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Abstract

Nowadays, colloidal rods can be synthesized in large amounts.
The rods are typically cylindrically and their length ranges from
several nanometers to a few micrometers. In solution, systems
of colloidal rodlike molecules or aggregates can form liquid-cryst-
alline phases with long-range orientational and spatial order. In
the present work, we investigate structure formation and fraction-
ation in systems of rodlike colloids with the help of Monte Carlo
simulations in the NPT ensemble.

Repulsive interactions can successfully be mimicked by the hard
rod model, which has been studied extensively in the past. In
many cases, attractive interactions like van der Waals or deple-
tion forces cannot be neglected, however. In the first part of this
work, the phase behavior of monodisperse attractive rods is char-
acterized for different interaction strengths. Phase diagrams as a
function of rod length and pressure are presented.

Most systems of synthesized mesoscopic rods have a polydisperse
length distribution as a consequence of the longitudinal growth
process of the rods. For many technical and research applications,
a rather small polydispersity is desired in order to have well de-
fined material properties. The polydispersity can be reduced by
a spatial demixing (fractionation) of long and short rods. Frac-
tionation and structure formation is studied in a tridisperse and a
polydisperse bulk suspension of rods. We observe that the result-
ing structures depend distinctly on the interaction strength. The
fractionation in the system is strongly enhanced with increasing
interaction strength.

Suspensions are typically confined in a container. We also exam-
ine the influence of adjacent substrates in systems of tridisperse
and polydisperse rod suspensions. Three different substrate types
are studied in detail: a planar wall, a corrugated substrate, and
a substrate with rectangular cavities. We analyze the fluid struc-
ture close to the substrate and substrate controlled fractionation.
The spatial arrangement of long and short rods in front of the
substrate depends sensitively on the substrate structure and the
pressure. Rods with a predefined length are segregated at sub-
strates with rectangular cavities.
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Zusammenfassung

Kolloidale Stdbchen konnen mittlerweile in grofsen Mengen hergestellt wer-
den. Die Form der Stidbchen ist in der Regel zylinderformig und ihre Lange
reicht von einigen Nanometern bis hin zu wenigen Mikrometern. Systeme
aus kolloidalen stdbchenformigen Molekiilen oder Aggregaten konnen in Lo-
sung fliissigkristalline Phasen mit langreichweitiger Orientierungs- und Rau-
mordnung ausbilden. Im Rahmen dieser Arbeit werden Strukturbildung und
Fraktionierung in Systemen aus stdbchenférmigen Kolloiden mittels Monte
Carlo Simulationen im NPT Ensemble untersucht.

Replusive Wechselwirkungen kénnen erfolgreich durch harte Stdbchen mod-
elliert werden. Dieses Modell wurde in der Vergangenheit bereits ausgiebig
untersucht. Oft jedoch konnen attraktive Wechselwirkungen, wie z. B. van
der Waals- oder Depletionskrifte, nicht vernachldssigt werden. Im ersten
Teil dieser Arbeit wird das Phasenverhalten von monodispersen attraktiven
Stdbchen bei unterschiedlichen Wechselwirkungsstirken charakterisiert. Es
werden Phasendiagramme beziiglich der Parameter Druck und Stdbchenlinge
prasentiert.

Die iiberwiegende Mehrzahl von Systemen aus synthetisierten mesoskopis-
chen Stidbchen weist eine polydisperse Lingenverteilung aufgrund des Lings-
wachstums auf. Fiir eine Reihe technischer und wissenschaftlicher Anwen-
dungen sind hingegen schmale Léngenverteilungen wiinschenswert, um wohl
definierte Materialeigenschaften zu haben. Die Polydispersitidt kann durch
rdumliche Trennung (Fraktionierung) langer und kurzer Stibchen reduziert
werden. Fraktionierung und Strukturbildung werden in einer tridispersen
und einer polydispersen Suspension untersucht. Wir beobachten, dass die
entstehenden Strukturen ganz wesentlich von der Wechselwirkungsstéirke ab-
hiangen. Der Grad der Fraktionierung wird durch Attraktivitéit stark erhoht.

Suspensionen befinden sich typischerweise in Gefdsen. Wir untersuchen da-
her auch den Einfluss von begrenzenden Substraten auf Systeme aus tridis-
persen und polydispersen Stidbchensuspensionen. Drei verschiedene Sub-
stratstrukturen werden genauer betrachtet: Eine planare Wand, ein riefen-
formiges Substrat und Substrate mit rechteckigen Aussparungen. Wir un-
tersuchen die Fliissigkeitsstruktur in Substratndhe und substratinduzierte
Fraktionierung. Die rdumliche Anordnung von langen und kurzen Stédbchen
hiangt sehr sensibel von der Substratstruktur und dem Druck ab. Stidbchen
mit einer festgelegten Linge werden an Substraten mit rechteckigen Aus-
sparungen abgesondert.
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Chapter 1

Introduction

During the last years, more and more rigid, rodlike colloids have been created
synthetically. Examples are carbon nanotubes [36], boehmite needles [10],
cylindrical dendrimers [74], and metallosupramolecular coordination poly-
electrolytes (MEPE) [A2]. Rodlike molecules can serve as building blocks for
mesoscopic structures and are able to self-aggregate. Like small liquid crystal
molecules, colloidal rods can form phases with long-range spatial and /or ori-
entational order. The length scale of such rods typically ranges from several
nanometers to a few micrometers. Colloidal zinc oxide (ZnO) nanorods, for
example, can be utilized in gas sensors [25] or in thin-film field-effect transis-
tors [81]. Rods can be used as templates for a controlled creation of porous
materials [40], as electrically conducting nanowires [20], as waveguides [84],
or as building blocks for scaffold-like networks [12]. For many applications,
a rather monodisperse length distribution is desirable. Most synthesis meth-
ods produce a suspension with a polydisperse length distribution because of
the longitudinal growth process. Fractionation is a possibility to establish
a sorting mechanism in polydisperse suspensions. This work is dedicated to
investigate structure formation and fractionation effects in polydisperse sys-
tems of rodlike colloids. Special attention is paid to the influence of attractive
rod interactions [67] and the impact of patterned adjacent substrates [68].

1.1 Basic aspects about liquid crystals

First of all some basic aspects about liquid crystals. We all know from
everyday experiences that substances appear in different phases like the solid,
fluid, and gaseous phase. Water, for example, is crystalline at temperatures
below 0°C', fluid in the temperature range between 0°C' and 100°C', and
gaseous at temperatures above 100°C". Besides these three well known phases
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of matter other phases exist in nature as well. One example is the plasma,
which occurs at extremely high temperatures like in stars. Another class of
phases are the so-called liquid crystalline phases and parts of this work aim
at their characterization in the employed model system.

The name liquid crystal itself is confusing. How can a liquid be crystalline
or how can a crystal be fluid at the same time? The nomenclature for this
specific state of matter makes sense, indeed, since a liquid crystal combines
aspects of both the fluid and the crystalline phase. A liquid crystal behaves
like a fluid in that it flows and can be deformed easily. At the same time
long-range positional and/or orientational order is present as in crystals. The
first experimental observation of liquid crystalline behavior was described by
Reinitzer in 1888 [66]. Around 1900, Otto Lehmann identified the substances
as a new thermodynamically stable phase and created the term liquid crys-
tal. The names mesophase or mesomorphic phase (mesos (Greek) = middle,
intermediate) is also widely used.

Liquid crystalline behavior is essentially connected to a strong anisotropy
of the underlying molecules. Thus, every molecule has a combination of
positional and orientational degrees of freedom. In the crystalline state,
positions as well as orientations of the molecules are strongly constrained.
The molecules are arranged on a lattice and the orientations are also fixed.
When a solid melts to a liquid, positional and orientational order disappears
at the same time. If, however, parts of the positional order or some kind
of orientational order is preserved above the melting point, the system is
in a liquid crystalline state. Single component systems, which show liquid
crystalline behavior in a certain temperature range are called thermotropic.
If the molecules are in solution, the liquid crystal is said to be lyotropic and
the amount of solvent is a dominant control parameter. Colloidal systems
studied in this work are typically lyotropic.

1.1.1 Liquid crystalline phases

The most common liquid crystalline phases are formed by rodlike molecules,
which unify an elongated shape and a considerable rigidity. The orientation
of a rigid body in three dimensions is determined by three coordinates, e. g.
the Euler angles [30]. For the description of rodlike molecules, rotations
around the long axis can usually be neglected. Thus, the orientation of
each molecule i is specified by a unit vector u;, which is parallel to the
rod axis. Rodlike molecules typically have a head-tail symmetry, i. e. w;
and —u; are equivalent. A nematic liquid crystal is characterized by a high
degree of long-range orientational order whereas the spatial correlations are
short-ranged like those of a liquid. Most rod orientations u; point along
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Figure 1.1: lllustrations of three different liquid crystals. (a) In the nematic
phase, the rods align a global director n. (b) In the smectic A phase, the
rods are additionally arranged in layers. (c) In a smectic C liquid crystal, the
orientation of the rods and the layer normal are different.

the global director n as sketched in Fig. [CTl (a). The second big class of
liquid crystalline phases exhibit smectic order. Here, orientational and one-
dimensional spatial order emerge simultaneously. The molecules are arranged
in layers as depicted in Fig. [T (b) and (c). In the smectic A (SmA) and
smectic C (SmC) phase each layer basically represents a two-dimensional
fluid with the rods diffusing freely within the layer but only rarely between
the layers. In a smectic A phase, the layer normal coincides with the global
director n. If n is tilted with respect to the layer normal, the phase is called
smectic C. Both the smectic A and smectic C possess only short-range in-
plane correlations between the molecule positions - typically in the range of
a few molecule diameters. Another example of a smectic phase is the smectic
B phase where bond-orientational order exists. In difference to a crystal, the
molecules are not arranged on a lattice, i. e. there is no long-range spatial
order. The in plane correlation function of a smectic B phase, however, has
the characteristics of hexatic order. Smectic liquid crystals are often more
viscous than nematics.

A special case of the nematic phase is a cholesteric liquid crystal as
sketched in Fig. [L2 The director of neighboring nematic layers is turned
by a constant angle around an axis perpendicular to the director. A rotation
of 360° defines the helical pitch height p. The majority of liquid crystalline
substances show the nematic or smectic behavior introduced so far. A larger
variety of liquid crystalline phases occurs in nature, however [I7, O3].

Beneath rodlike molecules, a disklike shape of molecules leads to liquid
crystalline phases, too. The normal vector on the disk plane represents the
orientation of such a molecule. The nematic phase is characterized by a
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Figure 1.2: lllustration of a cholesteric lig-
uid crystal. The nematic director n turns by
360° within the helical pitch height p.

global director n, again, which is the average direction of the orientations
as illustrated in Fig. (a). A drawing of a columnar phase is given in
Fig. (b). Here, the molecules arrange themselves in columns in addition
to the orientational order. The columns themselves form often hexagonal
structures. Diskotic liquid crystals are subject of investigations for more
than 30 years [39, A1, 87| but rodlike molecules are the predominant class of
substances, which form liquid crystals. In this work, rodlike molecules will
be considered, exclusively.
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Figure 1.3: Schematic drawing of (a) the nematic and (b) the columnar phase
in diskotic liquid crystals.

1.1.2 Applications of liquid crystals

The research in liquid crystals as a state of matter is of fundamental interest
for its own. In addition, liquid crystals gained considerable importance in
technical applications. The anisotropy of the liquid crystalline phases makes
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these materials birefringent. As a consequence, the orientation of polarized
light can be changed by the material.

The big advantage of a liquid crystal as a birefringent substance is that
a setup of two crossed polarizers and the liquid crystal in between can be
employed as a voltage controlled light valve. This property is the basis for
the widespread usage of liquid crystals nowadays in displays (LCD) of devices
like notebooks, flatscreens, or mobile phones. In 1971, Schadt and Helfrich
reported on the voltage-dependent optical activity of a twisted nematic liquid
crystal [7I]. Up to now, the development of liquid crystal displays evolves
rapidly and has become a billion dollar business [72, [77, 82, 83].

The simplest setup of the unit cell of a liquid crystal display is the so-
called twisted nematic (TN) cell. Further developments with improved char-
acteristics comprise, e. g. the super twisted nematic (STN) and the triple
super twisted nematic (TSTN) LCD [82]. The operating mode of a TN unit
cell is illustrated in Fig. [L4 A nematic liquid crystal is located between two

transparent
electrodes
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polarizer polarizer

(a) (b)

Figure 1.4: lllustration of a voltage-controlled light valve. (a) Without applied
voltage, the twisted nematic liquid crystal between the electrodes turns the
light by 90°. The cell is bright. (b) With applied voltage, the molecules
orientent along the electic field. The light is filtered out by the right polarizer
and the cell is dark.

transparent electrodes, which are arranged between two crossed polarizers.
The electrode surfaces are treated such that a twist of 90° of the director n
arises when no voltage is applied (Fig. [C4 (a)). As the light traverses the
cell the polarization is turned by 90°. Thus, light passes the right polarizer
and the cell appears bright. Fig. [ (b) illustrates the situation with an ap-
plied voltage. Now, the nematic director n aligns parallel to the electric field
and the light traverses the liquid crystalline material unaffected. The light
is filtered out by the right polarizer and the cell is dark. Beneath the usage
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in display devices, liquid crystals are also applied in photonic applications
as spatial light modulators [55] or as adaptive optical interconnects between
printed circuit boards [T03].

1.2 Model systems

A fundamental understanding of the mechanisms, which lead to liquid crystal
formation is of general interest. In science, model systems are employed, in
which relevant parameters can be identified and controlled precisely. In the
following, we give a brief overview of experimental and theoretical models.

1.2.1 Lyotropic model systems

Systems of tobacco mosaic viruses (TMV) in solution are studied for more
than 50 years as model systems for lyotropic liquid crystals. An electronmi-
crograph of TMV is presented in Fig. The TMV combines two essential

Figure 1.5: An electronmicrograph
picture of TMV. The scale bar is
0.2pum.

features - the particles are considerably stiff and rather monodisperse. Espe-
cially the latter property is often not fulfilled by chemically synthesized rods.
In Fig. [CHl, we present two examples of liquid crystals formed by TMV. Part
(a) depicts a sample with an isotropic phase in the upper and a nematic
phase in the lower region. The picture shows the same sample twice. Two
transparent liquids are observed under white light in the left half. In the
right half the sample is viewed under crossed polarizers. The isotropic region
is black whereas the nematic region appears bright. The smectic phase of
TMV viewed under crossed polarizers is presented in Fig. (b). The dark
lines, which separate differently colored regions are disclinations.

Another model system consists of fd viruses in solution. Recent studies
elucidated the kinetics of the isotropic-smectic transition in suspensions of
fd viruses and non-adsorbing polymers [22]. The first step in the formation
process of a smectic liquid crystal is depicted in Fig. [C7 (a) where a nematic
droplet can be seen. An interesting observation is the formation of a single
layer in solution. The hexagonal shape of the layer in Fig. [ (b) is a strong
indication that long-range order exists within the layer [22].
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(a)

Figure 1.6: Mesophases of TMV. (a) Isotropic-nematic coexistence viewed
under white light (left half) and viewed under crossed polarizers (right half).
The image is taken from the Fraden lab. (b) Smectic phase of dried TMV
viewed under crossed polarizers [100].

(a) (b)

Figure 1.7: Optical images in suspensions of fd virus and non-adsorbing
polymers [22]. (a) In the first step of the isotropic-smectic transition a nematic
droplet forms. The length of the droplet is about 6um. (b) Formation of a
hexagonally shaped monolayer of fd viruses. The diameter of the monolayer is
about 23um.

1.2.2 Theoretical models

The understanding of the physical principles that lead to long-range ori-
entational order in rod systems was promoted fundamentally by Onsager’s
work in the 1940s [57]. He identified the interplay of orientational entropy
and orientation-dependent excluded volume as sufficient driving force for the
rods to align along a global director, i. e. for the formation of a nematic
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phase. Each rod is considered as a spherocylinder of length L and diameter
D and interactions are due to steric repulsion. The original work of Onsager
only considered nematic order. With the help of density functional theory,
smectic order can be treated analytically [T4]. Because of the assumptions of
Onsager’s theory (steric repulsion, dilute system, L > D), the validity of the
predictions are basically restricted to lyotropic rod systems. Long-range ori-
entational order in thermotropic liquid crystals is resembled more appropri-
ate in the Maier-Saupe theory [49]. Here, each rod is exposed to an average
orienting field induced by its neighborhood whereas steric interactions are
neglected. This approach is analogous to the explanation of the ferromag-
netism by Weiss. Another approach is via the continuum theory developed
by Oseen [B9] and Frank [26], in which molecular details are neglected. This
technique is used in many occasions where variations of the nematic director
n occur on much larger length scales than the molecular dimensions. The
continuum theory for nematic liquid crystals has been developed in the first
half of the last century and is still a widely used tool [35], B3, 44, B6]. The
development of computers provides an additional tool to study the collective
behavior of many-particle systems - computer simulations. They establish
the possibilities to use realistic interparticle interactions and to study the
influence of confining walls. Computer simulations can also be adapted very
flexible to new problems. The Monte Carlo (MC) and the molecular dy-
namics (MD) simulation technique represent the most widespread computer
simulation techniques. In both cases, pair interactions have to be established.

Two model potentials are preferentially used to mimic rodlike particles.
The first model — the Gay-Berne model — is an extension of the Lennard-
Jones potential for uniaxial ellipsoids [28]. The potential is available in an
analytical expression and forces and torques are obtained as derivatives of
the potential. This feature is especially helpful in molecular dynamics sim-
ulations or for analytical calculations. The Gay-Berne potential is one of
the few models, which appropriately takes into account the attractive inter-
actions for rodlike molecules. The orientation of two rods with respect to
each other is characterized by four scalars and an attractive pair interac-
tion like the Gay-Berne potential takes care for this. The phase behavior of
Gay-Berne mesogens has been studied extensively [4, O, [8, 19, 92|, also with
incorporated quadrupoles [I02], and in confining geometries [33, B4, O8]. The
Gay-Berne model is typically employed to mimic thermotropic liquid crystals.

The second model consists of spherocylinders. A spherocylinder is com-
posed of a cylinder of length L and diameter D, which is capped at both
ends by hemispheres as illustrated in Fig. The axis ratio A = L/D
characterizes a spherocylinder completely. Colloidal rods are typically cylin-
drically and in solutions of these rods short-range repulsive forces are often
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Figure 1.8: Schematic drawing of a sphe-
L rocylinder with axis ratio A = L/D.

predominant. Therefore, colloidal rods are frequently mimicked by hard sphe-
rocylinders, which take into account only hard core repulsions. The phase
diagram of hard spherocylinders has been explored with the help of simula-
tions [7, O1] and density functional theory [3I] and is basically completely
known [7] (Fig.[LH). The first liquid crystalline phase, which sets in at grow-

ABC
0.80

AAA

Figure 1.9: Phase diagram for
hard spherocylinders [7]. The
reduced density p* is plotted
along the ordinate and the in-
verse axis ratio D/L is plotted
DL ‘ along the abscissa.

ing axis ratio A = L/D is the smectic phase (A 2 3.1). At A = 3.7, a nematic
phase exists at finite densities. For finite axis ratios, the isotropic-nematic
phase transition is first order and occurs at finite density. In the limit of
infinitely long cylinders (D/L — 0), the isotropic-nematic transition shifts
towards a vanishing density. At suitably high densities, solid phases with
different layer stacking appear. Other aspects investigated with the hard rod
model are, for example, the crystal nucleation in overcompressed fluids [[73]
or the isotropic-nematic interfacial tension [94].

In some cases, attractive interactions between colloidal rods cannot be
neglected. For small colloidal rods, the van der Waals interaction becomes
relevant. In the case of single walled carbon nanotubes (SWNTs), the van
der Waals interaction is so strong that suitable dispersions of pure SWNTs
have been achieved only recently [65]. In solutions of mesoscopic rods and
polymers, attractive interactions are based on depletion forces [48, 62). If a
void between neighboring rods gets too small for the polymer coils to enter,
the system favors a reduction of the gap in order to maximize the available
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space for the polymers. Depletion forces between rods have been investigated
for polymer stabilized fd viruses in polymer solutions [22].

Spherocylindrical rods with attractive interactions are discussed rather
rarely in the literature. Often, the attractive contribution is considered
strongly simplified, depending only on the shortest distance of the interacting
rods [T6, B0, 96]. In this work, we use an extension of a model potential by
Bolhuis et al. [8], which depends on the rod distance as well as on the orien-
tation of the interacting rods. Recently, Martinez-Haya et al. [51] proposed
an attractive rod potential on the basis of the Gay-Berne potential with a
spherocylindrical core. Both the potential used here and the potential from
Martinez-Haya et al. incorporate the four scalars, which define the relative
pair orientation of two rods.

