s)-dimensional manifold in parameter
space consisting of equivalent bifurcation points, and any parameter neighborhood of
(z*, p*) contains points (steady-states or cycle points) with eigenvalues off the imagi-
nary axis or the unit circle. Moreover, there is a neighborhood of that point such that
the only bifurcation points of co-dimension > s are those in the submanifold men-
tioned. But this neighborhood contains also bifurcations of co-dimension < s, namely
those that are described by a subset of the equations characterizing the co-dimension
s bifurcation.

The definition of a bifurcation point has an important consequence. We consider any
continuous one-to-one transformation of the state-parameter space R” x R* (or a trans-
formation of a neighborhood U of (z*, p*)) such that p = ¢(p) does not depend on
x. 2 The neighborhood U = ¢(U) contains ¢(z*, p*) and ¢(z, p), i.e. points with
different qualitative properties, provided (z*, p*) and (z, p) € U have different qual-
itative properties. This means, that the property of (z*, p*) to be a bifurcation point
is invariant under those transformations. Thus, it is meaningful to look for a simple
form of the dynamical system. First of all, Eq. (1.13) can be generalized to systems
with variable parameters (c.f. [3]):

w=f(w,p) , weR™ xRF
y=Jy , yeR™- (1.15)
p=J.z , zeR™

where f(w, p) extends the function f(w) in Eq. (1.13). Next, one can try to find a sim-
ple form of f(w), p), especially one looks for a function that depends effectively only
on s parameters in the case of a co-dimension s bifurcation. The resulting function

f(w, p) is then called a versal unfolding.

An analogous generalization of Eq. (1.14) is valid in the case of cycles. But often versal
unfoldings exist only in the following sense: the map is approximated by differential
equations such that the cycles become steady-states. The qualitative properties of the
latter can be interpreted as qualitative properties of the cycle but many details of the
original system are lost.

The hierarchy of bifurcation points of different co-dimension suggests a scheme of the
numerical bifurcation analysis. One starts at a parameter vector p" and determines a
steady-state or cycle, we can assume that it is not a bifurcation point. Then the param-
eter p is changed by varying only one component, i.e. the effective parameter space
is 1-dimensional. When one eigenvalue (or a pair of conjugate complex eigenvalues)
crosses the imaginary axis or the unit circle then a bifurcation point is found, we can
assume that it is of co-dimension 1. Here, one starts the variation of two components of

?If p depended on x then p would also depend on the time in contradiction to the parameter character
of p.
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p and computes the curve of these bifurcation points. We proceed inductively: when s
components of the parameter vector are varied then curves of bifurcation points of co-
dimension s — 1 are computed and bifurcations of co-dimension s can be determined
(if any).

1.4.2 Co-dimension-1 bifurcations

In this subsection we explain the co-dimension-1 bifurcations treated by
CANDYS/QA. Figure 1.1 shows a synopsis of them. For each bifurcation the
following will be listed:

1. the versal unfolding;
2. phenomena accompanied with it, e.g. curves branching off;

3. the equality conditions on the n-dimensional system, but without mentioning
the conditions on higher order derivatives.

The general properties will be explained as properties of the versal unfoldings (if such
an unfolding is known). Especially the phrase that “points are stable” has to be un-
derstood as “stable in the center manifold”, but they are actually unstable if n, > 0.

In the case that a bifurcation is relevant for cycles only, we list conditions on the eigen-
values of H, otherwise those of J for the steady-states. If a bifurcation is relevant for
cycles as well then the conditions are easily translated. In the second case we give the
versal unfolding for steady-states only.

Turning points (return points, saddle-node-bifurcations)

A turning point is a bifurcation of steady-states and cycles. It has a 1-dimensional
center manifold, the versal unfolding is:

&=z +p. (1.16)

The bifurcation point is (x, p) = (0, 0). This means, that at the turning point the curve
is locally a parabola with the axis parallel to the parameter axis. The curve changes
its direction at the bifurcation point: this explains the term “turning point” or “return
point”. Moreover, since the single eigenvalue crosses 0, the points on one branch of
the parabola are stable while the points on the other branch are unstable. If the system
is in reality n-dimensional with the dimensions n_ = n — 1, n; = 0 then points at
one branch form “nodes” and the others form “saddles”, what is reflected by the often
used term “saddle-node-bifurcation”.

An n-dimensional system can be transformed locally about (z*,p*) to Eq. (1.16) if
J has no other zero-eigenvalue and if ?9_2 # 0. The last condition is equivalent to
rank(J, Jp) = n.
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Hopf bifurcations

The Hopf bifurcation is unique to the steady-states of autonomous differential equa-
tions. At a Hopf bifurcation two complex conjugate eigenvalues of J cross the imagi-
nary axis. The center manifold is 2-dimensional and the versal unfolding in a complex
state variable z is:

2= 2(i+p+ 22) (1.17)

(c.f. [3, 19, 20]). This type of bifurcation is named after E. Hopf who described it first
in [22] (an English translation can be found in [31]).

The bifurcation point is (z,p) = (0,0). At this point two different curves meet: a curve
of steady-states which change the stability at the bifurcation, and a curve of cycles
whose radii vanish at the bifurcation. The cycles form a paraboloid in the z-p space
and the steady-states constitute its axis. The sign of zz determines the stability of the
cycles: “4” means that the cycles are unstable and exist for p < 0 (so-called subcritical
bifurcation), otherwise the cycles are stable and exist for p > 0 (so-called supercritical
bifurcation).

An n-dimensional system can be transformed locally about (z*, p*) to Eq. (1.17) if J
has no other eigenvalue on the imaginary axis and if % # 0.

Torus bifurcations

This type of bifurcation is the analogue to the Hopf bifurcation in case of cycles of
maps. It is characterized by the fact that two conjugate complex eigenvalues cross
the unit circle. Analogously to the Hopf bifurcation, the cycle changes stability at the
bifurcation point and an invariant set (topologically a circle in R?) is born where also
subcritical and supercritical versions exist.

In the case of cycles of autonomous differential equations this circle is a set in the
Poincaré surface S (c.f. Sec. 2.1) and it is overlaid by the trajectories crossing S. This
results in an invariant torus and explains the name of the bifurcation. Sometimes, this
bifurcation is called Hopf bifurcation, too.

The character of the motion on this invariant circle depends strongly on the critical
eigenvalues e™: if a = * is rational (a resonance situation) then there are periodic
points on that circle (s saddles and s nodes if s > 4), otherwise the circle is rotated
without periodic points.

Period doublings (flip bifurcations)

This type is unique to cycles. It is characterized by the outstanding case that one real
eigenvalue of H crosses the unit circle at —1. The center manifold is 1-dimensional,
and the versal unfolding is:

o =(p-1z+a? (1.18)

The cycle changes its stability at the bifurcation point and a cycle of doubled period
length is born. The points of these cycles form a parabola where the cycles with simple
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length constitute the axis. The points of the cycles of doubled length visit the two
branches of the parabola alternately. Analogously to the Hopf bifurcation, subcritical
and supercritical period doublings are possible.

An n-dimensional system can be transformed locally about (z*, p*) to Eq. (1.18) if H
has no other eigenvalue of modulus 1 and if %’:' # 0.

Simple bifurcations

A simple bifurcation occurs when two curves of steady-states or cycles intersect. This
type of bifurcation is exceptional for two reasons:

e it is actually a co-dimension-2 bifurcation that often occurs in 1-parameter prob-
lems;

e it is not invariant with respect to transformations of the parameter space, in-

stead, one parameter has to be distinguished as the leading one.

In 1-parameter space two (not versal) unfoldings exist on a 1-dimensional center man-

ifold:
i =ap+ 2 (1.19)

the so-called pitchfork bifurcation (the “+” sign corresponds to a subcritical, the “—"
sign to a supercritical bifurcation),

&= xp + 2* (1.20)

the so-called transcritical bifurcation. As in the case of a turning point, at the bifurca-
tion one real eigenvalue crosses the imaginary axis. But now rank(J) = rank(J, J,) =
n — 1 holds.

One steady-state is z(p) = 0. When p passes 0 the eigenvalue changes its sign, i.e. the
stability changes. In the transcritical case the other steady-state is z(p) = —p and it
changes also the stability such that it is unstable if the first is stable. In the pitchfork
case the second curve is a parabola symmetrical to the parameter axis. Both branches
of parabola are stable if the coexisting steady-state is unstable (and vice versa).

1.4.3 Co-dimension-2 bifurcations

In this subsection we consider the co-dimension-2 bifurcations treated by
CANDYS/QA. We follow the lines of the previous subsection.

Cusp points

The cusp is a degenerate turning point where J has the simple eigenvalue 0 but the
transformation to the system Eq. (1.16) does not work since an inequality condition on
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Figure 1.1: Scheme of bifurcation situations:

1 : turning point of steady-states or cycles;

2 : transcritical bifurcation point of steady-states or cycles;

3 : subcritical pitchfork bifurcation point of steady-states or cy-
cles;

4 : supercritical Hopf bifurcation (steady states), period dou-
bling, or torus bifurcation (cycles).

Solid lines: stable invariant sets; dashed lines: unstable invariant
sets.

higher order derivatives is not satisfied, here it becomes an equality. Thus, this equal-
ity gives an additional equations condition (c.f. Sec. 2.4.2 for the formula). Provided
that certain higher order derivatives do not vanish the versal unfolding on the center
manifold is

i =p1+ pox £+ 3 (1.21)

Two branches of turning point curves meet at (x,p1,p2) = (0,0,0) such that their
projections on the p;-pa-parameter plane have the same tangent and both curves ap-
proach the bifurcation point from the same direction forming a “cusp”. It should be
mentioned that the curve is smooth in the state-parameter space.

Degenerate period doublings
The transformation to system (1.18) does not work if certain higher order derivatives
vanish (c.f. Sec. 2.4.2), thus, the period doubling is called degenerate.

At such a point on a period doublings curve the following happens: a subcritical pe-
riod doubling becomes supercritical (or vice versa), and a curve of turning points of
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cycles of the doubled period starts here. In the p;-p2-plane the last curve is tangent to
the period doubling curve.

Takens-Bogdanov points

The Takens-Bogdanov point is characterized by a double zero-eigenvalue such that

1
00
and Takens [47]. One possible versal unfolding on the 2-dimensional center manifold
is the following;:

the matrix J possesses a Jordan block > . It was studied first by Bogdanov [5, 6]

. 2
T1 = X2 + p2x1 + X7
. 5 (1.22)
T =p1 1]

The bifurcation point is (z1,z2,p1,p2) = (0,0,0,0). The straight line (0,0,0,ps2) is
a curve of turning points while for p; > 0 the parabola (247,24, pi, —2,/p1) defines
a curve of Hopf bifurcations (with certain zi7 and zI7) that is tangent to the line of
turning points in the pi-po-plane. The other branch of the parabola defines a curve of
points with real eigenvalues +/p1 (i.e. an imaginary Hopf bifurcation in the sense of
Sec.2.4.2).

Two eigenvalues -1

-1 1
0 -1
doublings crosses a curve of torus bifurcations (where on one side of the period dou-
bling curve the torus bifurcation curve consists of imaginary torus bifurcations in the
sense of Sec. 2.4.2). Depending on the sign of higher order derivatives a further curve
starts here: a curve of torus bifurcations of the cycles of doubled period.

This bifurcation occurs if H possesses a Jordan block ( ) A curve of period

Constant rotation

The torus bifurcations with the critical eigenvalue A = ™ with «a € (0, 1) rational and
tixed possess different qualitative properties for different a (so-called Arnold tongues

occur, c.f. [3]). For a given « the condition that H possesses an eigenvalue re™ with
r = 1 and a = w defines a co-dimension-2 bifurcation.

Combined eigenvalues

Two different co-dimension-1 bifurcations form a co-dimension-2 bifurcation if the
characterizing conditions of both are satisfied at the same time. In the case of steady-
states a pair of imaginary eigenvalues can be combined with the eigenvalue 0 or with
another pair of imaginary eigenvalues. In the case of cycles combinations of the eigen-
values +1, —1, or complex ones on the unit circle are possible. At the co-dimension-2
bifurcation point the curves of the corresponding co-dimension-1 bifurcations inter-
sect (or are tangent in the p;-pe-plane). Further curves can start here. For instance, if
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two different imaginary pairs of eigenvalues are combined then there start two curves
of cycles with different torus bifurcations.

1.4.4 Other special points

The program CANDYS/QA is devoted to the numerical analysis of qualitative prop-
erties of a dynamical system. But a small modification of the algorithms allows to
compute also some quantitative features in combination with qualitative ones: steady-
states, cycles, or bifurcation points where at the same time a user-specified function
Q(x, p) assumes a pre-described fixed value or assumes an extremum. Such a point
is treated like a bifurcation point, e.g. it can be the object of path-following. Since
proper bifurcation points and the points described here are not distinguished in many
contexts of this report we call them commonly special points.

The function @ is evaluated at the steady-state or at one point of the cycle. The aver-
aging along the cycle has not yet been implemented.

The computation of extrema concerns the extrema of Q(x, p) along a curve of steady-
states etc., i.e. extrema with equality constraints. This means, that actually the La-
grange function

o(z,p,v) = Q(z,p) + v" F(z, p) (1.23)

is minimized or maximized where F(z, p) is the equation for the steady-state etc., and
v is the vector of Lagrange multipliers.
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Chapter 2

Numerical Procedures

2.1 The Poincaré map

2.1.1 Construction of the map

Let us assume that an autonomous nonlinear system possesses a cycle as one trajec-
tory. The computation of such cycles is based on Poincaré’s first return map. For
explanation of this map we suppose the existence of a smooth (n — 1)-dimensional
submanifold S in R" defined by the equation

g(z,p) =0

(g9 : R* x R¥ — R a smooth function). S has to be chosen in such a way that the
trajectories are transverse to it (c.f. [19]). This means, that at the intersection point z*
of the periodic trajectory with S

99
ox

Any nearby noncyclic trajectory crosses the submanifold S in two different points
z° (start), and =¥ (end) which are close to the intersection point z* of the cycle (c.f.
Fig. 2.1). The intersection points defineamap P : S — S : #° — z¥ (atleastin a
neighborhood of z*), called the Poincaré map, which in turn is a discrete dynamical

T
) @' p) 0 @.1)

holds.

system on S. Hence, a cycle corresponds to a fixed point of that map: ¥ = 2. Let T
be the time difference between the two points z° and =”. If we denote in the following
z° by x = z(0) and ¥ = z(T) then the cycle is characterized by z(T') — x = 0. But
all points of the cycle fulfill that equation. One single point of the cycle is determined
by the additional condition that it belongs to the submanifold S; and we obtain the
following equations system

z(T)—x=0
g9(z,p) =0.

Equation (2.2) constitutes a nonlinear system of n+ 1 equations for the n+1 unknowns
x and T the solution is a point of the cycle on S and its period length. This nonlin-
ear equations system which describes the Poincaré map can be solved by Newton’s

(2.2)

17
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Figure 2.1: The Poincaré map.

method. Equation (2.2) possesses at least two (in general, an even number of) solu-
tions since the cycle crosses the manifold once in “forward” and once in “backward”
direction. But under the transversality condition (2.1) the solutions are isolated. The

resulting Jacobian is
_(H-I
= ("1 ) 23

where H is defined by Eq. (1.6), g, is the row vector g—g, and where the vectors and
matrices are computed at the point (z,T).

We show the regularity of Jp by calculating its eigenvalues and eigenvectors using
those of H. Suppose that H possesses at the solution vector (z*,T*) the eigenvalues
AL, - .., Ap with the right eigenvectors uy, . .., u, and the left eigenvectors vy, ..., vy,.2
It is well known that one eigenvalue (say \,) is equal to 1 and its right eigenvector is
u, = f(x*). Fori <n

H-I f
’Ul',O = /\i—lvl-,O
w0 (T -1 0 = (= D)
holds, i.e. Jp possesses the eigenvalues \; — 1 fori = 1,...,n — 1 (recall v} u, = 0 for

the different eigenvalues )\; and \,). For i = n we use the ansatz (2) with a complex

unknown « as right eigenvector and p as eigenvalue:

() - (% D) @) - (M) - G)

?For sake of simplicity we assume here simple eigenvalues.
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This yields 1 = o and pa = g, f, i.e.
a=%\/gof (2.4)

are the two outstanding eigenvalues of Jp replacing A, = 1 of H. The similar ansatz

<uk + Gif

N > for the k-th eigenvector (K < n) yields once more the eigenvalue p;, — 1
k
as well as a = ((pe — 1) — gmf)_lgmuk and B = (ur — 1)ag. The expression in

parentheses vanishes iff one of the new eigenvalues is equal to uj, — 1, in this case the

only eigenvector is (é) .

It should be emphasis ed that the eigenvalue A\, = 1 of H or the eigenvalues ;1 = +a
of Jp are insignificant for the determination of the stability of the cycle. Only the
other n — 1 eigenvalues are significant since the dynamics is actually a map in (n — 1)-
dimensional space.

Here, a remark is necessary why stationary points are not misinterpreted as cycles.
For all T, the stationary points are solutions of the first equation of the system (2.2)
and if the submanifold S is suitably chosen also of the second one. But in that case
f(z*) = 0 holds and the Jacobian Jp is singular, thus the problem is now not well
posed and no stationary point can be the result of Newton’s method, i.e. only proper
cycles will be computed.

CANDYS/QA provides three options for the function g(z, p) from which the user can
select one:
1. Sis a fixed plane orthogonal to the k-th axis supported by some chosen point a,
ie.
9(z,p) = (= — a)y. (2.5)
This option is the easiest to deal with.

2. S is the surface of all extrema of the trajectories with respect to one component
xy, i.e. the points characterized by &y, = fi(z,p) = 0:

g(map) :fk(a;ap)' (26)

Since fi(x, p) may actually depend on the parameter p the submanifold S may
vary with p. For many applications this option is the most interesting one since
the extrema of some components are often of practical importance.

3. S is the plane orthogonal to the trajectory supported by one trajectory point, i.e.

with the current trajectory tangent ¢ = £ (‘Egﬁ’ ) we obtain
g(z,p) =t"(z —2°) (2.7)

0

where z"” is a previously computed point.

The method described above differs from known algorithms to compute periodic so-
lutions of Eq. (1.1). One suitable approach is the transformation of the problem into a
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two point boundary value problem in the interval [0, 1] (c.f. [21, 8, 43]) or [0, 27] (c.f.
[38]). Standard algorithms like shooting methods [21] or collocation techniques [8]
are used to find the solution. The period length is computed as one of the unknowns
of the equations system replacing one of the state variables that is fixed at a suitable
value (it constitutes the periodic boundary values). Another ansatz is given by Curry
[7] and Khibnik [26] who defined explicitly a Poincaré plane by fixing one component
or by adding a linear condition. This leads to the reduction of Eq. (1.1) to an (n — 1)-
dimensional algebraic system which describes the Poincaré map.

The disadvantage of the approaches mentioned last is that they have to compute ex-
actly the Poincaré map in each Newton step. This is avoided by our method, since in
the course of Newton’s method the points  need not belong to the submanifold S: the
point x meets S just by convergence. Consequently, although our procedure uses an
(n+1)-dimensional equations system it seems to be more efficient than the approaches
suggested by Curry and Khibnik. (This situation might be compared with the method
of Lagrange multipliers for searching an extremum of a function of n variables with
one equality constraint. Instead of solving the equality constraint and so reducing
the optimization problem by one dimension the problem is enlarged by one variable,
the Lagrange multiplier, yielding an (n + 1)-dimensional problem of a more homoge-
neous form.) Moreover, Eq. (2.2) allows the use of Newton’s method, path-following
algorithms etc. without a special adaptation.

2.1.2 Artificial bifurcations

Let us have a look at the singularities of Eq. (2.2). Equation (2.2) can cause specific
numerical failures that come in the disguise of a bifurcation. Jp is regular iff all \; # 1
(i < n)and a isnonzero. Then Jp is also regular for all (z, T') close to the cycle (z*, T™)
and Newton’s method is well posed.

Much more is to be said about the case & = 0. Although this is forbidden by the
transversality condition (2.1), it may occur during a path-following procedure. The
following examples show that it is a quite natural situation, but it is an artifact from
the point of view of the qualitative system behavior. It results from a not suitable
choice of the submanifold S. Now let us discuss the case a = 0. It holds

(0= 0)

ie. (?) is mapped onto the eigenvector <€) implying that Jp possesses a Jordan

block of two rows corresponding to the eigenvalue 0, and the enlarged Jacobian matrix
(Jp, Jp) is of rank n or n+ 1. (To see this look at the enlarged Jordan block that is of the
1 . . .
form (8 0 Z) ,its rank is 1 or 2 depending on b). Rank n + 1 means that we have the
same constellation of the eigenvalues as in the case of a turning point of the Eq. (2.2)
(c.f. Sec. 2.4.1 for definition of turning points and simple bifurcations). However, this
“turning point” is an artifact. From the geometrical point of view, two intersections of
the trajectory with the submanifold S meet and annihilate here. That means the path
before the “turning point” describes one crossing point and afterward the other one,
the same parameter interval is visited twice, and both paths are redundant to each
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Figure 2.2: An artificial turning point

@,
N——

Figure 2.3: An artificial pitchfork bifurcation

other. This may be demonstrated by the following example. Let S be a fixed plane
with the normal vector g, = a. Assume that the cycle becomes smaller and smaller
with varying p, and after a certain p* the cycle does not longer cross the plane. The
solution (z, p) changes from the left to the right point of the same cycle (c.f. Fig. 2.2).

On the other hand, rank n corresponds to a simple bifurcation, e.g. a pitchfork, of the
path. But Fig. 2.3 shows again that this “bifurcation” is an artifact where one crossing
point is split into three ones. Here, we assume that S is the surface of the extrema of the
trajectories with respect to the component z;, , and we assume that with variation of p
the cycle is indented from above. At the parameter value p* the maximum becomes
one minimum and two maxima.

It should be emphasis ed that such artificial bifurcation situations cannot occur if the
submanifold S is the plane orthogonal to the trajectory (option 3) since by Egs. (2.4)
and (2.5) @ = 0 never holds.

Artifacts may be avoided by several means. In CANDYS/QA we monitor the value of
a during path following, and if it is shrinking towards zero then the user is interac-
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tively asked to define the Poincaré map anew. Generally, this results in a jump or an
angle of the solution path.



2.2. Getting a first point 23

2.2 Getting a first point

2.2.1 Overview

The numerical investigation of a nonlinear dynamical system starts with the com-
putation of one point of a chosen invariant set for a fixed set of parameters, shortly
called the first point. Steady-states of autonomous systems as well as cycles of pe-
riodically forced systems and time discrete systems result from the solution of the
nonlinear algebraic systems Egs. (1.10) — (1.12). Using the method of Poincaré’s first
return map explained above, the search for periodic solutions in autonomous systems
can be transformed to such an algebraic problem as well: Eq. (2.2). For this reason, the
calculation of fixed points and cycles are based upon the same numerical algorithms.
The corresponding equation systems for steady-states and cycles may be unified for-
mally to a single one that has to be solved for y at a fixed parameter vector p (which
is dropped in the following formulae for clarity):

F(y)=0 , yeR™ (2.8)

In general, y is identical to x, only in the case of Eq. (2.2) y contains besides z the
period length T" as one additional component. The function F : R™ — R™ is one of
the functions in Egs. (1.10) — (1.12), or (2.2).

