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Abstract

This work incorporates three treatises which are commonly concerned with a stochastic theory of
the Lyapunov exponents. With the help of this theory universal scaling laws are investigated which
appear in coupled chaotic and disordered systems.

First, two continuous-time stochastic models for weakly coupled chaotic systems are introduced
to study the scaling of the Lyapunov exponents with the coupling strength (coupling sensitivity
of chaos). By means of the the Fokker-Planck formalism scaling relations are derived, which are
confirmed by results of numerical simulations.

Next, coupling sensitivity is shown to exist for coupled disordered chains, where it appears as a
singular increase of the localization length. Numerical findings for coupled Anderson models are
confirmed by analytic results for coupled continuous-space Schrödinger equations. The resulting
scaling relation of the localization length resembles the scaling of the Lyapunov exponent of coupled
chaotic systems.

Finally, the statistics of the exponential growth rate of the linear oscillator with parametric noise
are studied. It is shown that the distribution of the finite-time Lyapunov exponent deviates from a
Gaussian one. By means of the generalized Lyapunov exponents the parameter range is determined
where the non-Gaussian part of the distribution is significant and multiscaling becomes essential.

Kurzfassung

Die vorliegende Arbeit umfaßt drei Abhandlungen, welche allgemein mit einer stochastischen Theo-
rie für die Lyapunov-Exponenten befaßt sind. Mit Hilfe dieser Theorie werden universelle Skalen-
gesetze untersucht, die in gekoppelten chaotischen und ungeordneten Systemen auftreten.

Zunächst werden zwei zeitkontinuierliche stochastische Modelle für schwach gekoppelte chao-
tische Systeme eingeführt, um die Skalierung der Lyapunov-Exponenten mit der Kopplungsstärke
(coupling sensitivity of chaos) zu untersuchen. Mit Hilfe des Fokker-Planck-Formalismus werden
Skalengesetze hergeleitet, die von Ergebnissen numerischer Simulationen bestätigt werden.

Anschließend wird gezeigt, daß coupling sensitivity im Fall gekoppelter ungeordneter Ketten auf-
tritt, wobei der Effekt sich durch ein singuläres Anwachsen der Lokalisierungslänge äußert. Nume-
rische Ergebnisse für gekoppelte Anderson-Modelle werden bekräftigt durch analytische Resultate
für gekoppelte raumkontinuierliche Schrödinger-Gleichungen. Das resultierende Skalengesetz für
die Lokalisierungslänge ähnelt der Skalierung der Lyapunov-Exponenten gekoppelter chaotischer
Systeme.

Schließlich wird die Statistik der exponentiellen Wachstumsrate des linearen Oszillators
mit parametrischem Rauschen studiert. Es wird gezeigt, daß die Verteilung des zeitabhängi-
gen Lyapunov-Exponenten von der Normalverteilung abweicht. Mittels der verallgemeinerten
Lyapunov-Exponenten wird der Parameterbereich bestimmt, in welchem die Abweichungen von
der Normalverteilung signifikant sind und Multiskalierung wesentlich wird.
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1 Introduction

In the beginning of the 20th century unpredictability entered physics as a fundamental prop-
erty of many processes in nature. The new theoretical basis for all science, quantum me-
chanics, has as a basic ingredient a statistical interpretation. But also in the realm of clas-
sical mechanics the possibility of chaos has destroyed the hope for an unlimited prediction
of deterministic processes. The irregularity of a chaotic system usually forbids a detailed
analysis of its motion. In many practical applications, however, one is interested in aver-
aged quantities, such as the mean electrical current in an electronic device or the Lyapunov
exponent of a chaotic system, the latter being the focus of this work. In theoretical models
the influence of the respective irregular process may then be represented by an ensemble
of fluctuating functions, which gave rise to the concept of stochastic processes. Usually
noise is used to model the effect of fast degrees of freedom which are too involved to de-
scribe in more detail. As a consequence only the statistical properties of the irregular force
are preserved which is usually sufficient to determine the motion of averaged quantities.
This idea has helped to understand the motion of a particle suspended in water, the famous
Brownian motion (see [31] for details), or the influence of noise in electrical circuits. An
example for the effect of spatial irregularities on linear equations is given by Anderson lo-
calization in quantum systems: Due to the disordered potential the wavefunction decays
exponentially (on average), characterized by a localization length which can be related to
the corresponding Lyapunov exponent.

