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Abstract

Strange nonchaotic attractors typically appear in quasiperiodically driven
nonlinear systems. Two methods of their characterization are proposed. The
first one is based on the bifurcation analysis of the systems, resulting from
periodic approximations of the quasiperiodic forcing. Secondly, we propose
to characterize their strangeness by calculating a phase sensitivity exponent,
that measures the sensitivity with respect to changes of the phase of the
external force. It is shown, that phase sensitivity appears if there is a non-
zero probability for positive local Lyapunov exponents to occur.

1 Introduction

Strange objects are not very rare in science. A well-known example is a strange
attractor — an object in a phase space of a nonlinear dynamical system, that usu-
ally corresponds to chaotic behavior of the system. Approximately ten years ago
Grebogi, Ott, Pelikan and Yorke [1] showed that in nonlinear dynamical systems
strange nonchaotic attractors can exist. These objects mainly appear in quasiperi-
odically forced nonlinear systems and have since that time been observed, e. g.,
in [2, 3, 4, 5, 6, 7, 8. Although SNAs seem to have rather unusual properties,
it was shown in refs.[2, 4] that they are typical in the sense that they occur on
a set of positive measure in the parameter space. SNAs have been observed in
different dynamical systems, including the quasiperiodically forced circle map[2]
and the damped penduluml9], they have been also related to the properties of the
Schrodinger equation with a quasiperiodic potential[10]. Nevertheless, the theory
of strange nonchaotic attractors (SNAs) is much less developed then the theory of
strange attractors. In particular, for strange attractors we know typical routes of
their appearance (period doubling, intermittency, etc.) and disappearance (e. g.,
crisis) [11, 12]. Statistical properties of chaotic attractors are also well studied. In



contrast to that the way how SNAs arise, and what are their statistical characteris-
tics, remain still as not completely solved questions. One particular route to strange
nonchaotic attractor has been recently discussed by Heagy and Hammel [13].

A strange nonchaotic attractor was defined in ref.[1] as an attractor which is not a
finite set of points and is not picewise differentiable, and for which typical orbits
have a negative Lyapunov exponent. Thus, in order to establish that a SNA is really
observed, one has: (1) to calculate the Lyapunov exponent and (2) to check that
the attractor is not differentiable. The first task is relatively simple, because there
are reliable methods for calculating the Lyapunov exponent, and if it is negative,
then one can be sure that the attractor is nonchaotic. The second task is much
more difficult. In the case of some ideal attractors the nondifferentiability can be
proved analytically (see [1] and the discussion below), but often the absence of
differentiability is argued only basing on the pictures of attractors.

It is the aim of the present investigation to look at the difference between non-
strange attractors and SNAs more carefully. We suggest several approaches, which
enable one to distinguish between SNA and non-strange (but looking very similar
to strange) nonchaotic attractors, and apply these methods to some of the previ-
ously studied systems. Mainly we shall deal with the basic model, introduced in
[1], we shall describe it in Section 2. The first approach (Section 3) is based on the
observation that any irrational number can be appoximated by an infinite number
of rationals. Thus, using such an approximation we construct a sequence of period-
ically forced systems and study their bifurcation phenomena, in order to determine
the structure of the attractor of the limiting quasiperiodically forced system. An-
other approach (Section 4)is based on the analysis of sensitivity of the attractor to
the phase of the external force. While sensitivity to initial conditions leads to the
notion of the Lyapunov exponent, we will characterize the sensitivity to external
force by a phase sensitivity exponent, which will allow to distinguish strange and
non-strange attractors. We will also show that the phase sensitivity exponent is
closely connected to the properties of the distribution of local Lyapunov exponents.
This helps to explain, why the transition to chaos in quasiperiodically forced sys-
tems usually occurs through SNA. We will also discuss, how this exponent can be
calculated directly from observed time series of a system.

2 The basic model

Let us start with the system, for which the SNA has been first reported[1]. It is the
two—dimensional map
Tpy1 = f(zn,0,) = 20(tanh x,) cos(276,,), (1)
01 = 0,+w mod 1. (2)

where f(z,0) = f(x,0+41). In fact, Eq. (1) describes a forced nonlinear system. If w
is rational, the forcing is periodic, while for irrational w the forcing is quasiperiodic.