Standard numerical tools solving nonlinear algebraic systems need a good initial
guess to converge. But in practice we are often faced with the problem, that we do
not know so much about a possible location of the invariant sets sought for. Only
sometimes the system possesses a trivial solution which can be used as a first point.
For this reason CANDYS/QA offers an extensive support for getting a first point.

As a result of one or a combination of all these procedures a certain invariant set
(steady-state or cycle) is obtained for a fixed set of model parameters. Additionally,
the corresponding Jacobian J or H, respectively, and its eigenvalues determining the
stability of the chosen invariant set are calculated.

2.2.2 Newton’s method

The most accurate algorithm is a damped Newton’s method (more precisely: a chord
method where after several steps the Jacobian matrix is newly calculated); for simplic-
ity, we refer to this method as Newton’s method in the sequel.

When using Newton’s method to solve Eq. (2.8) we need a Jacobian Jy. For the dif-
ferent nonlinear equations systems Egs. (1.10) — (1.12), (2.2) different Jacobians have to
be supplied:

1. In the case of steady-states Eq. (1.10) it is the ordinary Jacobian J defined by
Eq. (1.4).

Iy =J (2.9)

2. Time discrete systems Eq. (1.11) and periodically forced systems Eq. (1.12) have
a Jacobian J consisting of the difference of the fundamental matrix H and the
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unit matrix I
Jv=H -1 (2.10)
where the matrix H is obtained by Eq. (1.7) or Eq. (1.6).

3. The Jacobian Jy of autonomous systems is given by Eq. (2.3):

_(H-TI f
JN_< 0" o) (2.11)

where g, is the row vector g—g.

For convergence of Newton’s method a suitable initial guess is necessary which may
be obtained by application of the other methods.

2.2.3 Monte-Carlo search and evolutionary search

Besides Newton’s method as the standard solver for nonlinear equations a Monte-
Carlo search in a certain region of the state space is offered. This region may be deter-
mined by the user as a parallelepiped around a chosen initial point as its center.

The evolutionary search is a derivative of the Monte-Carlo method towards modeling
the Darwinian evolution [37, 40]. At each step, s points y', .., y* € R™ exist (the
parent generation), from them r further points y**1, ..., y**7 (the child generation) are
created randomly with respect to probability distributions which are centered at the
points of the parent generation. Thus, the child generation represents a “mutation”
of the parent generation. Among all points the best s points (with respect to a certain
objective functional) are chosen for “selection” which in turn constitute the parent
generation of the next step.

In CANDYS/ QA we use the simplest version where s = r = 1 and where the selection
is made according to the objective functional || F(y)|| — min, thus the parent y tends
to a solution of F(y) = 0. If during 5 consecutive steps at least one improvement
is achieved then the size of the parallelepiped will be reduced, otherwise it will be
enlarged.

Both methods possess the advantage that they act globally: they find a solution within
a given (possibly large) rectangle. On the other hand, they converge (compared with
Newton’s method) very slowly in the vicinity of a solution. This means, that both
methods should be used for the approximative localization of a solution only. Then
this approximation should be improved by other methods.

2.24 Homotopy method

The homotopy approach starts with a simple equations system F(y) that is especially
chosen to have an obvious solution F(y°) = 0. Then we introduce a new nonlinear
equations system h(y,7) with an additional parameter 7 which on one hand yields
the simple system F(y) at 7 = 0, while on the other hand it yields the original system
F(y) at 7 = 1. If we follow the path y(7) starting from y" at 7 = 0, then it reaches at
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7 = 1 asolution of the original system. Several possibilities exist to define h(y, 7) with
the properties mentioned above. The standard embedding with a Newton homotopy
is implemented where F(y) = y — y%

h(y,7)=(1—-7) (y—y")+7- F(y)
(For an introduction c.f. [2, 13].)

The homotopy method may fail if the starting point 3 is chosen inappropriately: the
path y(7) may not reach the value 7 = 1 but may tend to infinite values of y while 7
varies within the interval (0, 1).

2.2.5 Simulation

The method mostly used to find a suitable initial guess for Newton’s method is of
course the simulation of the trajectories. Contrarily to all other procedures which are
independent of the stability of the invariant sets, simulation leads only to the approx-
imation of stable invariant sets.

2.3 Parameter dependent solution curves

The location and the stability of a steady-state or a cycle vary in dependence on char-
acteristic model parameters. For this reason the calculation of the chosen invariant set
is only the first step in the software system CANDYS/QA. The next step is the study
of the invariant set found previously if a single model parameter p; is varied in some
interval. An analogue situation holds if a special point has been computed when pa-
rameters pi, ..., pr (k > 0) are variable and if the dependence of this special point
on an additionally varied parameter pj; is of interest. Thus, we consider Eq. (2.8)
where the variables and equations have a more general meaning: Fi(y) (i =1,...,m)
denote all functions and y; (j = 1, ..., m) denote all variables that constitute a specific
nonlinear equations system.

According to the Implicit function theorem the solution of the m-dimensional nonlin-
ear equations system (2.8) in dependence on the parameter pj; describes a curve B
in R™*!. For convenience, we define z; = y; for i=1,...,m, and 2z 1= Prri-
The system (2.8) reads now

F(z)=0 (2.12)

and defines implicitly the curve B. It is calculated step by step solving Eq. (2.12) by
means of special computational methods, called continuation or path-following tech-
niques (for an introduction to continuation c.f. [2, 45]).

In principle, two different concepts are known to compute the continuation of the
curve B under the supposition that one or several points of the curve are already
known. One way is the use of a simplicial algorithm where the state space is divided
into simplices and where a chain of simplices is computed which contains the curve
(c.f. [13, 15, 2]). The other concept is that of a predictor-corrector procedure [25, 1,
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13, 45], which consists of two stages. The first one, the predictor, provides a suitable
estimate for the next point lying near the curve, whereas the corrector calculates the
exact point on B.

In CANDYS/ QA the predictor is implemented on two levels. We assume that the curve
B is parameterized by the arc length s. Then the first level applies simply a linear step
in the direction of the tangent unit vector (%)

d
2pred = 20 4 5 22 (2.13)
ds

20

where 2 is the point computed last and o denotes the demanded step size [1]. The dis-
advantage of the linear approximation is that the distance between B and the predictor
increases too fast. Therefore, higher order predictors have been proposed [15, 41]. We
use as second level a higher order correction of the linear predictor. A cubic approxi-
mation is obtained by the extrapolation of a Hermite interpolation polynomial which
contains the last two calculated points and which is tangent to B in these points (a
similar approach was used in [35]). Let z2(~1) be the point on the curve before 2° and
define oo = ||2° — z(_l)H, a=2,f=a+1l,v=(28+1)a,and § = af. Then

_)> (2.14)

is the cubic predictor. It uses only information already known, i.e. there is no need for
further function calls.

dz

; dz
zcublc — ZO we haiad
o (6 ds 0 + ds

7.0 -1 dz
_ 1,0 _ P (e
; Uo(z 277) + (ds

The higher order predictors cause difficulties if the curvature of the curve is strong,
since the predictor begins to “oscillate” around the curve B. Thus, the higher order
correction is not applied if the proposed predictor point lies beyond the point of in-
flection of the cubic polynomial. This way, the “oscillations” of the predictor due to
the cubic approximation are avoided.

The corrector step is implemented in the usual way, i.e. a plane is defined which is
supported at the predictor point and which is orthogonal to the curve, i.e. the plane
defined by F(z) — F(2zP"*?) = 0[1, 23]. Now, the nonlinear equations system is solved
by Newton’s method under the condition that the solution has to belong to this plane:

F(z)=0
=0.

zp'r-ed)T ’ (Z - zpred) (2.15)

( dz
ds
The required Jacobian J¢ for the corrector is the original Jacobian Jy defined by

Egs. (2.9) - (2.11) according to the system family under investigation and enlarged
by one row and one column:

Iy J,
Jo = < éyV A > (2.16)
ds ds

oF
where J;, denotes 57-.

The step size control is based on the error of the predictor step. If the error is larger
than a certain upper threshold then the prediction step is repeated with decreasing
step size until the threshold is beaten or the step size becomes too small. On the other
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hand, if the error is smaller than a lower threshold then the predictor step is repeated
once with the doubled step size. In each case, the last step size is inherited to the next
step.

For each point on the curve B the Jacobian Jy contains the matrix g—’; as a subma-

trix. The eigenvalues of the latter can be evaluated and enable the monitoring of the
stability of the steady-states or cycles along the solution branch.

2.4 Special points

2.4.1 General scheme

In Sec. 1.2 we defined that a special point is a point in the state-parameter space where
locally different qualitative behavior occurs or that is characterized by a quantitative
feature. This means:

1. the point belongs to an invariant set;

2. the point has extra properties distinguishing it from other points.

For the numerical treatment this means that a special point is a solution of an equations
system that

1. includes the equations for the invariant set;

2. (a) has additional equations mimicking the equality conditions of the special
point,

(b) fulfills certain inequalities ensuring that the equations system is well posed.

A co-dimension-k bifurcation occurs, generically, in k-parameter space implying that
according to 2(a) k equations have to be established additionally. In practice, the extra
properties are often described by more equations what implies that as many auxiliary
variables are introduced (the number of auxiliary variables can be of the order of the
dimension of the state space or even a multiple thereof). An equations system for a
special point is called minimally extended if it contains exactly £ additional equations.

From the numerical point of view, the equations system should be minimally extended
to save memory size. On the other hand, the additional equations should be algorith-
mically simple to reduce computing time. In CANDYS/QA we made a compromise:
if auxiliary variables are used at all then their number depends on the complexity of
the special point in question but not on the dimension of the state space. For example,
the equations system for a turning point is minimally extended while that for a Hopf
bifurcation contains one auxiliary variable.

The scheme of the equations systems to be solved is as follows:

F(y,p)=0

—¢(y,p,c) =0 217)
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where F : R™ x R¥ — R™ describes the invariant set, ¢ : R™ x R* x R? — RF? are
the additional equations, and ¢ € R? is the vector of the auxiliary variables (i.e. ¢ = 0
in case of a minimally extended equations system).

Some or all, say [, components of the function ¢ are determined as part of the solution
of the linear equations system

(M(:BL,Tp, c) g) <Z> _ <(1’> , 2.18)

Herein, R, L € R™*! are certain fixed vectors or matrices with ! columns, and M €
R™*™ is a matrix depending on the derivatives ??_5 such that M is singular at the
special point. It is easy to see that the solution of Eq. (2.18) yields ¢ = 0 iff M is
singular, in this case u is an eigenvector to the zero-eigenvalue.

Equation (2.17) is solved by Newton’s method, i.e. we need the derivatives of ¢. Sup-
pose for simplicity I = 1, let (v, ¢) denote the solution of the adjoint linear equations
system

') (g1 ) =00

and let a denote any of the components of y, p, or ¢. Then the well known re-
lation 247! = —A7' (2 A) A7! for any regular matrix A implies in the case

M R
a- (1),

This means that
1. Eq. (2.18) has to be solved yielding both ¢ for the left hand side of Eq. (2.17) and
u;

2. the adjoint linear equations system has to solved yielding v (this is done utilizing
the same LU-decomposition);

3. vT%Mu has to be calculated for all components of y, p c.

One problem is left open: how to determine appropriate vectors or matrices R and L?

First of all, the choice of R and L has to ensure that <M

T O) is nonsingular at the
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special point, especially

rank(M, R) = rank(MT,L) =m (2.19)

must hold. On the other hand, if rank M = m —1 at the special point then any matrices
R, L € R™*! that satisfy condition (2.19) yield a nonsingular extended matrix. Almost
all matrices satisfy the condition (2.19), especially one could set L and R equal to
the right and left eigenvectors to the zero-eigenvalue of M, respectively. Since these
vectors are not known before the special point is determined we use an approximation:
M is LU-decomposed at the starting point (z, p), if the decomposition is possible
then the eigenvector u to the smallest eigenvalue is computed by standard methods.
Otherwise, the nontrivial solutions of the right and left homogeneous linear equations
systems are used.

Many authors use a scheme of explicitly extended equations systems, e.g.

F(y,p)=0
M(y,p,c)u=0 (2.20)

w'u—1=0

where u € R™ belongs to the unknowns 3 (cf. [32, 42, 18, 39]). This way, the solution
of the linear equations system (2.18) is avoided. But in the course of Newton’s method
the Jacobian of Eq. (2.20) has to be decomposed what needs about C(2m)? operations.
In our approach in each Newton step one decomposition of the matrix in Eq. (2.18)
and one decomposition of the Jacobian of Eq. (2.17) is performed what together needs
only about 2Cm? operations (with the same constant C).

2.4.2 Extended equations systems

In the following, we will describe the extended equations systems implemented in
CANDYS/QA. It should become clear that the equality conditions are satisfied while
nothing is said about the regularity conditions. Similarly to the previous sections and
chapters, we denote by F(y, p) the right hand side of the equations of a general in-
variant set but by f(z, p) the right hand side of the dynamics. In the first case, m
denotes the dimension of y. Similarly, Jx and Jy, denote the Jacobians of one of the
equations Egs. (1.10) — (1.12), (2.2) with respect to y or p, respectively, while J and J,
denote the Jacobians defined in Eq. (1.4)

Turning points

The essential condition is that Jy has rank m — 1. Thus, we establish the linear equa-
tions system (2.18) in the form

@ 1))

Since there are no other equality conditions and no auxiliary variables, a minimally
extended equations system results.

3In the case of a complicated bifurcation the vector u of auxiliary variables can be much larger.
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Because of rank(Jy, Jnp) = m one could set R = Jy, (CANDYS/QA does not). With
this setting the method is essentially the same as those described in [36] or [18].

Simple bifurcations
The extended equations system has to cover two problems:

1. itis a co-dimension-2 bifurcation that occurs in 1-parameter space;

2. the equality conditions are rank Jy = rank(Jy, Jyp) =m — 1.

The first problem is solved by introducing an artificial parameter «, the so-called im-
Eerfection parameter, and a fixed vector z such that rank(Jy, Jnp, 2) = m and setting
F(y,p,a) = F(y,p) + az. Thus, there are m + 2 variables totally.

We can split the second problem. rank(Jy) = m — 1 means that one component of ¢,
say (1, is to be computed as in the case of the turning point. Next, rank(Jy, Jyp) =
m — 1 means that Jy, depends linearly on the columns of Jy: Jy, = Jyup, i.e.itisa

solution of
JN R U2\ JNp
(@ 0) ()= (%) e2)

such that 9 = 0. This means, p2(y, p) = 0 gives the second additional equation. Since
the equations system has been extended by only 2 equations, a minimally extended
equations system results. It should be emphasized that Eq .(2.22) is solved utilizing
the same LU-decomposition as for Eq. (2.21)

The right hand side of Eq. (2.22) depends on the derivative of F(y, p) to a specific pa-
rameter p. This reflects the fact that a simple bifurcation is not invariant with respect
to transformations in parameter space.

Period doublings

The equality condition demands that H has the eigenvalue —1.ie. Jy +2I = H + I
has the eigenvalue 0. Thus, we can simply set M = Jy+21, and a minimally extended
equations system results.

Hopf bifurcations

At a Hopf bifurcation point with the eigenvalues +iw the matrix M (z, p,c) = J?+cI
(where ¢ = w?) has the double eigenvalue 0. If w = u + iv is an eigenvector of J to iw
then u and Ju span the eigenspace of M to the zero-eigenvalue. Thus, we pose the
linear equations in the form

J2+¢I R JR u 0
L 0 0 o1l =1(0]. (2.23)
L'y 0 0 ©2 1
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Other equations are not needed. But since the variable ¢ is introduced and ¢ has
two components, this does not lead to a minimally extended equations system. (In
[49] a minimally extended equations system is proposed but there Eq. (2.23) has to be
replaced by a nonlinear equations system.)

Suppose that a solution with ¢; = @3 = 0 has been found. Then z = i\/cu + Ju is an
eigenvector to the eigenvalue i+/c since J?u = —cu and

Jz = iv/eJu — cu = iv/e(Ju + iv/eu) = iy/cz.

In the case ¢ > 0 the imaginary parts of the critical eigenvalues of J are given by
w = £4/c while Ju and +iwu are the real and imaginary parts, respectively, of the
eigenvectors.

If ¢ is negative the solution is sometimes called an imaginary Hopf bifurcation since
now w = £4/c is imaginary (c.f. [49]). In the case of path-following a Hopf bifurcation
(i.e. ¢ > 0) the sign of ¢ can change (¢ = 0 corresponds to a Takens-Bogdanov point)
and the path continues as a curve of imaginary Hopf bifurcations. Although the latter
does not have a meaning for the qualitative analysis the path is followed since the
possibility exists that the sign of ¢ changes once more yielding another branch of Hopf
bifurcations that might be over-seen otherwise.

Torus bifurcations

The equality condition that a pair of conjugate complex eigenvalues of H belong to
the unit circle is transformed to the condition that a related matrix has eigenvalues on
the imaginary axis. The transformation

z

z+2

of the complex plane maps the circle |z + 1| = 1 to the imaginary axis where the
interior of this circle is mapped to the left half plane (recall that the matrix Jy used
in Newton’s method has the critical eigenvalues on this circle). This means, Jy (Jy +
2I)~! has eigenvalues on the imaginary axis and Eq. (2.23) could be applied to this
matrix. This form, however, is not yet appropriate since a new inverse matrix occurs.
This can be overcome as follows:

0 = [(Jn+2I)72J% +w’Iu
= (Jy+2D)7?[(1+wH T+ 40*(In + D]u
= (1+w)(In+2D) 72T +2¢(In + Du

with ¢ = % ; ¢ is the new unknown replacing w. Since the factors in front of the

brackets cannot vanish, the equation reduces to
[J3 4 2¢(Jy + I)]u = 0.
and Eq. (2.17) becomes

J3+2c(Jy+I) R JyR u 0
rr 0 0 o1l =1(0]. (2.24)
LTJn 0 0 2 1
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If ¢ € (—2,0) then a torus bifurcation is found with the critical eigenvalues e**, w =

arccos(l 4+ ¢). If ¢ < =2 or ¢ > 0 then the point is an imaginary torus bifurcation.
The path-following of imaginary torus bifurcation is done for the same reasons as it is
done for imaginary Hopf bifurcations.

Takens-Bogdanov points and generalizations

A Takens-Bogdanov point is a co-dimension-2 bifurcation, i.e. we need two additional
equations. Since rank Jy = m — 1, the first component, ¢y, is given by Eq. (2.21).
The next equality condition is the existence of a further zero eigenvalue but no further
eigenvector. Instead a vector uy exists such that Muy = u; where w; is the eigenvec-
tor, i.e. where wu; belongs to the solution of Eq. (2.21). Hence, the second additional
equation is o = 0 with ¢ given by

0 ()= ()

The idea can easily be generalized: if 0 is to be an eigenvalue of algebraic multiplicity
s and geometrical multiplicity 1 then we solve

Jn R\ (w1 [
<LT 0) (sorﬂ)‘(sor) (2.25)

forr=1,...,s—1,and <Zl> given by Eq. (2.21) as usually. This equations system is
1
essentially the same as the one proposed in [17].

Another generalization concerns the value of the critical eigenvalue. If in Eq. (2.25)
the matrix M = Jy is replaced by the matrix corresponding to a period doubling, a
Hopf bifurcation, or a torus bifurcation then a point is computed with eigenvalue —1,
+iw, or e, respectively, that has algebraic multiplicity s but geometrical multiplicity
1. In the case of turning points and period doublings minimally extended equations
systems result for co-dimension-s bifurcations, while in the case of Hopf and torus
bifurcations the extended equations systems are not minimally extended and concern
co-dimension-(2s — 1) problems (2s additional equations but one auxiliary variable, c).

Cusp points and generalizations

The cusp point is a turning point where also a higher derivative of F vanishes. Thus,
one additional equation is ¢;(y, p) = 0 where ¢, is given by Eq. (2.21). Next, if the
dynamical system is transformed to normal form then on the 1-dimensional center

manifold holds: % = 0. The transformation to the center manifold is given (to the
order O(||y — y*||)) by the projection in direction of the eigenvector u onto the plane
orthogonal to the adjoint eigenvector v. In the original coordinate system the condi-

tion becomes:

oJ
o2y, p) =" <8—;VU> u=0. (2.26)
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The idea can be generalized to degeneration of other bifurcations: to period doublings,
Hopf bifurcations, torus bifurcations, or even the cusp bifurcations. But now the de-
generacy condition includes the third derivative of f(x), and the projection on the
center manifold depends also on the third derivative. This implies that in original
coordinates the additional equation is much more complicated, e.g.

2
o = 30T <86L;Vu> (Jn) 7! <38L:;\7u> u—ov’ <8ayJéV uu> u=0 (2.27)

in case of the period doubling. Essentially the same expression yields the equation for
a degenerate cusp point: one has simply to replace (Jy)~! by the inverse of the matrix
of Eq. (2.21). Because of their complexity, equations systems for degenerate Hopf and
torus bifurcations have not yet been implemented.

In the case of a turning point (or a cusp point), the expression in Eq. (2.26) (or in the
adapted version of Eq. (2.27)) can be very easily obtained: it is the scalar product of
a row of the Jacobian computed during Newton’s method with the vector u. On the

other hand, in the case of a period doubling only (%L;V u) is known while (Jy) ™! and

9?Jn
oy?

uu have to be computed additionally.

In all cases, the value of ¢, can be understood as the degree of non-degeneracy of
the special point: o = 0 means a degenerate special point and the larger |p| is the
more non-degenerate is the point. Moreover, in the case of a period doubling the sign
of ¢y determines the stability of the branching off solutions of doubled period: these
solutions are stable iff (v7u)"1py > 0.4

Constant rotation

The equations system is simply Eq. (2.17) with the function ¢ given by Eq. (2.24) where
c is no longer a variable, instead its fixed value is used. This way, a minimally ex-
tended equations system results.

Other special points

The additional equation for constant quantities is simply given by
p=Q(z,p) —Qo=0
(similarly for constant return time).

In the case of an extreme quantity the method of Lagrange multipliers, i.e. the zero
condition for derivatives of F(z,p) = Q(z, p) + v’ f(z, p), yields the equality condi-

tion
J J
(vT7 1) (3Q é) = (OT7O)

ox  Op

i.e. the matrix is singular. Thus, we set M to this matrix in Eq. (2.17).