For some phenomena in chaotic dynamics, universal scaling relations exist that are valid
for a wide range of different specific systems. A prominent example is the sequence of
period doubling bifurcations characterized by the universal Feigenbaum constant [47]. A
further example, which is studied in this work, is the scaling of the Lyapunov exponents
of weakly coupled chaotic and disordered systems. In the case of coupled chaotic systems
the role of chaos is to provide temporal or spatiotemporal fluctuations in the linearized
dynamics.

It has been found that in several cases it is possible to model the chaotic fluctuations
by random variables, which explains the universality of the observed phenomena and often
allows an analytic treatment [22, 19]. This approach is to some extent comparable with
the methods of statistical mechanics. However, there exists no general formalism for the
stochastic modelling of chaotic fluctuations, mainly because one is often in the finite-size
regime where specific properties of the respective systems have to be taken into account.

In this work the statistical approach is used to investigate the Lyapunov exponents of
chaotic systems and of one-dimensional disordered chains. The remaining chapters are
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1 Introduction

organized as follows.
In chapter 2 a brief review of dynamical systems and chaos is given. The main focus is

on concepts that are used in this work. Furthermore, the idea of stochastic modelling of
chaotic fluctuations is reviewed and references to the literature of stochastic dynamics are
given.

In chapter 3 we study the strong dependence of the Lyapunov exponents of weakly cou-
pled chaotic systems on the coupling strength. DAIDO coined the notion “coupling sen-
sitivity of chaos” for this behaviour which he first observed in 1984 [23]. Although some
theoretical explanations of this effect have been given since, we gain further insight by using
a very simple stochastic model that includes the key ingredients of the dynamics: fluctua-
tions and coupling. We then compare the theoretical predictions of our model with results
of numerical simulations.

Chapter 4 is concerned with weakly coupled disordered quantum systems which possess
a quasi-one-dimensional geometry. This problem is formally similar to coupled chaotic
Hamiltonian systems treated in chapter 3. As a consequence the localization length also
shows coupling sensitivity, which to our knowledge has not been reported before. We per-
form numerical simulations of disordered chains which agree with the analytic results for a
continuous-space model.

In chapter 5 we turn our attention to the linear oscillator with parametric noise, which
serves as a model in localization theory as well as in the theory of chaotic Hamiltonian
systems. The fluctuations lead to an exponential growth of the oscillations which is charac-
terized by the Lyapunov exponent. We focus on the finite-time (local) Lyapunov exponent
which fluctuates according to a time-dependent distribution. The deviations of this distri-
bution from a Gaussian one are examined with the help of the generalized Lyapunov expo-
nents. We identify the parameter range where the deviations are significant and multiscaling
becomes essential.

Chapter 6 gives a summary of our main results and shows directions for further research.
In addition, each of the chapters 3, 4, and 5 closes with a brief summary. The possible
experimental relevance of our theoretical results is discussed in some detail in these sum-
maries.

Finally, the two appendices A.1 and A.2 review some basic methods for the numerical
calculation of Lyapunov exponents and for the treatment of stochastic differential equations.
On page 73 an overview of the notation used in this work can be found.
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2 Stochastic Theory of the Lyapunov Exponent

This chapter introduces the basic statistical formalism of this work. First a brief review of
some of the main concepts of nonlinear dynamics is given, paying particular attention to the
Lyapunov exponents as a measure of the stability of dynamical systems. Then two stochas-
tic approaches to the Lyapunov exponents are presented whose extensions are studied in the
following chapters.

2.1 Dynamical Systems

2.1.1 Differential Equations and Maps

A dynamical system describes the temporal evolution of a physical system, which is char-
acterized by a number of state variables. Typical examples are coordinates for mechanical
systems or voltages and currents for electrical ones. The d variables form a state vector
u � M � Rd that determines the system. Each possible state of the system corresponds to
a point in the d-dimensional phase space, the temporal evolution of a state is described by
a trajectory u � t � in this phase space. In a deterministic dynamical system the state of the
system unequivocally determines its future evolution. The temporal evolution is typically
either described by a set of differential equations or by a discrete map acting on the state
vector.

