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Introduction

The present paper is related to the problem of approximating the exact so-
lution to the magnetohydrodynamic equations (MHD). The behaviour of a
viscous, incompressible and resistive fluid is exemined for a long period of
time.

We follow the strategy introduced by several authors to approximate the
solutions of the Navier-Stokes-Equations (NSE). The existence of a finite
dimensional global attractor and a finite number of determining modes of
the two-dimensional NSE ( cf.[4],[5] ) shows that the long time behaviour of
these equations is determined by a finite number of parameters.

This justifies the approximation of the solutions by the linear Galerkin
approximation associated to the eigenvectors of the Stokes operator.(cf.[4])
In order to obtain a better approximation it was pointed out that the long
time behaviour of two-dimensional turbulent flows is mainly controlled by a
finite number of modes related to the Stokes operator and that the higher
modes remain small for a large time. ( cf.[6] )

Let u be the solution to the abstract evolution equation in an appropriate
Hilbertspace

d
— 4+ Au + B) = f, (0.1)

where A is the Stokes operator and B is a nonlinear quadratic operator.
(0.1) can be written as a coupled system of equations for p and ¢, where p
denotes the projection of u onto the finite dimensional space, spanned by the



first m eigenvectors of A ( lower modes ) and ¢ the projection of u onto the
infinite dimensional space spanned by the remaining eigenvectors ( higher
modes ),

C(i]—f + Ap + PB(p+q) = Pf, (0.2)
d
=+ A+ QBp+q) = Qf . (0.3)

P and @ are the projectors onto the finite and infinite dimensional spaces.
The results of Foias, Manley and Temam ( cf.[6] ) show that a reasonable
approximation of (0.3) is given by

Ag + QB(p) = Qf . (0.4)
This led them to introduce the finite dimensional manifold My by :

g = ®(p) = AHQf — QB(p) . (0.5)

Another type of approximate inertial manifolds for two-dimensional turbu-
lent flows containing all stationary solutions has been examined by Titi.
(cf[12])

The fact that the two-dimensional MHD-equations have finite dimensional
global, universal attractors and a finite number of determining parameters
(cf.[1],[8],[9]), inspires us to justify the definition of an approximate inertial
manifold similiar to (0.5) for two-dimensional MHD-equations.

The main purpose of this paper is to show that this manifold yields a
better approximation than the linear Galerkin approximation.

The plan for our paper is the following.

In section 1 we describe the problem under consideration whereas in section
2 we give a precise functional setting of the problem. Section 3 is related
to a few existence and uniqueness results. In section 4 and 5 the main re-
sults are presented: norm-estimates for higher modes of the solutions to the
MHD-equations and estimates of the distance between the attractor and the
approximate inertial manifold.



1 The magnetohydrodynamic equations

The equations, we are interested in, are given in a bounded domain  C IR?,
occupied by the viscous, incompressible and resistive fluid. The unknown
functions u, B and p denote the velocity of the fluid, the magnetic field and
the pressure of the fluid, respectively.

We shall suppose that the density p at time ¢ = 0 is equal to a prescribed
constant pg . The incompressibility yields that the fluid is homogenouos at
time ¢t > 0. For the sake of simplicity we set py = 1.

The nondimensional form of the MHD-equations for viscous, incompressible
flows is the following ( cf.[2],[8] ):

1 1
@ + (u-V)u— —Au+ Vp+ SV(—B2) —-SB-V)B=f in Q (1.1)
ot Re 2

0B 1 .
E—i—(irV)B—(B-V)u—ﬁAB—O in Q (1.2)

divu=0 inQ , div B=0 in Q (1.3)

p,u, B are nondimensional quantities, f represents a nondimensional
volume density force. The nondimensional numbers are:

- the Reynolds number Re ,

- the magnetic Reynolds number Rm ,

- the number S = M?/Re - Rm, where M is the Hartman number.

We complete (1.1) - (1.3) by initial and boundary conditions upon u and B.
Let 092 denote the boundary of €2 and 7 the unit outward normal along 0f).

u(z,0) = ug(z) , B(z,0) = By(z) x €0 (1.4)
u=0 , B-n=0 , cul B=0 on 0N (1.5)



Remark:
Since we consider the space dimension N = 2, we define the operator curl
for every vector function ¢ = (1, ¢2) as follows:
curlp = O¢2 _ Oe1 .