A SNA may be observed only in the case of quasiperiodic forcing. In ref.[1] w was
set to be the reciprocal of the golden mean: w = (v/5 — 1)/2. It was analytically
shown in ref.[1] that a SNA in system (1) — (2) exists for [o| > 1. The proof consists
of two steps. Firstly, one can see that for typical trajectories of (2) the trivial state
x = 0 is unstable and some non-zero x is observed. Secondly, there are exceptional
trajectories of (2) passing exactly through 6 = % and 0 = 2 (where cos(270) = 0)
and therefore x is equal to zero for all n. Since all trajectories of (2) are dense on
the interval [0,1), the resulting attractor is discontinuous and not differentiable in

a dense set of points (Fig. la).

Moreover, the robustness of the occurrence of SNAs with respect to small pertur-
bations of system (1,2) has been checked in [1] by adding a further term in Eq. (1).
The first equation of the map reads now

Tpy1 = [f(zn,0,) =20(tanh z,)cos(278,) + acos(2x (0, + 3)) (3)

where « and 8 are additional parameters. In the case a # 0 it is difficult to decide,
basing only on the numerical picture ( Fig.1b) whether the attractor is strange or
not. We will be able to distinguish strange and nonstrange case basing on the
presented below methods.

3 Rational Approximations and their Bifurca-
tions

Our first approach in investigating system (1) — (3) is based on the approximation
of the irrational value of w with rationals. This approach is well-known in studies
of phase-locking phenomena in Hamiltonian (KAM theory)[14, 15] and dissipative
(transition to chaos through quasiperiodicity) [16, 17] systems. For the golden mean
irrational the adjusting rationals can be obtained from the continued fraction rep-
resentation of w, they have the form wy = Fy_y/F}), where I}, =1,1,2,3,5,8, ... are
the Fibonacci numbers. The irrational rotation number turns out to be the limit:
w = limy_o wg. Using this approximation we study instead of system(1) — (3) the
behaviour of an infinite set of systems where the irrational frequency w is replaced
by its rational approximate wy. If we analyze these systems for every k then we
expect that the properties of system (1) — (3) can be obtained by taking the limit
k — oo. Thus let us consider Egs. (1) and (3) together with

01 = 0, + wy mod 1. (4)

The trajectory of the map (4) consists of Fj points uniformly distributed on the
interval [0,1). Now Eq. (1) is a periodically (with period Fj) forced nonlinear map.
Or, if we consider only each Fi-th point (some kind of Poincaré map), then the
system is governed by an autonomous nonlinear map. This map is smooth and may
have one stable fixed point, or several stable fixed points together with unstable
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Figure 1: (a) Phase portrait of SNA in the system (1,2) for o = 1.5;
(b) Phase portrait of a nonstrange attractor in the system (2,3) for o = 1.5, a =

0.2, B=1/8.



ones, or stable periodic orbits, or even a strange attractor. The last possibility
is, however, excluded for the particular choice of the nonlinear function (3). The
attracting set in system (1),(3) and (4) depends on the parameters o, , 5, and, what
is very important, on the initial phase 6y in Eq. (4). We call this value 0y phase shift.
It is clear, that it is sufficient to change 6y in the interval [0,1/F}) in order to get
all possible attracting sets in system (1),(3),(4), because in this case the set of all 8
values fills the whole interval [0,1). Changing 6y continuously in the whole interval
[0,1/F%) and drawing the attracting set on the (z, ) plane for each of the chosen
initial phases 6o, we get the k~th approximation of the attractor in system (1) — (3)
as the union of all occurring attracting sets. Investigating these approximations, we
can classify the properties of the limiting attractor.

Because we are interested in distinguishing between strange and nonstrange attrac-
tors, smoothness properties of the attracting set in the limit £ — oo are important.
Generally, there are 3 possibilities:

(A) The approximating attracting set is nonsmooth for sufficiently large k.

