Universitidt Potsdam

Volker Dicken, Peter Maal3

Wavelet-Galerkin methods for
ill-posed problems

NLD Preprints ; 22



J. Inv. Ill-Posed Problems, Vol. 4, No. 7, pp. 777-777 (1996)
© VSP 1996

Wavelet-Galerkin methods for ill-posed problems
V. DICKEN* and P. MAAS*
Received February 24, 1995. Revised April 4, 1996

Abstract — Projection methods based on wavelet functions combine optimal convergence rates with
algorithmic efficiency. The proofs in this paper utilize the approximation properties of wavelets and results
from the general theory of regularization methods. Moreover, adaptive strategies can be incorporated
still leading to optimal convergence rates for the resulting algorithms. The so-called wavelet-vaguelette

decompositions enable the realization of especially fast algorithms for certain operators.

1. INTRODUCTION

A projection method for solving the inverse problem

Af=yg (1.1)

where A : X — Y denotes an operator between Hilbert spaces X and Y, and g € Y is the
given data is defined by the sequences of subspaces X, C Xp C X, M < h,and Y, C Y
growing in size with the step width k. In a realistic setting we are only given noisy data ¢°
with a bounded error ||g — ¢°||y < e. An approximate solution f, € X, is then computed
from the requirement

(Afuly)y =(d" ly)y, Vyé€ Y (1.2)

The basic question is to estimate the quality of the approximation; i.e., ||f — fu|lx, and
to determine the optimal step width A such that this quantity becomes minimal.

When choosing the function spaces X and Y}, opposing requirements have to be
met. On the one hand X} and respectively Y, should be adapted to the properties of
the operator A. From this perspective one would optimally choose spaces consisting of
eigenfunctions or singular functions of A. In this case f, could be computed from a
diagonal linear system leading to an orthogonal expansion of f,. But in general one does
not have an explicit description of the singular function system of A.

On the other hand computational efficiency demands fast algorithms for computing the
functions in X} (respectively, V) and the scalar products on the right-hand side of (1.2).
Moreover, local support of the functions in X} is needed in order to employ adaptive
strategies. Finally, the function spaces need to have good approximation properties if
optimal convergence rates are sought. These requirements are fulfilled, for example, by
hierarchically structured finite element spaces.
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A suitable compromise between these different requirements are orthogonal (or bior-
thogonal) wavelet spaces. They are hierarchically structured, allow fast recursive compu-
tations, and lead to some extent to the diagonalization of the operator A. In this paper
we investigate the advantages and disadvantages of wavelets when used as basis functions
for projection methods. The results of this preliminary investigation show that optimal
convergence rates are achieved under general conditions, but full numerical efficiency 1is
at present possible only for a special class of operators, namely, for quasi-homogeneous
operators.

We first summarize the relevant properties of wavelets in Section 2. Their approxi-
mation properties directly allow to estimate the convergence rate of wavelet-projection
methods, and they show that these regularization methods have the optimal order of con-
vergence, see Section 3. The notion of a wavelet-vaguelette decomposition is introduced
in Section 4. These decomposition techniques and, in particular, their relation to singu-
lar value decompositions and convergence results for inverse problems have been recently
investigated in a series of papers (see, e.g., [5]). In these papers the results on optimal
convergence rates were proved in terms of Bayes estimators in a stochastical setting. The
results of Section 4 show that similar results hold within the standard framework for
regularization methods. Moreover, optimal convergence rates can also be achieved in con-
nection with a simple adaptive strategy. Results of a numerical simulation are presented
in Section 5.

2. WAVELETS

In this section we summarize the main properties of wavelets as far as they are needed
in the following sections. For a more detailed introduction to the theory of wavelets the
reader is referred to [2, §].

Definition 2.1. A function ¢ € L*(R) is called an orthogonal wavelet if the set
{Ymi(2) = 222"z — k) | m, | € ) (2.1)
forms an orthonormal basis for L?(R).

Orthogonal wavelets have very pleasant theoretical and practical properties, but their
construction requires to solve a system of nonlinear equations. Instead one can use
biorthogonal wavelets. They exhibit the same algorithmic efficiency, and they are ob-
tained by solving a system of linear equations. Moreover, it is possible to construct
symmetric biorthogonal wavelets.

