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iiiAbstra
tNowadays, 
olloidal rods 
an be synthesized in large amounts.The rods are typi
ally 
ylindri
ally and their length ranges fromseveral nanometers to a few mi
rometers. In solution, systemsof 
olloidal rodlike mole
ules or aggregates 
an form liquid-
ryst-alline phases with long-range orientational and spatial order. Inthe present work, we investigate stru
ture formation and fra
tion-ation in systems of rodlike 
olloids with the help of Monte Carlosimulations in the NPT ensemble.Repulsive intera
tions 
an su

essfully be mimi
ked by the hardrod model, whi
h has been studied extensively in the past. Inmany 
ases, attra
tive intera
tions like van der Waals or deple-tion for
es 
annot be negle
ted, however. In the �rst part of thiswork, the phase behavior of monodisperse attra
tive rods is 
har-a
terized for di�erent intera
tion strengths. Phase diagrams as afun
tion of rod length and pressure are presented.Most systems of synthesized mesos
opi
 rods have a polydisperselength distribution as a 
onsequen
e of the longitudinal growthpro
ess of the rods. For many te
hni
al and resear
h appli
ations,a rather small polydispersity is desired in order to have well de-�ned material properties. The polydispersity 
an be redu
ed bya spatial demixing (fra
tionation) of long and short rods. Fra
-tionation and stru
ture formation is studied in a tridisperse and apolydisperse bulk suspension of rods. We observe that the result-ing stru
tures depend distin
tly on the intera
tion strength. Thefra
tionation in the system is strongly enhan
ed with in
reasingintera
tion strength.Suspensions are typi
ally 
on�ned in a 
ontainer. We also exam-ine the in�uen
e of adja
ent substrates in systems of tridisperseand polydisperse rod suspensions. Three di�erent substrate typesare studied in detail: a planar wall, a 
orrugated substrate, anda substrate with re
tangular 
avities. We analyze the �uid stru
-ture 
lose to the substrate and substrate 
ontrolled fra
tionation.The spatial arrangement of long and short rods in front of thesubstrate depends sensitively on the substrate stru
ture and thepressure. Rods with a prede�ned length are segregated at sub-strates with re
tangular 
avities.
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vZusammenfassungKolloidale Stäb
hen können mittlerweile in groÿen Mengen hergestellt wer-den. Die Form der Stäb
hen ist in der Regel zylinderförmig und ihre Längerei
ht von einigen Nanometern bis hin zu wenigen Mikrometern. Systemeaus kolloidalen stäb
henförmigen Molekülen oder Aggregaten können in Lö-sung �üssigkristalline Phasen mit langrei
hweitiger Orientierungs- und Rau-mordnung ausbilden. Im Rahmen dieser Arbeit werden Strukturbildung undFraktionierung in Systemen aus stäb
henförmigen Kolloiden mittels MonteCarlo Simulationen im NPT Ensemble untersu
ht.Replusive We
hselwirkungen können erfolgrei
h dur
h harte Stäb
hen mod-elliert werden. Dieses Modell wurde in der Vergangenheit bereits ausgiebiguntersu
ht. Oft jedo
h können attraktive We
hselwirkungen, wie z. B. vander Waals- oder Depletionskräfte, ni
ht verna
hlässigt werden. Im erstenTeil dieser Arbeit wird das Phasenverhalten von monodispersen attraktivenStäb
hen bei unters
hiedli
hen We
hselwirkungsstärken 
harakterisiert. Eswerden Phasendiagramme bezügli
h der Parameter Dru
k und Stäb
henlängepräsentiert.Die überwiegende Mehrzahl von Systemen aus synthetisierten mesoskopis-
hen Stäb
hen weist eine polydisperse Längenverteilung aufgrund des Längs-wa
hstums auf. Für eine Reihe te
hnis
her und wissens
haftli
her Anwen-dungen sind hingegen s
hmale Längenverteilungen wüns
henswert, um wohlde�nierte Materialeigens
haften zu haben. Die Polydispersität kann dur
hräumli
he Trennung (Fraktionierung) langer und kurzer Stäb
hen reduziertwerden. Fraktionierung und Strukturbildung werden in einer tridispersenund einer polydispersen Suspension untersu
ht. Wir beoba
hten, dass dieentstehenden Strukturen ganz wesentli
h von der We
hselwirkungsstärke ab-hängen. Der Grad der Fraktionierung wird dur
h Attraktivität stark erhöht.Suspensionen be�nden si
h typis
herweise in Gefäsen. Wir untersu
hen da-her au
h den Ein�uss von begrenzenden Substraten auf Systeme aus tridis-persen und polydispersen Stäb
hensuspensionen. Drei vers
hiedene Sub-stratstrukturen werden genauer betra
htet: Eine planare Wand, ein riefen-förmiges Substrat und Substrate mit re
hte
kigen Aussparungen. Wir un-tersu
hen die Flüssigkeitsstruktur in Substratnähe und substratinduzierteFraktionierung. Die räumli
he Anordnung von langen und kurzen Stäb
henhängt sehr sensibel von der Substratstruktur und dem Dru
k ab. Stäb
henmit einer festgelegten Länge werden an Substraten mit re
hte
kigen Aus-sparungen abgesondert.
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Chapter 1Introdu
tionDuring the last years, more and more rigid, rodlike 
olloids have been 
reatedsyntheti
ally. Examples are 
arbon nanotubes [36℄, boehmite needles [10℄,
ylindri
al dendrimers [74℄, and metallosupramole
ular 
oordination poly-ele
trolytes (MEPE) [42℄. Rodlike mole
ules 
an serve as building blo
ks formesos
opi
 stru
tures and are able to self-aggregate. Like small liquid 
rystalmole
ules, 
olloidal rods 
an form phases with long-range spatial and/or ori-entational order. The length s
ale of su
h rods typi
ally ranges from severalnanometers to a few mi
rometers. Colloidal zin
 oxide (ZnO) nanorods, forexample, 
an be utilized in gas sensors [25℄ or in thin-�lm �eld-e�e
t transis-tors [81℄. Rods 
an be used as templates for a 
ontrolled 
reation of porousmaterials [40℄, as ele
tri
ally 
ondu
ting nanowires [20℄, as waveguides [84℄,or as building blo
ks for s
a�old-like networks [12℄. For many appli
ations,a rather monodisperse length distribution is desirable. Most synthesis meth-ods produ
e a suspension with a polydisperse length distribution be
ause ofthe longitudinal growth pro
ess. Fra
tionation is a possibility to establisha sorting me
hanism in polydisperse suspensions. This work is dedi
ated toinvestigate stru
ture formation and fra
tionation e�e
ts in polydisperse sys-tems of rodlike 
olloids. Spe
ial attention is paid to the in�uen
e of attra
tiverod intera
tions [67℄ and the impa
t of patterned adja
ent substrates [68℄.1.1 Basi
 aspe
ts about liquid 
rystalsFirst of all some basi
 aspe
ts about liquid 
rystals. We all know fromeveryday experien
es that substan
es appear in di�erent phases like the solid,�uid, and gaseous phase. Water, for example, is 
rystalline at temperaturesbelow 0◦C, �uid in the temperature range between 0◦C and 100◦C, andgaseous at temperatures above 100◦C. Besides these three well known phases1



2 CHAPTER 1. INTRODUCTIONof matter other phases exist in nature as well. One example is the plasma,whi
h o

urs at extremely high temperatures like in stars. Another 
lass ofphases are the so-
alled liquid 
rystalline phases and parts of this work aimat their 
hara
terization in the employed model system.The name liquid 
rystal itself is 
onfusing. How 
an a liquid be 
rystallineor how 
an a 
rystal be �uid at the same time? The nomen
lature for thisspe
i�
 state of matter makes sense, indeed, sin
e a liquid 
rystal 
ombinesaspe
ts of both the �uid and the 
rystalline phase. A liquid 
rystal behaveslike a �uid in that it �ows and 
an be deformed easily. At the same timelong-range positional and/or orientational order is present as in 
rystals. The�rst experimental observation of liquid 
rystalline behavior was des
ribed byReinitzer in 1888 [66℄. Around 1900, Otto Lehmann identi�ed the substan
esas a new thermodynami
ally stable phase and 
reated the term liquid 
rys-tal. The names mesophase or mesomorphi
 phase (mesos (Greek) = middle,intermediate) is also widely used.Liquid 
rystalline behavior is essentially 
onne
ted to a strong anisotropyof the underlying mole
ules. Thus, every mole
ule has a 
ombination ofpositional and orientational degrees of freedom. In the 
rystalline state,positions as well as orientations of the mole
ules are strongly 
onstrained.The mole
ules are arranged on a latti
e and the orientations are also �xed.When a solid melts to a liquid, positional and orientational order disappearsat the same time. If, however, parts of the positional order or some kindof orientational order is preserved above the melting point, the system isin a liquid 
rystalline state. Single 
omponent systems, whi
h show liquid
rystalline behavior in a 
ertain temperature range are 
alled thermotropi
.If the mole
ules are in solution, the liquid 
rystal is said to be lyotropi
 andthe amount of solvent is a dominant 
ontrol parameter. Colloidal systemsstudied in this work are typi
ally lyotropi
.1.1.1 Liquid 
rystalline phasesThe most 
ommon liquid 
rystalline phases are formed by rodlike mole
ules,whi
h unify an elongated shape and a 
onsiderable rigidity. The orientationof a rigid body in three dimensions is determined by three 
oordinates, e. g.the Euler angles [30℄. For the des
ription of rodlike mole
ules, rotationsaround the long axis 
an usually be negle
ted. Thus, the orientation ofea
h mole
ule i is spe
i�ed by a unit ve
tor ui, whi
h is parallel to therod axis. Rodlike mole
ules typi
ally have a head-tail symmetry, i. e. uiand −ui are equivalent. A nemati
 liquid 
rystal is 
hara
terized by a highdegree of long-range orientational order whereas the spatial 
orrelations areshort-ranged like those of a liquid. Most rod orientations ui point along



1.1. BASIC ASPECTS ABOUT LIQUID CRYSTALS 3
n

n
n

(a) (b) (
)Figure 1.1: Illustrations of three di�erent liquid 
rystals. (a) In the nemati
phase, the rods align a global dire
tor n. (b) In the sme
ti
 A phase, therods are additionally arranged in layers. (
) In a sme
ti
 C liquid 
rystal, theorientation of the rods and the layer normal are di�erent.the global dire
tor n as sket
hed in Fig. 1.1 (a). The se
ond big 
lass ofliquid 
rystalline phases exhibit sme
ti
 order. Here, orientational and one-dimensional spatial order emerge simultaneously. The mole
ules are arrangedin layers as depi
ted in Fig. 1.1 (b) and (
). In the sme
ti
 A (SmA) andsme
ti
 C (SmC) phase ea
h layer basi
ally represents a two-dimensional�uid with the rods di�using freely within the layer but only rarely betweenthe layers. In a sme
ti
 A phase, the layer normal 
oin
ides with the globaldire
tor n. If n is tilted with respe
t to the layer normal, the phase is 
alledsme
ti
 C. Both the sme
ti
 A and sme
ti
 C possess only short-range in-plane 
orrelations between the mole
ule positions - typi
ally in the range ofa few mole
ule diameters. Another example of a sme
ti
 phase is the sme
ti
B phase where bond-orientational order exists. In di�eren
e to a 
rystal, themole
ules are not arranged on a latti
e, i. e. there is no long-range spatialorder. The in plane 
orrelation fun
tion of a sme
ti
 B phase, however, hasthe 
hara
teristi
s of hexati
 order. Sme
ti
 liquid 
rystals are often morevis
ous than nemati
s.A spe
ial 
ase of the nemati
 phase is a 
holesteri
 liquid 
rystal assket
hed in Fig. 1.2. The dire
tor of neighboring nemati
 layers is turnedby a 
onstant angle around an axis perpendi
ular to the dire
tor. A rotationof 360◦ de�nes the heli
al pit
h height p. The majority of liquid 
rystallinesubstan
es show the nemati
 or sme
ti
 behavior introdu
ed so far. A largervariety of liquid 
rystalline phases o

urs in nature, however [17, 93℄.Beneath rodlike mole
ules, a disklike shape of mole
ules leads to liquid
rystalline phases, too. The normal ve
tor on the disk plane represents theorientation of su
h a mole
ule. The nemati
 phase is 
hara
terized by a
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n

n

n

n

n

p/2 Figure 1.2: Illustration of a 
holesteri
 liq-uid 
rystal. The nemati
 dire
tor n turns by
360◦ within the heli
al pit
h height p.global dire
tor n, again, whi
h is the average dire
tion of the orientationsas illustrated in Fig. 1.3 (a). A drawing of a 
olumnar phase is given inFig. 1.3 (b). Here, the mole
ules arrange themselves in 
olumns in additionto the orientational order. The 
olumns themselves form often hexagonalstru
tures. Diskoti
 liquid 
rystals are subje
t of investigations for morethan 30 years [39, 41, 87℄ but rodlike mole
ules are the predominant 
lass ofsubstan
es, whi
h form liquid 
rystals. In this work, rodlike mole
ules willbe 
onsidered, ex
lusively.

n
n

(a) (b)Figure 1.3: S
hemati
 drawing of (a) the nemati
 and (b) the 
olumnar phasein diskoti
 liquid 
rystals.1.1.2 Appli
ations of liquid 
rystalsThe resear
h in liquid 
rystals as a state of matter is of fundamental interestfor its own. In addition, liquid 
rystals gained 
onsiderable importan
e inte
hni
al appli
ations. The anisotropy of the liquid 
rystalline phases makes



1.1. BASIC ASPECTS ABOUT LIQUID CRYSTALS 5these materials birefringent. As a 
onsequen
e, the orientation of polarizedlight 
an be 
hanged by the material.The big advantage of a liquid 
rystal as a birefringent substan
e is thata setup of two 
rossed polarizers and the liquid 
rystal in between 
an beemployed as a voltage 
ontrolled light valve. This property is the basis forthe widespread usage of liquid 
rystals nowadays in displays (LCD) of devi
eslike notebooks, �ats
reens, or mobile phones. In 1971, S
hadt and Helfri
hreported on the voltage-dependent opti
al a
tivity of a twisted nemati
 liquid
rystal [71℄. Up to now, the development of liquid 
rystal displays evolvesrapidly and has be
ome a billion dollar business [72, 77, 82, 83℄.The simplest setup of the unit 
ell of a liquid 
rystal display is the so-
alled twisted nemati
 (TN) 
ell. Further developments with improved 
har-a
teristi
s 
omprise, e. g. the super twisted nemati
 (STN) and the triplesuper twisted nemati
 (TSTN) LCD [82℄. The operating mode of a TN unit
ell is illustrated in Fig. 1.4. A nemati
 liquid 
rystal is lo
ated between two
transparent
electrodes

left
polarizer

right
polarizer

n n

(a) (b)Figure 1.4: Illustration of a voltage-
ontrolled light valve. (a) Without appliedvoltage, the twisted nemati
 liquid 
rystal between the ele
trodes turns thelight by 90◦. The 
ell is bright. (b) With applied voltage, the mole
ulesorientent along the ele
ti
 �eld. The light is �ltered out by the right polarizerand the 
ell is dark.transparent ele
trodes, whi
h are arranged between two 
rossed polarizers.The ele
trode surfa
es are treated su
h that a twist of 90◦ of the dire
tor narises when no voltage is applied (Fig. 1.4 (a)). As the light traverses the
ell the polarization is turned by 90◦. Thus, light passes the right polarizerand the 
ell appears bright. Fig. 1.4 (b) illustrates the situation with an ap-plied voltage. Now, the nemati
 dire
tor n aligns parallel to the ele
tri
 �eldand the light traverses the liquid 
rystalline material una�e
ted. The lightis �ltered out by the right polarizer and the 
ell is dark. Beneath the usage



6 CHAPTER 1. INTRODUCTIONin display devi
es, liquid 
rystals are also applied in photoni
 appli
ationsas spatial light modulators [55℄ or as adaptive opti
al inter
onne
ts betweenprinted 
ir
uit boards [103℄.1.2 Model systemsA fundamental understanding of the me
hanisms, whi
h lead to liquid 
rystalformation is of general interest. In s
ien
e, model systems are employed, inwhi
h relevant parameters 
an be identi�ed and 
ontrolled pre
isely. In thefollowing, we give a brief overview of experimental and theoreti
al models.1.2.1 Lyotropi
 model systemsSystems of toba

o mosai
 viruses (TMV) in solution are studied for morethan 50 years as model systems for lyotropi
 liquid 
rystals. An ele
tronmi-
rograph of TMV is presented in Fig. 1.5. The TMV 
ombines two essentialFigure 1.5: An ele
tronmi
rographpi
ture of TMV. The s
ale bar is
0.2µm.features - the parti
les are 
onsiderably sti� and rather monodisperse. Espe-
ially the latter property is often not ful�lled by 
hemi
ally synthesized rods.In Fig. 1.6, we present two examples of liquid 
rystals formed by TMV. Part(a) depi
ts a sample with an isotropi
 phase in the upper and a nemati
phase in the lower region. The pi
ture shows the same sample twi
e. Twotransparent liquids are observed under white light in the left half. In theright half the sample is viewed under 
rossed polarizers. The isotropi
 regionis bla
k whereas the nemati
 region appears bright. The sme
ti
 phase ofTMV viewed under 
rossed polarizers is presented in Fig. 1.6 (b). The darklines, whi
h separate di�erently 
olored regions are dis
linations.Another model system 
onsists of fd viruses in solution. Re
ent studieselu
idated the kineti
s of the isotropi
-sme
ti
 transition in suspensions offd viruses and non-adsorbing polymers [22℄. The �rst step in the formationpro
ess of a sme
ti
 liquid 
rystal is depi
ted in Fig. 1.7 (a) where a nemati
droplet 
an be seen. An interesting observation is the formation of a singlelayer in solution. The hexagonal shape of the layer in Fig. 1.7 (b) is a strongindi
ation that long-range order exists within the layer [22℄.
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isotropic

nematic (a) (b)Figure 1.6: Mesophases of TMV. (a) Isotropi
-nemati
 
oexisten
e viewedunder white light (left half) and viewed under 
rossed polarizers (right half).The image is taken from the Fraden lab. (b) Sme
ti
 phase of dried TMVviewed under 
rossed polarizers [100℄.

(a) (b)Figure 1.7: Opti
al images in suspensions of fd virus and non-adsorbingpolymers [22℄. (a) In the �rst step of the isotropi
-sme
ti
 transition a nemati
droplet forms. The length of the droplet is about 6µm. (b) Formation of ahexagonally shaped monolayer of fd viruses. The diameter of the monolayer isabout 23µm.1.2.2 Theoreti
al modelsThe understanding of the physi
al prin
iples that lead to long-range ori-entational order in rod systems was promoted fundamentally by Onsager'swork in the 1940s [57℄. He identi�ed the interplay of orientational entropyand orientation-dependent ex
luded volume as su�
ient driving for
e for therods to align along a global dire
tor, i. e. for the formation of a nemati




8 CHAPTER 1. INTRODUCTIONphase. Ea
h rod is 
onsidered as a sphero
ylinder of length L and diameter
D and intera
tions are due to steri
 repulsion. The original work of Onsageronly 
onsidered nemati
 order. With the help of density fun
tional theory,sme
ti
 order 
an be treated analyti
ally [14℄. Be
ause of the assumptions ofOnsager's theory (steri
 repulsion, dilute system, L ≫ D), the validity of thepredi
tions are basi
ally restri
ted to lyotropi
 rod systems. Long-range ori-entational order in thermotropi
 liquid 
rystals is resembled more appropri-ate in the Maier-Saupe theory [49℄. Here, ea
h rod is exposed to an averageorienting �eld indu
ed by its neighborhood whereas steri
 intera
tions arenegle
ted. This approa
h is analogous to the explanation of the ferromag-netism by Weiss. Another approa
h is via the 
ontinuum theory developedby Oseen [59℄ and Frank [26℄, in whi
h mole
ular details are negle
ted. Thiste
hnique is used in many o

asions where variations of the nemati
 dire
tor
n o

ur on mu
h larger length s
ales than the mole
ular dimensions. The
ontinuum theory for nemati
 liquid 
rystals has been developed in the �rsthalf of the last 
entury and is still a widely used tool [35, 43, 44, 86℄. Thedevelopment of 
omputers provides an additional tool to study the 
olle
tivebehavior of many-parti
le systems - 
omputer simulations. They establishthe possibilities to use realisti
 interparti
le intera
tions and to study thein�uen
e of 
on�ning walls. Computer simulations 
an also be adapted very�exible to new problems. The Monte Carlo (MC) and the mole
ular dy-nami
s (MD) simulation te
hnique represent the most widespread 
omputersimulation te
hniques. In both 
ases, pair intera
tions have to be established.Two model potentials are preferentially used to mimi
 rodlike parti
les.The �rst model � the Gay-Berne model � is an extension of the Lennard-Jones potential for uniaxial ellipsoids [28℄. The potential is available in ananalyti
al expression and for
es and torques are obtained as derivatives ofthe potential. This feature is espe
ially helpful in mole
ular dynami
s sim-ulations or for analyti
al 
al
ulations. The Gay-Berne potential is one ofthe few models, whi
h appropriately takes into a

ount the attra
tive inter-a
tions for rodlike mole
ules. The orientation of two rods with respe
t toea
h other is 
hara
terized by four s
alars and an attra
tive pair intera
-tion like the Gay-Berne potential takes 
are for this. The phase behavior ofGay-Berne mesogens has been studied extensively [4, 9, 18, 19, 92℄, also within
orporated quadrupoles [102℄, and in 
on�ning geometries [33, 34, 98℄. TheGay-Berne model is typi
ally employed to mimi
 thermotropi
 liquid 
rystals.The se
ond model 
onsists of sphero
ylinders. A sphero
ylinder is 
om-posed of a 
ylinder of length L and diameter D, whi
h is 
apped at bothends by hemispheres as illustrated in Fig. 1.8. The axis ratio λ ≡ L/D
hara
terizes a sphero
ylinder 
ompletely. Colloidal rods are typi
ally 
ylin-dri
ally and in solutions of these rods short-range repulsive for
es are often
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L

D

center
interval Figure 1.8: S
hemati
 drawing of a sphe-ro
ylinder with axis ratio λ = L/D.predominant. Therefore, 
olloidal rods are frequently mimi
ked by hard sphe-ro
ylinders, whi
h take into a

ount only hard 
ore repulsions. The phasediagram of hard sphero
ylinders has been explored with the help of simula-tions [7, 91℄ and density fun
tional theory [31℄ and is basi
ally 
ompletelyknown [7℄ (Fig. 1.9). The �rst liquid 
rystalline phase, whi
h sets in at grow-

Figure 1.9: Phase diagram forhard sphero
ylinders [7℄. Theredu
ed density ρ∗ is plottedalong the ordinate and the in-verse axis ratio D/L is plottedalong the abs
issa.ing axis ratio λ = L/D is the sme
ti
 phase (λ & 3.1). At λ & 3.7, a nemati
phase exists at �nite densities. For �nite axis ratios, the isotropi
-nemati
phase transition is �rst order and o

urs at �nite density. In the limit ofin�nitely long 
ylinders (D/L → 0), the isotropi
-nemati
 transition shiftstowards a vanishing density. At suitably high densities, solid phases withdi�erent layer sta
king appear. Other aspe
ts investigated with the hard rodmodel are, for example, the 
rystal nu
leation in over
ompressed �uids [73℄or the isotropi
-nemati
 interfa
ial tension [94℄.In some 
ases, attra
tive intera
tions between 
olloidal rods 
annot benegle
ted. For small 
olloidal rods, the van der Waals intera
tion be
omesrelevant. In the 
ase of single walled 
arbon nanotubes (SWNTs), the vander Waals intera
tion is so strong that suitable dispersions of pure SWNTshave been a
hieved only re
ently [65℄. In solutions of mesos
opi
 rods andpolymers, attra
tive intera
tions are based on depletion for
es [48, 52℄. If avoid between neighboring rods gets too small for the polymer 
oils to enter,the system favors a redu
tion of the gap in order to maximize the available
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e for the polymers. Depletion for
es between rods have been investigatedfor polymer stabilized fd viruses in polymer solutions [22℄.Sphero
ylindri
al rods with attra
tive intera
tions are dis
ussed ratherrarely in the literature. Often, the attra
tive 
ontribution is 
onsideredstrongly simpli�ed, depending only on the shortest distan
e of the intera
tingrods [16, 50, 96℄. In this work, we use an extension of a model potential byBolhuis et al. [8℄, whi
h depends on the rod distan
e as well as on the orien-tation of the intera
ting rods. Re
ently, Martinez-Haya et al. [51℄ proposedan attra
tive rod potential on the basis of the Gay-Berne potential with asphero
ylindri
al 
ore. Both the potential used here and the potential fromMartinez-Haya et al. in
orporate the four s
alars, whi
h de�ne the relativepair orientation of two rods.1.3 Length polydisperse systemsMost systems of synthesized mesos
opi
 rods have a polydisperse length dis-tribution. This is a 
onsequen
e of the longitudinal growing pro
ess, whi
hhas no 
hara
teristi
 length s
ale. A

ording to Gibbs' phase rule, the num-ber of possible phases grows linearly with the number of 
onstituents. Thus,polydispersity enri
hes the phase behavior. In the 
oexisten
e region ofisotropi
 and nemati
 phases, the system gains spatial and orientational en-tropy if short rods are preferentially in the isotropi
 phase and long rods inthe nemati
 phase. If this e�e
t dominates the 
orresponding loss in mixingentropy, fra
tionation sets in. Bidisperse hard rod suspensions with only two
onstituents are widely studied. In these suspensions, a variety of new phe-nomena 
an be observed su
h as a widening of the biphasi
 isotropi
-nemati
(I-N) region, a triphasi
 I-N-N 
oexisten
e region, and strong fra
tionationof long and short rods [46℄. The phase diagram beyond the nemati
 phasereveals 
olumnar phases in systems of parallel sphero
ylinders [80℄. Re
entworks also fo
used on sme
ti
 phases and report on a SmA-SmA phase tran-sition and strong fra
tionation. Furhermore, the phases appear to depend onthe length ratio of the 
omponents as well as on their axis ratio [14℄. In binarymixtures of thi
k and thin hard rods, a depletion driven I-I demixing o

urs[88℄. In length tridisperse mixtures, nemati
 three-phase regions are found[97℄. Length polydisperse hard rod systems with a 
ontinuous distributionhave also been studied [15, 78℄. In addition to the phenomena mentionedabove, like a widening of the I-N 
oexisten
e region, the fra
tionation isfound to depend distin
tly on the polydispersity. A moderate fra
tionationis observed at a low polydispersity whereas the opposite is the 
ase at highpolydispersity [99℄. Sme
ti
 phases be
ome unstable at large polydispersity