1.3 Length polydisperse systems

Most systems of synthesized mesoscopic rods have a polydisperse length dis-
tribution. This is a consequence of the longitudinal growing process, which
has no characteristic length scale. According to Gibbs’ phase rule, the num-
ber of possible phases grows linearly with the number of constituents. Thus,
polydispersity enriches the phase behavior. In the coexistence region of
isotropic and nematic phases, the system gains spatial and orientational en-
tropy if short rods are preferentially in the isotropic phase and long rods in
the nematic phase. If this effect dominates the corresponding loss in mixing
entropy, fractionation sets in. Bidisperse hard rod suspensions with only two
constituents are widely studied. In these suspensions, a variety of new phe-
nomena can be observed such as a widening of the biphasic isotropic-nematic
(I-N) region, a triphasic I-N-N coexistence region, and strong fractionation
of long and short rods [46]. The phase diagram beyond the nematic phase
reveals columnar phases in systems of parallel spherocylinders [80]. Recent
works also focused on smectic phases and report on a SmA-SmA phase tran-
sition and strong fractionation. Furhermore, the phases appear to depend on
the length ratio of the components as well as on their axis ratio [I4]. In binary
mixtures of thick and thin hard rods, a depletion driven I-I demixing occurs
[88]. In length tridisperse mixtures, nematic three-phase regions are found
[97]. Length polydisperse hard rod systems with a continuous distribution
have also been studied [15], [78]. In addition to the phenomena mentioned
above, like a widening of the I-N coexistence region, the fractionation is
found to depend distinctly on the polydispersity. A moderate fractionation
is observed at a low polydispersity whereas the opposite is the case at high
polydispersity [99]. Smectic phases become unstable at large polydispersity
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whereas columnar phases become stable [3].

For many technical and research applications, a rather small polydisper-
sity is desired in order to have precise material properties. Fractionation
as a result of phase separation presents one possibility to establish a length
specific sorting mechanism. In this work, we demonstrate with the help of
Monte Carlo simulations how attractive interactions of the rods influence
fractionation. We also point out, how suitably designed substrates can be
exploit to generate highly monodisperse length distributions in preassigned
regions, i. e. at the substrate. Various aspects of the influence of confin-
ing walls on monodisperse rod suspensions were already addressed in the
past [2T], 23, 62, [76l, 79, 89]. The technical skills to design substrate pat-
terns in the submicrometer regime are fast-paced comprising a variety of
different techniques [29] like colloidal lithography [I04] or lithographically
induced self-assembly [T3], thus delivering the opportunity to suitably tailor
substrate structures.

1.4 Overview

This work is divided in three parts. The theoretical background is introduced
in Chapter Bl After a brief overview of the statistical mechanics of polydis-
perse rod systems, the model potential for attractive rods is introduced.
We demonstrate the potential dependence for various rod configurations.
An effective method to calculate the attractive interaction is derived in Ap-
pendix[Al The Monte Carlo simulation scheme in the isobaric-isothermal en-
semble and also advanced simulation schemes like the biased multi-histogram
sampling are introduced in Section [Z4l The last section of Chapter Bl covers
the observables, which are employed to study the structure of the systems.
We propose a rescaling of the nematic order parameter for finite particle
numbers. The corresponding derivation is presented in Appendix [C]

The results for bulk systems are presented in Chapter Bl which is divided
in three sections dealing with monodisperse systems, a tridisperse suspension,
and a polydisperse suspension. For all systems, the influence of attractive
interactions is investigated. The attractivity changes the bulk behavior for
monodisperse systems significantly as shown in the corresponding isotherms
and phase diagrams. In tridisperse and polydisperse systems the focus lies
on fractionation effects and structure formation.

The most extensive studies are performed for systems with adjacent sub-
strates in Chapter @l The suspensions investigated are tridisperse and poly-
disperse since we focus on fractionation effects. Three different substrate
types are considered: A planar wall, a corrugated wall, and a wall with rect-
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angular cavities. The substrates induce a broad spectrum of fluid structures
depending on the applied pressure and the specific choice of the substrate
pattern. We compare all patterns concerning their efficiency to control a
length specific aggregation at the wall. The influence of attractive interac-
tions is discussed in Section ET.6l The work finishes with a comprehensive
summary of the results and an outlook in Chapter



Chapter 2

Theoretical and technical
framework

2.1 Statistical mechanics

We consider a system of N classical rodlike particles separated into nmay
different components, which differ in certain properties, e. g. the mass or the
length. Each component may have NN, particles:

T'max

N=)Y N, (2.1)

The internal energy H of the system has a kinetic (K) and a potential (I)
contribution:

H = K+U (2.2)
N N-1 N
= Zti + Z Z 'Uij, (23)
=1 i=1 j=i+1

where v;; is a pairwise interaction between the particles 7 and j. The kinetic
energy t; of a single particle ¢ has a contribution ¢! from the center of mass
motion and a contribution ¢[°* from rotations. If p; is the momentum of the
center of mass and m; the mass of particle ¢, then ¢{"" is given by

2

p‘
gerans = L, 2.4
e (2.4

For simplicity we assume that the rodlike particles have a cylindrical sym-
metry and are elongated along the z-axis. In a body fixed coordinate system

13
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the inertial tensor is diagonal, with

Ii,l = Ii,ZEIi (25)
Lis = 0. (2.6)

If we call (Qi,h Qm, ng) the angular velocity with respect to the same ref-
erence frame, then the rotational part of the kinetic energy of particle 7 is
given by

tI‘Ot

I . .
= 5(931"‘9?2) (2.7)

ﬁ(p?li,l + p?zi,z)a (2-8)
where pg, 1, is the conjugate momentum to the angle €, ;.

For the sake of simplicity, we first focus on a monodisperse system (nmax =
1) at constant volume V and temperature 5 = 1/kT. The particles are
located in a cubic box of dimension v/V. The partition function in the NVT
ensemble then is

N
1
Z(N,V,T) = i hSN/ [H d’p; d’r; d*pg, szi]
i=1

con (S ST

i<k

(2.9)

The integration over the momenta p; is carried out easily. All integrals
are of the same type [dzexp(—az?) = \/m/a. The same holds for pg,.
Furthermore, reduced units s; = r;/L are introduced. All in all, the partition
function simplifies to

ep(—6Y v, (210)

i<k

3 2
Z(N,V,T) = N,AgNTZN/[Hdde ;

where A = h/v2mmkT is the de Broglie wave length of a point mass. The
corresponding analogon for cylindrical particles is 7 = h/vV 27 IkT.

Now we turn to the slightly more complex partition function at constant
pressure P with n.. > 1 components. The partition function in the NPT
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ensemble is denoted Q(N, P, T) [21]:

Mmax 1

Q(N,P,T)=pP

N
1T N / AV VN exp(—(PV)

a=1

x/[H d?’sidQQi] exp(—ﬁZvjk).

j<k

(2.11)

Once the partition function is known, all thermodynamic properties of the
system can be deduced. The Gibbs free energy G(N, P,T), for example, is
related to Q(N, P,T) through

G(N,P,T) = —kT InQ(N, P,T) (2.12)

and all other thermodynamic quantities are derivatives of G. However, the
integrals in Eq. (ZZI0]) can only be solved in extremely idealized systems and
thus the partition function is typically unknown.

2.2 The model

Colloidal particles in solution usually differ by a few orders of magnitude in
size from the solvent molecules. For example a water molecule has a diameter
of ~ 2.8A whereas the dimensions of colloids range from several nanometers
to a few micrometers. The explicit consideration of the solvent molecules
turns investigations of the collective behavior of colloidal particles into an
extremely challenging task. A broad range of problems, however, can be
tackled by an implicit consideration of the solvent. Effective pair potentials
between the colloids can be utilized, which on the one hand comprise the
solvent independent colloidal interactions like van der Waals forces and on
the other hand solvent induced interactions like depletion forces [6, BS].
The origin of the depletion forces is illustrated in Fig. X1l for two impen-
etrable spherical colloids. We assume that the colloids are in solution with
non-adsorbing polymers and interact purely repulsively. Each polymer can
be approximated by a sphere with radius equal to the radius of gyration, R,.
Since the polymer and the colloid cannot overlap, the centers of mass of the
polymer coils are prevented from entering a shell of thickness R, around the
colloid. Fig. B (a) depicts the two colloids at large separation. The ex-
cluded volume for the polymers is the sum of both parts. The total excluded
volume does not change until the surfaces of both colloids come closer than
2R,. In this case, the total excluded volume will decrease by the amount
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polymer coill

excluded volum
for polymer coils

spherical colloids

(2) (b)

overlap of excluded volume

Figure 2.1: lllustration of depletion forces for spherical colloids. Around each
sphere, the polymers cannot access a shell of width R, around the colloid. (a)
The excluded volumes do not overlap at large separation. (b) The overlap of
excluded volumes gives rise to attractive interactions.

of overlap of excluded volumes as indicated in Fig. B (b). As a result, the
two colloids feel an effective attractive interaction, since the polymers can in-
crease their accessible volume by an increase of the overlap volume. Fig.
shows cartoons for rodlike colloids. The hard rod model is sketched in part

(a) (b) (c)

Figure 2.2: (a) Schematic sketch of the hard rod model. The hard core of the
rods forbids overlaps. (b) Attractive depletion interactions are present if the
green regions overlap. (c) The pair potential is minimal (=maximal attraction)
when the rods are parallel and the hard cores touch.

(a) with an impenetrable core region. Depletion forces between two rods are
illustrated in Fig. (b) and (c). The green color represents the excluded
volume. The overlap of the excluded volume is maximal when the two rods
are parallel and their hard cores touch.
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The phase behavior of spherical colloids has been successfully described
with the help of hard sphere and spherical square-well potentials. The latter
consists of a hard sphere part U” that takes into account for hard core re-
pulsions and an attractive part for short-range attraction. For two spherical
colloids of distance r» we have

U™(r) =U"(r) +U%(r) (2.13)
with
h B oo ,ifr<D
Uir) = { 0 , otherwise (2.14)

Ut(r) =

{ e ,ifr <D, ’ (2.15)

0 , otherwise

where ¢ > 0 is the potential depth, D is the hard core range, and D, > D is
the range of the attractive potential.

Now we consider two spherocylindrical colloids ¢ and j with lengths L;
and L;. A spherocylinder consists of a cylinder of diameter D and length L,
which is capped by two hemispheres at both ends. The repulsive part of the
interaction is obtained by integrating U" for all pairs of points on the two
cylinder axes

L;/2 L;/2
UTI} = D_Q/ dOZZ/ dOszh (|rij + a;u; — Ozillil) . (216)
—L;/2 —L;/2

The directions of the cylinders are u; and u;. r;; connects both centers of
mass. Note that the hard cores of rods ¢ and j have a total length L; + D and
Lj+ D, respectively. In analogy, the attractive part of the rod interaction is
defined as

L;/2 L;/2
Ug = D_Q/ dO[Z/ dOsza (|rij + o;u; — Ozillz‘|) . (217)
—L;/2 —L;/2

The sum of both parts gives the attractive rod (AR) potential
Urr = UM + U, (2.18)

which has a spherocylindrical hard core and an attractive interaction when
the surfaces of the rods come closer together than D, — D. For equal cylinder
lengths L, = L; the AR potential corresponds to the potential described and
investigated by Bolhuis et al. [§].

The properties of Upg are demonstrated in Figs. and for different
geometries of two rods with various lengths, where we chose ¢ = 1kT and
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Upg /KT
Upr/ KT

Figure 2.3: Attractive rod (AR) potential Uar for two rods ¢ and j with
diameter D. Rod i is located at the origin and is oriented parallel with the
z-axis. The center of mass of rod j is located at (x,0,2) with z = 1.01D.
The AR potential is shown as a function of z/D for rod j having an axis ratio
Aj = 3 and rod 7 with axis ratios \; = 3 (=) and \; =6 (===). In (a), the
cylinder axis of rod j is oriented parallel to that of rod ¢, in (b), it is rotated
by an angle of 7/4 within the yz-plane.

D, = 1.15D. The plots show that the size of Upg depends on the shortest
distance between the rods as well as on their alignment. More specifically,
it depends on the amount of surface area of rod i sufficiently close to the
surface of rod j. Furthermore, it is noteworthy that Uxgr, though defined
via a step function, goes to zero continuously. The strongest pair interaction
energy Enin < 0 occurs for parallel, perfectly aligned rods at a distance D,
which corresponds to the conditions

u;-u; = 1,
ri-u; = Ij;-u; = 0,
[ril| = D.

For not too small rods, obeying L, > L; > /D2 — D?, integration of
Eq. (I3 yields

€

Emin = D2

[2Lj D? — D*>—
(2.19)

1 2
= <LZ- — L —max[2/D2 — D2, L; - Lj]) .
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Upr /KT
Upr /KT

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2 0O 01 02 03 04 05 06 07 08 09 1
x/D o/m

(a) (b)

Figure 2.4: Attractive rod potential Uar for two rods i and j with diameter
D. Rod i is located at the origin and has a cylinder axis parallel to the z-axis.
The center of mass of rod j is located at (z,0,0). Results are shown for rod
axis ratios (X\;, Aj) = (3,3) (=), (6,3) (===), and (6,6) (=+=+). In (a),
the rods are parallel and Uag is shown as a function of x. For z < 1 the hard
cores overlap and Upar becomes infinite. In (b), x = 1.01D and Uag is shown
as a function of the angle 8 between the rod axes.

The most CPU time consuming part of Uag is the attractive interaction. For
the hard core repulsion it is sufficient to check whether the shortest distance
between the two cylinder axes is smaller than D. A method to calculate the

integral in Eq. (2I7) is described in the appendix [Al

2.3 The Monte Carlo method

Monte Carlo (MC) and molecular dynamics (MD) simulations are the most
prominent types of computer experiments to investigate the behavior and
the properties of fluids. In MD simulations, the equations of motion are
integrated numerically. Macroscopic observables such as pressure, internal
energy, and correlation functions are obtained as time averages. During a
MC simulation, many independent configurations of the system under con-
sideration are generated and utilized to gain thermal averages. In this work,
Monte Carlo techniques are used exclusively.
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2.3.1 Theoretical background

Suppose A is a quantity, which depends only on the microscopic variables
r; and (€2;1,€22) but not on the momentall. For convenience, I' is intro-
duced as abbreviation for a point in configurational state space and dI" ~
dV T] d®s;d*2;. The thermal average (-) is then computed in the standard
way

~[dr Pa(T) A(T)
(A) = 5 (2.20)
with
Pg(T) = VY exp[-BU(T) + PV)] (2.21)
and
0= / A VN expl—BU(T) + PV)]. (2.22)

Note the difference between @) as defined in Eq. (ZIIl) and the Q defined
here.

Suppose we are able to generate M random configurations I') (i =
1,.., M) of the system according to Pg in the computer. The average in
Eq. (20) is then approximately given by

1 M

(A) ~ > ATY). (2.23)

i=1

Metropolis et al. [64] developed a scheme, which creates a Markov chain
of configurations that are distributed corresponding to Pg. To understand
their method we assume the following [27]: Let I'”) be the initial state of
the system. We might have certain mechanisms to generate a new state '),
e. g. by moving and/or rotating particles. The probability, with which T'V) is
proposed may be called pgijy) [t is important to note that not every proposed
configuration will also be accepted. The acceptance probability pgicj;;) will
be specified later. In this manner, from the point I'® a set of new states
{I'U@ can be accessed. It is intuitively clear that in thermal equilibrium
the probability to leave state I'” must be equal to the probability to reach
state I'®) from the set {T'0)}@). Otherwise some probability flux would occur,
which is not possible in thermal equilibrium. In practice one imposes an even
stronger condition called detailed balance, which demands the equality of in-
and out-going probabilities for any two states '@ and I'0):

Pp(I'D) pizy) plia) = Pp(T9) ply) pli2. (2.24)

try DPace

!Usage of the r; implies also a dependence on the volume V.
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It is not a prerequisite but in many situations it appears that the generating
mechanism leads to a symmetric matrix p{Y) = pg;). In these cases the

detailed balance condition (ZZ24]) simplifies to

P Pp(T@)

o~ Poll)’

(2.25)

The actual acceptance probability pi2 is not fixed by Eq. (ZZ3) but a com-
mon choice is o)

. Pg(TV

(i) — s B /.

Py} = min [1, PB(T(Z'))] . (2.26)

The big advantage of this method stems from the fact that no a priori knowl-
edge of the distribution function of microstates, i.e. the partition function
is required. It is sufficient to know the Boltzmann factor, which, in general,
is given. For some investigations it is desirable to generate Markov chains
with other distribution functions than Pg. Section .41l will deal with these
problems.

2.3.2 The Monte Carlo algorithm

We have applied the MC scheme, described in the last section, to a system
of rods. For this system, the following trial moves were performed in random
order: Moving a rod, rotating a rod, a combination of movement and rotation,
and volume changes. During simulations of length-polydisperse mixtures,
length changes were allowed to speed up equilibration.

Suppose rod 7, whose center of mass is originally located at r§°’, is chosen
to be moved. The configurational energy of the system in the old state is
called (). In a first step, a new position rz(") = r§“) + Ar is proposed
where Ar is a random displacement vector whose components are uniformly
distributed over an interval [—d,,,d,,]. The new position of particle i leads
to a change AU = U™ — U of the configurational energy. In the next step
a decision is made whether the new position is accepted or not. For this
purpose, the Metropolis criterion (Eq. [Z2ZH)) is used:

Pace = min [1, exp(—FAU)]. (2.27)

The new position is accepted immediately if AU/ < 0, which avoids to com-
pute the Boltzmann factor exp(—BAU). Otherwise a random number is
generated in the interval [0;1). The new position is accepted if the random
number is smaller than the Boltzmann factor. Regardless of whether the
move is accepted or not, the final configuration has to be included into the
Markov chain.
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For the rotation of a rod, a random unit vector is generated. This vector
defines the rotation axis, around which the director is rotated by a random
angle Ave [—0,,0,]. The further proceeding is equivalent to the particle
movement. The sequence of single particle Monte Carlo steps is chosen en-
tirely at random. This means that for a random particle we decide randomly
whether it is moved, rotated, or moved and rotated.

MC simulations in the NPT ensemble require also a fluctuating volume.
It has turned out that a random walk in In V' supports fast equilibration [24].
The old volume V(9 is rescaled according to In V™ = In V() + A(In V). The

new particle positions become r!” = r'” exp(A(InV)/3) with A(InV) €
[—dy, 0v]. Note that this procedure correlates the three box dimensions L,,
L,, and L,. This may cause problems in the equilibration of rod configura-
tions with long-range positional order such as smectic phases. In these cases
L,, L,, and L, were allowed to fluctuate independently. The generalization
is straightforward. The logarithmic sampling leads to an additional factor
of V in the partition function because [dV = [d(InV)V. The acceptance

rule according to the Metropolis criterion for a volume move becomes
Pace = min [1,exp (=B[AU + PAV — (N + 1) kT In(V™ /V)]  (2.28)

with AV =V — V@) A yolume move requires a recalculation of all pair
interactions and is therefore computationally expensive. In the simulations,
a volume move is attempted after one sweep (= N single particle updates).
The interval widths §,,, ¢, and dy, are adjusted such that about 50% of the
trial moves are accepted.

Saving CPU time A standard way to increase the speed of simulation
programs is the usage of neighbor lists. There is no need to compute the pair
potential of two rods if their shortest distance is larger than the cut-off radius
D,. A Verlet list keeps track of all particles, which are within a certain range
—the Verlet radius ry,. For spherical particles it is obvious to search neighbors
within a spherical volume. For a rod of length L;, neighboring rods of length
L; are sampled within a sphere of radius ry,,, = (L; + L;)/2+ Dy + 05,. The
neighbor list has to be updated every time a particle has moved further than
0sp/2. Especially in dense phases, such a spherical list locates many neighbors
whose surface-to-surface distances are much larger than the interaction width
(cmp. Fig. ZH). Since the computation of the attractive rod potential Uxr
is quite expensive a second spherocylindrical Verlet list is embedded in the
spherical list, which reduces the number of neighbors drastically. This list
keeps track of all rods whose center intervals have a shortest distance smaller
than ry s = D, + 0s. The second list must be updated every time an end
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Figure 2.5: (a) lllustration of a spherical Verlet list. All red rods are within
the spherical Verlet list of radius 7y, of the the green rod. (b) lllustration
of a spherocylindrical Verlet list embedded in a spherical Verlet list. In dense
phases many rods are within the spherical volume. The number of neighbors
reduces remarkably in the spherocylindrical volume. Neighbors are colored red,
again.

point of the center interval has moved further than oy /2. Particularly rod
rotations lead to frequent updates of the spherocylindrical list. However, for
an update of the second list only rods of the first list have to be considered
so that over all the second list saves up to 50% of CPU time in dense phases.
Furthermore, all pair interactions are stored and reused to compute the old
interaction energy ().