Definition 2.2. A pair of functions L/J,L/NJNE L*(R) is called a pair of biorthogonal
wavelets if the sets {¢pi | m,k € Z} and {¢r | m,k € Z} form the Riesz basis for
L*(R), and if any function f € L*(R) has the representation

F=30 S{F | Ymkdre - Yok

meZ keZ

For the ease of presentation we will state the results in this paper only for orthogonal
wavelets in L*(R). The generalization to biorthogonal wavelets and multi-dimensional
applications is obvious in most cases.
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A wavelet basis is labeled by two indices, the shift-index k£ and the scale-index m. If
we collect all basis functions on the same scale in the subspace

W, = span {k | k € Z}
then we obtain the orthogonal multi-scale decomposition

L*(R) = P W..
meZ
This type of multi-resolution analysis was first introduced by Y. Meyer and S. Mallat
(see, e.g., [9]). The subspaces W,, are called the scales of the decomposition, and the
projection

Quf = I_(f | Ymk)rz - Pk

kEZ
is said to represent the details of f on the scale m.
This hierarchical ordering of the wavelet basis shows its affinity to finite elements and
multi-grid methods; it is the key to construction of efficient adaptive algorithms.
Let us denote by

Vo = @ W,

<m

the subspace of L?(R) which contains all details of size m or coarser. We assume the
existence of a related function ¢ € L*(R), called a scaling function, with the property

Vo = span {pok(z) = p(z — k) | k € Z}.

Obviously, the subspaces V,, are spanned by {pmi(z) = 2™/2p(2mz — k) | k € Z}.
Since p € Vo C V; and ¢ € Wy C Vi, it follows that both the wavelet ¢ and the scaling
function ¢ satisfy the scaling equations

p(r) = V23 hi- (2 — k) (2.2)

kEZ

Y(z) = V23 gi- o2z —k) (2.3)

kEZ

with real scaling coefficients hy, gx. For example, the Haar function ¢(x) = xo(2) and
the Haar wavelet () = po1,2(2) — Xpj20(2) satisfy the above conditions with

ple) = »(22)+¢(22-1)

() = ¢22) = p(2z - 1),
The Haar wavelet is the only obvious compactly supported orthogonal wavelet. It
was the accomplishment of I. Daubechies [2] to construct a family {i)n} of orthogonal

wavelets with supp (¢¥n) = [0,2N — 1] and linearly increasing regularity. Here 1, equals
the Haar wavelet, and 1, is the solution of (2.2), (2.3) with coefficients

1+3 3+3 3-V3 ) 1-3
) ’ = 3 = .

ha = h: = ho = —
0 8 ! 8 2 g 8

The corresponding filter coeflicients g in (2.3) are given by

gk = (—1)k hon—1-k, k=0,...,2N — 1.
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For actual computations one is only interested in wavelets and scaling functions which
obey such finite scaling equations. In this case the computation of the wavelet decompo-
sition; i.e., the computation of the scalar products

k= (f | Ymr)r2 (2.4)
is particularly easy and fast. Assume that we know the values of the scalar products
o = (f lem)re (2.5)

on some fine scale L. Then, employing the scaling equations (2.2), (2.3), we obtain
recursively

= Y hegre™! (2.6)
LeZ

d;cn = Z g(_QkCZH—l. (27)
LeZ

It remains to compute the values of {c'} on a fine scale L. In a realistic situation we
are rather given discrete values fi, k € Z, of f than the function itself. Not all scaling
functions have the interpolating property like the Haar function. But they necessarily
have a non-vanishing mean value [10], [ ¢(z)dz # 0, hence 2L¢(2%x) approximates the
d-distribution, and we simply put

fr=cx
on an appropriate scale L. For a given discrete sequence {fi} of length n and a wavelet
with a finite scaling equation the complexity of computing the discrete wavelet decompo-
sition is then of the order O(n).

So far we have indicated the algorithmic advantages of wavelet bases such as the
hierarchical structure and recursive computations. For the proofs of convergence results
in the following sections the key ingredient is the approximation property of wavelets.
Any wavelet 1) has a vanishing mean value, hence its Fourier transform has a zero at the
origin. Therefore the Fourier transform of the wavelet basis

@/ka(w) _ 2—m/26—2ﬂi~2mkw 77Z}(Q—mw)

picks up different frequency bands as m varies. It is not surprising that the knowledge of
the wavelet coefficients

dil = (f | mr)12 = /f(w) i (w) dw

allows us to estimate the Sobolev regularity of f itself [3, 10]. The Sobolev space of the
order s is defined as

HY(R) = {f | (14 |«[)**f(w) € L(R)}
with the norm

I1£]ls = /R\u W) f(w)| de.