1.4. OVERVIEW 11whereas 
olumnar phases be
ome stable [3℄.For many te
hni
al and resear
h appli
ations, a rather small polydisper-sity is desired in order to have pre
ise material properties. Fra
tionationas a result of phase separation presents one possibility to establish a lengthspe
i�
 sorting me
hanism. In this work, we demonstrate with the help ofMonte Carlo simulations how attra
tive intera
tions of the rods in�uen
efra
tionation. We also point out, how suitably designed substrates 
an beexploit to generate highly monodisperse length distributions in preassignedregions, i. e. at the substrate. Various aspe
ts of the in�uen
e of 
on�n-ing walls on monodisperse rod suspensions were already addressed in thepast [21, 23, 62, 76, 79, 89℄. The te
hni
al skills to design substrate pat-terns in the submi
rometer regime are fast-pa
ed 
omprising a variety ofdi�erent te
hniques [29℄ like 
olloidal lithography [104℄ or lithographi
allyindu
ed self-assembly [13℄, thus delivering the opportunity to suitably tailorsubstrate stru
tures.1.4 OverviewThis work is divided in three parts. The theoreti
al ba
kground is introdu
edin Chapter 2. After a brief overview of the statisti
al me
hani
s of polydis-perse rod systems, the model potential for attra
tive rods is introdu
ed.We demonstrate the potential dependen
e for various rod 
on�gurations.An e�e
tive method to 
al
ulate the attra
tive intera
tion is derived in Ap-pendix A. The Monte Carlo simulation s
heme in the isobari
-isothermal en-semble and also advan
ed simulation s
hemes like the biased multi-histogramsampling are introdu
ed in Se
tion 2.4. The last se
tion of Chapter 2 
oversthe observables, whi
h are employed to study the stru
ture of the systems.We propose a res
aling of the nemati
 order parameter for �nite parti
lenumbers. The 
orresponding derivation is presented in Appendix C.The results for bulk systems are presented in Chapter 3, whi
h is dividedin three se
tions dealing with monodisperse systems, a tridisperse suspension,and a polydisperse suspension. For all systems, the in�uen
e of attra
tiveintera
tions is investigated. The attra
tivity 
hanges the bulk behavior formonodisperse systems signi�
antly as shown in the 
orresponding isothermsand phase diagrams. In tridisperse and polydisperse systems the fo
us lieson fra
tionation e�e
ts and stru
ture formation.The most extensive studies are performed for systems with adja
ent sub-strates in Chapter 4. The suspensions investigated are tridisperse and poly-disperse sin
e we fo
us on fra
tionation e�e
ts. Three di�erent substratetypes are 
onsidered: A planar wall, a 
orrugated wall, and a wall with re
t-
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avities. The substrates indu
e a broad spe
trum of �uid stru
turesdepending on the applied pressure and the spe
i�
 
hoi
e of the substratepattern. We 
ompare all patterns 
on
erning their e�
ien
y to 
ontrol alength spe
i�
 aggregation at the wall. The in�uen
e of attra
tive intera
-tions is dis
ussed in Se
tion 4.1.6. The work �nishes with a 
omprehensivesummary of the results and an outlook in Chapter 5.



Chapter 2Theoreti
al and te
hni
alframework
2.1 Statisti
al me
hani
sWe 
onsider a system of N 
lassi
al rodlike parti
les separated into nmaxdi�erent 
omponents, whi
h di�er in 
ertain properties, e. g. the mass or thelength. Ea
h 
omponent may have Nα parti
les:

N =

nmax
∑

α=1

Nα. (2.1)The internal energy H of the system has a kineti
 (K) and a potential (U)
ontribution:
H = K + U (2.2)

=

N
∑

i=1

ti +

N−1
∑

i=1

N
∑

j=i+1

vij , (2.3)where vij is a pairwise intera
tion between the parti
les i and j. The kineti
energy ti of a single parti
le i has a 
ontribution ttransi from the 
enter of massmotion and a 
ontribution troti from rotations. If pi is the momentum of the
enter of mass and mi the mass of parti
le i, then ttransi is given by
ttransi =

p
2
i

2mi
. (2.4)For simpli
ity we assume that the rodlike parti
les have a 
ylindri
al sym-metry and are elongated along the z-axis. In a body �xed 
oordinate system13



14 CHAPTER 2. THEORETICAL AND TECHNICAL FRAMEWORKthe inertial tensor is diagonal, with
Ii,1 = Ii,2 ≡ Ii (2.5)
Ii,3 = 0. (2.6)If we 
all (Ω̇i,1, Ω̇i,2, Ω̇i,3) the angular velo
ity with respe
t to the same ref-eren
e frame, then the rotational part of the kineti
 energy of parti
le i isgiven by

troti =
Ii

2
(Ω̇2

i,1 + Ω̇2
i,2) (2.7)

=
1

2Ii
(p2

Ωi,1
+ p2

Ωi,2
), (2.8)where pΩi,k is the 
onjugate momentum to the angle Ωi,k.For the sake of simpli
ity, we �rst fo
us on a monodisperse system (nmax =

1) at 
onstant volume V and temperature β = 1/kT . The parti
les arelo
ated in a 
ubi
 box of dimension 3
√

V . The partition fun
tion in the NV Tensemble then is
Z(N, V, T ) =

1

N ! h5N

∫

[

N
∏

i=1

d3
pi d

3
ri d

2
pΩi

d2Ωi

]

× exp

[

−β

(

∑

j

ttransj +
∑

j

trotj +
∑

j<k

vjk

)]

.

(2.9)
The integration over the momenta pi is 
arried out easily. All integralsare of the same type ∫ dx exp(−ax2) =

√

π/a. The same holds for pΩi
.Furthermore, redu
ed units si ≡ ri/L are introdu
ed. All in all, the partitionfun
tion simpli�es to

Z(N, V, T ) =
V N

N ! Λ3Nτ 2N

∫

[

N
∏

i=1

d3
si d

2Ωi

]

exp(−β
∑

j<k

vjk), (2.10)where Λ = h/
√

2πmkT is the de Broglie wave length of a point mass. The
orresponding analogon for 
ylindri
al parti
les is τ = h/
√

2πIkT .Now we turn to the slightly more 
omplex partition fun
tion at 
onstantpressure P with nmax ≥ 1 
omponents. The partition fun
tion in the NPT



2.2. THE MODEL 15ensemble is denoted Q(N, P, T ) [27℄:
Q(N, P, T ) = βP

[

nmax
∏

α=1

1

Nα! Λ3Nα
α τ 2Nα

α

]

∫

dV V N exp(−βPV )

×
∫

[

N
∏

i=1

d3
si d

2Ωi

]

exp(−β
∑

j<k

vjk).

(2.11)
On
e the partition fun
tion is known, all thermodynami
 properties of thesystem 
an be dedu
ed. The Gibbs free energy G(N, P, T ), for example, isrelated to Q(N, P, T ) through

G(N, P, T ) = −kT ln Q(N, P, T ) (2.12)and all other thermodynami
 quantities are derivatives of G. However, theintegrals in Eq. (2.11) 
an only be solved in extremely idealized systems andthus the partition fun
tion is typi
ally unknown.2.2 The modelColloidal parti
les in solution usually di�er by a few orders of magnitude insize from the solvent mole
ules. For example a water mole
ule has a diameterof ∼ 2.8Å whereas the dimensions of 
olloids range from several nanometersto a few mi
rometers. The expli
it 
onsideration of the solvent mole
ulesturns investigations of the 
olle
tive behavior of 
olloidal parti
les into anextremely 
hallenging task. A broad range of problems, however, 
an beta
kled by an impli
it 
onsideration of the solvent. E�e
tive pair potentialsbetween the 
olloids 
an be utilized, whi
h on the one hand 
omprise thesolvent independent 
olloidal intera
tions like van der Waals for
es and onthe other hand solvent indu
ed intera
tions like depletion for
es [6, 58℄.The origin of the depletion for
es is illustrated in Fig. 2.1 for two impen-etrable spheri
al 
olloids. We assume that the 
olloids are in solution withnon-adsorbing polymers and intera
t purely repulsively. Ea
h polymer 
anbe approximated by a sphere with radius equal to the radius of gyration, Rg.Sin
e the polymer and the 
olloid 
annot overlap, the 
enters of mass of thepolymer 
oils are prevented from entering a shell of thi
kness Rg around the
olloid. Fig. 2.1 (a) depi
ts the two 
olloids at large separation. The ex-
luded volume for the polymers is the sum of both parts. The total ex
ludedvolume does not 
hange until the surfa
es of both 
olloids 
ome 
loser than
2Rg. In this 
ase, the total ex
luded volume will de
rease by the amount
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Rg

spherical colloids

excluded volume
for polymer coils

polymer coil

overlap of excluded volumes(a) (b)Figure 2.1: Illustration of depletion for
es for spheri
al 
olloids. Around ea
hsphere, the polymers 
annot a

ess a shell of width Rg around the 
olloid. (a)The ex
luded volumes do not overlap at large separation. (b) The overlap ofex
luded volumes gives rise to attra
tive intera
tions.of overlap of ex
luded volumes as indi
ated in Fig. 2.1 (b). As a result, thetwo 
olloids feel an e�e
tive attra
tive intera
tion, sin
e the polymers 
an in-
rease their a

essible volume by an in
rease of the overlap volume. Fig. 2.2shows 
artoons for rodlike 
olloids. The hard rod model is sket
hed in part
(a) (b) (
)Figure 2.2: (a) S
hemati
 sket
h of the hard rod model. The hard 
ore of therods forbids overlaps. (b) Attra
tive depletion intera
tions are present if thegreen regions overlap. (
) The pair potential is minimal (=maximal attra
tion)when the rods are parallel and the hard 
ores tou
h.(a) with an impenetrable 
ore region. Depletion for
es between two rods areillustrated in Fig. 2.2 (b) and (
). The green 
olor represents the ex
ludedvolume. The overlap of the ex
luded volume is maximal when the two rodsare parallel and their hard 
ores tou
h.



2.2. THE MODEL 17The phase behavior of spheri
al 
olloids has been su

essfully des
ribedwith the help of hard sphere and spheri
al square-well potentials. The latter
onsists of a hard sphere part Uh that takes into a

ount for hard 
ore re-pulsions and an attra
tive part for short-range attra
tion. For two spheri
al
olloids of distan
e r we have
U sw(r) = Uh(r) + Ua(r) (2.13)with

Uh(r) =

{

∞ , if r < D
0 , otherwise (2.14)

Ua(r) =

{

−ǫ , if r ≤ Da

0 , otherwise , (2.15)where ǫ > 0 is the potential depth, D is the hard 
ore range, and Da > D isthe range of the attra
tive potential.Now we 
onsider two sphero
ylindri
al 
olloids i and j with lengths Liand Lj . A sphero
ylinder 
onsists of a 
ylinder of diameter D and length L,whi
h is 
apped by two hemispheres at both ends. The repulsive part of theintera
tion is obtained by integrating Uh for all pairs of points on the two
ylinder axes
Uh

r = D−2

∫ Li/2

−Li/2

dαi

∫ Lj/2

−Lj/2

dαjU
h (|rij + αjuj − αiui|) . (2.16)The dire
tions of the 
ylinders are ui and uj . rij 
onne
ts both 
enters ofmass. Note that the hard 
ores of rods i and j have a total length Li +D and

Lj + D, respe
tively. In analogy, the attra
tive part of the rod intera
tion isde�ned as
Ua

r = D−2

∫ Li/2

−Li/2

dαi

∫ Lj/2

−Lj/2

dαjU
a (|rij + αjuj − αiui|) . (2.17)The sum of both parts gives the attra
tive rod (AR) potential

UAR = Uh
r + Ua

r , (2.18)whi
h has a sphero
ylindri
al hard 
ore and an attra
tive intera
tion whenthe surfa
es of the rods 
ome 
loser together than Da−D. For equal 
ylinderlengths Li = Lj the AR potential 
orresponds to the potential des
ribed andinvestigated by Bolhuis et al. [8℄.The properties of UAR are demonstrated in Figs. 2.3 and 2.4 for di�erentgeometries of two rods with various lengths, where we 
hose ǫ = 1kT and
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y(a) (b)Figure 2.3: Attra
tive rod (AR) potential UAR for two rods i and j withdiameter D. Rod i is lo
ated at the origin and is oriented parallel with the
z-axis. The 
enter of mass of rod j is lo
ated at (x, 0, z) with x = 1.01D.The AR potential is shown as a fun
tion of z/D for rod j having an axis ratio
λj = 3 and rod i with axis ratios λi = 3 ( ) and λi = 6 ( ). In (a), the
ylinder axis of rod j is oriented parallel to that of rod i, in (b), it is rotatedby an angle of π/4 within the yz-plane.

Da = 1.15D. The plots show that the size of UAR depends on the shortestdistan
e between the rods as well as on their alignment. More spe
i�
ally,it depends on the amount of surfa
e area of rod i su�
iently 
lose to thesurfa
e of rod j. Furthermore, it is noteworthy that UAR, though de�nedvia a step fun
tion, goes to zero 
ontinuously. The strongest pair intera
tionenergy Emin < 0 o

urs for parallel, perfe
tly aligned rods at a distan
e D,whi
h 
orresponds to the 
onditions
ui · uj = 1,

rij · ui = rij · uj = 0,

‖rij‖ = D.For not too small rods, obeying Li ≥ Lj ≥
√

D2
a − D2, integration ofEq. (2.17) yields

Emin = − ǫ

D2

[

2Lj

√

D2
a − D2−

− 1

4

(

Li − Lj − max[2
√

D2
a − D2, Li − Lj ]

)2
]

.

(2.19)
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(a) (b)Figure 2.4: Attra
tive rod potential UAR for two rods i and j with diameter
D. Rod i is lo
ated at the origin and has a 
ylinder axis parallel to the z-axis.The 
enter of mass of rod j is lo
ated at (x, 0, 0). Results are shown for rodaxis ratios (λi, λj) = (3, 3) ( ), (6, 3) ( ), and (6, 6) ( ). In (a),the rods are parallel and UAR is shown as a fun
tion of x. For x < 1 the hard
ores overlap and UAR be
omes in�nite. In (b), x = 1.01D and UAR is shownas a fun
tion of the angle θ between the rod axes.The most CPU time 
onsuming part of UAR is the attra
tive intera
tion. Forthe hard 
ore repulsion it is su�
ient to 
he
k whether the shortest distan
ebetween the two 
ylinder axes is smaller than D. A method to 
al
ulate theintegral in Eq. (2.17) is des
ribed in the appendix A.

2.3 The Monte Carlo methodMonte Carlo (MC) and mole
ular dynami
s (MD) simulations are the mostprominent types of 
omputer experiments to investigate the behavior andthe properties of �uids. In MD simulations, the equations of motion areintegrated numeri
ally. Ma
ros
opi
 observables su
h as pressure, internalenergy, and 
orrelation fun
tions are obtained as time averages. During aMC simulation, many independent 
on�gurations of the system under 
on-sideration are generated and utilized to gain thermal averages. In this work,Monte Carlo te
hniques are used ex
lusively.
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al ba
kgroundSuppose A is a quantity, whi
h depends only on the mi
ros
opi
 variables
ri and (Ωi,1, Ωi,2) but not on the momenta1. For 
onvenien
e, Γ is intro-du
ed as abbreviation for a point in 
on�gurational state spa
e and dΓ ∼
dV
∏

d3sid
2Ωi. The thermal average 〈·〉 is then 
omputed in the standardway

〈A〉 =

∫

dΓ PB(Γ) A(Γ)

Q (2.20)with
PB(Γ) ≡ V N exp[−β(U(Γ) + PV )] (2.21)and
Q ≡

∫

dΓ V N exp[−β(U(Γ) + PV )]. (2.22)Note the di�eren
e between Q as de�ned in Eq. (2.11) and the Q de�nedhere.Suppose we are able to generate M random 
on�gurations Γ(i) (i =
1, .., M) of the system a

ording to PB in the 
omputer. The average inEq. (2.20) is then approximately given by

〈A〉 ≈ 1

M

M
∑

i=1

A(Γ(i)). (2.23)Metropolis et al. [54℄ developed a s
heme, whi
h 
reates a Markov 
hainof 
on�gurations that are distributed 
orresponding to PB. To understandtheir method we assume the following [27℄: Let Γ(i) be the initial state ofthe system. We might have 
ertain me
hanisms to generate a new state Γ(j),e. g. by moving and/or rotating parti
les. The probability, with whi
h Γ(j) isproposed may be 
alled p
(ij)try . It is important to note that not every proposed
on�guration will also be a

epted. The a

eptan
e probability p

(ij)a

 willbe spe
i�ed later. In this manner, from the point Γ(i) a set of new states
{Γ(j)}(i) 
an be a

essed. It is intuitively 
lear that in thermal equilibriumthe probability to leave state Γ(i) must be equal to the probability to rea
hstate Γ(i) from the set {Γ(j)}(i). Otherwise some probability �ux would o

ur,whi
h is not possible in thermal equilibrium. In pra
ti
e one imposes an evenstronger 
ondition 
alled detailed balan
e, whi
h demands the equality of in-and out-going probabilities for any two states Γ(i) and Γ(j):

PB(Γ(i)) p
(ij)try p(ij)a

 = PB(Γ(j)) p

(ji)try p(ji)a

 . (2.24)1Usage of the ri implies also a dependen
e on the volume V .



2.3. THE MONTE CARLO METHOD 21It is not a prerequisite but in many situations it appears that the generatingme
hanism leads to a symmetri
 matrix p
(ij)try = p

(ji)try . In these 
ases thedetailed balan
e 
ondition (2.24) simpli�es to
p

(ij)a


p

(ji)a

 =
PB(Γ(j))

PB(Γ(i))
. (2.25)The a
tual a

eptan
e probability p

(ij)a

 is not �xed by Eq. (2.25) but a 
om-mon 
hoi
e is
p(ij)a

 = min

[

1,
PB(Γ(j))

PB(Γ(i))

]

. (2.26)The big advantage of this method stems from the fa
t that no a priori knowl-edge of the distribution fun
tion of mi
rostates, i.e. the partition fun
tionis required. It is su�
ient to know the Boltzmann fa
tor, whi
h, in general,is given. For some investigations it is desirable to generate Markov 
hainswith other distribution fun
tions than PB. Se
tion 2.4.1 will deal with theseproblems.2.3.2 The Monte Carlo algorithmWe have applied the MC s
heme, des
ribed in the last se
tion, to a systemof rods. For this system, the following trial moves were performed in randomorder: Moving a rod, rotating a rod, a 
ombination of movement and rotation,and volume 
hanges. During simulations of length-polydisperse mixtures,length 
hanges were allowed to speed up equilibration.Suppose rod i, whose 
enter of mass is originally lo
ated at r
(o)
i , is 
hosento be moved. The 
on�gurational energy of the system in the old state is
alled U (o). In a �rst step, a new position r

(n)
i = r

(o)
i + ∆r is proposedwhere ∆r is a random displa
ement ve
tor whose 
omponents are uniformlydistributed over an interval [−δm, δm]. The new position of parti
le i leadsto a 
hange ∆U = U (n) −U (o) of the 
on�gurational energy. In the next stepa de
ision is made whether the new position is a

epted or not. For thispurpose, the Metropolis 
riterion (Eq. (2.26)) is used:

pa

 = min [1, exp(−β∆U)] . (2.27)The new position is a

epted immediately if ∆U ≤ 0, whi
h avoids to 
om-pute the Boltzmann fa
tor exp(−β∆U). Otherwise a random number isgenerated in the interval [0; 1). The new position is a

epted if the randomnumber is smaller than the Boltzmann fa
tor. Regardless of whether themove is a

epted or not, the �nal 
on�guration has to be in
luded into theMarkov 
hain.



22 CHAPTER 2. THEORETICAL AND TECHNICAL FRAMEWORKFor the rotation of a rod, a random unit ve
tor is generated. This ve
torde�nes the rotation axis, around whi
h the dire
tor is rotated by a randomangle ∆ϑ ǫ [−δr, δr]. The further pro
eeding is equivalent to the parti
lemovement. The sequen
e of single parti
le Monte Carlo steps is 
hosen en-tirely at random. This means that for a random parti
le we de
ide randomlywhether it is moved, rotated, or moved and rotated.MC simulations in the NPT ensemble require also a �u
tuating volume.It has turned out that a random walk in ln V supports fast equilibration [24℄.The old volume V (o) is res
aled a

ording to ln V (n) = ln V (o) +∆(ln V ). Thenew parti
le positions be
ome r
(n)
i = r

(o)
i exp(∆(ln V )/3) with ∆(ln V ) ∈

[−δV , δV ]. Note that this pro
edure 
orrelates the three box dimensions Lx,
Ly, and Lz. This may 
ause problems in the equilibration of rod 
on�gura-tions with long-range positional order su
h as sme
ti
 phases. In these 
ases
Lx, Ly, and Lz were allowed to �u
tuate independently. The generalizationis straightforward. The logarithmi
 sampling leads to an additional fa
torof V in the partition fun
tion be
ause ∫ dV =

∫

d(ln V ) V . The a

eptan
erule a

ording to the Metropolis 
riterion for a volume move be
omes
pa

 = min

[

1, exp
(

−β[∆U + P∆V − (N + 1) kT ln(V (n)/V (o))]
)] (2.28)with ∆V = V (n) − V (o). A volume move requires a re
al
ulation of all pairintera
tions and is therefore 
omputationally expensive. In the simulations,a volume move is attempted after one sweep (= N single parti
le updates).The interval widths δm, δr, and δV are adjusted su
h that about 50% of thetrial moves are a

epted.Saving CPU time A standard way to in
rease the speed of simulationprograms is the usage of neighbor lists. There is no need to 
ompute the pairpotential of two rods if their shortest distan
e is larger than the 
ut-o� radius

Da. A Verlet list keeps tra
k of all parti
les, whi
h are within a 
ertain range� the Verlet radius rV . For spheri
al parti
les it is obvious to sear
h neighborswithin a spheri
al volume. For a rod of length Li, neighboring rods of length
Lj are sampled within a sphere of radius rV,sp = (Li +Lj)/2+Da +σsp. Theneighbor list has to be updated every time a parti
le has moved further than
σsp/2. Espe
ially in dense phases, su
h a spheri
al list lo
ates many neighborswhose surfa
e-to-surfa
e distan
es are mu
h larger than the intera
tion width(
mp. Fig. 2.5). Sin
e the 
omputation of the attra
tive rod potential UARis quite expensive a se
ond sphero
ylindri
al Verlet list is embedded in thespheri
al list, whi
h redu
es the number of neighbors drasti
ally. This listkeeps tra
k of all rods whose 
enter intervals have a shortest distan
e smallerthan rV,sc = Da + σsc. The se
ond list must be updated every time an end
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rV,sp