Random numbers The ’heart’ of all Monte Carlo simulations is the ran-
dom number generator. Strictly speaking, a computer cannot produce num-
bers by chance. In practice an algorithm generates a (reproducible) sequence
of numbers, which should be as uncorrelated as possible. A suitably uncor-
related sequence of random numbers is required for a correct Markov chain.
This requirement, however, is not fulfilled by all algorithms [75] [90]. In the
beginning we used the widely accepted random number generator RAN3 [64].
Investigations of confined geometries, however, led to some unphysical obser-
vations, which could be attributed to correlations in RAN3 (see Appendix [B).
These problems did not occur with the random number generator MT19937
[23], which we therefore used to obtain correct results.
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2.4 Advanced Monte Carlo techniques

The Monte Carlo scheme described in Section produces a Markov chain
with the stationary distribution Pg/Q. The vast majority of samples used
to compute the average in Eq. (ZZ3) are generated where Pg is maximal. In
some cases a different sampling is reasonable. If an observable A is large in a
region where Ppg is small, only few samples are generated in this region giving
rise to large statistical uncertainties of the average. For most observables,
however, this effect is of minor relevance: On the one hand many observables
are sufficiently smooth and on the other hand Pg is decreasing exponentially
so that the product of A and Pg is small where Pg is small. Another problem
might occur if Pp has several maxima (see Fig. EZ). The system can be

A A free energy barrier
state a

state b

o state b 0) state a

Figure 2.6: (a) Schematic drawing of a probability distribution Pg as function
of a suitable parameter . Pg has two maxima and state a is thermodynam-
ically stable. A system, which is sampled around x;, may take very long to
traverse the minimum in Pp in order to find the global maximum at x,. (b)
The corresponding free energy landscape as function of x. Maxima of Pp turn
into minima of G. The two minima differ by an amount of AG in free energy.
Thermal fluctuations may not be large enough to cross the free energy barrier
within a reasonable amount of time.

trapped in one region and it may take extremely long until it reaches the other
minimum. Systems close to strong first order phase transitions are typical
examples. The corresponding free energy landscape has two or more minima
all separated by energy barriers that can in many cases not be overcome by
thermal fluctuations. For the same reason, real systems show hysteresis.
Free energy barriers complicate not only the analysis of first order phase
transitions. Investigations of protein folding, for example, have to deal with
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complex free energy landscapes, as well. Thus, crossing free energy barri-
ers and measuring free energy differences of two states (phases, conforma-
tions) is of widespread interest. In the past, several simulation techniques
[, B8, 85l TOT| have been developed to tackle these problems. In this work, bi-
ased multi-histogram sampling is employed to drive a system smoothly from
one local minimum of the free energy to another one and to estimate the free
energy difference AG between both minima. Section is dedicated to
biased multi-histogram sampling. The phase coexistence is characterized by
AG = 0. Gibbs ensemble simulations [60, 61, [0] can be employed to inves-
tigate phase equilibria directly. The applicability of this method, however,
is strongly restrained in dense systems and is thus not appropriate for our
systems.

2.4.1 Biased multi-histogram sampling

Suppose the external control parameters N, P, and T are chosen such that
the free energy landscape has one global and one local minimum. In this case,
importance sampling according to Pg may be unsuitable for exploring the
relevant configurational phase space. Consider a solid state at low tempera-
ture. Below the freezing temperature, the system has an absolute minimum
for the crystalline state at a high density and typically a local minimum for
the fluid state of lower density. Typical free energy curves during melting
are depicted in Fig. B Both states, the high and low density state, are

T small T at coexistence T large

Figure 2.7: Schematic drawings of the free energy at different temperatures.
The abscissa may represent the density, for example. The global minimum in
(a) turns into a local minimum as the temperature is increased. In (b), the
two phases are in coexistence.

separated by a system dependent energy barrier. In coexistence, the energy
barrier represents the surface energy of the two adjacent phases. This energy
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barrier leads to a more or less pronounced shift of the actual melting temper-
ature from the coexistence temperature. For this reason, situations occur, in
which the system is still in the high density state whereas the low density
state is thermodynamically stable. If the energy barrier is much larger than
thermal fluctuations, the system is trapped in the high density state when
sampled according to Pg. Corresponding hysteresis effects occur also with
an isotropic starting configuration. As a consequence, the average of an ob-
servable measured during the simulation depends on the initial condition and
does not reach the thermodynamically stable phase. The simulation scheme
explained in the following is appropriate to solve this problem.

A crucial point for the multi-histogram method is the definition of a
suitable reaction coordinate or order parameter. On the one hand the reac-
tion coordinate must distinguish between both phases. On the other hand a
‘good’ reaction coordinate should not hamper potential transient states by
restricting the system to a narrow path through the free energy landscape.
Examples of reaction coordinates are the density for fluids, the magnetization
for ferromagnets, the amount of alignment for liquid crystals [94], or the size
of a nucleus |2, [73]. The interaction energy per rod is a good candidate in
the case of attractive rods since it varies significantly between the isotropic,
smectic, and hexatic phase. The phase boundaries of the monodisperse rod
systems in section B.J] are determined by the use of this reaction coordinate.
In principle, the free energy G as a function of the reaction coordinate z is
obtained from the probability distribution

pa) = é / dr Py(T) 5(#(T) — ) (2.29)
— (5(F —2)) (2.30)
G(z) = —kT In (p(x)) . (2.31)

It has already been pointed out that free energy barriers may hamper the
system in exploring the relevant regions of the reaction coordinate.

Assume a situation similar to the one depicted in Fig. (b) with the
system in the highly ordered phasﬂ (x = xp). The quantity of interest is
the free energy difference AG = G(x;,) — G(z,). The barrier region can be
explored with the multi-histogram technique. In this method the free energy
landscape is changed artifically for a set of supporting points {z;} between
T, and x,. At each supporting point, a system is simulated, which differs

2Starting from high order is usually superior to the other way round since order is
destroyed more easily than created.
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from the original one by a bias potential H%(z) = H’. The bias potential is
constructed such that a minimum of the free energy arises in the vicinity of z;.
The sampling of each system is now performed according to the distribution
Pg W;, where

W; = exp(—3HY). (2.32)

For the bias potential, a quadratic term like

K 2

Hi(w) = 5 (v — ;) (2.33)
is suitable in most cases. For sufficiently large x, the additional contribution
H? of the type (Z33) generates a minimum in the free energy close to ;.
The width of the window, to which the system is restricted, is regulated by
the curvature x. The resulting free energy is schematically drawn in Fig.
As a consequence a system with Hamiltonian H; = H + H? will explore a

original profile effective profile

Figure 2.8: Schematic drawing of the free energy G as function of the reaction
coordinate z. According to the original profile points close to x; are visited
rarely. The additional bias potential generates a minimum in the vicinity of x;.

finite region around ;.

The objective of the restriction to a small window region is to measure
the probability distributions p;(z) (Eq. Z29) in every window and to con-
nect the corresponding free energy sections. In this manner, the free energy
profile between x, and x; is constructed piecewise. The statistical accuracy
is improved if neighboring windows overlap. In some occasions, much larger
separations are either adequate or inevitable [47]. With the assumption that
G(z) is sufficiently smooth the first derivative can be utilized to construct
the profile.

The stationary distribution of the Markov chain in window ¢ is propor-
tional to Pg W;. The corresponding normalization factor, i. e. the partition
function, is called Q; = [dI' Pg W;. An average according to the modified
sampling distribution is denoted by (-) p, w,. The probability distribution in
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window ¢ is thus given by

pi(z) = = . (2.34)

From Eq. (Z34), the free energy in window i is calculated via —kT In(p;).
Once the free energy around all supporting points z; is known the complete
profile can be constructed. The normalization factors Q; are not measured
explicitely but result from the vertical adjustments of the free energy parts
such that a smooth function in z is obtained. The free energy difference
between the two states a and b is thus

AG = kTl 2 (2.35)

Qu

In practice, p;(x) is measured in bins of finite width §. Thus, p;(z) is a
histogram, which keeps track of the amount of generated configurations with
an order parameter in the interval = £+ §/2. Therefore, the name biased
multi-histogram method.

2.4.2 Simulation of adjacent substrates

In Chapter H, polydisperse rod systems with adjacent substrates are investi-
gated. In the simulations, only one substrate at —zy and a ’half’ system in
the range —zy < z < 0 is explicitly considered. The ’half’ system is mirrored
at the z = 0 plane and shifted diagonally so that each rod with a center
of mass (z,y,2) and an orientation vector (u,,u,,u,) creates an image rod
with a center of mass (v + L,/2,y + L,/2,—z) and an orientation vector
(Ug, Uy, —u,) as sketched in Fig. ZJ In the original and the mirror region,
periodic boundary conditions are applied in z- and y-direction. One must
note, however, that the mirroring technique is restricted to systems, which
are isotropic or axially symmetric to the z axis in the region close to z = 0.
This is the case for all systems investigated with this technique.

The mirroring method has two advantages: Firstly, larger substrate sep-
arations can be investigated with a reasonable effort (Fig. EZ10). Wall sep-
arations of 2zy > 40D can easily be achieved. Secondly, since there is de
facto only one substrate, the method avoids long-living metastable states, in
which the rods are not distributed equally between the opposing substrates.
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Figure 2.9: Visualization of the boundary conditions at the zy-plane in sim-
ulations of substrates. The original rod (red) is mirrored at the zy-plane and
shifted diagonally resulting as the green rod.
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Figure 2.10: lllustration of the "original" and the mirrored simulation box.
The effective wall separation is 2z9. Note that the z-axes points towards right.

2.5 Observables

2.5.1 The nematic order parameter

Orientational order is measured in terms of the nematic order parameter

Z Pz(ui ) n)) = <)‘max>a (236)

where Ps(-) is the second Legendre polynomial and the average director n is
the eigenvector of the largest eigenvalue A, of the alignment tensor

N
1
Qu = o Z (3ui iy — Oyu)- (2.37)
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For a perfectly aligned system of rods, one has S = 1. In an infinitely
large isotropic system, one has S = 0. For finite systems, however, S(N)
depends on the number of rods N. Especially for small isotropic systems,
S(N) is typically larger than 0 and shows a strong system-size dependence.
To overcome this problem, Eppenga and Frenkel [24] suggested to replace
S(N) by

S = lim S(N), (2.38)

N—oo

the order parameter of a corresponding infinite system. A method for calcu-
lating S, is given in Appendix [Cl

The orientational order parameter S, is independent of the considered
number of rods. This is particularly helpful when measuring the orientational
order of small subsets of rods in a system. It allows the determination of
the orientational order for every component of a polydisperse suspension, in
which certain rod lengths are present only in small amounts. Another useful
application of S, is the calculation of the local orientational order in a small
subvolume of the simulation box. One typical example is the orientational
order as a function of the distance from a substrate [98].

2.5.2 Pair correlation functions

Pair correlation functions reveal a deeper insight into the microscopic struc-
ture and allow distinction between different phases. Particularly, pair cor-
relation functions along (g)|) and perpendicular (g, ) to the rod axis help to
identify the phase of a system [I8]. Like the radial pair correlation function,
the functions g (1)) and g (r. ) are local densities divided by the overall den-
sity of the system. The region where the local density is obtained is chosen
relative to a reference rod with center of mass ro and a rod axis parallel to uy.
Let ¢(r,u, h, R) be a cylinder with a center of mass at r, a rod axis parallel
to u, a height i and a radius R. Then g|(r)) considers the local density in
the cylinders c(ro & ug 7|, ug, by, R}), where we chose h = 0.05D — 0.1D
and R = 0.75D — 1D. The function g, (r,) takes account of rods whose
center of mass lie within the cylinder ¢(rq, ug, b1, 7, + dR/2) but not in the
cylinder ¢(rg, ug, by, 71 —IR/2). The described geometry is a hollow cylinder
of height h,, radius r; and shell thickness 6 R where h; = 0.75D and JR is
chosen between 0.05D and 0.1D. Fig. X1l illustrates the geometry of both
correlation functions.
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0 - hD Figure 2.11: Sketch of the regions relative
U to a reference rod, which are used to de-
! —> termine the longitudinal and transverse pair
@ 0 'o correlation functions g and g, .

2.5.3 Density distribution function

Systems with an adjacent wall are analyzed in terms of density distribution
functions. The density distribution function p*(z) is defined as the local
number density n(z) of rods with the z-coordinate of the center of mass at z
normalized to the bulk number density N/V:

oy = 2)

rE =N (2.39)
n(z) has the dimension particles per volume and represents an ensemble
average. Note that p*(z) is dimensionless and may also be called a reduced
density. In practice, the z-axis has to be discretized into intervals (z; —
Az/2,z; + Az/2]. Therefore, the simulation box is divided into slices of
thickness Az as indicated in Fig. n(z) is the number of rods in the

Az

z

Figure 2.12: lllustration of the division of the simulation box into slices of
thickness Az.

corresponding slice divided by the volume of the slice.
For investigations of polydisperse mixtures, the density distribution func-
tion is measured for every rod component separately. For the rod component
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with axis ratio A one has:

\ na(z)
where n(2) is the number density of rods with axis ratio A in the slice located
at z and N, is the total number of rods with axis ratio A. In Section E2]
results for cumulative density distribution functions are presented, for which
more than one rod length is subsumed. The cumulative density distribution
function of the components A; and A\, is given by

P (2) = ?JA\}A(IZTNTS% (2.41)

Note that p3, ),(2) # P}, + P4,

2.5.4 Spatially resolved mole fraction

The effectiveness of various substrate patterns as far as demixing is concerned
is also studied in terms of the spatially resolved mole fraction z,(z). The
mole fraction can be expressed in terms of the local number density as

xy(z) = _mz) (2.42)

2 m(2)

Thus, z,(z) is the number of rods with axis ratio A in the respective slice
divided by the overall number of rods in that slice.

In Section EEZ] results are presented, for which the mole fraction is con-
sidered in a larger volume than that of a slice, for example the volume inside
the substrate structure. If the respective volume starts at z,;, and ends at
Zmax, the integrated mole fraction is given by

int ni)?t
YT
)

(2.43)

with

niM = / dz ny(z). (2.44)

Zmin

Note that #i'* is z-independent.
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2.5.5 Orientational correlation functions

In addition to the density distribution function, which probes center of mass
correlations, the two functions gg(z) and g4(z), which probe the influence
of the substrate on the orientational degrees of freedom, are introduced. gy
and g, will be called orientational correlation functions. One distinguished
direction in simulations with an adjacent wall is the normal to the wall,
i. e. the z-axis. Let cosf; be the scalar product of rod ¢ with director u; and
the unit vector in z-direction e,:

cosf;, =u;-e, = u,. (2.45)
The correlation function gg(z) is defined via the second Legendre polynomial
Py(-) as an ensemble average. The contributions are restricted to the N, rods
a distance z apart from the substrate:

<Niz ZZ:PQ(COS 02)> (2.46)
= <2]1Vz ZZ: (3 cos® 0, — 1)> . (2.47)

9o(2)

i=1

In other words, gy(z) is nothing but the z-dependence of the nematic order
parameter (Eq. Z306) with the director parallel to the z-axis. g, is defined
analogously but with a the director parallel to the z-axis. The z-direction is
distinguished in simulations of structured substrates because of the choice of
the structure.

Some remarks about the orientational correlation functions: gy and g,
vanish if correlations are absent and adopt one if the considered rods point
in the respective direction. If the majority of rods are perpendicular to the
z-axis, for example, gy becomes negative with a lower bound of —1/2. Thus,
g and g, provide information about the preferred local orientation of the
rods and about the range of substrate induced orientational correlations.
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Chapter 3
Bulk behavior

3.1 Monodisperse systems

Systems of attractive spherocylinders are scarcely discussed in the literature.
For the AR potential, used here, the phase diagram has only been analyzed
for monodisperse systems with A = 5 [8]. Therefore, in this section some new
regions of the phase diagram of monodisperse suspensions are explored before
we turn towards polydisperse systems. In the following, a dimensionless
interaction strength ¢* = ¢/kT is used. A reduced pressure is defined as
P* = P{v)/kT, where (v) is the average volume of a rod:

D3 n wD? N
6 AN —

(v) = L;. (3.1)

In monodisperse systems, (v) is the volume of a spherocylinder. Phase di-
agrams for interaction strengths ¢* = 0.25 and €* = 0.5 are presented as a
function of the reduced pressure P* and the axes ratio A, which ranges from
A=3to A=28.

Simulations are started with an isotropic system at low pressure, which is
then compressed and equilibrated step by step to obtain an isotherm. Close
to phase boundaries, the pressure is increased in particularly small steps to
avoid glassy states. Discontinuous phase transitions are always accompanied
by hysteresis. As long as the hysteresis is small, phase boundaries can be
localized well by compressing and expanding the system. Generally, for all
isotropic-nematic transitions the hysteresis was found to be sufficiently small.
In some cases, especially if the hexatic phase is involved, large hysteresis
appears.

Isotherms at compression and expansion of a system of rods with A = 3
and interaction strength ¢* = 0.5 are presented in Fig. Bl (a). (Erod)/Fmin

35
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Figure 3.1: Analyzing the phase behavior of attractive rods. (a) The internal
energy per rod (E,q) divided by the strongest pair interaction energy Fmin as
a function of the pressure P* at isothermal compression (@) and isothermal
expansion (V) of rod systems with A = 3 and €* = 0.5. The free energy G
as a function of (Eoq)/Emin (b) at P* = 7.75, (c) at P* = 7.5, and (d) at
pP*=172.

is plotted along the ordinate. (FE,,q) is the average interaction energy per
rod and FEy;, is the minimum pair interaction energy as given in Eq. (Z19).
Note that both (E,.q) and Ey,;, are negative. The hysteresis is so strong that
the isotherm at compression detects only the isotropic and the hexatic phase
whereas at expansion a smectic A phase is observed over a large pressure
range. In order to identify the stable phases and thus to locate the phase
boundaries, biased multi-histogram simulations (Sec. ZZZJ]) are employed, in
which the free energy G is determined as a function of (F,oq)/Fmin. To be
precise, GG + const is measured, but the constant has no physical relevance.
Parts (b)-(d) of Fig. Bl present free energy profiles of systems at the pres-
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sure P* =7.75, P* = 7.5, and P* = 7.2, which are indicated in Fig. Bl (a)
by the dashed vertical lines. At P* = 7.75, three minima appear, two from
the metastable isotropic and smectic A phase and one from the thermody-
namically stable hexatic phase. At this point, we already see the advantage
in utilizing the internal energy as reaction coordinate. Firstly, (F..q) dis-
tinguishes significantly between the hexatic, smectic A, and the less ordered
phases. Secondly, no additional computational efforts are necessary to deter-
mine FE,,q during the simulation, since one has to keep track of the internal
energy, in any case, to evaluate the Metropolis criterion. The probability of
overcoming a free energy barrier of height AG, between two states is pro-
portional to exp(—FAG,) [45]. In our case, the isotropic state is separated
from the smectic A or hexatic state by an amount of AG, ~ 7kT at the
pressure P* = 7.75 (Fig. Bl (b)). The barrier could not be passed within
5 x 107 Monte Carlo sweeps at even higher pressure (P* = 7.9), where the
barrier height is supposed to be smaller. At compression, the system does not
cross the free energy barrier to the stable smectic A phase until the smectic
phase itself becomes unstable. Thus, the system switches directly from the
isotropic to the hexatic phase. At P* = 7.75, the free energy difference AG
between the isotropic and the hexatic state is about 70k7T.

The free energy profile at P* = 7.5 is depicted in Fig. Bl (¢). The global
minimum in G corresponds to the smectic A phase, which is now thermo-
dynamically stable. The isotropic and the smectic A state are separated by
a barrier of circa 15kT and the free energy of the two phases differs by an
amount of about 28kT. The isotropic state is stable at P* = 7.2 as demon-
strated in Fig. Bl (d).

The free energy profiles give information not only about the stability
of phases but also about the surface energy between two phases, which
are simultaneously present in the simulation box. An example is given in
Fig. (a), where the free energy profile of a system of rods with axis ratio
A =8 and €" = 0.5 is plotted. The two minima of the free energy correspond
to the nematic and the hexatic phase. The hexatic phase corresponds to
the global minimum and is, thus, thermodynamically stable. In the range
1 < (Frod)/Emin < 1.6, the slope of the free energy is constant as indicated
by the dashed line. The line tangential to the two minima of the respective
phases (double tangent) exhibits the same slope and is also drawn in the
diagram.

On the basis of Fig. (a) some principles of thermodynamics will be
exemplified. The free energy difference between the nematic and the hexatic
phase in this case is AG =~ TOKT. Since the free energy G is extensive, a
system with twice as many particles would possess a free energy difference of
140KT. A system prepared in the nematic state would have to overcome an
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Figure 3.2: (a) Free energy G as function of (E,oq)/Emin in a system of rods
with A = 8 and € = 0.5 at P* = 1.9. Snapshot of a system biased (b) at
(Erod)/Fmin ~ 1.76 and (c) at (Eyod)/Emin ~ 1.26.

energy barrier of AGy, ~ 30kT to reach the thermodynamically stable state.
The energy barrier is connected to the interface of the two phases, i. e. a sur-
face costs energy. From the free energy profile, the surface tension o between
the hexatic and the nematic phase can be estimated as o ~ 0.062kT/D?.
The corresponding calculation is given in Appendix [DI The snapshot in
Fig. (c) shows a typical configuration at (Fyoq)/Emin ~ 1.26, which is
in the regime of constant slope in G. The constant slope is because of the
fact that the size of the phases can be varied without changing the interfa-
cial area. From the snapshot (Fig. (c)) we see that the hexatic phase
fills the simulation box completely in y- and z-direction and a change of the
phase extension in z-direction would not change the surface area. In the
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ideal case, where a direct interface of the phases is absent (for example in
a Gibbs simulation), the free energy profile between the nematic and the
hexatic state would coincide with the double tangent, which connects both
minima in Fig. (a).