(B) The approximating attracting set is smooth for any k—th rational approxima-
tion, but the maximum derivative

max{dz,/df : 0 < 0 < 1, o € all branches of the attracting set} grows indefi-
nitely with &, so that the limiting set cannot be considered as a smooth one.

(C) The approximating attracting set is smooth for all large k& and the maximum
derivative is bounded from above.

In the following we use this classification to show that the cases (A) and (B) corre-
spond to a SNA, while case (C) gives a non—strange attractor.

For system (1) — (3) with (a = 0,|o| > 1) the existence of SNA was proven in ref.[1].
We have constructed the attracting set for different rational approximations and
found, that it exhibits bifurcations as the parameter 6y changes (see Fig. 2). For
those values of 0, for which one of the 6, is very close to 1 (where cos(270) = 0)
there is only one stable fixed point = 0, while for other values of 6 either a pair of
stable fixed points or a symmetric period-2 cycle exists. Note, that in the bifurcation
points observed here the derivative of one branch of attracting sets with respect to
0o is infinite. All occurring bifurcation points are of that type that the tangent of
one branch of attracting sets is orthogonal to the 6y axis (turning points, pitchfork
bifurcations and period doublings). This picture of bifurcations is qualitatively the
same for all £ which has been checked for periods up to £} = 987. Furthermore, the
considered interval 0 < 6y < 1/F}, gets smaller and smaller with increasing k so that
the total number of bifurcation points for § € [0,1) increases. In the limit £ — oo
there are infinitely many bifurcation points with infinite derivative with respect to
0o and therefore, we conclude that the limiting attractor is strange corresponding
to case A. Because for all k only nonchaotic attractors exist in system (1),(3),(4),
we conclude that the limiting attractor is nonchaotic.

Basing on this picture, we may consider the existence of bifurcations (when the
phase shift is considered as a parameter) in the rational approximations as sufficient
condition for strangeness of the limiting attractor.
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Figure 2: Attracting set for the approximation with period Fy = 5: (a) o =0, (b)
a = 0.2. Dots - unstable fixed points, filled circles - stable fixed points, open squares

- period—2 orbits.
The phase shift 6y € [0,1/F})) is shown normalized to its maximum value 1/Fj.
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Figure 3: Bifurcation diagram on the («,8y) plane; solid line : Fj, = 13, dashed
line: Fy = 21. In the region I there is only one stable fixed point; in the region II
there are two stable fixed points and an unstable one; in the region III there is one
unstable fixed point and a stable period-2 cycle.

Let us now consider system (1) — (3) with  # 0. (The parameters § = 0.125
and o = 1.5 are fixed). Fig. 3 shows bifurcations sets in the (6, @) plane for two
different k values. We see that the interval of a values —a,,4> < @ < @ypqe, for which
bifurcations occur, decreases with increasing k. Fig. 4 shows that a,a. ~ Fk_l.
Thus we conclude, that for a fixed o # 0 there are no bifurcations in the rational
approximations for sufficiently large k, and therefore the system is of type A only for
a = 0. To distinguish between the cases B and C, we have calculated the maximum
value of the derivative da/df. A typical picture of approximating attracting set is
shown in Fig. 5 which indeed seems to have infinite derivative. However, when we
calculate max{|dz/df|: 0 <6 < 1} for the graph Fig. 5, we get a value that does
not increase with increasing k (see Fig. 6)!

This means that the attractor here is of type C and the limiting attracting set is
not discontinuous. The maximum value of derivative depends on « (see Fig. 6) and
grows as « decreases. The attractor becomes more and more close to a differentiable
one as « decreases, but a SNA exists only for a = 0.

Additionally, we considered another system, for which a strange nonchaotic attractor
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Figure 5: Approximation of the attracting set with Fjy = 233 for a = 0.2.
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Figure 6: Maximum derivative of the graph Fig. 5 vs. approximation period, for
different a values.

was reported [2],[3],[5], namely the quasiperiodically forced circle map

Tpp1 = x,+ K+ K sin 27z, + £c032ﬂ'0n mod 1, (5)
27 27
b1 = O, +tw mod 1. (6)

We fixed K = 0.2841 and V = 0.95 as in [3], and varied C' in a parameter range
where the maximum Lyapunov exponent is always negative. We obtained, that
bifurcations of the approximating attracting sets appear only at some critical value
C*) | depending on k (see Table 1). For large k variations of C*) are rather small

and C(°) ~ 1.1303 appears to be the point of transition from non-strange to strange
nonchaotic attractor (Fig.7).