Theorem 2.1. Given a wavelet 1» € H"(R), then for every s, 0 < s < r, there exist
constants C1, Cy, 0 < C1,Cy < 00, such that for every f € H*(R) we have

awmg{2u+ﬁ%(zwmﬁyﬁs@wm

meZ keZ
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By duality this theorem remains valid for negative s as long as |s| < r. In full generality
this result extends to Besov spaces B [3].

We need a slightly different version of this theorem. By the definition of V,, and W,,,
any function f € L?(R) has the following decomposition

F=20 > &b+ D _(f | o)z - Lok- (2.8)

m>0 keZ keZ

Corollary 2.1. Assume that v, € H"(R), then for |s| < r the Sobolev norm is
equivalent to
2

I ~ 52 2 (S 1ag) + SIS e

m>0 keZ kEZ
Now it is easy to obtain the approximation result for the truncated wavelet expansion.

This will be useful in proving the convergence of wavelet-Galerkin methods.

Lemma 2.1. Let a wavelet v € H'(R) and a function f € H'(R), 0 < v < r, be
gwen. Let far, M > 0, denote the truncated wavelet expansion of f

M
=0 Y dmk + > _{f | eor)r2 - Po
m=0 kEZ keZ

Then for every real number s < v, |s| < r, the truncation error is bounded

If = fulls < C-27ME=9)| 7|,

where the constant C is independent of f and s.

Proof. The above-stated wavelet decomposition and Theorem 2.1 give

Foful? < & S 22ms(z|d$|2)

m>M keZ

— 02 Z 22m(s—1/)22m1/( Z |d2n|2)
m>M keZ

< (Gy/Cy) - 27ME 112, [ ]

If one interprets the factor 2= which equals the shift parameter on the scale M as
a step size or discretization parameter h, then Lemma 2.1 states that wavelets have the
same approximation properties as, for example, the standard finite element spaces. In
addition, the truncated wavelet expansion also satisfies the inverse property. The proof
proceeds as in Lemma 2.1.

Lemma 2.2. Let a wavelet v € H"(R) be given, and let for any function f € H”(R),
0 <v <r, the symbol fay, M > 0, denote the truncated wavelet-expansion of f

M
v = Z Z dy omk + Z(f | ok) L2 - Pok-

m=0 k€Z keZ
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Then there exists a constant C such that for every real number s < v, |s| <r, one has

1 fall < C - 2MC7| fag]..

3. PROJECTION METHODS

Let A: X — Y be a linear bounded operator between Hilbert spaces X and Y. Consider
the linear equation

Af =g.

If AX CY is not closed, then the problem of reconstructing f from a given right-hand
side ¢ is ill-posed; i.e., the set f. := {f | ||Af — Af|ly < ¢} is unbounded. Assume that

we are given perturbed data ¢ with

lg —g°lly <e.

The aim is to construct an approximation f; by some regularization method and to
estimate the difference ||f — ful/x-
A generalized Galerkin or projection method is defined by families of subspaces

{Xpr C X} and {Y,CY}

which are usually ordered so that X, C X if A’ < h. We determine the approximate
solution f5 in the subspace X} by solving

(Afulv)y =(g" [v)y, VvE€Y. (3.1)
Fix a basis for X and Y}
Xp = span{y;|j € In}
Vi = span{v; | € I}

Then (3.1) transforms into the following system of linear equations for the expansion
coefficients

fn = Zwﬂ/h‘

J€ly
Ahl' =y
where & = {z; | j € I} and where the entries of the matrix and the right-hand side y are
given by
(An)jr = (A |vj)y, g kel (3.2)
vi = (9" lvj)y. (3.3)

We assume that the subspaces Xj, Y), are chosen such that A is injective on X, hence
the linear system (3.2) has a unique solution.
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We obtain the corresponding regularization operator T},
T, Y — X
g +— Thg = fn.

Now we fix X} to be the space of wavelet functions

X = span {pok, Umk | K €Z, 0 <m < M = —log, h}. (3.4)

For ease of notation we write ¢_1 ; for ¢ from now on instead of (x/2 — k). Below
we list some convergence results for wavelet projection methods which are obtained from
the approximation properties stated in Lemmas 2.1 and 2.2 and the general theory of
projection methods.

Projection methods have been studied in numerous publications, see, e.g., [6, 7] and
the references there. We apply the results of [11] where projection methods were studied
in terms of robustness and quasi-optimality. In order to give a short summary we restrict
our attention to the least-squares method;i.e., ¥ = AXj,.