(a) (b)Figure 2.5: (a) Illustration of a spheri
al Verlet list. All red rods are withinthe spheri
al Verlet list of radius rV,sp of the the green rod. (b) Illustrationof a sphero
ylindri
al Verlet list embedded in a spheri
al Verlet list. In densephases many rods are within the spheri
al volume. The number of neighborsredu
es remarkably in the sphero
ylindri
al volume. Neighbors are 
olored red,again.point of the 
enter interval has moved further than σsc/2. Parti
ularly rodrotations lead to frequent updates of the sphero
ylindri
al list. However, foran update of the se
ond list only rods of the �rst list have to be 
onsideredso that over all the se
ond list saves up to 50% of CPU time in dense phases.Furthermore, all pair intera
tions are stored and reused to 
ompute the oldintera
tion energy U (o).
Random numbers The 'heart' of all Monte Carlo simulations is the ran-dom number generator. Stri
tly speaking, a 
omputer 
annot produ
e num-bers by 
han
e. In pra
ti
e an algorithm generates a (reprodu
ible) sequen
eof numbers, whi
h should be as un
orrelated as possible. A suitably un
or-related sequen
e of random numbers is required for a 
orre
t Markov 
hain.This requirement, however, is not ful�lled by all algorithms [75℄ [90℄. In thebeginning we used the widely a

epted random number generator RAN3 [64℄.Investigations of 
on�ned geometries, however, led to some unphysi
al obser-vations, whi
h 
ould be attributed to 
orrelations in RAN3 (see Appendix B).These problems did not o

ur with the random number generator MT19937[53℄, whi
h we therefore used to obtain 
orre
t results.
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ed Monte Carlo te
hniquesThe Monte Carlo s
heme des
ribed in Se
tion 2.3 produ
es a Markov 
hainwith the stationary distribution PB/Q. The vast majority of samples usedto 
ompute the average in Eq. (2.23) are generated where PB is maximal. Insome 
ases a di�erent sampling is reasonable. If an observable A is large in aregion where PB is small, only few samples are generated in this region givingrise to large statisti
al un
ertainties of the average. For most observables,however, this e�e
t is of minor relevan
e: On the one hand many observablesare su�
iently smooth and on the other hand PB is de
reasing exponentiallyso that the produ
t of A and PB is small where PB is small. Another problemmight o

ur if PB has several maxima (see Fig. 2.6). The system 
an be

P B

x

state a

xa xb

state b

∆G

x

state a
state b

G
free energy barrier

xa xb(a) (b)Figure 2.6: (a) S
hemati
 drawing of a probability distribution PB as fun
tionof a suitable parameter x. PB has two maxima and state a is thermodynam-i
ally stable. A system, whi
h is sampled around xb, may take very long totraverse the minimum in PB in order to �nd the global maximum at xa. (b)The 
orresponding free energy lands
ape as fun
tion of x. Maxima of PB turninto minima of G. The two minima di�er by an amount of ∆G in free energy.Thermal �u
tuations may not be large enough to 
ross the free energy barrierwithin a reasonable amount of time.trapped in one region and it may take extremely long until it rea
hes the otherminimum. Systems 
lose to strong �rst order phase transitions are typi
alexamples. The 
orresponding free energy lands
ape has two or more minimaall separated by energy barriers that 
an in many 
ases not be over
ome bythermal �u
tuations. For the same reason, real systems show hysteresis.Free energy barriers 
ompli
ate not only the analysis of �rst order phasetransitions. Investigations of protein folding, for example, have to deal with
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omplex free energy lands
apes, as well. Thus, 
rossing free energy barri-ers and measuring free energy di�eren
es of two states (phases, 
onforma-tions) is of widespread interest. In the past, several simulation te
hniques[5, 38, 85, 101℄ have been developed to ta
kle these problems. In this work, bi-ased multi-histogram sampling is employed to drive a system smoothly fromone lo
al minimum of the free energy to another one and to estimate the freeenergy di�eren
e ∆G between both minima. Se
tion 2.4.1 is dedi
ated tobiased multi-histogram sampling. The phase 
oexisten
e is 
hara
terized by
∆G = 0. Gibbs ensemble simulations [60, 61, 70℄ 
an be employed to inves-tigate phase equilibria dire
tly. The appli
ability of this method, however,is strongly restrained in dense systems and is thus not appropriate for oursystems.2.4.1 Biased multi-histogram samplingSuppose the external 
ontrol parameters N , P , and T are 
hosen su
h thatthe free energy lands
ape has one global and one lo
al minimum. In this 
ase,importan
e sampling a

ording to PB may be unsuitable for exploring therelevant 
on�gurational phase spa
e. Consider a solid state at low tempera-ture. Below the freezing temperature, the system has an absolute minimumfor the 
rystalline state at a high density and typi
ally a lo
al minimum forthe �uid state of lower density. Typi
al free energy 
urves during meltingare depi
ted in Fig. 2.7. Both states, the high and low density state, are

x

G

xa xb

T small

x

G

xa xb

T at coexistence

x

G

T large

xa xb(a) (b) (
)Figure 2.7: S
hemati
 drawings of the free energy at di�erent temperatures.The abs
issa may represent the density, for example. The global minimum in(a) turns into a lo
al minimum as the temperature is in
reased. In (b), thetwo phases are in 
oexisten
e.separated by a system dependent energy barrier. In 
oexisten
e, the energybarrier represents the surfa
e energy of the two adja
ent phases. This energy
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ed shift of the a
tual melting temper-ature from the 
oexisten
e temperature. For this reason, situations o

ur, inwhi
h the system is still in the high density state whereas the low densitystate is thermodynami
ally stable. If the energy barrier is mu
h larger thanthermal �u
tuations, the system is trapped in the high density state whensampled a

ording to PB. Corresponding hysteresis e�e
ts o

ur also withan isotropi
 starting 
on�guration. As a 
onsequen
e, the average of an ob-servable measured during the simulation depends on the initial 
ondition anddoes not rea
h the thermodynami
ally stable phase. The simulation s
hemeexplained in the following is appropriate to solve this problem.A 
ru
ial point for the multi-histogram method is the de�nition of asuitable rea
tion 
oordinate or order parameter. On the one hand the rea
-tion 
oordinate must distinguish between both phases. On the other hand a'good' rea
tion 
oordinate should not hamper potential transient states byrestri
ting the system to a narrow path through the free energy lands
ape.Examples of rea
tion 
oordinates are the density for �uids, the magnetizationfor ferromagnets, the amount of alignment for liquid 
rystals [94℄, or the sizeof a nu
leus [2, 73℄. The intera
tion energy per rod is a good 
andidate inthe 
ase of attra
tive rods sin
e it varies signi�
antly between the isotropi
,sme
ti
, and hexati
 phase. The phase boundaries of the monodisperse rodsystems in se
tion 3.1 are determined by the use of this rea
tion 
oordinate.In prin
iple, the free energy G as a fun
tion of the rea
tion 
oordinate x isobtained from the probability distribution
p(x) ≡ 1

Q

∫

dΓ PB(Γ) δ(x̃(Γ) − x) (2.29)
= 〈δ(x̃ − x)〉 (2.30)as
G(x) = −kT ln (p(x)) . (2.31)It has already been pointed out that free energy barriers may hamper thesystem in exploring the relevant regions of the rea
tion 
oordinate.Assume a situation similar to the one depi
ted in Fig. 2.6 (b) with thesystem in the highly ordered phase2 (x = xb). The quantity of interest isthe free energy di�eren
e ∆G = G(xb) − G(xa). The barrier region 
an beexplored with the multi-histogram te
hnique. In this method the free energylands
ape is 
hanged arti�
ally for a set of supporting points {xi} between

xa and xb. At ea
h supporting point, a system is simulated, whi
h di�ers2Starting from high order is usually superior to the other way round sin
e order isdestroyed more easily than 
reated.



2.4. ADVANCED MONTE CARLO TECHNIQUES 27from the original one by a bias potential Hb
i (x) ≡ Hb

i . The bias potential is
onstru
ted su
h that a minimum of the free energy arises in the vi
inity of xi.The sampling of ea
h system is now performed a

ording to the distribution
PB Wi, where

Wi = exp(−β Hb
i ). (2.32)For the bias potential, a quadrati
 term like

Hb
i(x) =

κ

2
(x − xi)

2 (2.33)is suitable in most 
ases. For su�
iently large κ, the additional 
ontribution
Hb

i of the type (2.33) generates a minimum in the free energy 
lose to xi.The width of the window, to whi
h the system is restri
ted, is regulated bythe 
urvature κ. The resulting free energy is s
hemati
ally drawn in Fig. 2.8.As a 
onsequen
e a system with Hamiltonian Hi = H + Hb
i will explore a

ix x

G

ixix

original profile

x

effective profile

x

bias potential

Figure 2.8: S
hemati
 drawing of the free energy G as fun
tion of the rea
tion
oordinate x. A

ording to the original pro�le points 
lose to xi are visitedrarely. The additional bias potential generates a minimum in the vi
inity of xi.�nite region around xi.The obje
tive of the restri
tion to a small window region is to measurethe probability distributions pi(x) (Eq. 2.29) in every window and to 
on-ne
t the 
orresponding free energy se
tions. In this manner, the free energypro�le between xa and xb is 
onstru
ted pie
ewise. The statisti
al a

ura
yis improved if neighboring windows overlap. In some o

asions, mu
h largerseparations are either adequate or inevitable [47℄. With the assumption that
G(x) is su�
iently smooth the �rst derivative 
an be utilized to 
onstru
tthe pro�le.The stationary distribution of the Markov 
hain in window i is propor-tional to PB Wi. The 
orresponding normalization fa
tor, i. e. the partitionfun
tion, is 
alled Qi ≡

∫

dΓ PB Wi. An average a

ording to the modi�edsampling distribution is denoted by 〈·〉PB Wi
. The probability distribution in
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pi(x) =

Qi

Q
〈δ(x̃ − x)〉PB Wi

Wi(x)
. (2.34)From Eq. (2.34), the free energy in window i is 
al
ulated via −kT ln(pi).On
e the free energy around all supporting points xi is known the 
ompletepro�le 
an be 
onstru
ted. The normalization fa
tors Qi are not measuredexpli
itely but result from the verti
al adjustments of the free energy partssu
h that a smooth fun
tion in x is obtained. The free energy di�eren
ebetween the two states a and b is thus

∆G = −kT ln
Qb

Qa
. (2.35)In pra
ti
e, pi(x) is measured in bins of �nite width δ. Thus, pi(x) is ahistogram, whi
h keeps tra
k of the amount of generated 
on�gurations withan order parameter in the interval x ± δ/2. Therefore, the name biasedmulti-histogram method.2.4.2 Simulation of adja
ent substratesIn Chapter 4, polydisperse rod systems with adja
ent substrates are investi-gated. In the simulations, only one substrate at −z0 and a 'half' system inthe range −z0 < z < 0 is expli
itly 
onsidered. The 'half' system is mirroredat the z = 0 plane and shifted diagonally so that ea
h rod with a 
enterof mass (x, y, z) and an orientation ve
tor (ux, uy, uz) 
reates an image rodwith a 
enter of mass (x + Lx/2, y + Ly/2,−z) and an orientation ve
tor

(ux, uy,−uz) as sket
hed in Fig. 2.9. In the original and the mirror region,periodi
 boundary 
onditions are applied in x- and y-dire
tion. One mustnote, however, that the mirroring te
hnique is restri
ted to systems, whi
hare isotropi
 or axially symmetri
 to the z axis in the region 
lose to z = 0.This is the 
ase for all systems investigated with this te
hnique.The mirroring method has two advantages: Firstly, larger substrate sep-arations 
an be investigated with a reasonable e�ort (Fig. 2.10). Wall sep-arations of 2z0 > 40D 
an easily be a
hieved. Se
ondly, sin
e there is defa
to only one substrate, the method avoids long-living metastable states, inwhi
h the rods are not distributed equally between the opposing substrates.
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original rod

mirrored and shifted rod

Figure 2.9: Visualization of the boundary 
onditions at the xy-plane in sim-ulations of substrates. The original rod (red) is mirrored at the xy-plane andshifted diagonally resulting as the green rod.
wall at −z0 mirror plane

"original" box mirrored box

0wall at +z

z

y
x

Figure 2.10: Illustration of the "original" and the mirrored simulation box.The e�e
tive wall separation is 2z0. Note that the z-axes points towards right.2.5 Observables2.5.1 The nemati
 order parameterOrientational order is measured in terms of the nemati
 order parameter
S(N) = 〈 1

N

N
∑

i=1

P2(ui · n)〉 = 〈λmax〉, (2.36)where P2(·) is the se
ond Legendre polynomial and the average dire
tor n isthe eigenve
tor of the largest eigenvalue λmax of the alignment tensor
Qµν =

1

2N

N
∑

i=1

(3ui,µui,ν − δµν). (2.37)
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tly aligned system of rods, one has S = 1. In an in�nitelylarge isotropi
 system, one has S = 0. For �nite systems, however, S(N)depends on the number of rods N . Espe
ially for small isotropi
 systems,
S(N) is typi
ally larger than 0 and shows a strong system-size dependen
e.To over
ome this problem, Eppenga and Frenkel [24℄ suggested to repla
e
S(N) by

S∞ ≡ lim
N→∞

S(N), (2.38)the order parameter of a 
orresponding in�nite system. A method for 
al
u-lating S∞ is given in Appendix C.The orientational order parameter S∞ is independent of the 
onsiderednumber of rods. This is parti
ularly helpful when measuring the orientationalorder of small subsets of rods in a system. It allows the determination ofthe orientational order for every 
omponent of a polydisperse suspension, inwhi
h 
ertain rod lengths are present only in small amounts. Another usefulappli
ation of S∞ is the 
al
ulation of the lo
al orientational order in a smallsubvolume of the simulation box. One typi
al example is the orientationalorder as a fun
tion of the distan
e from a substrate [98℄.2.5.2 Pair 
orrelation fun
tionsPair 
orrelation fun
tions reveal a deeper insight into the mi
ros
opi
 stru
-ture and allow distin
tion between di�erent phases. Parti
ularly, pair 
or-relation fun
tions along (g||) and perpendi
ular (g⊥) to the rod axis help toidentify the phase of a system [18℄. Like the radial pair 
orrelation fun
tion,the fun
tions g||(r||) and g⊥(r⊥) are lo
al densities divided by the overall den-sity of the system. The region where the lo
al density is obtained is 
hosenrelative to a referen
e rod with 
enter of mass r0 and a rod axis parallel to u0.Let c(r,u, h, R) be a 
ylinder with a 
enter of mass at r, a rod axis parallelto u, a height h and a radius R. Then g||(r||) 
onsiders the lo
al density inthe 
ylinders c(r0 ± u0 r||,u0, h||, R||), where we 
hose h|| = 0.05D − 0.1Dand R|| = 0.75D − 1D. The fun
tion g⊥(r⊥) takes a

ount of rods whose
enter of mass lie within the 
ylinder c(r0,u0, h⊥, r⊥ + δR/2) but not in the
ylinder c(r0,u0, h⊥, r⊥−δR/2). The des
ribed geometry is a hollow 
ylinderof height h⊥, radius r⊥ and shell thi
kness δR where h⊥ = 0.75D and δR is
hosen between 0.05D and 0.1D. Fig. 2.11 illustrates the geometry of both
orrelation fun
tions.
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r⊥

h||

rδ

0

0

||r
R

h⊥ Figure 2.11: Sket
h of the regions relativeto a referen
e rod, whi
h are used to de-termine the longitudinal and transverse pair
orrelation fun
tions g|| and g⊥.2.5.3 Density distribution fun
tionSystems with an adja
ent wall are analyzed in terms of density distributionfun
tions. The density distribution fun
tion ρ∗(z) is de�ned as the lo
alnumber density n(z) of rods with the z-
oordinate of the 
enter of mass at znormalized to the bulk number density N/V :
ρ∗(z) ≡ n(z)

N/V
(2.39)

n(z) has the dimension parti
les per volume and represents an ensembleaverage. Note that ρ∗(z) is dimensionless and may also be 
alled a redu
eddensity. In pra
ti
e, the z-axis has to be dis
retized into intervals (zi −
∆z/2, zi + ∆z/2]. Therefore, the simulation box is divided into sli
es ofthi
kness ∆z as indi
ated in Fig. 2.12. n(z) is the number of rods in the

∆z

zFigure 2.12: Illustration of the division of the simulation box into sli
es ofthi
kness ∆z.
orresponding sli
e divided by the volume of the sli
e.For investigations of polydisperse mixtures, the density distribution fun
-tion is measured for every rod 
omponent separately. For the rod 
omponent
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ρ∗

λ(z) =
nλ(z)

Nλ/V
, (2.40)where nλ(z) is the number density of rods with axis ratio λ in the sli
e lo
atedat z and Nλ is the total number of rods with axis ratio λ. In Se
tion 4.2,results for 
umulative density distribution fun
tions are presented, for whi
hmore than one rod length is subsumed. The 
umulative density distributionfun
tion of the 
omponents λ1 and λ2 is given by

ρ∗
λ1,λ2

(z) =
nλ1

(z) + nλ2
(z)

(Nλ1
+ Nλ2

)/V
. (2.41)Note that ρ∗

λ1,λ2
(z) 6= ρ∗

λ1
+ ρ∗

λ2
.2.5.4 Spatially resolved mole fra
tionThe e�e
tiveness of various substrate patterns as far as demixing is 
on
ernedis also studied in terms of the spatially resolved mole fra
tion xλ(z). Themole fra
tion 
an be expressed in terms of the lo
al number density as

xλ(z) =
nλ(z)
∑

λ

nλ(z)
. (2.42)Thus, xλ(z) is the number of rods with axis ratio λ in the respe
tive sli
edivided by the overall number of rods in that sli
e.In Se
tion 4.2, results are presented, for whi
h the mole fra
tion is 
on-sidered in a larger volume than that of a sli
e, for example the volume insidethe substrate stru
ture. If the respe
tive volume starts at zmin and ends at

zmax, the integrated mole fra
tion is given by
xint

λ =
nint

λ
∑

λ

nint
λ

. (2.43)with
nint

λ ≡
zmax
∫

zmin dz nλ(z). (2.44)Note that xint
λ is z-independent.



2.5. OBSERVABLES 332.5.5 Orientational 
orrelation fun
tionsIn addition to the density distribution fun
tion, whi
h probes 
enter of mass
orrelations, the two fun
tions gθ(z) and gφ(z), whi
h probe the in�uen
eof the substrate on the orientational degrees of freedom, are introdu
ed. gθand gφ will be 
alled orientational 
orrelation fun
tions. One distinguisheddire
tion in simulations with an adja
ent wall is the normal to the wall,i. e. the z-axis. Let cos θi be the s
alar produ
t of rod i with dire
tor ui andthe unit ve
tor in z-dire
tion ez:
cos θi = ui · ez = ui,z. (2.45)The 
orrelation fun
tion gθ(z) is de�ned via the se
ond Legendre polynomial

P2(·) as an ensemble average. The 
ontributions are restri
ted to the Nz rodsa distan
e z apart from the substrate:
gθ(z) ≡

〈

1

Nz

Nz
∑

i=1

P2(cos θi)

〉 (2.46)
=

〈

1

2 Nz

Nz
∑

i=1

(

3 cos2 θi − 1
)

〉

. (2.47)In other words, gθ(z) is nothing but the z-dependen
e of the nemati
 orderparameter (Eq. 2.36) with the dire
tor parallel to the z-axis. gφ is de�nedanalogously but with a the dire
tor parallel to the x-axis. The x-dire
tion isdistinguished in simulations of stru
tured substrates be
ause of the 
hoi
e ofthe stru
ture.Some remarks about the orientational 
orrelation fun
tions: gθ and gφvanish if 
orrelations are absent and adopt one if the 
onsidered rods pointin the respe
tive dire
tion. If the majority of rods are perpendi
ular to the
z-axis, for example, gθ be
omes negative with a lower bound of −1/2. Thus,
gθ and gφ provide information about the preferred lo
al orientation of therods and about the range of substrate indu
ed orientational 
orrelations.
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Chapter 3Bulk behavior
3.1 Monodisperse systemsSystems of attra
tive sphero
ylinders are s
ar
ely dis
ussed in the literature.For the AR potential, used here, the phase diagram has only been analyzedfor monodisperse systems with λ = 5 [8℄. Therefore, in this se
tion some newregions of the phase diagram of monodisperse suspensions are explored beforewe turn towards polydisperse systems. In the following, a dimensionlessintera
tion strength ǫ∗ ≡ ǫ/kT is used. A redu
ed pressure is de�ned as
P ∗ = P 〈v〉/kT , where 〈v〉 is the average volume of a rod:

〈v〉 =
πD3

6
+

πD2

4N

N
∑

i=1

Li. (3.1)In monodisperse systems, 〈v〉 is the volume of a sphero
ylinder. Phase di-agrams for intera
tion strengths ǫ∗ = 0.25 and ǫ∗ = 0.5 are presented as afun
tion of the redu
ed pressure P ∗ and the axes ratio λ, whi
h ranges from
λ = 3 to λ = 8.Simulations are started with an isotropi
 system at low pressure, whi
h isthen 
ompressed and equilibrated step by step to obtain an isotherm. Closeto phase boundaries, the pressure is in
reased in parti
ularly small steps toavoid glassy states. Dis
ontinuous phase transitions are always a

ompaniedby hysteresis. As long as the hysteresis is small, phase boundaries 
an belo
alized well by 
ompressing and expanding the system. Generally, for allisotropi
-nemati
 transitions the hysteresis was found to be su�
iently small.In some 
ases, espe
ially if the hexati
 phase is involved, large hysteresisappears.Isotherms at 
ompression and expansion of a system of rods with λ = 3and intera
tion strength ǫ∗ = 0.5 are presented in Fig. 3.1 (a). 〈Erod〉/Emin35
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) (d)Figure 3.1: Analyzing the phase behavior of attra
tive rods. (a) The internalenergy per rod 〈Erod〉 divided by the strongest pair intera
tion energy Emin asa fun
tion of the pressure P ∗ at isothermal 
ompression ( ) and isothermalexpansion (▽) of rod systems with λ = 3 and ǫ∗ = 0.5. The free energy Gas a fun
tion of 〈Erod〉/Emin (b) at P ∗ = 7.75, (
) at P ∗ = 7.5, and (d) at
P ∗ = 7.2.is plotted along the ordinate. 〈Erod〉 is the average intera
tion energy perrod and Emin is the minimum pair intera
tion energy as given in Eq. (2.19).Note that both 〈Erod〉 and Emin are negative. The hysteresis is so strong thatthe isotherm at 
ompression dete
ts only the isotropi
 and the hexati
 phasewhereas at expansion a sme
ti
 A phase is observed over a large pressurerange. In order to identify the stable phases and thus to lo
ate the phaseboundaries, biased multi-histogram simulations (Se
. 2.4.1) are employed, inwhi
h the free energy G is determined as a fun
tion of 〈Erod〉/Emin. To bepre
ise, G + const is measured, but the 
onstant has no physi
al relevan
e.Parts (b)-(d) of Fig. 3.1 present free energy pro�les of systems at the pres-



3.1. MONODISPERSE SYSTEMS 37sure P ∗ = 7.75, P ∗ = 7.5, and P ∗ = 7.2, whi
h are indi
ated in Fig. 3.1 (a)by the dashed verti
al lines. At P ∗ = 7.75, three minima appear, two fromthe metastable isotropi
 and sme
ti
 A phase and one from the thermody-nami
ally stable hexati
 phase. At this point, we already see the advantagein utilizing the internal energy as rea
tion 
oordinate. Firstly, 〈Erod〉 dis-tinguishes signi�
antly between the hexati
, sme
ti
 A, and the less orderedphases. Se
ondly, no additional 
omputational e�orts are ne
essary to deter-mine Erod during the simulation, sin
e one has to keep tra
k of the internalenergy, in any 
ase, to evaluate the Metropolis 
riterion. The probability ofover
oming a free energy barrier of height ∆Gb between two states is pro-portional to exp(−β∆Gb) [45℄. In our 
ase, the isotropi
 state is separatedfrom the sme
ti
 A or hexati
 state by an amount of ∆Gb ≈ 7kT at thepressure P ∗ = 7.75 (Fig. 3.1 (b)). The barrier 
ould not be passed within
5 × 107 Monte Carlo sweeps at even higher pressure (P ∗ = 7.9), where thebarrier height is supposed to be smaller. At 
ompression, the system does not
ross the free energy barrier to the stable sme
ti
 A phase until the sme
ti
phase itself be
omes unstable. Thus, the system swit
hes dire
tly from theisotropi
 to the hexati
 phase. At P ∗ = 7.75, the free energy di�eren
e ∆Gbetween the isotropi
 and the hexati
 state is about 70kT .The free energy pro�le at P ∗ = 7.5 is depi
ted in Fig. 3.1 (
). The globalminimum in G 
orresponds to the sme
ti
 A phase, whi
h is now thermo-dynami
ally stable. The isotropi
 and the sme
ti
 A state are separated bya barrier of 
ir
a 15kT and the free energy of the two phases di�ers by anamount of about 28kT . The isotropi
 state is stable at P ∗ = 7.2 as demon-strated in Fig. 3.1 (d).The free energy pro�les give information not only about the stabilityof phases but also about the surfa
e energy between two phases, whi
hare simultaneously present in the simulation box. An example is given inFig. 3.2 (a), where the free energy pro�le of a system of rods with axis ratio
λ = 8 and ǫ∗ = 0.5 is plotted. The two minima of the free energy 
orrespondto the nemati
 and the hexati
 phase. The hexati
 phase 
orresponds tothe global minimum and is, thus, thermodynami
ally stable. In the range
1 ≤ 〈Erod〉/Emin ≤ 1.6, the slope of the free energy is 
onstant as indi
atedby the dashed line. The line tangential to the two minima of the respe
tivephases (double tangent) exhibits the same slope and is also drawn in thediagram.On the basis of Fig. 3.2 (a) some prin
iples of thermodynami
s will beexempli�ed. The free energy di�eren
e between the nemati
 and the hexati
phase in this 
ase is ∆G ≈ 70kT . Sin
e the free energy G is extensive, asystem with twi
e as many parti
les would possess a free energy di�eren
e of
140kT . A system prepared in the nemati
 state would have to over
ome an
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)Figure 3.2: (a) Free energy G as fun
tion of 〈Erod〉/Emin in a system of rodswith λ = 8 and ǫ∗ = 0.5 at P ∗ = 1.9. Snapshot of a system biased (b) at
〈Erod〉/Emin ≈ 1.76 and (
) at 〈Erod〉/Emin ≈ 1.26.energy barrier of ∆Gb ≈ 30kT to rea
h the thermodynami
ally stable state.The energy barrier is 
onne
ted to the interfa
e of the two phases, i. e. a sur-fa
e 
osts energy. From the free energy pro�le, the surfa
e tension σ betweenthe hexati
 and the nemati
 phase 
an be estimated as σ ≈ 0.062kT/D2.The 
orresponding 
al
ulation is given in Appendix D. The snapshot inFig. 3.2 (
) shows a typi
al 
on�guration at 〈Erod〉/Emin ≈ 1.26, whi
h isin the regime of 
onstant slope in G. The 
onstant slope is be
ause of thefa
t that the size of the phases 
an be varied without 
hanging the interfa-
ial area. From the snapshot (Fig. 3.2 (
)) we see that the hexati
 phase�lls the simulation box 
ompletely in y- and z-dire
tion and a 
hange of thephase extension in x-dire
tion would not 
hange the surfa
e area. In the
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ase, where a dire
t interfa
e of the phases is absent (for example ina Gibbs simulation), the free energy pro�le between the nemati
 and thehexati
 state would 
oin
ide with the double tangent, whi
h 
onne
ts bothminima in Fig. 3.2 (a).The knowledge of the surfa
e tension and the free energy di�eren
e ∆Gis su�
ient to estimate the size of the 
riti
al nu
leus a

ording to 
lassi
alnu
leation theory (CNT). Suppose the system is prepared in the nemati
state and the free energy lands
ape is that of Fig. 3.2 (a). In su
h a situation,the system is said to be over
ompressed. Be
ause of thermal �u
tuations,small hexati
 nu
lei build and dissolve again. If the nu
leus ex
eeds a 
ertainsize, it will spontaneously grow instead of dissolving. We assume that theshape of su
h a nu
leus is like a 
ylinder of radius r and height h and therods are aligned with the long axis of the 
ylinder. The height h is not
ontinuous but an integer value of the layer thi
kness. We denote the 
hangein free energy asso
iated with the formation of a 
ylindri
ally shaped hexati
nu
leus by ∆Gn(r, h). The system gains an amount of free energy −r2πh ∆g,where ∆g is the free energy density (∆g = ∆G/V ). The 
osts for the 
reationof a nu
leus are due to the surfa
e tension. In our 
ase we distinguish betweenthe surfa
e tension σ|| and σ⊥, whi
h are related to the surfa
e parallel andto the surfa
e perpendi
ular to the rod dire
tion, respe
tively. Thus, the netfree energy 
hange related to the 
luster formation is
∆Gn(r, h) = −πr2h ∆g + 2πrhσ|| + 2πr2σ⊥. (3.2)The 
riti
al nu
leus size at a �xed height h is obtained from the extremal
ondition