Table 1.
Period of rational approximation Cer
377 1.130093
610 1.130401
987 1.130284
1597 1.130305
2584 1.130299
4181 1.130365
6765 1.130301
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Figure 7: Nonstrange and strange attractors for the system (5,6) near the transition

point: (a) C' =1.1302 (b) C' = 1.1304.

It is worth noting that the bifurcation diagram for this system is rather complicated.
In particular, for some values C' > C{>) no bifurcations are observed, and in these
cases the limiting attracting set appears also to be non—strange.

Basing on the presented results, we may formulate the hypothesis, that a strange
nonchaotic attractor exists only in the case where rational approximations possesses
bifurcations for sufficiently large k. This allows one to formulate a relatively simple
method of detecting SNA, using rational approximations of the irrational external
frequency and looking for bifurcations as the phase shift changes. The existence of
bifurcations means that the attractor is strange, if there are no bifurcations; then
the attractor is nonstrange. This method is relatively simple to perform, and seems
to be applicable in real experiments as well.

4 Phase sensitivity properties

4.1 Phase sensitivity exponent

As outlined in the previous section the consideration of the maximum derivative
0z /00 provides a suitable tool to distinguish between stange and nonstrange attrac-
tors. Next, we want to calculate this derivative not for the approximations but for
the attractor of the quasiperiodically forced system itself. Let us first characterize
the smooth attractor in Fig. 1b. This attractor is given by a curve z = F(6), and we
want to calculate the derivative dx/06. This derivative changes along a trajectory

10



(z0,60), (21,01),.... According to eq. (2), 0z,,/00,, = Ox,, /00 = Oxy, /00 for any
m, k. Therefore, we will omit the index of § and call it “derivative with respect to
the external phase”. From eq.(1) we easily get a recurrence relation

Jx,
= f&(xn; ) + fx(xna ) 90 ) (7)

awn+1
00

so starting from the correct initial derivative dxo/00 we get derivatives at all points
of the trajectory:

8900

89cN

50 Zfe (g1, 0k—1) BN (21, Ok) + Bn(20,00)—, 50 (8)
wnere
-
RM .’Em, H xm-l—z; m+i) (9)

and Ry = 1. For large n the values of R, can be represented through the Lyapunov
exponent

A =<log|f:| > (10)

R, ~ texp(An).

Because we consider nonchaotic attractors, the Lyapunov exponent A is negative
and R, is exponentially small for large n. This means that the derivative does not
depend on the initial guess dz/06, and starting iterations of (7) from any initial
value (e.g., from zero) we get for large N the correct value of the derivative:

89cN N
20~ Sy = folwp—1, 0x-1) Bn—r(zk, Ok). (11)
k=1

This gives a simple procedure for calculating simultaneously the attractor and its
derivative with respect to the external phase in the smooth case: one iterates (1), (2)
and (7) starting from arbitrary values of « and 0z /06, and for large n they converge
to the attractor and its derivative, respectively. The partial sums Sy computed by
(11) are bounded by the maximum derivative dz /00 along the attractor.

In the case of SNA the attractor is nonsmooth and the derivative dz /060 does not
exist, so the consideration above is no more valid. But we will use it to show that
the assumption of a finite derivative leads in the case of SNA to a contradiction.
Let us calculate the partial sums Sy (11), using the same recurrence relations. The

results of such calculation for a randomly chosen trajectory are presented in Fig.
8a.

The behavior of the sums seems very intermittent. The key observation is that
these sums are unbounded. This can be explicitely seen in Fig. 8b, where we plot a
maximum

v (2,0) = max |Sn|. (12)

11
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Figure 9: Values of I'y vs. N for the system (2,3) for ¢ = 1.5, 8 = 1/8, different
« and 1000 randomly chosen initial conditions. Only at a = 0 the dependence may
be fitted by a line (dashed line) with slope p &~ 0.97.