“the factor (v” u) ™! ensures that the sign of that expression does not depend on the arbitrarily chosen

auxiliary vectors R and L.
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Combinations of special points

Special points can be combined, e.g. to a point that is simultaneously a turning point
and a Hopf bifurcation. The corresponding extended equations system is constructed
simply as the union of the extended equations systems of the special points to be
combined.

2.4.3 Branching-off curves

At special points often two or more curves of invariant sets (or of special points of
lower co-dimension) meet. These can be invariant sets of the same kinds as in the case
of a simple bifurcation, or of different kinds as in the case of a Hopf bifurcation. If
the special point is obtained in the course of path-following then one curve is already
known. The task is then to compute also the other ones, the so-called branching off
curves. One point of them is, of course, the special point, thus, the tangent of the
branching off curves has to determined. Then the predictor-corrector method can be
applied.

The tangent depends often on the eigenvector(s) v (and up, . . .) of the matrix M (c.f.
Sec. 2.4.2 for its definition) and, sometimes, on higher derivatives of F(y). Both en-
tities are known as a side-effect of the computation of the special point by Newton’s
method. It has to be remarked that the current version of CANDYS/QA does not yet
determine all tangents at the co-dimension-2 bifurcations described in Sec. 1.4.3. °

In the following, we list the formulae for the tangents as they are implemented in
CANDYS/QA. In some formulae we split the tangent vector ¢ into several subvectors,

e.g. ( é) is its splitting into the parts corresponding to state variables and parame-

ters.

Simple bifurcations
The tangents of both curves belong to the plane spanned by the vectors <161> and
uz '\ .
12 _ uy U
t _n1,2<0>+<_1>5

1,2 are solutions of the quadratic equation

an® +2Bn+~=0

The most important examples of missing tangents are those to the branching off torus bifurcations at
a point where a Hopf bifurcation is combined with a turning point or another Hopf bifurcation.
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with
0’F (
T
« =
d(y,p)?
5 = of O*F <
(y,p)?
0’F <
T
= v
! d(y,p)?
Period doublings

The tangent of the curve of the doubled period is simply <ttz>

35

<1(;> . The tangent

of the simple period is obtained by the standard formula

(JN J”Np) (

Hopf bifurcations

te
The tangent of the curve of the cycles is (

b

The coefficients n and 6 are determined such a
tangent space of the Poincaré surface g(z, p) =

tr

)-o

)-(

way that the tangent ¢, belongs to the
0: ngzu + 0gzJu = 0.

U
0

) where © = nu + 6Jyu.

The tangent of the steady-state curve is obtained by the standard formula

ty

o (;

)

Combination of special points

If s different special points are combined then
possible subcombinations of s — 1 special point:

[OF  oF
oy op
Op1  Opi
oy op
Ops Ops
oy op

=0.

there are s curves corresponding to all
s. The LU-decomposition of the matrix
aF

dc
91
dc

is known as a result of Newton’s method for the s-fold combination. Thus, the equa-

tions systems

[OF OF  OF\
oy op Jc
9p1 dp1 Op1

y Op c
Ops s Ops
oy op de

(2.28)
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yield the tangents. The 1 in the right hand side occurs in the line of the derivatives
of the function ¢, to be excluded from the full combination. In the case that a Hopf
or torus bifurcation is to be excluded (i.e. ¢, consists of two functions), the right hand
side of Eq. (2.28) is a bit more complicated ensuring that the component of the tangent
into the direction of the corresponding auxiliary variable becomes zero.

Takens-Bogdanov points and generalizations

At a generalized Takens-Bogdanov point where the zero eigenvalue has algebraic mul-
tiplicity s the tangents of the following curves are determined:

e turning points with the zero-eigenvalue of multiplicity s — 1;

e Hopf bifurcations of multiplicity |5 |, they are combined with a turning point if
s is odd.

The formulae for these tangents are very similar to Eq. (2.28) with the exception that
the tangent of the curve of Hopf bifurcations has to be extended by a component for
the auxiliary variable.

2.4.4 Detection of special points

All bifurcation points are characterized by a special configuration of the eigenvalues
of Jy. Thus, the easiest way to find out sudden changes in the qualitative behavior is
the monitoring of the eigenvalues. But this is not unique in some cases and, therefore,
it is necessary to define criteria allowing an exact distinction between all special points
considered.

Additionally, if the special point is accompanied with the singularity of the Jacobian
matrix J¢ then this, firstly, may lead to a failure of Newton’s method during path-
following near the special point, or secondly, may cause the computed path to leave
the current solution branch and to switch to a branching off one without changing the
constellation of the eigenvalues. (In spite of Keller’s theorem 4.4 [25] this situation
may occur because the assumption of this theorem cannot always be guaranteed in
practical problems.) To avoid these difficulties, it is necessary to detect such points
already before reaching them.

All checks yield inaccurate results if the step size on the curve is too large, such that
more than one real eigenvalue or one pair of complex eigenvalues crosses the imagi-
nary axis or the unit circle.

Turning points and simple bifurcations

Both, turning and simple bifurcation points are characterized by the fact that one real
eigenvalue passes 0. Therefore, a careful distinction is necessary and the check criteria
should be explained together. As a test function the change of the Poincaré index I is
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used. Here I is defined as the product of the signs of all real parts of the eigenvalues
of Jy [13, 19]:

I= H sign(RN;).

To distinguish turning and bifurcation points in a unique manner several additional
checks are necessary. Turning points are always connected with a change of the direc-
tion of the parameter variation. This means that the derivative of the parameter with
respect to the arc length changes its sign if a turning point is passed:

op1
0s

op

. < 0.
before TP 95

after TP

In the case of a pitchfork bifurcation a change in the direction of the parameter is pos-
sible (namely, if one moves along the outer branches) but then this is not accompanied
with a change of 1.

Additionally, in the case of a turning point the enlarged Jacobian J¢ is not singular
in contrast to the case of a simple bifurcation point. This feature can be used for a
distinction between these two cases, too.

The checks mentioned above suppose that the special point has already been passed
during the path-following. To check the approach of a simple bifurcation point (i.e. of
a singularity of the Jacobian J¢) before passing it, not the zero of the determinant is
considered but the logarithm of the derivative of the determinant with respect to the
arc length s. Approaching the simple bifurcation point this derivative tends to infinity
and some threshold is used to indicate this divergence. This check criterion has the
advantage, that it is independent of the scale of the variables. If s5;; denotes the length
of the arc between the current point and the simple bifurcation point then

1

dis log |det Jo| = — +O(1) (2.29)

bi

holds, the proof of this equation will appear elsewhere. Additionally, it can be used to
estimate a step size to get a good initial guess for the computation of the special point
itself. If the step size on the solution branch is large as in the case of a small curvature
of the branch, then the criterion does not help, since the divergence of the logarithm of
the derivative of the determinant may be not sufficiently large to reach some threshold.
In that case the check is focussed on the change of the index I accompanied with no
change in the direction of the parameter variation.

Table 2.1 summaries the check criteria for turning and simple bifurcation points and
only the combination of all ensures a unique distinction. Note, that the first three cri-
teria give results if the special point has been already passed, but the last one indicates
the approach to a simple bifurcation point.

Hopf bifurcations

During the path-following there are two possibilities to approach a Hopf bifurcation
point: Following a branch of steady-states the Hopf bifurcation is indicated by the fact



38 Chapter 2. Numerical Procedures
change of index I | change of direction derivative of
of parameter )\, | log|det| >threshold
turning point yes yes no
simple bifurcation yes no no
simple bifurcation no yes no
simple bifurcation no no yes

Table 2.1: Check criteria for turning and simple bifurcation points.

that two complex eigenvalues of the matrix Jy cross the imaginary axis, and this can
be used as the unique check criterion.

Following a branch of cycles, the periodic motion vanishes at the Hopf bifurcation
point and two branches of steady-states (a stable and an unstable one) arise. To check
the approach to a Hopf bifurcation point we monitor the derivative of the logarithm
of the norm of f with respect to the arc length s. Analogously to Eq. (2.29) the estimate

1

SHopf

1og I (2, M)l = ——— +0(1) (2:30)

holds where sg,, is the arc length between the current and the Hopf bifurcation
point. This way we detect that a point of zero of f(x), i.e. a stationary solution, is
approached.

Torus bifurcations

Two complex eigenvalues of H pass the unit circle (i.e. two eigenvalues of Jy pass
the shifted unit circle |z + 1|), which can be used as a suitable check criterion [24].

Since CANDYS/QA does not compute tori, the counterpart, i.e. approaching the torus
bifurcation point from a curve of tori, is out of concern.

Period doublings

The check is based on the fact, that one real eigenvalue of the fundamental matrix H
passes the unit circle at —1. Introducing an index I, by

Iper = Hsign(?ﬁz\i +1)

2

then this index I,,., changes its sign at a period doubling point.

Following the branch of the doubled period length the period doubling point appears
as a pitchfork bifurcation of this branch. In that case the period doubling is detected
and computed as a simple bifurcation point, and then the computed point is checked
for being a cycle point of half period. Moreover, two branches of this pitchfork have
to be identified as branches of the simple period.
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Takens-Bogdanov points and generalizations

Takens-Bogdanov points can be detected by monitoring of the eigenvalues of Jy. We
have to distinguish, whether the Takens-Bogdanov point is approached from a curve
of turning points or from a curve of Hopf bifurcations. In the first case one eigenvalue
is always equal 1 and is excluded from the monitoring. Thus, a Takens-Bogdanov
point is found if one of the remaining real eigenvalues passes through 0. In the second
case one could monitor the eigenvalues on the imaginary axis. But this prevents the
detection of a Takens-Bogdanov point on a curve of imaginary Hopf bifurcations (here,
two real eigenvalues would have to be monitored). Thus, we use another criterion: the
value of the auxiliary variable c. Its crossing through 0 signals that a Takens-Bogdanov
point has been passed.

It should be clear, that the same ideas are applicable in the case of the generalizations
of the Takens-Bogdanov points mentioned in Sec. 1.4.3.

Cusp points and generalizations

A cusp points is detected by monitoring the value of

0*F
T
v 8—y2uu
i.e. the value to be zero at the cusp point (c.f. Eq. (2.26)). Similarly, a degenerate period
doubling is found by monitoring the expression in Eq. (2.27).

Extrema and fixed values of quantities

The quantities themselves are monitored. An interesting fixed value is detected when
the quantity passes it, while an extremum is detected when for three consecutive curve
points the quantity values form a down-up or up-down pattern.
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Chapter 3

Graph Representation of the
Solutions

3.1 k-parameter graphs

In this chapter we study bifurcation diagrams from another point of view. Given
one chosen varying parameter, say p;, and the values for the fixed parameters, then
the set of all steady-states and/or cycles of the system constitutes an undirected, not
necessarily connected graph: the special points represent the nodes and the interme-
diate solutions belong to the edges. The steady-states and/or cycles calculated by
CANDYS/QA constitute a subgraph. We call it a 1-parameter graph. Besides special
points, a further type of nodes appears: the temporary endpoints where the com-
putation was started or stopped. The temporary endpoints are characterized by the
property that they are the nodes in the graph which belong to only one edge. Since
the graph structure abstracts from concrete values of calculated points, it is a scheme
that assembles exactly the qualitative properties of the dynamical system in the sense
of Chap. 1.2. Figure 3.1 shows an adapted version of Fig. 1.1 with already computed
and not yet computed invariant sets and the corresponding 1-parameter graph.

In the case that several parameters py, ..., p; are varied, the branches of the special
points constitute an analogue graph but now cusps etc. are the nodes. A part of this
graph may be computed, and CANDYS/QA will store it in memory quite analogously.
This graph will be referred to as k-parameter graph. For completeness, CANDYS/QA
creates also 0-parameter graphs: the graph consisting only of the first computed point
is an example.

Although the graph structure is an abstract image of the qualitative properties of the
system, we label its nodes and edges by calculated values to use them for initializing
later computations. In particular, CANDYS/QA stores these graphs in memory with
the following information:

Nodes: The values of z and varied parameters py, ..., p; the kind of invariant set
(i.e. steady-state or cycle), in the case of a cycle also its period or return time
T; the kind of the point (i.e. type of special point or temporary endpoint); and
the stability (neglecting the eigenvalues that pass the imaginary axis or the unit

41
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Figure 3.1: 1-parameter graph:

Left: thick lines: calculated invariant sets, thin and thick lines: all invariant
sets;

Right: corresponding graph with E: temporary endpoints, T: turning points, H:
Hopf-bifurcations.

circle).

Edges: The kind of invariant set, in case of cycles the period, the kind of the points on
the arc, and the stability.

CANDYS/QA manages graphs by the following basic operations.

1. Creation of an empty graph. This operation occurs when the first point has been
computed (creation of the 0-parameter graph) and when a new parameter is
varied (i.e. creation of a (k + 1)-parameter graph on the basis of a k-parameter
graph). See also Sec. 3.3.

2. Creation of a new component of the graph consisting of exactly one node and
no edge. This operation occurs, in general, together with the creation of a graph.
See also Sec. 3.3.

3. Insertion of a node into one edge, i.e. the edge is split into two edges. This
operation occurs when a special point has been computed: the special point is
inserted into the current edge (i.e. the edge containing the current temporary
end point).

4. Appending a new edge with a new node to an existing node. This operation
occurs when the branches of a special point have been computed: as many new
edges are appended at the special node, and the new nodes are the temporary
endpoints on the branches.

5. Annihilation of two end nodes (i.e. nodes that belong to one edge only). This
operation occurs when during the computations the current point meets a pre-
viously computed point of the same arc (i.e. in the case that a part of the same
arc has already been obtained starting from the other end). In this case both
endpoints are annihilated and their edges are united to a single one.

The application of the operations 1, 3, and 4 only yields a tree. Some trees are obtained
if also operation 2 is used. Only the operation 5 can result in a loop within the graph,
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Figure 3.2: Bifurcation diagram
with two varied parameters.

The turning point curve crosses
the plane p» = pJ repeatedly
thereby inserting point 2 in the

Solid curves:  stable points,
dashed curves: unstable points,
dash-dotted curves: turning

points, circles: turning points,
filled dot: cusp point.

namely in the case that the two annihilated nodes belong to the same component. In
the case that the nodes belong to two different components then these components are
joint (without creating a loop).

3.2 The metagraph

The different k-parameter graphs are not independent of each other. Imagine the fol-
lowing situation (c.f. Fig. 3.2). During the path-following with one variable parameter
p1 and fixed parameter ps = pJ a turning point is found at pj. This point can be
used for path-following of turning points in the p;-ps-parameter space. Then the new
2-parameter graph is in some sense related to the 1-parameter graph: an arc of the
2-parameter graph contains the special point, i.e. a node, of the 1-parameter graph. It
can happen that the curve in p;-pe-parameter space turns and crosses once more the
value p when p; = pi*. Then this point is also a turning point in the 1-parameter
graph. If this turning point did not yet occur then it should be inserted into the graph
as a new node in a new component (since the node has no connections so far). The
relations between different graphs will be studied in more detail in Sec. 3.3.

CANDYS/QA maintains the relations between several graphs in form of a directed
metagraph: the nodes G are the common k-parameter graphs, and an edge from node
G to node G2 means that Gy is k-parameter graph, G is a (k + 1)-parameter graph,
in G are the same parameters varied (plus an additional one) as in G1, and the values
of fixed parameters of G are the same as in G; (with the exception of the additionally
varied parameter). In this case, we say that the (k + 1)-parameter graph originates
from the k-parameter graph.

The nodes and edges of the metagraph are labeled with the following information:

Nodes: The indices of the varied parameters and the values of the fixed parameters.
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G a Figure 3.3: A metagraph of bifurcation graphs. The
prb prps graph Gy at bottom level contains the first point (with

all parameters fixed) only. Then path-following start-
ing at this point was performed with respect to the
parameters p; and po, respectively, yielding graphs
@ @ G1 and Ga. Then special points in the graph G are

path-followed by variation of the parameter ps. The
graph G is created with links to graph G and to
graph G». Finally, the bifurcation graph with respect

@ to p1 has been analysed by path-following with re-
spect to the parameter ps.

Edges: The index of the additional varied parameter in G2 and the fixed value of this
parameter in Gy,

Figure 3.3 shows an example of a metagraph.

The graphs and the metagraph are used in the following manner. If the path-following
has stopped for some reason then the user has the possibility to traverse the graphs
jumping from node to node and jumping from graph to graph to look for an interest-
ing point for further investigation. The graph and metagraph structures are the appro-
priate book-keeping of the results obtained. Hence, it offers an easy switching from
branch to branch to complete the bifurcation diagrams. Among all known software
packages for the numerical treatment of qualitative properties only CANDYS/QA gen-
erates a graph structure corresponding to the paths already calculated.

3.3 Graph interactions

The contents of a k-parameter graph and that of a (k + 1)-parameter graph originating
from the former one are related to each other in the following manner: each special
point in the former graph corresponds to a point on a curve in the latter graph. The
program ensures that this theoretically given relation holds always in practice. This
means, that during the path-following in one graph in specific situations also a few
points or curves in another graph are computed. Moreover, these relations will be
established when a new graph is created. How this will be done is the topic of this
section.

In particular, we distinguish the following actions on the metagraph.

1. We consider the creation of a (k + 1)-parameter graph: the parameters py, ...,
pr+1 are varied and the remaining parameters pj o, ... are held fixed. The pro-
gram traverses all k-parameter graphs which possess the same fixed parameters
at the same values (at least one such graph exists). The new graph is linked to
these graphs within the metagraph. Moreover, for each special point in these
graphs a short curve (i.e. a component consisting of two nodes and one edge) is
inserted in the new graph.
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Figure 3.4: Bifurcation diagram
/ with two varied parameters.
A turning point curve crosses the
. plane p; = pY thereby inserting
2% MIEN £ point 2 in the corresponding

NP /o 1-parameter graph if it exists.
\. 7/ ' Solid curves: stable points,
~N. .~ ! .
~.L-—- ! dashed curves: unstable points,

dash-dotted curves: turning
points, circles: turning points,
filled dot: cusp point.

2. Special points are treated similarly when they occur during the path-following

in a k-parameter graph. In all (k + 1)-parameter graphs originating from the
actual graph a short curve of special points is inserted.

. Things are much more complicated when path-following is done in a (k¥ + 1)-
parameter graph. We suppose once more that the parameters py, ..., py41 are
varied and the remaining parameters pyo, ... are held fixed. Each k-parameter
graph from which our (k + 1)-parameter graph originates has the same variable
parameters with the exception of one, say p;. The fixed value p} of the excep-
tional parameter is known to our graph via the label of the link (c.f. Sec. 3.2).
After each step of the path-following it is checked whether the curve has passed
this value. If so then a special point at value p} is computed and is inserted into
the k-parameter graph. Moreover, short arcs of all branching-off curves are de-
termined and appended. Now, the new special point has to be treated in the
same manner as described above in case (2): in all (k + 1)-parameter graph (with
the exception of our graph where the curve already exists) short curves are in-
serted.

The procedure works in the case £ = 0 as well: one simply has to replace the
phrase “special point” by “steady-state” or “cycle”. This means, that the 0-
parameter graph is completed by additional “first” points.

The method of maintaining the relations between graphs has still one gap. We will
demonstrate it by examining the example of Fig. 3.3. Suppose that the basic graph
has been established at the parameter values p; = p? and py = pJ (for simplicity,
py = 0, pJ = 0). Furthermore, suppose that the graph G, (with p» = pj fixed, i.e.
the right plane) has a special point, say a turning point, at p; = pj and, analogously,
that graph G has a turning point at py = p3. Finally, suppose that in graph G 2 both
points are connected by a curve of turning points. Several orderings for the creation
of the graphs are possible. We consider the scenario that graph G is created first, then
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graph G, and graph G, last. The graph G is created on the basis of the turning
point in graph G, and at the creation time a short curve of turning points through the
point p1 = pj, p2 = pg is inserted (action 1). Now, it is possible to continue this curve
passing the value py = pJ. If graph G» already existed then a turning point would
be inserted (action 3). But this graph does not yet exist and nothing happens. If the
graph Gj is created sometimes later and its turning point is computed then a short
curve is inserted in graph G 2 at the place of the curve obtained before (action 2). The
continuation of this curve would lead back to the point p; = p}, p» = p9 and to the
replication of that special point in graph G'1. The procedure could be continued forth
and back to infinity.

CANDYS/QA avoids the gap the following way. When a (k + 1)-parameter graph
is created by making the parameter p;; variable then to all existing graphs (with the
same values of the fixed parameters py9, ... ) anew graph is created (if it does not yet
exist) that has the additionally varied parameter p; 1. Thereby all the operations de-
scribed above become active if necessary to maintain the relations between the graphs.
In the example this means, that the creation of graph G 2 stimulates the creation of
graph G». Thus, the relation between the graphs p, and p1, ps are always maintained.
This is demonstrated in Fig. 3.5.

(a) The first point S1 is computed when no parameter is varied.

(b) Parameter p; is varied: graph G is created and a short curve through S1 is in-
serted.

(c) Path-following in graph G| yields a special point, say the turning point T1, and
then the point S2 when the curve crosses p{ the second time.

(d) Turning point T1 becomes object of path-following with respect to parameters
p1 and po: graph G 2 is created and a short curve of turning points is inserted.
Now, the addional activity mentioned takes place. Together with G also the
graph G is created where parameter p is varied and short curves through S1
and S2 are inserted.

(e) Path-following of the turning point curve crosses the plane p; = p{: truning
point T2 and its two branches are inserted in graph Gs.

(f) Graph G is completed: the short curves are joint together. Turning point T2 is
not computed repeatedly since the path-following starting at the short curves
through S1 or S2 stops before T2 is reached.
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Figure 3.5: Relations between bifurcation graphs; for details see text.
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Chapter 4

Applications and Example

The software system CANDYS/QA has been widely tested with many different model
systems known from the theory of nonlinear dynamical systems (e.g. the Lorenz sys-
tem, the Duffing oscillator, the logistic map, the Feigenbaum map, and many others)
to assure the reliability of all algorithms. For testing all the algorithms which calculate
special points, specific models have been constructed.

Instead of presenting some test examples which reflect special difficulties of the nu-
merical treatment of nonlinear systems (e.g. homoclinic orbits, extremely stiff prob-
lems), we would like to demonstrate the facilities of CANDYS/QA by an example out
of the variety of cooperations with other scientists. The program system has been ap-
plied in many different disciplines of natural sciences. In most cases the dimension of
the model system is greater than 3 where the analytical computation of invariant sets
and their bifurcation phenomena is, in general, impossible. As examples we would
like to mention the study of the qualitative behavior of

e a modified Oregonator model of the Belousov-Zhabotinski reaction (Dim=3,
[28]);

e an ecological model for the interaction of nutrients and micro-organisms in a
river (Dim=7, Eidner et al. [10], [9]);

e a dynamo model for solar activity (Dim=7, [12]);

e a model for the dynamics of the photon-exciton interaction in a semiconductor-
optical device (Dim=5, [48]).