Moreover, we investigate only operators between So-
i H*(Q2) bolev spaces. We assume that A has a bounded in-

verse as a mapping between

N A: L*(Q) — H*Q), a>0 (3.5)
A: L*(Q) i.e., A is a smoothing operator of the order « in the
\ scale of Sobolev spaces.
H-(0)

Examples of operators of this type are the Radon transform (o = 1/2), Symm’s
operator (a = 1), or more fashionable pseudo-differential operators with the symbol

o(z,w) ~ (1 + |w])™*.

The stability of wavelet projection methods for pseudo-differential operators has been
studied in [1], but there the estimates were proved for the exactly given right-hand side
g, and the influence of data errors was not investigated. However this is the crucial part
when dealing with ill-posed problems.

Remark 3.1. To be precise one should distinguish a smoothing order and a smoothing
potential in the following way. Let A be a convolution operator with a kernel k € S'(R")

N

Af(a) = feh(z) = F 7 (F k@) = [ e f(w) - h(w) de,

n

Let D(A) = {f € L*(R") | Af € L?*(R™)}. The operator A is injective on D(A) if there
exists a function p € S'(R") such that p - k=1a.e. Usually A is referred to as being of
smoothing order o if k = O(|w|™®) as |w| — co. We say that A has the smoothing potential
a if p = O(r®). These two definitions agree for common operators with k(w) ~ |w|™ near
oo but differ for instance if

. n~®, if jw| € [2n,2n 4+ 1)
nf  if |lwl€2n+1,2n+2)
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which defines the operator of smoothing order «, but with the smoothing potential (.
The relevant quantity in our applications is the smoothing potential.

In order to incorporate data errors we consider A as the mapping
A: LHQ)— HY(Q), t>0
and assume that

lg — g°ll-+ <e. (3.6)

Typical values for ¢ are ¢ = 0, which allows to deal with L?-errors, and ¢+ > n/2 which
reflects the white noise over an n-dimensional space.

The last Sobolev index we need is v. It indicates an a prior: information about the
smoothness of the exact solution f

feH (), |fll<eo (3.7)

These assumptions describe the standard setup for ill-posed problems. In this context a
regularization method is called optimal if there exists a regularization parameter

hopt = h(@, Q)

and a constant C independent of f and g such that the reconstruction error of T}, g° =
fhrop, can be bounded for ¢ — 0 by

1F = Fropellzz < C (o) Het0. (3.8)

The properties of a particular projection method obviously depend crucially on the
choice of Xj, Y. The common choice Y, = AX}, leads to least-squares methods. They
have been studied in detail (see, e.g., [6, 11, 12]). There convergence properties are
governed by the quantity

B = sup {[lullzz | u € Xn, [ Aull, < 1}.

Theorem 3.1. Consider the least-squares method defined by Xy, Y, = AXy. Suppose
that for every f € X there exists u € X}, such that

If = ullzz + BullACS = w)lle < Cl ]2
where C s independent of f. Then

If = fullze < € (inf {||f — ulp»

u € Xh} + ﬁhaf).

This result follows from the standard theory (see, e.g., [6, 11]) with minor modifica-
tions, since we measure the data error in H' instead of L2
Now we can state the main result of this section.

Theorem 3.2. Let i, € H"'(R) be given. Let X, be defined according to (3.4), and
let Yy, be chosen as Y, = AXy (wavelet least-squares method). Assume that (3.5)—(3.7)
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hold for 0 < v <r, |a+t| <r. Then the least-squares method is optimal; i. e., if hopt s
chosen according to

e

then the reconstruction error is asymptotically bounded by

||f - fhopt

1/(v+a+t)
hopt =C- (E)

|12 < C(g) - e”/tHete,

Proof. Following the outline given by Theorem 3.1 we first need an estimate for

B = sup {||ullz> | u € Xn, || Aull, < 1}.

The condition (3.5) gives
[ Aall, > Colfulle.

We apply Lemma 2.2 with v =0, s =t — o, and h = 2°M
lull: < Coh'™|lufli—a < (C2/CLR || Aully, Vu € X

Hence

B < Ch'~°. (3.9)
Then for a fixed f € L*(R) we estimate the value of
= inf {JA(f = w)ll, | w € X }.