The value of vy grows with N, which means that arbitrary large values of |Sy| ap-
pear. From this follows immediately that the attractor cannot have finite derivative
with respect to the external phase, i.e., the attractor is nonsmooth. Indeed, the
assumption of a finite derivative is inconsistent with relation (8), where the second
term in the r.h.s. is exponentially small and the first term in the r.h.s. can be arbi-
trary large. Thus, calculating partial sums (11) (by means of the recurrence relation
(7) starting from dzo/00 = 0), we can distinguish strange (sums are unbounded)
and non-strange (sums are bounded) attractors.

The growth rate of the partial sums with time represents a degree of strangeness
of the attractor, and can be used as a quantitative characteristics of SNAs. For
this purpose we need a quantity that is independent of a particular trajectory, but
represents average properties of the attractor. The appropriate quantity seems to
be the minimum value of yx(z,8) with respect to randomly chosen initial points
(z,0):

I'n = l’l;liel’l’}/N(‘T,a), (13)

presented in Fig.9.

We would like to mention that while other quantities which do not depend on a
particular trajectory may be defined (e.g., the average of yn(z,)), the minimum

13



value allows a more reliable infererence that the attractor is non-smooth. Moreover,
its numerical convergence is very good, so that it is enough to take about 1000
randomly chosen initial conditions (z, §). From Fig.9 we see that I'y grows with V
as

FN ~ N* (14)

where the value p &~ 0.97 is a quantitative characteristics of the strangeness of the
attractor, we call it phase sensilivity exponent. A rough theoretical estimation of
the exponent u based on the distribution of local Lyapunov exponents will be given
in the next section.

The calculation of the phase sensitivity exponent allows one to distinguish between
strange and nonstrange attractors. In Fig.9 we present results of the calculations for
different values of the parameter a in Eq.(3) (parameter f = 1/8 was fixed like in
[1]). One can see that for « = 0.5 and « = 0.3 the value of I'y saturates with IV, so
the phase sensitivity exponent is zero. This confirms the results of section 2, where
it was shown that a SNA in system (2,3) exists only for @ = 0 (which corresponds
to system (1,2)).

4.2 Local Lyapunov exponents

Here we discuss the relation between the phase sensitivity exponent and the usual
maximum Lyapunov exponent which reflects the sensitivity to the initial conditions.
Let us first analyze the dynamics of the partial sums, shown in Fig. 8, in more detail.
It is seen that the behavior of the partial sums is very intermittent: during large time
intervals the values of Sy are relatively small, while there are short but extremely
high peaks. One of these peaks is enlarged in Fig.10a.

During the peak the partial sum grows approximately exponentially in time, and
then returns to a small value. Let us compare this behavior with the representation
of the partial sum Eq.(11). Because the derivatives f; are bounded, the sum can be
large only if one of the factors R is large. As it follows from the definition (9), the
factor R is a local multiplier that determines local (in phase space) sensitivity of the
motion. The corresponding local Lyapunov exponent is defined as [18, 19, 20]

A2, 0) = - log [ Ras(z, ) (15)

and the usual Lyapunov exponent (10) is the limit: A = limp/_ Aps. Thus, we
conclude that high bursts of the finite sum correspond to such parts of the trajectory
possessing a positive local Lyapunov exponent. This can be explicitly seen in Fig.
10b, where instantaneous growth rates A; (defined by Eq. (15) with M = 1) in
the burst region are presented. During approximately 25 iterations, A; is mostly
positive, and this produces a large partial sum.