Since the last mentioned model shows a lot of different bifurcation phenomena,
we have chosen this model to illustrate the results which can be obtained by
CANDYS/QA. The model consists of the following 5 autonomous differential equa-
tions:

1 = =21 — 01215 + (915 + 92i23)T2r + (91r + g2rx3) T2 + 93(35%7« + fﬁ'%i)xli

i1; = —x1i + 171, — (91r + g2r23)Tor + (17 + g2izs) T2 — g3(2T, + x3;)71,

Tor = —(91i + 92iw3) 1y + (917 + g2rT3)T1; — O2T2 — 0322 + d (4.1)
T = —(91r + g2r®3)T1r — (910 + 92:73)T1; + 032, — T2T2;

T3 = —2032x3 + 94(33% + LIT%Z)
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Figure 4.1: Bifurcation diagram of the system Eq. (4.1)
left: steady state with two turning points and a subcritical Hopf bifurcation as well as
a turning point and the first period doubling of a cycle

right: period doubling cascade of the cycle, for clarity, only one branch is shown for

each cycle
where
(51 = 00, Jir = 05, g1 = 400, gor = 001, go2; = —2.0,
g3 = 50, g4+ = 50, oo = 100, 63 = 0.0, o3 = 1.0.

For the physical details c.f. [48]. From the physical point of view, the crucial bifurcation
parameter is d which acts as a constant driving force of the system. Figure 4.1 shows
a part of the bifurcation diagram in dependence on this parameter. From Eq. (4.1)
it is obvious that in the case d = 0.0 the trivial solution zg = --- = z4 = 0.0 is a
stable stationary point of the system. This point should be used as an initial point
for our study. Continuing this steady-state in dependence on d it loses its stability at
d' = 31.39 which corresponds to a turning point. The unstable steady-state becomes
again stable at a further turning point at d* = 28.04. At d* = 37.10 a Hopf bifurcation
occurs. The steady-state loses its stability and a periodic solution arises. But this cycle
is not stable, it is born through a subcritical Hopf bifurcation. The path-following of
this unstable cycle with respect to d leads to a turning point at d* = 29.41 where the
stability of the cycle changes. With further increase of d a period doubling cascade
is obtained which ends up in a chaotic behavior of the system. All occurring special
points are given in Table 4.1.

To demonstrate the computation of curves of bifurcation points in the two-parameter
space we continued the turning points, the Hopf bifurcation, and the first period dou-
bling with respect to 0. Figure 4.2 shows the results in the d-o2-space, the bifurcation
points are listed in Table 4.2. The bifurcation diagram in Fig. 4.1 corresponds to a
horizontal straight line in the parameter space at oo = 10. The path-following of the
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Type Invariant set d

Turning point steady-state | 31.388010
Turning point steady-state | 28.038182
Hopf bifurcation steady-state | 37.104448
Turning point cycle 29.406514
Period doubling T' — 2T cycle 33.367806
Period doubling 27" — 4T | cycle 34.495087
Period doubling 47" — 81" | cycle 34.732739
Period doubling 87" — 167" | cycle 34.784376

Table 4.1: Special points of the system Eq. (4.1) for one varied parameter, d.

Tyvpe Invariant set oo d
Type Invariant set P d
Takens-Bogdanov point steady-state | -6.0976511 | 22.457493
Takens-Bogdanov point steady-state | -0.0003434 | 1.3990241
Takens-Bogdanov point steady-state | -0.10405281 | 6.0487320
Cusp point steady-state | 18.740908 | 32.345606
Cusp point steady-state | -22.108210 | 30.653020
Cusp point steady-state | -0.0278109 | 2.0691930
Turning + Hopf bif. steady-state | -1.7663408 | 30.726784
Turning + Hopf bif. steady-state | -2.3593780 | 30.704463
Turning + Hopf bif. steady-state | 4.1475056 | 20.877494
Turning + imag. Hop bif. | steady-state | -3.0808319 | 17.528581
Hopf bif. + Hopf bif. steady-state | -4.0826534 | 24.588115
Takens-Bogdanov point cycle -0.00539035 | 1.0290856
Cusp point cycle -3.0006375 | 3.4734214
Turning + period doubling | cycle 0.39834749 | 2.4759549
Turning + period doubling | cycle -0.47640402 | 0.26807277
Turning + torus bif. cycle -2.8980994 | 3.5785710
Turning + torus bif. cycle -2.5045339 | 10.063238
Turning + torus bif. cycle -2.5570243 | 4.9371809

Table 4.2: Special points of the system Eq. (4.1) for two varied parameters, o2 and d.

curves started at this straight line. Then the curves undergo many bifurcations, new
curves are born, and some curves meet forming a loop in the bifurcation graph.
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Figure 4.2: Curves of bifurcation points of the system Eq. (4.1).



Part 11

Users’ Manual

This part describes how to use the program system CANDYS/QA. This includes:

program installation

preparation of the right hand sides etc. of the model

user input

e program output

use of graphics systems

There is also a detailed example that demonstrates input and output.

For a first reading, focus on the Secs. 7 and 8 where the preparation of the model and
the program interactions, respectively, are described.
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Chapter 5

About the Program

5.1 License and warranty

Use and copying of this software and the preparation of derivative works based on
this software are permitted, so long as the following conditions are met:

e The copyright notice at the beginning of each file and this entire notice are in-
cluded intact and prominently carried on all copies and supporting documenta-
tion.

e No fees or compensation are charged for use, copies, or access to this software.
You may charge a nominal distribution fee for the physical act of transferring a
copy, but you may not charge for the program itself.

o If you modify this software, you must make the modified file(s) to carry promi-
nent notices (a Change Log) describing the changes, its author, and the date of
the changes.

e The source code, except header files and those explicitly granting permission,
may not be used in commercial software without consent of the author.

e Any publication of scientific results obtained by this software must cite it appro-
priately.

This software is made available as is, and is distributed without warranty of any kind,
either expressed or implied. The author does not accept responsibility to anyone for
the consequences of using it or for whether it serves any particular purpose or works
at all. No warranty is made about the software or its performance. In no event will the
author or his institutions be liable to you for damages, including lost profits, lost many,
or other special, incidental or consequential damages arising out of or in connection
with the use or inability to use (including but not limited to loss of data or losses
sustained by third parties or a failure of the program to operate as documented) the
program, even if you have been advised of the possibility of such damages, or for
any claim by any other party, whether in an action of contract, negligence, or other
tortuous action.

The author’s current address is
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Wolfgang Jansen

Universitdt Potsdam

Fachbereich Physik

Am Neuen Palais, Haus 19 (Physik)
D-14415 Potsdam

e-mail: wjansen@agnld.uni-potsdam.de
internet: http:/ /www.agnld.uni-potsdam.de/ wolfgang/wolfgang.html

Copyright ©1995. All rights reserved.

5.2 Features of implementation

CANDYS/QA is based on the following features of implementation:

The program is restricted to the facilities mentioned in Part I. In particular, there
are no procedures for computing Lyapunov exponents and fractal dimensions
which are characteristics of chaotic systems. The restriction to the three sys-
tem families described in Sec. 1.1. has been inspired by the applications of
CANDYS/QA. But due to the strict modularity of the program it is not difficult
to include other system families (only the procedures generating the appropriate
algebraic equations have to be modified).

The only programming activity of the user is the preparation of a module de-
scribing the dynamics of the system. To overcome the programming efforts
caused by the restrictive format of this module, it is possible to obtain it by
MATHEMATICA® in a much more user friendly way.

The number of the model’s state variables and parameters is not bounded.

The numerical procedures involving matrices (e.g. solving linear equation sys-
tems or computing eigen values) treat dense matrices only. The reason is that
those matrices occur naturally during the computation of cycles of differential
equations, i.e. they cannot be avoided.

In numerical procedures real numbers are always coded as double while inte-
ger numbers (e.g. loop counters) are coded as int with the exception of the use
of long local to one single module. The graphical interface uses f1loat for the
representation of real numbers.

The program is fully interactive in its use, i.e. the user is prompted for all control-
ling information such as the choice of a solution branch for continuation or the
numerical control parameters (e.g. integration accuracy), where always a default
value is offered.

The program produces graphical output if certain technical prerequisites (hard-
ware and software) are given. First, there is a graphics module coming with
CANDYS/QA that works if JAVA is available (c.f. Sec. 11.2.1). Second, other
graphics systems can be used (c.f. Secs. 11.2.2 and 11.3.1).
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e The program system is accompanied with a version number composed of four
entries:

1. a general version number;

2. the version of the algorithms implemented;

3. the version of the structure of the restart files;
4. the version of the structure of the graphics files.

The two last entries (together with the first one) serve as correctness checks of
files produced by CANDYS/QA when they are read by CANDYS/QA itself or
by a post-processor. These files cannot be read if they have been produced by
incompatible versions. The current version is 4.4.6.4.

5.3 Version changes

Version 4.3.6.4

e All known bugs have been fixed. 2 In particular, the program implements now
its own module for string handling. This was necessary because the string han-
dling modules coming with different compilers tend to become more and more
different.

o If during path-following a special point has been detected but it or any of its
branches could not be computed for some reasons then the previous version is-
sued one or more warnings and continued the path-following. In version 4.3.6.4
additionally to the warnings an error is issued and the path-following stops.

o CANDYS/QA provides now its own online graphics module on the bases of java.
The implementation in JAVA has been chosen because of the strong portability
(particularly, the graphics) of that programming language and because JAVA is
nowadays widely available.

Version 4.4.6.4

e All known bugs since version 4.3.4.6 have been fixed.
e The integration of stiff ODE has been improved.

e The select option n (where 7 is an integer) had two meanings: (c.f. Sec. 8.4) mak-
ing a node actual by its number 7 as well as switching to the scenario level if
n=0. This has been changed as follows. Select option 0 switches to the scenario
level while select option " (quotation mark) makes a node actual. In the latter
case the program prompts for a node number.

e The input of EpsPredic (c.f. Sec. 8.2.4) has been discarded. Now, that control
variable is computed internally. This has the side-effect that the program often
makes larger steps during path-following. To avoid too large steps the control
variable MaxCurveStep should be set to smaller values.

’T thank all users of CANDYS/QA who sent a bug report.
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e Optionally, CANDYS/QA can utilize the BLAS subroutines and the LAPACK 3
numerical library. Using these subroutines may drastically accelerate the com-
putations, in particular in case of high dimensional models. This feature be-
comes available if LAPACK and the BLAS have been installed on your platform
and if you modify the makefile accordingly.

e Starting with this release, the libraries will be installed as shared objects (* . so).
This causes that the executable files will be much smaller than before. Moreover,
when future releases become available only the shared objects have to be re-
installed, the executable programs are then up-to-date automatically.

The format of restart and graphics files have not been changed. This means, investi-
gation of a model started with version 4.2.6.4 can be continued without any problems.

SLAPACK is distributed by netlib, see http:/ /www.netlib.org/lapack/
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5.4 Installation

This section describes the installation of CANDYS/QA for computer platforms run-
ning under the operation system UNIX or one of its descentants.

5.4.1 Hardware and software needs

Device capacity :

Source code 0.7 MBytes
Manual 2.8 MBytes
Shared objects 0.6 — 1.7 MBytes

Executable program 15 — 40 kBytes
The last numbers depend strongly on the computer and compiler.

Main memory : 4 - 12 M-Bytes of resident memory size for the running program (but
this strongly depends on the computer and compiler, the kind of online graphics,
and on the amount of the dynamically allocated memory).

Operations system : UNIX or any of its descendants is preferable, under other oper-
ating systems CANDYS/QA runs with a few restrictions.

Compiler : Probably any C++ compiler (e.g., g++ version 2.7.2, the cxx version 6.0 of
DEC OSF, and the CC version 7.2.1 of SGI IRIX.)

C prerequisites : The header files ctype.h errno.h, float.h, limits.h,
math.h, stdio.h, string.h, time.h, and unistd.h from the standard C
package (usually located in directory /usr/include) and possibly mdefs.h
from MATHEMATICA
The libraries 1ibc.a (or 1ibc.so)and libm.a (or libm. so), usually located
in directory /usr/1lib.

JAVA prerequisites (optional): Version 1.1.6 of JAVA (probably any 1.1.* version will
work); under Linux version 1.2 is needed.

5.4.2 Installation of shared objects and the post-processor
The installation described refers to UNIX or any of its descendants.

1. Create a directory where the sources of CANDYS/QA should reside. Switch to
that directory.

2. Extract all files from the tar or zip file(s). Several subdirectories are created with
the following contents:
bin : empty, will contain the graphical post-processor
doc : this manual Candys.ps
exa : the example file Lorenz.cxx

lib : og.zip and the files *.1mf to be used by several graphics modules,
w1ll also contain the shared objects
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math : thefiles Candys.mand correctmath for the use of MATHEMATICA©

spec : subdirectories containing the source code files * . cxx special for sev-
eral computers and/or compilers; currently only the subdirectory sgi for
Silicon Graphics computers exists

src : the source code files *.h and *.cxx and the makefile

. Adapt file src/makefile to your needs.

(a) Choose compiler as well as compiler and linker options (below the com-
ment “#--- Choice of compiler etc. ---").

(b) Choose mathematical libraries (below the comment “#-—-
Choice of math libraries —--"). If BLAS and LAPACK
subroutines are available then you should uncomment the
line “#CXXFALGS= $(CXXFLAGS) -DBLAS}” and/or the Iline
“#CXXFALGS= $(CXXFLAGS) -DLAPACK}”.  This ensures that the
programs invoke the corresponding subroutines instead of CANDYS/QA’s
own functions. Further, uncomment the line “#MATHLIB = ...” that
corresponds to your platform (or define a new one). Possibly, you must
include a -L option.

. If appropriate, copy the files from the corresponding subdirectory of spec to

directory src (refer to file README there).

. Create the shared objects and the post-processor by entering the command

makecandys
This creates besides the shared objects 1ib/1ib* . so the post-processing pro-
gram bin/g2gnu. The shared objects are configered such a way that they in-
clude

e the JAVA based online graphics if the shell command java is available (and
if the environment variable JAVAQ has not been defined)

e else the PGPLOT based online graphics if the environment variable PG-
PLOT_DIR has been defined

e otherwise no online graphics.

The shared objects and the post-processor have to be re-installed in the following sit-
uations.

e When a new release of CANDYS/ QA becomes available.

e When the CANDYS/QA main directory or (if the OG graphics is included) when

the JAVA main directory have been moved to another location. In that case
remove the shared objects 1ib/1ib*.so and the post-processor bin/g2gnu,
then enter command

makecandys
Re-installation is necessary since the locations of shared objects are “hard wired”
in depending shared objects and the post-processor.
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5.4.3 Installation of an executable program

1.
2.

Switch to the directory where your model and the result files should reside.

Prepare the source code of your model and place it into that directory. Hence-
forth, the name Model denotes the file name of your module without the exten-
sion . cxx of this file.

Possibly, prepare your own module Handle. cxx and compile it. Then define the

environment variables (multiple strings must be enclosed in quotation marks)
setenv HANDLE Handle : name of the module (without extension)
setenv HDLLIBIlib_.opts : linker options for additional Iibraries;

. Enter command:

SCANDYDS_DIR/makecandys Model
where $CANDYDS_DIR denotes the CANDYS/QA main directory. The result is
the executable program Model in your working directory.

Copy the appropriate * . 1mf files from
SCANDYS_DIR/1ib/*.1mf
to your working directory.

An executable program has to re-installed if the CANDYS/ QA main directory has been
moved to another location since the locations of shared objects are “hard wired” in the
program.

5.4.4 Running the executable program

1.

2.

Switch to the directory where your Model program resides.

Enter the command

Model [options] [parameters]
The options control the use of graphics modules. The parameters are forwarded to
the constructor of your Model class, they do not influence CANDYS/ QA directly.
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Chapter 6

The Course of a Qualitative
Analysis

6.1 Scenarios

The study of a given model by CANDYS/QA is performed within the shell of so-
called scenarios. In a scenario all results are summarized that have been obtained
from a certain starting point. Each scenario gets a number (from 01 to 99) as well as a
ScenarioName that is composed of

1. the ModelName (as provided by the wuser in the constructor
Model: :Model (int argc, char **argv) for the model, c.f. Sec. 7.2),

2. the underscore character,

3. the scenario number.

All files produced by CANDYS/QA contain this name as part of the file name, thus
they can easily be distinguished.

On the other hand, scenarios provide also the frame to continue the work of former
computations on the basis of restart-files. Each time when the user wishes, a restart-file
is written that saves the complete memory resident information. More precisely, the
following is performed. CANDYS/QA writes output to several files corresponding to
the irregular scenario number 00. When a specific program state is reached the user is
asked whether the results (since the last saving) shall be saved. If the answer is “yes”
then the restart file is written (also few other files) and (most) other files are appended
to the corresponding ones with the current scenario number. But if it is “no” then
the files with scenario number 00 are deleted and the old restart file is read in (i.e.
the previous state is restored, the latest results are lost). On user request, a restart-file
is written also at program termination what opens for the possibility to recover the
program state in a later computer session.

The rejection of the results obtained last and restoring of the previous ones can be
necessary if in the case of an error (e.g. non-convergence of a numerical procedure)
the computations are to be repeated (e.g. with other numerical control parameters).
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Moreover, the intermediate files with scenario number 00 will not be deleted as long
as no new computation is done, i.e. these files can be examined to analyze the error.

ote

The use of the files with a special scenario number, 00, has the following
consequence: only one version of CANDYS/QA can run the at same time
in a given working directory. If the program should be run several times
(e.g. in several windows) then each process has to be started from another
working directory. This way, each process writes to other files.

6.2 Loops of work

The work of CANDYS/QA can be seen as several loops which are controlled interac-
tively by the user.

e Initialization.

A first steady-state or cycle (henceforth summarized as points) for a fixed pa-
rameter vector is computed. It is the first element of the set of known points.

First loop.

Starting at an already known point this point is continued by varying one cho-
sen parameter p; in some interval. Special points possibly existing on the curve
(i.e. turning points, bifurcation points etc., c.f. Sec. 2.4.1) are detected and calcu-
lated together with a short portion (a stump) of the curves branching off. The
endpoints of the current solution branch as well as those of the intermediately
calculated stumps are being included into the set of known points, while the spe-
cial points themselves are being included into the set of known special points.
This way, a graph (i.e. the 1-parameter graph of Sec. 3.1) is constructed whose
nodes are the known points, and whose edges represent the connecting solution
branches.

Further loops.

One can also start at a known special point, thus computing a solution branch
of special points with respect to a further parameter p,. Here, also special points
(e.g. cusp points) can be detected and computed. This way, another graph,
namely a 2-parameter graph (more generally: a (k + 1)-parameter graph if the
special point belongs to a k-parameter graph) in the sense of Sec. 3.1 is created
which is linked to the graph containing the special point. (We say, the new graph
originates from this graph);

Besides this, there is also another view onto the mechanism of CANDYS/QA. Since
there is the possibility to stop at an arbitrary point and to start from the very begin-
ning, and also to switch freely between the loops the natural view onto the control
structure of the program is as follows. There are five levels of program and user activ-

ities.

e The scenario level plays the role of a supervisor. This level is entered at the start

of the program, here the other levels are activated depending on possibly already
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computed curves (more precisely, depending on the existence of graphs), and the
program can be terminated.

o The methods level serves for computing a first point by a appropriately selected
method (this is the initialization mentioned above).

o If at least on graph exists then one node can be selected in the
node-selection level for continuing the bifurcation graphs.

e The several loops mentioned above are summarized as the path-following level,
since they are not so different in view of the methods used and of the user’s inter-
action. This level supposes the existence of at least one (possibly rudimentary)
graph of computed nodes (c.f. Sec. 3.1).

o The graph-manipulating level creates a new graph and relates it to the existing
ones.

6.3 Treatment of constant and extreme quantities

At most one quantity can be maximized or minimized in a scenario. Thus, scenarios
differ not only in their starting point but also in that quantity which has to be specified
when a new scenario is established. The quantity may be a state variable or one of the
functions provided by the procedure QuantRhs (c.f. 7.2).

Much more has to be said about quantities with constant value. As opposed to special
points and extreme values which are uniquely determined by the system or a quan-
tity function, the constant quantities are arbitrary values. In the following it will be
described how the program has to be controlled such that a quantity gets a desired
value.

Each path-following can be restricted interactively to admissible intervals for all var-
ied parameters and all monitored quantities. Thus, one sets the interval limits of the
quantities to interesting values. When the path-following stops there the user can
clone the temporary endpoint. The copy gets all information of its template with one
exception: it is flagged to be a special point, a point of constant quantity. What quan-
tity is held constant is defined interactively, its fixed value is simply set to the current
value.

The new point is inserted into the graph as a node on the edge leading to the node
corresponding to the temporary end point. When the curve at the temporary end
point is continued then the new point belongs also geometrically to the arc from the
previous point to the new position of the end point.

The following quantities can be held fixed:

o the state variables,
e the values of the functions provided by the procedure QuantRhs,
e in the case of cycles of autonomous systems the period length of a cycle,

e in the case of torus bifurcations the angle of the critical eigenvalue (c.f. Sec. 1.4.3).
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Figure 6.1: The activity levels of CANDYS/QA.

6.4 The scenario and node-selection levels

The scenario level is entered at the program start and each time when the methods or
node-selection levels are left. In the latter case the user is asked whether or not the
results obtained (since the previous visit of the scenario level) are to be saved. If so,
then an updated restart-file is written. Otherwise, the previously saved situation will
be restored from the existing restart file.

After saving of the new results or restoring of the old results there are three options
for continuation:

1. continuation of the current scenario,

2. starting a new scenario,

3. exiting CANDYS/QA.

In case (2) as well as after program start, the user is asked for a scenario number.
Depending on the success of the computations (if any) within the following may hap-

pen:

1. no point has been computed so far (e.g. after start of a new scenario): the pro-
gram switches to the methods level;

2. atleast one graph exists: the program switches to the node-selection level.
The node-selection level can be seen as a special part of the scenario level. It allows the
user to traverse all existing graphs looking for an interesting node (i.e. an interesting

special point or a temporary end point). Depending on the choice (c.f. Sec. 8.4) the
program

1. switches to the path-following level for continuing a curve of points;
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2. switches to the graph-manipulating level for creating a new graph;

3. goes back to the scenario level.

6.5 The methods level

The computation of a first point is a complicated task. Therefore, CANDYS/QA pro-
vides five numerical methods to compute one (c.f. Sec. 2.4.4) as well as the possibility
to try several methods consecutively, e.g. to improve the result of one method by an-
other one. The work in the methods level is implemented as a loop consisting of the
following steps.

1. Input of the following entities:

(a) in the case of autonomous systems the choice of the kind of the invariant
set (i.e. between a steady-state and a cycle), in the case of the computation
of a cycle also the Poincaré surface has to be chosen,

(b) the fixed parameter values,
(c) initial values of the state variables,

(d) in the case of the computation of a cycle the choice of its length (the user
is supported in her decision in the following way: the program simulates
some iterates from the initial point and outputs the iterated points as well
as the error of the equations system for cycle computation).