The knowledge of the surface tension and the free energy difference AG
is sufficient to estimate the size of the critical nucleus according to classical
nucleation theory (CNT). Suppose the system is prepared in the nematic
state and the free energy landscape is that of Fig. B2 (a). In such a situation,
the system is said to be overcompressed. Because of thermal fluctuations,
small hexatic nuclei build and dissolve again. If the nucleus exceeds a certain
size, it will spontaneously grow instead of dissolving. We assume that the
shape of such a nucleus is like a cylinder of radius r and height A and the
rods are aligned with the long axis of the cylinder. The height h is not
continuous but an integer value of the layer thickness. We denote the change
in free energy associated with the formation of a cylindrically shaped hexatic
nucleus by AG,,(r, h). The system gains an amount of free energy —r?7h Ag,
where Ag is the free energy density (Ag = AG/V'). The costs for the creation
of a nucleus are due to the surface tension. In our case we distinguish between
the surface tension o) and o, which are related to the surface parallel and
to the surface perpendicular to the rod direction, respectively. Thus, the net
free energy change related to the cluster formation is

AG,(r,h) = —nr’h Ag + 2wrho) + 27r’o ). (3.2)

The critical nucleus size at a fixed height h is obtained from the extremal
condition

OAG,(r,h)
— = 0, (3.3)
which leads to the critical cylinder radius
ho (3.4)

In our case, the cylinder is de facto infinitely high. The finite dimension of
the simulation box and the periodic image convention are responsible for an
absence of the top and bottom contact zone between the nematic and the
hexatic phase (cmp. Fig. (¢)). Thus, the contribution from o vanishes.
Formally, the situation is equivalent with the limit A — oo, where the critical
cylinder radius becomes 7¢i; = 0/Ag, which, in our case, corresponds to
about 13D. Note that o) is equal to the o calculated above.

The applicability of CN'T to systems of rodlike particles is subject to legit-
imate concerns. In overcompressed systems of isotropic hard rods, nucleation
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of multilayer structures is suppressed due to self-poisoning [73]. The results
presented here are all obtained using the highly ordered hexatic state as
starting configuration. The estimation of r.; according to CNT should thus
be understood as the radius, at which a shrinking hexatic region becomes
unstable.

In Fig. B3 we present isotherms for different rod lengths at ¢* = 0.5.
Plot (a) shows the orientational order parameter S.,. Systems, which
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Figure 3.3: (a) The orientational order parameter S, as a function of the
reduced pressure P* for monodisperse systems with different axis ratios A\. The
symbols are measurements and are chosen differently for the different phases
(O = isotropic, A = nematic, O = smectic A, and ¢ = hexatic phase). (b)
The reduced interaction energy per particle (E,oq)/Emin as function of the
pressure P*. (FEyo4)/Emin differs distinctly between the hexatic, the smectic
A, and the less ordered phases.

are deep in the isotropic state, have an order parameter S,, < 0.1. Close to
the isotropic-nematic phase transition values, in the range 0.1 < S, < 0.2
are found, which arise from small transient nematic clusters that form in the
isotropic system. During a simulation run, several cluster formations and
dissolutions can be observed.

A jump of S, is found at the transition to the nematic phase, where
the nematic order parameter lies in the range 0.5 < S, < 0.8 and in-
creases distinctly with P*. Another discontinuous increase of S., occurs
at the nematic-smectic A transition, while within the smectic A phase S,
depends only slightly on P*. At further compression, a transition to a hexatic
phase occurs. The phases are recognized by the orientational order and the
analysis of the spatial order, discussed below. The smectic-hexatic transition
is accompanied by a small increase of S, while a significant jump in the av-
erage interaction energy per particle (F,oq) occurs. This is demonstrated in
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Fig. (b), where (Eyoq)/Fmin is shown as a function of P* for various axis
ratios A. In fact, jumps in (Eioq)/Emin turn out to be a sensitive method for
localizing all but the isotropic-nematic phase transition. The isotropic and
nematic phase is characterized by (Eioq)/Emin < 0.5, the smectic A phase by
(Eroq)/ Emin =~ 1 and the hexatic phase by (Fyoq)/FEmin > 1.3.

In order to recognize the liquid crystalline phases, spatial order is inves-
tigated with the help of pair correlation functions. Results for the longi-
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Figure 3.4: Pair correlation functions in the isotropic (P* = 2.0), nematic
(P* = 3.2), smectic A (P* = 3.6) and hexatic (P* = 4.4) phase for rods
with axis ratio A = 6 and €* = 0.5. (a) Longitudinal pair correlation function
g)| as function of the longitudinal distance 7). (b) Transverse pair correlation
function g as function of the transverse distance r| . Results for the isotropic
and the nematic phase are shown in the inset. (c) A comparison of longitudinal
pair correlation functions in the smectic A phase (P* = 3.6): Pair correlations
along the direction of the molecular axes g (—), and along the layer normals

g|(|") (===). Symbols correspond to a system with N = 2000, while lines
refer to N = 1000 rods.
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tudinal and the transverse pair correlation function are shown in Fig. B4l
for rods with axis ratio A = 6. The longitudinal pair correlation function
g)| shows long range order in the smectic A and the hexatic phase. In the
nematic phase, g, reveals a single peak at 7| ~ 7D, corresponding to the
total rod length of (6 4+ 1)D. In the isotropic phase, longitudinal correlations
are hardly visible. Since the pair correlation function g is defined locally
via the molecule axes, periodic oscillations in g do not ensure a smectic A
state of the system, since the parallel layers may show long-range bending.
The flatness of the layers can be tested with the longitudinal pair-correlation
function gﬁ") along the axis of the global director n. As shown in Fig. B4 (c),

g(‘") also shows the characteristic oscillations of a smectic A system. In order

to check system-size dependencies of the pair correlation functions, we have
performed simulations with different numbers of rods. In Fig. B4 (c), the
continuous line shows g for a system of N = 1000 rods while symbols refer
to a system of N = 2000 rods. Apparently, g, shows no significant finite-size
effects. System-size dependencies of g, (not shown) were below the accuracy
of measurement.

Correlations perpendicular to the rod axis show one maximum in the
isotropic and two maxima in the nematic phase (inset of Fig. (b)). At
P* = 3.6, where the system is in a smectic A phase, a number of maxima is
visible, all approximately separated by a distance D). The hexatic structure
at P* = 4.4 becomes evident from the typical double peak pattern in g, [32].
Together with the nematic order parameter and FE,.q, the pair correlation
functions allowed the determination of the respective phases.

A comprehensive overview of the phase behavior found for monodisperse
systems of attractive spherocylinders is given in Fig. B0, where phase dia-
grams for systems with ¢* = 0.25 and ¢ = 0.5 are shown in the P*\-plane.
For ¢ = 0.25, an isotropic and a smectic A phase exists for axis ratios
4 < X < 8. A hexatic phase sets in at higher pressures, beyond the smectic
points shown in Fig. (a), but has not been studied in detail for e* = 0.25.
The nematic region widens with increasing A\ in agreement with the phase
behavior found for hard spherocylinders [7]. Note that the AR model is
equivalent to the hard spherocylinder model for ¢ = 0.

For €* = 0.5, the nematic and the smectic A phase are restricted to rods
of intermediate length. The nematic phase exists only for rods with axis
ratios 4 < A < 8, while a smectic A phase exists in the range 3 < A < 7.
The smectic A and the nematic phase regions are lens shaped. For large axis
ratios A\, both regions are narrowed by a predominant hexatic phase.
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Figure 3.5: Phase diagram for monodisperse systems of attractive sphero-
cylinders as function of the parameters pressure P* and axis ratio A (a) at
interaction strength € = 0.25 and (b) at interaction strength ¢* = 0.5.

3.2 Tridisperse mixture

In this section, a tridisperse rod suspension is investigated. The system is
composed of long (A = 7), intermediate (A = 5), and short (A = 3) rods. The
composition is chosen such that every component occupies the same volume
fraction, i. e. the mixing ratio is 0.226 : 0.304 : 0.47. Albeit its relatively
simple composition, the tridisperse mixture serves as a kind of model mixture
for more realistic compositions, which will be discussed in Section B3 It
reproduces most of the effects observed in polydisperse suspensions with the
additional advantage that an axis ratio resolved analysis is restricted to only a
few components. Furthermore, thermal averages of A\-dependent observables
can be obtained with very good statistical accuracy since there are many
rods with the same axis ratio.

In the following, we analyze the structure formation in tridisperse sus-
pensions of hard (¢* = 0) and attractive rods (¢* = 0.5). Therefore, it is
illuminative to measure the orientational order parameter and the pair cor-
relation functions separately for every component. Fig. presents results
for S, as a function of the reduced pressure P*. Some qualitative properties
are independent of the interaction strength. In a system with given ¢* and
P*, the nematic order increases with the axis ratio of the component. At low
pressure, the system is isotropic and S, is almost zero for all rod lengths.

In contrast, the orientational order at higher pressures depends distinctly
on €. In Fig. (a) the system of attractive rods is analyzed. Below
P* = 2.84, all components show almost no orientational order. From P* =
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Figure 3.6: The axis ratio resolved nematic order parameter S, as a function
of the pressure P* for (a) attractive (¢* = 0.5) and (b) hard rods (¢* = 0).
(a) Soo jumps only for the longest constituent. Shorter rods remain isotropic.
(b) All rod lengths participate in the global alignment.

2.84 to P* = 2.92, a distinct jump can be seen in S, for the longest rods
(0) whereas the intermediate (A) and short rods (O) stay isotropic even at
further compression.

Data for hard rods is presented in Fig. (b). The isotherms for all
components show the same behavior qualitatively. Below P* = 4.84, in the
isotropic phase, S, increases slightly and approximately linearly with P*.
For P* > 5 the nematic order of all rod lengths grows significantly faster
with P*, an effect that increases with the rod length. In comparison to at-
tractive rods, three points should be emphasized: Firstly, nematic order sets
in at a higher pressure. Because of the absence of attractive interaction, ori-
entational ordering is induced by steric interaction, exclusively. Secondly, all
components contribute to the order in the system and thirdly, at the tran-
sition from the isotropic to the ordered state, the nematic order parameter
increases less abruptly than for attractive rods.

Fig. B displays typical configurations of ordered systems. For the sake
of clarity, small and intermediate rods are omitted. Attractive rods (Fig. B
(a)) build a highly ordered monolayer of long rods surrounded by an isotropic
fluid of shorter rods. As demonstrated below, the layer shows hexatic order.
Hard rods (Fig. B4 (b)) do not arrange in a layer but develop a nematic
structure.

Pair correlation functions reveal a deeper understanding of the structure
of the considered systems. For a detailed analysis, the longitudinal and
transverse pair correlation functions g and g, , as introduced in Section 3.2
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(a) € = 0.5, P* = 3.17

Figure 3.7: Representative configurations of (a) attractive rods (¢* = 0.5) at
the pressure P* = 3.17 and (b) hard rods (¢* = 0) at the pressure P* = 6.
Rods with axis ratio A = 3 and A = 5 are not drawn in the snapshot. (a) A
hexatic monolayer of long rods (A = 7) has formed, which is surrounded by an
isotropic fluid of shorter rods (A € {3,5}). (b) The system is nematic.

are additionally apportioned to rod lengths. Thus, g|(|’\”f’A) and g(f analyze

the normalized densities of rods with axis ratio A in the vicinity of reference
rods with axis ratio A, In the following, only the longest rods serve as
reference rods, i. e. Aer = 7.

refv)‘)

Before we turn to the data analysis, it is instructive to outline some typ-
ical rod configurations, which lead to peaks in the pair correlation functions.
A constellation like in Fig. (a) corresponds to the closest distance in
the longitudinal direction. The closest distance in the transverse direction
is sketched in Fig. (c). The former configuration contributes to g at
71/ D & Awet/2 + 1 while the latter contributes to g, at r; /D ~ 1. The con-
figurations drawn in Figs. B8 (b) and (d) are listed because the orientational
degrees of freedom of the target rod (red color) are no longer constrained by
the reference rod (green color). The contributions to g and g, are located
at 7/D &~ (At + A)/2+ 1 and 7, /D = \/2 + 1, respectively. The four
mentioned rod configurations will be noted in short as '—|", '——", ’||’, and
'|=’ configurations as indicated in Fig. B8, with the left dash representing
the orientation of the reference rod. Finally some remarks about the reasons
why the four emphasized rod constellations lead to maxima in the pair corre-
lation functions: They are distinct because the entropy of the target rod and
the entropy of the rest of the system are balanced well at the respective sep-
arations. Consider the ’|—’ constellation, for example. If we increase r| to a



46 CHAPTER 3. BULK BEHAVIOR

] ]

) ’—|" configuration (b) '——" configuration
'

(c) ’|] conﬁguration (d) |-’ conﬁguration

Figure 3.8: Schematic drawing to illustrate the occurrence of maxima in the
pair correlation functions. The reference rod is colored green.

value slightly larger than (A/2+1)D, the orientational degrees of freedom of
the target rod would not change, but some inaccessible volume between the
reference rod and the target rod would be generated, which is unfavorable
for the rest of the system. The attractive rod potential Uag additionally
enhances ’||” configurations whereas attractive interactions play only a minor
role for the other configurations.

Pair correlation functions in the isotropic regime of a hard rod system
are depicted in Fig. BO Part (a) shows the longitudinal pair correlation
function g;. Two maxima are observed in g|(|7’3) (===), the first from '—|’
and the second from '——" configurations. The first max1mum 1s also observed
in gH7 % but here the second one is very small. The data for gH "7 is not shown

because the curve is basically identical with g‘(‘ »). Correlations are absent

for ry 2 7D. In part (b) of Fig. B9 the transverse pair correlation function

g(f’)‘) is plotted for A\ = 3, A = 5, and A\ = 7. The location of the first
peak (’||" configurations) is identical for all A at r; ~ 1D while the height
increases with the axis ratio. The second peak stems from ’|—’ configurations
and thus its location depends on A. Note that the locations of the second
peaks coincide very precisely with A/2+1. The height of the peaks decreases
with increasing rod length. The behavior of the pair correlation functions in
combination with the small nematic order parameter underlines the isotropic
nature of the system at P* = 2.

Another set of pair correlation functions of hard rods is presented in
Fig. BI0L where the structure of the suspension is investigated in the high



3.2.

g

pressure region (P* = 6). As we already know from the analysis of the
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Figure 3.9: Pair correlation functions in an isotropic system of hard rods (¢* =
0) at pressure P* = 2. (a) Longitudinal pair correlation function g as function
of the longitudinal distance 7. (b) Transverse pair correlation function g, as
function of the transverse distance 7. In both cases, correlations are very

weak and short-ranged.
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nematic order parameter, the hard rod system aligns along a global director

at that pressure.
by a spatial ordering as shown in Fig. (a).
configurations occur in g at r)|/D = (Aef + A)/2 4 1 for all rod lengths.

9
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Figure 3.10: Pair correlation functions in the ordered state of a hard rod
system at P* = 6. (a) Longitudinal pair correlation function g (7). (b)
Transverse pair correlation function g, (r,). Both correlations are stronger

than at P* = 2 but are still short-ranged.
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The long-range orientational order is also accompanied
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Longitudinal correlations are not observed for | > 9D. In the region between
7| = 4D and the peak from the '——’ configurations, only rods with A = 3
show another broad maximum, which arises from '—|" constellations. The
curves for A = 5 and A = 7 grow monotonically. This can be explained as
follows: The volume needed for a rod to rotate freely is proportional to the
third power of its length. Thus, orientational degrees of freedom are much
more suppressed for long rods than those for short rods in dense systems. As
a consequence, it becomes preferable for long rods to align. The direction
of the long rods corresponds in good approximation to the direction of the
global director n. Obviously, only rods with A = 3 have a sufficient amount
of accessible volume to orient perpendicularly to the global director.

The maxima in the transverse pair correlation functions (Fig. (b))
differ only in the height for different rod lengths whereas their locations
coincide. The correlations are maximal approximately at integer values of
the rod diameter and attain the bulk value for distances larger than 4D.
Signatures from ’|—’ configurations are missing. The combination of the
results for the nematic order parameter and both correlation functions reveal
the structure of a nematic fluid.

Next we turn to attractive rods. Pair correlation functions below the or-
dering transition are presented in Fig. B TIl Some differences to the isotropic
hard rod system will be pointed out, briefly. In Fig. B11 (a), g|(|7’5) (—) is

significantly smaller than g‘(‘7’3) (=+=+) and the first peak from '—|" configu-

1.2 '
14

1.2

1
0.8
0.6
0.4
0.2
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0.6 -

g
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0.2 -

Figure 3.11: Pair correlation functions in an isotropic system of attractive
rods (¢* = 0.5) at P* = 2.67. (a) Longitudinal pair correlation function g (7))
and (b) transverse pair correlation function g (r1). The first maximum in g
is enhanced because of the attractivity, which favors parallel alignment. The
inset highlights the second maximum in g, .
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rations appears to be sharper. g|(|7’5) and g|(|7’7) (===) differ distinctly in the

range 4 < r|/D < 6 with g|(|7’7) being smaller and showing no evidence of
'—|” constellations. As shown in Fig. Bl (b), transversal pair correlations
are quite pronounced in the immediate neighborhood of the reference rods.
The corresponding peak of g, at r; &~ 1D is a consequence of the attractive
interaction. The inset of Fig. BI1l (b) points out the characteristics of g
for r, > 2D. One recognizes a second maximum in g‘(f’7
tions for '|—’ constellations of A = 3 and A = 5 rods. Overall, there are no
long-range correlations due to attraction in the considered system but on a
shorter length scale attractivity has a certain influence.

Above the ordering transition, the structure of the system changes dras-
tically. In Fig. (b), a different kind of order is indicated by the double
peak pattern in the transverse pair correlation function g(fj) (===), which
is characteristic for a hexatic structure [32]. The hexatic order is long-ranged

) and also indica-

£4=0.5, P*=3 £=0.5, P*=3
14 77 —meien ' T T 120  7-7 =----- 1.2
SR | 100 | T o
[ H 08
l 80 i 0.6
= 08 60 i 04
= [ " [ g—
0.6 1 H 02 75 ——
40| i 0 73 e ||
0.4 ¢ i 170 1 2 3 4 5 6
20 | i i ]
o0zr i s
0 0 s M
0 2 0 1 2 3 4 5 6

Figure 3.12: Pair correlation functions of the ordered state of an attractive
rod system at P* = 3. (a) The longitudinal pair correlation function g (7))
and (b) the transverse pair correlation function g, (). The double peak

pattern in g is characteristic for hexatic order. The inset highlights g(f’5) and

)

and almost completely restricted to A = 7 rods. Correlations with smaller
rods are about two orders of magnitude smaller and hardly visible on the
scale of 9(}7)- The inset for Fig. (b) highlights g(f":’) and g(f’g). A double
peak modulation is found for g(f":’) but not for g(f’?’), which approaches the
bulk value for r; > 6D. The fluid has separated into a highly ordered layer
of mainly long rods with only few intermediate rods incorporated. The vast
majority of A = 3 and A = 5 rods forms an isotropic fluid surrounding the
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layer. The depletion of long rods in the isotropic part is demonstrated in
Fig. BT2 (a) by g|(|7’7), which grows extremely slowly towards 1 with increas-
ing 7. Since most long rods are used for the layer and thus located in the

transverse direction, only few A\ = 7 rods are detected by g|(|7’7). The lack of a
maximum at 1| ~ 8D proves that the domain consists of a single layer. In the
following, the structure of long rods will also be called (hexatic) monolayer.
The peaks from '—|" and "——" configurations are visible in g|(|7’3) whereas g‘(‘7’5)
shows only a broad maximum corresponding to "——" constellations.

The observed results point out that attractivity of rodlike particles has
great impact on the structure formation in polydisperse bulk systems, espe-
cially at high pressureﬂ. While the tridisperse mixture of hard rods is in a
liquid-crystalline nematic state, attractive rods with the same composition
separate into a hexatic monolayer of long and an isotropic fluid of shorter
rods. Long-range positional correlations are absent in the former system
while the opposite is true for the latter.

The overall structure in the low pressure regime is less strongly affected by
the attractivity but the correlation functions show differences for the direct
neighborhood as Fig. demonstrates for the transverse pair correlation
function. For r; 2 2D, the presented curves coincide nicely. The largest

Y

differences between hard and attractive rods are observed for large axis ratios.

p*=2, 7-7 P*=2,7-3
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Figure 3.13: Comparison of the transverse pair correlation function g, ()

for hard (=) and attractive rods (===) in the isotropic state. (a) Correlations

between long rods, i. e. g(lm)(?l). (b) Correlations between long and short

rods, i. e. g(f’?’)(rl).

!The numerical value of P* in the high pressure regime differs for hard and attractive
rods.
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For attractive rods, the first peak in ¢, is sharper and is shifted towards
smaller r; in comparison to hard rods due to the additional gain in internal
energy when two rods come close. The difference in the relative heights
of the first maxima between g(fj) and g(f’?’) arises from the fact that the
attractive rod potential Uxr grows with the rod length. Thus, the gain in
internal energy for long rods is greater than for short rods. In fact, for the
chosen potential parameter D, = 1.15D, the minimal interaction energy Epnin
(Eq. (ZI9)) is approximately proportional to .