Properties of local (in phase space) Lyapunov exponents have been widely discussed
for chaotic systems [21, 22]. Based on central-limit-theorem-like arguments [22] one

14
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Figure 10: Enlarged burst of the partial sum |Sy| presented in Fig.8 (a) and corre-
sponding instantaneous Lyapunov exponents (b).
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can expect, that for large M the distribution density of the exponents scales (in the
leading exponential order) as:

Wi (A) ~ exp(Me(A)) (16)

The scaling function ¢(A) is convex and has a maximum exactly at A = A[18, 19].
Usually, this function is defined on a finite interval: ¢(A) > —oo for Apin < A < Apax
(the quantities A, and Apay correspond to minimum and maximum local expansion
rates on the chaotic set). In the case of SNA scaling properties of local Lyapunov
exponents are not known. We assume here, that relation (16) is still valid. One
argument for this assumption is that the power spectrum of SNAs is very dense
and close to a broad-band one [2, 4] . This corresponds to an effective decay of
correlations, which allows one to apply the same arguments as for chaotic systems.
On the other hand, scaling (16) does not contradict the numerics presented below.

Now, we can describe SNAs in terms of local Lyapunov exponents: a SNA ap-
pears when the scaling function ¢(A) has a maximum at negative A, but has fi-
nite values also for positive A: Apax > 0. The first property ensures that the
attractor is nonchaotic. From the second property it follows that the attractor
is non-smooth. Indeed, in this case the local Lyapunov exponent can be posi-
tive with non-zero probability. For such pieces of a trajectory the local multiplier
Ry(z,0) = exp(MApm(z,0)) can be arbitrary large according to relation (15), hence,
the partial sum (11) can be arbitrary large, and this means nonexistence of deriva-
tive with respect to the external phase. Thus, the existence of a positive A« for
the scaling function (16) in the limit M — oo means that the attractor is strange.

We computed the distribution function Wy, (A) for system (1,2) (see Fig. 11). Since
positive A are of most interest, only this part of the distribution is presented. If the
scaling (16) holds, distributions for different M must have the same form. This is
only approximately true for the largest values M = 45 and M = 50 for which we
could obtain enough statistics. It is also worth mentioning that the value Ay is
remarkably stable for all M < 50: Anax & 0.45. This value can be also estimated
analytically. Indeed, as shown in ref.[1], an orbit x = 0 with a Lyapunov exponent
h = log|o| belongs to the attractor. Thus, for 0 = 1.5 we can estimate Apax >
log |o| ~ 0.405. We can also roughly estimate the form of the function ¢(A) for
positive A. Suppose that only those pieces of orbits that start near x = 0, i.e.
near § = x /4, 3w /4 contribute to positive A. The orbit starting at a point z¢ ~ 0
spends T" < M iterations in the vicinity of line x = 0, where we can estimate T
as T' =~ —log|zo|/h. During these iterations the local Lyapunov exponent achieves
the value A(zo) &~ hT/M = —log|zo|/M. If we assume that the values of zq are
distributed uniformly (this follows from uniform distribution of phases 6, see Fig.
1) and take into account that the local Lyapunov exponent cannot be larger than h
(if the orbit does not leave the vicinity of line = 0 during M iterations), we get a
“truncated Poissonian distribution” of positive local Lyapunov exponents

M exp(—MA) if A < h,

Wh(A) ~ { exp(—Mh)§(A—h) it A > h. (17)

16
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Figure 11: Histograms of positive local Lyapunov exponents of the SNA shown in
Fig.1a.

This simple estimate qualitatively fits the numerically obtained histograms Fig.11.
Note also that it has the scaling form (16).

Using the knowledge about the distribution of local Lyapunov exponents, we can
estimate the phase sensitivity exponent y introduced in the previous section. During
time N only events with a probability larger then 1/N may be expected to occur.
Thus, the largest Lyapunov exponent A,,,, may be observed only for time intervals
M satistying Was(Apmaz) ~ 1/N. Taking into account (17), we get M ~ h~log N,
and the maximum local multiplier that may be observed during time N is then
R ~ exp(hM) ~ N. Supposing that the partial sum is dominated by the term with
the largest multiplier, we finally obtain I'y ~ N, which means that ¢ = 1. This
estimation for the phase sensitivity exponent fits rather good the data presented in

Fig. 9.