Here we use
Y S NAf = fa)lle ~ | f = Fmlle-a

where fy; € Xj denotes the truncated wavelet expansion of f. Now apply Lemma 2.1
withs=t—aand v =0

0 < Ch fl| o (3.10)

Hence the assumptions of Theorem 3.1 hold in the given situation, and we deduce the
following estimate for fr, = Thg°

If = fullze < € (inf {||f — ul|z»

Since |||, < o, we again apply Lemma 2.1 and obtain

| f = fallzz < C{h”g + aht_"‘}.

This quantity becomes minimal for the choice

u € Xh} + ﬁhaf).

1/(v+a+t)
;)

hopt =C'- (E
where C’ depends on «, t, and v. With this A we finally obtain the desired estimate
|f = fulle < C - e¥/ret) . ploatt)/lvtatt)
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4. WAVELET-VAGUELETTE DECOMPOSITION

Still the question remains whether to use wavelets at all. The rate of convergence proved
in the previous section is achieved by many other regularization methods and various
function systems like splines, finite elements, or trigonometric functions.

Wavelet-Galerkin methods will have practical significance if we are able to exploit
the main algorithmic advantages of wavelets, namely, hierarchical structure and recursive
computations. The first property will allow us to prove optimal convergence rates for an
adaptive strategy. But since fast algorithms depend on an efficient evaluation of the scalar
products (¢° | v;)y, therefore, the second property is only useful if both function systems
of the Galerkin method; i.e., {¢);} and {v;}, can be computed recursively. Below we will
study the so-called wavelet-vaguelette decomposition and the related Galerkin methods.

The starting point for this particular projection method is the observation that the
linear system (3.2) reduces to a diagonal system if {¢;} form an orthogonal basis for Xj,
and if the test functionals v; are chosen to be the solutions of

Atvj =K1

where A* denotes the adjoint operator of A, and «; is defined by the requirement ||v;|| = 1;
i.e., we consider a dual least-squares method (cf. [11]). This construction requires at least
that ; is in the range of A*; 1. e., since A usually is a smoothing operator, this demands
some regularity of Xj.

The name wavelet-vaguelette decomposition refers to the special case where X} is
given by (3.4) and where the test functionals are defined by

Y, = span {Umk ‘ A0k = EmkUmk, ||Vmk|ly = 1}-

The functions v, are called (A,)-vaguelettes if they satisfy the following additional
stability requirement. We require that two equivalent norms on Y, = span{v; | j € I} C

(ZR |Uj>Y‘2)l/2

JE€IL

Y are given by || - ||y and

or, slightly more general, we assume that the functions v,,; belong to Y™, v, € Y*, and

2) v (4.1)

is continuous for some ¢ with respect to || - ||y. We use the latter assumption for example
to deal with the white noise model Y = H-"/2(R"), Y* = H"?(R"). In the latter case
Km ought to be chosen such that

that the mapping

Y>g9g— ( Z ‘(1 + Qm)t<g | )y v

JE€IL

(U | Umk)yxy= < 1. (4.2)

The triplet {¥mk, Vmk, £mk } has properties very similar to the singular value decompo-
sition (SVD) of A, and, indeed, it may be used as an easily computable substitute for SVD
in various applications. Similarly one defines the scaling vaguelettes via A* Uk = Ak @mk-
The concept of vaguelette decompositions goes back to an idea by P. Tchamitchian; for a
more detailed introduction see [10].

The resulting projection method has been studied in a series of papers by D. Donoho
(see, e.g., [5]) in a stochastic framework. There a white noise model for the data error
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was used, and the convergence results were given in terms of Bayes estimators. Those
results have their counterparts in the Hilbert space framework used in this paper. To this
end we introduce the following simple (nonlinear) adaptive regularization operator.

The wavelet-Galerkin method studied in the previous section was based on a truncated
wavelet expansion with a fixed truncation level M = —log, h. An adaptive strategy should
allow us to add local refinements if some criterion indicates small but relevant structures
at this point.

As a local criterion we use the absolute value of [{¢° | vmk)y|. We define

Ths : Y — X
g — Thsg := fns

= 3 Y (g [y [){g | vmi)y - Akt

—1<m<M keZ

where

M (t) =

1 otherwise.

{ 0, for m > M or |t| < §(m)

Y

If we use compactly supported wavelets, then a large value of |(g | vmk)y | will indeed lead
to a local change of f,s. The support of the refinement gets smaller as m gets larger.
The cutoff levels §(m) may change from scale to scale; here we use a simple cutoff which
increases as m tends to infinity. For some 8 > 0 and p € [0, M) we choose

§-2m8, iftm>M-—pu

§(m) = { (4.3)

0, otherwise.

