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Abstract

We demonstrate the occurrence of regimes with singular continuous (fractal)
Fourier spectra in autonomous dissipative dynamical systems. The particular
example is an ODE system at the accumulation points of bifurcation sequences
associated to the creation of complicated homoclinic orbits. Two different
mechanisms responsible for the appearance of such spectra are proposed. In
the first case when the geometry of the attractor is symbolically represented by
the Thue-Morse sequence, both the continuous-time process and its discrete
Poincaré map have singular power spectra. The other mechanism owes to the
logarithmic divergence of the first return times near the saddle point; here
the Poincaré map possesses the discrete spectrum, while the continuous-time
process displays the singular one. A method is presented for computing the
multifractal characteristics of the singular continuous spectra with the help
of the usual Fourier analysis technique.
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I. INTRODUCTION

The dynamics of nonlinear systems may be described by means of different character-
istics. One of the classical (and lately shadowed by more elaborate tools like Lyapunov
exponents, dimensions, singularity spectra, etc.) ways to characterize the dynamics of the
observable f(?) is to compute its normalized autocorrelation function (autocovariance)

C(T) _ <f(t)f(t‘|‘7-)> (1)
(f2(t))

(the averaging over time and/or the respective set of initial conditions is assumed) which
provides the quantitative estimate of the system’s ability to return to the same states af-
ter regular intervals of time [1-4]. Usually, non-chaotic systems are well-correlated: the
correlation function of the periodic motion reaches unity at all the integer multiples of the
basic period, whereas in the case of the quasiperiodic motion with an irrational ratio of
frequencies, the largest peaks correspond to the times proportional to the denominators of
successive rational approximations to this ratio, and the amplitudes of these peaks asymp-
totically approach 1. On the other hand, the eventually (not necessarily monotonously)
decaying autocorrelation function of the chaotic motion reflects its property to forget the
details of the initial state. As an intermediate stage one may imagine some “not perfectly
regular” or “not entirely chaotic” motion for which the correlation function would be ev-
erywhere (except for 7 = 0) separated from 1, but at the same time would not entirely
decay, displaying peaks of finite height for arbitrarily large values of 7 and thus disclosing
the ability of the system to remember “vaguely” its previous history.

Owing to the duality between the autocorrelation function and the Fourier power spec-
trum, the same statements can be retold in terms of the latter. For both periodic and
quasiperiodic processes the Fourier spectrum is obviously composed of discrete delta-peaks
only; in the former case the peaks are well separated whereas in the latter they are typi-
cally dense. The spectrum of the chaotic motion is marked by the presence of a continuous
component. In most of the known examples the latter is absolutely continuous with respect
to the Lebesgue measure (albeit some local singularities are possible, like in the case of 1/w
spectrum), but in principle it may also be singular, i.e. be concentrated on a set of Lebesgue
measure zero. This singular component might be viewed as some remnant of the discrete
ordered-state spectrum in the following way: the response at the frequency corresponding to
a singularity (such values must be dense in the spectrum), although not mighty enough to
produce a delta-peak, is substantially stronger than in the immediate neighborhood. There-
fore the singular continuous spectra occupy some intermediate position between the spectra
of the well-ordered processes and those of the fully chaotic ones.

Singular continuous spatial spectra have been recently reported for the distributions
of particles in systems with incommensurate scales [5-7]. They are also known to appear
in quantum systems with quasiperiodic potentials [8] and quasiperiodic external forcing
[9,10]. Recently the singular continuous spectra have been observed in dissipative systems
with quasiperiodic external forcing, where so-called “strange nonchaotic attractors” (sets
which, like chaotic attractors, are not manifolds, but, contrary to them, are characterized
by non-positive Lyapunov exponents) appear [11]. However, to the best of our knowledge
no examples of this kind were reported for the conventional autonomous continuous-time
dissipative systems.




In this paper we show that singular continuous spectra appear in the autonomous system
of three ordinary differential equations [12] which resembles very much the Lorenz equations.
After reviewing the basic properties of correlations and spectra in section II, we describe
the system in section III and present the data which show that singular continuous spectra
can be observed at the accumulation points of the bifurcation scenarios in which the more
and more complicated homoclinic orbits of the saddle points are progressively formed and
destroyed. Although the scenarios themselves have been studied extensively [12-16], the
related unusual correlation properties seem to have been overlooked.