8951 8.7}2
The two dimensional case means that the region is a cylinder 2 x IR,
Q) C IR? , and all quantities are independent of 23 , u and B beeing parallel
to the x1, rs-plane.

2 Notations and precise functional setting of the
problem

Let  C IR? be a bounded domain with Lipschitz-boundary 992 € C%! By
LP(Q), LP(Q,IR?),1 < p < oo ; WEP(Q), WFP(Q, IR?),1 < p < oo,
k=1,2,...; we denote the usual spaces of real valued or IR*-valued
functions defined on €.

WEP(Q) and WEP(Q, IR?) are subspaces of W5P(Q) and Wk2(Q, IR?),
respectively, consisting of functions vanishing on 0€2.

If there is no danger of misunderstanding we shall write shortly LP for LP(2)
as well as for LP(Q, IR?) and WkP for WkP(Q) as well as for WP (Q, IR?).
If E is any Banach space and (0,T) an intervall of the real axis we denote
by LP(0,T; E),1 < p < 0o, the usual space of functions defined on (0,7
with values in E. As usual let E* be the dual space of the Banach space E.

Let
(1) = [ (@) pla)ds
Q

denote the usual scalar product in L?(2).

Next we introduce the spaces, used in the theory of MHD-equations
( cf.[6],[9] ). They are :

Vi={ o€ CX(Q,R?) ; div ¢ =0 },

i={¢c€ W&’2(Q,IR2) ; div o =0 } ( the closure of V; in WhH? ) |



Vo={ deC®Q,R?) ; div®=0; ®-n=0 on 99 },

Vo={ ®cWh2(Q,IR?) ; div ®=0; ®-n=0 on 09 },
( the closure of Vo in W1?)

H := the closure of V; in L? = the closure of Vs in L2.

These spaces are equiped with the following scalar products. We define for
all g, € Vq:

(e =3 (28,20

i=1

which is a scalar product in V; and thanks to Friedrich’s inequality in W12,
Further we define (cf.[8] ) for all &, ¥ € V,

(®,9))g := (curl®, curl¥) ,

which is a scalar product in V5. The norms || - [[v;:= /((+,+))i in Vi (i=12)
are equivalent to the norm of W12, So we have :

N

lellwie < ar-llelvi s Tellv < ozl @llwre VoeW,
[ellwie < Bi-llellve 5 Tellve < B2l @ llwre VeV,
ar=a1(Q) , aa=02(Q) , i =05(Q), o= (2 =const >0 .
Finally we mention that the injections
VicHcCVS , WwWCHCVS

are compact and continuous and each space is dense in the following.

Let us introduce the operators related to the MHD-equations.
We define two linear continuous operators A, € L£(V1, V*) and Ay € L(Va, V)
by setting

<Aip,p > = ((p,9))1  for all p,peVy

<A@,V > = ((@,0))y for all &, ey .



We can also consider A; and As as unbounded operators on H whose
domains are :

D(A)={ eV, lipeH },
D(AQ)Z:{ Pely AQ(I)EH}.

In order to characterize D(A;1) and D(Az) we state the following well-known
results :

Lemma 2.1:

Let g € V}* be given. Then ¢ € V} is a solution of A;¢ = ¢ if and only if
there exists a function p € L?(£2) such that:

—Ap+gradp = g , dive = 0.

Furthermore if ¢ € H then there hold ¢ € Vi N W22, p € W2 and there
exists a constant ¢; = ¢1(€2) such that:

e llwze +1Ipllwrz < ellglie-

Thus we have D(A;) = W22nV; (cf. [8]).

Lemma 2.2:

Let g € H be given. Then ® € V; is a solution of As® = g if and only if ®
satisfies:

—Ad = ¢ in £,
div & = 0 in €,
®o.n =0 on 0f),

curl @ = 0 on 0f).

Furthermore there exists a constant co = co(2) such that :

@ llwze < callglie-



Thus we have D(As) = W22N 1V, (cf[8]).