Now we have to optimize the regularization parameters: the number M of considered
scales (or h), the number u of scales with adaptive filtering, and 4, 3, so that the value

If = Thsg®llx

becomes minimal.
As in the previous section we consider the special class of operators. We replace (3.5),
which demands that high frequencies are damped by the operator A, by

C,-27om < |limk|, 0< () < o0 (44)

Theorem 4.1. Let the operator A have a wavelet-vaguelette decomposition {tmp, Vmk,
Kmk} satisfying (4.4). Let (3.6), (3.7) hold for 0 < v < r and a —t < r with t as in
(4.1). Then the adaptive wavelet-vaguelette reqularization method Ty s with truncation
levels (4.3) is optimal; i.e., for every § > 0 and h = C - (g/o)/ ¥+t | respectively,
M = const(p) -log(e)/(v + o + t), the truncation error is bounded by

I — fusllx < C(o) - /ot

Proof. We split the error into the data error and the regularization error

| f = frsllx < |Ifo — frsllx +11f = fullx-
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Here f,, is defined, using the convention n,(t) =0 if m > M, as

fni= Z Nm (<96 | Umk>YxY*) (g | vmk)yxye - K Yk
meZ,keZ

Observe that this is different from T} 5(g), i.e., the reconstruction obtained if the data
were unperturbed, which is the quantity usually used for defining data and regularization
€errors.

The data error is bounded by virtue of the conditions n,,(¢t) = 0if m > M, |n.(¢)] < 1,
and formulas (4.1), (4.2), and (4.4)
r

o= fasllx = X [(fa— fas | i)

meZ,keZ
€ -1 € 2
<Y ({0 [ omidyare) Bt (g = 6 [ vy
meZ,keZ
2
< const - Z Z gla=t)ym ‘(g — §° | Umk)y xy
m<M keZ

< Cp-4letIM)lg— g} < CF - AlTIM L2

Using
f= 2 (fltm) Yme= D (g]var)yxrs kn'
meZ,keZ meZ,keZ
we see that the regularization error is bounded because of the requirement n,,(¢t) = 1 for
all m < M — p and the regularity assumption (3.7)

1= Ak = X |l Tomidy ) w0 [ vt)ycre|

mEZ kCZ

Z Z ‘<f | ¢mk>X‘2 < Cf LgvM—p) ||f||§(l,

m>M—p k€EZ

IN

Thus we get
If = frsllx < Cp 2727 Mgy - 20FDM ¢,

Choosing M as above for a fixed p we get the desired result. [ ]

The estimates in this proof are quite crude for the scales with m € [M — u, M|, and
in practice we can expect better results through tuning the parameters § and (3 such that
the regularization error will not increase with p as the above estimation suggests. In
particular, in the case when the error consists mostly of white noise better results may
be achieved.

5. EXAMPLES

The existence of a wavelet-vaguelette decomposition and the requirement that {v,,} can
be computed efficiently impose some restrictions on the operator A. These conditions are
met for example by convolution operators as long as they fulfil the quasi-homogeneity
condition and partly by some pseudo-differential operators.
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Definition 5.1. We call a convolution operator A : f — fxk = f_l(f : 1%) quasi-
homogeneous of degree « if its Fourier transformed kernel k is continuously differentiable
over R\ {0}, and if there exists a function p € S’ such that p - k = 1, and for some
continuous function Q : S' — R and r(z) := ||z||2 the estimates Q(z/r) - r* k=1 +0(1)
near oo and |k| > 1/Cy > 0 near zero are satisfied.

Simple examples of quasi-homogeneous convolution operators of degree o are negative
powers of the Laplacian A~%/? with k = r= or the operators generated by l%(w) =
(1+ |w[?)=/

Below we show that for such an operator there always exists a wavelet-vaguelette
decomposition. Moreover, in order to calculate the scalar products (¢° | vmk)y xy» from
given sample values of the perturbed data one only has to calculate one vaguelette or
one scaling vaguelette per scale m; the others are obtained by integer shifts. These
functions can be calculated in advance with high precision using fast Fourier transforms.
Theoretically one could use Mallats algorithm to calculate all scalar products (g | vmg)
from the scalar products with the scaling vaguelette on the finest scale (cf. Proposition
5.2). However, this seems to be numerically unstable in most cases.