It proves out, that in systems of this kind one encounters at least two different mech-
anisms, of which each one taken alone already supplies the singular continuous spectrum.
One of them is due to the special symmetry (which may either be present or not) of the
bifurcation scenario as expressed through the appertaining renormalization rules; as a conse-
quence already the Fourier spectrum produced from the symbolic code of the corresponding
orbit displays the required features. The simplest example of such a code is the so-called
Thue-Morse [17,18] sequence, for which there exists a rigorous proof of the singularity of the
spectral measure. To provide a better understanding of the properties of singular continu-
ous spectra, we will discuss in details the Thue-Morse sequence as a case study in appendix
A. The other, more general mechanism producing a singular continuous spectrum, requires
no symmetry and is associated with the logarithmic divergence of the return times for the
trajectories approaching the homoclinicity. In physical language, variation of return times is
tantamount to the phase modulation of the process. The corresponding mathematical model
- the so-called special flow - is analyzed in section IV. Finally, the multifractal properties of
singular continuous spectra are discussed in section V.

II. BASIC PROPERTIES OF CORRELATIONS AND SPECTRA

In this section we recall some facts about correlations and spectra (see [19,20]). The au-
tocorrelation function (1) can be represented as a Fourier transform of the spectral measure
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In general, the spectral measure can be decomposed into the pure point and the continuous
component (the possibilities for their simultaneous presence in the spectrum of a continuous-
time dynamical system are discussed e.g. in [21]). In its turn the latter part can be further
represented as a sum of the absolutely continuous, and the singular continuous components:
B = fipp. + fac + fse.. In the physical language, the pure point component is a set of delta-
functions (discrete spectrum), while the absolutely continuous component has a spectral
density (which is usually called power spectrum). The singular continuous component unites
all what remains after both the pure point and the absolutely continuous components are
removed, it sits on a set of zero Lebesgue measure, but is weaker than delta-peaks. To
evaluate the intensity of the discrete spectrum it proves useful to introduce the averaged
squared correlation function as (we assume that the time is discrete, a generalization to the
continuous time is straightforward):
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According to Wiener’s lemma (see [19,20]), the total intensity of the discrete component of
the spectrum is Cy,(00). From the other side, a necessary condition for the spectrum to be
absolutely continuous is the decay of correlations:

tlirglo C(t)=0. (4)
Hence, calculation of the autocorrelation function allows one (at least in simple cases) to de-
tect singular continuous spectrum. Thus the power spectrum should be singular continuous
if Cyy(t) tends to 0 for large ¢, while C(t) does not: the former requirement ensures the ab-
sence of the discrete component whereas the latter precludes the presence of the absolutely
continuous one. We will make use of these criteria in our numerical studies below.

Recently it has been shown that the law of decay of the averaged squared correlation
function (3) is related to the correlation dimension D, of the spectral measure p [22-24]:

Cou(t) ~ t7P2. (5)

Indeed, one can expect that for an absolutely continuous spectral measure having dimension
1 the sum in (3) typically converges, so Cy,(t) ~ t~! and D, = 1, while for a discrete
spectrum (zero dimension) C,, does not decay and relation (5) gives Dy = 0.

III. THE ODE SYSTEM, ITS ATTRACTORS AND THEIR SPECTRA

To demonstrate the action of the mechanisms which produce “intermediate” spectral and
correlation properties we use the 3-rd order ODE system which is reminiscent of the Lorenz
equations:

&t = o(y—z)+oDy(z— R)
y = Rx —y—az (6)
z = xy —bz+ax

but may have different scenarios of transition to chaos. This system (see [12] for the deriva-
tion and more detailed description) mimicks the averaged thermal convection in the fluid
layer subjected to the transversal high-frequency oscillations of gravity. Vibrations are
known to suppress the small-scale fluid motions [25], which makes physically plausible the
Lorenz-like truncation to one mode (z) for the velocity field and two modes (y and z) for
the temperature distribution. Here o denotes the Prandtl number of the fluid, R stands
for the Rayleigh number (normalized to its critical value in the absence of vibrations),
b=4a/(1 + a?) is the geometrical parameter determined by the wavenumber « of the con-
vective pattern. The additional (with respect to the Lorenz model) term in the first equation
is proportional to the “vibrational parameter” D, given by the squared ratio of the ampli-
tude of the modulation to its frequency; another modification is breaking the symmetry
(z,y) & (—x,—y) by means of introduction of the term az into the 3-rd equation.
Similarly to the unperturbed Lorenz equations, the transition to chaos in the equations
(6) follows the formation of the homoclinic trajectories to the trivial steady state z =y =
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z = 0; in the parameter domain D < R~' — R™? the latter is a saddle-point with three real
eigenvalues A3 < Ay < 0 < A;. Whereas in the Lorenz case the positive eigenvalue is larger
than the absolute value of the leading (closest to zero) negative one, here the homoclinic
bifurcation can be encountered also in the parameter domain

1 1 blo+1—10) 1 1
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where Ay + Ay 1s negative. This means that, as opposed to the Lorenz system, in the
vicinity of the saddle point the contraction prevails over the expansion, and the destruction
of homoclinic connections should produce not the unstable Q-set [26,27] but stable closed
orbits. The further evolution through more and more complicated periodic states eventually
leads to the emergence of the chaotic attractor; the structure of the parameter space is
enormously rich, with uncountably many different routes to chaos [14-16]. We will focus
below on two particular scenarios which seem to be the best-suited for the illustration of the
unusual spectral and correlation properties. In our computations we will fix the “canonical”
Lorenz parameter values ¢ = 10 and b = 8/3.