The linear operators A; : D(A;) C H — H (i = 1,2) are symmetric on the
real Hilbertspace H with c/(D(A;)) = H and A; are strongly monotone, i.e:

(Aig, ) > cllel? V p € D(A;) and fixed ¢ > 0.

Since the operators A; V' H — H are linear, compact and self-adjoint,
there exist complete families of eigenvectors v; of A; and w; of A, which
are orthonormal in H ( cf. [13] ):

Ajvj = Ajuj ji=1,2,...

O< A< X<... )\‘7'—>OO as  j — oo,
Aij:/J,jwj j:1,2,...
O<pur Spe <. i — 00 as  j — oo.

Let P} and P2 denote the projector in H onto the subspace of H spanned
by the first m eigenvectors vy, ..., v, of Ay and wy,...,w,, of Ay, respec-
tively. We write QL, = I — P}, and Q2 =1 — P2.

There hold the following well-known estimates:

—1/2 —1/2
lel < X% el > 190 < i1 @
VoeVy, eV
—1/2 —1/2
lelv < NP2 1Al 1@y, < 77 A |
V g€ D(A) , ®€D(A) ;
—1/2 —-1/2
lele < MYl > 1®0e < wltl®lw

VoeQuH , ®eQnH ;



—1/2 —1/2

el < Anfa Al 5 1@l < ppfy A2 |2

VeocQLH , dcQ’H .

We define now a trilinear continuous mapping b on
LA(Q, IR?) x W12(Q, IR?) x L*(€, IR?) by setting:

2
b(p, 9, &) = Z/%

oy
i <& da .

(2.1)

Due to Hoélders inequality this integral makes sense. We have ( cf.[6],[8] ):

b(p,p,0) =0 for all pe Vo Y€ wh2,

b(907¢7§) = —b(@,f,dJ) for all pE V2 ¢7§ € W172~

Thanks to (2.1) we can define a continuous bilinear operator
B from V; x V; into V}* (i=1,2) by

< Blp,¥), & > == b1, 8),

which satisfies :

1< Blp, ), &> < di- [l @ llpa- 11 llvi - 1€ llga
v SOELAI? Q/JEV;: 66L47 d1:d1(9>7

|< B, ),& > < do- | @ llzeo - 1% llv; - 1l € [l2
VSOEL(X)? Q/JEVYi? £EL277d2:d2(Q)'

This is a simple consequence of Holders inequality.

(2.2)
(2.3)

(2.4)

(2.5)



Definition:

Let Re, Rm, S, T be positive real numbers and (0,7) an open intervall of
the real axis.

Let f € L?(0,T; V) and ug, By € H be given. A tupel (u, B)

u € WH2(0,T; Vi) N L2(0,T; V1) , B € WH2(0,T; V) N L2(0,T; Va)

is called weak solution of (1.1) - (1.5) if:

%(U(T),(p) + %<A1u(7),4p> + < Bu(r),u(r)),o> —... (2.6)

..— S <B(B(1),B(1),0> = (f(1),9) VYoeW, faa. 7€(0,7T)

w0 =ug , B(0)=By . (2.8)

( f.a.a. stands for ” for allmost all ” )

Remark:
Every function in L?(0,7;V;) N Wh2(0,T;V;*) i = 1,2 is continuous on the
closed intervall [0, T] with values in H. Therefore (2.8) is meaningful.



3 Existence, uniqueness and regularity results

In this section we state an existence result of Temam and Sermange which
we need in the following. Furthermore some useful estimates are given.

Theorem 3.1: ( Temam , Sermange cf. [§8] )

(i) For f,ug, By given with f € L?(0,T; V) , ug, By € H there exists a
unique weak solution (u, B) of (1.1) - (1.5).

Furthermore u and B are analytic in ¢ with values in D(A;) and D(As),
respectively (¢ > 0) and the mapping ug, By — u(t), B(t) is continuous
from H x H into D(A;) x D(Ag) ,V t € (0,T).