2. Choice among one of the algorithms:

(a) Newton’s method;
(b) homotopy method;
(c) Monte-Carlo search;
(d) evolutionary search;

(e) simulation.
3. The program activates the chosen algorithm and prints its result.
4. The user is asked for choosing among the following options:
(a) if the computation was successful: whether to use this point as first point
of the path-following, if so then the methods level is left;
(b) input of new values, continuation at (1);

(c) try another method with the same initial point, continuation at step (2);

(d) try another method with the last result as new initial point, continuation at
step (2);

(e) exit the methods level without success.

Note

If one selects option (4a) then graph 1 is created consisting of one node
only: the result of the method. This node receives the number 1.
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;

6.6 The graph-manipulating level

The graph-manipulating level offers two features: creating a new graph and append-
ing new nodes to an existing graph.

1. A new (k + 1)-parameter graph is created on the basis of the special points in a

k-parameter graph, or on the basis of the first point in the O-parameter graph. To
this end, the user has to choose a parameter for variation and a distance. Then
the program computes two points to the left and right (with respect to the chosen
parameter) of each special point (or of the first point) at the chosen distance. If
the computation is successful for both points then a graph is created consisting
of all computed nodes and the connecting edges, and the level is left. Otherwise,
the level is left without success.

. At any temporary endpoint of a (k + 1)-parameter graph one of the varied pa-

rameters can be replaced by one fixed parameter, e.g. the varied parameter p;
becomes fixed at the current value and ps is varied instead. In this situation two
new graphs are created: one k-parameter graph where p; is fixed (if the graph
does not already exist) and another (k + 1)-parameter graph with p; as the addi-
tionally variable parameter. The new k-parameter graph is filled with the chosen
temporary endpoint as first point (if £ = 0) or a special point (if £ > 0), in this
case also stumps of the branching off solutions are appended. On the basis of
this k-parameter graph the new (k + 1)-parameter graph is filled in the sense of
the previous item.

. At any temporary end point a point with constant quantity can be added. To this

end, a temporary endpoint has to be selected (c.f. Sec. 6.3).
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Figure 6.3: The path-following level

If £ > 1 then in the case of the first to items also all other (not yet existing) graphs are
created whose set of variable parameters is a subset of the corresponding set of the
(k + 1)-parameter graph.

All graphs and nodes are numbered consecutively. The graph number is used to con-
struct the extension of the graphics and connection files (c.f. Sec. 9.2) whereas the node
number is used for referencing a specific node during the dialogues.

6.7 The path-following level
The path-following is performed by one of the two concepts described next.

1. Continuation of a single branch only: the path-following will be started at a
selected temporary endpoint. When an aborting criterion is fulfilled (see below)
then the program switches back to the node-selection level.

2. Automatic continuation of all branches: the path-following is performed starting
from each temporary endpoint until an aborting criterion is fulfilled. If during
the work new branches, i.e. also new temporary endpoints, are created then also
these branches are included into the process of path-following. This means that
the full bifurcation graph (within the limits posed by aborting criteria) is built
up automatically.

After each predictor-corrector step CANDYS/QA checks for special points between
the current point and the previous one, also for several special points ahead the current
point (c.f. Sec. 2.4.4). If a special point has been detected then the following actions
take place.

1. The special point is computed as well as the corresponding stumps of branching-
off curves (if any).



70 Chapter 6. The Course of a Qualitative Analysis

2. The special point is included into the graph lying on the current edge, and the
endpoints on the new branches are appended to the graph as temporary end-
points linked to the special point by new edges.

3. If the special points belongs to a k-parameter graph and there are already (k¥ +1)-
parameter graphs originating from it then in each of them a new component is
added consisting of one edge and two nodes corresponding to a stump of the
curve in these graphs (c.f. Sec. 3.3).

If the special point lies between the current and the previous point then the path-
following continues, otherwise it stops.

The program checks after each predictor-corrector step not only for special points.
There are some more checks.

e Check whether a parameter limit is reached or whether an error has occurred.
Then the path-following of the current branch stops.

e Check for another temporary endpoint lying between the current and the pre-
vious point. If such a point is found then this means that the same arc has al-
ready been computed from the other parameter direction. The path-following
of the current branch stops after having joint the formerly computed and the
current arcs. The two endpoints are deleted from the graph structure and the
path-following stops.

o Check whether during the path-following in a (k + 1)-parameter graph the curve
crosses a parameter value that is fixed in one of the k-parameter graphs from
which the current graph originates. In this case, into the k-parameter graph a
new special point is inserted (or a new first point in the case of k¥ = 0), also
stumps of the branching off curves are computed and appended. Then the path-
following in the (k 4 1)-parameter graph continues.

e Check for artifacts of cycles of autonomous systems (c.f. Sec. 2.1.2). If such a
situation is detected then the user is asked for another Poincaré surface. The
program continues by a new initialization of the path-following corresponding
to the new Poincaré surface.

Note

The detection of already computed points on the current arc may fail be-
cause of too restrictive tolerance demands. This implies that the current
arc is continued and the subsequent results, particularly the special points
and branching off stumps computed later, are obtained once again. In an
extreme situation, this can lead to an infinite graph. Therefore, care should
be taken if the feature of automatic path-following is applied.



Chapter 7

The Model Module

7.1 General remarks

The user has to prepare a program module model. cxx describing her model. In the
following it will be described how that can be accomplished. In Sec. 7.2 all its pro-
cedures are explained, and Sec. A contains a prototype of the module. Section 7.3
presents how MATHEMATICA© can be used to prepare the module. Finally, the soft-
ware package contains the module Lorenz . cxx that can be used as a prototype.

In this chapter the following convention will be used: The parts which the user has to
insert are written in bold, given parts in teletype, and comments in italic letters.

7.2 Model description

7.2.1 Includes and global variables
The program module has to contain the #include statements

#include "Model.h"
#include "LinAlgebra.h"
#include "Errors.h"
#include "math.h"

Further #include statements may be necessary.

7.2.2 Initialization part

The header file Mode 1 . h defines the class Mode 1. The program module has to contain
a constructor

Model: :Model (int argc,char **argv)

and the destructor for that class. The program allocates only one variable of this class,
i.e. the constructor is called exactly once, it has to initialize the class members. The
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parameters argc, argv of the constructor are the same as in the call of main, i.e. the
command line split into strings. These can be used to control the initialization from
the command line. 2

In this subsection we describe the constructor
Model: :Model (int argc,char **argv)
thereby explaining all class members.

The system class of the model is defined as follows:

ModelClass = autonomous autonomous systems of differential equations, or
ModelClass = periodical periodically forced systems of differential equations, or
ModelClass = difference autonomous systems of difference equations

Dim: number of state variables which have to be indexed from 0 to Dim-1

NbOfParams: number of variable parameters which have to be indexed from 0 to
NbOfParams-1 and named by P

NbOfQuantities: number of quantities which have to be indexed from 0 to
NbOfQuantities-1

NbOfOutputs: number of state variables which will be printed as result output, see below
for details

Oindex: indices of state wvariables to be printed, the indices range from 0 to
NbOfOutputs-1, their values must belong to the range from 0 to Dim—-1

ModelName: a model name, it is used as basis of file names

TName, XName , PName, QName : name or name fields of the model time, states, parame-
ters, and quantities, respectively (i.e. strings of alpha-numerical characters or under-
scores starting with a letter)

TScale, XScale,PScale: scales for these variables (the names and scales are used only
in input/output operations, it holds: X[i] = input/scale and output =X[i] * scale,
similarly for T and P[i]), see below for details

X0 initial values of the state variables
P: initial and current values of the parameters

hasJacobi: 1or 0 , Boolean variable specifying whether procedures computing the Jaco-
bian matrices have been implemented

stiff: 1or0 ,in the case of a system of differential equations a Boolean variable specifying
whether the equations are stiff

Some additional explanations seem to be necessary.

e The command line parameters can be meaningful, among others, in the follow-
ing situation. Imagine that the model is a system of ordinary autonomous differ-
ential equations which approximate a partial differential equation by discretiza-
tion of the space variable(s). The number of model variables, Dim, depends on

*But most of the assignments in the constructor are overwritten when a restart file is read in, excep-
tion: the names of variables.
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the discretization step-size, and the right hand side contains loops over the dis-
cretization steps. Thus, different discretizations can be obtained simply by varia-
tion of Dim. Providing Dim as command line parameter makes this very flexible.

o If the dimension of the system is large then the output of results would become
very long. But often many of the variables are not of interest (e.g. in the case
mentioned in the previous item). Thus, the number of variables to be printed
can be restricted by NoOfOutputs, and Oindex lists the indices of the corre-
sponding variables. The restriction of NbOfOutputs has several consequences.
First, only the values of the variables listed in Oindex can be set interactively,
and only they can be presented graphically. Second, also the number of eigen-
values printed is restricted to NbOfOutputs (since otherwise the output would
become still long).

o The scales TScale etc. can be used for two purposes. First, the numerical pro-
cedures can yield reasonable results only if all variables are in the same order of
magnitude. If, e.g., one variable is typically a thousand times larger than another
one then it is wise to re-scale one or both in the model. The scales TScale etc.
can be used to ensure that the original, unscaled values are printed. Second, the
scales can be used to transform the results from the physical coordinate system
(metrical coordinates, say) of the model to another one (inches, say).

e The items XScale, PScale, X0, and P are variables of the predefined class
Vector, Oindex is a variable of the class IndexVector while XName, PName,
and QName are variables of the class StringVector. Among others, these
classes define the following functions (where v represents a variable of any of
these classes):

1. v.zero(n);
allocates a vector of n elements of the corresponding type (i.e. double, int
or String, respectively) and sets the elements to 0.0, 0, or to the empty
String, respectively;

2. v[i] = x;

assigns x to the i-th element of v, as usually, i ranges from 0 to n-1.

The function v. zero (n) should be applied to the vectors X0 etc. to give them
the correct length and zero initial values. After zeroing, the assignment should
be used to give the vector elements new values if appropriate. The prototype of
the Model module in Sec. A demonstrates how these functions can be applied.

7.2.3 Right hand side and Jacobian

A procedure for the computation of the right hand sides of the differential or difference
equations has to be provided.

void Rhs(double Time, const Vectoré& X, Vector& F)
The following procedures are optional, i.e. they may be empty:

vold Jacobi (double Time, const Vectoré& X, Matrix& J) : pnxzdum
computing the Jacobian matrix J, i.e. the derivative J (1, j) of the right-hand-sides
F [ 1] with respect to the state variables X []];
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void JacobiParam(double Time, const Vectoré& X, int Pidx, Vector& JP)
: procedure computing the Jacobian matrix JP, i.e. the derivative of the right-hand-sides
with respect to the parameter P [Pidx];

If Jacobi or JacobiParam are empty procedures then the global variable
hasJacobi has to be set to 0 within the module initialization. Please, observe that
the matrix entries have to be specified by parentheses instead of brackets: J (1, j).

No procedure has a calling variable denoting the model parameters: their values are
always given in the global variables P. These and all other global variables must not
be changed in the other procedures of the module. Also, except for F, J, JP, Q, 0X, and
QP in Rhs etc., the parameters of the procedures must not be changed.

In the case of periodically forced systems, one crucial point is how to describe
the periodicity. In CANDYS/QA it is assumed that the parameter P[0] is the
angular frequency, i.e. that the right hand side contains expressions of the form
cos (P[0]*Time). The reason for doing so is that the derivative of the right hand
side of the equations system F(xz) = 0 with respect to the frequency parameter has
a form deviating from the derivative with respect to other parameters. The program
system computes this special derivative exactly for the parameter P [0]. In this system
class, Time in Rhs etc. is the current value of the independent variable (the time vari-
able) of the system; in the case of the other system classes this parameter is included
only for compatibility of the procedure call and has always the value 0.0 .

It may happen that Rhs, Jacobi, or JacobiParam cannot work correctly (e.g., sev-
eral X [1] must be positive but are actually negative). In such a case these procedures
should signal an error by specifying

ReturnCode = ModelError;

(ReturnCode is a global variable.)

7.2.4 Quantities

The following procedures compute the state dependent quantities and their derivatives.

void QuantRhs (const Vectoré& X,int Qidx,double *Q) : procedure computing the
state depending quantity Q [(Qidx] that can be monitored during the path-following;

void QuantJacobi (const Vector& X, int Qidx, Vectoré& QX) : procedure com-
puting the derivatives of the quantity Q [Qidx] with respect to X;

void QuantJacobiParam(const Vectoré& X, int Qidx, int Pidx, double *QP)
: procedure computing the derivative of the quantity Q [Qidx] with respect to P [P1dx];

These procedures should be empty if NbOfQuantities equals 0. Moreover, QuantJacobi
or QuantJacobiParamcan be empty if hasJacobi equals 0.

7.2.5 Correction phase

In the case that the specifications in the initialization part are contradicting or missing then
during the startup phase they are in some sense corrected.

The strings Mode 1Name etc. : Leading white space is deleted, then the string is cut at the
first non-alphanumerical character or is completely emptied if the first character is not
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“or

a letter. The underscore character “_” is treated like alphanumerical one. If an empty
string results then it is replaced by the following string:

e ModelName="CANDYS";
e TName="T";;

e PName="Pi";

e XName="Xi";
e OName="Qi";
where i is the index of the corresponding variable.

The number NbOfOutputs : If this number is less than 1 or greater than Dim then it is re-
placed by Dim.

The indices Oindex : If one of these indices is not in the range from 0 to Dim-1, or if it occurs
multiply then it is replaced by first unused index.

The scales TScale etc. : If a scale equals 0.0 than it is replaced by 1.0.

7.3 Use of MATHEMATICA©

It is possible to provide the Model module by MATHEMATICAQ®. 3 To this end, the file
Candys .mis needed.

The following activities have to be performed:

1. If not yet defined define the environment variable CANDYS_DIR to denote the
CANDYS/QA main directory.

2. Start MATHEMATICA© by the command math. MATHEMATICA© prompts with
In[count] for inputs.

3. Read the file Candys .mby the command
<< S$CANDYS_DIR/math/Candys.m where SCANDYS_DIR is the envirenment vari-
able is defiend in Sec. 5.4.2.

4. Enter the command
Candys [sys,funcs,params,class,quant,outp,stiff ]
where the parameters have the following meaning;:

sys name of the model (String);
funcs right hand sides of the system (List of Lists), each function is a List of
(a) variable name (Symbol),
(b) right hand side (Expression),
(c) possibly the initial value of the variable (Real, default: 0.0);
params parameters variables (List of Lists), each parameter is a List of

(a) parameter name (Symbol),
(b) possibly the initial value of the variable (Real, default: 0.0);
(c) possibly the switch whether the parameter should be variable (String, de-
fault="yes”)
class system class, two variants are possible:

(a) system class (String, only the first character is checked)
autonomous (default), periodical,or difference,

SMATHEMATICAQ is a software product of Wolfram Research Inc.
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(b) List of at most 4 elements
i. the string of variant (4a),
ii. the time variable (Symbol, default: Time),
iii. the frequency parameter (Symbol, default: Omega),
iv. possibly the initial value of the frequency variable (Real, default: 1.0);

quant right hand sides of the quantities (List of Lists), each quantity is a List of
(@) quantity name (Symbol),
(b) right hand side (Expression);

outp names of variables to be printed (List of Symbols, default: all variables);

stiff stiffness of ODE (String, only the first character is checked) stiff, or nonstiff
(default)

5. Stop MATHEMATICA© by the command Quit.

Only the parameters sys, funcs, and params are mandatory, for all others exist default values.
In case of the parameter class the following is recommended:

e system class difference does never use time or frequency, i.e. variant (4a) is suffi-

cient;

e system class autonomous uses time only as the name of the return time of cycles, i.e.

for almost all models variant (4a) is sufficient;

o in models of system class periodical, time and frequency are the corresponding vari-

ables of the right hand side (and, therefore, are needed), the frequency parameter must
not be an element of params.

The item (c) of params needs an explanation. In general, all parameters of a model can be
varied, i.e. the entry is “yes”. But sometimes it is convenient to give a constant a name in the
formulas (e.g. g for the earth’s gravity constant, 9.81). This is supported by declaring those
constants as non-variable parameters, i.e. setting this entry to “no”.

The call of the program Candys results in the following:

The procedures Rhs and QuantRhs corresponding to funcs and quant, respectively, are
generated.

The Jacobians of the functions funcs with respect to the variables vars and the parame-
ters params are computed. If quantities have been defined then also their Jacobians are
computed. This means, that the procedures Jacobi etc. are generated.

The integers Dim etc. are determined by counting the number of variables vars etc.

The variables vars and parameters params (including the frequency parameter) are re-
placed by x[0], X[1], ... ,andP[0], P[1], ... ,respectively.

The names XName etc. are set to the names of variables in vars etc., and Mode 1Name to
sys.
All scales are set to 1.0, and all not explicitly defined initial values are set to 0.0 (with the

exception that the frequency parameter, if any, is set to 1.0).

The file sys . cxx is written containing all needed entities. Moreover, the file sys.m is
written containing the model description in MATHEMATICA© style as well as sys. tex
containing the right hand sides and the Jacobian matrices in IXIEX format.
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We will give a simple example: establishing the Model module for the well known Lorenz
system:

z = ox(y—ux)
= TxxT—T*k2—Y

Z = xxy—bxz

Thus, we start MATHEMATICA®© by the command math . It prompts for the first input, we
answer as described above:

In[1] << Candys.m

Next we prepare two lists, one for the description of right hand sides and one for the parame-
ters:

In[2] fun={{xsigma*(y-x),12.}, {y,r*x-x*z-y,20.}, {z,x*y-b*z,24.}}
In[3] par={{r28.}, {sigma,10.}, {b,8./3.}}

This means, e.g., that the time derivative of variable x is given by the expression sigmax*(y—z),
and the default initial value of z is 12. The preparation of the lists fun and par is not mandatory
but makes the following action clearer. Now, we can produce the Model module:

In[4] Candys[”Lorenz”,fun,par,”auto”]

The parameters “Lorenz” and ”“auto” define the Mode1lName and the ModelClass, respec-
tively. After some time (depending on the complexity of the right hand sides, i.e. in our exam-
ple after a short time) MATHEMATICA\Y prompts anew and we stop:

In[5] Quit

7.4 User defined point handling

As will be explained in Chap. 9, CANDYS/QA shows results in a fixed style onto the screen
and writes them onto a file. Sometimes this may be insufficient. One may wish, e.g., that a
graphical presentation of the cycles of autonomous systems is to be produced. Such presenta-
tion can be performed by the procedures of the user defined module Handle.

The module has to include at least the following header files:

#include "Handle.h"
#include "States.h"

The header file provides the class Hand1le with the constructor

Handle: :Handle (int argc, char **argv).

It can be used, e.g., creating a graphics window during the startup phase. * During the run of
CANDYS/QA exactly one variable of the class Handle will be allocated, i.e. the constructor is
called exactly once. On the other hand, the destructor

Handle:: Handle ()

can be used to close the graphics etc.

Additionally, there are the termination and initialization procedures

void PostHandle (int save)
void PreHandle ()

“But if you did integrate graphics via the module graphics (c.f. Sec. 11) then you can be sure that the
graphics has already been initialized.
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which are called when the node-selection level is entered (i.e. when a path-following is termi-
nated) or left (i.e. when a new one starts), respectively. The parameter save signals that even
the scenario-level has been entered and the scenario is to be saved.

The essential procedure is
void PointHandling(const FullState& St, const BifGraph& BG)

that is called after each point computed on a curve during the path-following. This includes
special points and excludes the points on branching off solutions. The class FullState in-
cludes the following members:

InvariantSetTypes InvariantSet the type of the point, SteadyState or Cycle
int Periods the number of periods in case of a cycle, O in the case of a steady-state
Section Poincare the type of Poincaré section in case of cycles of an autonomous system
ScatteredVector Values the values of state variables and the varied parameters

int Stable equals 1 if the point is stable

Vector EVreal real parts of nontrivial eigenvalues

Vector EVimag imaginary parts of nontrivial eigenvalues

Vector exEVreal real parts of trivial eigenvalues

Vector exEVimag imaginary parts of trivial eigenvalues

The class ScatteredVector contains the members

Vector x the values of state variables

Vector p the varied parameters

Vector g the values of monitored quantities

double r the return time in case of cycles of an autonomous system

The class Vector is a more secure version of double* and provides, among others, the fol-
lowing functions:

v[i] gives theith

element of vector v
v.elems () gives the length of vector v

Finally, the class Section defines the Poincaré map by the members

SectionModes Mode one of the values OrthogonalToTrajectory, OrthogonalToAxis, Ex-
tremumOfComponent

int Component the Poincaré plane is defined with respect this state variable
double Value in case of OrthogonalToAxis the fixed value of this variable

The class BifGraph describes entities that are the same for all points of a bifurcation graph.
It includes the following members:

IndexSet Indices the indices of parameters that are variable in this bifurcation graph

Vector Params the values of the parameters at the creation time of the bifurcation graph, espe-
cially, the values of the fixed parameters

The class IndexSet is a version of Vector for int elements.
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Input Description

8.1

Overview

The user is led through the program by dialogue. The inputs concern the following
topics:

selection of a scenario (c.f. Sec. 8.2.1);
input of start values for a first point (c.f. Sec. 8.2.2);

choice which numerical method should be used for computation of the first
point, c.f. Sec. 8.2.2;

choice of a varying parameter and the corresponding interval limits, c.f.
Sec. 8.2.4;

determination of numerical control parameters (e.g. the maximum number of
steps and the aborting tolerance in approximation methods), c.f. Secs. 8.3.1
through 8.3.5;

selection of a node in the bifurcation graph(s) for continuation of the path-
following, c.f. Sec. 8.4.

For all questions of the dialogue a default answer is provided (often the value entered
to the same question in a previous loop of the dialogue) that is used if simply the
key is pressed. The questions possess the following form (also the brackets
and braces are printed), where Prompt is a short question or the name of a variable
and default is the currently valid default value for this input:

Yes/No decision:
Prompt {default} Theanswer has to start withY,y, N, or n

Integer number:

Prompt [lower limit,...,upper limit] {default}
If lower limit or upper limit are bounded by computer precision only
then they are replaced by <— or —>, respectively.

79
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e Real number:

Prompt [lower limit,...,upper limit] {default}
If lower limit or upper limit are bounded by computer precision only
then they are replaced by <— or —>, respectively.

e Choice among several possibilities:
Prompt

key_letter.l --> meaning

key_letter 2 —--> meaning

{default}
The answer has to be one of the key_letters, the input is case insensitive

e Name from a list of names (state variables, parameters, or quantities):

Prompt [namel name2 ... 1 {default}
The answer has to be one of the names, the input is case sensitive

¢ Index from a list of indices (especially scenario numbers):
Prompt [indexl index2 ... ] {default}

Notes

If the admissible range of values determines the answer uniquely then the
program uses this value without dialogue.