A. Symmetrical case

Let us fix a = 0, and increase R keeping D in the domain (7). Owing to the symmetry
(z,y) & (—x,—y) the homoclinic bifurcation results in gluing of two mutually symmetrical
stable closed orbits into a single one (Fig.1(a)-1(b)).

FIG. 1. A sketch of the homoclinic-doubling bifurcation in the system(6): the two symmetrical
stable cycles (a) glue into a homoclinic orbit, which produces the stable symmetrical cycle (b);
this cycle loses its symmetry with creation of two two-loop stable cycles (c), these cycles glue and
produce a “period-4” stable cycle (d).



The further sequence consists of the alternating symmetry-breaking bifurcations and
subsequent homoclinic gluings of periodic orbits (Fig.1(c)-1(d)). The number of loops of
the attracting periodic orbit is doubled at each homoclinic bifurcation (this is not, however,
the period-doubling in the usual sense, since the time period is infinite at the bifurcation
point), and the whole bifurcation sequence is converging at the universal geometric rate.
The renormalization treatment of the corresponding one-dimensional discontinuous map
[13,12] shows that the convergence rate (along with the other scaling characteristics of this
hierarchical process) is entirely determined by the ratio of the eigenvalues v = —A3/A;. The
2-D projection of the resulting symmetric attractor at the accumulation point of homoclinic
bifurcations (for B = 15.8237366..., D = 0.0526349 ... which corresponds to v = 2.0) can

be seen in Fig.2. Further increase of R leads to the onset of chaos.
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FIG. 2. The view of the attractor of the system(6) at the point of transition to chaos through
homoclinic-doublings. The Cantor structure of the attractor is clearly seen.

We now consider the spectral and correlation properties of the system (6) at the transition
point. The computed autocorrelation functions for the variables  and z on this attractor are
presented in Fig.3. It can be seen that their shape satisfies the conditions for the spectrum
to be singular-continuous: the correlations themselves do not decay, so the condition (4) is
not satisfied; on the other hand, the averaged squared correlation function decays as a power
law. The plotted data display a remarkable feature: the values of time corresponding to the
largest peaks of C'(t) form a geometrical progression: the ratio of the times is approximately
2. This factor corresponds to the fact that the attractor is created through homoclinic
doublings. However, unlike in the case of the usual period doublings, the level of correlation
remains less than 0.5.

The spectral sums 5, for the same attractor, which were computed with the use of 2"-
points FFT (at a sampling rate 0.1 in the units of dimensionless time of (6)) and subsequent
averaging for many realizations, are presented in Fig.4. One notices both the “fractalization”
of the spectrum with the growth of n and the apparent self-similarity in the low-frequency
part of the power spectrum: S, (w) o< Sp41(%) (Fig.5). [The explanation of this self-similarity
is given in the appendix A, see eq.(A3)].
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FIG. 3. The autocorrelation functions for the variables z (a) and z (c). Note the logarithmic
scale of the time axes. This shape with arguments of the peaks forming a geometrical progression, is
typical for processes with singular continuous spectra. The averaged squared correlation functions
(3) are presented in (b) and (d) respectively.

FIG. 4. The power spectrum of the variable z, calculated using the standard method [45] for
different numbers of points in the spectrum N = 2. With the increase of N the spectrum becomes
more scarred: both the peaks and the depressions grow. The region between the dashed lines is
used for determining the multifractal properties of the spectrum in section V below.
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FIG. 5. The low-frequency parts of the spectra of Fig.4, redrawn in scaled coordinates to show
self-similarity.

A common way of reduction of a continuous-time dynamical system to a discrete one
is to consider the Poincaré map on some surface. For the equations (6) it is convenient to
introduce this surface near the saddle as depicted in Fig.6.

z

X

FIG. 6. The sketch of the surface of section (the cylinder 2z + y? = 81) used to construct the
Poincaré map in the system (6).

