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Abstract

The bifurcation behaviour of the 3D magnetohydrodynamic equations has
been studied for external forcings of varying degree of helicity. With increasing
strength of the forcing a primary non-magnetic steady state loses stability to
a magnetic periodic state if the helicity exceeds a threshold value and to
different non-magnetic states otherwise.

1. Introduction

A prominent objective in the theory of electrically conducting fluids is the explana-
tion of the origin of the cosmical magnetic fields, such as those of the Earth and the
Sun (for a recent account of the subject see e.g. Ref. [1]). The majority of studies in
this field has been kinematic. Kinematic dynamo theory studies the conditions un-
der which a prescribed velocity field can amplify, or at least prevent from decaying,
some seed magnetic field, completely disregarding the equations governing the mo-
tion of the fluid. The hitherto most successful branch of kinematic dynamo theory
is the theory of the turbulent dynamo [2, 3], which has supplied evidence that the
presence of kinetic and magnetic helicities is favourable for a dynamo effect. With
v, B and A denoting fluid velocity, magnetic field and a magnetic vector potential,
the densities per unit volume of kinetic and magnetic helicity are defined by

Hig =v-curlv, Hy=A-B. (1)

Simple examples of strongly helical flows are provided by the so-called ABC
flows,

v =vagc = (Asinz + Ccosy, Bsinx + Acosz, C'siny+ Bcosz), (2)

where A, B and C' denote constant coefficients. By satisfying curl v = v, they have
the Beltrami property, curlv x v .= 0, and in general (if ABC # 0), there are
domains in the flow where the streamlines are chaotic. For these reasons, they have
received much interest [4, 5, 6], notably as candidates for fast dynamos (kinematic
dynamos for which the growth rate of the magnetic field remains bounded away
from zero as the magnetic diffusivity tends to zero). The ABC flows are steady
solutions of the incompressible Euler equations. They are also steady solutions of
the incompressible Navier—Stokes equations if an external body force

f= —VAVABC = UV ABC (3)

just compensating for viscous losses (see Eq. (4) below) is applied; in this case they
are stable below und unstable above a certain critical strength of the forcing or



critical Reynolds number, respectively [7, 8]. Imposing this kind of forcing, Galanti
et al. [9] studied the complete system of the incompressible magnetohydrodynamic
(MHD) equations. Numerically simulating the system for selected Reynolds numbers
and selected initial conditions, they observed that at some critical value of the
Reynolds number a stable ABC flow without a magnetic field loses stability to a
time-periodic state with a magnetic field. In the present paper we continue the
study of Galanti et al. by systematically applying numerical methods of bifurcation
analysis. In particular, by varying the degree of helicity in the forcing, we check the
role of helicity for a dynamo effect.

2. Basic equations, truncation, and forcing

We start from the incompressible non-relativistic MHD equations,

88_‘15’+(V v)v—uAv—gradp—%gradB2+(B-V)B+f, (4)
0B

divv=0, divB=0, (6)

where the density has been set equal to unity, v and n denote the (constant) kine-
matic viscosity and magnetic diffusivity, respectively, p is the thermal pressure, and
f an external body force (see e.g. Ref. [10]).

We apply periodic boundary conditions on a cube of side length 27, which is
equivalent to considering the motion on the torus 7% = [0, 27] x [0, 27] x [0, 27]. The
mean values of v and B, and consequently also of f, are assumed to vanish,

vd®x =0, B d*x = 0, fd’x =0. (7)
T3 T3 T3

Let vy, By, px and fi denote the Fourier coefficients of v, B, p and f for wave
number k € Z*, k # 0. In Fourier space Eq. (6) takes the form

Vk~k:0, BkaO (8)
and is automatically satisfied if we write
vi— el + e, By = BUe® + BPe  fork£0,  (9)

with (real) “polarization” unit vectors ef), ef) perpendicular to k,

eff) k=0, ef(l) -ef) =0, eff) . eff) =1, eﬂ = eff), i=1,2. (10)