Finally, some remarks about the influence of finite-size effects. The de-
pendence of the system size on the ordering transition of attractive rods is
investigated in Fig. (a) and (b). Part (a) displays the nematic order

£*=0.5 £*=0.5

N=500 —O—
| N=750 —e—
N=1000 —v—

L 4 T T T T T N=Z00
3 N=750 —&—
-15 N=1000 —— |

S,(A=7)
m:-roch

26 27 28 29 3 31 32 33 34 26 27 28 29 3 31 32 33 34

N=500 —O—
0.8 | N=750 —&—
| N=1000 —+—

S, (A=7)
o
3

4 4.5 5 55 6

Figure 3.14: Data for systems with N = 500 (O), N = 750 (4), and
N = 1000 rods (V). (a) Nematic order parameter Sy, of the longest rods and
(b) average interaction energy per rod (E,qq) as a function of the pressure P*
for attractive rods (¢* = 0.5). (c) The nematic order parameter S, for the
longest rods as a function of the pressure for a hard rod system. In all plots,
systems with NV = 750 and N = 1000 rods behave almost identically.
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parameter of the longest rods as a function of the pressure. The value of
S+ in both the isotropic and in the ordered phase changes only slightly with
N. Especially the systems with N = 750 and N = 1000 rods behave quite
similarly. For the smallest system, finite-size effects lead to a shift of the
ordering transition towards higher pressure. The data point for the N = 500
system at P* = 3 is not drawn because no reliable average could be obtained
due to several cluster formations and dissolutions during the Monte Carlo
run. The shift of the ordering transition between the smallest and the two
larger systems is about AP* &~ 0.15. Thus, one can conclude that finite-size
effects are insignificant in the N = 1000 system. All results shown in this
work are obtained from systems with N = 1000 or more rods. The average
interaction energy per rod (FE,.q) is depicted in Fig. (b). The jumps in
(Eroq) occur at the same pressures as those in S,,. The curves of (F,qq) for
N =750 and N = 1000 coincide very well.

The nematic order parameter of the longest rods of a hard rod system is
plotted in Fig. BI4 (c). Again, the systems with N = 750 and N = 1000
particles behave almost identically except for some deviations at P* =~ 4.7,
i. e. in the region where nematic order sets in. In this region, however, the
standard deviation of S, is relatively large as demonstrated by the errorbars
for N = 1000. For the system with N = 500 rods, S, is always slightly
larger except for the highly ordered state at P* > 5.5. A significant shift of
the ordering transition like for attractive rods is not observed.

Subsuming the results for various system sizes one can draw the conclu-
sion that for NV = 1000 the observed structures in the tridisperse suspension
of hard and attractive rods are only subject to weak finite-size influences.

3.3 Polydisperse mixture

Most systems of synthesized colloidal rods have a polydisperse length distri-
bution. This is a consequence of the longitudinal growth process, which has
no characteristic length scale. The length of the rods is, in general, a multiple
of the length of its building blocks, e. g. atoms or ligands [T]. In simulations
of length-polydisperse rod systems, the rod length has to be discretized into
intervals of width AX. A large A\ simplifies a A-dependent analysis of the
system whereas a small A\ might be more realistic. In practice, a compro-
mise has to be found. Most results presented in this section are obtained for
AX = 1. A smaller discretization AX = 0.1 does not change the outcome
significantly as demonstrated at the end of this section.

The polydisperse system investigated here consists of rods with axis ratios
A=1,2,...,8. The length distribution is assumed to be fixed and chosen as
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Figure 3.15: The relative number of rods N)/N with axis ratio A in the
polydisperse mixture.

shown in Fig. B-TAl Similar distribution functions have been measured, for
example, in solutions of amyloid fibrils [69] or suspensions of clay rods [105].

Results for S, are presented in Fig. B.I0l for various interaction strengths
¢*. In addition to hard rods (¢* = 0) and attractive rods with €* = 0.5, rods
with interaction strengths €* = 0.25 and €* = 0.33 are studied.

The qualitative properties of the curves in Fig. are very similar to
those of the tridisperse mixture discussed in Section B2 For all polydisperse
systems, the nematic order apportioned by components increases with the
length of the rods. At low pressures, the system is isotropic and S, is close
to zero for all rod lengths. At high pressures, S, > 0.8 is found for rods
with axis ratio A = 7 and A\ = 8, while short rods are distinctly less ordered.

The system with the largest interaction strength ¢* = 0.5 is analyzed in
Fig. (a). Below P* = 3, all components show hardly any orientational
order. At P* = 3, a jump can be seen in S, for the two longest constituents.
For intermediate axis ratios (A € {5,6}), Se grows almost linearly with P*
for P* > 3 while short rods remain mostly isotropic.

For lower interaction strengths €*, considerable orientational order sets
in at higher pressure and the step-like increase of S, for the longest rods
becomes rather continuous. At high pressures, the system is less clearly
divided into long rods with essential orientational order and short rods with
almost no orientational order. Instead, for the hard rod limit, S, increases
almost linearly with A\ and, at high pressures, even rods of axis ratio 2 show
a distinct nematic order.

Fig. BI7shows typical configurations of ordered systems with (a) ¢* = 0.5
and (b) € = 0. For the sake of clearness small rods with axis ratios A < 5 are
omitted. In Fig. B (a), a highly ordered monolayer is visible in the middle
of the box. As will be demonstrated below, the layer is ordered hexatically. In
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Figure 3.16: The orientational order parameter S, as a function of the
pressure P* determined for every component with axis ratio \ in systems with
interaction strength (a) ¢* = 0.5, (b) € = 0.33, (c) € = 0.25, and (d) ¢* = 0.
The system with ¢* = 0 corresponds to the hard rod model.

Fig. BI7 (b), long hard rods form a nematic droplet, which is less marked off
from the surrounding system. Note that the formation of a nematic droplet
has not been observed in Section This is the most significant difference
compared to the tridisperse mixture.

One may assume that the formation of the monolayer is a finite-size effect.
However, similar monolayers have been observed in experiments with attrac-
tive rods, where they turn out to be extremely long-living configurations
[22]. In the hard rod system, a nematic droplet is formed by predominantly
long rods. Long-living nematic domains of the size of several rod lengths are
also found experimentally [22]. Because of the surface energy at the droplet
interface, the formation of ordered domains may be shifted towards higher
pressures in the chosen ensemble.

The hexatic order of the cluster as well as fractionation are reflected in



3.3. POLYDISPERSE MIXTURE 35

Figure 3.17: Typical ordered configurations of (a) attractive rods (¢* = 0.5)
at pressure P* = 3.5 and (b) hard rods at pressure P* = 6.3. For clarity,
short rods (A < 5) are omitted.

the pair correlation functions. A good insight into the system is provided by
g|(|6”\) and g(f’)‘), which analyze the local density of rods with an axis ratio
A around reference rods with an axis ratio 6. The isotropic structure of the
system at low pressure is confirmed in Fig. (a) and (b). They show
pair correlations between rods with axis ratio A,ef = 6 and other rods, which
are typical for an isotropic state (cmp. Fig. B4l (a) and (b)). Fig. (c)
and (d) shows pair correlation functions for a highly ordered system with

e* = 0.5 and P* = 3.84. Correlations with long rods (represented by g(f’s)

(===) and g(f’ﬁ) (=—)) show a double peak pattern, which indicates hexatic

order while correlations with smaller rods, represented by g(f’4) (=+=+), have
the weakly structured curve of an isotropic state. These observations can
be explained as follows: Systems with ¢* = 0.5 at high pressure form a
hexatic monolayer of predominantly long rods in coexistence with an isotropic
system of short rods. A large fraction of the rods with axis ratio A\ = 6 is
included in the monolayer while the rest is located in the isotropic part of the
system. Contributions to g(f”\) for large A stem predominantly from reference
rods inside the monolayer while the remaining rods of length A\, = 6 are
surrounded by an isotropic system of small rods. For the same reason, g‘(‘ﬁ”\)

is comparable to the isotropic curves for A\ = 4 while for large A, g|(6”\) grows

extremely slowly towards 1 with increasing ||, since almost all long rods are
located transversely.

In Fig. (a)-(c), the growth of the hexatic monolayer is documented
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Figure 3.18: (a) Transversal pair correlation function g, (r) and (b) longitu-
dinal pair correlation function g (r|) in a system of attractive rods (¢* = 0.5)
in the isotropic state at pressure P* = 2.5. (c) g.(ry) and (d) g () in
the ordered state at pressure P* = 3.84. The double peak pattern in (c) is
characteristic for long-range hexatic order.

for ¢ = 0.33 and various pressure values. At P* = 4.17, the system is
predominantly isotropic, but small clusters of long rods have formed, yet.
The shoulder of the second peak of gf’S) (===-) already hints at the formation
of a hexatic ordering, which becomes clearly visible from the double-peak at
P* = 4.34. The hexatic monolayer has formed completely at P* = 4.84.
Altogether, an increasing pressure leads to the growth of a highly ordered
monolayer made up predominantly by long rods. This results in a rise of the
overall order parameter S, for large rod lengths in Fig. In Fig.
(d), g(f’A) is shown for a hard rod system at a high pressure. Here, no hexatic
order exists and, consequently, no double peaks are visible.

The local fractionation in the system can be measured directly from
(A)ngb(Arer), which is defined as the average axis ratio of the 36 nearest neigh-
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Figure 3.19: (a)-(c) Transversal pair correlation function g, (r ) for attrac-
tive rods with ¢ = 0.33 (a) at P* = 4.17, (b) at P* = 4.34, and (c) at
P* = 4.84. The second maximum in (a) vaguely indicates a double peak
structure, which becomes more pronounced at higher pressures. (d) Transver-
sal pair correlation function g, (7)) of a hard rod system in the ordered phase
at P* =6.3.

bors of reference rods with axis ratio Arer. (In a perfect hexatic monolayer,
a rod i has 36 neighboring rods j with r;; < 3D.) In Fig. B20 (A)ng, is
presented as a function of A In the isotropic state (), (A)ngp is nearly
constant, which implies that long and short rods are surrounded by rods
of the same average length. The solid symbols in Fig. show (A)ngp for
highly ordered phases with different interaction strengths at pressures, for
which the orientational order for A\ = 7 is approximately S, ~ 0.7. In
the ordered states, short rods are preferentially surrounded by rods of small
length while rods with a large axis ratio accumulate long rods. The separa-
tion of long rods increases with the size of ¢*, showing that fractionation is
enhanced by the attractive interaction of the rods.
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Figure 3.20: Average axis ratios (\)ngp of the 36 closest neighbors of reference
rods with axis ratio Aef. Shown are results for an isotropic system with ¢* =
0.5, P* = 1.5 (0J) and ordered systems with S2=7 ~ 0.7, obtained by ¢* = 0.5
at P*=4.0 (#), € =025at P*=5.5(e) and ¢* =0 at P* = 6.64 (A).

A polydisperse suspension with a length distribution of the same shape
as that in Fig. BT3 but A\ = 0.1 is studied in the following. Fig. BZ1] (a)
shows the corresponding length distribution. The behavior of the nematic
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Figure 3.21: (a) The length distribution of the polydisperse mixture with a
higher resolution of the axis ratio \. (b) Nematic order parameter S, as a
function of the pressure P* in the mixture of attractive rods with A\ = 0.1.

order parameter of the mixture with A\ = 0.1 is presented in Fig. B21 (b).
Differences from the mixture with A\ = 1 shown in Fig. (a) appear to be
marginal. S, jumps for rods with 8 < Aand 7 < A < 8 from a small to a large
value between P* = 3 and P* = 3.17. Intermediate rod lengths 6 < A < 7
participate partially in the ordering process whereas shorter rods remain
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isotropic at P* > 3.17. It is remarkable that the ordering transition occurs
exactly in the same pressure region as for the mixture with AA = 1, i. e.
between P* = 3.0 and P* = 3.17. One can conclude that the polydisperse
mixture with axis ratios restricted to integer values resembles mixtures with
continuous axis ratios in most aspects, at least for the applied parameter
range.
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Chapter 4

Substrate induced effects

The structure of fluids, especially of complex fluids, can be affected signifi-
cantly in the vicinity of a wall like the confining walls of the container. From
a technical point of view, two adjacent walls can be realized easily in com-
puter simulations. For not too large wall separations, the described geometry
is a slit pore and a variety of studies focused on complex fluids in slit pores
123, B2, B7, 63, [[9, 98]. The influence of a single confining wall can be in-
vestigated either for very large wall separations or with special simulation
techniques [2I]. In order to avoid the additional costs of the method de-
scribed in [2T] two plane parallel walls with large separations are simulated
with the mirroring technique introduced in Section 242 It turns out that
wall induced correlations decay relatively fast with increasing distance from
the wall in mixtures of length-polydisperse rods and thus the fluid behavior
near one wall is not influenced by the other wall.

The structure of the confining walls has great relevance on the fluid prop-
erties. We check the impact of the three different substrate patterns sketched
in Fig. 1 The planar wall does not break any symmetry in the xy-plane.
The groove pattern is translational invariant along the x-direction. It is char-
acterized by the depth z¢ and the width y¢ of the grooves. The translational
invariance of the corrugated substrate is broken in a cavity pattern. The
rectangular cavities have depth zo, width yo, and length x. Results are
compared for grooves that vary in yo and cavities that differ in x¢.

4.1 Tridisperse suspension
This section copes the behavior of the tridisperse mixture in the vicinity of
a substrate. The pressures, which are investigated in detail, are P* = 0.5

and P* = 4 and are below the regime where a corresponding bulk system

61
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Figure 4.1: lllustrations of the three investigated substrate types. (a) Planar
wall, (b) corrugated wall (grooves), and (c) cavity pattern.

of hard rods becomes anisotropic (cmp. Fig. (b) on page E)). We call
P* = 0.5 low pressure and P* = 4 high pressure. The emphasis lies on hard
rod systems since most interesting effects are observed at P* & 4, for which
bulk systems of attractive rods show a pronounced structure formation and
fractionation, already. Here, we focus on substrate induced structure forma-
tion and attractive rod systems are thus of minor interest. For comparison,
some studies are performed with attractive rods. In these cases, interactions
of rods with the substrate are purely repulsive as for the hard rod system.

The structure of the systems is analyzed in terms of density distribu-
tion functions and orientational correlation functions as introduced in Sec-
tion and Section EED.A The properties of the various substrate patterns
concerning demixing and fractionation are investigated in terms of the spa-
tially resolved mole fraction (see Sec. ZZ0.AI).

4.1.1 Planar substrate

The planar wall is examined first. Fig. displays the density profile of
each component of a hard rod system at low and high pressure. Part (a)
shows the results for P* = 0.5. The substrate is located at |z — z5| = 0
for all plots. The density profiles of long (-=-=), intermediate (—), and
short rods (=-—-) exhibit a maximum at |z — zo|/D = (A + 1)/2. At the
respective distance from the substrate, the orientational degrees of freedom
are no longer restricted by the substrate. The maximum in the density
is actually a depletion effect because an unaccessible void is created if a
rod with orientation parallel to the wall normal is located at separations
slightly larger than |z — zy|/D = (A+1)/2. Similar observations were already
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Figure 4.2: Density distribution p} as a function of the distance to the wall
|z—zo| of the tridisperse hard rod suspension in contact with a planar substrate.
The single component densities are plotted (a) at low pressure and (b) at high
pressure.

described in Section where the corresponding peaks in g, arose from so
called ’|—’ constellations. In the following, the notation is adopted with ’||’
symbolizing a rod, which adheres flat on the substrate, and '|—’ indicates a
rod, which is perpendicular to the wall at distance |z — 29|/D = (A + 1)/2.
The density distribution of the long rods (===) shows a small maximum at
|z — 20| = 0.7D but is distinctly reduced in the range 1.2 < |z — 2|/ D < 2.5.
Apparently, long rods either contact the substrate at full length or stay away
from the substrate far enough so that rotations are not strongly hindered by
the substrate.

Part (b) of Fig. depicts the same distribution functions at P* = 4.
The structure of the fluid is changed significantly. The maxima from ’|—’
configurations disappear and several layers of rods, which are aligned parallel
to the substrate, are formed all separated by about one rod diameter. The
height of the peaks increases with the rod length. It is more favorable for
the system to deposit long rods at the substrate for entropic reasons. The
explanation is as follows: Assume a long rod is taken from the bulk, i. e. far
away from the substrate and is adhered at the substrate. The orientational
degrees of freedom of the rod are reduced but at the same time more free
volume is accessible to the rest of the rods in the bulk. If, on the contrary,
two short rods with the same overall length as the long rod are taken from
the bulk and adhered at the wall, more rotational entropy gets lost, but the
gain in accessible volume is comparable. Thus, a pronounced segregation of
long rods at the substrate is observed.
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Figure 4.3: The orientational distribution function gy as a function of the
distance |z — 2o to the wall in a system of hard rods in contact with a planar

substrate at (a) low and (b) high pressure.

The orientational correlation function gy is plotted in Fig. at low
and high pressure. Some properties of gy are recalled quickly: gy is the
z-dependence of the nematic order parameter with the director n parallel
to the z-axis e,. The codomain comprises the interval [—0.5, 1], where the
lower bound is adopted by rods perpendicular to e, and the upper bound
is reached when all rods are parallel to the z-direction. gy vanishes for an
isotropic distribution. The low pressure results for gy are depicted in Fig.
(a). gp is minimal (and negative) at |z — z9| = 0.5D for all rod lengths
since rods proximate to the substrate have to orient parallel to the substrate
and thus perpendicular to e,. Each curve adopts its maximal value at |z —
20|/ D = (A+1)/2, which is in perfect agreement to the observations from the
density distribution functions, where the corresponding peaks were addressed
to ’|—’ constellations. At larger distances from the wall, gy is identically zero
reflecting the isotropic state of the system. Fig. (b) shows gg in the high
pressure regime. The layer formation close to the wall is confirmed by 2-3
minima in gy whereas indications for '|—’ configurations are absent. With
increasing distance from the substrate, the correlations decayﬂ, but much
slower than at low pressure. The correlations of long rods decay slowest. gy is
around zero at large separations from the wall (|z—zo| 2 13D). Orientational
correlations range distinctly longer than correlations of the density (Fig.
(b)). The extension of the simulation box comprises 20D in z-directionfl.

LA decay of correlations in this case is related to an increase of gg, if go < 0.
ZNote that the effective wall separation is 40D due to the applied mirroring simulation

technique.
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Thus, artefacts from the finite box dimensions should be small.
The evolution of the density profile for the tridisperse system at compres-
sion is studied in more detail in Fig. L4l Data for the short rods is presented
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Figure 4.4: Density distribution p} as a function of the distance |z — 2| to
the wall of the tridisperse hard rod system in contact with a planar substrate
for (a) small rods (A = 3) and (b) long rods (A = 7) at different pressures.

in part (a). The low pressure results (=—=) were already discussed above. At
intermediate pressure (—) significancies from ’||” and '|—’ constellations are
present. The multilayer structure at high pressure (=-=:) is reflected in pj
by several maxima separated by 1D. Indications for ’|—’ configurations are
absent. It is noteworthy that the density of short rods in the layers is smaller
than in the bulk. The density profile of long rods is displayed in Fig.
(b). The curves for P* = 0.5 and P* = 4 have already been described. At
P* = 2, one distinct maximum from rods flat on the substrate is observed.
There are also indications for a second layer at |z — zy| ~ 1.8D and for ’|—’
configurations at |z — zy| =~ 4D.

Hard and attractive rod systems are compared in Fig. L0 Note that the
rod-substrate interaction is purely repulsive in both cases. Results for the
low pressure regime are plotted in Fig. (a) and (b). The density profiles
of short rods are almost identical (Fig. (a)). The density distribution
function of large rods deviates slightly at the first maximum that stems from
rods lying flat on the substrate but is identical else. One observes that
p% of hard rods (---) is somewhat larger than p% of attractive rods (—)
at |z — 29| = 0.7D. This effect can be explained as follows: Imagine an
isotropic system of attractive rods. A rod in the bulk experiences attractive
interactions from all directions. If one rod is taken from the bulk and placed
flat onto the (hard) substrate, it is screened from attractive interactions on
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Figure 4.5: Comparison of hard (=—==) and attractive rods (—). Density
profiles as a function of the distance |z — 2| to the wall in the low pressure
regime (P* = 0.5) for (a) short and (b) long rods. Corresponding plots are
shown in (c) and (d) for an intermediate pressure (P* = 2).

the substrate side. As a result, the internal energy of the system increases
and the corresponding configuration is slightly less favorable.

The same effect occurs in the intermediate pressure regime as demon-
strated in Fig. 23] (d). The density of long hard rods (===) in the first layer
is increased with respect to attractive rods (—). The second layer, however,
is more pronounced for attractive rods and the maximum is shifted towards
the substrate. Short rods are compared in Fig. (c). The two curves agree
to a large extent but deviate at the second maximum, which is due to ’|—’
configurations, with the density of hard rods being larger. Obviously, there
is more accessible volume for short hard rods than for short attractive rods
at |z — 29| & 2D since p} exhibits the reverse behavior in this region.

The spatially resolved nematic order parameter S, is plotted in Fig.
for hard rods. The order at the substrate is substantially larger than in the
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Figure 4.6: Nematic order parameter S, as a function of the distance |z — zg|
to the wall of hard rod systems at low (===), intermediate (=), and large
(=+=-) pressure.

bulk for all considered pressures. At P* = 0.5 (===) and P* = 2 (—),
order decays rapidly with increasing |z — zy| and adopts the bulk value at
|z — 29| > 3D. The value of S, proximate to the wall is quite similar.
In the high pressure region (=-=-), nematic order is distinctly larger and
ranges much further into the bulk. S, is about 50% of its maximal value at
|z — 29| = 3D where the systems with lower pressures have already reached
the bulk value.