Because of the strong volume contraction the resulting Poincaré map can be viewed as
quasi-one-dimensional, see Fig.7. The mapping for the variable z (Fig.7a) is symmetric and
discontinuous due to the symmetry of the underlying ODE system; in case of the variable
z (Fig.7b) which does not participate in the symmetry transformation, the mapping is
continuous and has a minimum. Owing to the Cantor-like structure of the attractor, the
points do not fill the lines, but these can be easily interpolated [13,12].
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FIG. 7. The Poincaré maps for the variables # (a) and z (b), obtained with the surface of
section Fig. 6 for the attractor Fig.2 (the variable z is additionaly projected on a line transversal
to the stable manifold of the saddle). The points of the attractor are marked with crosses which
are connected by interpolation curves. The mapping (c) corresponds to the attractor Fig.9, here a
quasiperiodic orbit is dense on the interval.

Calculations of the correlation function C(n) (where the discrete time variable n stands
for the number of intersections with the secant) for the corresponding series of the section
coordinates, demonstrate that while the spectrum for the values of x remains singular-
continuous (Fig.8(a)), the spectrum for z is discrete (Fig.8(c)) precisely in the same way
as it should be for the logistic mapping at the Feigenbaum point [28]. This discrepancy
between the properties of two coupled variables stemming from the same dynamical system
will be discussed in the Section III C below.

B. Asymmetrical case

Of many different scenarios, which are possible for a # 0 we take the one which resembles
very much the transition to chaos through quasiperiodicity. Without going into details (see
[14-16,29]) we should only mention that in the proper parameter domain one can define the
“rotation number” p, which for the closed periodic orbit is the ratio of the number of loops
in the half-space # > 0 to the entire number of the loops. For the non-closed orbit p is the
ultimate “proportion” of these loops, i.e. the limit of the respective ratio for ¢ — oo. The
corresponding attracting set at the critical point of transition to chaos for the “reciprocal
golden mean” rotation number p = (v/5 — 1)/2 is presented at Fig.9; the parameter values
R = 14.1487968 ..., D = 0.05433476..., a = —0.56128733... correspond to v = —1.5

at the onset of chaos. One sees that, in contrast to the Cantor-like attractor from Fig.2,



this set looks dense on the transversal section. The Poincaré section resembles very much
the critical circle map (with the only difference that the singularity is generally not cubic,
but has an order v) [16,29]; insofar as the rotation number is irrational, the attracting
orbit is everywhere dense on the interval (Fig.7c). Correspondingly, the spectrum of the
variable z, discretized in this way, contains the pure-point component only. However the
calculation of the autocorrelation function of the underlying continuous-time process z(t)

(Fig.10) demonstrates that its power spectrum is singular continuous.
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FIG. 8. The correlation function for the discrete sequences z,, (a) and z, (b). While the power
spectrum of x,, remains singular continuous, the power spectrum of z, is discrete.
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FIG. 9. The view of the attractor of the system(6) at the point of transition to chaos through
“quasiperiodicity”
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FIG. 10. The autocorrelation functions for the variable x of the attractor Fig.9. It has typical
form for the case of singular continuous spectrum with peaks forming a geometrical progression.
The factor of this progression is the golden mean, according to our choice of the rotation number.

C. Two mechanisms for the singular continuous spectrum

The numerical results presented above suggest that at least two distinct mechanisms are
responsible for the appearance of singular continuous spectra.

1. The first mechanism is the one which ensures the singular continuous spectrum for the
variable x in the symmetric case. Producing the same results for both the continuous flow
and the sequence of the Poincaré sections, it obviously does not depend on the dynamical
time properties of the process, and hence may be called the geometric mechanism. Not only
the reduction to the mapping, but already the symbolic representation of the orbit of such
mapping possesses the same spectral properties. Let us ascribe the symbol L(R) to each
loop in the half-space x < 0 (z > 0). On the symbolic language each homoclinic bifurcation
is the gluing of some finite symbolic sequence with its mirror counterpart (the same sequence
in which all R’s are substituted by L’s and vice versa). Thereby the scenario of the change
of the attractor’s code is

R —> RIL - RLLR — RLLRLRRIL — ...

The resulting infinite symbolic code which is obviously invariant under the transformation
R — RL, L — LR, is known as the Thue-Morse sequence [17,18]. From the mathematical
literature it is well known that this sequence has a singular continuous Fourier spectrum
[20] (see Appendix A for a detailed discussion). There exists a number of studies on the
applications of the Thue-Morse sequence to different physical systems [30-32], however to
our knowledge in all of these examples the sequence was prescribed externally — either as
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external forcing, or as a prepared pattern of the lattice. In our case this sequence appears
as a result of the intrinsic dynamics of the system, which owes to the symmetry of the
original equations. The correlation and spectral properties of this symbolic code are readily
transferred to the values of the Poincaré sections for the variable x and, finally, to the
continuous process x(t).