4.3 Sensitivity from time series

In this section we discuss how the phase sensitivity can be estimated from an
observed time series of a SNA. Suppose we know an orbit (z,,6,) in the two-
dimensional (z,0)-space. Let us notice first that because 6 is quasiperiodic, for
each given small ¢ one can find such a ng that the distance g9 = |0,, — 6| < e.
Then the quantities |(@x4n, — Tk)/(Oksno — Ok)| = |(Tktn, — k) /0| give estimates of
the derivative dz/00 along the orbit. If we construct from our orbit (z,,6,) “two”

17
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Figure 12: Maximum distance dpa.x vs. ¢o for different values of «; the maximum
number of iterations was N ~ 6 - 10! for « = 0 and 0.2 and the smallest &;.

orbits starting with (zo,6) and (z,,,0,,) then the phase difference |0y,, — 0k| re-
mains constant during the whole time evolution. The difference between the two
trajectories is only determined by the difference |xgy,, — zx|. This difference can
be used as a measure to check smoothness properties of an attractor. If we suppose
that the attractor is discontinuous then we expect that the distance between the two
trajectories exhibits a complicate time behavior with several peaks similar to the
time evolution of dxz/06 (Fig.8). Indeed, we have obtained in the case of a strange
non-chaotic attractor in system (1,2) such a complex variation of the distance. Let
us study only the maximum value of this distance:

N

max — HlaX |.’Ek+n0 - .’Ek| (18)

0<k<N

If the attractor is nonsmooth, then dV, is expected for large enough N to be of
the order of the size of the attractor. It is important to note, that for a "true”
SNA this behavior does not depend on the initial phase shift ¢g. That means, that
the saturated value dp.x = dS%, does not depend on g, but the time N to obtain
this maximum increases. If the attractor is a smooth one, then the distance of
neighboring points on the attractor gets smaller and tends to zero with decreasing
phase difference ¢¢. In Fig. 12 we present the results of the numerical computations
of diax for system (2,3) and different values of €y and «. Again, one can distinguish
cases of SNA (o = 0) and smooth attractors a # 0. The number of iterations which
is necessary to achieve the saturated maximum distance dp.x can be estimated as

N ~ &5t
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5 Conclusions

We have applied the approach of rational approximations to the study of strange non-
chaotic attractors in quasiperiodically driven nonlinear systems. It has been shown
that such an approximation yields a suitable method to estimate the smoothness
properties of an attracting set. The transition from nonstrange to strange attractor
then corresponds to the appearance of bifurcations of the attracting set, where the
phase shift is considered as a parameter.

Furthermore, we have shown that the SNAs in quasiperiodically forced dynamical
systems can be characterized in terms of sensitivity. While chaotic attractors are
sensitive to initial conditions, SN As are sensitive to the perturbations of the phase of
the driving force. This sensitivity appears when positive local Lyapunov exponents
can be observed for arbitrary long time intervals.

The notion of local Lyapunov exponents was applied previously only to chaotic
dynamical systems. Indeed, in chaotic systems there is a rich enough variety of tra-
jectories that may have different Lyapunov exponents (e.g., different periodic orbits
typically have different Lyapunov exponents). In non-chaotic systems with periodic
behavior, the Lyapunov exponent of the periodic motion is determined uniquely.
The point is that in nonchaotic systems with quasiperiodic behavior different tra-
jectories may have different Lyapunov exponents, and a nontrivial distribution of
local Lyapunov exponents can be expected as typical. This explains why SNAs
are typically observed in quasiperiodically driven systems near the transition to
chaos: at the transition point the usual Lyapunov exponent crosses zero, so near
the transition point it is natural to expect that the distribution of local Lyapunov
exponents will be nonzero for positive exponents. We would also like to mention
that the importance of local Lyapunov exponents for SNAs was noticed implicitly
in ref.[23], where a method of generating SNA, based on taking pieces of trajectories
with positive and negative Lyapunov exponents, was discussed.

Finally, we have proposed an easy test for the occurrence of SNAs in measured time
series based on the evaluation of the maximum distance between two trajectories
with a given phase shift. But it has to be mentioned that the computation of the
maximum distances distinguishes only between strange and nonstrange behavior. It
is not useful to make a distinction between strange non-chaotic and chaotic since
the maximum distance reaches in both cases the size of the attractor [24].
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