In case of powers of the Laplacian one needs even less pre-calculations: one has to cal-
culate only a single vaguelette/scaling vaguelette using the homogeneity of the Laplacian.
After that one computes all scalar products (g | v,k) and the corresponding approximate
solution fj s recursively, hence, the number of the required operations grows only linearly
with the number of sample values. This means that for the above-mentioned operators
this method could be applicable in real-time applications. Moreover, all computations are
local (provided the vaguelettes decay sufficiently fast), and the recursive computations
can be carried out faster than in the traditional approach using fast Fourier transforms.

To be more precise we give some propositions.

Proposition 5.1. Let A be a quasi-homogeneous convolution operator of the order a.
Let b and ¢ be the wavelet and its scaling function of an orthonormal wavelet basis over
R™ with qAb and ;/A) decaying of the order a4+n/2+t near co. Then A is injective, the scaled
and shifted wavelets Pk, dmr are elements of R(A*), and the functions vmi (vaguelettes)
with A v = 27 - Ypp and U (scaling vaguelettes), A*umr = 27 « dmi, satisfy for
some C, 0 < C < oo, and YM € Z, Vg € H' the estimate

2 2
lgl2<c- 3 a2 gl vmidmon—] +(1+2%)" 3 (g | urad s
k€Z,m>M keZ

Y (5.1)

If, moreover, A is continuous we also have

2 2 2
lol2 > 3 a2 lvmdwm—| + (14+24)" 3 g | ursa)ares—
k€eZ ,m>M keZ

(5.2)
for some ¢ > 0.

Proof. The proof is simple in the case when the wavelet has sufficiently many (more
than « + t) vanishing moments, and the operator A is a homeomorphism of the order «
in the scale of Sobolev spaces; i.e., A and A~! are continuous operators Vs € R

A . H+— H™
A"l . HEYY — HE.
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In this case we have ¢ = A - f for some f € H'"® and the results follow from the
well-known estimate [10]

||f||5 ~ Z (1 + 2m)5<f | ¢mk>H5><H—5

meZ,keZ
for f € H*, |s| < Regt where Reg) is the regularity of ». We have Regy > a +t by

our assumptions. In that case we have

lglle ~ [l flli-a
~ Z (1+2m)t_a<f|77Z)mk>Ht—°‘><H—t+a

mEZ kCZ

= Z 20 . (]_ + 2m)t—a<g | Umk>Ht><H—t
meZ.,keZ

~ Z ‘(1 + Qm)t<g | Umk>Ht><H—t ’ + (]— + 2M)2t Z ‘(g | uM7k>HtXH—t
k€eZ ,m>M keZ

2

A full proof of this proposition is rather technical, therefore, we only outline it here. The
difficulties arise because k may be unbounded near 0, and, for example, i may oscillate
~* and 7% near co. A complete proof may be found in [4, Chapter 3.5].

Let k denote the Fourier transformed kernel of A. We use the notation p for the
function with % - p = 1. We then observe that the Fourier transform of the vaguelettes

Uk and U,k 1s given by

between r

bp(w) = 27(FY/Dm  o=2miMhw 5 9mm )
Ui(w) = 27(@H/Dm o=2mi2hw 5 fo=myy),
Because the wavelets decay at oo and always have some vanishing moments

/n:z:ﬁ-;/)(x)dx =0, for|B] <mg

therefore, there exist constants a,b, ¢ € (0,00) such that

Umk(27™w)| < min (a AN rmo) (5.3)

Umk(27"w)] < min (a . rt_”/Z, b). (5.4)

w - r* which follows from the quasi-homogeneity
of A (withr =1 - ||2).

Applying extensions of techniques used in [2, Chapter 3.3], standard estimates on the
geometric series, and the definition of the Sobolev spaces we conclude that any family
generated by shifting any one vaguelette per scale (and shifting a single scaling vaguelette
on the coarsest scale) leads to the estimate (5.1), provided that (5.3), (5.4) are satisfied.

The estimate (5.2) follows from considering the dual family ¥,,x := 27 A, Uk =
219 A1, which exists if A is continuous, and which also satisfies equations (5.3), (5.4)
with suitable constants and with 2ac —t — n/2 substituted for ¢ —n/2. We observe further
that

<ﬁmk | Um’,k’> - <77Z)mk | 77Z)m’,k’> - 5m,m’ : 5k,k’
<ﬁmk | um’,k’> - <77Z)mk | ¢m’,k’> - 5m,m’ : 5k,k’
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if m > m’. Thus the families {vk, upk} and {Onk, G} are biorthogonal. Standard
results on biorthogonal families then give the estimate (5.2). [ ]

The next proposition gives the key to the fast evaluation of the operator Tjp,.