Along with the described scenario which yields the “pure” Thue-Morse sequence, one
can follow in the parameter space certain other bifurcational sequences where the geometric
mechanism is at work. We will briefly mention just two possibilities. For the general asym-
metric case each intersection on the parameter plane of two curves corresponding to the
formation of multi-looped homoclinic orbits, produces the pencil of lines marking the sec-
ondary homoclinic bifurcations [15,16]. Let the symbolic codes of the primary multi-looped
orbits be two words of some finite (and not necessarily equal) length I; and [; respectively,
the first letter being R in one of them and L in the other. Since the codes of the new
homoclinic orbits are obtained by concatenation of these two words, it is straightforward
to re-define the coding rules: let us take two given words as the initial blocks and denote
them by R and L respectively. Now one may trace the new sequence of homoclinic dou-
blings (the corresponding orbits have (I; + 3)2"~! loops) and locate at some distance its
accumulation point, where the symbolic code of the attracting trajectory can be reduced to
the conventional Thue-Morse form by the single symbolic renormalization.

The other example is provided in the symmetric case ¢ = 0 by the sequences of “ho-
moclinic m-tuplings”, which converge to the parameter values where the symbolic code is
invariant with respect to the substitution R — RL™™ ', L — LR™ . For m = 2 one gets
the scenario of homoclinic doublings described above, which provides the Thue-Morse code;
symbolic sequences for the higher values of m also demonstrate singular continuous spec-
tral properties, and this is immediately mirrored by the corresponding characteristics of the
trajectories for the continuous flow (6).

It is noteworthy that one can find the Thue-Morse sequence even in a much simpler

dynamical system: consider the symmetrical cubic mapping * — az(z? — 3). This mapping
has three intervals of monotonicity: * < —1, —1 < z < 1 and « > 1, which provides
the natural coding by symbols L, ', and R respectively. For the particular choice of the
parameter a = 0.965941391 . .. the stable orbit starting at the point x = 1 does not visit the
central segment, and its symbolic coding which is composed of R’s and L’s only, is organized
into the Thue-Morse sequence. No wonder that at this parameter value the Fourier spectrum
of the attracting trajectory for the continuous cubic mapping is singular continuous.

2. The second mechanism which ensures the onset of singular-continuous spectra, is
at work for the variable z in the symmetric case and for all the variables in the absence
of symmetry. Here the discretized and the continuous-time processes have qualitatively
different spectra. The reason for the difference must lie in the properties of the return times
between the consecutive Poincaré sections; therefore it is natural to call this mechanism the
dynamical one. Indeed, the Poincaré map for the considered ODE system, as well as for the
Lorenz equations, is singular: it is not defined at the intersection of the secant surface with
the stable manifold of the saddle point. The behavior of return times is also singular: as the
point of section approaches the stable manifold, the return time diverges logarithmically. As
a result one cannot speak about the characteristic return time (as it would be the case for
period-doublings); insofar as the orbit should pass arbitrarily close to the saddle point, the
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return time may be arbitrary large. We conjecture that this singularity is responsible for
the singular continuous nature of the spectrum. To support this conjecture we perform in
the following section the analysis of the idealized dynamical system — the so-called special

OwW.

IV. THE SPECIAL FLOW

In this section we intend to demonstrate that the logarithmic singularity of the return
times alone provides the singular continuous spectrum. For this purpose we consider an
idealized process, for which it is possible to separate properties of the Poincaré map and of
the return times. The construction we use is a variant of the so-called special flow, typically
used in studies of ergodic properties of continuous-time dynamical systems [19]. The special
flow over the map @ — f(z) of the interval 0 < & < 1 is defined as follows. Consider the
piece of the plane 0 < z < 1, 0 < y < F(z). The trajectory starting from the initial point
2(0),y(0) is defined as

w(t) = f"(2(0)), y(t)=y(0)+1- :Z:%F(fk(wm))) (8)

where integer n as a function of continuous time ¢ is uniquely defined from the inequalities

gﬂf’%w(om < y(0)+1 < 3 F(H((0).

k=0

The geometrical representation of the special flow is the following (see Fig.11): a trajectory
moves on the plane z,y upwards with unit velocity, until the value of y reaches the border
y = I'(x), then the trajectory jumps to the point (f(z),0) and begins to move upwards
again. One can see that the special flow has the map # — f(z) as the Poincaré map, and
the return times are given by the function F(z).