Each answer is checked for correctness, and the question will be repeated
until a correct answer has been entered. The correct answers and the cor-
responding prompt are recorded to the file ScenarioName. inp. Chapter
10 contains an example of such a file.

Each answer consists of one string: leading white space is ignored and the
string ends at EOL or the first white space following nonwhite characters.
All characters following the string to the EOL are skipped.

In the following subsections the user’s interactions are described which are mandatory
or optional at the several working levels. The following convention is used:

e teletype letters: computer output, may be restricted to a key word;
e bold letters: user input;

e italic letters: comments.

If an absolute default value is given for a numerical control parameter then this is
the value valid at program start without a restart-file, otherwise the default equals
the value entered last. Default values depending on other entities are always newly
computed.
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8.2 Navigating through the program

8.2.1 Program start and the scenario level

The program is started by entering the command
CANDYS

where the name CANDYS is, in general, the name of the system as chosen at compile
time (c.f. Sec. 5.4). After start, the program enters the scenario level. Here, one has
to choose whether a new scenario should be created or an existing one ought to be
continued.

option = N newstart of a scenario;

option R restart of a existing scenario;
option = X exit from CANDYS/QA.

Then the number of a scenario has to be entered. In the case of a new scenario, the
user is asked by a sequence of questions to enter the name(s) of the state dependent
quantities that should be monitored during this scenario:

Enter name of quantity to be extreme: the incorrect name 0 stops the se-
quence of questions

Default: 0

In the case where the scenario level is entered from node selection, the user is asked
whether to save or restore results:

saving option = S save new results;
saving option = R restore previously saved results.

Then the user is asked for how to continue:

option = C continue this scenario;
option = N newstart of a scenario;

X exit from CANDYS/QA.

option

8.2.2 The methods level - computation of a first point

When deciding to start a new scenario, CANDYS/QA switches into the methods level.
In the case of autonomous systems the initialization needs to know whether steady-
states or cycles should be computed. Hence, the user can interactively choose between
the following possibilities:

option = S steady-states;
option = C cycles.

Then the values of the fixed parameters as well as initial values of the state variables
are asked for. Their defaults are given

1. after program start without a restart-file by the values specified in
Model: :Model (int argc,char **argv);
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2. after program start with a restart-file by the values in this file;

3. after change of scenario by the values shown last during the process of node
selection (c.f. Sec. 8.4), this way, one can start a new scenario with “good” initial
values;

4. by the values entered before (if any).

In the case of autonomous systems, the period length 7 is an invariant, too, that has to
be determined, while in the case of periodically forced systems cycles with a multiple
of the forcing period are computed. Fixed points of discrete systems are considered as
cycles of the length 1. For supporting the user in defining a suitable period length, up
to N periods are iterated and displayed from which the number

PeriodLength: 1toN

Default: the period matching best the starting point
has to be chosen. The number N is asked by before:

Enter maximum number of test cycles

Default: 1

Then, 5 methods are offered to solve the corresponding nonlinear equations system
(2.8) where the parameter vector p is fixed. > One can choose one of the following
methods.

method = N solving the equations system by a damped NEWTON's method where a suit-
able initial guess is needed (which may be found, e.g., by the other methods); this is the
default method, c.f. Sec. 8.3.1.

method = M Monte-Carlo search in a chosen parallelepiped with the initial point z° as
its midpoint, c.f. Sec. 8.3.2.

method = E evolutionary search, i.e. random search in a sliding parallelepiped with the
midpoint at the initial point z° at the first step and then at the best point found, c.f.
Sec. 8.3.2.

method = H performing a simple homotopy method form the start point z°, c.f. Sec. 2.2.4.
User interactions are those of the path-following (without parameter limits), c.f.
Sec. 8.2.4.

method = S simulation of a trajectory starting at =°, c.f. Sec. 8.3.3.

When an approximation has been found by an algorithm the quality of the result is
estimated by checking of || F'(z)|| against the value EpsF. Then the user can select one
of the following options to proceed (c.f. step 7 of Sec. 6.5).

option = P start path-following at this point

option = N enter new initial values

option = R reset initial values to the previously entered ones
option = I improve last approximated point

option = X exit to the scenario level

2From Sec. 2.2 we recall the following. The function F : R™ — R™ is derived from the right hand
sides of the system dynamics. It holds m = n+ 1 and y = (z, T) in the case of the computation of cycles
of autonomous systems, otherwise m = nand y = =.
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8.2.3 The graph-manipulating level

The dialogue contains the following questions.
ParamName: The name of a system parameter that has to be varied
Default: Name of the first parameter not yet varied
Distance: The length of the arc from the selected point to the one to be computed

Default: 0.1
Then the control parameters of the path-following level (without the limits) are asked.

8.2.4 The path-following level

The solutions of the m-dimensional nonlinear equations system (2.8) depending on
the parameter p describe a curve C in R™*! which is called a solution branch. 3 The
predictor-corrector algorithm described in Sec. 2.3 is applied.

The user is asked for the limits of the interval(s) within which the variable parame-
ter(s) can vary. Then one can enter some numerical control parameters. Furthermore,
in the case that all branches are to be continued, an upper bound for the length of cy-
cles has to be chosen (this way, one can avoid to build up an infinite graph if there is a
period doubling cascade).

The varied parameters and the monitored quantities can be limited to some intervals
(at least one varied parameter has to be limited). The names of parameters or quanti-
ties to be limited are asked in sequence of questions.

Enter variable to be limited Entering 0 stops the sequence.

Default: Name of 1°! variable not yet asked

The following entities can be object of limitation:

e the state variables,
o the values of the functions provided by the procedure QuantRhs,
e in the case of cycles of autonomous systems the period length,

e in the case of torus bifurcations the angle of the critical eigenvalue (c.f. Sec. 1.4.3),
this case is selected by the specific name 1rot. 4

For each variable parameter the corresponding limits are asked:
Lower limit: Lower interval limit
Default: current value-10.0*(last step-size)

Upper limit: Upper interval limit

%In the case of computation of special points, this equations system contains further equations and
unknowns, i.e. the dimension m is larger than n or n + 1.

“The name 1rot is generated automatically. By its construction, it is different from all possible user
defined names.
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Default: current value+10.0*(last step-size)

Here, the current value is given by the point that was selected for path-following,
analogously the last step-size. The difference (Upper limit - Lower limit) of
the last variable parameter determines the value of interval length that is used in the
following.

After entering the control parameters of Newton’s method (c.f. Sec. 8.3.1) the numeri-
cal control parameters of the path-following are asked:

MaxCurveStep: Maximum step-size on the solution branch. If the step-size control yields
a larger value than MaxCurveStep then MaxCurveStep is used instead.

Default: 0.1*interval length

MinCurveStep: Minimum step-size on the solution branch. If the step-size control yields
a smaller value than MinCurveStep then the path-following is aborted.

Default: 1.0E-5*interval length

MaxArcLength: Maximum length of the solution branch. If the solution branch becomes
longer than MaxArcLength then the path-following is aborted.

Default: 100.0*interval length

Note

The chosen accuracies have a side-effect: the geometrical mean of EpsF
and an internally computed value (called EpsPredic) is the tolerance for
the detection of already computed points (c.f. Sec. 6.7).

8.3 Numerical control parameters

8.3.1 Newton’s method

Numerical control parameters for Newton’s method:
EpsF: Accuracy of Newton’s method.
Default: 1.0E-6
MaxIterations: Maximum number of steps of Newton’s method
Default: 20

8.3.2 Monte-Carlo method and evolutionary search

Numerical control parameters for both methods:

SizeOfParallelepiped: Size of the (initial) parallelepiped for Monte-Carlo search and
evolutionary strategy. If £° is the initial midpoint then the parallelepiped is bounded by
[2[i]° — sizel], z[i]° + size[i]] fori=0,...,m — 1.

Default: 1.0

MaxSearchSteps: Maximum number of steps during Monte-Carlo search or evolution-
ary search.
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Default: 50
EpsF: Aborting accuracy.
Default: 1.0E-6

8.3.3 Simulation

It is possible to simulate the dynamical system at constant time intervals for output
(autonomous and periodically forced systems) or to iterate discrete systems. In the
case of searching cycles of autonomous systems it is also possible to print the inter-
sections of the trajectory with the Poincaré surface to observe the approximation of a
fixed point of the Poincaré map. Furthermore, it is possible to simulate autonomous
and periodically forced systems in reversed time. The simulation can be continued (in
the same time direction) when it exceeded the chosen time limit. On the other hand,
it can be interrupted by entering CTRL/C. The simulation results are recorded onto
special simulation files. After a simulation of cycles, the question for the cycle length
is repeated.

Numerical control parameters for the simulation:

SimulTime: Maximum simulation time (autonomous and periodically forced systems
only), may be negative.
Default: 0.0

SimulDeltaT: Time interval between two outputs in the case of forward or backward sim-
ulation (system classes aut onomous and periodical only).

Default: 0.1
SimulPeriods: Maximum number of periods of the cycles to be simulated.
Default: 1
StepsInPeriod: In the case of periodically forced systems the number of outputs within
each period length.
Default: 1

EpsF: Accuracy for accepting the last simulated point.
Default: 1.0E-6

8.3.4 The Poincaré map

Cycles of autonomous systems are computed by use of a Poincaré map where the
problem is transformed to an (n + 1)-dimensional algebraic equations system that
allows the calculation of the period length 7" in addition to a point of the cycle (c.f.
Sec. 2.1). CANDYS/QA provides two options for the function g(z, p). The following
possibilities have been provided:

SectionMode = T Plane orthogonal to the trajectory supported by the actual point. (At-
tention: the Poincaré plane is newly defined at each new point). This option is available
only within the methods level and is the default here.

SectionMode = A Plane orthogonal to one coordinate axis supported by a certain point.
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SectionMode = E Thesurfaceis defined as the set of all extremal points of the trajectories
with respect to one component: f[i|(x,p) = 0. (Attention: the actual point does not
necessarily belong to the surface, it is shifted to the surface by this choice. The surface
changes as the parameters vary.)

Component : Name of the component of the state vector x for which the chosen mode be-
comes effective).

Default: Name of the 0-th component

Fixed value: In the case of SectionMode A when computing the first point the fixed
value of the component xi].

Default: Current value of x[i

The sectionMode of the Poincaré surface has to be determined in the following situ-
ations:

e computing of a first cycle;

e during the path following if the chosen Sect ionMode is no longer suitable, i.e.
in the case of an artifact (c.f. Sec. 2.1.2).

The following items are meaningful only when choosing an initial guess for the period
length (i.e. at the methods level), hence, they are asked for only in this case.

StepSize: Length of the integration steps for testing whether the Poincaré surface has been
crossed by the trajectory.

Default: 0.01
MaxPeriod: Maximum integration length between two consecutive POINCARE maps.
Default: 100.0

8.3.5 Integration procedures

If the system is described by differential equations then at some places the numerical
control parameters for the integration procedures can be changed:

EpsInteg: The desired integration accuracy. This is the distance between the approxima-
tions of the orders 5 and 6 (or 3 and 4 in the case of stiff differential equations). If
this distance is larger than EpsIntegq then the integration step is repeated with half
step-size, if the distance is smaller than 0.1"EpsIntegqg then the step-size is doubled.
Default: 1.0E-8

MinStepSize: Minimum integration step-size. If the step-size becomes smaller than
MinStepSize then there are two possibilities: aborting the procedure, or continuing
with the minimum step-size (default: continuation with minimum step-size).

Default: 1.E-7
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8.4 Choice of a node

The selection of a node within the scenario level differs from the other dialogues. In-
terchangingly, the program prompts for a node (the format of the prompt is described
below) and the user answers in a coded form whether the node should be selected, or
what else to do. This way, all nodes in all graphs can be traversed.

The prompt takes on the following format consisting of three lines:

e 1% line:

1. node number,

2. period length (if system class is periodical or difference) or return
time (if system class is autonomous and if the point is a steady-state and
not simultaneously a Hopf bifurcation then 0. 0),

3. in the case of system class autonomous the letter “S” or “C” specifying the
point as a steady-state or a cycle, respectively,

4. the point type in the format described in Sec. 9.2;
e 274 line:

1. the values of the varied parameters,
2. avertical bar “|”,

3. the values of the first state values (as many as can fit onto the line).

e 3" line: The actual possible answers, see below.
An example of the prompt is the following;:

7 0.65250 S Hopf stable
24.742 10.031 | 7.9568 7.9568 23.742
[ 0!*] {1

This means: the node 7 is a steady-state S, namely a Hopf bifurcation where the nearby
cycles have return time 0.65250, and the pointis a stable temporary endpoint dur-
ing the variation of the 2nd parameter. Moreover, there are two variable parameters
with the values 24.742 and 10.031, respectively, and the state variables have the
values 7.9568 7.9568 23.742. Finally, the characters enclosed within brackets
list the possible answers. Particularly, 0 means that any node can be addressed by its
index.

In the case of a special point with a multiple eigenvalue on the imaginary axis or on
the unit circle the point type is described as sequence of single characteristics, e.g.
Turn Turn stable

means that the node actually shown is an endpoint and possesses two eigenvalues 0,
in fact it is a Takens-Bogdanov point.
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In general, only a single character has to be entered. The following characters possess
a meaning during the selection process: °

0 Switch to the scenario level without selecting a node.

! The current node is a temporary endpoint: select this node to continue the path-
ollowing.

* Continue the path-following automatically for all temporary endpoints.

? Start the path-following with respect to a further parameter, i.e. create a new graph. If
the current node is a temporary endpoint then two graphs are created (c.f. item (2) of
Sec. 6.6), else one graph is created (c.f. item (1) of Sec. 6.6).

@ The current node is a temporary end point: select this node as a template of a new special
node with a constant quantity (c.f. 6.3).

(space) switch to the next node in the graph, this is the default.
" Independently of the current node and graph, make a node actual by its number.
+ Make the point under the mouse pointer actual (c.f. Sec. 11.2).
" Switch to the traversing of a graph upward in the meta-graph (c.f. Sec. 3).
> Switch to the traversing of the next graph with the same variable parameters.
- Switch to the traversing of a graph downward in the meta-graph.
& If online graphics is awailable: Change the coordinates (c.f. Sec. 11.2).

In the case of several choices the dialogue is continued concerning the following ques-
tions.

? What variable parameter has to be held fixed (only in the case of item (2) of
Sec. 6.6) and what parameter has to be varied additionally. The irregular name 0
is a possible answer and prevents the creation of new graphs if “?” was entered
accidentally. Furthermore, in the case of item (2) the program asks whether the
selection process shall be continued within the new graph (default is “No”).

@ What quantity has to be held fixed (at the current value). The possible names
are the same which can be selected for limitation (c.f. Sec. 8.2.4). The irregular
name 0 is a possible answer and prevents the creation of a new node if “@” was
entered accidentally.

- What variable parameter has to be held fixed in the target graph.
" What variable parameter has to be variable in the target graph.
” The number of the node to become actual.

& What variables are to be shown in the graphics.

The somewhat cryptic input codes have been introduced mainly for one reason. It should be possible
to traverse the current graph or to jump from graph to graph by a simple key stroke. This becomes most
important if the bifurcation graph is presented graphically and if the selection process is perfomed in
that graphics: graphics systems often support only a very simple input. Thus, a single key stroke seems
to be the common minimum denominator across the different systems.
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The selection process is a sequence of any length, it is stopped by entering one of
the choices “!”, “*”, “?”, or “0”. The intermediate choices are not written to the file
ScenarioName. inp. Onto this file the following inputs are written:

1. the number of the node selected, or 0 if no node is selected;
2. if a node has been selected: the choice (i.e. “!” etc.);

3. if a node has been selected as basis for the creation of a new graph: the name
of parameter to be held fixed (if any) and the name of parameter to be varied
additionally.

The information in file ScenarioName. inp are sufficient to reproduce the selection.

8.5 Program interrupt

During the run, the computations (as simulation or path following) can be interrupted
by entering CTRL/C. Pressing CTRL/C once, the program stops at the next computed
point and switches to the scenario level (in the case of path-following) or to the meth-
ods level (in the case of simulation). This means, that the program reaches the same
state as in the case of reaching the requested path-following or simulation limit; the in-
terrupt is not considered as an error. The interrupt may be used to change the control
parameter of numerical algorithms (e.g. the step-size) for further continuation or to
switch to another branch. Pressing CTRL/C twice consecutively, the time consuming
algorithms (Newton’s method, integration) are interrupted. This kind of interrupt is
treated as a numerical error.

Note

The interrupt as described above works only under UNIX (or any of its
descentants).
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Output Description

9.1 Overview

All results obtained by CANDYS/QA are shown on the terminal and are written onto
an output file that is the direct copy of the screen output and that may be used for
printing of the results. But also other information is shown on screen, and some other
files are written. The terminal output includes the following topics.

e The points computed during path-following (c.f. Sec. 9.2).

e Header information: the start of a new path-following, the creation of a new
graph, and the switching between graphs are indicated by a header like

R b S S db db Sb b b b b S b 2 dh  db Ib b b b b S b dh db  db Ib b b 4

Tracing the selected curve
R b b b b b I b b b b b 2 b b b b b b b b b b b b b b S b

accompanied by the graph number and information about the varied and fixed
parameters (c.f. Sec. 9.2).

e Simulation results: they are not written to the output file but to special
simulation files

e Messages, e.g. a special point has been found or non-convergence of a method
(c.f. Sec. 9.3).

During the run the program writes several files, e.g. as already mentioned a copy of
the terminal output. Several files are newly written in case of a scenario save opera-
tion, others existing for scenario 00 are appended to the one existing for the current
scenario. The file name is composed of

1. the ScenarioName (c.f. Sec. 6.4),
2. the period character,

3. a specific extension.
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ext | meaning appended | ASCII

out | result file, it is ready for printing yes yes

crt | excerpt of the result file containing yes yes
the special points only

inp | file of the inputs entered yes yes

rst | restart file no no

g00 | graphics file containing the extremum no no
values occurring in the graphs

gxx | graphics file containing the results yes no
in the xx-th graph

c00 | file containing a list of the connections no yes
of the graphs within the meta-graph

cxx | file containing a list of the connections no yes
of nodes and edges in graph xx

s00 | file containing the extremum values yes yes
occurring in the simulations

sxx | file containing the results no yes
of the xx-th simulation

sim | verbal description of all simulation files yes yes

Table 9.1: The files created by CANDYS/QA

All files are listed in table 9.1.

The restart file and the graphics files are devoted to be read in by CANDYS/QA and
related post-processing programs only. Thus, it was chosen to write them in binary
format since binary files are smaller and much faster to write or read than ASCII-files.
Unfortunately, this has one drawback: the files cannot, in general, be ported from one
computer platform to another.

Note

The restart file contains all information needed for the continuation of the
computations, it does not contain the information contained in the files
characterized by “appended” in Table 9.1. If some of these files have been
destroyed or deleted then they cannot be repaired or reproduced on the
basis of the restart file. Instead, if the file has been destroyed then it is
prolongated as if were correct, and if the file has been deleted then simply
a new one is created containing the last results only.

9.2 Result presentation

Each time when computation is started (for calculation a first point or for path-
following) or when the actual graph is temporarily changed the number and the pa-
rameters of the actual graph are printed. The parameters have the following format:

r=***  gsigma=10 b=2.66667
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The asterisks * * * mean that the corresponding parameter is variable while the others
are held fixed at the given values.

ote

This form of parameter representation will be used also in other contexts.

All computed points (the first point, the points on a curve, and the special points) are
shown on screen with the following constituents (some may be omitted if not rele-
vant):

1. the node number

2. values of the varied parameter (if any), they occur in the ordering of increasing
indices as specified in the module Mode1;

3. in the case of cycles their length or return time;

4. the state variables, they occur in the ordering given by the index vector Oindex
of the module Model;

5. the values of the monitored quantities (if any);
6. the eigenvalues of the corresponding Jacobian;

7. in the case of a special point its degeneracy in the sense of Subsection 2.4.2 (al-
lowing to determine whether a period doubling is subcritical or supercritical);

8. in the case of a special point its type.

The eigenvalues are ordered decreasingly with respect to their real part (steady-states)
or modulus (cycles). Moreover, the eigenvalues are separated into two groups: one
group contains all eigenvalues with predetermined value (e.g., the eigenvalue +1 in
the case of cycles, or the eigenvalues lying on the imaginary axis in the case of a Hopf
bifurcation); the other group contains the remaining eigenvalues. The eigenvalues of
the first group are emphasized as trivial, the others as nontrivial ones.

An example of a result output containing all items is given below.

Node no. 9

Parameters 33.367967

Return time = 0.31985405

State -1.8881585 0.59802032 3.2527558
0.18273098 19.613853

Quantity 3.9227707 0.69613853 0.77229358

Nontrivial eigen values

Modulus 0.29846322 0.039410856 0.039410856

Degrees 180.00000 3.2240881 -3.2240881

Trivial eigen values

Modulus 0.99999059 1.0000890

Degrees 0.0000000 180.00000

Degeneracy -76.454751

PerDoubl
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Note

Special points and temporary endpoints are printed in a specific format.
Suppose that the point under consideration is a special point in a k-
parameter graph. Then corresponding to the £ conditions on the eigen-
values and/or degeneracies a list of k£ entries is printed on one line. For
instance,

Turning Turning

denotes a special point that has two zero eigenvalues of the matrix Jy, i.e.
the point actually is a Takens-Bogdanov point. The temporary endpoints
in a (k + 1)-parameter graph are printed in the same format with an ad-
ditional entry denoting its stability. Curves are characterized in the same
fashion since they consist, theoretically, of temporary endpoints only.

9.3 Messages

In several situations CANDYS/QA issues a message. There are three kinds of mes-
sages:

e informations: the program has performed something successfully, e.g. the end
of the path-following interval is reached or a special point has been found;

e warnings: a computation was not successful but the program can work further,
e.g. a detected special point could not be computed;

e errors: a computation cannot be completed, e.g. due to a too small step-size, and
the program has to change its level.

Each message sent is accompanied with a “beep”. The format of the messages is
adopted from DEC/VMS messages:

$CANDYS-T-SHORT long

where

e $CANDYS is a fixed portion indicating that the message is sent by CANDYS/QA,;

e Tis one of the letters I, W and E meaning an information, a warning, or an error,
respectively;

e SHORT is an identifier of the internal detection mechanism of up to 9 uppercase
letters;

e Jongis a verbal description of the message in lowercase letters.

In the following all SHORT portions are listed in alphabetical order, comments are
written in italic letters.