∂∆Gn(r, h)

∂r
= 0, (3.3)whi
h leads to the 
riti
al 
ylinder radius

r
rit =
h σ||

h ∆g − 2σ⊥
. (3.4)In our 
ase, the 
ylinder is de fa
to in�nitely high. The �nite dimension ofthe simulation box and the periodi
 image 
onvention are responsible for anabsen
e of the top and bottom 
onta
t zone between the nemati
 and thehexati
 phase (
mp. Fig. 3.2 (
)). Thus, the 
ontribution from σ⊥ vanishes.Formally, the situation is equivalent with the limit h → ∞, where the 
riti
al
ylinder radius be
omes r
rit = σ||/∆g, whi
h, in our 
ase, 
orresponds toabout 13D. Note that σ|| is equal to the σ 
al
ulated above.The appli
ability of CNT to systems of rodlike parti
les is subje
t to legit-imate 
on
erns. In over
ompressed systems of isotropi
 hard rods, nu
leation



40 CHAPTER 3. BULK BEHAVIORof multilayer stru
tures is suppressed due to self-poisoning [73℄. The resultspresented here are all obtained using the highly ordered hexati
 state asstarting 
on�guration. The estimation of r
rit a

ording to CNT should thusbe understood as the radius, at whi
h a shrinking hexati
 region be
omesunstable.In Fig. 3.3, we present isotherms for di�erent rod lengths at ǫ∗ = 0.5.Plot 3.3 (a) shows the orientational order parameter S∞. Systems, whi
h
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(a) (b)Figure 3.3: (a) The orientational order parameter S∞ as a fun
tion of theredu
ed pressure P ∗ for monodisperse systems with di�erent axis ratios λ. Thesymbols are measurements and are 
hosen di�erently for the di�erent phases(� = isotropi
, N = nemati
, # = sme
ti
 A, and � = hexati
 phase). (b)The redu
ed intera
tion energy per parti
le 〈Erod〉/Emin as fun
tion of thepressure P ∗. 〈Erod〉/Emin di�ers distin
tly between the hexati
, the sme
ti
A, and the less ordered phases.are deep in the isotropi
 state, have an order parameter S∞ < 0.1. Close tothe isotropi
-nemati
 phase transition values, in the range 0.1 < S∞ < 0.2are found, whi
h arise from small transient nemati
 
lusters that form in theisotropi
 system. During a simulation run, several 
luster formations anddissolutions 
an be observed.A jump of S∞ is found at the transition to the nemati
 phase, wherethe nemati
 order parameter lies in the range 0.5 < S∞ < 0.8 and in-
reases distin
tly with P ∗. Another dis
ontinuous in
rease of S∞ o

ursat the nemati
-sme
ti
 A transition, while within the sme
ti
 A phase S∞depends only slightly on P ∗. At further 
ompression, a transition to a hexati
phase o

urs. The phases are re
ognized by the orientational order and theanalysis of the spatial order, dis
ussed below. The sme
ti
-hexati
 transitionis a

ompanied by a small in
rease of S∞, while a signi�
ant jump in the av-erage intera
tion energy per parti
le 〈Erod〉 o

urs. This is demonstrated in



3.1. MONODISPERSE SYSTEMS 41Fig. 3.3 (b), where 〈Erod〉/Emin is shown as a fun
tion of P ∗ for various axisratios λ. In fa
t, jumps in 〈Erod〉/Emin turn out to be a sensitive method forlo
alizing all but the isotropi
-nemati
 phase transition. The isotropi
 andnemati
 phase is 
hara
terized by 〈Erod〉/Emin . 0.5, the sme
ti
 A phase by
〈Erod〉/Emin ≈ 1 and the hexati
 phase by 〈Erod〉/Emin > 1.3.In order to re
ognize the liquid 
rystalline phases, spatial order is inves-tigated with the help of pair 
orrelation fun
tions. Results for the longi-
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orrelation fun
tions in the isotropi
 (P ∗ = 2.0), nemati

(P ∗ = 3.2), sme
ti
 A (P ∗ = 3.6) and hexati
 (P ∗ = 4.4) phase for rodswith axis ratio λ = 6 and ǫ∗ = 0.5. (a) Longitudinal pair 
orrelation fun
tion
g|| as fun
tion of the longitudinal distan
e r||. (b) Transverse pair 
orrelationfun
tion g⊥ as fun
tion of the transverse distan
e r⊥. Results for the isotropi
and the nemati
 phase are shown in the inset. (
) A 
omparison of longitudinalpair 
orrelation fun
tions in the sme
ti
 A phase (P ∗ = 3.6): Pair 
orrelationsalong the dire
tion of the mole
ular axes g|| ( ), and along the layer normals
g
(n)
|| ( ). Symbols 
orrespond to a system with N = 2000, while linesrefer to N = 1000 rods.



42 CHAPTER 3. BULK BEHAVIORtudinal and the transverse pair 
orrelation fun
tion are shown in Fig. 3.4for rods with axis ratio λ = 6. The longitudinal pair 
orrelation fun
tion
g|| shows long range order in the sme
ti
 A and the hexati
 phase. In thenemati
 phase, g|| reveals a single peak at r|| ≈ 7D, 
orresponding to thetotal rod length of (6+1)D. In the isotropi
 phase, longitudinal 
orrelationsare hardly visible. Sin
e the pair 
orrelation fun
tion g|| is de�ned lo
allyvia the mole
ule axes, periodi
 os
illations in g|| do not ensure a sme
ti
 Astate of the system, sin
e the parallel layers may show long-range bending.The �atness of the layers 
an be tested with the longitudinal pair-
orrelationfun
tion g

(n)
|| along the axis of the global dire
tor n. As shown in Fig. 3.4 (
),

g
(n)
|| also shows the 
hara
teristi
 os
illations of a sme
ti
 A system. In orderto 
he
k system-size dependen
ies of the pair 
orrelation fun
tions, we haveperformed simulations with di�erent numbers of rods. In Fig. 3.4 (
), the
ontinuous line shows g|| for a system of N = 1000 rods while symbols referto a system of N = 2000 rods. Apparently, g|| shows no signi�
ant �nite-sizee�e
ts. System-size dependen
ies of g⊥ (not shown) were below the a

ura
yof measurement.Correlations perpendi
ular to the rod axis show one maximum in theisotropi
 and two maxima in the nemati
 phase (inset of Fig. 3.4 (b)). At

P ∗ = 3.6, where the system is in a sme
ti
 A phase, a number of maxima isvisible, all approximately separated by a distan
e D. The hexati
 stru
tureat P ∗ = 4.4 be
omes evident from the typi
al double peak pattern in g⊥ [32℄.Together with the nemati
 order parameter and Erod, the pair 
orrelationfun
tions allowed the determination of the respe
tive phases.A 
omprehensive overview of the phase behavior found for monodispersesystems of attra
tive sphero
ylinders is given in Fig. 3.5, where phase dia-grams for systems with ǫ∗ = 0.25 and ǫ∗ = 0.5 are shown in the P ∗λ-plane.For ǫ∗ = 0.25, an isotropi
 and a sme
ti
 A phase exists for axis ratios
4 ≤ λ ≤ 8. A hexati
 phase sets in at higher pressures, beyond the sme
ti
points shown in Fig. 3.5 (a), but has not been studied in detail for ǫ∗ = 0.25.The nemati
 region widens with in
reasing λ in agreement with the phasebehavior found for hard sphero
ylinders [7℄. Note that the AR model isequivalent to the hard sphero
ylinder model for ǫ∗ = 0.For ǫ∗ = 0.5, the nemati
 and the sme
ti
 A phase are restri
ted to rodsof intermediate length. The nemati
 phase exists only for rods with axisratios 4 < λ < 8, while a sme
ti
 A phase exists in the range 3 ≤ λ < 7.The sme
ti
 A and the nemati
 phase regions are lens shaped. For large axisratios λ, both regions are narrowed by a predominant hexati
 phase.
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(a) (b)Figure 3.5: Phase diagram for monodisperse systems of attra
tive sphero-
ylinders as fun
tion of the parameters pressure P ∗ and axis ratio λ (a) atintera
tion strength ǫ∗ = 0.25 and (b) at intera
tion strength ǫ∗ = 0.5.3.2 Tridisperse mixtureIn this se
tion, a tridisperse rod suspension is investigated. The system is
omposed of long (λ = 7), intermediate (λ = 5), and short (λ = 3) rods. The
omposition is 
hosen su
h that every 
omponent o

upies the same volumefra
tion, i. e. the mixing ratio is 0.226 : 0.304 : 0.47. Albeit its relativelysimple 
omposition, the tridisperse mixture serves as a kind of model mixturefor more realisti
 
ompositions, whi
h will be dis
ussed in Se
tion 3.3. Itreprodu
es most of the e�e
ts observed in polydisperse suspensions with theadditional advantage that an axis ratio resolved analysis is restri
ted to only afew 
omponents. Furthermore, thermal averages of λ-dependent observables
an be obtained with very good statisti
al a

ura
y sin
e there are manyrods with the same axis ratio.In the following, we analyze the stru
ture formation in tridisperse sus-pensions of hard (ǫ∗ = 0) and attra
tive rods (ǫ∗ = 0.5). Therefore, it isilluminative to measure the orientational order parameter and the pair 
or-relation fun
tions separately for every 
omponent. Fig. 3.6 presents resultsfor S∞ as a fun
tion of the redu
ed pressure P ∗. Some qualitative propertiesare independent of the intera
tion strength. In a system with given ǫ∗ and
P ∗, the nemati
 order in
reases with the axis ratio of the 
omponent. At lowpressure, the system is isotropi
 and S∞ is almost zero for all rod lengths.In 
ontrast, the orientational order at higher pressures depends distin
tlyon ǫ∗. In Fig. 3.6 (a) the system of attra
tive rods is analyzed. Below
P ∗ = 2.84, all 
omponents show almost no orientational order. From P ∗ =
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 order parameter S∞ as a fun
tionof the pressure P ∗ for (a) attra
tive (ǫ∗ = 0.5) and (b) hard rods (ǫ∗ = 0).(a) S∞ jumps only for the longest 
onstituent. Shorter rods remain isotropi
.(b) All rod lengths parti
ipate in the global alignment.
2.84 to P ∗ = 2.92, a distin
t jump 
an be seen in S∞ for the longest rods(♦) whereas the intermediate (N) and short rods (#) stay isotropi
 even atfurther 
ompression.Data for hard rods is presented in Fig. 3.6 (b). The isotherms for all
omponents show the same behavior qualitatively. Below P ∗ = 4.84, in theisotropi
 phase, S∞ in
reases slightly and approximately linearly with P ∗.For P ∗ ≥ 5 the nemati
 order of all rod lengths grows signi�
antly fasterwith P ∗, an e�e
t that in
reases with the rod length. In 
omparison to at-tra
tive rods, three points should be emphasized: Firstly, nemati
 order setsin at a higher pressure. Be
ause of the absen
e of attra
tive intera
tion, ori-entational ordering is indu
ed by steri
 intera
tion, ex
lusively. Se
ondly, all
omponents 
ontribute to the order in the system and thirdly, at the tran-sition from the isotropi
 to the ordered state, the nemati
 order parameterin
reases less abruptly than for attra
tive rods.Fig. 3.7 displays typi
al 
on�gurations of ordered systems. For the sakeof 
larity, small and intermediate rods are omitted. Attra
tive rods (Fig. 3.7(a)) build a highly ordered monolayer of long rods surrounded by an isotropi
�uid of shorter rods. As demonstrated below, the layer shows hexati
 order.Hard rods (Fig. 3.7 (b)) do not arrange in a layer but develop a nemati
stru
ture.Pair 
orrelation fun
tions reveal a deeper understanding of the stru
tureof the 
onsidered systems. For a detailed analysis, the longitudinal andtransverse pair 
orrelation fun
tions g|| and g⊥, as introdu
ed in Se
tion 2.5.2,
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(a) ǫ∗ = 0.5, P ∗ = 3.17 (b) ǫ∗ = 0, P ∗ = 6Figure 3.7: Representative 
on�gurations of (a) attra
tive rods (ǫ∗ = 0.5) atthe pressure P ∗ = 3.17 and (b) hard rods (ǫ∗ = 0) at the pressure P ∗ = 6.Rods with axis ratio λ = 3 and λ = 5 are not drawn in the snapshot. (a) Ahexati
 monolayer of long rods (λ = 7) has formed, whi
h is surrounded by anisotropi
 �uid of shorter rods (λ ∈ {3, 5}). (b) The system is nemati
.are additionally apportioned to rod lengths. Thus, g(λref,λ)
|| and g

(λref,λ)
⊥ analyzethe normalized densities of rods with axis ratio λ in the vi
inity of referen
erods with axis ratio λref. In the following, only the longest rods serve asreferen
e rods, i. e. λref = 7.Before we turn to the data analysis, it is instru
tive to outline some typ-i
al rod 
on�gurations, whi
h lead to peaks in the pair 
orrelation fun
tions.A 
onstellation like in Fig. 3.8 (a) 
orresponds to the 
losest distan
e inthe longitudinal dire
tion. The 
losest distan
e in the transverse dire
tionis sket
hed in Fig. 3.8 (
). The former 
on�guration 
ontributes to g|| at

r||/D ≈ λref/2 + 1 while the latter 
ontributes to g⊥ at r⊥/D ≈ 1. The 
on-�gurations drawn in Figs. 3.8 (b) and (d) are listed be
ause the orientationaldegrees of freedom of the target rod (red 
olor) are no longer 
onstrained bythe referen
e rod (green 
olor). The 
ontributions to g|| and g⊥ are lo
atedat r||/D ≈ (λref + λ)/2 + 1 and r⊥/D ≈ λ/2 + 1, respe
tively. The fourmentioned rod 
on�gurations will be noted in short as '−|', '−−', '||', and'|−' 
on�gurations as indi
ated in Fig. 3.8, with the left dash representingthe orientation of the referen
e rod. Finally some remarks about the reasonswhy the four emphasized rod 
onstellations lead to maxima in the pair 
orre-lation fun
tions: They are distin
t be
ause the entropy of the target rod andthe entropy of the rest of the system are balan
ed well at the respe
tive sep-arations. Consider the '|−' 
onstellation, for example. If we in
rease r⊥ to a
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r|| r||(a) '−|' 
on�guration (b) '−−' 
on�guration

r⊥ r⊥(
) '||' 
on�guration (d) '|−' 
on�gurationFigure 3.8: S
hemati
 drawing to illustrate the o

urren
e of maxima in thepair 
orrelation fun
tions. The referen
e rod is 
olored green.value slightly larger than (λ/2+1)D, the orientational degrees of freedom ofthe target rod would not 
hange, but some ina

essible volume between thereferen
e rod and the target rod would be generated, whi
h is unfavorablefor the rest of the system. The attra
tive rod potential UAR additionallyenhan
es '||' 
on�gurations whereas attra
tive intera
tions play only a minorrole for the other 
on�gurations.Pair 
orrelation fun
tions in the isotropi
 regime of a hard rod systemare depi
ted in Fig. 3.9. Part (a) shows the longitudinal pair 
orrelationfun
tion g||. Two maxima are observed in g
(7,3)
|| ( ), the �rst from '−|'and the se
ond from '−−' 
on�gurations. The �rst maximum is also observedin g

(7,5)
|| but here the se
ond one is very small. The data for g

(7,7)
|| is not shownbe
ause the 
urve is basi
ally identi
al with g

(7,5)
|| . Correlations are absentfor r|| & 7D. In part (b) of Fig. 3.9, the transverse pair 
orrelation fun
tion

g
(7,λ)
⊥ is plotted for λ = 3, λ = 5, and λ = 7. The lo
ation of the �rstpeak ('||' 
on�gurations) is identi
al for all λ at r⊥ ≈ 1D while the heightin
reases with the axis ratio. The se
ond peak stems from '|−' 
on�gurationsand thus its lo
ation depends on λ. Note that the lo
ations of the se
ondpeaks 
oin
ide very pre
isely with λ/2+1. The height of the peaks de
reaseswith in
reasing rod length. The behavior of the pair 
orrelation fun
tions in
ombination with the small nemati
 order parameter underlines the isotropi
nature of the system at P ∗ = 2.Another set of pair 
orrelation fun
tions of hard rods is presented inFig. 3.10, where the stru
ture of the suspension is investigated in the high
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(a) (b)Figure 3.9: Pair 
orrelation fun
tions in an isotropi
 system of hard rods (ǫ∗ =
0) at pressure P ∗ = 2. (a) Longitudinal pair 
orrelation fun
tion g|| as fun
tionof the longitudinal distan
e r||. (b) Transverse pair 
orrelation fun
tion g⊥ asfun
tion of the transverse distan
e r⊥. In both 
ases, 
orrelations are veryweak and short-ranged.pressure region (P ∗ = 6). As we already know from the analysis of thenemati
 order parameter, the hard rod system aligns along a global dire
torat that pressure. The long-range orientational order is also a

ompaniedby a spatial ordering as shown in Fig. 3.10 (a). Distin
t peaks from '−−'
on�gurations o

ur in g|| at r||/D = (λref + λ)/2 + 1 for all rod lengths.
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(a) (b)Figure 3.10: Pair 
orrelation fun
tions in the ordered state of a hard rodsystem at P ∗ = 6. (a) Longitudinal pair 
orrelation fun
tion g||(r||). (b)Transverse pair 
orrelation fun
tion g⊥(r⊥). Both 
orrelations are strongerthan at P ∗ = 2 but are still short-ranged.
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orrelations are not observed for r|| ≥ 9D. In the region between
r|| = 4D and the peak from the '−−' 
on�gurations, only rods with λ = 3show another broad maximum, whi
h arises from '−|' 
onstellations. The
urves for λ = 5 and λ = 7 grow monotoni
ally. This 
an be explained asfollows: The volume needed for a rod to rotate freely is proportional to thethird power of its length. Thus, orientational degrees of freedom are mu
hmore suppressed for long rods than those for short rods in dense systems. Asa 
onsequen
e, it be
omes preferable for long rods to align. The dire
tionof the long rods 
orresponds in good approximation to the dire
tion of theglobal dire
tor n. Obviously, only rods with λ = 3 have a su�
ient amountof a

essible volume to orient perpendi
ularly to the global dire
tor.The maxima in the transverse pair 
orrelation fun
tions (Fig. 3.10 (b))di�er only in the height for di�erent rod lengths whereas their lo
ations
oin
ide. The 
orrelations are maximal approximately at integer values ofthe rod diameter and attain the bulk value for distan
es larger than 4D.Signatures from '|−' 
on�gurations are missing. The 
ombination of theresults for the nemati
 order parameter and both 
orrelation fun
tions revealthe stru
ture of a nemati
 �uid.Next we turn to attra
tive rods. Pair 
orrelation fun
tions below the or-dering transition are presented in Fig. 3.11. Some di�eren
es to the isotropi
hard rod system will be pointed out, brie�y. In Fig. 3.11 (a), g

(7,5)
|| ( ) issigni�
antly smaller than g

(7,3)
|| ( ) and the �rst peak from '−|' 
on�gu-
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(a) (b)Figure 3.11: Pair 
orrelation fun
tions in an isotropi
 system of attra
tiverods (ǫ∗ = 0.5) at P ∗ = 2.67. (a) Longitudinal pair 
orrelation fun
tion g||(r||)and (b) transverse pair 
orrelation fun
tion g⊥(r⊥). The �rst maximum in g⊥is enhan
ed be
ause of the attra
tivity, whi
h favors parallel alignment. Theinset highlights the se
ond maximum in g⊥.



3.2. TRIDISPERSE MIXTURE 49rations appears to be sharper. g
(7,5)
|| and g

(7,7)
|| ( ) di�er distin
tly in therange 4 ≤ r||/D ≤ 6 with g

(7,7)
|| being smaller and showing no eviden
e of'−|' 
onstellations. As shown in Fig. 3.11 (b), transversal pair 
orrelationsare quite pronoun
ed in the immediate neighborhood of the referen
e rods.The 
orresponding peak of g⊥ at r⊥ ≈ 1D is a 
onsequen
e of the attra
tiveintera
tion. The inset of Fig. 3.11 (b) points out the 
hara
teristi
s of g⊥for r⊥ ≥ 2D. One re
ognizes a se
ond maximum in g

(7,7)
|| and also indi
a-tions for '|−' 
onstellations of λ = 3 and λ = 5 rods. Overall, there are nolong-range 
orrelations due to attra
tion in the 
onsidered system but on ashorter length s
ale attra
tivity has a 
ertain in�uen
e.Above the ordering transition, the stru
ture of the system 
hanges dras-ti
ally. In Fig. 3.12 (b), a di�erent kind of order is indi
ated by the doublepeak pattern in the transverse pair 
orrelation fun
tion g

(7,7)
⊥ ( ), whi
his 
hara
teristi
 for a hexati
 stru
ture [32℄. The hexati
 order is long-ranged
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(a) (b)Figure 3.12: Pair 
orrelation fun
tions of the ordered state of an attra
tiverod system at P ∗ = 3. (a) The longitudinal pair 
orrelation fun
tion g||(r||)and (b) the transverse pair 
orrelation fun
tion g⊥(r⊥). The double peakpattern in g⊥ is 
hara
teristi
 for hexati
 order. The inset highlights g
(7,5)
⊥ and

g
(7,3)
⊥ .and almost 
ompletely restri
ted to λ = 7 rods. Correlations with smallerrods are about two orders of magnitude smaller and hardly visible on thes
ale of g

(7,7)
⊥ . The inset for Fig. 3.12 (b) highlights g

(7,5)
⊥ and g

(7,3)
⊥ . A doublepeak modulation is found for g

(7,5)
⊥ but not for g

(7,3)
⊥ , whi
h approa
hes thebulk value for r⊥ ≫ 6D. The �uid has separated into a highly ordered layerof mainly long rods with only few intermediate rods in
orporated. The vastmajority of λ = 3 and λ = 5 rods forms an isotropi
 �uid surrounding the



50 CHAPTER 3. BULK BEHAVIORlayer. The depletion of long rods in the isotropi
 part is demonstrated inFig. 3.12 (a) by g
(7,7)
|| , whi
h grows extremely slowly towards 1 with in
reas-ing r||. Sin
e most long rods are used for the layer and thus lo
ated in thetransverse dire
tion, only few λ = 7 rods are dete
ted by g

(7,7)
|| . The la
k of amaximum at r|| ≈ 8D proves that the domain 
onsists of a single layer. In thefollowing, the stru
ture of long rods will also be 
alled (hexati
) monolayer.The peaks from '−|' and '−−' 
on�gurations are visible in g
(7,3)
|| whereas g

(7,5)
||shows only a broad maximum 
orresponding to '−−' 
onstellations.The observed results point out that attra
tivity of rodlike parti
les hasgreat impa
t on the stru
ture formation in polydisperse bulk systems, espe-
ially at high pressure1. While the tridisperse mixture of hard rods is in aliquid-
rystalline nemati
 state, attra
tive rods with the same 
ompositionseparate into a hexati
 monolayer of long and an isotropi
 �uid of shorterrods. Long-range positional 
orrelations are absent in the former systemwhile the opposite is true for the latter.The overall stru
ture in the low pressure regime is less strongly a�e
ted bythe attra
tivity but the 
orrelation fun
tions show di�eren
es for the dire
tneighborhood as Fig. 3.13 demonstrates for the transverse pair 
orrelationfun
tion. For r⊥ & 2D, the presented 
urves 
oin
ide ni
ely. The largestdi�eren
es between hard and attra
tive rods are observed for large axis ratios.
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(a) (b)Figure 3.13: Comparison of the transverse pair 
orrelation fun
tion g⊥(r⊥)for hard ( ) and attra
tive rods ( ) in the isotropi
 state. (a) Correlationsbetween long rods, i. e. g
(7,7)
⊥ (r⊥). (b) Correlations between long and shortrods, i. e. g

(7,3)
⊥ (r⊥).1The numeri
al value of P ∗ in the high pressure regime di�ers for hard and attra
tiverods.
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tive rods, the �rst peak in g⊥ is sharper and is shifted towardssmaller r⊥ in 
omparison to hard rods due to the additional gain in internalenergy when two rods 
ome 
lose. The di�eren
e in the relative heightsof the �rst maxima between g
(7,7)
⊥ and g

(7,3)
⊥ arises from the fa
t that theattra
tive rod potential UAR grows with the rod length. Thus, the gain ininternal energy for long rods is greater than for short rods. In fa
t, for the
hosen potential parameter Da = 1.15D, the minimal intera
tion energy Emin(Eq. (2.19)) is approximately proportional to λ.Finally, some remarks about the in�uen
e of �nite-size e�e
ts. The de-penden
e of the system size on the ordering transition of attra
tive rods isinvestigated in Fig. 3.14 (a) and (b). Part (a) displays the nemati
 order
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)Figure 3.14: Data for systems with N = 500 (#), N = 750 (�), and
N = 1000 rods (▽). (a) Nemati
 order parameter S∞ of the longest rods and(b) average intera
tion energy per rod 〈Erod〉 as a fun
tion of the pressure P ∗for attra
tive rods (ǫ∗ = 0.5). (
) The nemati
 order parameter S∞ for thelongest rods as a fun
tion of the pressure for a hard rod system. In all plots,systems with N = 750 and N = 1000 rods behave almost identi
ally.