Y

NF(X)

0 f(f(x) x f(x) 1

FIG. 11. The geometrical representation of the special flow construction.
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The variable z can be considered as the amplitude and the ratio y/F(z) as the phase
of the continuous-time dynamical process. The amplitude modulation is determined by the
Poincaré map, while the phase modulation depends also on the properties of the return times
F(z). By choosing an observable which depends only on the phase, e.g. w = cos(27y/F(z)),
we can select properties of the continuous dynamics that are connected with the distribution
of the return times: for this observable the amplitude modulation vanishes (see Fig.12).

FIG. 12. The process with pure phase modulation, generated with the special flow.

These properties are completely defined by the Poincaré map x — f(x) and by the func-
tion F(x). We consider the two cases:
1) f(z) is the Feigenbaum map at the point of transition to chaos [33]
2) f(x) is a circle map with irrational rotation number.
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FIG. 13. The autocorrelation functions for the processes with logarithmic singularities in return
times constructed with the special flows over the Feigenbaum (a) and circle (¢) maps. The corre-
sponding averaged squared correlation functions (b) and (d) decay as powers of time, indicating
the existence of singular continuous spectrum.
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In both cases the spectrum of the Poincaré map of the variable x is discrete. While
with a smooth function F'(z) the spectrum of the variable w remains discrete [34,35], it can
become continuous if F' is singular. Von Neumann proved in [36] that in the second case a
discontinuous F'(z) can generate a process with continuous spectrum. The mixing properties
of the special flow when the function F' has a logarithmic singularity F(z) ~ —log [z — x|
were studied in refs. [37,38], however to the best of our knowledge, the characteristics of the
Fourier spectrum have not been considered.

We have investigated numerically the correlation properties of the process w(?) in the
presence of a logarithmic singularity for the cases (1) and (2) described above (a renor-
malization group analysis of this problem is now in progress). The results are presented
in Fig.13. They clearly demonstrate, according to the criteria discussed in section II, that
special flows with a logarithmic singularity have singular continuous spectra. It seems that
for the circle map, where trajectories are dense on the interval, the location of the loga-
rithmic singularity is irrelevant. For the Feigenbaum map the attractor is a Cantor set, so
the singularity should not fall in a gap. In order to model the ODE system close to the
homoclinicity, the singularity must be placed at the extremum of the map, and this point
belongs to the Feigenbaum attractor.

Thus, consideration of special flows allows us to conclude, that a logarithmic singularity
in return times can provide a singular continuous spectrum, even if the spectrum of the
Poincaré map itself is discrete. For the system of ODEs considered above, this mechanism
works for the variable z in the symmetrical case, and in general in the asymmetrical case.

V. MULTIFRACTAL PROPERTIES OF SINGULAR CONTINUOUS SPECTRA

In this section we develop a practical method for the computation of the multifractal
properties of a singular continuous spectrum, and apply it to the cases considered above
(see also ref. [39]). First of all, we would like to remind the well-known thermodynamic
formalism for fractal measures (see, e.g., [40]). For simplicity we consider a power spectrum
of a discrete-time process, this spectrum is defined in the interval 0 < w < 1. Dividing this
interval into L subintervals with sizes ¢ = L™, and denoting their measures as py we can
write the coarse-grained partition function as

(e, q) = le Pl (9)

and its growth rate
[(e,q) ~e™@ (10)

defines the function 7(¢). The generalized dimensions D, and the f(«) spectrum are related
to this function as

Dy =(¢—1)""(q)
fla) =qa—1(q), a=dr/dg.

Let us now turn to a practical calculation of the power spectrum. Given a time series x,,
we can define for a frequency w a finite-time power spectrum as
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This value grows with time 1" as
S(T,w) ~ 1),

where A determines the strength of the spectral peak at the frequency w. Respectively, A can
be viewed as the Lyapunov exponent of the spectrum at a given frequency; its existence may
be questionable for some particular w, but according to [41] it exists for a set of full measure.
The value of the Lyapunov exponentA determines the strength of the spectral peak at the
frequency w. Thus A =1 corresponds to a 6—peak in the spectrum, while for a broad-band
spectrum A = 0; for a singular continuous spectrum generally A # 0,1. Averaging over the
frequencies we can define the function o(q) as

1
/ ST, w)dw ~ T, (11)
0

The spectrum of local Lyapunov exponents [42] is related to o(g) via the Legendre transform
g(A)=o(q) —qA, A =do/dg.

We now derive a relation between the spectrum of the local Lyapunov exponents g(A)
and the f(«) spectrum. The estimation of the finite-time power spectrum has sense only for
the discrete set of frequencies: wy = (k—1)T"~!. The obtained values of the power spectrum
can be considered as a course-grained estimate of the measure: py & S(T,wp)T ™1, ¢ =T
Substituting this expression to (9),(10) and comparing with (11) we get [43]

o(q) =q—1—-1(q). (12)

1.0
0.8 -
g 0.6
T 041
0.2 :
0.0,

_l 1 | :I| L 11 | 111 | L1 1 | [ |
.0 04 08 1.2 16 2.0
o

2.