In the case of ordinary differential equations (ODEs) it is sufficient to consider sets of
first order ODEs,

du � t ��� dt � f � u � t ���	� (2.1)

where t � R is the continuous time and f : M 
 Rd is a function that is in general non-
linear. Equations including higher order derivatives or explicit time dependences can be
transformed into this form by introducing additional state variables. If one observes the
system at discrete time instants, one can describe the temporal evolution by a map,

u � t � 1 ��� f � u � t ���	� (2.2)

where t � Z is the discrete time and f : M 
 M is again a function that is in general nonlin-
ear. Given an initial condition u � 0 � , it is clear that the temporal evolution of u � t � for t 
 0 is
determined unequivocally. A discrete map can be attributed to a continuous-time dynamical
system via the Poincaré surface of section (see, e.g. Ref. [47]).
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2 Stochastic Theory of the Lyapunov Exponent

2.1.2 Lyapunov Exponents

An important characteristic of chaotic dynamics is the exponential divergence of initially
adjacent trajectories. This can be mathematically characterized with the help of a stabil-
ity analysis. A trajectory u � t � is called asymptotically stable if there exists a phase space
volume around it such that trajectories u ��� t � in this volume approach u � t � in the long time
limit,

lim
t � ∞

�
u � t ��� u � � t � � � 0 �

We first limit our attention to differential equations of the form (2.1). We consider a ref-
erence trajectory u � t � and a second trajectory u � t ��� w � t � , where w � t � is a small perturbation
or inaccuracy. By means of the Taylor expansion

f � u � w ��� f � u �	� J � u � w � O � � w
� 2 �

(where J is the Jacobian of f ) we can study the time evolution of the perturbation vector in
linear approximation,1

dw � t ��� dt � J � u � t ��� w � t �	�
Note that the Jacobian J � u � t ��� is in general time-dependent. If the reference trajectory
consists of a fixed point, u � t ��� u0, its stability depends on the real parts of the eigenvalues
γi (i � 1 ��������� d) of the constant Jacobian J � u0 � :

max
i

�
ℜγi � ��� ���� 0 : asymptotically stable,� 0 : marginally stable,
 0 : unstable.

In the case of marginal stability one has to consider higher order terms in the Taylor expan-
sion of f � u � w � to decide about the stability of the fixed point.

In the case of discrete maps of the form (2.2), we can also use the Taylor expansion of
f � u � w � and obtain in linear approximation

w � t � 1 ��� J � u � t ��� w � t �	�
If the reference trajectory consists of a fixed point u0, the stability again depends on the
eigenvalues γi (i � 1 ������� � d) of the constant Jacobian J � u0 � . Here, however, the logarithms
of the absolute eigenvalues are of interest:

max
i

�
ln

�
γi
� � ��� ��!� 0 : asymptotically stable,� 0 : marginally stable,
 0 : unstable.

1We write an equal sign here and understand w " t # as a “linear perturbation”.
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2.1 Dynamical Systems

If the reference trajectory is not a fixed point, its stability is measured by the Lyapunov
exponents. We first concentrate on discrete maps of the form (2.2). Given the initial con-
ditions u0 � u � 0 � and w0 � w � 0 � (with

�
w0

� � 1), we define the local (or finite-time)
Lyapunov exponents as

λ � t � u0 ��� 1
t

ln
�

w � t � � � 1
t

ln
�

P � t � u0 � w0
� � 1

2t
ln � wT

0 PT � t � u0 � P � t � u0 � w0 �	� (2.3)

where the upper index T denotes the transpose and

P � t � u0 �$� t % 1

∏
τ & 0

J � u � τ ���	�
The real nonnegative symmetric matrix PT P has real nonnegative eigenvalues γi � t � u0 � (i �
1 �������'� d) and eigenvectors which are orthogonal to each other. Choosing w0 in the direction
of the eigenvector corresponding to the eigenvalue γi � t � u0 � , we have

λi � t � u0 �(� 1
2t

ln � wT
0 γi � t � u0 � w0 �(� 1

2t
lnγi � t � u0 �	�

In the long-time limit we obtain the Lyapunov exponents

λi � lim
t � ∞

λi � t � u0 �
which are according to Oseledec’s multiplicative ergodic theorem independent of u0 for
almost all u0 (see, e.g. Ref. [33]). We sort the Lyapunov exponents with decreasing magni-
tude, λ1 ) λ2 )+*�*�*,) λd . A generic perturbation w0 will have components in the directions
of all eigenvectors and thus rapidly align in the direction of fastest growth. Due to ergod-
icity, we also obtain the largest Lyapunov exponent by means of averaging its finite-time
value with respect to the invariant measure of u,