52 CHAPTER 3. BULK BEHAVIORparameter of the longest rods as a fun
tion of the pressure. The value of
S∞ in both the isotropi
 and in the ordered phase 
hanges only slightly with
N . Espe
ially the systems with N = 750 and N = 1000 rods behave quitesimilarly. For the smallest system, �nite-size e�e
ts lead to a shift of theordering transition towards higher pressure. The data point for the N = 500system at P ∗ = 3 is not drawn be
ause no reliable average 
ould be obtaineddue to several 
luster formations and dissolutions during the Monte Carlorun. The shift of the ordering transition between the smallest and the twolarger systems is about ∆P ∗ ≈ 0.15. Thus, one 
an 
on
lude that �nite-sizee�e
ts are insigni�
ant in the N = 1000 system. All results shown in thiswork are obtained from systems with N = 1000 or more rods. The averageintera
tion energy per rod 〈Erod〉 is depi
ted in Fig. 3.14 (b). The jumps in
〈Erod〉 o

ur at the same pressures as those in S∞. The 
urves of 〈Erod〉 for
N = 750 and N = 1000 
oin
ide very well.The nemati
 order parameter of the longest rods of a hard rod system isplotted in Fig. 3.14 (
). Again, the systems with N = 750 and N = 1000parti
les behave almost identi
ally ex
ept for some deviations at P ∗ ≈ 4.7,i. e. in the region where nemati
 order sets in. In this region, however, thestandard deviation of S∞ is relatively large as demonstrated by the errorbarsfor N = 1000. For the system with N = 500 rods, S∞ is always slightlylarger ex
ept for the highly ordered state at P ∗ > 5.5. A signi�
ant shift ofthe ordering transition like for attra
tive rods is not observed.Subsuming the results for various system sizes one 
an draw the 
on
lu-sion that for N = 1000 the observed stru
tures in the tridisperse suspensionof hard and attra
tive rods are only subje
t to weak �nite-size in�uen
es.3.3 Polydisperse mixtureMost systems of synthesized 
olloidal rods have a polydisperse length distri-bution. This is a 
onsequen
e of the longitudinal growth pro
ess, whi
h hasno 
hara
teristi
 length s
ale. The length of the rods is, in general, a multipleof the length of its building blo
ks, e. g. atoms or ligands [1℄. In simulationsof length-polydisperse rod systems, the rod length has to be dis
retized intointervals of width ∆λ. A large ∆λ simpli�es a λ-dependent analysis of thesystem whereas a small ∆λ might be more realisti
. In pra
ti
e, a 
ompro-mise has to be found. Most results presented in this se
tion are obtained for
∆λ = 1. A smaller dis
retization ∆λ = 0.1 does not 
hange the out
omesigni�
antly as demonstrated at the end of this se
tion.The polydisperse system investigated here 
onsists of rods with axis ratios
λ = 1, 2, . . . , 8. The length distribution is assumed to be �xed and 
hosen as
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λFigure 3.15: The relative number of rods Nλ/N with axis ratio λ in thepolydisperse mixture.shown in Fig. 3.15. Similar distribution fun
tions have been measured, forexample, in solutions of amyloid �brils [69℄ or suspensions of 
lay rods [105℄.Results for S∞ are presented in Fig. 3.16 for various intera
tion strengths
ǫ∗. In addition to hard rods (ǫ∗ = 0) and attra
tive rods with ǫ∗ = 0.5, rodswith intera
tion strengths ǫ∗ = 0.25 and ǫ∗ = 0.33 are studied.The qualitative properties of the 
urves in Fig. 3.16 are very similar tothose of the tridisperse mixture dis
ussed in Se
tion 3.2. For all polydispersesystems, the nemati
 order apportioned by 
omponents in
reases with thelength of the rods. At low pressures, the system is isotropi
 and S∞ is 
loseto zero for all rod lengths. At high pressures, S∞ ≥ 0.8 is found for rodswith axis ratio λ = 7 and λ = 8, while short rods are distin
tly less ordered.The system with the largest intera
tion strength ǫ∗ = 0.5 is analyzed inFig. 3.16 (a). Below P ∗ = 3, all 
omponents show hardly any orientationalorder. At P ∗ = 3, a jump 
an be seen in S∞ for the two longest 
onstituents.For intermediate axis ratios (λ ∈ {5, 6}), S∞ grows almost linearly with P ∗for P ∗ > 3 while short rods remain mostly isotropi
.For lower intera
tion strengths ǫ∗, 
onsiderable orientational order setsin at higher pressure and the step-like in
rease of S∞ for the longest rodsbe
omes rather 
ontinuous. At high pressures, the system is less 
learlydivided into long rods with essential orientational order and short rods withalmost no orientational order. Instead, for the hard rod limit, S∞ in
reasesalmost linearly with λ and, at high pressures, even rods of axis ratio 2 showa distin
t nemati
 order.Fig. 3.17 shows typi
al 
on�gurations of ordered systems with (a) ǫ∗ = 0.5and (b) ǫ∗ = 0. For the sake of 
learness small rods with axis ratios λ ≤ 5 areomitted. In Fig. 3.17 (a), a highly ordered monolayer is visible in the middleof the box. As will be demonstrated below, the layer is ordered hexati
ally. In
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(
) (d)Figure 3.16: The orientational order parameter S∞ as a fun
tion of thepressure P ∗ determined for every 
omponent with axis ratio λ in systems withintera
tion strength (a) ǫ∗ = 0.5, (b) ǫ∗ = 0.33, (
) ǫ∗ = 0.25, and (d) ǫ∗ = 0.The system with ǫ∗ = 0 
orresponds to the hard rod model.Fig. 3.17 (b), long hard rods form a nemati
 droplet, whi
h is less marked o�from the surrounding system. Note that the formation of a nemati
 droplethas not been observed in Se
tion 3.2. This is the most signi�
ant di�eren
e
ompared to the tridisperse mixture.One may assume that the formation of the monolayer is a �nite-size e�e
t.However, similar monolayers have been observed in experiments with attra
-tive rods, where they turn out to be extremely long-living 
on�gurations[22℄. In the hard rod system, a nemati
 droplet is formed by predominantlylong rods. Long-living nemati
 domains of the size of several rod lengths arealso found experimentally [22℄. Be
ause of the surfa
e energy at the dropletinterfa
e, the formation of ordered domains may be shifted towards higherpressures in the 
hosen ensemble.The hexati
 order of the 
luster as well as fra
tionation are re�e
ted in
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(a) (b)Figure 3.17: Typi
al ordered 
on�gurations of (a) attra
tive rods (ǫ∗ = 0.5)at pressure P ∗ = 3.5 and (b) hard rods at pressure P ∗ = 6.3. For 
larity,short rods (λ ≤ 5) are omitted.the pair 
orrelation fun
tions. A good insight into the system is provided by
g

(6,λ)
‖ and g

(6,λ)
⊥ , whi
h analyze the lo
al density of rods with an axis ratio

λ around referen
e rods with an axis ratio 6. The isotropi
 stru
ture of thesystem at low pressure is 
on�rmed in Fig. 3.18 (a) and (b). They showpair 
orrelations between rods with axis ratio λref = 6 and other rods, whi
hare typi
al for an isotropi
 state (
mp. Fig. 3.4 (a) and (b)). Fig. 3.18 (
)and (d) shows pair 
orrelation fun
tions for a highly ordered system with
ǫ∗ = 0.5 and P ∗ = 3.84. Correlations with long rods (represented by g

(6,8)
⊥( ) and g

(6,6)
⊥ ( )) show a double peak pattern, whi
h indi
ates hexati
order while 
orrelations with smaller rods, represented by g

(6,4)
⊥ ( ), havethe weakly stru
tured 
urve of an isotropi
 state. These observations 
anbe explained as follows: Systems with ǫ∗ = 0.5 at high pressure form ahexati
 monolayer of predominantly long rods in 
oexisten
e with an isotropi
system of short rods. A large fra
tion of the rods with axis ratio λref = 6 isin
luded in the monolayer while the rest is lo
ated in the isotropi
 part of thesystem. Contributions to g

(6,λ)
⊥ for large λ stem predominantly from referen
erods inside the monolayer while the remaining rods of length λref = 6 aresurrounded by an isotropi
 system of small rods. For the same reason, g

(6,λ)
||is 
omparable to the isotropi
 
urves for λ = 4 while for large λ, g

(6,λ)
|| growsextremely slowly towards 1 with in
reasing r||, sin
e almost all long rods arelo
ated transversely.In Fig. 3.19 (a)-(
), the growth of the hexati
 monolayer is do
umented
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(
) (d)Figure 3.18: (a) Transversal pair 
orrelation fun
tion g⊥(r⊥) and (b) longitu-dinal pair 
orrelation fun
tion g||(r||) in a system of attra
tive rods (ǫ∗ = 0.5)in the isotropi
 state at pressure P ∗ = 2.5. (
) g⊥(r⊥) and (d) g||(r||) inthe ordered state at pressure P ∗ = 3.84. The double peak pattern in (
) is
hara
teristi
 for long-range hexati
 order.for ǫ∗ = 0.33 and various pressure values. At P ∗ = 4.17, the system ispredominantly isotropi
, but small 
lusters of long rods have formed, yet.The shoulder of the se
ond peak of g(6,8)
⊥ ( ) already hints at the formationof a hexati
 ordering, whi
h be
omes 
learly visible from the double-peak at

P ∗ = 4.34. The hexati
 monolayer has formed 
ompletely at P ∗ = 4.84.Altogether, an in
reasing pressure leads to the growth of a highly orderedmonolayer made up predominantly by long rods. This results in a rise of theoverall order parameter S∞ for large rod lengths in Fig. 3.16. In Fig. 3.19(d), g(6,λ)
⊥ is shown for a hard rod system at a high pressure. Here, no hexati
order exists and, 
onsequently, no double peaks are visible.The lo
al fra
tionation in the system 
an be measured dire
tly from

〈λ〉ngb(λref), whi
h is de�ned as the average axis ratio of the 36 nearest neigh-
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(
) (d)Figure 3.19: (a)-(
) Transversal pair 
orrelation fun
tion g⊥(r⊥) for attra
-tive rods with ǫ = 0.33 (a) at P ∗ = 4.17, (b) at P ∗ = 4.34, and (
) at
P ∗ = 4.84. The se
ond maximum in (a) vaguely indi
ates a double peakstru
ture, whi
h be
omes more pronoun
ed at higher pressures. (d) Transver-sal pair 
orrelation fun
tion g⊥(r⊥) of a hard rod system in the ordered phaseat P ∗ = 6.3.bors of referen
e rods with axis ratio λref. (In a perfe
t hexati
 monolayer,a rod i has 36 neighboring rods j with rij < 3D.) In Fig. 3.20, 〈λ〉ngb ispresented as a fun
tion of λref. In the isotropi
 state (�), 〈λ〉ngb is nearly
onstant, whi
h implies that long and short rods are surrounded by rodsof the same average length. The solid symbols in Fig. 3.20 show 〈λ〉ngb forhighly ordered phases with di�erent intera
tion strengths at pressures, forwhi
h the orientational order for λ = 7 is approximately S∞ ≈ 0.7. Inthe ordered states, short rods are preferentially surrounded by rods of smalllength while rods with a large axis ratio a

umulate long rods. The separa-tion of long rods in
reases with the size of ǫ∗, showing that fra
tionation isenhan
ed by the attra
tive intera
tion of the rods.
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losest neighbors of referen
erods with axis ratio λref. Shown are results for an isotropi
 system with ǫ∗ =
0.5, P ∗ = 1.5 (�) and ordered systems with Sλ=7

∞ ≈ 0.7, obtained by ǫ∗ = 0.5at P ∗ = 4.0 (�), ǫ∗ = 0.25 at P ∗ = 5.5 (•) and ǫ∗ = 0 at P ∗ = 6.64 (N).A polydisperse suspension with a length distribution of the same shapeas that in Fig. 3.15, but ∆λ = 0.1 is studied in the following. Fig. 3.21 (a)shows the 
orresponding length distribution. The behavior of the nemati
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(a) (b)Figure 3.21: (a) The length distribution of the polydisperse mixture with ahigher resolution of the axis ratio λ. (b) Nemati
 order parameter S∞ as afun
tion of the pressure P ∗ in the mixture of attra
tive rods with ∆λ = 0.1.order parameter of the mixture with ∆λ = 0.1 is presented in Fig. 3.21 (b).Di�eren
es from the mixture with ∆λ = 1 shown in Fig. 3.16 (a) appear to bemarginal. S∞ jumps for rods with 8 ≤ λ and 7 ≤ λ < 8 from a small to a largevalue between P ∗ = 3 and P ∗ = 3.17. Intermediate rod lengths 6 ≤ λ < 7parti
ipate partially in the ordering pro
ess whereas shorter rods remain
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 at P ∗ ≥ 3.17. It is remarkable that the ordering transition o

ursexa
tly in the same pressure region as for the mixture with ∆λ = 1, i. e.between P ∗ = 3.0 and P ∗ = 3.17. One 
an 
on
lude that the polydispersemixture with axis ratios restri
ted to integer values resembles mixtures with
ontinuous axis ratios in most aspe
ts, at least for the applied parameterrange.
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Chapter 4Substrate indu
ed e�e
tsThe stru
ture of �uids, espe
ially of 
omplex �uids, 
an be a�e
ted signi�-
antly in the vi
inity of a wall like the 
on�ning walls of the 
ontainer. Froma te
hni
al point of view, two adja
ent walls 
an be realized easily in 
om-puter simulations. For not too large wall separations, the des
ribed geometryis a slit pore and a variety of studies fo
used on 
omplex �uids in slit pores[23, 32, 37, 63, 79, 98℄. The in�uen
e of a single 
on�ning wall 
an be in-vestigated either for very large wall separations or with spe
ial simulationte
hniques [21℄. In order to avoid the additional 
osts of the method de-s
ribed in [21℄ two plane parallel walls with large separations are simulatedwith the mirroring te
hnique introdu
ed in Se
tion 2.4.2. It turns out thatwall indu
ed 
orrelations de
ay relatively fast with in
reasing distan
e fromthe wall in mixtures of length-polydisperse rods and thus the �uid behaviornear one wall is not in�uen
ed by the other wall.The stru
ture of the 
on�ning walls has great relevan
e on the �uid prop-erties. We 
he
k the impa
t of the three di�erent substrate patterns sket
hedin Fig. 4.1. The planar wall does not break any symmetry in the xy-plane.The groove pattern is translational invariant along the x-dire
tion. It is 
har-a
terized by the depth zC and the width yC of the grooves. The translationalinvarian
e of the 
orrugated substrate is broken in a 
avity pattern. There
tangular 
avities have depth zC , width yC , and length xC . Results are
ompared for grooves that vary in yC and 
avities that di�er in xC .4.1 Tridisperse suspensionThis se
tion 
opes the behavior of the tridisperse mixture in the vi
inity ofa substrate. The pressures, whi
h are investigated in detail, are P ∗ = 0.5and P ∗ = 4 and are below the regime where a 
orresponding bulk system61
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z

y
x

Cz

yC yC

xC

Cz(a) (b) (
)Figure 4.1: Illustrations of the three investigated substrate types. (a) Planarwall, (b) 
orrugated wall (grooves), and (
) 
avity pattern.of hard rods be
omes anisotropi
 (
mp. Fig. 3.6 (b) on page 44). We 
all
P ∗ = 0.5 low pressure and P ∗ = 4 high pressure. The emphasis lies on hardrod systems sin
e most interesting e�e
ts are observed at P ∗ ≈ 4, for whi
hbulk systems of attra
tive rods show a pronoun
ed stru
ture formation andfra
tionation, already. Here, we fo
us on substrate indu
ed stru
ture forma-tion and attra
tive rod systems are thus of minor interest. For 
omparison,some studies are performed with attra
tive rods. In these 
ases, intera
tionsof rods with the substrate are purely repulsive as for the hard rod system.The stru
ture of the systems is analyzed in terms of density distribu-tion fun
tions and orientational 
orrelation fun
tions as introdu
ed in Se
-tion 2.5.3 and Se
tion 2.5.5. The properties of the various substrate patterns
on
erning demixing and fra
tionation are investigated in terms of the spa-tially resolved mole fra
tion (see Se
. 2.5.4).4.1.1 Planar substrateThe planar wall is examined �rst. Fig. 4.2 displays the density pro�le ofea
h 
omponent of a hard rod system at low and high pressure. Part (a)shows the results for P ∗ = 0.5. The substrate is lo
ated at |z − z0| = 0for all plots. The density pro�les of long ( ), intermediate ( ), andshort rods ( ) exhibit a maximum at |z − z0|/D = (λ + 1)/2. At therespe
tive distan
e from the substrate, the orientational degrees of freedomare no longer restri
ted by the substrate. The maximum in the densityis a
tually a depletion e�e
t be
ause an una

essible void is 
reated if arod with orientation parallel to the wall normal is lo
ated at separationsslightly larger than |z−z0|/D = (λ+1)/2. Similar observations were already
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(a) (b)Figure 4.2: Density distribution ρ∗λ as a fun
tion of the distan
e to the wall
|z−z0| of the tridisperse hard rod suspension in 
onta
t with a planar substrate.The single 
omponent densities are plotted (a) at low pressure and (b) at highpressure.des
ribed in Se
tion 3.2 where the 
orresponding peaks in g⊥ arose from so
alled '|−' 
onstellations. In the following, the notation is adopted with '||'symbolizing a rod, whi
h adheres �at on the substrate, and '|−' indi
ates arod, whi
h is perpendi
ular to the wall at distan
e |z − z0|/D = (λ + 1)/2.The density distribution of the long rods ( ) shows a small maximum at

|z− z0| ≈ 0.7D but is distin
tly redu
ed in the range 1.2 < |z− z0|/D < 2.5.Apparently, long rods either 
onta
t the substrate at full length or stay awayfrom the substrate far enough so that rotations are not strongly hindered bythe substrate.Part (b) of Fig. 4.2 depi
ts the same distribution fun
tions at P ∗ = 4.The stru
ture of the �uid is 
hanged signi�
antly. The maxima from '|−'
on�gurations disappear and several layers of rods, whi
h are aligned parallelto the substrate, are formed all separated by about one rod diameter. Theheight of the peaks in
reases with the rod length. It is more favorable forthe system to deposit long rods at the substrate for entropi
 reasons. Theexplanation is as follows: Assume a long rod is taken from the bulk, i. e. faraway from the substrate and is adhered at the substrate. The orientationaldegrees of freedom of the rod are redu
ed but at the same time more freevolume is a

essible to the rest of the rods in the bulk. If, on the 
ontrary,two short rods with the same overall length as the long rod are taken fromthe bulk and adhered at the wall, more rotational entropy gets lost, but thegain in a

essible volume is 
omparable. Thus, a pronoun
ed segregation oflong rods at the substrate is observed.
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λ=3(a) (b)Figure 4.3: The orientational distribution fun
tion gθ as a fun
tion of thedistan
e |z − z0| to the wall in a system of hard rods in 
onta
t with a planarsubstrate at (a) low and (b) high pressure.The orientational 
orrelation fun
tion gθ is plotted in Fig. 4.3 at lowand high pressure. Some properties of gθ are re
alled qui
kly: gθ is the

z-dependen
e of the nemati
 order parameter with the dire
tor n parallelto the z-axis ez. The 
odomain 
omprises the interval [−0.5, 1], where thelower bound is adopted by rods perpendi
ular to ez and the upper boundis rea
hed when all rods are parallel to the z-dire
tion. gθ vanishes for anisotropi
 distribution. The low pressure results for gθ are depi
ted in Fig. 4.3(a). gθ is minimal (and negative) at |z − z0| = 0.5D for all rod lengthssin
e rods proximate to the substrate have to orient parallel to the substrateand thus perpendi
ular to ez. Ea
h 
urve adopts its maximal value at |z −
z0|/D = (λ+1)/2, whi
h is in perfe
t agreement to the observations from thedensity distribution fun
tions, where the 
orresponding peaks were addressedto '|−' 
onstellations. At larger distan
es from the wall, gθ is identi
ally zerore�e
ting the isotropi
 state of the system. Fig. 4.3 (b) shows gθ in the highpressure regime. The layer formation 
lose to the wall is 
on�rmed by 2-3minima in gθ whereas indi
ations for '|−' 
on�gurations are absent. Within
reasing distan
e from the substrate, the 
orrelations de
ay1, but mu
hslower than at low pressure. The 
orrelations of long rods de
ay slowest. gθ isaround zero at large separations from the wall (|z−z0| & 13D). Orientational
orrelations range distin
tly longer than 
orrelations of the density (Fig. 4.2(b)). The extension of the simulation box 
omprises 20D in z-dire
tion2.1A de
ay of 
orrelations in this 
ase is related to an in
rease of gθ, if gθ < 0.2Note that the e�e
tive wall separation is 40D due to the applied mirroring simulationte
hnique.
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ts from the �nite box dimensions should be small.The evolution of the density pro�le for the tridisperse system at 
ompres-sion is studied in more detail in Fig. 4.4. Data for the short rods is presented
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(a) (b)Figure 4.4: Density distribution ρ∗λ as a fun
tion of the distan
e |z − z0| tothe wall of the tridisperse hard rod system in 
onta
t with a planar substratefor (a) small rods (λ = 3) and (b) long rods (λ = 7) at di�erent pressures.in part (a). The low pressure results ( ) were already dis
ussed above. Atintermediate pressure ( ) signi�
an
ies from '||' and '|−' 
onstellations arepresent. The multilayer stru
ture at high pressure ( ) is re�e
ted in ρ∗
3by several maxima separated by 1D. Indi
ations for '|−' 
on�gurations areabsent. It is noteworthy that the density of short rods in the layers is smallerthan in the bulk. The density pro�le of long rods is displayed in Fig. 4.4(b). The 
urves for P ∗ = 0.5 and P ∗ = 4 have already been des
ribed. At

P ∗ = 2, one distin
t maximum from rods �at on the substrate is observed.There are also indi
ations for a se
ond layer at |z − z0| ≈ 1.8D and for '|−'
on�gurations at |z − z0| ≈ 4D.Hard and attra
tive rod systems are 
ompared in Fig. 4.5. Note that therod-substrate intera
tion is purely repulsive in both 
ases. Results for thelow pressure regime are plotted in Fig. 4.5 (a) and (b). The density pro�lesof short rods are almost identi
al (Fig. 4.5 (a)). The density distributionfun
tion of large rods deviates slightly at the �rst maximum that stems fromrods lying �at on the substrate but is identi
al else. One observes that
ρ∗

7 of hard rods ( ) is somewhat larger than ρ∗
7 of attra
tive rods ( )at |z − z0| ≈ 0.7D. This e�e
t 
an be explained as follows: Imagine anisotropi
 system of attra
tive rods. A rod in the bulk experien
es attra
tiveintera
tions from all dire
tions. If one rod is taken from the bulk and pla
ed�at onto the (hard) substrate, it is s
reened from attra
tive intera
tions on
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(
) (d)Figure 4.5: Comparison of hard ( ) and attra
tive rods ( ). Densitypro�les as a fun
tion of the distan
e |z − z0| to the wall in the low pressureregime (P ∗ = 0.5) for (a) short and (b) long rods. Corresponding plots areshown in (
) and (d) for an intermediate pressure (P ∗ = 2).the substrate side. As a result, the internal energy of the system in
reasesand the 
orresponding 
on�guration is slightly less favorable.The same e�e
t o

urs in the intermediate pressure regime as demon-strated in Fig. 4.5 (d). The density of long hard rods ( ) in the �rst layeris in
reased with respe
t to attra
tive rods ( ). The se
ond layer, however,is more pronoun
ed for attra
tive rods and the maximum is shifted towardsthe substrate. Short rods are 
ompared in Fig. 4.5 (
). The two 
urves agreeto a large extent but deviate at the se
ond maximum, whi
h is due to '|−'
on�gurations, with the density of hard rods being larger. Obviously, thereis more a

essible volume for short hard rods than for short attra
tive rodsat |z − z0| ≈ 2D sin
e ρ∗
7 exhibits the reverse behavior in this region.The spatially resolved nemati
 order parameter S∞ is plotted in Fig. 4.6for hard rods. The order at the substrate is substantially larger than in the
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Figure 4.6: Nemati
 order parameter S∞ as a fun
tion of the distan
e |z−z0|to the wall of hard rod systems at low ( ), intermediate ( ), and large( ) pressure.bulk for all 
onsidered pressures. At P ∗ = 0.5 ( ) and P ∗ = 2 ( ),order de
ays rapidly with in
reasing |z − z0| and adopts the bulk value at
|z − z0| ≥ 3D. The value of S∞ proximate to the wall is quite similar.In the high pressure region ( ), nemati
 order is distin
tly larger andranges mu
h further into the bulk. S∞ is about 50% of its maximal value at
|z − z0| = 3D where the systems with lower pressures have already rea
hedthe bulk value.The investigations of the tridisperse suspension in 
onta
t with a planarwall are �nalized by two pi
tures of typi
al rod 
on�gurations at low and highpressure in Fig. 4.7. Part (a) 
orresponds to the low pressure situation. Thesubstrate is the big area in front. The system is basi
ally isotropi
 and noobvious 
overage of the substrate is visible. At high pressure, the substrateis preferentially 
overed by long rods.