The investigations of the tridisperse suspension in contact with a planar
wall are finalized by two pictures of typical rod configurations at low and high
pressure in Fig. 7 Part (a) corresponds to the low pressure situation. The
substrate is the big area in front. The system is basically isotropic and no
obvious coverage of the substrate is visible. At high pressure, the substrate
is preferentially covered by long rods.
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Figure 4.7: Snapshots of hard rod systems in contact with a planar substrate
(a) in the low pressure and (b) in the high pressure region. The substrate is
located at the front plane of the box.

4.1.2 Corrugated substrate

The second investigated substrate type is a groove-like structure. The pat-
tern is composed of a planar wall located at |z — 29| = 0 with equally-spaced
side walls on top. The side walls consist of stacks of infinitely long cylinders
oriented along the z-axis. The depth of the grooves is zo = 4D for all data
presented here, i. e. each side wall of a groove consists of 4 cylinders of diam-
eter D stacked on top of each other (see Fig. (d)). Fig. L8 shows density
profiles for grooves of width yo = 3.5D at different pressures. For a low
pressure, short (=-=-) and intermediate rods (—) are mainly homeotropic
inside the grooves as the peaks at |z — zy| = 2D and |z — zo| = 3D in Fig.
(a) reveal. Interestingly, long rods (===) do not form a layer flat on the
substrate as this is the case for the planar wall. The side walls of the grooves
restrict the orientational degrees of freedom in the xy-plane. This influence
is apparently enough to suppress the layer formation. Note that at P* = 0.5
and for a groove width of yo = 3.5D the density of short rods is largest inside
the grooves. At further distances from the substrate, three small peaks are
observed located at |z — z|/D ~ zc + (A 4+ 1)/2 for all rod lengths. At the
respective positions the corresponding rods are no longer directly affected by
the substrate structure.

At a slightly higher pressure P* = 1, we find a distinct change of p% and p;
inside the grooves as demonstrated in Fig. (b). The density of long rods
(===) is maximal at |z — zy| &~ 0.8D and a second layer is indicated weakly.
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Figure 4.8: (a)-(c) Density profiles p3 as a function of the distance |z — 2|
to the wall of hard rod systems in contact with a substrate with grooves of
width yo = 3.5D at the pressure (a) P* = 0.5, (b) P* =1, and (c) P* =4.
(d) Illustration of the substrate with grooves. Each side wall is composed of
four cylinders of diameter D.

Rods of intermediate length (—) exhibit an additional peak in the density
from ’||” configurations. The density profile of short rods (--—-) remains
basically unchanged.

The density distribution functions in the high pressure regime are plotted
in Fig. (c). Four pronounced maxima of p% are observed with the first
three peaks inside and the fourth peak on top of the grooves. The density of
shorter rods is reduced significantly in the grooves with pf being about 25%
of p%. The density of A = 3 rods inside the grooves is about 20% of the bulk
value.

The structure of the system is elucidated further via the orientational
correlation functions gy and g, (see Section EZ00) in Fig. Part (a) de-
picts gy at low pressure (P* = 0.5). The values of gy at the peaks from
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Figure 4.9: Orientational correlation functions gg and g, as a function of the
distance |z — zp| to the wall of a tridisperse hard rod mixture in front of a
substrate with broad grooves (yo = 3.5D). Results are presented for the low
pressure regime ((a) and (b)) and for the high pressure regime ((c) and (d)).

the '|—’ configurations are measurably larger than in the case of the planar
wall because the orientations are focused more in z-direction by the grooves.
In addition to the minimum inside the grooves, a second weaker minimum
occurs at |z — zp| &= 4.7D from rods flat on top of the grooves. The range
of the correlations induced by the groove pattern exceeds the range of the
correlations for the planar wall very precisely by the depth zo = 4D of the
grooves.

The orientational correlations in z-direction measured by g4 are plotted
in Fig. (b). g4 is maximal at the substrate for all rod lengths and decays
quickly with increasing |z —z|. g, decreases particularly fast when |z —zy|/D
approaches (A 4+ 1)/2 and meets in a sharp bend, an effect which is related
to the preferred occurrence of ’|—’ configurations. Orientational correlations
in z-direction vanish at separations |z — zg| > 8D.
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The layer formation inside the grooves at high pressure is also reflected
in gg and g, as shown in Fig. (c) and (d). Maxima of the local density
are accompanied by strong orientational order parallel to the z-direction so
that gy and g4 adopt a local minimum or maximum, respectively. Note that
perfect alignment perpedicular to the z-axis corresponds to gy = —0.5. Both
correlation functions are basically zero for |z — zy| > 15D.

Density distribution functions for narrow grooves of width yo = 1.5D in
the low and high pressure regime are presented in Fig. LT0l The essential

€*=0, P*=0.5, yo=1.5D €*=0, P*=4, y-=1.5D

X

Figure 4.10: Density distribution p§ as a function of the distance [z — 2|
to the wall of a hard rod system in contact with a corrugated substrate with
narrow grooves (yc = 1.5D) at (a) low and (b) high pressure. At low pressure,
the density of long rods is largest inside the grooves in contrast to the case of
broad grooves (Fig. (a)).

new aspect of the narrow grooves compared to the broader grooves of width
yo = 3.5D is the fact that now the orientation space of all rods is strongly
reduced inside the grooves. Especially at low pressure this effect comes into
play as shown in part (a) of Fig. The density of short and intermediate
rods is distinctly lower than for the broad grooves but the maxima from
’|=’ configurations remain. Long rods possess the largest density due to the
reduction of shorter rods. The value of p%, however, does not change much
compared to the broader grooves. The qualitative behavior of the density
distribution for |z — zg| > 4D is quite similar to that of a density distribution
function in front of a planar wall located at |z — zy| = 4D (cmp. Fig. 2l (a)):
The density is maximal for all rod lengths at distances where orientations are
no longer affected by the substrate. Only the longest rods form a weak layer
flat on top of the wall/grooves and p3 lowers measurably between the maxima
from ’||” and ’|—’ constellations. Obviously, narrow grooves act almost like a
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planar substrate for rods that are not inside the grooves.

Fig. (b) depicts curves in the high pressure regime. Multiple layers
are found inside the grooves, again. The values of the different p} at the
peaks as well as their ratios are comparable to the broader grooves. The
density between the layers, i. e. in the minima, reduces distinctly, however.
The density profiles on top of the grooves differ significantly from the broad
grooves, especially for A =7 and A = 5 rods. Two peaks occur in p3 and pf.
The value of p} at |z — 2| = 4.7D is about twice as large as for broad grooves
and the correlations imposed by the narrow grooves range further into the
bulk.

Typical rod configurations at high pressure are drawn in Fig. EETT] for
both broad and narrow grooves. The view is along the z-axis and the planar

(a) P* =4, yo = 3.5D (b) P* =4, yo = 1.5D

Figure 4.11: Snapshots of the tridisperse hard rod suspension in contact with
a substrate with (a) broad and (b) narrow grooves at high pressure.

wall is transparent. The side walls of the grooves are made up of infinitely
long cylinders, which are colored green in the snapshots.

Before we turn to the next substrate pattern, here comes a brief summary
of the results for the grooves: We investigated a tridisperse mixture of hard
rods in contact with a substrate with broad and narrow grooves. The systems
were studied at low (P* = 0.5) and high (P* = 4) pressure. In the low
pressure regime, the density of small rods is largest in the broad grooves
whereas for narrow grooves the density of long rods dominates. At high
pressure, multiple layers of predominantly long rods build in the grooves.
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4.1.3 Cayvity pattern

The third type of studied substrate patterns has a rectangular cavity struc-
ture formed by a set of side walls in z- and y-direction on top of the hard
plane at |z — 29| = 0 (see Fig. (d)). All cavities have a width yo = 3.5D.
The depth is chosen zo = 4D throughout this section. In the following four
different lengths of the cavities are investigated: Cavities where the longest
rods fit in (z¢ = 8.5D), cavities for the intermediate (z¢ = 6.5D) and short
rods (z¢ = 4.5D), and cavities where no rod fits in with its orientation pla-
nar to the wall and parallel to the side wall (zc = 3.5D). One can image a
cavity pattern as a groove structure with additional cross walls that break
the translational invariance of the groove structure in z-direction.

Density distribution functions of the systems with the longest cavities
(xc = 8.5D) in the low, intermediate, and high pressure regime are pre-
sented in Fig (a)-(c). The low pressure results are shown in part (a).
The behavior of p4 (=-=-) equals that from the planar wall and the groove
structure. The maximum of the ’|—’ constellations is somewhat smaller,
however. Larger deviations from the previously studied substrate types are
observed for the longer rods. pf (—) is reduced significantly in the range
|z — 20| < 2D and p% (==-) is decreased to about 10% of the bulk value.
The additional restriction of the accessible volume due to the cross walls
has its largest impact on longer rods, apparently. The characteristics for
|z — 29| > 4D are essentially the same as for the groove structure.

One pronounced and one weak layer of rods parallel to the substrate are
observed at intermediate pressure P* = 2 (Fig. (b)) inside the cavities.
The layers are mainly composed of long rods. There is no indication that
short rods are incorporated in the second layer. Instead, they show the peak
from ’|—’ constellations. All in all, the composition inside the cavities in the
intermediate pressure regime is quite heterogeneous.

The polydispersity inside the cavities reduces drastically in the high pres-
sure regime as demonstrated in Fig. (c). The cavities are essentially
filled with long rods arranged in three layers. pf is about 15% of p% and
p5 is basically zero. One also finds some layering on top of the cavities
but with a distinctly larger polydispersity. A first comparison of the planar
wall, grooves, and long cavities points out that the best results concerning
a length specific aggregation are obtained by the cavities. These properties
are illuminated in detail in Section EET41

Fig. ET3 depicts density distribution functions for cavities of length o =
6.5D and x¢ = 4.5D in the high pressure regime. Results for the low pressure
are omitted due to their similarity with the low pressure results of long
cavities. In the interior of the cavities of intermediate length (Fig. (a)),
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Figure 4.12: Density distribution p§ as a function of the distance [z — 2|
to the wall of a tridisperse system of hard rods in contact with a substrate
with long cavities of length 2o = 8.5D (a) at low pressure (P* = 0.5), (b)
at intermediate pressure (P* = 2), and (c) at high pressure (P* = 4). (d)
[llustration of a substrate with rectangular cavities.

three layers are found. The main contribution stems from rods of axis ratio
A = 5. Short rods are incorporated into the layers to a larger extend as in
the case of long cavities. On top of the cavities, one pronounced and one
weaker layer are formed, which consist mainly of the longest rods. The peak
location at |z — zp| &~ 4.7D is typical for a layer flat on top of the cavities.
The height of the maximum of p% at |z — 29| &~ 4.7D is comparable to the
longer cavities (Fig. (c)) but the decay of p% for |z — 2| > 6D is slower.

Short cavities of length x- = 4.5 influence the structure of the system
in a completely different manner as demonstrated in Fig. (b). In the
range |z — 29| < 2D, only pj is non zero. p} reveals two maxima inside the
cavities. The first maximum arises from short rods lying flat on the substrate
whereas the second maximum stems from ’'|—’ constellations. Maxima from
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Figure 4.13: Density distribution p} as a function of the distance |z — 2|
to the wall for hard rod systems in the high pressure regime in contact with a
substrate with cavities of (a) length ¢ = 6.5D and (b) length z¢ = 4.5D.

homeotropically aligned rods are also observed in pf at |z—zy| = 3D and in p}
at |z—zp| = 4D. Thus, the short cavities are not entirely filled with short rods
but longer rods penetrate the cavities with their orientation perpendicular
to the substrate plane.

Fig. gives an overview of the orientational correlation function gy for
the previously investigated cavity structures in the high pressure regime. In
Fig. (a), ge is plotted for the cavity structure for the long rods (z¢ =
8.5D). The behavior is qualitatively very similar to the groove-like structure
(Fig. (c)) with multiple layers inside the cavities and the decay of the
correlations for |z — zy| > 6D. The orientational order of rods perpendicular
to the z-axis is significantly smaller inside cavities of intermediate length
(xc = 6.5D) as demonstrated in Fig. (b). We know already from the
density profiles that layer formation in these cavities is less pronounced and
long rods are prevented from entering. Short rods (=-—-) exhibit orientations
in the zy-plane only in the first layer. ¢y increases quickly ending in the
maximum arising from ’|—’ constellations. Two planar layers are observed
for intermediate rods (—). gs for long rods (===) is zero in the range 0 <
|z —20|/D < 3.5 because the density is zero. The maximum is reached at the
locations from ’|—’ constellations and gy forms several minima on top of the
cavities. Inside the short cavities with z¢c = 4.5D (Fig. (c)) only short
rods close to wall orient perpendicular to the z-axis. Instead of a multilayer
formation, pronounced peaks indicate ’|—’ configurations. Interestingly, short
cavities do not induce long range orientational correlations since gy vanishes
for |z — z9| 2 9D, already. Even the system with the planar wall (Fig.
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Figure 4.14: Orientational correlation function gy as a function of the distance
|z — 2| to the wall at high pressure for (a) long, (b) intermediate, and (c)
short cavities. Results for the planar wall are plotted in (d) for comparison.

(d)) is subject to longer ranged correlations.

Snapshots illustrate the described observations. The view in Fig.
(a)-(d) is along the z-axis and the planar wall is transparent, again. Typical
examples of rod configurations in the high pressure regime at P* = 4 are
depicted in part (a)-(c). Part (a) shows the case of the longest cavities with
length x¢c = 8.5D and confirms the high selectivity of the substrate pattern
to the long rods. A snapshot for the intermediate cavity length is presented in
part (b). We see that most cavities are either filled with rods of intermediate
length or with short rods, i. e. a demixing of short and long rods occurs in
the individual boxes. This distinction could not be made upon the results
for the density distribution function where only averages in the xy-plane are
obtained. The same observation holds for the small cavities shown in part (c):
One cavity is either filled by short or homeotropically aligned longer rods.
Part (d) depicts a system with intermediate cavities at a higher pressure
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Figure 4.15: (a)-(c) Snapshots of tridisperse hard rod systems in the high
pressure regime (P* = 4) with cavities of different length z¢. (d) Cavities of
intermediate length (z¢c = 6.5D) at P* = 5.

P* = 5. All cavities are essentially filled with rods of intermediate length
offering a better selectivity to A = 5 rods than at the pressure P* = 4.

The smallest cavities investigated have a length x» = 3.5D. Thus, not
even the short rods are able to align parallel to the z-axis inside the cavities.
Density distribution functions at pressures P* = 0.5 and P* = 2 are pre-
sented in Fig. At low pressure (Fig. (a)), only short rods feature a
peak from ’'|—’ configurations inside the cavities. The densities of the longer
rods do not adopt a maximal value at the respective locations but exhibit at
small plateau. At P* = 2 (Fig. (b)), all three rod components possess
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Figure 4.16: Density distribution p} as a function of the distance |z — 2| to
the wall of the tridisperse hard rod suspension in contact with a substrate with
very small cavities of length z¢c = 3.5D (a) at P* = 0.5 and (b) at P* = 2.

distinct peaks from ’|—’ configurations. The height of the maxima decreases
with increasing rod length and on top of the cavity pattern a layer has formed
again at |z — zg| &= 4.7D. Note that the orientations of the rods on top of the
cavities are perpendicular to those inside the cavities. Fig. LT1 contains the
results for the higher pressures. Part (a) corresponds to P* = 4, which is in
qualitative agreement with the density profiles at P* = 2 with the heights

of all maxima increased. The heights of the peaks of the ’|—’ constellations,
€*=0, P*=4, x=3.5D £*=0, P*=6, xc=3.5D
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Figure 4.17: Density distribution p} as a function of the distance |z — 2
to the wall for a tridisperse hard rod system in front of very small cavities
(xc = 3.5D) at higher pressures (a) P* =4 and (b) P* =6.

however, have a reversed order, i. e. the height increases with the rod length.



4.1. TRIDISPERSE SUSPENSION 79

The small peak in pj§ at |z — 29| &~ 0.7D stems from short rods diagonally in
the cavities. The density profile undergoes a significant change at P* = 6 as
demonstrated in Fig. (b). In the region 7 < |z — z|/D < 12, multiple
maxima are observed of predominantely long and intermediate rod lengths.
Apparently, a second layer of rods perpendicular to the substrate is created.
p% exhibits three maxima in that range. The peak at |z — z9| = 8D can
be attributed to long rods oriented along the z-axis on top of the cavities
or on top of A\ = 3 rods inside the cavities. The peak at |z — zo| =~ 9D is
related to long rods on top of the layer at |z — zy| =~ 4.7D and the peak at
|z — 20| & 10D arises from a stacking on top of A = 5 rods. The explanation
for pf is straightforward. The modulations of p; are much smaller. We point
out that the density of short rods reduces significantly in the high density
range of long rods.

The homeotropic alignment of the system is analyzed in more detail in
terms of gy in Fig. I8 At P* = 4, homeotropic alignment is basically

€*=0, P*=4, xc=3.5D €*=0, P*=6, xc=3.5D

¢

0O 2 4 6 8 10 12 14 16 18 20 0O 2 4 6 8 10 12 14 16 18 20
|z-z,|/D |z-z,|/D

(a) (b)

Figure 4.18: Orientational correlation function gy as a function of the distance
|z — zo| to the wall of a system of hard rods in contact with a substrate with
cavities of length ¢ = 3.5D (a) at P* =4 and (b) at P* = 6.

restricted to the interior of the cavities for all rod lengths as shown in Fig.
(a). Only two minima with gs < 0 appear, one exclusively from short rods
inside the cavities and one from mainly short rods on top on the cavities. At
P* =6 (Fig. (b)), the rods are aligned more strongly along the z-axis,
especially in the region above the cavities (|z — 29| > 4D). The formation
of a second homeotropic layer, as mentioned in the discussion of the density
profile, is verified by gs.

In Fig. E£T9, simulation snapshots of systems at P* = 4 and P* = 6 are
depicted. Fig. (a) and (b) provide views along the z-axis. Part (a)
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(a) zc = 3.5D, P* =4 (b) 2z = 3.56D, P* =6

(¢) zc = 35D, P* =4 (d) ¢ =3.5D, P*=6

Figure 4.19: The tridisperse hard rod suspension in contact with a substrate
with cavities of length xc = 3.5D. Views along the z-axis of systems are
provided in (a) at P* = 4 and (b) at P* = 6. Sideviews of the simulation
boxes are shown in (c) at P* =4 and in (b) at P* = 6. The first cavity walls
parallel to the view plane are not drawn in order to enable a look inside the
cavities.

depicts the situation at P* = 4. The cavities are rather loosely filled and
one also can distinguish between cavities with homeotropically aligned rods
and cavities with isotropic short rods. The filling of the cavities is strongly
enhanced at P* = 6 as shown in part (b). Most cavities are densely packed
with long and intermediate rods. Side views of the simulation boxes are
provided in Fig. (c) and (d). The homeotropic alignment at P* = 4 is
merely restricted to the interior of the cavities. At P* = 6, a nematic region
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of predominantely long rods has built in the left half of the simulation box
whereas short rods accumulate in an isotropic phase in the right half. Thus,
the substrate pattern is responsible for a spatial separation of lengths in the
system, which is not observed for the corresponding bulk system.

The thermodynamic stability of the phase separated tridisperse system at
P* = 6 can not be fully answered in the considered N PT ensemble. The finite
size of the system and the particle conservation may result in a metastable
configuration. Nevertheless, metastable states play an important role in the
early formation process of macroscopic structures. Slow particle transport
can be a limiting factor in macroscopic systems. Thus, long-living metastable
states can be observed [22]. We stress, that the limitations mentioned here
are only directed towards systems at P* > 4. Systems with P* < 4 do not
show any indications of phase separation.

4.1.4 Length specific aggregation

The investigations so far illuminated the spatial structure induced by various
kinds of substrate patterns. Now we turn towards the question how the dif-
ferent substrate types modify the local mixing ratio and how the structures
can be used to select specific rod types. The goal is to figure out suitable
substrate patterns, which enable a precise control of the length distribution
in a predefined region. The spatially resolved mole fraction ) as introduced
in Section provides a comprehensive overview of the efficiency of a sub-
strate pattern to modify the ratio of the components. Results in the low
pressure regime are presented in Fig. E201. The mole fraction of the short
rods (=-=+) is increased close to the substrate in all plots but Fig. (c),
which shows data for the small grooves of width yo = 1.5D. In latter case,
approximately equal amounts of rod components are present. w3 is partic-
ularly large in the cavity patterns (Fig. (d)-(f)). One has to keep in
mind, however, that a large local mole fraction does not imply a large local
density. Especially inside the grooves and cavities the density of short rods
is smaller than in the bulk.