ARCLIMIT maximum arc length of the solution branch exceeded
CONTROLC interrupt by CTRL/C

EVMISSING not all eigenvalues could be computed
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FORMERROR wrong graphics format (c.f. Sec. 11)

GRADLIMIT internal error of Newton’s method

LIMREACH limit of parameter interval reached

LOOPLIMIT maximum number of steps exceeded in Newton's method
MATSING matrix singular

MODELERR error in the right hand side or Jacobians, to be provided in Rhs etc.
NEGPERIOD the period of the cycle approximated last is not positive

NOBRANCH not all branching off stumps could be computed

NOCONV the first point is not found

NOCYCLE no Poincaré map found

NOFILE the output file cannot be opened

NULLCYCLE instead of a cycle a steady-state has been computed
OK  successful action

OLDRST the restart file is too old, e.g. it was produced with a different version number than
the current program was compiled with

OVERFLOW floating point overflow

PARALLEL tangents in the bifurcation point are parallel
REPPOINT the current point (and arc) is repeatedly computed
RSTDEST restart file is destroyed

SAVE saving the current scenario

SMALLSTEP too small step size

UNDEFERR other reason

In the following all Iong portions of the messages are listed in alphabetic order. Most
of them are not commented since it is hoped that they can be understood immediately.
Comments concern long portions that contain variable parts.

arc has been united to the arc at node n
arc too long

branch point computed

break by control key

special point computed

special point is the same as node n
curve cannot be initialized

curve cannot be continued

eigenvalues not calculable
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files cannot be opened

first point found

insufficient convergence

limit of parameter interval

not all branches computed

not all critical points or branches computed
k of | branches computed

k of | end points computed

special point approximated
actually, “special” is replaced by the type of special point

point with constant period inserted

point with extreme stability approximated
restart file not correct

restart file too old

saving scenario no. 7N

simulation error

In connection with reading or writing files of graphics formats further Iong portions
occur. They are described in Sec. 11.4.5.

The same message may occur as information, warning, or error depending on the
program context, also the same SHORT portion may be combined with different long
portions.

9.4 Structure of several output files

9.4.1 General remarks

The structure of the files will be presented in a BACKUS-NAUR like form. This means the
following. There is a set of key words (the so-called nonterminals) which, on the one hand,
describe a certain complex of the file with some meaning and which, on the other hand, are
declared as a sequence of other nonterminals or fixed symbols (the terminals) and where only
the defining terminals are written onto the files. For reading the files by the computer, a pro-
gram is recommended that includes for each nonterminal a procedure. These procedures have
to read repeatedly an item, decode it by the declaration (the right hand side) of the nontermi-
nal and, if another nonterminal results, call the corresponding procedure. The entire program
itself corresponds to the first nonterminal of a file description.

The following convention will be used for the declaration of the nonterminals.
e The new nonterminal is the left hand side of an assignment whereas the right hand side

is its declaration. The declaration is ended by a period, so one can recognize the end
also in declarations covering more than one line.
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e Teletype letters: nonterminals.
e Bold letters: terminals.
o Jtalic letters: comments.

o Consecutive expressions in a declaration mean that the corresponding values occur con-
secutively on the file.

e Expressions in braces with an exponent, i.e. { }°, mean as many repetitions of the expres-
sion as the exponent says, the exponent may be zero.

e Expressions in braces without an exponent, i.e. {}, mean any number of repetitions of
that expression.

o Expressions in parentheses, i.e. (), mean that exactly one of them has to be selected.
In all file structures the following elementary nonterminals are used.

String := ASCII characters

Integer :=Integer number

Real := Real number

SP := white space

EOL :=end of line, may include white space
EOF :=end of file

9.4.2 Simulation files

During each simulation run of the model a simulation file with the extension . sxx is written
where xxis the consecutive number of the simulation within a scenario. These files are devoted
to be read by a computer for graphical presentation. Such a file simply contains a table: each
line contains in the first column the simulation time and then the values of the model states. All
values (even the integer time of difference equation systems) are written as a 15 digit number
(ensuring at least 2 blanks between the numbers).

SimFile :={Block} EOF .

Block :=Time { SP Xxi}M" EOL.
Time :=Real . Current simulation time
Xi :=Real . Component of state vector

Dim := Integer . Dimension of system

Additionally to the simulation files which are created for each simulation run there is a global
simulation file for the entire scenario (with the extension .s00) that contains for each sim-
ulation the extrema of the state. It can be used to scale graphical output to the appropriate
size.

GlobalSimFile :={ExtremaBlock} EOF .

ExtremaBlock :=SimNo Count {Minimum}®®* {Maximum}cuat,

SimNo := Integer EOL . Number of the simulation whose extrema follow

Count :=Integer EOL . Number of the components per point, i.e. the dimension of system
Minimum :=Real EOL .Minimum of a component

Maximum :=Real EOL .Maximum of a component
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9.4.3 Connection files

In the course of writing a new restart-file also so-called connection files are written. The files
with the extension . cxxlist the node connections of the graphs where xx is the graph number.
It is devoted to visual inspection and should help the user when selecting a node.

Graph :={Connection} EOF . Sequence of node connections ordered by the node number

Connection :=Node EOL —-> { SP Edge} EOL . Node description and list of the edges
belonging to the node

Node :=Number SP : SP Period {SP NodeSpecial}VarFaranCoumnt Node description

Number := Integer . The node number
Period := Integer . The period length, 0 in the case of a steady-state

NodeSpecial :=(Turning Bifurc HopfBif imagHopf PerDbl TorusBif imagTori Cusp
degHopf degPD degTorus ConstPer ExtrQu stable unstable ) . Fixed names for the
different special points, stable and unstable denote temporary end points (c.f. Sec. 9.2)

VarParamCount := Integer . Number of varied parameters

Edge :=NodeNumber : EdgeSpecial { _ EdgeSpecial }VarParamCount—1  Ope string
containing the number of node pointed to by the edge and type of the points on the arc

EdgeSpecial :=(TBHiHP ToiT CdH dP dT CP Qs u ). Fixed symbols for the different
special points listed in the same order as for NodeSpecial

An example of on entry in the file (a Node) is given below.

16 : O Turning Cusp
—=> 14:0_T s 12:0_T_s

This means that node 16

1. is a steady-state (period 0);
2. is a special point (no stable or unstable item);
3. is a cusp point (the item Turning results from the fact that one eigenvalue equals 0);

4. is connected to two other nodes, namely to nodes 14 and 12, and both connecting edges
consist of points that are

(a) steady-states (item 0.),
(b) turning points (item T_),

(c) stable (item s), i.e. all nontrivial eigenvalues have negative real part.

Additionally, the file with the extension . c00 lists the connections in the meta-graph.

MetaGraph :={ Graph } EOF

Graph :=Number : EOL GraphParams {DownGraph} {UpGraph} . Sequence of graph
connections ordered by graph number

Number := Integer . The graph number

GraphParams :={ SP Param = ( Value *** ) }Paralo o1 [ist of values of fixed
parameters (indicated by a real number) and of varied parameters (indicated by ***), in case of
a large ParamNo additional EOLs can be included
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Param := String . Model parameter
Value :=Real. The parameter value
ParamNo := Integer . Number of model parameters

DownGraph :=--> SP Number SP Param = Value EOL. Current graph originates from
graph Number where parameter Param is varied additionally, this parameter has fixed value
Value in graph Number

UpGraph :=--> SP Number SP Param =*** EOL .From current graph originates graph
Number where parameter Param is varied additionally

An example of one entry in the file (a Graph) is given below (it is taken from the example of
Sec. 10.1.1).

2

r=***  sigma=10 b=2.66667
--> 1 r=20

-=> 3 sigma=***

This means that graph 2:

1. has one variable parameter, r;
2. has the fixed parameters sigma and b with given values;
3. it originates from graph 1 where

(a) parameter r is varied additionally,

(b) parameter r has fixed value 20 in graph 1;
4. from it originates graph 3 where

(a) parameter sigma is varied additionally.
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Example

In this section, we demonstrate the capabilities of CANDYS/QA by some examples.
The user interactions and the results are presented in form of the mutually interleaved
files * . inp and * . out. The following convention will be used:

e bold letters: the user inputs as recorded in file * . inp;

sans-serif letters: the corresponding questions as recorded in file * . inp;

teletype letters: file *.out, i.e. the results;

Roman letters: comments;

long sections of the file * . out without dialogue are represented by

10.1 The main course of qualitative analysis

10.1.1 The model: Lorenz system

We examine the well known Lorenz system [30, 46]. It is an autonomous system of
differential equations:

T = ox*x(y—ux)

rTHRL —XTxZ—Y

= xxy—bxz

Herein z, y, and z are the state variables, r, 0, and b are the parameters. 2

10.1.2 The methods level

The program starts with the following heading:

2A ready-to-use module for Lorenz comes with the package.
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R b b b dh Ih b b b b b b 2 dh Sh Ib b b b b b b 2 S Sh Sh Ib b b b b i J 2h dh 2h b b (b b b b J 2h Sh Ib b b b b b b g S

CANDYS/ QA

Qualitative Analysis of Model "Lorenz"

b . T S

Computer Analysis of Nonlinear Dynamical Systems

I S S S S S

R R R b S b b b b b b I b b b 2 b b I 2 b b 2 b b b 2 b b I b b b 2 b b S b b b 2 b b b 2 b b 2h 2 b b 2 2 b S 2 3

Version: 4.2.6.4

Copy right:
Max-Planck-Gesellschaft
AG 'Nichtlineare Dynamik’
an der Universitaet Potsdam

No scenarios exist so far. Thus, we start a new one (with number 1), we do not plan to
compute extrema:

N Enter scenario option
1 Enter number of scenario
0 Enter name of quantity to be extreme

khkhkkhkhkhhkhkrhrhkhkhkhkkhkhdhkhkhbhbrhkhkhkhhhkhkhrrhhhhkhkhk*k

Computation of the initial point
*khkkhkhkhkkhkhkhkhkkhhkhkhkkhhkhkkhkhhkhkkhhkhrkhkkhhkhhkhhrhkkhhxkkx*x
Choice of an invariant set (steady-states):
S invariant set type

Input of the system parameters:

Yes Do you want to change the fixed parameters
20.000 r
10.000 sigma
2.6667 b
Graph 1
Parameters:

r=20 sigma=10 b=2.66667

Input of the initial values of the state variables:
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Yes Do you want to change the initial vector
12.000 X
20.000 y
24.000 z

Choice of a method (Monte-Carlo search):
M method

Input of the control parameters of the Monte-Carlo search:

Yes Do you want to change the sizes of parallelepiped
1.0000 X

2.0000 y

2.0000 z

20 MaxSearchSteps

No Do you want to change the integration constants
1.0000E-6 EpsF

No Do you want to use a numerical Jacobian

The Monte-Carlo search is not successful:

Computed 9.8188726 16.739860 20.817469
$CANDYS-W-NOCONV, insufficient convergence

Choice of an option how to proceed with that point, here improve it:
I option
Choice of another method (evolutionary search):
E method
No change of the control parameters:
No Do you want to change the sizes of parallelepiped
The evolutionary strategy did not lead to an acceptable result either:

Computed 7.2005371 11.752617 22.934904
$CANDYS-W-NOCONV, insufficient convergence

Once again, the point should be improved:

I option
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Choice of another method (Newton’s method):

N method

Input of the control parameters:

Yes Do you want to change the parameters of Newton’s Routine
1.0000E-06 EpsF

20 Maxlterations

No Do you want to use a numerical Jacobian

No Do you want to change the integration constants

Newton’s method yields the following solution:

Node no. 1

State 7.1180522 7.1180522 19.000000
Quantity -20.513855

Nontrivial eigen values

Real -0.15479177 -0.15479177 -13.357083
Imag 8.7086685 -8.7086685 0.0000000

$CANDYS-I-0K, first point found

This point will be the starting point of the path-following;:
P option

The program enters the process of node selection. This time we have only one node,
i.e. we have the possibilities to start the path-following or to go back to the scenario
level. Let’s go to the scenario level and save the result:

0 Select node for next curve
S saving option

10.1.3 The graph-manipulating level

Then we continue the scenario. We want to make path-following starting at the only
node. Before, we have to create a new graph by the choice “?” at node 1:

C scenario option
? Enter char or node number

The program asks which parameter shall be varied, how long the initial step should
be, and other numerical control parameters (not so important at this point):

r Enter variable parameter to be varied
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0.10000 Length of initial step

No Do you want to change the parameters of Newton-Routine
No Do you want to change the integration constants

0.01000 MaxCurveStep

1.0000E-6 MinCurveStep

1.0000 MaxArcLength

0.0010 EpsPredic

The graph 2 is created and a short curve of steady-states (more precisely: two points)

is computed:

khkkhkhhkhkrhkhkhkhkkhkhhkhkhkhkhrhkhkhkhkkhdhhkhkrrhbhkhhhkhkdhdkdkhrkhk

Creation of a new bifurcation graph
hhkhkkhkhkhkkhhkhkhkkhhkhkhhkhrhkhhkhrhkhkhhkhhkrhhkhdkhhkhhkkhxkkk

Graph 2
Parameters:

r=*** gsigma=10 b=2.66667

Node no. 2

Parameters 19.930500

State 7.1050218 7.1050218 18.930500
Quantity -20.568883

Nontrivial eigen values

Real -0.15725360 -0.15725360 -13.352159
Imag 8.6942942 -8.6942942 0.0000000
Node no. 3

Parameters 20.069504

State 7.1310596 7.1310596 19.069504
Quantity -20.458585

Nontrivial eigen values

Real -0.15232729 -0.15232729 -13.362012
Imag 8.7230634 -8.7230634 0.0000000

$CANDYS-I-0OK, 2 of 2 endpoints computed

The program switches once more to the node-selection. We save the results and stop.

0 Select node for next curve
S saving option
X scenario option

$CANDYS-I-SAVE, saving scenario No. 1

10.1.4 The path-following-level

We start the program anew, we choose to restart the former scenario:
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R scenario option

Now, the program is in the same state as before saving the results (at the end of the
previous section). We want to continue the existing short curve at both endpoints, first
into the direction of larger r values:

3 Select node for next curve
Select node for next curve

o=

The limits of the curve have to be specified. Before, those variables have to be chosen
for which limits are to be set. The single varied parameter r belongs automatically to
the set of such variables. We choose that all other variable should be unlimited (by
entering the name “0”). Then the program asks for the limits and numerical control
parameters:

Yes Do you want to change the set of variables to be limited

0 Enter variable to be limited

10.000 lower limit

30.000 upper limit

No Do you want to change the parameters of Newton-Routine
No Do you want to change the integration constants

0.5 MaxCurveStep

5.0000E-5 MinCurveStep

50.000 MaxArcLength

0.0010 EpsPredic

The program switches to the path-following:

R e I S SR dh Ib b b b b S dh db db Sb b b b b b Jb Jb dh Sb Sb b b g 4

Tracing the selected curve
*hkkhhkhkhhkhkkhhkhkkhkdhhrkhkkhhhkhhkhkhhkhkhdkhkhk*xk*k

Graph 2
Curve type: steady-state stable
Parameters:
r=***  gsigma=10 b=2.66667
Limits:
r varies within [ 10.000 ... 30.000]

Node no. 3

Parameters 20.069504
State 7.1310596 7.1310596 19.069504
Quantity -20.458585

Node no. 3
Parameters 20.139012
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State 7.1440441 7.1440441 19.139012
Quantity -20.403075

Nontrivial eigen values

Real -0.14987322 -0.14987322 -13.366920
Imag 8.7374027 -8.7374027 0.0000000

A Hopf bifurcation point has been found:

Node no. 4

Parameters 24.736842

State  7.9560195 7.9560195 = 23.736842
Quantity -16.261949

Nontrivial eigen values

Real -13.666691

Imag 0.0000000

Trivial eigen values

Real 1.2066770E-05 1.2066770E-05

Imag 9.6246025 -9.6246025

HopfBif

$CANDYS—-I-0K, special point computed

Next, a stump of the branching-off curve of cycles will be computed. But the Poincaré
surface has to be chosen before:

E section mode
z Extrema of which axis
No Do you want to change the integration constants

Node no. 5

Parameters 24.735984

Return time = 0.65288830

State 8.0436799 7.9468740 23.970792
Quantity -14.767954

Nontrivial eigen values

Modulus 1.0000904 0.00013341231

Degrees 0.0000000 0.0000000

Trivial eigen values

Modulus 0.99999910

Degrees 0.0000000

$CANDYS-I-0K, 1 of 1 branches computed

The curve of steady-states is continued beyond the Hopf bifurcation point until the
limit of the parameter interval is reached:
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Parameters 24.736842

State 7.9560195 7.9560195 23.736842
Quantity -16.261949

Nontrivial eigen values

Real 0.0033408768 0.0033408768 -13.673348
Imag 9.6445951 -9.6445951 0.0000000
Node no. 3

Parameters 30.000000

State 8.7939373 8.7939373 29.000000
Quantity -10.606040

Nontrivial eigen values

Real 0.14736835 0.14736835 -13.961403
Imag 10.524252 -10.524252 0.0000000

$CANDYS-I-0K, limit of parameter interval

Now, we continue the curve at the other end, but no interesting things occur:

2 Select node for next curve

! Select node for next curve

No Do you want to change the set of variables to be limited
10.000 lower limit

30.000 upper limit

No Do you want to change the parameters of Newton-Routine
No Do you want to change the integration constants
0.50000 MaxCurveStep

5.0000E-5 MinCurveStep

50.000 MaxArcLength

0.0010 EpsPredic

*hkkhkhkhkkhhkhkkkhhkhkkhkhhkhkkhhkhrkdkkhhrkhrhhhrdkkhkxk%

Tracing the selected curve
*hkkhkhkhkkhkhkhkhkkhkhkhkhkkhkhhkkhhhkhkkhhhhkkhhdkkkhx*k*k

Graph 2
Curve type: steady-state stable
Parameters:
r=***  gigma=10 b=2.66667
Limits:
r varies within [ 10.000 ... 30

.000]
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Node no. 2

Parameters 19.930500

State 7.1050218 7.1050218 18.930500
Quantity -20.568883

Node no. 2

Parameters 19.748568

State 7.0707979 7.0707979 18.748568
Quantity -20.711796

Nontrivial eigen values

Real -0.16373540 -0.16373540 -13.339196
Imag 8.6564727 -8.6564727 0.0000000
Node no. 2

Parameters 10.000000

State 4.8989795 4.8989795 9.0000000
Quantity -24.989795

Nontrivial eigen values

Real -0.59549806 -0.59549806 -12.475671
Imag 6.1741652 -6.1741652 0.0000000

%$CANDYS-I-0K,

limit of parameter interval

We want to continue the stump of the curve of cycles at the Hopf bifurcation. Thus, we
choose node 5 (recall that it is possible to step through the list of points by repeatedly

hitting the key):

0.50000
5.0000E-5
50.000
0.0010

Node no. 5
Parameters
Return time
State

Select node for next curve

Select node for next curve

Do you want to change the set of variables to be limited
lower limit

upper limit

Do you want to change the parameters of Newton-Routine
Do you want to change the integration constants
MaxCurveStep

MinCurveStep

MaxArcLength

EpsPredic

20.384167
0.85222000
10.709513 6.8505190 27.512146
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Quantity 46.188475

Nontrivial eigen values

Modulus 1.3417274 6.5177878E-06
Degrees 0.0000000 0.0000000
Trivial eigen values

Modulus 1.0000354

Degrees 0.0000000

Here, the curve crosses the value » = 20.0, the value of r in graph 1. The operation
(3) explained in Sec. 3.3 becomes active. The program switches temporarily to graph
1 and inserts a new node there:

R 2 S Sh Ib b b b b b S 2 dh dh Sb Ib b b b b S 2 gh  gh 3

Switch to another graph

R 2 S Sh Ib b b b b b S 2 dh dh Sb Ib b b b b S 2 gh  gh 3

Graph 1
Parameters:
r=20 sigma=10 b=2.66667

Node no. 6

Return time = 0.87655293
State 10.739693 6.7827647 27.316805
Quantity 47.513367

Since no curves are branching-off from this new node, the program immediately
switches back to the path-following in graph 2:

R I d dh Ih b b b b b b 2 2 db Sb 2b b b b b b Jb JE dh Sb Sb Sb b o 4

Tracing the selected curve
*hkkhkhkhkkhkkhhkhkkhhkhkkhkhhkhkkhkhkhrkhkkhhhhkhrhkkhhxk*k

Node no. 5

Parameters 19.948673

Return time = 0.87992478

State 10.742807 6.7738236 27.288706
Quantity 47.669676

Nontrivial eigen values

Modulus 1.4107811 4.2456688E-06

Degrees 0.0000000 0.0000000

Trivial eigen values

Modulus 1.0000356

Degrees 0.0000000
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Node no. 5

Parameters 18.000000

Return time = 1.0357519

State 10.720931 6.4487004 25.926027
Quantity 50.451355

Nontrivial eigen values

Modulus . . E-

Degrees 0.0000000 0.0000000

Trivial eigen values

Modulus 1.0000447

Degrees 0.0000000

$CANDYS-I-0OK, limit of parameter interval

We have entered once more the process of node-selection. You can check that really

“” o

one more node is contained in graph 1. To this end, choose “_” and then press several
times the key. You will see that the graph has two nodes: the steady-state
(our starting point) and the cycle inserted during the last path-following.

We save the results and stop the program:
Select node for next curve

0
S saving option
X scenario option

$CANDYS-I-SAVE, saving scenario No. 1

10.1.5 A 2-parameter graph
In this section we create and build up a 2-parameter graph by the path-following of
the Hopf bifurcation in graph 2.

We restart the former scenario and select the Hopf bifurcation point (node 4) for the
creation of a new graph:

4 Select node for next curve

? Select node for next curve

sigma Enter variable parameter to be varied
0.100000 Length of initial step

The program creates the 2-parameter graph with variable parameters r and o.