68 CHAPTER 4. SUBSTRATE INDUCED EFFECTS

(a) P ∗ = 0.5 (b) P ∗ = 4Figure 4.7: Snapshots of hard rod systems in 
onta
t with a planar substrate(a) in the low pressure and (b) in the high pressure region. The substrate islo
ated at the front plane of the box.4.1.2 Corrugated substrateThe se
ond investigated substrate type is a groove-like stru
ture. The pat-tern is 
omposed of a planar wall lo
ated at |z − z0| = 0 with equally-spa
edside walls on top. The side walls 
onsist of sta
ks of in�nitely long 
ylindersoriented along the x-axis. The depth of the grooves is zC = 4D for all datapresented here, i. e. ea
h side wall of a groove 
onsists of 4 
ylinders of diam-eter D sta
ked on top of ea
h other (see Fig. 4.8 (d)). Fig. 4.8 shows densitypro�les for grooves of width yC = 3.5D at di�erent pressures. For a lowpressure, short ( ) and intermediate rods ( ) are mainly homeotropi
inside the grooves as the peaks at |z− z0| = 2D and |z− z0| = 3D in Fig. 4.8(a) reveal. Interestingly, long rods ( ) do not form a layer �at on thesubstrate as this is the 
ase for the planar wall. The side walls of the groovesrestri
t the orientational degrees of freedom in the xy-plane. This in�uen
eis apparently enough to suppress the layer formation. Note that at P ∗ = 0.5and for a groove width of yC = 3.5D the density of short rods is largest insidethe grooves. At further distan
es from the substrate, three small peaks areobserved lo
ated at |z − z0|/D ≈ zC + (λ + 1)/2 for all rod lengths. At therespe
tive positions the 
orresponding rods are no longer dire
tly a�e
ted bythe substrate stru
ture.At a slightly higher pressure P ∗ = 1, we �nd a distin
t 
hange of ρ∗
7 and ρ∗

5inside the grooves as demonstrated in Fig. 4.8 (b). The density of long rods( ) is maximal at |z − z0| ≈ 0.8D and a se
ond layer is indi
ated weakly.
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(
) (d)Figure 4.8: (a)-(
) Density pro�les ρ∗λ as a fun
tion of the distan
e |z − z0|to the wall of hard rod systems in 
onta
t with a substrate with grooves ofwidth yC = 3.5D at the pressure (a) P ∗ = 0.5, (b) P ∗ = 1, and (
) P ∗ = 4.(d) Illustration of the substrate with grooves. Ea
h side wall is 
omposed offour 
ylinders of diameter D.Rods of intermediate length ( ) exhibit an additional peak in the densityfrom '||' 
on�gurations. The density pro�le of short rods ( ) remainsbasi
ally un
hanged.The density distribution fun
tions in the high pressure regime are plottedin Fig. 4.8 (
). Four pronoun
ed maxima of ρ∗
7 are observed with the �rstthree peaks inside and the fourth peak on top of the grooves. The density ofshorter rods is redu
ed signi�
antly in the grooves with ρ∗

5 being about 25%of ρ∗
7. The density of λ = 3 rods inside the grooves is about 20% of the bulkvalue.The stru
ture of the system is elu
idated further via the orientational
orrelation fun
tions gθ and gφ (see Se
tion 2.5.5) in Fig. 4.9. Part (a) de-pi
ts gθ at low pressure (P ∗ = 0.5). The values of gθ at the peaks from
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(
) (d)Figure 4.9: Orientational 
orrelation fun
tions gθ and gφ as a fun
tion of thedistan
e |z − z0| to the wall of a tridisperse hard rod mixture in front of asubstrate with broad grooves (yC = 3.5D). Results are presented for the lowpressure regime ((a) and (b)) and for the high pressure regime ((
) and (d)).the '|−' 
on�gurations are measurably larger than in the 
ase of the planarwall be
ause the orientations are fo
used more in z-dire
tion by the grooves.In addition to the minimum inside the grooves, a se
ond weaker minimumo

urs at |z − z0| ≈ 4.7D from rods �at on top of the grooves. The rangeof the 
orrelations indu
ed by the groove pattern ex
eeds the range of the
orrelations for the planar wall very pre
isely by the depth zC = 4D of thegrooves.The orientational 
orrelations in x-dire
tion measured by gφ are plottedin Fig. 4.9 (b). gφ is maximal at the substrate for all rod lengths and de
aysqui
kly with in
reasing |z−z0|. gφ de
reases parti
ularly fast when |z−z0|/Dapproa
hes (λ + 1)/2 and meets in a sharp bend, an e�e
t whi
h is relatedto the preferred o

urren
e of '|−' 
on�gurations. Orientational 
orrelationsin x-dire
tion vanish at separations |z − z0| ≥ 8D.



4.1. TRIDISPERSE SUSPENSION 71The layer formation inside the grooves at high pressure is also re�e
tedin gθ and gφ as shown in Fig. 4.9 (
) and (d). Maxima of the lo
al densityare a

ompanied by strong orientational order parallel to the x-dire
tion sothat gθ and gφ adopt a lo
al minimum or maximum, respe
tively. Note thatperfe
t alignment perpedi
ular to the z-axis 
orresponds to gθ = −0.5. Both
orrelation fun
tions are basi
ally zero for |z − z0| ≥ 15D.Density distribution fun
tions for narrow grooves of width yC = 1.5D inthe low and high pressure regime are presented in Fig. 4.10. The essential
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(a) (b)Figure 4.10: Density distribution ρ∗λ as a fun
tion of the distan
e |z − z0|to the wall of a hard rod system in 
onta
t with a 
orrugated substrate withnarrow grooves (yC = 1.5D) at (a) low and (b) high pressure. At low pressure,the density of long rods is largest inside the grooves in 
ontrast to the 
ase ofbroad grooves (Fig. 4.8 (a)).new aspe
t of the narrow grooves 
ompared to the broader grooves of width
yC = 3.5D is the fa
t that now the orientation spa
e of all rods is stronglyredu
ed inside the grooves. Espe
ially at low pressure this e�e
t 
omes intoplay as shown in part (a) of Fig. 4.10. The density of short and intermediaterods is distin
tly lower than for the broad grooves but the maxima from'|−' 
on�gurations remain. Long rods possess the largest density due to theredu
tion of shorter rods. The value of ρ∗

7, however, does not 
hange mu
h
ompared to the broader grooves. The qualitative behavior of the densitydistribution for |z−z0| ≥ 4D is quite similar to that of a density distributionfun
tion in front of a planar wall lo
ated at |z−z0| = 4D (
mp. Fig. 4.2 (a)):The density is maximal for all rod lengths at distan
es where orientations areno longer a�e
ted by the substrate. Only the longest rods form a weak layer�at on top of the wall/grooves and ρ∗
7 lowers measurably between the maximafrom '||' and '|−' 
onstellations. Obviously, narrow grooves a
t almost like a



72 CHAPTER 4. SUBSTRATE INDUCED EFFECTSplanar substrate for rods that are not inside the grooves.Fig. 4.10 (b) depi
ts 
urves in the high pressure regime. Multiple layersare found inside the grooves, again. The values of the di�erent ρ∗
λ at thepeaks as well as their ratios are 
omparable to the broader grooves. Thedensity between the layers, i. e. in the minima, redu
es distin
tly, however.The density pro�les on top of the grooves di�er signi�
antly from the broadgrooves, espe
ially for λ = 7 and λ = 5 rods. Two peaks o

ur in ρ∗

7 and ρ∗
5.The value of ρ∗

7 at |z−z0| ≈ 4.7D is about twi
e as large as for broad groovesand the 
orrelations imposed by the narrow grooves range further into thebulk.Typi
al rod 
on�gurations at high pressure are drawn in Fig. 4.11 forboth broad and narrow grooves. The view is along the z-axis and the planar

(a) P ∗ = 4, yC = 3.5D (b) P ∗ = 4, yC = 1.5DFigure 4.11: Snapshots of the tridisperse hard rod suspension in 
onta
t witha substrate with (a) broad and (b) narrow grooves at high pressure.wall is transparent. The side walls of the grooves are made up of in�nitelylong 
ylinders, whi
h are 
olored green in the snapshots.Before we turn to the next substrate pattern, here 
omes a brief summaryof the results for the grooves: We investigated a tridisperse mixture of hardrods in 
onta
t with a substrate with broad and narrow grooves. The systemswere studied at low (P ∗ = 0.5) and high (P ∗ = 4) pressure. In the lowpressure regime, the density of small rods is largest in the broad grooveswhereas for narrow grooves the density of long rods dominates. At highpressure, multiple layers of predominantly long rods build in the grooves.



4.1. TRIDISPERSE SUSPENSION 734.1.3 Cavity patternThe third type of studied substrate patterns has a re
tangular 
avity stru
-ture formed by a set of side walls in x- and y-dire
tion on top of the hardplane at |z−z0| = 0 (see Fig. 4.12 (d)). All 
avities have a width yC = 3.5D.The depth is 
hosen zC = 4D throughout this se
tion. In the following fourdi�erent lengths of the 
avities are investigated: Cavities where the longestrods �t in (xC = 8.5D), 
avities for the intermediate (xC = 6.5D) and shortrods (xC = 4.5D), and 
avities where no rod �ts in with its orientation pla-nar to the wall and parallel to the side wall (xC = 3.5D). One 
an image a
avity pattern as a groove stru
ture with additional 
ross walls that breakthe translational invarian
e of the groove stru
ture in x-dire
tion.Density distribution fun
tions of the systems with the longest 
avities(xC = 8.5D) in the low, intermediate, and high pressure regime are pre-sented in Fig 4.12 (a)-(
). The low pressure results are shown in part (a).The behavior of ρ∗
3 ( ) equals that from the planar wall and the groovestru
ture. The maximum of the '|−' 
onstellations is somewhat smaller,however. Larger deviations from the previously studied substrate types areobserved for the longer rods. ρ∗

5 ( ) is redu
ed signi�
antly in the range
|z − z0| ≤ 2D and ρ∗

7 ( ) is de
reased to about 10% of the bulk value.The additional restri
tion of the a

essible volume due to the 
ross wallshas its largest impa
t on longer rods, apparently. The 
hara
teristi
s for
|z − z0| ≥ 4D are essentially the same as for the groove stru
ture.One pronoun
ed and one weak layer of rods parallel to the substrate areobserved at intermediate pressure P ∗ = 2 (Fig. 4.12 (b)) inside the 
avities.The layers are mainly 
omposed of long rods. There is no indi
ation thatshort rods are in
orporated in the se
ond layer. Instead, they show the peakfrom '|−' 
onstellations. All in all, the 
omposition inside the 
avities in theintermediate pressure regime is quite heterogeneous.The polydispersity inside the 
avities redu
es drasti
ally in the high pres-sure regime as demonstrated in Fig. 4.12 (
). The 
avities are essentially�lled with long rods arranged in three layers. ρ∗

5 is about 15% of ρ∗
7 and

ρ∗
3 is basi
ally zero. One also �nds some layering on top of the 
avitiesbut with a distin
tly larger polydispersity. A �rst 
omparison of the planarwall, grooves, and long 
avities points out that the best results 
on
erninga length spe
i�
 aggregation are obtained by the 
avities. These propertiesare illuminated in detail in Se
tion 4.1.4.Fig. 4.13 depi
ts density distribution fun
tions for 
avities of length xC =

6.5D and xC = 4.5D in the high pressure regime. Results for the low pressureare omitted due to their similarity with the low pressure results of long
avities. In the interior of the 
avities of intermediate length (Fig. 4.13 (a)),
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Cz(
) (d)Figure 4.12: Density distribution ρ∗λ as a fun
tion of the distan
e |z − z0|to the wall of a tridisperse system of hard rods in 
onta
t with a substratewith long 
avities of length xC = 8.5D (a) at low pressure (P ∗ = 0.5), (b)at intermediate pressure (P ∗ = 2), and (
) at high pressure (P ∗ = 4). (d)Illustration of a substrate with re
tangular 
avities.three layers are found. The main 
ontribution stems from rods of axis ratio
λ = 5. Short rods are in
orporated into the layers to a larger extend as inthe 
ase of long 
avities. On top of the 
avities, one pronoun
ed and oneweaker layer are formed, whi
h 
onsist mainly of the longest rods. The peaklo
ation at |z − z0| ≈ 4.7D is typi
al for a layer �at on top of the 
avities.The height of the maximum of ρ∗

7 at |z − z0| ≈ 4.7D is 
omparable to thelonger 
avities (Fig. 4.12 (
)) but the de
ay of ρ∗
7 for |z − z0| ≥ 6D is slower.Short 
avities of length xC = 4.5 in�uen
e the stru
ture of the systemin a 
ompletely di�erent manner as demonstrated in Fig. 4.13 (b). In therange |z − z0| ≤ 2D, only ρ∗

3 is non zero. ρ∗
3 reveals two maxima inside the
avities. The �rst maximum arises from short rods lying �at on the substratewhereas the se
ond maximum stems from '|−' 
onstellations. Maxima from
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(a) (b)Figure 4.13: Density distribution ρ∗λ as a fun
tion of the distan
e |z − z0|to the wall for hard rod systems in the high pressure regime in 
onta
t with asubstrate with 
avities of (a) length xC = 6.5D and (b) length xC = 4.5D.homeotropi
ally aligned rods are also observed in ρ∗
5 at |z−z0| = 3D and in ρ∗

7at |z−z0| = 4D. Thus, the short 
avities are not entirely �lled with short rodsbut longer rods penetrate the 
avities with their orientation perpendi
ularto the substrate plane.Fig. 4.14 gives an overview of the orientational 
orrelation fun
tion gθ forthe previously investigated 
avity stru
tures in the high pressure regime. InFig. 4.14 (a), gθ is plotted for the 
avity stru
ture for the long rods (xC =
8.5D). The behavior is qualitatively very similar to the groove-like stru
ture(Fig. 4.9 (
)) with multiple layers inside the 
avities and the de
ay of the
orrelations for |z − z0| > 6D. The orientational order of rods perpendi
ularto the z-axis is signi�
antly smaller inside 
avities of intermediate length(xC = 6.5D) as demonstrated in Fig. 4.14 (b). We know already from thedensity pro�les that layer formation in these 
avities is less pronoun
ed andlong rods are prevented from entering. Short rods ( ) exhibit orientationsin the xy-plane only in the �rst layer. gθ in
reases qui
kly ending in themaximum arising from '|−' 
onstellations. Two planar layers are observedfor intermediate rods ( ). gθ for long rods ( ) is zero in the range 0 ≤
|z−z0|/D . 3.5 be
ause the density is zero. The maximum is rea
hed at thelo
ations from '|−' 
onstellations and gθ forms several minima on top of the
avities. Inside the short 
avities with xC = 4.5D (Fig. 4.14 (
)) only shortrods 
lose to wall orient perpendi
ular to the z-axis. Instead of a multilayerformation, pronoun
ed peaks indi
ate '|−' 
on�gurations. Interestingly, short
avities do not indu
e long range orientational 
orrelations sin
e gθ vanishesfor |z − z0| & 9D, already. Even the system with the planar wall (Fig. 4.14
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) (d)Figure 4.14: Orientational 
orrelation fun
tion gθ as a fun
tion of the distan
e

|z − z0| to the wall at high pressure for (a) long, (b) intermediate, and (
)short 
avities. Results for the planar wall are plotted in (d) for 
omparison.(d)) is subje
t to longer ranged 
orrelations.Snapshots illustrate the des
ribed observations. The view in Fig. 4.15(a)-(d) is along the z-axis and the planar wall is transparent, again. Typi
alexamples of rod 
on�gurations in the high pressure regime at P ∗ = 4 aredepi
ted in part (a)-(
). Part (a) shows the 
ase of the longest 
avities withlength xC = 8.5D and 
on�rms the high sele
tivity of the substrate patternto the long rods. A snapshot for the intermediate 
avity length is presented inpart (b). We see that most 
avities are either �lled with rods of intermediatelength or with short rods, i. e. a demixing of short and long rods o

urs inthe individual boxes. This distin
tion 
ould not be made upon the resultsfor the density distribution fun
tion where only averages in the xy-plane areobtained. The same observation holds for the small 
avities shown in part (
):One 
avity is either �lled by short or homeotropi
ally aligned longer rods.Part (d) depi
ts a system with intermediate 
avities at a higher pressure
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(a) xC = 8.5D, P ∗ = 4 (b) xC = 6.5D, P ∗ = 4

(
) xC = 4.5D, P ∗ = 4 (d) xC = 6.5D, P ∗ = 5Figure 4.15: (a)-(
) Snapshots of tridisperse hard rod systems in the highpressure regime (P ∗ = 4) with 
avities of di�erent length xC . (d) Cavities ofintermediate length (xC = 6.5D) at P ∗ = 5.
P ∗ = 5. All 
avities are essentially �lled with rods of intermediate lengtho�ering a better sele
tivity to λ = 5 rods than at the pressure P ∗ = 4.The smallest 
avities investigated have a length xC = 3.5D. Thus, noteven the short rods are able to align parallel to the x-axis inside the 
avities.Density distribution fun
tions at pressures P ∗ = 0.5 and P ∗ = 2 are pre-sented in Fig. 4.16. At low pressure (Fig. 4.16 (a)), only short rods feature apeak from '|−' 
on�gurations inside the 
avities. The densities of the longerrods do not adopt a maximal value at the respe
tive lo
ations but exhibit atsmall plateau. At P ∗ = 2 (Fig. 4.16 (b)), all three rod 
omponents possess
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(a) (b)Figure 4.16: Density distribution ρ∗λ as a fun
tion of the distan
e |z − z0| tothe wall of the tridisperse hard rod suspension in 
onta
t with a substrate withvery small 
avities of length xC = 3.5D (a) at P ∗ = 0.5 and (b) at P ∗ = 2.distin
t peaks from '|−' 
on�gurations. The height of the maxima de
reaseswith in
reasing rod length and on top of the 
avity pattern a layer has formedagain at |z−z0| ≈ 4.7D. Note that the orientations of the rods on top of the
avities are perpendi
ular to those inside the 
avities. Fig. 4.17 
ontains theresults for the higher pressures. Part (a) 
orresponds to P ∗ = 4, whi
h is inqualitative agreement with the density pro�les at P ∗ = 2 with the heightsof all maxima in
reased. The heights of the peaks of the '|−' 
onstellations,
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(a) (b)Figure 4.17: Density distribution ρ∗λ as a fun
tion of the distan
e |z − z0|to the wall for a tridisperse hard rod system in front of very small 
avities(xC = 3.5D) at higher pressures (a) P ∗ = 4 and (b) P ∗ = 6.however, have a reversed order, i. e. the height in
reases with the rod length.



4.1. TRIDISPERSE SUSPENSION 79The small peak in ρ∗
3 at |z − z0| ≈ 0.7D stems from short rods diagonally inthe 
avities. The density pro�le undergoes a signi�
ant 
hange at P ∗ = 6 asdemonstrated in Fig. 4.17 (b). In the region 7 ≤ |z − z0|/D ≤ 12, multiplemaxima are observed of predominantely long and intermediate rod lengths.Apparently, a se
ond layer of rods perpendi
ular to the substrate is 
reated.

ρ∗
7 exhibits three maxima in that range. The peak at |z − z0| = 8D 
anbe attributed to long rods oriented along the z-axis on top of the 
avitiesor on top of λ = 3 rods inside the 
avities. The peak at |z − z0| ≈ 9D isrelated to long rods on top of the layer at |z − z0| ≈ 4.7D and the peak at

|z − z0| ≈ 10D arises from a sta
king on top of λ = 5 rods. The explanationfor ρ∗
5 is straightforward. The modulations of ρ∗

3 are mu
h smaller. We pointout that the density of short rods redu
es signi�
antly in the high densityrange of long rods.The homeotropi
 alignment of the system is analyzed in more detail interms of gθ in Fig. 4.18. At P ∗ = 4, homeotropi
 alignment is basi
ally
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(a) (b)Figure 4.18: Orientational 
orrelation fun
tion gθ as a fun
tion of the distan
e
|z − z0| to the wall of a system of hard rods in 
onta
t with a substrate with
avities of length xC = 3.5D (a) at P ∗ = 4 and (b) at P ∗ = 6.restri
ted to the interior of the 
avities for all rod lengths as shown in Fig. 4.18(a). Only two minima with gθ < 0 appear, one ex
lusively from short rodsinside the 
avities and one from mainly short rods on top on the 
avities. At

P ∗ = 6 (Fig. 4.18 (b)), the rods are aligned more strongly along the z-axis,espe
ially in the region above the 
avities (|z − z0| > 4D). The formationof a se
ond homeotropi
 layer, as mentioned in the dis
ussion of the densitypro�le, is veri�ed by gθ.In Fig. 4.19, simulation snapshots of systems at P ∗ = 4 and P ∗ = 6 aredepi
ted. Fig. 4.19 (a) and (b) provide views along the z-axis. Part (a)
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(a) xC = 3.5D, P ∗ = 4 (b) xC = 3.5D, P ∗ = 6

(
) xC = 3.5D, P ∗ = 4 (d) xC = 3.5D, P ∗ = 6Figure 4.19: The tridisperse hard rod suspension in 
onta
t with a substratewith 
avities of length xC = 3.5D. Views along the z-axis of systems areprovided in (a) at P ∗ = 4 and (b) at P ∗ = 6. Sideviews of the simulationboxes are shown in (
) at P ∗ = 4 and in (b) at P ∗ = 6. The �rst 
avity wallsparallel to the view plane are not drawn in order to enable a look inside the
avities.depi
ts the situation at P ∗ = 4. The 
avities are rather loosely �lled andone also 
an distinguish between 
avities with homeotropi
ally aligned rodsand 
avities with isotropi
 short rods. The �lling of the 
avities is stronglyenhan
ed at P ∗ = 6 as shown in part (b). Most 
avities are densely pa
kedwith long and intermediate rods. Side views of the simulation boxes areprovided in Fig. 4.19 (
) and (d). The homeotropi
 alignment at P ∗ = 4 ismerely restri
ted to the interior of the 
avities. At P ∗ = 6, a nemati
 region



4.1. TRIDISPERSE SUSPENSION 81of predominantely long rods has built in the left half of the simulation boxwhereas short rods a

umulate in an isotropi
 phase in the right half. Thus,the substrate pattern is responsible for a spatial separation of lengths in thesystem, whi
h is not observed for the 
orresponding bulk system.The thermodynami
 stability of the phase separated tridisperse system at
P ∗ = 6 
an not be fully answered in the 
onsidered NPT ensemble. The �nitesize of the system and the parti
le 
onservation may result in a metastable
on�guration. Nevertheless, metastable states play an important role in theearly formation pro
ess of ma
ros
opi
 stru
tures. Slow parti
le transport
an be a limiting fa
tor in ma
ros
opi
 systems. Thus, long-living metastablestates 
an be observed [22℄. We stress, that the limitations mentioned hereare only dire
ted towards systems at P ∗ ≫ 4. Systems with P ∗ ≤ 4 do notshow any indi
ations of phase separation.4.1.4 Length spe
i�
 aggregationThe investigations so far illuminated the spatial stru
ture indu
ed by variouskinds of substrate patterns. Now we turn towards the question how the dif-ferent substrate types modify the lo
al mixing ratio and how the stru
tures
an be used to sele
t spe
i�
 rod types. The goal is to �gure out suitablesubstrate patterns, whi
h enable a pre
ise 
ontrol of the length distributionin a prede�ned region. The spatially resolved mole fra
tion xλ as introdu
edin Se
tion 2.5.4 provides a 
omprehensive overview of the e�
ien
y of a sub-strate pattern to modify the ratio of the 
omponents. Results in the lowpressure regime are presented in Fig. 4.20. The mole fra
tion of the shortrods ( ) is in
reased 
lose to the substrate in all plots but Fig. 4.20 (
),whi
h shows data for the small grooves of width yC = 1.5D. In latter 
ase,approximately equal amounts of rod 
omponents are present. x3 is parti
-ularly large in the 
avity patterns (Fig. 4.20 (d)-(f)). One has to keep inmind, however, that a large lo
al mole fra
tion does not imply a large lo
aldensity. Espe
ially inside the grooves and 
avities the density of short rodsis smaller than in the bulk.Fig. 4.21 summarizes the mole fra
tions in the high pressure regime. Themole fra
tions of the system with the planar wall are plotted in Fig. 4.21 (a).
x7 ( ) is about 0.65 for rods in dire
t wall 
onta
t (|z − z0| = 0.5D)and de
ays rapidly to a lo
al minimum at |z − z0| ≈ 1.3D where x3 adoptsa lo
al maximum. The horizontal lines in the plot 
orrespond to the bulkmixing ratio 0.47 : 0.304 : 0.226. x3 is slightly above the respe
tive line for
|z− z0| ≥ 4D be
ause of the displa
ement 
lose to wall and the 
onservationof parti
les. x7 is lowered 
ompared to the bulk value for analogous reasons.The mole fra
tion of intermediate rods ( ) remains basi
ally un
hanged
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(e) (f)Figure 4.20: Spatially resolved mole fra
tion xλ as a fun
tion of the distan
e
|z − z0| to the wall for di�erent substrate patterns in the low pressure regime.(a) Planar wall, (b) grooves of width yC = 3.5D, (
) grooves of width yC =
1.5D, (d) 
avities of length xC = 8.5D, (e) 
avities of length xC = 6.5D,and (f) 
avities of length xC = 4.5D.