Fig. 2Tl summarizes the mole fractions in the high pressure regime. The
mole fractions of the system with the planar wall are plotted in Fig. (a).
x7 (===) is about 0.65 for rods in direct wall contact (|z — 29| = 0.5D)
and decays rapidly to a local minimum at |z — zy| = 1.3D where x3 adopts
a local maximum. The horizontal lines in the plot correspond to the bulk
mixing ratio 0.47 : 0.304 : 0.226. x3 is slightly above the respective line for
|z — 29| > 4D because of the displacement close to wall and the conservation
of particles. x7 is lowered compared to the bulk value for analogous reasons.
The mole fraction of intermediate rods (—) remains basically unchanged
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Figure 4.20: Spatially resolved mole fraction x as a function of the distance
|z — zo| to the wall for different substrate patterns in the low pressure regime.
(a) Planar wall, (b) grooves of width yo = 3.5D, (c) grooves of width yo =

1.5D, (d) cavities of length zc = 8.5D, (e) cavities of length xc = 6.5D,
and (f) cavities of length z¢c = 4.5D.
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Figure 4.21: Spatially resolved mole fraction x as a function of the distance
|z — 29| to the wall in the high pressure regime (P* = 4) of various substrate
patterns. (a) Planar wall, (b) grooves of width yo = 3.5D, (c) grooves of
width yo = 1.5D, (d) cavities of length xc = 8.5D, (e) cavities of length
xc = 6.5D, and (f) cavities of length x¢ = 4.5D.
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and deviates only slightly from its bulk value inside the grooves as demon-
strated in Fig. EE211 (b) and (¢). The grooves are capable to prolong the
differentiation of long and short rods to 0 < |z — zy|/D < 4. Narrow grooves
(Fig. 2T (¢)) appear to be more effective than broad grooves (Fig. (b))
in this sense. The longest cavities (zc = 8.5D) provide the best selection
of long rods as shown in Fig. L2l (d). More than 80% of the rods in the
range |z — zp| < 3D have axis ratio 7 and short rods are mainly absent.
The cavities also reduce x5 distinctly, which is not observed for the planar
and the corrugated wall. The composition inside the cavities is thus highly
monodisperse. Cavities of intermediate length increase the mole fraction of
intermediate rods (Fig. (e)), especially around |z — 25| = 0. In the range
2 < |z — z|/D < 4, short and intermediate rods contribute about the equal
amount. On the first view, short cavities (Fig. (f)) seem to generate
a purely monodisperse suspension of short rods in the range z < 2D. But
short cavities are filled with homeotropically aligned intermediate and long
rods to a large extent so that the volume inside the cavities is mainly used
by longer rods. Note that the spatially resolved mole fraction as well as the
density distribution function are defined in terms of the center of mass of the
rods. The significancies from the ’|—’ configurations of A =5 and A\ = 7 rods
appear also in x5 and z7.

In summary, we find that in regions close to the substrate the mixing ratio
changes. Structured substrates amplify this effect and expand the respective
region. Cavities for the longest rods generate a highly monodisperse region
of long rods and also the amount of intermediate rods can be enriched inside
appropriate cavities. This effect improves at higher pressure as demonstrated
in Fig. Part (b) shows the mole fraction of a system with cavities of
intermediate length at P* = 5. For comparison the data at P* = 4 is
plotted in part (a), again. The cavities discriminate very sensitively between
short and intermediate rods while the latter contribute about 80% to the
composition in the range |z — zo| < 3D.

4.1.5 Shallow cavities

From a technical point of view, cavities with a lower depth z- might be fab-
ricated more easily. In this section, cavities of depth zo = 1D are discussed,
briefly. The low pressure regime is skipped since no important changes take
place compared to the low pressure regime of a planar wall. The density dis-
tribution functions in the high pressure regime are plotted in Fig. EE23 The
profile of long cavities (Fig. (a)) is qualitatively similar to the planar
wall (Fig. (b)) but the density of intermediate and short rods is strongly
reduced inside the cavities. The ratio of pf to ps at the first maximum is
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Figure 4.22: Spatially resolved mole fraction x as a function of the distance
|z — zo| to the wall of a tridisperse hard rod system in contact with cavities of
intermediate length x¢ = 6.5D at the pressure (a) P* =4 and (b) P* = 5.
The fractionation is significantly more enhanced at P* = 5.

about 30% for the planar wall and 18% for the shallow cavities. The best
ratio, however, is obtained by the cavities of depth zo = 4D and amounts to
12%.

The result for the intermediate cavity length is presented in Fig. (b).
The curve for long rods (===) is shifted to the right by roughly one rod
diameter. Thus, the region 0.5 < |z — z5|/D < 1.5 is exclusively filled by
short and intermediate rods with the latter contributing about 70% to the
density.

In the case of short cavities (Fig. (c)), the curves for long (===)
and intermediate rods (—) are shifted rightwards. The density of short rods
(=-=-) inside the cavities is larger than for cavities of length x¢c = 8.5D and
length x¢c = 6.5D but does not exceed the bulk value noticeable.

All in all, shallow and deep cavities show similar properties. The cavities
are preferentially filled with the longest rod component, which can be placed
inside the cavities with the orientation of the rods parallel to the wall. The
possibility to generate predefined regions in the system where demixing takes
place is still given but to a reduced extend.
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Figure 4.23: Density distribution p§ as a function of the distance [z — 2|
to the wall of systems with shallow cavities with depth zc = 1D in the high
pressure region (a) for long, (b) for intermediate, and (c) for short cavities.

4.1.6 Attractive rods on hard substrates

The majority of the studies in the previous sections utilized the hard rod
model (¢* = 0). Only few results for attractive rods (e* = 0.5) at lower pres-
sures were discussed in Section EET.T], in which minor differences compared to
hard rod systems were observed. Appropriately designed substrate patterns
bear most effects on the structure of the fluid at high pressures, particularly
concerning length specific aggregation as demonstrated in Section LT 4 In
this sense, structured substrates are much less effective in systems of attrac-
tive rods since pronounced fractionation takes place already in the bulk.
Some qualitative properties of attractive rod systems above the bulk
ordering transition are explained on the basis of snapshots presented in
Fig. E24. The pressure is P* = 3.5 for all pictures. Fig. (a) depicts
the system in contact with a planar wall. The system has separated into
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(a) € = 0.5, P* = 3.5, planar
wall

Figure 4.24: Snapshots of systems of attractive rods in contact with various
substrate types at pressure P* = 3.5. (a) Planar wall, (b) grooves of width
yco = 3.5D, (c) cavities of length zc = 8.5D, and (d) cavities length x¢ =
6.5D. In (a)-(c) the hexatic cluster adheres at the substrate but not in (d).

a highly ordered monolayer of long and an isotropic fluid of shorter rodsl.
The cluster adheres at the substrate. The two visible domains of long rods
are connected via the periodic boundaries. A system with grooves of width
yo = 3.5D is shown in Fig. 2241 (b) whereas short rods are not drawn in the
snapshot. The cluster adheres at the substrate and the orientation of the

3The same separation is also observed in bulk systems.
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rods in the cluster coincide with direction of the grooves. A system with a
cavity pattern for the longest rods is presented in Fig. (c). Short rods are
omitted. The cluster orients along the grooves and adheres at the substrate,
again. One must note, however, that most long rods are incorporated into
the cluster and are therfore depleted from half of the cavities. Fig. (d)
illustrates a system with cavities of intermediate length. The cluster is sur-
rounded completely by the isotropic fluid of shorter rods and does not adhere
at the substrate. These examples the shown to demonstrate the influence of
adjacent substrates on attractive rods. Further studies are needed to clarify
the effects in detail.

4.2 Polydisperse suspension

This section is dedicated to study the structure of a polydisperse suspen-
sion in contact with the three substrate types, i. e. the planar wall, the
grooves, and the rectangular cavities. The length distribution is the same
as in Fig. on page The structure induced by the different substrate
patterns was investigated in detail in the previous section for the tridisperse
suspension. This section focuses on a representative selection of results for
polydisperse rod systems, which are compared to the tridisperse analogs.

4.2.1 Planar substrate

Fig. shows the density distribution functions of a hard rod system in
contact with a planar wall. For the sake of clarity and to gain better statistics,
cumulative distribution functions (Section Z03)) are presented where the two
longest components (A € {7,8}), the two intermediate (A € {4,5}), and
the two shortest components (A € {1,2}) are subsumed. The agreement
of the low and high pressure results with the tridisperse mixture (Fig. B2
is remarkable. At P* = 0.5, maxima from ’|—’ configurations appear in
every curve and a layer flat on the wall occurs only for the longest rods
as demonstrated in Fig. (a). The maxima from ’|—’ constellations are
broader, however, since in each case the density profiles of two rod lengths
are merged. At P* =4 (Fig. (b)), layer formation mainly from the long
rods (===) is visible. Intermediate rods (—) are incorporated in the layers
distinctly less. Especially short rods (=-=-) are hardly affected by the layer
formation.

Hard and attractive rods at P* = 2 are compared in Fig. 28 Part (a)
depicts the cumulative density distribution function for short and part (b)
for long rods. The corresponding curves for hard and attractive rods are
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Figure 4.25: Cumulated density distribution p}, ,, as a function of the dis-
tance |z — zg| to the wall of a polydisperse hard rod system in contact with
a planar wall. (a) Low pressure results for long (===), intermediate (—),
and short rods (=+=-). (b) The corresponding high pressure results. The
similarities to the tridisperse mixture (Fig. E2]) are extensive.

basically identical and deviate only slightly at the second maximum in the
same way as shown in Fig. (c) and (d) for the tridisperse suspension.

pr=2 pr=2
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Figure 4.26: Cumulated density distribution p}, ,, as a function of the dis-
tance |z — zg| to the wall for hard (===) and attractive rods (=) in the
medium pressure regime (P* = 2) for (a) short (A € {1,2}) and (b) long rods
(A e {7,8}).
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Figure 4.27: Cumulated density distribution P, 2, S @ function of the dis-
tance |z — 2| to the wall of a hard rod system in contact with a corrugated
substrate. Broad grooves (yo = 3.5D) at (a) low pressure and (b) high
pressure. Narrow grooves (yo = 1.5) at (c) low and (d) high pressure.

4.2.2 Corrugated substrate

Hard rod systems in contact with broad (yo = 3.5D) and narrow grooves
(yo = 1.5D) are investigated in Fig. L2Z7 The effects observed for the tridis-
perse mixture (Figs. and FLT0) also emerge in the polydisperse mixture,
which are:

1. The density of short rods is largest in broad grooves whereas in narrow
grooves the long rods dominate in the low pressure regime (Fig.

(a) and (c)).

2. Rods in the region |z — z9| > 4D behave similar to those in front of a
planar wall at P* = 0.5 (Fig. ().

3. At high pressure three layers of mainly long rods form inside the grooves
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(Fig. (b) and (d)).

4. The layer formation on top of the grooves |z — 29| ~ 4.7D is more
pronounced for narrow grooves (Fig. (c) and (d)).

Apparently, the tridisperse and the polydisperse mixture show the same
effects in the investigated parameter range. The density distribution func-
tions apportioned into long, intermediate, and short rods are comparable in
both systems. Thus, the results hold a universal character and qualitatively
similar effects are also expected to occur in length-polydisperse suspensions
with other length distributions. In the following, systems with cavity pat-
terns are studied where the density profiles of the single components are
presented rather than the cumulative density distribution functions.

4.2.3 Cayvity pattern

As demonstrated in Section EET.4l adequately tailored cavities are capable to
induce a highly monodisperse segregation of predefined rod lengths close to
the substrate. In the polydisperse suspension, eight rod lengths are present
with integer values of the axis ratio allowing for a refined A-dependent struc-
ture analysis. Fig. depicts density profiles of hard rod systems in con-
tact with cavities of length xc = 8.5D (part (a)) and z¢ = 6.5D (part (b))
at high pressure. Data is presented for the three longest rod lengths with

€*=0, P*=4, x=8.5D €*=0, P*=4, x=6.5D
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Figure 4.28: Density distribution p} as a function of the distance |z — 2|
to the wall in the high pressure region of a polydisperse hard rod system in
contact with cavities (a) of length z¢ = 8.5D and (b) of length x¢ = 6.5D.
Shown are curves for the three largest rod lengths that fit into the respective
cavities and one for rods, which are longer than z¢.
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(A+1)D < z¢ and for the shortest rods with (A +1)D > x¢. Three layers
arise inside the long cavities (Fig. (a)). The density of A = 7 rods (===)
is largest and p§ (=-=-) is somewhat less than 50% of p%. It is quite remark-
able, to which extend pf (—) is reduced. The density of A = 5 rods inside
the cavities is about the bulk value whereas the two next longer components
exceed their bulk value several times. Rods with A = 8 (----) do not fit in
layers into the cavities and thus aggregate on top.

The layer formation inside cavities of intermediate length (Fig. (b)) is
reduced noticeably but the main contributions stem from the two longest rod
components, which are able to form layers inside the cavities. In this case,
these are A =5 (===) and A = 4 rods (=-—=-). Subsuming the observations,
we conclude that cavities of a certain length are highly sensitive to the longest
rods, which can form layers inside. In the studied systems, shorter rods,
which in principle could enter the cavities, are significantly restrained.

A comprehensive overview of the demixing capabilities of the various sub-
strate types delivers the integrated mole fraction '™ as defined in Eq. (ZZ3).
7' is obtained by integrating the mole fraction zy(z) from 2z = —z; to
z = —29 + 4D. Thus, 21" is the number of rods with axis ratio A in the
region Zyin < 2 < Zmax divided by the overall number of rods in that region.
Fig. contains the corresponding results. The symbols are measurements
and the lines are a guide to the eye. Fig. (a) depicts the data for the
polydisperse suspension at P* = 4. In the system with the planar wall (O),
7™ is about 10% for axis ratios smaller than 5 and increases monotonically
for longer rods. Each component of the short rods (A < 4) reduces to less
than 5% in the system with the broad grooves (A) whereas the number of
longer rods (A > 6) increases distinctly. The number of A = 7 rods increases
even further in the system with the long cavities (). About 50% of all rods
have axis ratio A = 7 and together with A\ = 6 rods they contribute to about
80%. In the system with the intermediate cavities (@), rods with A > 6 are
very effectively suppressed. zi' and z"™ add up to approximately 50%. At
P* =5 (Fig. (b)), the contribution of shorter rods (A < 3) reduces sig-
nificantly for intermediate cavities (@). Less than 10% of the rods stem from
each component with A\ < 3 whereas A = 4 and A = 5 rods constitute circa
70%. The curves for the other substrate types remain basically unchanged
at P* = 5.

For completeness, data of ™ for the tridisperse mixture at P* = 4 is
presented in Fig. (c). The correspondence of the tridisperse and the
polydisperse mixture can be seen best if latter is classified in terms of short
(1 < X <3), intermediate (4 < A <5), and long rods (6 < A < 8).

We finish the investigations of the polydisperse mixture with some ob-
servations in a system with the shortest cavities of length z¢ = 3.5D in
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Figure 4.29: The integrated mole fraction 2" as a function of the axis ratio
A for the different substrate patterns. The polydisperse hard rod mixture (a)
at P* = 4 and (b) at P* = 5. (c) The the tridisperse hard rod system at

P =4

Fig. In the corresponding system of a tridisperse mixture, homeotropic
alignment and phase separation has been observed at pressure P* = 6. Here,
one finds similar effects, however, in a reduced manner. Fig. (a) depicts
the cumulated density profile at P* = 6.5. Long (-=—-) and intermediate
rod lengths (—) exhibit a pronounced homeotropic alignment in the cavities
as revealed by the maxima at |z — zo|/D = (A + 1)/2. The double peaks in
each curve are due to the subsumption of two rod lengths. In particular, the
longest rods show an increased density in the range 8 < |z — z|/D < 10,
which is caused by a second layer of hometropically oriented rods. The snap-
shot in Fig. (b) illustrates the described observations.
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Figure 4.30: (a) Cumulated density distribution p3 , as a function of the
distance |z — zg| to the wall in the polydisperse hard rod system with the
smallest cavities (z¢c = 3.5D) at P* = 6.5. (b) Snapshot of the same system.
The longest rods (6 < X\ < 8) are colored orange, intermediate rods (4 < A <
5) are colored yellow, and the shortest rods (1 < A < 3) are green.

4.3 Alternating cavity pattern

In the final section of this chapter some observations are presented, which
arise in systems with alternating cavity patterns. The chosen compositions of
the suspensions differ from the tridisperse and polydisperse suspension. The
so-called 62 mixture consists of rods with A = 6 and A = 2. The constituents
of the 7531 mixture have axis ratios A =7, A =5, A =3, and A = 1. In both
mixtures, each component comprises the same volume fraction. The applied
pressures are in a range where the corresponding bulk systems start to order.

Firstly, we consider the 62 mixture. Two different setups are investi-
gated. The first one consists of N = 2000 rods simulated with the mirroring
technique to ensure that the behavior of the substrate at —z; will not be
influenced by the substrate at z;. The substrate is composed of cavities of
alternating length a:(cl) = T7.25D and SL’(C2) = 3.25D. The width of all cavities
is yo = 5D and the depth is zo = 3D. In the second setup a system with
N = 1000 particles and two opposing walls each with the same cavity struc-
ture is employed. The cavity lengths are xg) = 7.5D and xg) = 4D. The
system represents a slit pore with structured walls.

Results for the first setup are presented in Fig. EE31l Part (a) depicts
a bottom view of the system. The cavities induce an alternating structure
of long and short rods in substrate proximity. The long rods form multiple
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Figure 4.31: Results for the binary 62 mixture at P* = 5 in contact with
cavities of alternating length. (a) Bottom view and (b) side view of the simula-
tion box. (c) The density distribution p} and (d) the orientational correlation
function gy as a function of the distance |z — zy| to the wall of the same
system.

layers inside the cavities as proven by the density profile (Fig. E31] (c)) and
are strongly aligned as demonstrated by gy in Fig. (d). The cavities for
the long rods are capable to spatially fixate a smectic monolayelﬁ of long rods.
Fig. 3T (b) shows a side view of the simulation box. The interesting point
is that the smectic layers exceed the cavity depth by several rod diameters.
In the density profile 3-4 peaks are visible for |z — zy| > 3D. The alternating
cavity length allows short rods to cover regions close to the substrate. Short
rods remain basically isotropic even in substrate proximity (Fig. (d)).
The results for the second setup are collected in Fig. Part (a) and

4 A smectic monolayer may not be mixed up with a monolayer that covers the substrate.
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Figure 4.32: Results for the binary 62 mixture in a slit pore with structured
walls. Snapshots of the simulation box at pressure (a) P* = 5 and (b) P* = 6.
The corresponding density profiles are shown in (c) and (d).

(b) depict snapshots of the system at P* =5 and P* = 6, respectively. The
short rods are omitted for clearness. The cavities, inside which A\ = 6 rods
accumulate preferentially, oppose each other. It should therfore be possible
to generate a smectic layer, which on the one hand is spatially fixated and
on the other hand covers the whole box length. At P* = 5, one smectic layer
at each wall has formed. The layers do not penetrate the cavities more than
in the case of a single wall (cmp. Fig. (c) and Fig. 3T (¢)). Rods in
between both layers are weakly ordered. At the higher pressure P* = 6, both
layers join to one smectic layer, which spans the whole simulation box. The
density profiles for P* = 5 and P* = 6 are presented in Fig. (c) and
(d). Long rods (—) exhibit a pronounced peak structure only inside and
close to the cavities in both cases. Another interesting point at P* = 6 is
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the occurrence of a double peak pattern inside the cavities for A = 6, which
is characteristic for hexatic ordering and is not observed for P* = 5. In the
corresponding bulk system layer formation is also observed at P* = 6 but
the order in the transverse direction is clearly not hexatic as demonstrated
by gf’6) (-==-) in Fig.

£*=0, P*=6, bulk
25

20 4

15 ¢

90

10 -

Figure 4.33: Transversal pair correlation function g, (r ) at pressure P* =6
in a bulk system of the 62 mixture.

The last system studied is the 7531 mixture in contact with cavities of
three different lengths xg) = 8.5D, xg) =6.5D, and xg’) =4.5D. The width
is yo = 3.5D and the depth is zo = 4D. A bottom view of the simulation
box at P* = 5 is provided in Fig. (a). Long and intermediate cavities
are essentially filled by highly ordered rods of axis ratio A = 7 and A\ = 5,
respectively. Inside the short cavities, isotropic rods with A = 1 are mainly
found even though the cavities are long enough to allow a layer formation
of A = 3 rods. The side view of the simulation box (Fig. (b)) reveals a
growth of a smectic layer of the long rods far into the bulk. From the density
profile in Fig. (c) we find that p? is distinctly above the bulk value in
the range 0 < |z — z|/D < 12 and decreases quickly afterwards, i. e. where
the smectic layer ends. The peak structure of the smectic layer outside the
cavities gets lost but the orientational correlation function gy remains close
to —0.5 (Fig. (d)). The high ordered structure of A = 5 rods is restricted
to the interior of the cavities.

We summarize that a heterogeneous distribution of cavity lengths induces
a heterogeneous distribution of rod lengths in substrate proximity. In addi-
tion, smectic layers can exceed the cavity depth significantly. Thus, cavities
represent not only a possibility to generate highly monodisperse suspensions
but may also serve as an interesting tool to study smectic monolayers in
detail.
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(a) & =0, P* =5 (b) & =0, P*=5

£=0, P*=5 £*=0, P*=5

|z-24|/ID |z-z4|/D

(c) ()

Figure 4.34: (a) Bottom view and (b) side view of the simulation box of the
7531 mixture at P* = 5 in contact with cavities of alternating length. (c) The
density distribution p} and (d) the orientational correlation function gg as a
function of the distance |z — zy| to the wall.