(ii) If f € L*(0,T; H) is defined by

ft) == f , feH faa te(0,7), (3.1)
ug € V1, By € V5 , then the weak solution (u, B) satisfies:

” u(t) ||V1 < My || B(t> ”V2 < M; tfaa te (O7T) )
where My, My € IR , My, My = const > 0 ; M;y,Ms are independent of T'.
(iii) Let ug € Vi , By € V5 be given and let f be defined as in (3.1) for
0 < T < oo. Then the weak solution to (1.1) - (1.5) satisfies, for every
ap>0: we L®ap,T;D(A1)), Be L®(ap, T;D(A2)) and :

| w®) lwze < Mz, | B(t) [lwez < My Ve (a,T) ,
where M3, My € IR ; M3, My = const > 0 ; M3, My are independent of T .

Before turning to the main theorem we note some a-priori estimates.

Lemma 3.2:
(i) The embedding W12(€, IR?) into LP(S2, IR?) is continuous for p € IR ,
1<p<ooand

el < m lelwe Ve € WH(Q,IR?) ,

( 1 does not depend on ¢ ).

10



(ii) The embedding W22(Q, IR?) into L>®((2, IR?) is continuous and

[olize < 72 [l @ llw2e Ve WH(Q,IR?)

( 2 does not depend on ¢ ).

Lemma 3.3: (Gronwall’s Lemma)
Let y be a positive locally integrable function on (0, 00) such that dy/dt is
locally integrable on (0,00) , and wich satisfy:

d

d—?;(T) <a-y(r)+b Vr>0 ; a,b=const>0
b

then : y(r) < y(0)-exp(a-T1)+ - V>0 .

Lemma 3.4: (Young’s inequality )

1
b? | Va,b,e >0, 1<p,q< o0, q:L.

a-b < Eap
p—1

+
p q- 5‘1/1)

4  Statement and Proof of the main theorem

From now on we assume f to be defined as in (3.1), ug € V1 and By € V5. To
state the main theorem we fix an integer m € IN and set for every solution
(u, B) to (1.1) - (1.5)

u=p+q  p=Phu q=Qnu ,
B=P+Q P=P:B Q=Q*B ,

and we show that after a transient period ¢ is small in comparison with u
and @ is small in comparison with B, supposing that m is sufficiently large.

11



Theorem 4.1:
If m is sufficiently large then for any solution to (1.1) - (1.5) there hold the
estimate:

la@) 2 + 11 Q) e < (11900 llz2 + 1 Q(O) I3 ) exp(—kot) +...

oot Lo(Amt1s Bm+1) Vi>0,

1 1
where ko = fiyp41 - min <— b

Re . Oqﬁg, R—m

) and Lo - 0asm — oo.

Proof:
We consider (2.6) and (2.7) with test functions ¢ = ¢(t) and ® = Q(t)
V t € (0,T) and obtain because of the symmetrie of the projectors:

1d
2 dt

1
lallz: + 2ol ¢l = - (4.1)

o= — <Bu,u),q> + S<BB,B),q> + <QLfq>,

1d

1
QI + = 1QIE, = (42)

.= —<Bu,B),Q> + <B(B,u),Q >

12



Next we add (4.1) and (4.2) and by virtue of (2.4) and Lemma 3.2 we esti-
mate the right hand side :

1d
2 dt

1d

1 1
lql7. + 5@”@”%2 +E||(I||%/1 + ﬁ”@ll%@ <...

o Sdi(lu g T llwee + S 1B llga - Al B llwaz)- Mgl +...
ot di(lullpa - (1 Bllwre + [ Bllps -l wllwez) 1 Qs +-..
ot QS e - gl <
<Dy lglwiz + D2 1Qllwre + | Quf llze -l allwre <.

<Dr-arlalvi + Do B Qlhve + ar | Qufllz - gl <-..

(Young’s inequality )

1 1/ 1 L 0
S5 miReD e} + ——— [}y + St Rm DB
2- € Hmt1
1 L 12 1
ot QIR + JuniiReat- | Quflf: + ——— lalf; .
2-Rm - p,)5, 2-Re - pyy g
where

D, = 2-d1-7%-<M12 + S-M1'M2> )

13



Dy = 4-dy-S-~v} M- M, .
From (4.1) and (4.2) we conclude:

d 9 d 9
Glalt + Z1QU: +...