R b b b 2 I b b 2 b b 2 b b b 2 b b b b b b S b b b b b b b g b b S 2 b b 2 3 4

Creation of a new bifurcation graph
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R d dh b b b b b b b 2 2 S Sh b b b b b b db dh Sh Sb b b b b b 2 b db Sh Sb b b 4

Graph 3
Parameters:
r=***  sigma=*** Db=2.66667

Node no. 7
Parameters 24.732404 9.9688798
State 7.9552757 7.9552757 23.732404

Quantity -16.018776

Nontrivial eigen values

Real -13.635645

Imag 0.0000000

Real -3.9225876E-06 -3.9225876E-06
Imag 9.6195960 -9.6195960

Hopf bifurcation

Node no. 8

Parameters 24.741508 10.030910

State 7.9568014 7.9568014 23.741508
Quantity -16.503269

Nontrivial eigen values

Real -13.697870

Imag 0.0000000

Trivial eigen values

Real -1.1883186E-05 -1.1883186E-05

Imag 9.6294368 -9.6294368

Hopf bifurcation
$CANDYS-I-0K, 2 of 2 endpoints computed

The program checks whether all 1-parameter graphs with variable parameters r or o
exist. The graph for r exists but that for parameter o does not. Thus, this graph is
created additionally originating from graph 1 (no variable parameters). Since graph 1
already contains 2 nodes (node 1, a steady-state, and node 6, a cycle), two short curves
are computed:

R S g dh Ib b b b b S 2 SR db Ib b b b b S 2 2 dh  Sh Sb b b b b i S dh db  db I b b 4

Creation of a new bifurcation graph
R b b b b b b b db b b b 4 b b I 2 b b db b b b g b b A b b b db b b b b b b I b b Y

Graph 4
Parameters:
r=20 sigma=*** b=2.66667
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Node no. 9

Parameters 9.9006347

Return time = 0.87694231

State 10.736412 6.7821632 27.306038
Quantity 48.122829

Nontrivial eigen values

Modulus 1.3984229 4.8675826E-06

Degrees 0.0000000 0.0000000

Trivial eigen values

Modulus 1.0000284

Degrees 0.0000000

Node no. 12

Parameters 10.100000

State 7.1180522 7.1180522 19.000000
Quantity -21.225660

Nontrivial eigen values

Real -0.15602733 -0.15602733 -13.454612
Imag 8.7203066 -8.7203066 0.0000000

$CANDYS-I-OK,

4 of 4 endpoints computed

Now, we can perform the path-following of the curve of Hopf bifurcations:

Do you want to change the set of variables to be limited

Do you want to change the parameters of Newton-Routine
Do you want to change the integration constants

7 Select node for next curve
! Select node for next curve
No

2.0000 lower limit

30.000 upper limit

1.0000 lower limit

20.000 upper limit

No

No

1.0000 MaxCurveStep

0.0001 MinCurveStep

100.00 MaxArcLength

0.0001 EpsPredic

khkkhkhkhkhkdrhhkhkhkhkhkkhdhhkhhhhhkhkhk*k

Tracing the selected c
khkkhkhkkhkkhkhkhkkhhkhrhkkhkhkhkhhkhhkkkhxkk*x

Graph 3
Curve type: steady-state
Parameters:

r=*** gigma=*** b=2.6666

Limits:

* ok ok ok ok kK

urve
*k Kk Kk k) %k

HopfBif

7

stable
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r varies within [ 2.0000 ... 30.000]
sigma varies within [ 1.0000 ... 20.000]

Node no. 7

Parameters 24.732404 9.9688798
State 7.9552757 7.9552757 23.732404
Quantity -16.018776

Node no. 7

Parameters 24.721929 9.8863557

State  77.9535198 7.9535198  23.721929
Quantity -15.372848

Nontrivial eigen values

Real -13.553056

Imag 0.0000000

Trivial eigen values

Real -1.3554323E-06 -1.3554323E-06

Imag 9.6067013 -9.6067013

Node no. 7

Parameters 30.000000 5.9999999

State 8.7939373 8.7939373 29.000000
Quantity 24.569711

Nontrivial eigen values

Real -9.6666665

Imag 0.0000000

Trivial eigen values

Real -1.0886650E-08 -1.0886650E-08

Imag 9.7979590 -9.7979590

$CANDYS-I-0OK, limit of parameter interval

Similarly, we can select node 8 for the path-following, and we will find that nothing
interesting happens. Thus, we stop:

0 Select node for next curve
S Enter saving option

$CANDYS—-I-SAVE, saving scenario No. 1

X Enter scenario option
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Graphics

11.1 Introduction

CANDYS/QA has now its own online graphics output module (called OG) that works
in connection with JAVA. Besides the interface to 0G, CANDYS/QA presently offers
interfaces to PGPLOT (online graphics) and GNUPLOT (post-processing). Henceforth,
graphics denotes any of them, and program stands for CANDYS/QA or the post-
processor g2gnu.

The graphics systems differ in the amount of different colors, line types and marker
types they support (only lines, markers, coordinate axes, and pure texts are plotted).
Since the lines and markers plotted by the programs represent different invariant sets
and/or special points these should also be plotted in a different fashion. The corre-
spondence between invariant sets and/or special points and their graphical represen-
tation is not prescribed by the programs. Instead, the user may provide a file graph-
ics.1mf (1mf stands for line-marker-format) containing a not necessarily complete
list of invariant sets and/or special points and their graphical representation (default
graphics . 1 fm files are available). In Sec. 11.4 the list and its treatment will be discussed
in more detail.

11.2 Use of online graphics

The online graphics opens one or more windows and performs the following opera-
tions.

e When entering the node selection process (c.f. Sec. 8.4) then the actual bifurcation
graph is plotted.

e If during the node selection process the actual graph is changed then the new
bifurcation graph is plotted.

e During the node selection process the node offered for selection is indicated by
a special marker.

115
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Figure 11.1: The outlook of the OG graphics window.

e During the path-following process the last plotted bifurcation graph (this is that
from which a node was selected) is continued by plotting in it the newly com-
puted arcs and special points. If the bifurcation graph is changed temporarily
(in the sense of Sec. 3.3) then the plot remains unchanged.

e The OG graphics provides two more windows for showing a simulated trajecto-
ries and the variation of eigen values.

11.2.1 Graphics output with ‘og’

The outlook of the graphics window is shown in Fig. 11.1. The window is divided into
four subwindows. From left to right and then top down these are

e the bifurcation subwindow showing the current bifurcation diagram;

e the keys subwindow explaining the meaning of lines and markers;

e the simulation subwindow showing the current point (i.e. the point computed
last during path-following or the one selected during node selection) as simu-
lated trajectory;

e the stability subwindow showing the eigen values (more precisely, \; or
log |Ai]) vs. the arclength during path-following (the red straight line indicates
Z€ero).

The subwindows are divided into several areas. The main parts are the canvas areas
containig the figures. The bifurcation and simulation subwindows contain some more
areas: a coordinate area and a panner area (the black square in the left bottom corner,
its meaning will be explained below).
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The configuration of the OG graphics can be controled by the following command line
options if CANDYS/QA is run under UNIX:

-g n : the graphics will contain only n subwindows
(n ={0,2,4}, default: 4)
-w width : determines the width of the bifurcation subwindow,

the other subwindows will be scaled proportionally (default: 400)

The simulation and stability subwindows are plotted by the special Handle module
oghdl. 2 If another Handle module is applied then both subwindows remain empty,
in that case the option —g2 makes sense. The option —w allows to adapt the subwin-
dow sizes to the screen size; the default works well in case of a 1280 by 1024 pixels
screen.

The bifurcation and simulation subwindows can be manipulated interactively with-
out influencing the computations. The following kinds of manipulations have been
implemented:

determining coordinates of a point

resizing the window (this works for the stability subwindow, too)

zooming the canvas area (this works for the stability subwindow, too)

moving the contents of a canvas area

writing a snapshot of a canvas area to a POSTSCRIPT file (this feature works for
all subwindows)

Determining point coordinates When the mouse pointer is moved inside the canvas
area a crosshair is drawn at the current pointer position and the position is written into
the frame area. For fine tuning, the crosshair can also be moved by pressing the arrow
keys.

Resizing The common resize manipulations of the window manager can be applied:
the subwindows are resized proportionally and the contents of the canvas areas are
rescaled.

Zooming Dragging the mouse pointer within the canvas area while pressing the
15! mouse button defines the two diagonal corners of an axis parallel rectangle which
replaces the crosshair. After releasing the button, the figure in the rectangle is zoomed-
in to the full canvas area size (or the figure in the area is zoomed-out to the rectangle
if the shift key is depressed simultaneously).

The zoom is represented in the panner area: a small rectangle within that area repre-
sents the position and size of the chosen zoom rectangle relative to the whole canvas
area. The following color convention is applied. In case of a zoom-in the small rect-
angle is black while the panner area’s background is gray; in case of a zoom-out the
colors are reversed. In each case, the black region in the panner area represents the
current canvas area (i.e. its black background) while the gray region represents the
former canvas area which has been zoomed.

’Don’t forget to set it in the makefile.
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The zooming can be repeated any times. All zoomings are stored in a stack. Older
zoomings can be recovered by a double clicking the 1% mouse button; thereby, newer
zoomings are lost. A triple click removes all zoomings. The zoomings are also re-
moved when the bifurcation graph is changed during node selection.

Moving The contents of a zoomed canvas area can be moved. To this end, the 15
button is to be dragged in the panner area. While dragging the mouse the small rect-
angle in the panner area is shifted and the same time the figure in the canvas area iis
moved to the position indicated by the small rectangle. This way, the small rectangle
acts like a two-dimensional scrollbar.

Choosing the projection The computed points and lines often contain more than
two coordinates, two of them define the two-dimensional projection currently applied.
The projection (i.e. the two coordinates) can easily be changed. Clicking on one of
the coordinate labels pops up the list of all coordinate names from which another
coordinate can be chosen.

Writing a POSTSCRIPT file Pressing the F6 function key when the mouse pointer is in
one canvas area pops up a file dialog window. After choosing a file the area contents is
written in EPS format. The colors black and white are exchanged such that the black
background of the graphics becomes the wite background of the, in general, white
printing paper.

The POSTSCRIPT file written can be slightly adapted to your needs. Below the com-
ment line “$ --- Editable entities: ---"you can redefine the name of the
headline (if the one generated automatically is meaningless), choose whether or not
the clip rectangle is to be drawn, set a scaling factor for string sizes, and redefine the
relative width of lines. The two last entities may be important when the figure is
rescaled during printing such that strings (lines) would become too small (thin) or to
large (thick) otherwise.

11.2.2 Graphics output with 'PGPLOT”

This graphics uses the online graphics system PGPLOT. 3 It is relatively poor. It pro-
vides one window only and does not allow interactive manipulations. There is only
one way to control the plot: if more than two variables are available then one can
choose the variables to be plotted. This is done during the node selection process by
pressing the & key (c.f. Sec. 8.4):

& Change the variables to be plotted

The program then asks for the names of the two variables to be plotted. The PGPLOT
graphics provides one command line option:
-g0 : the graphics output will be suppressed

3PGPLOT is a public domain software, information can be obtained via WWW:
http://astro.caltech.edu/~tjp/pgplot/ .
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11.3 Post-processor for ‘gnuplot’

11.3.1 Overview

One post-processing program, g2gnu, has been provided. It transforms the graphics
files ScenarioName.gxx into files readable by GNUPLOT. # It may be used for produc-
ing 2D-graphics or 3D-graphics of the bifurcation diagrams and converting them to
POSTSCRIPT files. The graphics files of several scenarios can also be merged in one
run of the post-processor provided that in the corresponding graphs the same param-
eters were varied. In the simplest case the several graphs overlay in one graphics. It
is also possible to plot several 2D-bifurcation diagrams having the same variable pa-
rameters but differing in the value of specific fixed parameter in a single 3D-graphics.
Here, the 3"¢ dimension is given by this specific parameter.

The files generated get a name defined by dialog with predescribed extensions. The

extension is . gpl in the case of GNUPLOT control files, and . gtx in the case of GNU-

PLOT data files, where t stands for 1 (i.e. lines) or p (i.e. points), and x stands for the

number of line or point type. The files are accessed in GNUPLOT by the command
load ’filename.gpl’

The resulting graphics is formatted such a way that

e the full bifurcation diagram is shown and that it does not touch the frame;

e the ScenarioName becomes the title, and the names of the chosen variables be-
come the axis labels;

e the axes are decorated with nice tic values;

e right to the figure the meaning of different line and point types is written (i.e.
the keys table of the figure);

e the output is set to a file with the extension .ps and the name part of
filename . gp1;

e the terminal issetto x11.

Note

The bounding box of the generated POSTSCRIPT file is not correct. To cor-
rect it, 200 has to be added to the 3"¢ number in the line which starts with
%$%$BountingBox:

11.3.2 Dialogue

The post-processor is interactive and use the input formats as described in Sec. 8.1.
After program start by the command

g2gnu
The Dialogue is as follows.

*GNUPLOT is a public domain software, information can be obtained via e-mail:
info-gnuplot@dartmouth.edu .
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. The type of graphics:

Enter plot whether a 2D-graphics, 3D-graphics, or multiple 2D-graphics in 3D
has to be produced.

Default: 2
The model:

Enter model name

Default: CANDYS

A series of questions asking for the names of parameters that are variable in the
graphs to be plotted. Entering 0 stops the series of questions.

Enter variable parameter

Default: 0

If several scenarios of the chosen model exist then a series of questions follows
asking for a scenario. Entering 0 stops the series of questions.

Enter no. of scenario

Default: 0
If a chosen scenario contains more than one graph with the variable parameters
selected in step (3), then a series of questions follows asking for a graph number.
Entering 0 stops the series of questions.

Enter graph
Default: 0

Questions asking for the names of two or three variables to be plotted:
Enter state or parameter for 1lst axis
Default: 1st variable

And so on.

Enter maximum number of cycle points

Default: 1

Enter file name (without extension)

Default: varl _var2 _var3
where varl is the name of the 1st variable to be plotted etc. (in case of a 2D-
graphics the part _var3 is omitted)

8. One more plot If “yes” then continuing with step 5

Default: No

11.3.3 Example

The example of Sec. 10 produced, among others, the graphics file Lorenz_01.g02 (i.e.
the graphics file of graph number 2 of the scenario 1). This graph is to be displayed as
a plot of x vs. r using GNUPLOT. Applying the same convention of representation as
in Sec. 10, the input is as follows:

2 Enter plot
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12 T T T T T unstable st-st
Hopf bifurcation  ©

unstable cycle --------

stable st-st -------

10 - T

6 - /// - -
4+ _
2 1 | 1 1 1
5 10 15 20 25 30 35
r
Figure 11.2: The bifurcation diagram of the example in Sec. 10
Lorenz Enter model name

1 Enter no. of scenario

2 Enter no. of graph

r Enter state or parameter for 15! axis

X Enter state or parameter for 2" axis

1 Enter maximum number of cycle points
rx Enter file name (without extension)

No One more plot

The result of GNUPLOT (via POSTSCRIPT) is shown in Figure 11.2.

11.4 The Imf file

11.4.1 Overview

The file graphics. 1fmis read in during the startup phase of the programs building up
an interior list. When a line or a marker is to be plotted and if a representation is given
in the list then it will be used for plotting, otherwise a default one is used. At the end
of the programs a new file is written that contains additionally to the representations
read in also the invariant sets and/or special points plotted with default representa-
tions. Now, you can edit the file, and the next run of the programs uses the edited
representations. This way, you can maintain the list as complete as you need.
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To be more precise, the file contains a table where each entry has three parts:

1. a characteristicx of the invariant set and /or special point to be plotted (e.g. a line
of stable steady-states);

2. the name of its key in the graphics” keys subwindow;

3. its associated line or marker format as an ASCII string.

If the same characteristic occurs several times then a later entry overwrites the former
ones.

Finally, during the termination phase of the programs a new graphics.1mf file is writ-
ten where each new entry is marked as a comment.

11.4.2 Syntax

A version of each file graphics.1mf is shipped with the CANDYS/QA sources. Nev-
ertheless, users may (and should) provide and update their own versions. In the fol-
lowing their format will be described.

1. Line structure:

(a) each entry fills one (logical) line;

(b) long entries can be split by closing the physical line with a \ (backslash);

(c) empty lines and lines starting with a # are considered as comments;

(d) the fields of each entry have to be separated by blanks;

(e) the entries may be in any order while the fields in each entry have a pre-
described ordering.

2. The 1% part of each entry consists of the following fields:

(a) the letter L or M defining the entry as a line or marker format, respectively;
(b) the number 0 in the case of steady-states, or the period in the case of cycles;
(c) the type of special point in the same format as described in Sec. 9.2;
(d) the string stable or unstable in the case of lines.
3. The 2" part of each entry is a string enclosed in quotation marks. This string is
considered as a single field: it has to be separated from the other fields by blanks

but interior blanks do not separate the string into several fields. The quotation
marks serve as separators of this part from the other parts.

4. The 3" part of each entry describers the outlook of the lines and markers by
predefined key words like red or cross (c.f. Sec. 11.4.4).
The fields in the 1% and 3"¢ part are case insensitive.

Since there are many possibilities of invariant sets and special points (e.g. the different
period length in the case of a period doubling cascade) as many entries have to be
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provided. To shorten the effort of writing such a long file, one can use the wildcard
* in each of the fields (2b), (2c), and (2d). Its effect is as follows. When an entry is
searched in the internal list and no exact match is found for a specific field then the
search is continued looking for an entry with a wildcard in the corresponding field
position. If several entries exist matching the searched one by wildcards then that is
selected matching most fields from the left.

11.4.3 Example

Typical lines of the graphics. 1mf file look like

L 0 stable "stable steady-states" green
M 1 Turning "turning point" star
M 0 Turning HopfBif "turning+Hopf" <cross

This means,

e the first entry specifies a line format while the other two specify marker formats;

e the first and last entry specify steady-states (the period length is zero) while the
second entry specifies a cycle of period length 1;

e the first two entries specify a line and a marker in 1-parameter graphs (the
characteristic contains one field) while the last entry specifies a marker in 2-
parameter graphs.

The following demonstrates how the entry selection works if they contain fields in
form of wildcards. Assume that

Ll* "_-."

Lo« *x ", "
are given and that the entry
L 1 stable

is searched for. Then both entries match and the first entry is selected since it matches
best. But if

L 2 stable

is searched then the 2"¢ entry is selected since it is the only matching one.

11.4.4 Rendering key wordss

The 1mf file for OG graphics is og. 1mf. Bifurcation lines are drawn as solid lines of a
specific color. The color is coded by one of the following color names:
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white, lightgray, gray, darkgray, red, pink, orange, yellow, green,
magenta, cyan, blue, darkred, darkgreen, darkblue, brown, khaki.
Bifurcation points are drawn as white markes of a specific shape. The shape is coded
by one of the following names:

dot, circle, square,diamond, star, plus, cross, up, down, left, right.

The last four denote triangles pointing in the indicated direction; the others need no
explanation.

The 1mf file for PGPLOT graphics is pg. Imf. Bifurcation lines are drawn as solid Iines
of a specific color. The color is coded by one of the following color names:

white grey, red, darkred, orange, yellow, brown, green, darkgreen,
magenta, blue, darkblue, cyan.

Bifurcation points are drawn as white markes of a specific shape. The shape is coded
by one of the following names:

dot, circle, square, diamond, star, plus, cross, astroide, fife_star,
david_star,delta, full_delta,david_star.

The 1mf file for the post-processor is g2gnu./lmf. Just like the POSTSCRIPT files
produced by the OG graphics the colors white and black are exchaged. Bifurcation
lines are drawn as solid lines of a specific color. The color is coded by one of the
following color names:

black, red,green, blue, magenta, cyan, brown, yellow,

Bifurcation points are drawn as black markes of a specific shape. The shape is coded
by one of the following names:

dot,delta, square, diamond, star, plus, cross.

11.4.5 Error messages

If during the reading of the graphics. 1mf file an error occurs, e.g. an unknown field
or missing quotation marks, then a warning is issued in the style of Sec. 9.3:
$CANDYS-W-FORMERROR, reason in line n

Here, n denotes the entry’s (last physical) line in the file where the error occurred,
and reason is a verbal description of the error. In the following all reasons are listed
alphabetically without any comment:

incorrect period
invalid stability
neither line nor marker
no label

not enough fields
unclosed label string
unknown field ‘field”

Moreover, the file is copied to the file graphics. 1m0. The error messages refer to this
file since during program termination a new (and correct) file graphics. 1mf is written
omitting the erreneous lines.
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If during the writing of the new file entries with default representation occur then the

warning
$CANDYS-W-FORMERROR, new formats written to file graphics.lmf

is issued. The new lines are indicated by their 2" part: “?2”.
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Appendix A

Prototype of the Model module

/* Includes */
/* */

#include "Model.h"
#include "LinAlgebra.h"
#include "Errors.h"
#include "Strings.h"
#include "math.h"

[* */
/* Functions */
[* e ——— */

voilid Model: :Rhs
(double Time, const Vectoré& X, Vector& F)

/* Right hand side of system equations:
F is a function of X and Time */
F[O] = /* ... */ ;
/* and so on for the other components of F */

volid Model: :Jacobi
(double Time, const Vectoré& X, Matrix& J)
/* Jacobian matrix of system equations with respect
to state variables: J is a function of X and Time */

J(OIO) = /* .« .. */ ’
/* and so on for the other components of J */

volid Model: :JacobiParam

127
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(double Time, const Vector& X, int Pidx, Vector& JP)

/* Jacobian matrix of system equations with respect
to parameters: JP is a function of X and Time *
switch (Pidx) {
case O0:
JP[0] = /* ... */ ;
/* and so on for the other components of JP */
break;
case 1:
/* and so on for the other cases of Pidx */
default:;

voilid Model: :QuantRhs
(const Vector& X,int Qidx,double *Q)

/* state dependent quantities */
switch (Qidx) {

case O0:

*Q = /* .. */

break;
/* and so on for the other cases of Qidx */
default:;

void Model: :QuantJacobi
(const Vector& X, int Qidx, Vectoré& QX)

/* Derivation of quantities with respect to state variables */
switch(Qidx) {

case 0:
OX[0] = /* ... */ ;
/* and so on for the other components of QX */
break;
/* and so on for the other cases of Qidx */
default:;

void Model: :QuantJacobiParam
(const Vector& X, int Qidx, int Pidx, double *QP)

/* Derivation of quantities with respect to parameters */
switch (Pidx) {
case O0:
switch (Qidx)
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{ case 1:
QP = /* ... %/ ;
break;
/* and so on for the other cases of Qidx */
default:;
}
break;
case 1:
/* and so on for the other cases of Pidx */
default:;
}
}
o * /
/* Initialization */
o * /

Model: :Model (int argc,char **argv)
{

/* Model configuration: */

ModelClass = /* autonomous, periodical, or difference */ ;
Dim = /* number of state variables */ ;

NbOfParams = /* number of parameters */ ;

NbOfOutputs = /* number of state variables to be output */ ;
NbOfQuantities = /* number of implemented quantities */ ;
hasJacobi = /* 1 if all procedures computing Jacobians

have been implemented */ ;

stiff = /* 1 if the differential equations may be stiff */ ;

/* Names: */
ModelName = /* string for names of the files created */ ;
TName = /* string for name of the
independent variable Time */ ;

PName.zero (NbOfParams) ;

PName [0] = /* string for name of the parameter P[0] */ ;
/* and so on for the other components of P */

XName.zero (NbOfOutputs) ;

XName [0] = /* string for name of the variable X[Oindex[0]]
/* and so on for the other components of X */

QName.zero (NbOfQuantities);

QOName [0] = /* string for name of the quantity QI[0] */ ;
/* and so on for the other components of Q */

/* Scales: */
TScale = /* scaling factor for Time,
normally equal to 1.0 */ ;
PScale.zero (NbOfParams) ;
PScale[0] = /* scaling factor for P[O0],

*/

14
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normally equal to 1.0 */ ;
* and so on for the other components of P *
XScale.zero (NbOfOutputs) ;
XScale[0] = * scaling factor for X[Oindex[0]],
normally equal to 1.0 */ ;
* and so on for the other components of X *

/* Initial values: */
X0.zero (Dim) ;
X0[0] = /* initial value for X[0] */ ;
/* and so on for the other components of X */
P.zero (NbOfParams) ;
P[0] = /* initial value for P[0] */ ;
/* and so on for the other components of P */
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