Chapter 5

Summary and outlook

In this work, collective behavior of colloidal rods has been investigated with
the help of Monte Carlo simulations concerning the phase behavior and struc-
ture formation in bulk systems and substrate induced effects. For polydis-
perse systems, nucleation and substrate induced fractionation has been stud-
ied. The influence of attractive and hard rods has been compared. The
attractive rod potential for spherocylinders of Bolhuis et al. [8] has therefore
been extended for arbitrary rod lengths to investigate polydisperse suspen-
sions of colloidal rods. An effective method to calculate Upgy is derived in
Appendix [Al

In Section Bl we investigated the bulk behavior of monodisperse systems
with axis ratios A = 3 to A = 8 for different interaction strengths and pre-
sented isotherms as a function of the reduced pressure P*. In some cases, the
first order phase transitions were accompanied by a strong hysteresis. We
therefore applied biased multi-histogram sampling to explore the relevant
part of the free energy landscape and to identify the thermodynamically sta-
ble phases. With the obtained results, we also could estimate the surface
tension between the nematic and the hexatic phase. The structure of all
involved phases was analyzed in more detail with suitable pair correlation
functions. A comprehensive overview of the phase behavior of monodisperse
systems was provided by phase diagrams in the P*\-plane. At low interac-
tion strengths, the nematic and the smectic A phase exists in a relatively
large pressure range. The nematic phase broadens with increasing axis ratio
A. At larger interaction strengths, the hexatic phase is predominant. With
increasing axis ratio )\, the hexatic phase sets in at decreasing pressure. The
nematic and the smectic A phase are lens shaped.

In Section B2, a tridisperse mixture of hard and attractive rods was inves-
tigated, which features many aspects of polydisperse systems. The spatial
and orientational order in the system was studied separately for each rod
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length. We observed a distinct dependence of the structure formation on
the interaction strength of the potential. With attraction, a monolayer with
long-range hexatic in-plane order of long rods forms, which is surrounded
by an isotropic fluid of shorter rods. For hard rods, order sets in at higher
pressure and the structure formation is less pronounced. The pair correlation
functions revealed the structure of a nematic fluid. Thus, layer formation like
for attractive rods is absent and fractionation is negligible.

The influence of attractivity has also been studied in a more realistic
length-polydisperse suspension of rods in Section The observations for
the polydisperse mixture basically resemble those of the tridisperse mixture.
With sufficiently strong interactions, we found the formation of a hexatic
monolayer surrounded by an isotropic fluid. A strong fractionation occurs
with mainly long rods incorporated in the hexatic monolayer and shorter
rods accumulate in the isotropic fluid. In the case of hard rods, we found
the formation of a nematic droplet of mainly long rods resulting in a mod-
erate fractionation, which was not observed for the tridisperse mixture. The
fractionation in the polydisperse systems is strongly enhanced by attractive
interactions. A monolayer formation with long-range order was also observed
experimentally is supensions of fd viruses [22]. In these experiments, attrac-
tive interactions were provided by depletion forces induced by non-adsorbing
PEG polymers in the solution.

In Chapter Hl, the tridisperse and the polydisperse suspension were stud-
ied in contact with (structured) substrates. The main results were obtained
for low (P* = 0.5) and high (P* = 4) pressure in hard rod systems. Note
that the corresponding bulk systems of hard rods are isotropic at the con-
sidered pressures. Again, we started with the tridisperse mixture, which is
easier to discuss. Special attention was paid on the fluid structure near the
wall in the low and high pressure region and on the influence of differently
patterned substrates concerning spatial fractionation. The following results
were obtained at low pressure: For the planar wall the density of short rods
is larger in the substrate proximity and a layer formation of longer rods is
strongly suppressed. For walls with parallel grooves, a larger density of short
rods exists in broad grooves whereas in narrow grooves the density of long
rods is largest. Rectangular cavities of different size do not change the fluid
structure in a significant way in the low pressure regime. A very different
behavior is found at high pressure for all substrate types. Close to a pla-
nar wall, we observed a multilayer coverage with the density of long rods
enhanced in the layers. In systems with grooves, the multilayer formation
sustains inside the grooves and long rods contribute most. The observed
effects in broad and narrow grooves are alike, now. For cavities, however,
the fluid structure inside the cavities depends distinctly on the dimension of
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the cavities. In long cavities, we observed layer formation of almost exclu-
sively long rods. Cavities of intermediate length induce layer formation of
the medium sized rods while shorter cavities are filled with homeotropically
aligned short and long rods. In terms of a substrate controlled fractionation,
cavities provide by far the best control over the length distribution at the
substrate. Rectangular cavities also represent an example of purely geomet-
ric molecule recognition. The majority of substrate investigations were done
for the hard rod model. At P* < 2.9, attractive and hard rods behave quali-
tatively similar. For P* = 2.9, a hexatic monolayer forms in bulk systems of
attractive rods. Except for very unsuitable substrate patterns, the hexatic
monolayer adheres at the substrate at pressure P* = 3.5.

All three investigated substrate types have also been studied in contact
with a polydisperse mixture. The results for the tridisperse suspension are
confirmed in the low and high pressure regime. For example, cavities are
mainly filled with the longest rods that fit inside and the density of shorter
rods is reduced markedly in the cavities at high pressure. Finally, we turned
towards alternating cavity patterns. We demonstrated how patterns can be
constructed to induce an alternating substrate coverage of long and short
rods and that smectic monolayers can be spatially fixated.

In the future, a variety of new or continuative aspects can be investigated.
The biased multi-histogram simulations could be employed to determine the
surface tensions for various types of systems. By controlling the shape of
the interface with suitable bias potentials it should be possible to measure
all surface tensions. So far, the hexatic phase in monodisperse bulk systems
was not specified in detail. The question whether it is a liquid crystalline
smectic B phase or the solid phase is still open but also far from trivial.
It would also be interesting to test the comparability of the attractive rod
potential and systems with an explicit consideration of depletion forces -
regarding the percolation transition in dilute systems, for example. The
studies with adjacent substrates could be extended to an even higher pressure
regime where phase separation is expected. It would be interesting to see the
impact of the different substrate types on the transition point and on the
fluid structure using, for example, grand canonical ensemble Monte Carlo
simulations. The various substrate patterns can also be studied concerning
their influence on selfassembling rods.
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Appendix A

Attractive part of the rod
potential

The attractive part of the attractive rod (AR) potential given in Eq. (1) is
obtained by integrating the attractive part U(-) of the square-well potential
U (-) over all pairs of locations on the cylinder axes of rods i and j. In
Eq. (ZI7) the cylinder axes are parameterized by «; and «;. It is convenient
to use the step function ©(z) to write down the integral. If the rods ¢ and
J have cylinder lengths L; and L;, the integration area in the o;, «; space
is restricted to a rectangle with —L;/2 < o; < L;/2, —L;/2 < a; < L;/2,
which we denote with R for convenience. With the step function

0 ,ifr<o0
@("’)_{ 1 ,ifr>0 (A1)
Eq. [ZI1) can be written as
UT? = —é /RdOél dOéj@ (Da2 — (rij —+ a;u; — Oéiui)z) . (AQ)

with the cut-off radius D,. The prefactor € represents the interaction strength.

The cylinder axis of rod ¢ is a subset of the infinite straight line, that in-

cludes r; and is parallel to u;. A respective straight line includes the cylinder

axis of rod j. The vector of shortest distance s;; between these straight lines
can be written as

Sij = Tij — fi Wi + pja; (A.3)

with parameters p; and ;. Since s;; is perpendicular to u; and u;, one has

rl-j-ui—rij-ujui-uj

Hi = 2 (A4)
1—(u;-uy)

_rij . llj + rij -u; u; llj

1— (w;-uy)”

(A.5)

Ky =
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P,

() (b)

Figure A.1: (a) Calculating U? is equivalent with finding the overlap of
the unit circle and the parallelogram with vertices { Py, P2, P5, Py}. (b) The
desired area can be split into a polygon inside the unit circle and segments of

a circle.

Defining

and

1+u;-uy
Sy =4 ————
D2 _ g2
a — Sij

(A.6)

(A.7)

the integral in Eq. (A2) can be simplified with the help of a coordinate

transformation from (o, o) to (A, Aj) = T'(cy, ;) with

1 S_  s_ o; + )
T(o;, ) = — .
(4] \/§(S+ —54 )(aj+ﬂj
Using the variables (A;, A;), Eq. (A2)) becomes

o | O (1 (324 32
Ue = D%S%Amﬂm&@ﬂ (M2 4 22)).

(A.8)

(A.9)

The argument of the step function in Eq. (A9) is larger than zero only
in the unit circle. The rectangle R is transformed into the parallelogram
T(R) with the vertices {Py, P, P3, Py}. Thus, calculating U? is equivalent
with finding the overlap area of the unit circle with the parallelogram T'(R)

as depicted in Fig. [AT] (a).



105

For L; = L; one obtains the overlap area of a unit circle and a lozenge
18].

The overlap area can generally be split into a polygon {pi,...,pn,,}
inside the unit circle and up to four segments of a circle (Fig. [A1l (b)). In

order to obtain the Nyoy vertex points pi, ..., pn,,, we consider the lines
P+ P sz‘H—Pi
2 ! 2 ’
where P; = P;. The boundaries of T'(R) are characterized by x; € [—1; 1] .
The intersection points Z; 4 of the unit circle and the lines g; are given by

gi(xi) = i=1,.,4 (A.10)

9i(#i+)?—1=0, i=1,....4. (A.11)

The polygon vertices p; can be found by subsequently considering g1, g2, g3
and g4. If Z; + are complex, then g; does not intersect with the unit sphere
and includes no polygon vertices. Otherwise one or two of the three points
Py, g1(Z;-) and g;(Z; 4 ) are vertices of the polygon. (The improbable case
T1.4+ = &1 _ can be subsumed.) If P, is within the unit circle, P; is a polygon
vertex. Otherwise, g1(Z; ) is a polygon vertex if #; _e[—1; 1]. The next
polygon vertex is ¢1(%; 1) if Z1 4 € [—1; 1]. If the same procedure is repeated
for go, g3 and g4, all N,qy vertices py, of the polygon are obtained in a counter-
clockwise order, due to the definition of the lines g;. The area of the polygon
is easily calculated as

] Npoty—1

poly = 75 Z Pk Prs1 — PhPiga (A.12)
k=1

A

If a "+ ’-solution g, (Z, 4 ) is being followed by a ’-’-solution g,, (%, - ), a secant
is determined by these points. The corresponding segment of a circle is

c 1

Agee = arcsin (§> ~3 sin (2 arcsin (g)) (A.13)

with ¢ = [gn(Zn,~) = g (Tm,+)|-

Finally, we mention two special cases. If Ny, = 0, there is either no
overlap or the whole circle is within the parallelogram. In the case Ny, = 2
the overlap area is the segment of the unit circle that is characterized by the
two intersection points and overlaps with the parallelogram.

With these results the attractive part of the AR potential is given by

1
U = _%H (Apors + D" A (A.14)
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Appendix B

Correlations in RAN3

The following code shows the typical sequence of random number generation
in the simulation program.

#include <iostream>
using namespace std;

long seed=-24332;//initial seed

long N=1000;//number of particles

double ran3(long *idum);

//generates a random floating point number in the interval [0,1)
int i_ran3(long #*idum, int N_too_high);

//Return a random integer value in the range [0,N_too_high-1]
void random_unit_vec();

int main(){
ran3(&seed);//initialization of the random number generator
double dx[3];//cummulative displacement vector
dx[0]=dx[1]1=dx[2]=0;

for(int i=0;i<100000;i++){
for(int j=0;3j<10000;j++){

int r=i_ran3(&seed,N);//choose particle randomly
int flag=i_ran3(&seed,3);//choose Monte Carlo step

switch(flag){

case 0://move particle
dx[0] += (ran3(&seed)-0.5);//displacement vector
dx[1] += (ran3(&seed)-0.5);
dx[2] += (ran3(&seed)-0.5);
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ran3(&seed) ;//acceptance probability
break;
case 1://rotate particle
random_unit_vec();//random axis of rotation
ran3(&seed) ;//random rotation angle
ran3(&seed) ;//acceptance probability
break;
case 2://move and rotate particle
random_unit_vec();
ran3(&seed) ;
dx[0] += (ran3(&seed)-0.5);
dx[1] += (ran3(&seed)-0.5);
dx[2] += (ran3(&seed)-0.5);
ran3(&seed) ;
}
}
cout << dx[0] << ?\t? << dx[1] << ’\t’ << dx[2] << endl;
}
return O;

}

void random_unit_vec(){

double vrnd[3];

double 1_vrnd;

while(true){
vrnd [0]=2.0*ran3(&seed)-1.0;
vrnd[1]=2.0*ran3(&seed)-1.0;
vrnd [2]=2.0*ran3(&seed)-1.0;
1_vrnd = vrnd[0]*vrnd[0] + vrnd[1]*vrnd[1] + vrnd[2]*vrnd[2];
if (1_vrnd<=1.0) break;

// the random number generator ran3 ===========
#define MBIG 1000000000
#define MSEED 161803398
#define MZ O
#define FAC (1.0/MBIG)
double ran3(long *idum){
static int inext,inextp;
static long mal[56];
static int iff=0;
long mj,mk;
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int 1i,ii,k;
if (xidum < O || iff == 0) {
iff=1;
mj=labs (MSEED-labs(*idum)) ;
mj %= MBIG;
ma[55]=mj;
mk=1;
for (i=1;i<=b4;i++) {
ii=(21%i) % 55;
mal[ii]=mk;
mk=mj-mk;
if (mk < MZ) mk += MBIG;
mj=ma[ii];
3
for (k=1;k<=4;k++)
for (i=1;i<=55;i++) {
mali] -= ma[1+(i+30) % 55];
if (mal[i] < MZ) ma[i] += MBIG;
}
inext=0;
inextp=31;
*idum=1;
}
if (++inext == 56) inext=1;
if (++inextp == 56) inextp=1;
mj=ma[inext] -ma[inextp];
if (mj < MZ) mj += MBIG;
ma[inext]=mj;
return mj*FAC;

int i_ran3(long *idum, int N_too_high){
int iran;
iran=(int) (ran3(idum)*N_too_high);
if (iran>=N_too_high) iran=(N_too_high-1);
return iran;
}
#undef MBIG
#undef MSEED
#undef MZ
#undef FAC

The volume move is omitted since it does not change the outcome consider-
ably. Many MC simulation codes may have the same structural setup. The
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Figure B.1: The three components of the cumulative displacement vector.
RANS3 gives rise to a pronounced drift in all three components. MT19937
generates the expected random behavior.

quantity of interest is the cumulative displacement vector dx[3]. In the in-
ner loop of the program, random numbers are generated in the symmetric
interval [—1/2,+1/2] as this is the case for any particle displacement move.
Every generated displacement vector is cumulated in dx[3]. An uncorre-
lated sequence of random numbers would create a random walk in 3D with
the modulus of dx[3] averaged over many runs with different seeds propor-
tional to the square root of the MC steps. Fig. [Bl displays the components
of the cumulative displacement vector generated with the code shown above
(===) and when MT19937 is used instead of RAN3 (—). dx[3] has a very
strong drift in the first case. This observation is quite robust against slight
modifications of the code (e. g. removing the random numbers, which are
needed for the acceptance probability). Other values for the seed lead to
comparable results. MT19937 produces no obvious artifacts and and is thus
considered as appropriate.



Appendix C

Rescaling of the nematic order
parameter for small numbers of
rods

In simulations, the orientational order parameter .S of a system of anisotropic
molecules is typically obtained by averaging the largest eigenvalue A,y of
the alignment tensor @) (Eq. (31)) over many configurations. In order to
compare the orientational order of two systems with different numbers of
rods N, a system-size independent order parameter is desirable. However,
the value of (A,.x(N)) turns out to be size-dependent. Especially, for small
amounts of rods with an isotropic distribution, one usually gets (Apax(N)) >
0. Eppenga and Frenkel|24] investigated the N dependence of the eigenvalues
of @ by studying the eigenvalue problem of the tensor

1
M = NZuiui, (C].)

which has the same eigenvectors as (). The eigenvalues p,, of M and A, of
Q) are related by u,, = 2X\,/3 +1/3. The characteristic equation

det (M — ul) =0 (C.2)
can also be written as
— 1P+ 1P+ et o =0, (C.3)

where ¢y and ¢; are functions of the rod orientations. The order parameter
S(n) = (3(itmax)—1)/2 depends on the largest root pimax of Eq. (C3) averaged
over many configurations. Finding an analytic expression for this average
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Figure C.1: Orientational order parameter S, for an infinite number of rods
compared to a corresponding order parameter S(IV) for a system of N rods.
The solid line shows the fitting function (Eq. (CH)), which allows to map
S(N) onto Ss. Symbols are averages of S(IN) in ideal systems of N rods
with known S.,. The dashed lines correspond to the approach of Eppenga
and Frenkel for N =5 and N = 10, respectively. Both methods coincide for
N =100 and N = 500 (not shown).

is extremely difficult, if not impossible. Eppenga and Frenkel simplify the
problem by solving Eq. (C3) for the coefficients (cy) and (¢;) and obtain for
A =3u/2 — 1/2 the equation

3\ S3 . 3(S2. —S3 )
3 _ 2 2 _ _ Mresc resc resc/
M=o T (14 Sk (N —1)) T v .
- 3Sr2esc + 2S?esc o ( . )
B AN? =0

where Siesc corresponds to the rescaled order parameter, i.e. the value in the
infinite system. With S(N) ~ X Eq. (C4) provides a relation between S(N),
N and Siese.

The accuracy of this method can be tested numerically, by calculating
S(N) for a system of N non-interacting rods. The rods are randomly dis-
tributed with a rotationally symmetric distribution f(cos(¢)) around the z
axis e, where cos(d) = u-e,. A comparison between S(N) and the order
parameter

Seo = /d(cos 0) Py(cos ) f(cosb) (C.5)

for an infinite system is shown in Fig. for various N and different dis-
tributions f(cos(f)). It shows that S(N) and S, differ especially for low
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orientational order. The approach by Eppenga and Frenkel works well for
not too small numbers of rods. For N < 10 deviations from the numeric re-
sult can be seen. Using the numerical results, we define a fit function, which
serves only two purposes: It is rather simple and it fits the numerical data
down to small N. Both is fulfilled by

Sao & S(N) (1 =7 (S(V), V) (C.6)

with A
(S(N) — S*(N))™?
1— S(N)

where S(N) ~ 0.81/v/N denotes S(N) for a system of N isotropically ori-
ented rods with f(cos(6)) = const. Note that S, gets 1 for S(N) = 1 while
S, vanishes for S(N) = S(N), the minimum value of S(N) as shown in
Fig. [CIl The fit function in Eq. (CA) is used to calculate Sy, from values
of S(N) sampled in the simulations. For S(N) < S;(N), Eq. ([C1) — as well
as Eq. (C4) — provides a complex solution. In the rare cases where this
happened |S(N) — S;(N)| turned out to be small and we set S,, = 0.

Y(S(N),N) =1+25VN

(C.7)
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Appendix D

Surface tension between a hexatic
and a nematic phase

The surface tension can be extracted from the graph in Fig.[DJl For conve-

£*=0.5, A=8, P*=1.9
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Figure D.1: Free energy profile as function of the internal energy e. The
internal energy e has to be mapped on the 'good’ order parameter .

nience we introduce e = (Fyoq)/Emin. €0 corresponds to the internal energy
per rod in the nematic phase and e; to the internal energy per rod in the hex-
atic phase. We consider the two straight lines Gi and Gir. Gy corresponds
to the free energy of a system with an interface between the nematic and the
hexatic phase and Gy gives the free energy with no interface between the
phases. The offset AG, = Gjf — Gy of the two straight lines gives the free
energy related to the interface. If the chosen order parameter e would be a
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‘good’ order parameter, the interfacial free energy AG, would be related to
the surface tension o via AG, = oA, where A, is the interfacial area. The
specific choice of the internal energy e as order parameter, however, requires
a correction, which is due to the fact that the internal energy of a system
with fixed size of the nematic and the hexatic region would be different with
and without interface. To see this, we map the free energies Gir and Gy on
a 'good’ order parameter x, which is 0 in the nematic and 1 in the hexatic

phase (cmp. Fig. [D.J)):
Gif(r) = AG—AGz+ 0A; (D.1)
Guit(x) = AG—AGz. (D.2)

The same has to be done for the internal energies e;r and ep;:
er(x) = eo+ (e1 —ep)x+es (D.3)
enit(z) = eo+ (e1 —ep) 2. (D.4)

e, is change in internal energy because of the interface. Resolving Eqs. ([D.3))
and ([D.4)) for z and substitution in Eqgs. (D.J]) and (D.2) yields

AG, = oA, + AG—2— (D.5)

€1 — €

where the second term on the right hand side is the correction for two systems,
which are compared at e;; = ep;y.

In the following we estimate e;. Therefore, we assume that rods in the
interfacial region are in contact with about 1/4 of their contact zone with the
corresponding other phase. Fig. illustrates the situation. The drawing

Nem Hex Nem

interface regions

Figure D.2: Estimation of the interfacial energy e;. The drawing is schematic
for a simulation box like in Fig. (c) on page BBl The view is along the
negative z-axis.
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shows a top view on the hexatic region, i. e. the rods point out of the plane.
The width of the interfacial region in x-direction is estimated as one rod
diameter D. Thus, the volume of the interface region is about Vi = 2 L, L. D,
if L, , . denotes the box dimension in the respective direction. The internal
energy of the interface is then roughly given by

1 Vi

e, = va(el—eo) (D.6)
D

= 2Lx (61 — 60). (D?)

From Eqs. (.3) and (D7) we find 0 = 0.062kT/D?. Note that the correction
because of e, is very small. An estimate of the surface tension in the naive
way as 0 = AG, /A, would yield 0.063kT/D?.
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