2 2 —1/2 2 1 —-1/2
2 2
oo+ “anl <R6_R€Mm+l> + ||Q”V2 (%_%anrl)g

< w2 (a}-Re-D} + B-Rm-D}- + o}-Re | QLf |22 ) .

Hence, assuming that m is sufficiently large the last inequality yields:

d d
Glalte + Z1QI +...

(1 b 1 2 2
st HmJ“l'mln(E'al-ﬁQ ; %> (||CI||L2+||Q||L2) S

1/2
< w2 (a2 Re-D} + B2-Bm-D? + o} Re || QLf |2 ) .

Applying Gronwall’s Lemma we obtain:

la@ 1B + 1QW I3 < (140) I3 + 1 Q) B2 )exp(—kot) +...

14



1
el (aFReDY 4 2R DE 4 afeRe | QLS I )

(1 B 1
Vi>ayg>0, where kg = Mmﬂ'mm(ﬁ.al-& , Rm)

Theorem 4.2 :
If m is sufficiently large then for any weak solution to (1.1) - (1.5) there hold
the estimates:

(i)
1
| q(t) ||%/1 < M7 exp(—t-Ams1) + E'Ll(AmH)

Vit>ay>0,where L1 — 0asm — oo ,

(ii)
QW) I}, < M;-exp(—t-pimi1) + — - Lo(pmt1)

Vit>ay>0, where Ly — 0 as m — o©
Proof:
ad (i) : Since u ( and so ¢ ) are analytic in ¢ with values in D(.A;) (2.6) yields :

4,
dt

(t) + %Am(t) + Bu@®),u®) — S-B(B(),B(t) = f in L2
(4.3)

Taking the scalar product of (4.3) with A;q(t) in L? for all t € (ag, T) we

15



find:

1d

1
- 2 —_— 2 = ...
s lall + = Il Al

.= (Blu,u), Arq) + S-(B(B,B),Aiq) + (QLf Aiq) .

By virtue of (2.4), (2.5) we obtain :

—— — <...
SZ el + = Al <

e Sd lullzee - T llve - Avg e+

(4.4)

cotdi Sz - Bllve - L Agllze + 1 Quf Nz - I Avgllzz <.

( Young’s inequality )

1

2 1/2
...S§D3')\Tr{+l

1
‘Re + ——7—— Il Aigllf2

2')‘m—l-l' €

where

Dy = dy-y(Ms-My, + S-Ms-M) + || QLS |12

We conclude now :

d 2 1 ~1/2 1/2
Glalty + 1Al (5 - ) < D Re

Re Re
and if m is sufficiently large :

d 1 1/2
2l + M gl = < DAk - Re .

16



Applying Gronwalls Lemma we obtain :

D? - Re
Il a(t) ||%/1 < [ g(ao) ||%/1 exp(—t - Amy1) + 31T
m+1
2 D3 - Re
o S MY exp(—t- Amp1) + i Vt>ap>0.
m—+1

ad (ii) : Since B (‘and so @ ) are analytic in ¢ with values in D(.Ay) we infer

from (2.7) :

d 1 - ~ . 12

%B(t) + ﬁAgB(t) + B(u(t),B(t)) — B(B(t),u(t)) = 0 in L%
(4.5)

Taking the scalar product of (4.5) with A2Q(¢) for all ¢ € (g, T) we find :

1d 1
SINQI + o 4RI =

By virtue of (2.5) Lemma 3.2 we obtain :

1d

1
SN QIR, + o 1 AQ e < e B e+ | A2Q e+

ot dy | Bl - T flvy - | A2@ e <

(Young’s inequality )

1 1/ 1
<< Sl - Bm-DY 4 P el O]
R

where Dy = dg-’}/Q'(Mg,'MQ + M4-M1)

17



Therefore :

d 2 1 1/2 2
—1QIR, + 14QI|7:- - < i1 Re D
dt Vo L Rm Ry . M%_QH m+1 4

and if m is sufficiently large :

d 1 1/2
pm 1Q I, + wmer | QI T < Mn{ﬂ -Re- D}

Applying Gronwalls Lemma we obtain :

Re - D?
1QW) I < 1l Qo) Iy - exp(—t- pimg) + “ogd <.
:U’m—i-l
2 Re . Dz
oo <My -exp(—t- pmy1) + 7% Vi>a>0.
N’m+1

5 The approximate inertial manifold

As mentioned in the introduction we are going to improve the linear Galerkin-
approximation from section 4 by definition of a finite dimensional manifold
M.