By using these representations for vy and By we furthermore get rid of both the
thermal, grad p, and magnetic, grad B?/2, pressure terms in Eq. (4) and arrive at
the following infinite-dimensional system of ODE:

dv(j) N N N .
= k) i Y 5 (e o) (e, Wlu, — B B+ 10, (1)
piziaﬂ 1
p#0,



dBY) N 2w (s (B o) .8 o) p(8
=B -1 3 3 (e o) el BBy, — o B (12)
peZ? a,f=1
p#0.,k

flij) on the right of Eq. (11) is defined by
) =6l j=1,2. (13)

In our numerical calculations, an isotropic truncation in wave number space
has been used, following Lee [11, 12], who segmented k space into successive shells
n?—n<k?®<n’ +n,n=172,---. In most of our calculations we have taken into
account three shells, corresponding to 89 k-vectors, which amounts to studying a
system of 712 ODE. But partially, to test the influence of the degree of truncation,
up to 9 shells were included in the computations, corresponding to 1847 k-vectors
and 14776 ODE, respectively.

Our forcing has been a generalisation of the ABC forcing (Eq. (3)), given by

f=v((1—=XN)vape +AVyge), (14)
where
Vaigo = (—Acosz — Csiny, —Bcosx — Asinz, —C cosy — Bsinx) (15)

and )\ is a parameter varying between 0 and 0.5. v g satisfies curl v g = —Vipe,
and for A = 0.5 its addition in the forcing term “kills” the helicity on average in the
volume, while A = 0 corresponds to the original ABC forcing.

Restricting ourselves to the case

A=B=C=f, v=py, (16)
we have, following Galanti et al. [9], defined a Reynolds number

_I_f
==

R (17)

R and A have been our bifurcation parameters.

3. Results

For weak forcing (small R), there exists a stable stationary solution — in the case of
A = 0 just the ABC flow — with vanishing magnetic field, and all system trajectories
are attracted by this solution. While keeping fixed the value of A, we have traced
the steady-solution branch for varying R by means of a predictor-corrector method,
in each step calculating, in order to detect bifurcation points, the eigenvalues of the
Jacobian matrix. For A < 0.4 the steady state loses stability in a Hopf bifurcation.
Table 1 summarizes for the case of A = 0 the values of the Reynolds number at
which the Hopf bifurcation appears for different truncations. A dependence of the



Number of Number of Critical R for
shells in k space | modes (equations) | Hopf bifurcation
2 0 (320) 16
3 89 (712) 5.7
1 194 (1552) 12.7
5) 369 (2952) 8.2
6 594 (4752) <12.5
7 895  (7160) <11.0
9 1847  (14776) <12.0

Table 1: Reynolds number at which the Hopf bifurcation was observed for different
truncations in wave number space in the case of A = 0.

critical Reynolds number on the degree of truncation is discernible, with a tendency
to higher values for weaker truncation. The latter may be due to an increase of
the energy dissipation with increasing number of modes. Because of a very long
run time of the program calculating the eigenvalues of the Jacobian matrix, for the
cases with more than 5 shells in k space only upper bounds for the critical Reynolds
number are given, obtained from simulations of single trajectories.

In the following we present results obtained by applying the three-shell trun-
cation. These are likely to be representative of the system at least for Reynolds
numbers not too far above the critical value for the first bifurcation of the original
steady state.

The type of the first bifurcation, as well as the character of the time-asymptotic
states after this bifurcation, change at A = 0.4. While for A < 0.4 a magnetic
periodic state is the (only) new attractor, for A between 0.4 and 0.5 new non-
magnetic states emerge.