FIG. 14. The f(«) spectra for the singular continuous power spectra of the variable z in the
system (6) for the attractors Fig. 2 (dashed line) and Fig. 9 (solid line).
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For Legendre transforms this immediately gives [44]

a=1-—A, fla) =1+ g(A). (13)

The relations (12),(13) provide a simple method for calculation of the generalized dimensions
and f(a) spectrum of the singular continuous spectrum, using finite-time estimations of the
power spectrum (11).

We have applied the method described to the spectra discussed in section ITI. These
power spectra, being obtained for the continuous-time dynamical system, are defined for all
frequencies. The tail at large frequencies decays, however, exponentially. Therefore it is
convenient to restrict the integral (11) to an interval in the frequency domain, containing

major peaks. Calculations of the f(a) spectrum, performed in this way, are presented in
Fig.14

VI. CONCLUSIONS

In this paper we have demonstrated that singular continuous spectra can be observed
in certain autonomous dissipative dynamical system at the point of transition to chaos. In
the investigated ODE system we found two different mechanisms which are responsible for
these spectra. The first mechanism, being purely geometrical, works equally well for both
discrete-time and continuous-time dynamics; it is connected with the appearance of the
particular symbolic code — the Thue-Morse sequence (or its generalizations). The second
mechanism which owes to the dynamics of the return times, affects only the continuous-time
systems, and is connected with singular phase modulation, when the process consists of
pulses of different length. The amplitudes of the pulses are described by a corresponding
Poincaré map and behave quasiperiodically (when the map is equivalent to a circle map with
irrational rotation number) or almost periodically (when the map has the Feigenbaum-like
attractor). The singular continuous spectrum appears, when the dependence of the duration
of pulses on their amplitude has a logarithmic singularity. Such a singularity is present in
the considered ODE system because the closure of the attractor includes the saddle point,
in which neighbourhood the trajectories “stick” for a long time. From the results of von
Neumann [36] it follows that the singularity of phase modulation may be even weaker, in
some cases a discontinuity in the dependence of return time on the amplitude is enough
for the spectrum to be continuous. It is remarkable, that the atomic lattices with singular
continuous spatial spectrum discussed in refs. [5-7] can be constructed with the help of a
special flow having such a discontinuity (see appendix B). Presently, however, we do not
have an example of an autonomous dynamical system, in which a discontinuity of return
times is responsible for a singular continuous spectrum.
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APPENDIX A: THE THUE-MORSE SEQUENCE

In this section we discuss spectral properties of the Thue-Morse sequence [17,18,20].
The Thue-Morse sequence is an infinite sequence of two symbols, say a and b, defined by
the following substitution (inflation) rule

a — ab, b — ba. (A1)
Starting with a we get consequently

a, ab, abba, abbabaab, etc.

For the computation of the Fourier spectrum it is useful to mention that the sequence can
be also obtained from the concatenation rule

A — AA (A2)

where bar denotes the inverse (with symbols a and b interchanged) sequence. Putting 1
instead of @ and —1 instead of b, we obtain a sequence x; with zero average: < x; >= 0.
We define the partial Fourier sum of the first 2" elements as

271
Zn(w) — 2—n/2 Z xkeik%’w.

k=1

Dividing this sum into two halves and using the concatenation rule (which implies zgn-1,; =
—xy) we arrive at the recursion relation

1 — ez’2"_12arw
Zn(w) = Zn_l(w) 21/2

For the power spectrum S,(w) = |Z,(w)|* we get
Snt1(w) = Sn(w)[1 — cos(272"w)].
[Note that we can rewrite this recurrence as
Snt1(w/2) = Sn(w)(1 — cos(rw)) (A3)

what explaines the observed self-similarity of the spectrum Fig.5 in the region of small
frequencies.] Thus the spectral measure is represented as an infinite product (Riesz product