We consider the projection u = p+ ¢ and B = P + @ for any solution to
(1.1) - (1.5) and write these equations equivalently as a coupled system of
equations for p,q and P, Q@ :

%p(t) + éfhp(t) + PuB(t) +q(t),p(t) +4(t)) —... (5.1
..— S-PLB(P(t)+Q(),P(t)+Q(t) = PLf in L?Vte(0,T),
%q(t) + éﬁhq(t) + QuB () +a(t),p(t) +9(t)) —... (52)

18



= S-QLB(PH)+Q@E),PH)+Q1) = QLf inL*Vte(0,T),

%P(t) + %AQP(t) + P B(p(t)+q(t),Pt)+Q1) +... (53)

o4+ P2B(P)+Q(@t),pt)+qt) = 0 in L?2Vte(0,T),

S0 + 2 QM) + QLB )+ gt P+ QW) +... (5.4)

4 QEB(P)+Q),p(t) +q(t) = 0 in L2 Vte(0,T) .

The results of chapter 4 show that an acceptable approximation to (5.2) and
(5.4) is given by :

éth(t) + QuB(p(t),p(t) — 5-QuLB(P(1),P[) = Qnf , (55)
and

%AzQ(t) + QnBp®),P(1) + QunB(P(t),p(t) = 0. (56)

So we are able to introduce in H x H the finite dimensional manifold M.
We define a mapping ®¢ : PLH x P2H — QL H x Q2 H by setting :

= AT (Re[QLf + S-QLB(P,P) — QLB(.p)])

A;' (BRm[-QLB(P.p) — Q%B(,P)]) .

19



The manifold My is defined by :

My = { »P) + ®(p,P); peP,H, PeP.H }.

From (5.2) and (5.4) we infer :

IA

d
I a®) Nl < Ms vitelo,T],

d
| aQ(t) 2 < Mp Vtel0,T] .

Ms , Mg = const > 0 ; M5 and Mg are independent of T .

Estimating the distance of (u(t), B(t)) to M, means to estimate the dis-
tance of (¢, Q) to (¢m, @m) - To end this we subtract (¢, Q) from (g, Qm),
using (5.2) , (5.4) and the definition of ®y and obtain:

1

— At || () — q(t <...
— st | amt) — a8 12

1

1
To Amir L am(®) —a®) lvi = 5o L Awgm(t) = Awg(t) llzz = ...

o= S| QuB(P(1), P(t) — QuB(B(1), B(t)) |2 +-..

I QuBm®).p(t) — QuBlu(t),u®)) |2 + | %q(t) 2 <.

SSdl’}/12M22+d1’}/12M12+M5:D5 ;

20



1

ot | Q) — Q) e <

1 1
< =gt | @) = QE) vy € o | AsQu (1) = A2Q(1) 12 = ...

o= 1 QRB(P(),p() — QuB(B(®),ult)) |2 +...

IN

ot 1 QRBO®),P(#) — QnB(u(t), B®)) [l + | %Q(t) e

o Sdim2My - My + dy-2My - My + Mg =: Dg .
So we have :
| gm(®) —a(®) Iz < Az, - Re:Ds |

and

| Qm(t) — Q) 2 < pply - Rm- Dy .

6 Summary

A new method of approximating the solutions of the magnetohydrodynamic-
equations for a long time by means of approximate inertial manifolds has
been proposed.

This approximation scheme has been derived directly from the MHD-equations
without any phenomenological considerations.

The last two inequalities of section 5 show that the distance between any
solution to the MHD-equations and the approximate inertial manifold is

smaller than the distance to the flat space ¢ = 0 by a factor )\;1%2 for the

21



velocity and ur_n{,r/lz for the magnetic field.

Our arguments have been yielded an improvement of the distance to the
manifold M in the L?-norm. The estimates in the W1 2-norm will be one
of our subjects for further investigation.

Acknowledgement. -The author is indebted to N.Seehafer and F.Feudel for
a number of useful discussions when preparing this paper.
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