The original steady state has been traced also in the region beyond the first
bifurcation, where it is unstable and where it undergoes secondary bifurcations. The
locations of primary and secondary bifurcations in the parameter plane are shown in
Fig. 1. Thick solid and dashed lines, respectively, indicate the primary bifurcation
of the original steady state. For 0.4 < A < 0.49 the Hopf bifurcation is preceded by
a bifurcation in which two real eigenvalues of the Jacobian matrix become positive;
these two eigenvalues are equal already before the bifurcation, due to one of the
symmetries in the system. The bifurcation results in three coexisting new stable
stationary solutions, which can be transformed into each other by certain elements
of the symmetry group of our problem (which is a subgroup of the symmetry group of
the MHD equations with the original ABC forcing [5]). For A = 0.4 this bifurcation
occurs simultaneously with the Hopf bifurcation.

At A = 0.49, showing up as a kind of cusp in Fig. 1, the primary bifurcation
changes its character again, namely from the real bifurcation observed for A < 0.49
to another Hopf bifurcation for A > 0.49. This Hopf bifurcation leads to a non-
magnetic periodic state. At the cusp-like transition point the imaginary part of the
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Figure 1: Locations of primary and secondary bifurcations of the original stationary
solution in the A\-R plane. Solid line and dashed-dotted line: a single pair of complex
conjugate eigenvalues crosses the imaginary axis; dashed line: two real eigenvalues
pass through zero; dotted line: two pairs of complex conjugate eigenvalues cross
the imaginary axis. Asterisks indicate points at which, by means of simulations,
non-magnetic chaotic (Shilnikov-like) time-asymptotic states have been found, while
circles correspond to magnetic periodic attractors.



pair of complex-conjugate eigenvalues responsible for the Hopf bifurcation to the
right is zero, and the complex-conjugate pair coincides with the real pair responsible
for the bifurcation to the left.

The new stationary and periodic solutions bifurcating from the original station-
ary one for 0.4 < XA < 0.5 are stable only over very small intervals of the bifurcation
parameter R and lose their stability directly to non-magnetic chaotic states. The
presence of chaos has been verified by calculating, for selected values of the bifur-
cation parameters, the largest Lyapunov exponents. For these calculations we have
used the algorithm of Shimada and Nagashima [13]. Fig. 2 shows for A = 0.45 and
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Figure 2: The 5 largest Lyapunov exponents for A = 0.45 and R = 17.

R = 17 the 5 largest Lyapunov exponents in dependence on the integration time. A
good convergence is discernible, as well as that at least one exponent is positive.

The chaotic attractors found here look all similar. They are strongly suggestive
of Shilnikov-type homoclinic chaos (see Fig. 3) and their appearance seems to be
connected with the degenerate bifurcation at A = 0.4 (crossing of solid and dashed
line in Fig. 1). In problems with two parameters, the occurence of homoclinic
orbits in the vicinity of such points of degeneracy is a generic phenomenon (see e.g.
Ref. [14]).

In Fig. 1, asterisks indicate points at which non-magnetic Shilnikov-like chaotic
attractors have been found. The non-magnetic chaotic domain extends also to A
values less than 0.4, there causing a disappearance of the dynamo effect already
present at smaller Reynolds numbers, which is reminiscent of the “windows” in
dynamo action found in kinematic studies [6].

Finally, we wish to emphasize that in the present paper we have dealt with the
behaviour of our system only for Reynolds numbers below or slightly above the first
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Figure 3: Chaotic attractor for A = 0.45 and R = 17.

bifurcation value. Subsequent bifurcations, as well as the role of the symmetries in
the system, are presently under investigation.

4. Conclusion

It has been shown by a bifurcation study of the complete system of the MHD
equations with a generalised ABC forcing that the transition from an always existing
stable stationary solution to time-dependent states is decisively influenced by the
degree of helicity in the forcing. If the helicity exceeds a certain threshold value, a
Hopf bifurcation leads to a magnetic periodic state (dynamo effect). For helicities
below the threshold value the transition is more complex, but always the ensuing
time-dependent states (including chaotic ones) are non-magnetic.
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