λ1 �.- λ1 � t � u0 ��/0� (2.4)

A numerical method for the calculation of Lyapunov exponents is given in App. A.1.
In the case of differential equations of the form (2.1) Lyapunov exponents are defined in

nearly the same way. The only difference is that P � t � u0 � has to be replaced by O � t � u0 � ,
which is the matrix solution of the differential equation

dO � t � u0 ��� dt � J � u � t ��� O � t � u0 �
with the initial condition O � 0 � u0 �1� I (where I is the unit matrix). For trajectories of au-
tonomous continuous-time systems one Lyapunov exponent is always zero (except for tra-
jectories that consist of single fixed points); this accounts for the phase space motion along
the trajectory.
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2 Stochastic Theory of the Lyapunov Exponent

The concept of Lyapunov exponents is one of the most direct tools to characterize dy-
namical systems. Although the Lyapunov exponents themselves have no physical meaning,
many physically relevant quantities, such as the correlation time and the entropy, depend
on them (see, e.g. Ref. [22]). Furthermore, the Lyapunov exponents are used to classify
dynamical systems with respect to their stability properties in the following way. After a
transient time a system typically settles on an attractor. Without going into mathematical
details, an attractor can be seen as a set of phase space points that is approached by all
trajectories starting from a surrounding phase space volume (the basin of attraction). The
Lyapunov exponents are average quantities that describe the stretching and shrinking of
phase space volumes in different directions. For dissipative systems the sum of Lyapunov
exponents is negative, while it is zero for conservative systems. The Lyapunov exponents
provide a criterion to decide about the nature of an attractor. As chaos is characterized by
a sensitive dependence of the system behaviour on initial conditions, it can be associated
with a positive largest Lyapunov exponent λ1. For continuous-time systems we have the
following classification:

λ1 � 0 : attractive fixed point,

λ1 � 0 � λ2 � 0 : attractive limit cycle,

λ1 � λ2 � 0 : quasiperiodic attractor,

λ1 
 0 : chaotic attractor.

Finally we remark that the Lyapunov exponents play a crucial role in the context of local-
ization, see Sec. 4.1 below.

The estimation of Lyapunov exponents from time series of experimental systems is very
difficult, although some methods exist for the estimation of at least the largest Lyapunov
exponent [34]. Therefore, the Lyapunov exponents are most useful for systems which math-
ematical models are known for.

If only the largest Lyapunov exponent is considered, we set for simplicity λ 2 λ1 in the
following.

2.1.3 Generalized Lyapunov Exponents

The local Lyapunov exponent λ � t � , Eq. (2.3), is a fluctuating quantity with a probability
density P � λ; t � (defined by sampling all initial conditions u0 in phase space according to the
invariant measure). A possible way to extract information about a distribution is to consider
higher moments. Within the framework of Lyapunov exponents this leads to the generalized
Lyapunov exponents, defined as

L � q �$� 1
q

lim
t � ∞

1
t

ln - � w � t � � q /3� (2.5)

where the average refers to P � λ; t � . These exponents give the exponential growth rate of
higher moments of the perturbation w � t � , and because of the fluctuations of λ � t � they are
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2.1 Dynamical Systems

not equal to the usual largest Lyapunov exponent, L � q �54� λ1. For large q this is intuitively
clear, because the growth of high moments of the perturbation amplitude is dominated by
rare events that correspond to the tail of P � λ; t � . However, the largest Lyapunov exponent is
included in the above definition as a special case,

λ1 � lim
q � 0

L � q �6�
For a detailed discussion of the exponents L � q � we rewrite Eq. (2.3) as

�
w � t � � �

exp 7 tλ � t �98 . Thus the cumulants Kq � t � of the process λ � t � can be related to the moments
of the norm

�
w � t � �

(see [65] for details concerning the cumulant expansion):- � w � t � � q /��:- exp 7 qλ � t � t 8;/<� exp = ∞

∑
n & 1

qntn

n!
Kn � t �9>?�

The first two cumulants which correspond to the mean and the variance of λ � t � , respectively,
scale for large times as follows:

K1 � t �(�.- λ � t ��/@��

t � ∞

λ1 � K2 � t �(�.-�7 λ � t �A� λ1 8 2 /B�C

t � ∞

D � t ; (2.6)

with the diffusion constant D. The variance K2 vanishes for large times in accordance with
the self-averaging property of the largest Lyapunov exponent. Hence, by definition (2.5), the
generalized Lyapunov exponent is the asymptotic cumulant-generating function of P � λ; t � :

L � q �D� lim
t � ∞

∞

∑
n & 1

qn % 1tn % 1

n!
Kn � t �E� λ1 � q

2
D � lim

t � ∞

∞

∑
n & 3

qn % 1tn % 1

n!
Kn � t �F� (2.7)

In other words, L � q � can be expanded in a power series around q � 0 with coefficients given
by the cumulants of the local Lyapunov exponent. It immediately follows that

λ1 � L � 0 �G� D � 2L � � 0 �6�
There is still a more direct connection between L � q � and the distribution of λ � t � . For

t H 1 the probability density P � λ; t � can be written in a scaling form as (see e.g. [28, 10])

P � λ; t �(I exp 7J� t f � λ �98K�
The entropy function f � λ � is connected with the generalized Lyapunov exponent via a Leg-
endre transformation [48, 22]:

f � λ �E� qλ � qL � q �G� d
dq

qL � q �$� λ � (2.8)

The expansion of the entropy function around λ � λ1 reads f LM� λ � λ1 � 2 � 2D, which yields
a Gaussian distribution of the local Lyapunov exponent. In the tails, however, deviations
from the Gaussian will be present in general.

Ususally the generalized exponents are difficult to compute numerically, which is not
the case for the largest exponent because it is a self-averaged quantity (see Eq. (2.4)). The
effect of non-Gaussian fluctuations of the exponential growth rate on the L � q � are discussed
in more detail in Ch. 5. For a comprehensive overview see [48, 49].
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2 Stochastic Theory of the Lyapunov Exponent

f(u)

10

1

a u

Figure 2.1: The skew Bernoulli map.

2.1.4 Example: Skew Bernoulli Map

A simple example which allows analytical calculations of Lyapunov exponents is given by
the one-dimensional skew Bernoulli map (see Fig. 2.1)

f : 7 0 � 1 8A
N7 0 � 1 8O� u P
RQ u � a if u S a �� u � a ���T� 1 � a � if u 
 a � (2.9)

The map depends on a parameter a �U� 0 � 1 � . Due to the uniform invariant measure of the
map, the absolute derivative is given by�

f � � u � � � Q 1 � a with probability a �
1 �T� 1 � a � with probability 1 � a �

The Lyapunov exponent is easily calculated by averaging the one step (finite-time) Lya-
punov exponent according to Eq. (2.4),

λ �V- λ � 1 � u0 ��/��.W ln �
f � � u0 � �YX �Z� a lna �U� 1 � a � ln � 1 � a �	�

The Lyapunov exponent is positive for all values of a �[� 0 � 1 � and has a maximum at a �
1 � 2. The variance of the one step Lyapunov exponent can also be calculated,

2σ2 �.W\7 λ � 1 � u0 �A� λ 8 2 X � a � 1 � a �G] ln
a

1 � a ^ 2 �
8



2.2 Stochastic Modelling of the Exponential Instability in Chaotic Systems

The variance is zero only for a � 0 � 5 and has maxima at a L 0 � 5 _ 0 � 417.
The generalized Lyapunov exponents can be calculated by noting that the

�
f � � u � � are not

correlated:

L � q �(� 1
q

ln ` a1 % q �a� 1 � a � 1 % q b � α � β
2

q � O � q2 �F�
For the coefficients α � β one obtains,

α �Z� a lna �U� 1 � a � ln � 1 � a ��� λ � β � a � 1 � a �F] ln
a

1 � a ^ 2 � 2σ2 �
in accordance with the statements of section 2.1.3.

2.2 Stochastic Modelling of the Exponential Instability in
Chaotic Systems

In Ch. 3 we focus on the coupling sensitivity of the Lyapunov exponents. It turns out,
that this effect is within a large range independent of the nature of the underlying chaotic
dynamics. It is thus appropriate to use simple models for the chaotic behavior. In recent
years it turned out that for several problems it is possible to model chaotic fluctuations by
random variables [52, 12, 49, 66, 29] (for an introduction see Ref. [22]). The phenomena
studied in this work are found in the perturbation dynamics (Lyapunov exponents) rather
than in the dynamics of the state variables. We therefore aim at stochastic models of the
perturbation dynamics of chaotic systems. Lyapunov exponents are widely used in the
context of random dynamical systems [22, 7].