Proposition 5.2. With the assumptions of the previous proposition and the scaling
equations (2.2), (2.3) for the wavelet and its scaling function we have the following scaling
equations for vaguelettes

o
Umk = 2% Ry« Umni1,2k4
Iz
o
Uk = 2% G Ui 2k
Iz

A A

_ Proof. The scaling equations (2.2), (2.3) are equivalent to qg(w) = h - ¢(2w) and
Ye(w) = g - ¢(2w) for some trigonometric polynomials

ha(€) =3 hae™¢ and (€)= 3 gae™.

Let k denote the Fourier transformed kernel of A. Employing the notation p for the
function with k- p = 1 we have the following formulas for the scaling vaguelettes u,, with

U gy = To-mpUnm and A*Upk = Pk
= 1 w 7
(B h () )

F(b(2) 6-6e)

= 2% Z i+ Ty-miry - F! (}_? ng-l—l)
]

Q

Um(z) = 2

Q

= 2

= 2 R Umiiy
]

if the sequences h;, g; decay sufficiently fast to have absolutely converging sums, which is
always the case in applications.

From Th-mpUmii,n = Um+1,2k+n We derive the desired result for u,, ;. An analogous
proof yields the formula for v, k. [ ]

With the above scaling equations at hand we only need to compute scalar products
(¢° | upk) on the finest scale which can be easily done, since the vaguelettes up, on
the finest scale have small (effective) support. All the other scalar products are then
calculated using a scaled version of Mallats algorithm.

Propositions 5.1 and 5.2 yield the following theorem.

Theorem 5.1. Let A be a quasi-homogeneous convolution operator of the order c.
Let o and ¢ be a wavelet and its scaling function of an orthonormal wavelet basis over
R™ with qAb and ;/A) decaying of the order a4+ n/2 +t near oo. Then the adaptive method
for solving the ill-posed problem of reconstructing a function f € HY with ||f||, < o from
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noisy data ¢ = Af + z with ||z||-: < € described above can be applied at computational
costs that are linear in the number of sample values of the data (if pre-computations are
not taken into account) and has the optimal order of convergence v/(a+t+v) fore — 0.

6. NUMERICAL RESULTS

We conclude our paper with some illustrations. There we applied the wavelet-vaguelette
method to a homogeneous standard problem

Af =A1f=F1 (f . r_2) = /Re%i“"xf(w) - |w|? dw

where the ill-posed inverse problem consists in evaluating the Laplacian of perturbed data.
As data we used some test function constructed of splines of various degrees. We
added an e-multiple of an evenly distributed random variable to the sample values.
We performed the cutoff as well as the adaptive regularization as described above.
Both algorithms seem to give similarly good results for this example.

The figures show:
1. The data and their Fourier transform.
2. The true solution and its Fourier transform.

3. The approximate solution with cutoff regularization and M chosen too large

(M =4).
4. The approximate solution with cutoff regularization and well chosen M (M = 2).
5. The approximate solution with adaptive regularization and well chosen parameters.

6. The wavelets used (orthogonal Daubechies wavelets with 10 vanishing moments; we
denote them as Daul0) and their Fourier transform.

7. The vaguelettes used (calculated via FFT from Daul0 for the Laplace example) and
their Fourier transform.
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Fig. la. Unperturbed data: the sum of
shifted splines of orders 3, 4, and 5 re-
spectively.
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Fig. 1c. The “measured” data: our data
with 2.5% additive random noise.
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Fig. 2a. The solution: the second deriva-
tive of the sum of shifted splines.
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Fig. 1b. The Fourier transformed data.
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Fig. 1d. The Fourier transformed noisy
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Fig. 2b. The Fourier transform of the so-
lution.
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Fig. 3. The result of applying the cutoft
algorithm to the perturbed data, M = 4
(too large).
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Fig. 5. The result of applying the adaptive
algorithm to the perturbed data.
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Fig. 6a. The wavelets. Here we used
orthogonal Daubechies wavelets with 10

vanishing moments.

25

T T
"CutOffWVD_2.dat" ——
"CutOFfWVD_2.dat]" -~ ]

-10 -; (‘) ; I‘O 1‘5 20
Fig. 4. The result of applying the cutoft
algorithm to the perturbed data, M = 2
(optimal).
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Fig. 6b. The Fourier transform of the
wavelets used.
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Fig. 7a. The vaguelettes calculated via Fig. 7b. The Fourier transform of the
FFT from the Daul(0 wavelets and the vaguelettes.
Fourier transformed kernel.
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