4.1. TRIDISPERSE SUSPENSION 83

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  1  2  3  4  5  6  7  8  9  10

x λ

|z-z0|/D

ε*=0, P*=4

λ=7
λ=5
λ=3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  1  2  3  4  5  6  7  8  9  10
x λ

|z-z0|/D

ε*=0, P*=4, yC=3.5D

λ=7
λ=5
λ=3

(a) (b)
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  1  2  3  4  5  6  7  8  9  10

x λ

|z-z0|/D

ε*=0, P*=4, yC=1.5D

λ=7
λ=5
λ=3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  1  2  3  4  5  6  7  8  9  10

x λ

|z-z0|/D

ε*=0, P*=4, xC=8.5D

λ=7
λ=5
λ=3

(
) (d)
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  1  2  3  4  5  6  7  8  9  10

x λ

|z-z0|/D

ε*=0, P*=4, xC=6.5D

λ=7
λ=5
λ=3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9  10

x λ

|z-z0|/D

ε*=0, P*=4, xC=4.5D

λ=7
λ=5
λ=3

(e) (f)Figure 4.21: Spatially resolved mole fra
tion xλ as a fun
tion of the distan
e
|z − z0| to the wall in the high pressure regime (P ∗ = 4) of various substratepatterns. (a) Planar wall, (b) grooves of width yC = 3.5D, (
) grooves ofwidth yC = 1.5D, (d) 
avities of length xC = 8.5D, (e) 
avities of length
xC = 6.5D, and (f) 
avities of length xC = 4.5D.



84 CHAPTER 4. SUBSTRATE INDUCED EFFECTSand deviates only slightly from its bulk value inside the grooves as demon-strated in Fig. 4.21 (b) and (
). The grooves are 
apable to prolong thedi�erentiation of long and short rods to 0 ≤ |z − z0|/D ≤ 4. Narrow grooves(Fig. 4.21 (
)) appear to be more e�e
tive than broad grooves (Fig. 4.21 (b))in this sense. The longest 
avities (xC = 8.5D) provide the best sele
tionof long rods as shown in Fig. 4.21 (d). More than 80% of the rods in therange |z − z0| ≤ 3D have axis ratio 7 and short rods are mainly absent.The 
avities also redu
e x5 distin
tly, whi
h is not observed for the planarand the 
orrugated wall. The 
omposition inside the 
avities is thus highlymonodisperse. Cavities of intermediate length in
rease the mole fra
tion ofintermediate rods (Fig. 4.21 (e)), espe
ially around |z−z0| = 0. In the range
2 ≤ |z − z0|/D ≤ 4, short and intermediate rods 
ontribute about the equalamount. On the �rst view, short 
avities (Fig. 4.21 (f)) seem to generatea purely monodisperse suspension of short rods in the range z ≤ 2D. Butshort 
avities are �lled with homeotropi
ally aligned intermediate and longrods to a large extent so that the volume inside the 
avities is mainly usedby longer rods. Note that the spatially resolved mole fra
tion as well as thedensity distribution fun
tion are de�ned in terms of the 
enter of mass of therods. The signi�
an
ies from the '|−' 
on�gurations of λ = 5 and λ = 7 rodsappear also in x5 and x7.In summary, we �nd that in regions 
lose to the substrate the mixing ratio
hanges. Stru
tured substrates amplify this e�e
t and expand the respe
tiveregion. Cavities for the longest rods generate a highly monodisperse regionof long rods and also the amount of intermediate rods 
an be enri
hed insideappropriate 
avities. This e�e
t improves at higher pressure as demonstratedin Fig. 4.22. Part (b) shows the mole fra
tion of a system with 
avities ofintermediate length at P ∗ = 5. For 
omparison the data at P ∗ = 4 isplotted in part (a), again. The 
avities dis
riminate very sensitively betweenshort and intermediate rods while the latter 
ontribute about 80% to the
omposition in the range |z − z0| ≤ 3D.4.1.5 Shallow 
avitiesFrom a te
hni
al point of view, 
avities with a lower depth zC might be fab-ri
ated more easily. In this se
tion, 
avities of depth zC = 1D are dis
ussed,brie�y. The low pressure regime is skipped sin
e no important 
hanges takepla
e 
ompared to the low pressure regime of a planar wall. The density dis-tribution fun
tions in the high pressure regime are plotted in Fig. 4.23. Thepro�le of long 
avities (Fig. 4.23 (a)) is qualitatively similar to the planarwall (Fig. 4.2 (b)) but the density of intermediate and short rods is stronglyredu
ed inside the 
avities. The ratio of ρ∗

5 to ρ∗
7 at the �rst maximum is
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(a) (b)Figure 4.22: Spatially resolved mole fra
tion xλ as a fun
tion of the distan
e
|z − z0| to the wall of a tridisperse hard rod system in 
onta
t with 
avities ofintermediate length xC = 6.5D at the pressure (a) P ∗ = 4 and (b) P ∗ = 5.The fra
tionation is signi�
antly more enhan
ed at P ∗ = 5.about 30% for the planar wall and 18% for the shallow 
avities. The bestratio, however, is obtained by the 
avities of depth zC = 4D and amounts to

12%.The result for the intermediate 
avity length is presented in Fig. 4.23 (b).The 
urve for long rods ( ) is shifted to the right by roughly one roddiameter. Thus, the region 0.5 ≤ |z − z0|/D ≤ 1.5 is ex
lusively �lled byshort and intermediate rods with the latter 
ontributing about 70% to thedensity.In the 
ase of short 
avities (Fig. 4.23 (
)), the 
urves for long ( )and intermediate rods ( ) are shifted rightwards. The density of short rods( ) inside the 
avities is larger than for 
avities of length xC = 8.5D andlength xC = 6.5D but does not ex
eed the bulk value noti
eable.All in all, shallow and deep 
avities show similar properties. The 
avitiesare preferentially �lled with the longest rod 
omponent, whi
h 
an be pla
edinside the 
avities with the orientation of the rods parallel to the wall. Thepossibility to generate prede�ned regions in the system where demixing takespla
e is still given but to a redu
ed extend.
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(
)Figure 4.23: Density distribution ρ∗λ as a fun
tion of the distan
e |z − z0|to the wall of systems with shallow 
avities with depth zC = 1D in the highpressure region (a) for long, (b) for intermediate, and (
) for short 
avities.4.1.6 Attra
tive rods on hard substratesThe majority of the studies in the previous se
tions utilized the hard rodmodel (ǫ∗ = 0). Only few results for attra
tive rods (ǫ∗ = 0.5) at lower pres-sures were dis
ussed in Se
tion 4.1.1, in whi
h minor di�eren
es 
ompared tohard rod systems were observed. Appropriately designed substrate patternsbear most e�e
ts on the stru
ture of the �uid at high pressures, parti
ularly
on
erning length spe
i�
 aggregation as demonstrated in Se
tion 4.1.4. Inthis sense, stru
tured substrates are mu
h less e�e
tive in systems of attra
-tive rods sin
e pronoun
ed fra
tionation takes pla
e already in the bulk.Some qualitative properties of attra
tive rod systems above the bulkordering transition are explained on the basis of snapshots presented inFig. 4.24. The pressure is P ∗ = 3.5 for all pi
tures. Fig. 4.24 (a) depi
tsthe system in 
onta
t with a planar wall. The system has separated into
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(a) ǫ∗ = 0.5, P ∗ = 3.5, planarwall (b) ǫ∗ = 0.5, P ∗ = 3.5, yC =
3.5D

(
) ǫ∗ = 0.5, P ∗ = 3.5, xC =
8.5D

(d) ǫ∗ = 0.5, P ∗ = 3.5, xC =
6.5DFigure 4.24: Snapshots of systems of attra
tive rods in 
onta
t with varioussubstrate types at pressure P ∗ = 3.5. (a) Planar wall, (b) grooves of width

yC = 3.5D, (
) 
avities of length xC = 8.5D, and (d) 
avities length xC =
6.5D. In (a)-(
) the hexati
 
luster adheres at the substrate but not in (d).a highly ordered monolayer of long and an isotropi
 �uid of shorter rods3.The 
luster adheres at the substrate. The two visible domains of long rodsare 
onne
ted via the periodi
 boundaries. A system with grooves of width

yC = 3.5D is shown in Fig. 4.24 (b) whereas short rods are not drawn in thesnapshot. The 
luster adheres at the substrate and the orientation of the3The same separation is also observed in bulk systems.
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luster 
oin
ide with dire
tion of the grooves. A system with a
avity pattern for the longest rods is presented in Fig. 4.24 (
). Short rods areomitted. The 
luster orients along the grooves and adheres at the substrate,again. One must note, however, that most long rods are in
orporated intothe 
luster and are therfore depleted from half of the 
avities. Fig. 4.24 (d)illustrates a system with 
avities of intermediate length. The 
luster is sur-rounded 
ompletely by the isotropi
 �uid of shorter rods and does not adhereat the substrate. These examples the shown to demonstrate the in�uen
e ofadja
ent substrates on attra
tive rods. Further studies are needed to 
larifythe e�e
ts in detail.4.2 Polydisperse suspensionThis se
tion is dedi
ated to study the stru
ture of a polydisperse suspen-sion in 
onta
t with the three substrate types, i. e. the planar wall, thegrooves, and the re
tangular 
avities. The length distribution is the sameas in Fig. 3.15 on page 53. The stru
ture indu
ed by the di�erent substratepatterns was investigated in detail in the previous se
tion for the tridispersesuspension. This se
tion fo
uses on a representative sele
tion of results forpolydisperse rod systems, whi
h are 
ompared to the tridisperse analogs.4.2.1 Planar substrateFig. 4.25 shows the density distribution fun
tions of a hard rod system in
onta
t with a planar wall. For the sake of 
larity and to gain better statisti
s,
umulative distribution fun
tions (Se
tion 2.5.3) are presented where the twolongest 
omponents (λ ∈ {7, 8}), the two intermediate (λ ∈ {4, 5}), andthe two shortest 
omponents (λ ∈ {1, 2}) are subsumed. The agreementof the low and high pressure results with the tridisperse mixture (Fig. 4.2)is remarkable. At P ∗ = 0.5, maxima from '|−' 
on�gurations appear inevery 
urve and a layer �at on the wall o

urs only for the longest rodsas demonstrated in Fig. 4.25 (a). The maxima from '|−' 
onstellations arebroader, however, sin
e in ea
h 
ase the density pro�les of two rod lengthsare merged. At P ∗ = 4 (Fig. 4.25 (b)), layer formation mainly from the longrods ( ) is visible. Intermediate rods ( ) are in
orporated in the layersdistin
tly less. Espe
ially short rods ( ) are hardly a�e
ted by the layerformation.Hard and attra
tive rods at P ∗ = 2 are 
ompared in Fig. 4.26. Part (a)depi
ts the 
umulative density distribution fun
tion for short and part (b)for long rods. The 
orresponding 
urves for hard and attra
tive rods are
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(a) (b)Figure 4.25: Cumulated density distribution ρ∗λ1,λ2
as a fun
tion of the dis-tan
e |z − z0| to the wall of a polydisperse hard rod system in 
onta
t witha planar wall. (a) Low pressure results for long ( ), intermediate ( ),and short rods ( ). (b) The 
orresponding high pressure results. Thesimilarities to the tridisperse mixture (Fig. 4.2) are extensive.basi
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al and deviate only slightly at the se
ond maximum in thesame way as shown in Fig. 4.5 (
) and (d) for the tridisperse suspension.
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(
) (d)Figure 4.27: Cumulated density distribution ρ∗λ1,λ2
as a fun
tion of the dis-tan
e |z − z0| to the wall of a hard rod system in 
onta
t with a 
orrugatedsubstrate. Broad grooves (yC = 3.5D) at (a) low pressure and (b) highpressure. Narrow grooves (yC = 1.5) at (
) low and (d) high pressure.4.2.2 Corrugated substrateHard rod systems in 
onta
t with broad (yC = 3.5D) and narrow grooves(yC = 1.5D) are investigated in Fig. 4.27. The e�e
ts observed for the tridis-perse mixture (Figs. 4.8 and 4.10) also emerge in the polydisperse mixture,whi
h are:1. The density of short rods is largest in broad grooves whereas in narrowgrooves the long rods dominate in the low pressure regime (Fig. 4.27(a) and (
)).2. Rods in the region |z − z0| > 4D behave similar to those in front of aplanar wall at P ∗ = 0.5 (Fig. 4.27 (
)).3. At high pressure three layers of mainly long rods form inside the grooves



4.2. POLYDISPERSE SUSPENSION 91(Fig. 4.27 (b) and (d)).4. The layer formation on top of the grooves |z − z0| ≈ 4.7D is morepronoun
ed for narrow grooves (Fig. 4.27 (
) and (d)).Apparently, the tridisperse and the polydisperse mixture show the samee�e
ts in the investigated parameter range. The density distribution fun
-tions apportioned into long, intermediate, and short rods are 
omparable inboth systems. Thus, the results hold a universal 
hara
ter and qualitativelysimilar e�e
ts are also expe
ted to o

ur in length-polydisperse suspensionswith other length distributions. In the following, systems with 
avity pat-terns are studied where the density pro�les of the single 
omponents arepresented rather than the 
umulative density distribution fun
tions.4.2.3 Cavity patternAs demonstrated in Se
tion 4.1.4, adequately tailored 
avities are 
apable toindu
e a highly monodisperse segregation of prede�ned rod lengths 
lose tothe substrate. In the polydisperse suspension, eight rod lengths are presentwith integer values of the axis ratio allowing for a re�ned λ-dependent stru
-ture analysis. Fig. 4.28 depi
ts density pro�les of hard rod systems in 
on-ta
t with 
avities of length xC = 8.5D (part (a)) and xC = 6.5D (part (b))at high pressure. Data is presented for the three longest rod lengths with
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(a) (b)Figure 4.28: Density distribution ρ∗λ as a fun
tion of the distan
e |z − z0|to the wall in the high pressure region of a polydisperse hard rod system in
onta
t with 
avities (a) of length xC = 8.5D and (b) of length xC = 6.5D.Shown are 
urves for the three largest rod lengths that �t into the respe
tive
avities and one for rods, whi
h are longer than xC .



92 CHAPTER 4. SUBSTRATE INDUCED EFFECTS
(λ + 1)D < xC and for the shortest rods with (λ + 1)D > xC . Three layersarise inside the long 
avities (Fig. 4.28 (a)). The density of λ = 7 rods ( )is largest and ρ∗

6 ( ) is somewhat less than 50% of ρ∗
7. It is quite remark-able, to whi
h extend ρ∗

5 ( ) is redu
ed. The density of λ = 5 rods insidethe 
avities is about the bulk value whereas the two next longer 
omponentsex
eed their bulk value several times. Rods with λ = 8 ( ) do not �t inlayers into the 
avities and thus aggregate on top.The layer formation inside 
avities of intermediate length (Fig. 4.28 (b)) isredu
ed noti
eably but the main 
ontributions stem from the two longest rod
omponents, whi
h are able to form layers inside the 
avities. In this 
ase,these are λ = 5 ( ) and λ = 4 rods ( ). Subsuming the observations,we 
on
lude that 
avities of a 
ertain length are highly sensitive to the longestrods, whi
h 
an form layers inside. In the studied systems, shorter rods,whi
h in prin
iple 
ould enter the 
avities, are signi�
antly restrained.A 
omprehensive overview of the demixing 
apabilities of the various sub-strate types delivers the integrated mole fra
tion xint
λ as de�ned in Eq. (2.43).

xint
λ is obtained by integrating the mole fra
tion xλ(z) from z = −z0 to

z = −z0 + 4D. Thus, xint
λ is the number of rods with axis ratio λ in theregion zmin ≤ z ≤ zmax divided by the overall number of rods in that region.Fig. 4.29 
ontains the 
orresponding results. The symbols are measurementsand the lines are a guide to the eye. Fig. 4.29 (a) depi
ts the data for thepolydisperse suspension at P ∗ = 4. In the system with the planar wall (#),

xint
λ is about 10% for axis ratios smaller than 5 and in
reases monotoni
allyfor longer rods. Ea
h 
omponent of the short rods (λ ≤ 4) redu
es to lessthan 5% in the system with the broad grooves (N) whereas the number oflonger rods (λ ≥ 6) in
reases distin
tly. The number of λ = 7 rods in
reaseseven further in the system with the long 
avities (�). About 50% of all rodshave axis ratio λ = 7 and together with λ = 6 rods they 
ontribute to about

80%. In the system with the intermediate 
avities ( ), rods with λ ≥ 6 arevery e�e
tively suppressed. xint
4 and xint

5 add up to approximately 50%. At
P ∗ = 5 (Fig. 4.29 (b)), the 
ontribution of shorter rods (λ ≤ 3) redu
es sig-ni�
antly for intermediate 
avities ( ). Less than 10% of the rods stem fromea
h 
omponent with λ ≤ 3 whereas λ = 4 and λ = 5 rods 
onstitute 
ir
a
70%. The 
urves for the other substrate types remain basi
ally un
hangedat P ∗ = 5.For 
ompleteness, data of xint

λ for the tridisperse mixture at P ∗ = 4 ispresented in Fig. 4.29 (
). The 
orresponden
e of the tridisperse and thepolydisperse mixture 
an be seen best if latter is 
lassi�ed in terms of short(1 ≤ λ ≤ 3), intermediate (4 ≤ λ ≤ 5), and long rods (6 ≤ λ ≤ 8).We �nish the investigations of the polydisperse mixture with some ob-servations in a system with the shortest 
avities of length xC = 3.5D in



4.2. POLYDISPERSE SUSPENSION 93
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1  2  3  4  5  6  7  8

x λin
t

λ

ε*=0, P*=4

planar
yC=3.5D
xC=8.5D
xC=6.5D

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1  2  3  4  5  6  7  8

x λin
t

λ

ε*=0, P*=5

planar
yC=3.5D
xC=8.5D
xC=6.5D

(a) polydisperse mixture, P ∗ = 4 (b) polydisperse mixture, P ∗ = 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 3  3.5  4  4.5  5  5.5  6  6.5  7

x λin
t

λ

ε*=0, P*=4

planar
yC=3.5D
xC=8.5D
xC=6.5D

(
) tridisperse mixture, P ∗ = 4Figure 4.29: The integrated mole fra
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λ as a fun
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λ for the di�erent substrate patterns. The polydisperse hard rod mixture (a)at P ∗ = 4 and (b) at P ∗ = 5. (
) The the tridisperse hard rod system at
P ∗ = 4.

Fig. 4.30. In the 
orresponding system of a tridisperse mixture, homeotropi
alignment and phase separation has been observed at pressure P ∗ = 6. Here,one �nds similar e�e
ts, however, in a redu
ed manner. Fig. 4.30 (a) depi
tsthe 
umulated density pro�le at P ∗ = 6.5. Long ( ) and intermediaterod lengths ( ) exhibit a pronoun
ed homeotropi
 alignment in the 
avitiesas revealed by the maxima at |z − z0|/D = (λ + 1)/2. The double peaks inea
h 
urve are due to the subsumption of two rod lengths. In parti
ular, thelongest rods show an in
reased density in the range 8 ≤ |z − z0|/D ≤ 10,whi
h is 
aused by a se
ond layer of hometropi
ally oriented rods. The snap-shot in Fig. 4.30 (b) illustrates the des
ribed observations.
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(a) (b)Figure 4.30: (a) Cumulated density distribution ρ∗λ1,λ2
as a fun
tion of thedistan
e |z − z0| to the wall in the polydisperse hard rod system with thesmallest 
avities (xC = 3.5D) at P ∗ = 6.5. (b) Snapshot of the same system.The longest rods (6 ≤ λ ≤ 8) are 
olored orange, intermediate rods (4 ≤ λ ≤

5) are 
olored yellow, and the shortest rods (1 ≤ λ ≤ 3) are green.4.3 Alternating 
avity patternIn the �nal se
tion of this 
hapter some observations are presented, whi
harise in systems with alternating 
avity patterns. The 
hosen 
ompositions ofthe suspensions di�er from the tridisperse and polydisperse suspension. Theso-
alled 62 mixture 
onsists of rods with λ = 6 and λ = 2. The 
onstituentsof the 7531 mixture have axis ratios λ = 7, λ = 5, λ = 3, and λ = 1. In bothmixtures, ea
h 
omponent 
omprises the same volume fra
tion. The appliedpressures are in a range where the 
orresponding bulk systems start to order.Firstly, we 
onsider the 62 mixture. Two di�erent setups are investi-gated. The �rst one 
onsists of N = 2000 rods simulated with the mirroringte
hnique to ensure that the behavior of the substrate at −z0 will not bein�uen
ed by the substrate at z0. The substrate is 
omposed of 
avities ofalternating length x
(1)
C = 7.25D and x

(2)
C = 3.25D. The width of all 
avitiesis yC = 5D and the depth is zC = 3D. In the se
ond setup a system with

N = 1000 parti
les and two opposing walls ea
h with the same 
avity stru
-ture is employed. The 
avity lengths are x
(1)
C = 7.5D and x

(2)
C = 4D. Thesystem represents a slit pore with stru
tured walls.Results for the �rst setup are presented in Fig. 4.31. Part (a) depi
tsa bottom view of the system. The 
avities indu
e an alternating stru
tureof long and short rods in substrate proximity. The long rods form multiple
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(a) ǫ∗ = 0, P ∗ = 5 (b) ǫ∗ = 0, P ∗ = 5
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(
) (d)Figure 4.31: Results for the binary 62 mixture at P ∗ = 5 in 
onta
t with
avities of alternating length. (a) Bottom view and (b) side view of the simula-tion box. (
) The density distribution ρ∗λ and (d) the orientational 
orrelationfun
tion gθ as a fun
tion of the distan
e |z − z0| to the wall of the samesystem.layers inside the 
avities as proven by the density pro�le (Fig. 4.31 (
)) andare strongly aligned as demonstrated by gθ in Fig. 4.31 (d). The 
avities forthe long rods are 
apable to spatially �xate a sme
ti
 monolayer4 of long rods.Fig. 4.31 (b) shows a side view of the simulation box. The interesting pointis that the sme
ti
 layers ex
eed the 
avity depth by several rod diameters.In the density pro�le 3-4 peaks are visible for |z− z0| ≥ 3D. The alternating
avity length allows short rods to 
over regions 
lose to the substrate. Shortrods remain basi
ally isotropi
 even in substrate proximity (Fig. 4.31 (d)).The results for the se
ond setup are 
olle
ted in Fig. 4.32. Part (a) and4A sme
ti
 monolayer may not be mixed up with a monolayer that 
overs the substrate.
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(a) ǫ∗ = 0, P ∗ = 5 (b) ǫ∗ = 0, P ∗ = 6
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(
) (d)Figure 4.32: Results for the binary 62 mixture in a slit pore with stru
turedwalls. Snapshots of the simulation box at pressure (a) P ∗ = 5 and (b) P ∗ = 6.The 
orresponding density pro�les are shown in (
) and (d).(b) depi
t snapshots of the system at P ∗ = 5 and P ∗ = 6, respe
tively. Theshort rods are omitted for 
learness. The 
avities, inside whi
h λ = 6 rodsa

umulate preferentially, oppose ea
h other. It should therfore be possibleto generate a sme
ti
 layer, whi
h on the one hand is spatially �xated andon the other hand 
overs the whole box length. At P ∗ = 5, one sme
ti
 layerat ea
h wall has formed. The layers do not penetrate the 
avities more thanin the 
ase of a single wall (
mp. Fig. 4.32 (
) and Fig. 4.31 (
)). Rods inbetween both layers are weakly ordered. At the higher pressure P ∗ = 6, bothlayers join to one sme
ti
 layer, whi
h spans the whole simulation box. Thedensity pro�les for P ∗ = 5 and P ∗ = 6 are presented in Fig. 4.32 (
) and(d). Long rods ( ) exhibit a pronoun
ed peak stru
ture only inside and
lose to the 
avities in both 
ases. Another interesting point at P ∗ = 6 is



4.3. ALTERNATING CAVITY PATTERN 97the o

urren
e of a double peak pattern inside the 
avities for λ = 6, whi
his 
hara
teristi
 for hexati
 ordering and is not observed for P ∗ = 5. In the
orresponding bulk system layer formation is also observed at P ∗ = 6 butthe order in the transverse dire
tion is 
learly not hexati
 as demonstratedby g
(6,6)
⊥ ( ) in Fig. 4.33.
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Figure 4.33: Transversal pair 
orrelation fun
tion g⊥(r⊥) at pressure P ∗ = 6in a bulk system of the 62 mixture.The last system studied is the 7531 mixture in 
onta
t with 
avities ofthree di�erent lengths x
(1)
C = 8.5D, x

(2)
C = 6.5D, and x

(3)
C = 4.5D. The widthis yC = 3.5D and the depth is zC = 4D. A bottom view of the simulationbox at P ∗ = 5 is provided in Fig. 4.34 (a). Long and intermediate 
avitiesare essentially �lled by highly ordered rods of axis ratio λ = 7 and λ = 5,respe
tively. Inside the short 
avities, isotropi
 rods with λ = 1 are mainlyfound even though the 
avities are long enough to allow a layer formationof λ = 3 rods. The side view of the simulation box (Fig. 4.34 (b)) reveals agrowth of a sme
ti
 layer of the long rods far into the bulk. From the densitypro�le in Fig. 4.34 (
) we �nd that ρ∗

7 is distin
tly above the bulk value inthe range 0 ≤ |z − z0|/D . 12 and de
reases qui
kly afterwards, i. e. wherethe sme
ti
 layer ends. The peak stru
ture of the sme
ti
 layer outside the
avities gets lost but the orientational 
orrelation fun
tion gθ remains 
loseto −0.5 (Fig. 4.34 (d)). The high ordered stru
ture of λ = 5 rods is restri
tedto the interior of the 
avities.We summarize that a heterogeneous distribution of 
avity lengths indu
esa heterogeneous distribution of rod lengths in substrate proximity. In addi-tion, sme
ti
 layers 
an ex
eed the 
avity depth signi�
antly. Thus, 
avitiesrepresent not only a possibility to generate highly monodisperse suspensionsbut may also serve as an interesting tool to study sme
ti
 monolayers indetail.
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(a) ǫ∗ = 0, P ∗ = 5 (b) ǫ∗ = 0, P ∗ = 5
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) Thedensity distribution ρ∗λ and (d) the orientational 
orrelation fun
tion gθ as afun
tion of the distan
e |z − z0| to the wall.