[20])

n—1

p(w) = lim S,(w) = lim ]]_:_[ [1 — cos(272%w)]. (A4)

n—00 n—00

The Riesz product provides a simple tool for finding the multifractal properties of the
spectrum, as described in section V. The finite product S,(w) corresponds to the finite-time
power spectrum at time 2". The Lyapunov exponents A(w) can be found from the simple
dynamical system
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Snt1 = Sa(l — cos(27¢,,)) (AD)
Pnp1 = 2¢n  (mod 1) (A6)

with initial condition Sy = 1, ¢9 = w. Thus the exponent A(w) appears as a logarithm of
the multiplicator along the trajectory of transformation (A5),(A6). For the periodic orbits
in (A6) the calculation is trivial: A(1/3) = A = log(3/2)/log(2) ~ 0.584, A(1/5) ~
0.16, A(1/9) ~ —0.47, etc. Note also, that all the frequencies that are attracted eventually
to a periodic orbit, have the same exponent [e.g., A(1/6) = A(1/12) = ... = A(1/3)], whereas
the transient part of the orbit determines the ratio of the spectral peaks growing with the
same exponential rate [e.g., S,(1/3)/5,(1/6) = (1 — cos(27/3))/(1 — cos(27/6)) = 3]. Note
also that A, = A(0) = —oo. The f(«) spectrum is restricted, according to (13), to the
domain 1 — A4, &~ 0.42 < o < oo (see Fig.T in [39]).

1.0

(b)
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3
I

correlation function
o
o
SE
SE

-0.5

correlation function

- PR T T I S SN B
1'00 200 400 600 800 1000 1200

time
FIG. 15. The autocorrelation function of the Thue-Morse sequence. The self-similar structure
is well seen when the time scale is logarithmic (b).

We now discuss the properties of the autocorrelation function for the Thue-Morse se-
quence. It is presented in Fig.15. First, we would like to note that in contrast to the power
spectrum, the values of the autocorrelation function are well defined for each time ¢. The
self-similar structure of the autocorrelation function is clearly seen when the time scale is
logarithmic(Fig.15b). The logarithmic periodicity of main peaks can be explained as follows:
from the fact that the Thue-Morse sequence is invariant with respect to decimation (deletion
of each second element) it follows immediately that

O2t) = O(b).

Using the Riesz product (A4) one can deduce a recurrence relation for the autocorrelation
function. Albeit it is suitable for numerical calculations, analytical formulae are rather
cumbersome, however, for small ¢ the values of correlation are not difficult to obtain: C(1) =

“1/3 = —C(3).
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FIG. 16. Self-similar structure of the autocorrelation function Fig. 15. The part near t = 1024
is multiplied by —3 = 1/C(1024), and plotted under the part adjacent to ¢t = 0.

Another scaling property of the autocorrelation function is illustrated in Fig.16. Here
the part near one of the main peaks at ¢ = 1024 is compared with the part at £ = 0. One
can see that the correlations scale. Generally, we can show that

C(2" + 1) ~ C(290(D) (AT)

if | << 2". Indeed, let us take the Thue-Morse sequence of length N = M2', M >> 1 and
write the correlation function C(2" + 1) as

| (M—1)2n—1
27’L Z == n

Now we use the condition [ << 2" and exclude from each block of length 2" the last [
elements (this means that we exclude from the sum [(M — 1) elements corresponding to
overlapping between the blocks):

1 M-1 m2"—1
C(Qn + Z) ~ (M _ 1) ($k$k+2n)($k+2n$k+2n+[). (AS)

m=1 k=(m—1)27+1

Due to the way of the construction of the Thue-Morse sequence (A2), the values of
TpyonTryony are the same for all blocks, and inside any block the value of zpzgi2n 1s constant,
so we can rewrite (A8) as

on_| M-1
C2"+1)~ ( — ) (M 1 sz T (m—1)20+1% (m— 1)2n+1+2n)-

Here the first bracket is approx1mately C(l) and the second bracket can be considered as
a correlation function of a decimated Thue-Morse sequence, where only each 2"-th element
is taken. Because the Thue-Morse sequence is invariant under the decimation, the second
bracket gives C'(1) = C'(2"). Thus we get the scaling realation (A7).
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APPENDIX B: SPECIAL FLOWS AND COMPLEX SPATIAL STRUCTURES

In refs. [5,7] the following one-dimensional chain of atoms was considered. The abscissa
u, of the n—th atom is defined through w,4; — w,, = [, where the bond lengths [,, can be
equal either 1 or 1 4+ ¢ (the parameter ¢ defines the strength of modulation) according to

L 1+ ¢, if 0 < Frac(nl) < A, (B1)
" 1 if A < Frac(nl) < 1.
Here [ is irrational and A is a parameter. This definition can be rewritten as
[, = F(z,), Tpp1 = T + L mod 1 (B2)

with a piecewise constant function F'(z) having values 1+¢ and 1 on the intervals 0 < z < A
and A < z < 1. Comparing this construction with the definition of the special flow (8), one
can see that the special flow with the circle map f(z) = 2 4+ [ mod 1 and the corresponding
F(z) produces the bond lengths [, as the return times. Thus, the chain of atoms constructed
in [5,7] can be considered as the sequence of §-pulses produced by the special flow.
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