Chapter 5Summary and outlookIn this work, 
olle
tive behavior of 
olloidal rods has been investigated withthe help of Monte Carlo simulations 
on
erning the phase behavior and stru
-ture formation in bulk systems and substrate indu
ed e�e
ts. For polydis-perse systems, nu
leation and substrate indu
ed fra
tionation has been stud-ied. The in�uen
e of attra
tive and hard rods has been 
ompared. Theattra
tive rod potential for sphero
ylinders of Bolhuis et al. [8℄ has thereforebeen extended for arbitrary rod lengths to investigate polydisperse suspen-sions of 
olloidal rods. An e�e
tive method to 
al
ulate UAR is derived inAppendix A.In Se
tion 3.1, we investigated the bulk behavior of monodisperse systemswith axis ratios λ = 3 to λ = 8 for di�erent intera
tion strengths and pre-sented isotherms as a fun
tion of the redu
ed pressure P ∗. In some 
ases, the�rst order phase transitions were a

ompanied by a strong hysteresis. Wetherefore applied biased multi-histogram sampling to explore the relevantpart of the free energy lands
ape and to identify the thermodynami
ally sta-ble phases. With the obtained results, we also 
ould estimate the surfa
etension between the nemati
 and the hexati
 phase. The stru
ture of allinvolved phases was analyzed in more detail with suitable pair 
orrelationfun
tions. A 
omprehensive overview of the phase behavior of monodispersesystems was provided by phase diagrams in the P ∗λ-plane. At low intera
-tion strengths, the nemati
 and the sme
ti
 A phase exists in a relativelylarge pressure range. The nemati
 phase broadens with in
reasing axis ratio
λ. At larger intera
tion strengths, the hexati
 phase is predominant. Within
reasing axis ratio λ, the hexati
 phase sets in at de
reasing pressure. Thenemati
 and the sme
ti
 A phase are lens shaped.In Se
tion 3.2, a tridisperse mixture of hard and attra
tive rods was inves-tigated, whi
h features many aspe
ts of polydisperse systems. The spatialand orientational order in the system was studied separately for ea
h rod99



100 CHAPTER 5. SUMMARY AND OUTLOOKlength. We observed a distin
t dependen
e of the stru
ture formation onthe intera
tion strength of the potential. With attra
tion, a monolayer withlong-range hexati
 in-plane order of long rods forms, whi
h is surroundedby an isotropi
 �uid of shorter rods. For hard rods, order sets in at higherpressure and the stru
ture formation is less pronoun
ed. The pair 
orrelationfun
tions revealed the stru
ture of a nemati
 �uid. Thus, layer formation likefor attra
tive rods is absent and fra
tionation is negligible.The in�uen
e of attra
tivity has also been studied in a more realisti
length-polydisperse suspension of rods in Se
tion 3.3. The observations forthe polydisperse mixture basi
ally resemble those of the tridisperse mixture.With su�
iently strong intera
tions, we found the formation of a hexati
monolayer surrounded by an isotropi
 �uid. A strong fra
tionation o

urswith mainly long rods in
orporated in the hexati
 monolayer and shorterrods a

umulate in the isotropi
 �uid. In the 
ase of hard rods, we foundthe formation of a nemati
 droplet of mainly long rods resulting in a mod-erate fra
tionation, whi
h was not observed for the tridisperse mixture. Thefra
tionation in the polydisperse systems is strongly enhan
ed by attra
tiveintera
tions. A monolayer formation with long-range order was also observedexperimentally is supensions of fd viruses [22℄. In these experiments, attra
-tive intera
tions were provided by depletion for
es indu
ed by non-adsorbingPEG polymers in the solution.In Chapter 4, the tridisperse and the polydisperse suspension were stud-ied in 
onta
t with (stru
tured) substrates. The main results were obtainedfor low (P ∗ = 0.5) and high (P ∗ = 4) pressure in hard rod systems. Notethat the 
orresponding bulk systems of hard rods are isotropi
 at the 
on-sidered pressures. Again, we started with the tridisperse mixture, whi
h iseasier to dis
uss. Spe
ial attention was paid on the �uid stru
ture near thewall in the low and high pressure region and on the in�uen
e of di�erentlypatterned substrates 
on
erning spatial fra
tionation. The following resultswere obtained at low pressure: For the planar wall the density of short rodsis larger in the substrate proximity and a layer formation of longer rods isstrongly suppressed. For walls with parallel grooves, a larger density of shortrods exists in broad grooves whereas in narrow grooves the density of longrods is largest. Re
tangular 
avities of di�erent size do not 
hange the �uidstru
ture in a signi�
ant way in the low pressure regime. A very di�erentbehavior is found at high pressure for all substrate types. Close to a pla-nar wall, we observed a multilayer 
overage with the density of long rodsenhan
ed in the layers. In systems with grooves, the multilayer formationsustains inside the grooves and long rods 
ontribute most. The observede�e
ts in broad and narrow grooves are alike, now. For 
avities, however,the �uid stru
ture inside the 
avities depends distin
tly on the dimension of



101the 
avities. In long 
avities, we observed layer formation of almost ex
lu-sively long rods. Cavities of intermediate length indu
e layer formation ofthe medium sized rods while shorter 
avities are �lled with homeotropi
allyaligned short and long rods. In terms of a substrate 
ontrolled fra
tionation,
avities provide by far the best 
ontrol over the length distribution at thesubstrate. Re
tangular 
avities also represent an example of purely geomet-ri
 mole
ule re
ognition. The majority of substrate investigations were donefor the hard rod model. At P ∗ . 2.9, attra
tive and hard rods behave quali-tatively similar. For P ∗ & 2.9, a hexati
 monolayer forms in bulk systems ofattra
tive rods. Ex
ept for very unsuitable substrate patterns, the hexati
monolayer adheres at the substrate at pressure P ∗ = 3.5.All three investigated substrate types have also been studied in 
onta
twith a polydisperse mixture. The results for the tridisperse suspension are
on�rmed in the low and high pressure regime. For example, 
avities aremainly �lled with the longest rods that �t inside and the density of shorterrods is redu
ed markedly in the 
avities at high pressure. Finally, we turnedtowards alternating 
avity patterns. We demonstrated how patterns 
an be
onstru
ted to indu
e an alternating substrate 
overage of long and shortrods and that sme
ti
 monolayers 
an be spatially �xated.In the future, a variety of new or 
ontinuative aspe
ts 
an be investigated.The biased multi-histogram simulations 
ould be employed to determine thesurfa
e tensions for various types of systems. By 
ontrolling the shape ofthe interfa
e with suitable bias potentials it should be possible to measureall surfa
e tensions. So far, the hexati
 phase in monodisperse bulk systemswas not spe
i�ed in detail. The question whether it is a liquid 
rystallinesme
ti
 B phase or the solid phase is still open but also far from trivial.It would also be interesting to test the 
omparability of the attra
tive rodpotential and systems with an expli
it 
onsideration of depletion for
es -regarding the per
olation transition in dilute systems, for example. Thestudies with adja
ent substrates 
ould be extended to an even higher pressureregime where phase separation is expe
ted. It would be interesting to see theimpa
t of the di�erent substrate types on the transition point and on the�uid stru
ture using, for example, grand 
anoni
al ensemble Monte Carlosimulations. The various substrate patterns 
an also be studied 
on
erningtheir in�uen
e on selfassembling rods.
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Appendix AAttra
tive part of the rodpotentialThe attra
tive part of the attra
tive rod (AR) potential given in Eq. (2.17) isobtained by integrating the attra
tive part Ua(·) of the square-well potential
Usw(·) over all pairs of lo
ations on the 
ylinder axes of rods i and j. InEq. (2.17) the 
ylinder axes are parameterized by αi and αj . It is 
onvenientto use the step fun
tion Θ(x) to write down the integral. If the rods i and
j have 
ylinder lengths Li and Lj , the integration area in the αi, αj spa
eis restri
ted to a re
tangle with −Li/2 ≤ αi ≤ Li/2, −Lj/2 ≤ αj ≤ Lj/2,whi
h we denote with R for 
onvenien
e. With the step fun
tion

Θ(r) =

{

0 , if r < 0
1 , if r ≥ 0

(A.1)Eq. (2.17) 
an be written as
Ua

r = − ǫ

D2

∫

R

dαi dαjΘ
(

D2
a − (rij + αjuj − αiui)

2) . (A.2)with the 
ut-o� radiusDa. The prefa
tor ǫ represents the intera
tion strength.The 
ylinder axis of rod i is a subset of the in�nite straight line, that in-
ludes ri and is parallel to ui. A respe
tive straight line in
ludes the 
ylinderaxis of rod j. The ve
tor of shortest distan
e sij between these straight lines
an be written as
sij = rij − µi ui + µj uj (A.3)with parameters µi and µj. Sin
e sij is perpendi
ular to ui and uj, one has

µi =
rij · ui − rij · uj ui · uj

1 − (ui · uj)
2 (A.4)

µj =
−rij · uj + rij · ui ui · uj

1 − (ui · uj)
2 . (A.5)103
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secant(a) (b)Figure A.1: (a) Cal
ulating Ua
r is equivalent with �nding the overlap ofthe unit 
ir
le and the parallelogram with verti
es {P1, P2, P3, P4}. (b) Thedesired area 
an be split into a polygon inside the unit 
ir
le and segments ofa 
ir
le.De�ning

s− ≡
√

1 − ui · uj

D2
a − s2

ij

(A.6)and
s+ ≡

√

1 + ui · uj

D2
a − s2

ij

, (A.7)the integral in Eq. (A.2) 
an be simpli�ed with the help of a 
oordinatetransformation from (αi, αj) to (λi, λj) = T (αi, αj) with
T (αi, αj) =

1√
2

(

s− s−
s+ −s+

)(

αi + µi

αj + µj

)

. (A.8)Using the variables (λi, λj), Eq. (A.2) be
omes
Ua

r = − ǫ

D2

1

s− s+

∫

T (R)

dλi dλj Θ
(

1 −
(

λ2
i + λ2

j

))

. (A.9)The argument of the step fun
tion in Eq. (A.9) is larger than zero onlyin the unit 
ir
le. The re
tangle R is transformed into the parallelogram
T (R) with the verti
es {P1, P2, P3, P4}. Thus, 
al
ulating Ua

r is equivalentwith �nding the overlap area of the unit 
ir
le with the parallelogram T (R)as depi
ted in Fig. A.1 (a).



105For Li = Lj one obtains the overlap area of a unit 
ir
le and a lozenge[8℄. The overlap area 
an generally be split into a polygon {p1, . . . , pNpoly}inside the unit 
ir
le and up to four segments of a 
ir
le (Fig. A.1 (b)). Inorder to obtain the Npoly vertex points p1, . . . , pNpoly we 
onsider the lines
gi(xi) =

Pi+1 + Pi

2
+ xi

Pi+1 − Pi

2
, i = 1, .., 4 (A.10)where P5 = P1. The boundaries of T (R) are 
hara
terized by xi ∈ [−1; 1] .The interse
tion points x̃i,± of the unit 
ir
le and the lines gi are given by

gi(x̃i,±)2 − 1 = 0, i = 1, . . . , 4. (A.11)The polygon verti
es pj 
an be found by subsequently 
onsidering g1, g2, g3and g4. If x̃1,± are 
omplex, then g1 does not interse
t with the unit sphereand in
ludes no polygon verti
es. Otherwise one or two of the three points
P1, g1(x̃1,−) and gi(x̃1,+) are verti
es of the polygon. (The improbable 
ase
x̃1,+ = x̃1,− 
an be subsumed.) If P1 is within the unit 
ir
le, P1 is a polygonvertex. Otherwise, g1(x̃1,−) is a polygon vertex if x̃1,− ǫ [−1; 1]. The nextpolygon vertex is g1(x̃i,+) if x̃1,+ ǫ [−1; 1]. If the same pro
edure is repeatedfor g2, g3 and g4, all Npoly verti
es pk of the polygon are obtained in a 
ounter-
lo
kwise order, due to the de�nition of the lines gi. The area of the polygonis easily 
al
ulated as

Apoly = −1

2

Npoly−1
∑

k=1

px
k py

k+1 − py
k px

k+1 (A.12)If a '+'-solution gn(x̃n,+) is being followed by a '-'-solution gm(x̃m,−), a se
antis determined by these points. The 
orresponding segment of a 
ir
le is
Ase
 = arcsin

( c

2

)

− 1

2
sin
(

2 arcsin
( c

2

)) (A.13)with c = |gn(x̃n,−) − gm(x̃m,+)|.Finally, we mention two spe
ial 
ases. If Npoly = 0, there is either nooverlap or the whole 
ir
le is within the parallelogram. In the 
ase Npoly = 2the overlap area is the segment of the unit 
ir
le that is 
hara
terized by thetwo interse
tion points and overlaps with the parallelogram.With these results the attra
tive part of the AR potential is given by
Ua

r = − ǫ

D2

1

s− s+

(

Apoly +
∑

Ase
) . (A.14)
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Appendix BCorrelations in RAN3The following 
ode shows the typi
al sequen
e of random number generationin the simulation program.#in
lude <iostream>using namespa
e std;long seed=-24332;//initial seedlong N=1000;//number of parti
lesdouble ran3(long *idum);//generates a random floating point number in the interval [0,1)int i_ran3(long *idum, int N_too_high);//Return a random integer value in the range [0,N_too_high-1℄void random_unit_ve
();int main(){ran3(&seed);//initialization of the random number generatordouble dx[3℄;//
ummulative displa
ement ve
tordx[0℄=dx[1℄=dx[2℄=0;for(int i=0;i<100000;i++){for(int j=0;j<10000;j++){int r=i_ran3(&seed,N);//
hoose parti
le randomlyint flag=i_ran3(&seed,3);//
hoose Monte Carlo stepswit
h(flag){
ase 0://move parti
ledx[0℄ += (ran3(&seed)-0.5);//displa
ement ve
tordx[1℄ += (ran3(&seed)-0.5);dx[2℄ += (ran3(&seed)-0.5);107



108 APPENDIX B. CORRELATIONS IN RAN3ran3(&seed);//a

eptan
e probabilitybreak;
ase 1://rotate parti
lerandom_unit_ve
();//random axis of rotationran3(&seed);//random rotation angleran3(&seed);//a

eptan
e probabilitybreak;
ase 2://move and rotate parti
lerandom_unit_ve
();ran3(&seed);dx[0℄ += (ran3(&seed)-0.5);dx[1℄ += (ran3(&seed)-0.5);dx[2℄ += (ran3(&seed)-0.5);ran3(&seed);}}
out << dx[0℄ << '\t' << dx[1℄ << '\t' << dx[2℄ << endl;}return 0;}void random_unit_ve
(){double vrnd[3℄;double l_vrnd;while(true){vrnd[0℄=2.0*ran3(&seed)-1.0;vrnd[1℄=2.0*ran3(&seed)-1.0;vrnd[2℄=2.0*ran3(&seed)-1.0;l_vrnd = vrnd[0℄*vrnd[0℄ + vrnd[1℄*vrnd[1℄ + vrnd[2℄*vrnd[2℄;if(l_vrnd<=1.0) break;}}//============= the random number generator ran3 ===========#define MBIG 1000000000#define MSEED 161803398#define MZ 0#define FAC (1.0/MBIG)double ran3(long *idum){stati
 int inext,inextp;stati
 long ma[56℄;stati
 int iff=0;long mj,mk;



109int i,ii,k;if (*idum < 0 || iff == 0) {iff=1;mj=labs(MSEED-labs(*idum));mj %= MBIG;ma[55℄=mj;mk=1;for (i=1;i<=54;i++) {ii=(21*i) % 55;ma[ii℄=mk;mk=mj-mk;if (mk < MZ) mk += MBIG;mj=ma[ii℄;}for (k=1;k<=4;k++)for (i=1;i<=55;i++) {ma[i℄ -= ma[1+(i+30) % 55℄;if (ma[i℄ < MZ) ma[i℄ += MBIG;}inext=0;inextp=31;*idum=1;}if (++inext == 56) inext=1;if (++inextp == 56) inextp=1;mj=ma[inext℄-ma[inextp℄;if (mj < MZ) mj += MBIG;ma[inext℄=mj;return mj*FAC;}int i_ran3(long *idum, int N_too_high){int iran;iran=(int)(ran3(idum)*N_too_high);if (iran>=N_too_high) iran=(N_too_high-1);return iran;}#undef MBIG#undef MSEED#undef MZ#undef FACThe volume move is omitted sin
e it does not 
hange the out
ome 
onsider-ably. Many MC simulation 
odes may have the same stru
tural setup. The
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Figure B.1: The three 
omponents of the 
umulative displa
ement ve
tor.RAN3 gives rise to a pronoun
ed drift in all three 
omponents. MT19937generates the expe
ted random behavior.quantity of interest is the 
umulative displa
ement ve
tor dx[3℄. In the in-ner loop of the program, random numbers are generated in the symmetri
interval [−1/2, +1/2] as this is the 
ase for any parti
le displa
ement move.Every generated displa
ement ve
tor is 
umulated in dx[3℄. An un
orre-lated sequen
e of random numbers would 
reate a random walk in 3D withthe modulus of dx[3℄ averaged over many runs with di�erent seeds propor-tional to the square root of the MC steps. Fig. B.1 displays the 
omponentsof the 
umulative displa
ement ve
tor generated with the 
ode shown above( ) and when MT19937 is used instead of RAN3 ( ). dx[3℄ has a verystrong drift in the �rst 
ase. This observation is quite robust against slightmodi�
ations of the 
ode (e. g. removing the random numbers, whi
h areneeded for the a

eptan
e probability). Other values for the seed lead to
omparable results. MT19937 produ
es no obvious artifa
ts and and is thus
onsidered as appropriate.



Appendix CRes
aling of the nemati
 orderparameter for small numbers ofrodsIn simulations, the orientational order parameter S of a system of anisotropi
mole
ules is typi
ally obtained by averaging the largest eigenvalue λmax ofthe alignment tensor Q (Eq. (2.37)) over many 
on�gurations. In order to
ompare the orientational order of two systems with di�erent numbers ofrods N , a system-size independent order parameter is desirable. However,the value of 〈λmax(N)〉 turns out to be size-dependent. Espe
ially, for smallamounts of rods with an isotropi
 distribution, one usually gets 〈λmax(N)〉 >
0. Eppenga and Frenkel[24℄ investigated the N dependen
e of the eigenvaluesof Q by studying the eigenvalue problem of the tensor

M ≡ 1

N

∑

i

uiui, (C.1)whi
h has the same eigenve
tors as Q. The eigenvalues µn of M and λn of
Q are related by µn = 2λn/3 + 1/3. The 
hara
teristi
 equation

det (M − µI) = 0 (C.2)
an also be written as
− µ3 + µ2 + c1µ + c0 = 0, (C.3)where c0 and c1 are fun
tions of the rod orientations. The order parameter

S(n) = (3〈µmax〉−1)/2 depends on the largest root µmax of Eq. (C.3) averagedover many 
on�gurations. Finding an analyti
 expression for this average111
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Figure C.1: Orientational order parameter S∞ for an in�nite number of rods
ompared to a 
orresponding order parameter S(N) for a system of N rods.The solid line shows the �tting fun
tion (Eq. (C.6)), whi
h allows to map
S(N) onto S∞. Symbols are averages of S(N) in ideal systems of N rodswith known S∞. The dashed lines 
orrespond to the approa
h of Eppengaand Frenkel for N = 5 and N = 10, respe
tively. Both methods 
oin
ide for
N = 100 and N = 500 (not shown).is extremely di�
ult, if not impossible. Eppenga and Frenkel simplify theproblem by solving Eq. (C.3) for the 
oe�
ients 〈c0〉 and 〈c1〉 and obtain for

λ = 3µ/2 − 1/2 the equation
λ3 − 3

4

λ

N

(

1 + S2res
(N − 1)
)

− S3res

4

− 3(S2res
 − S3res
)
4N

−

− 1 − 3S2res
 + 2S3res

4N2

= 0

(C.4)where Sres
 
orresponds to the res
aled order parameter, i.e. the value in thein�nite system. With S(N) ≈ λ Eq. (C.4) provides a relation between S(N),
N and Sres
.The a

ura
y of this method 
an be tested numeri
ally, by 
al
ulating
S(N) for a system of N non-intera
ting rods. The rods are randomly dis-tributed with a rotationally symmetri
 distribution f(cos(θ)) around the zaxis e

z
where cos(θ) = u · e

z
. A 
omparison between S(N) and the orderparameter

S∞ =

∫ d(cos θ) P2(cos θ) f(cos θ) (C.5)for an in�nite system is shown in Fig. C.1 for various N and di�erent dis-tributions f(cos(θ)). It shows that S(N) and S∞ di�er espe
ially for low



113orientational order. The approa
h by Eppenga and Frenkel works well fornot too small numbers of rods. For N ≤ 10 deviations from the numeri
 re-sult 
an be seen. Using the numeri
al results, we de�ne a �t fun
tion, whi
hserves only two purposes: It is rather simple and it �ts the numeri
al datadown to small N . Both is ful�lled by
S∞ ≈ S(N)

(

1 − γ−1(S(N), N)
) (C.6)with

γ(S(N), N) ≡ 1 + 25
√

N
(S(N) − Si(N))

5/3

1 − S(N)
(C.7)where Si(N) ≈ 0.81/

√
N denotes S(N) for a system of N isotropi
ally ori-ented rods with f(cos(θ)) = const. Note that S∞ gets 1 for S(N) = 1 while

S∞ vanishes for S(N) = Si(N), the minimum value of S(N) as shown inFig. C.1. The �t fun
tion in Eq. (C.6) is used to 
al
ulate S∞ from valuesof S(N) sampled in the simulations. For S(N) < Si(N), Eq. (C.7) � as wellas Eq. (C.4) � provides a 
omplex solution. In the rare 
ases where thishappened |S(N) − Si(N)| turned out to be small and we set S∞ = 0.
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Appendix DSurfa
e tension between a hexati
and a nemati
 phaseThe surfa
e tension 
an be extra
ted from the graph in Fig. D.1. For 
onve-
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Figure D.1: Free energy pro�le as fun
tion of the internal energy e. Theinternal energy e has to be mapped on the 'good' order parameter x.nien
e we introdu
e e ≡ 〈Erod〉/Emin. e0 
orresponds to the internal energyper rod in the nemati
 phase and e1 to the internal energy per rod in the hex-ati
 phase. We 
onsider the two straight lines Gif and Gnif. Gif 
orrespondsto the free energy of a system with an interfa
e between the nemati
 and thehexati
 phase and Gnif gives the free energy with no interfa
e between thephases. The o�set ∆Gs = Gif − Gnif of the two straight lines gives the freeenergy related to the interfa
e. If the 
hosen order parameter e would be a115



116 APPENDIX D. ESTIMATION OF THE SURFACE TENSION'good' order parameter, the interfa
ial free energy ∆Gs would be related tothe surfa
e tension σ via ∆Gs = σAs where As is the interfa
ial area. Thespe
i�
 
hoi
e of the internal energy e as order parameter, however, requiresa 
orre
tion, whi
h is due to the fa
t that the internal energy of a systemwith �xed size of the nemati
 and the hexati
 region would be di�erent withand without interfa
e. To see this, we map the free energies Gif and Gnif ona 'good' order parameter x, whi
h is 0 in the nemati
 and 1 in the hexati
phase (
mp. Fig. D.1):
Gif(x) = ∆G − ∆G x + σAs (D.1)

Gnif(x) = ∆G − ∆G x. (D.2)The same has to be done for the internal energies eif and enif:
eif(x) = e0 + (e1 − e0) x + es (D.3)

enif(x) = e0 + (e1 − e0) x. (D.4)
es is 
hange in internal energy be
ause of the interfa
e. Resolving Eqs. (D.3)and (D.4) for x and substitution in Eqs. (D.1) and (D.2) yields

∆Gs = σAs + ∆G
es

e1 − e0
, (D.5)where the se
ond term on the right hand side is the 
orre
tion for two systems,whi
h are 
ompared at eif = enif.In the following we estimate es. Therefore, we assume that rods in theinterfa
ial region are in 
onta
t with about 1/4 of their 
onta
t zone with the
orresponding other phase. Fig. D.2 illustrates the situation. The drawing

interface regions

D
x

y

Hex NemNem

Figure D.2: Estimation of the interfa
ial energy es. The drawing is s
hemati
for a simulation box like in Fig. 3.2 (
) on page 38. The view is along thenegative z-axis.



117shows a top view on the hexati
 region, i. e. the rods point out of the plane.The width of the interfa
ial region in x-dire
tion is estimated as one roddiameter D. Thus, the volume of the interfa
e region is about Vif = 2 LyLzD,if Lx,y,z denotes the box dimension in the respe
tive dire
tion. The internalenergy of the interfa
e is then roughly given by
es =

1

4

Vif
V

(e1 − e0) (D.6)
=

D

2 Lx

(e1 − e0). (D.7)From Eqs. (D.5) and (D.7) we �nd σ = 0.062kT/D2. Note that the 
orre
tionbe
ause of es is very small. An estimate of the surfa
e tension in the naiveway as σ = ∆Gs/As would yield 0.063kT/D2.
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