In the following sections we introduce two stochastic models for the perturbation dy-
namics of dissipative and Hamiltonian chaotic systems, resp. The particular models used to
study the phenomena of coupling sensitivity of chaos are introduced in Ch. 3. To be able
to make use of the Fokker-Planck equation, we choose continuous-time models with Gaus-
sian white noise. This choice is motivated by the observation that the effects we study are
found for discrete-time as well as continuous-time dynamics, and do not seem to depend on
the distribution of fluctuations of particular systems. For low-dimensional dynamics very
simple stochastic models can already be sufficient. In Ch. 3 this is demonstrated for the
case of two weakly coupled chaotic systems. In the high-dimensional case, however, spatial
diffusion often plays an important role, which can be incorporated by the use of spatially
extended stochastic models [54].

Problems are encountered for systems with long temporal correlations, in which white
noise is not appropriate to replace the fluctuations. An example is given by strange non-
chaotic attractors [53, 68]. Most chaotic systems, however, show a rapid decay of temporal
correlations and are thus adequately modelled by a Langevin approach.
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2 Stochastic Theory of the Lyapunov Exponent

2.2.1 Dissipative Systems

Here we aim at a simple stochastic model for the dynamics of perturbations, which should
reproduce the long time behavior (with the Lyapunov exponent λ),

w � t ��
 w � 0 � eλt for t 
 ∞ �
but also allow for finite-time fluctuations. The amplitude w � t � is understood as the com-
ponent of the perturbation vector in the direction of the fastest growth. The simplest
ansatz seems to be the linear Stratonovich stochastic differential equation (see App. A.2
and Ref. [65, 31])

dw � t ��� dt �.7 λ � ξ � t �98 w � t �	� (2.10)

where ξ � t � is a Gaussian stochastic process with- ξ � t ��/$� 0 � W ξ � t � ξ � t � � X � 2σ2δ � t � t � �
(the averages are over different realizations of the noise). We notice that w � t � stays positive
if w � 0 �G
 0. Integration leads to

w � t �$� w � 0 � exp ] λt �Uc t

0
ξ � t̃ � dt̃ ^ � w � 0 � exp d λt �Ue 2σ2W � t �gf?� (2.11)

where W � t � is the Wiener process (see App. A.2). The local Lyapunov exponent is accord-
ing to definition (2.3) given by

λ � t ��� λ � e 2σ2

t
W � t �G� (2.12)

Since W � t ��� t 
 0 for t 
 ∞ with probability one, we have

w � t ��
 w � 0 � eλt for t 
 ∞ �
The distribution of λ � t � is a Gaussian, defined by its mean and variance:- λ � t ��/(� λ � W\7 λ � t �A� λ 8 2 X � 2σ2

t
�

Thus the higher cumulants vanish in Eq. (2.7) and the generalized Lyapunov exponents
assume the simple form,

L � q �(� λ � q
2

σ2 �
Now we have the somewhat paradoxical result that the L � q � are nonzero even for λ � 0.
This, however, is due to the diffusion of the logarithm lnw � t � ∝ tλ � t � about its mean growth
tλ (see Eq. 2.12) caused by the fluctuating term � e 2σ2 � t � W � t � . The expression for the L � q �
also reflects the statement that they contain information about the whole distribution of the

10



2.2 Stochastic Modelling of the Exponential Instability in Chaotic Systems

local Lyapunov exponent. That is, the exponents L � q � depend on both, the mean λ and the
variance σ2.

The correspondence to a real chaotic system can be achieved by setting λ and σ2 equal
to the Lyapunov exponent and the diffusion constant (see section 2.1.3), respectively, of the
system under consideration. It should be noted that the noise ξ � t � does not explicitely model
the chaotic system. It mimics the fluctuations of the Jacobian, that is, nearby trajectories
evolve with the same realization of the noise (see [15] for a detailed discussion of this prob-
lem). This model of the perturbation dynamics is strikingly simple, what of course restricts
its adaptability. It ignores inhomogeneities of the chaotic attractor as well as correlations
of the chaotic process. It is, however, sufficient to describe the phenomenon of coupling
sensitivity as will be shown in Ch. 3.

2.2.2 Hamiltonian Systems

An important property of Hamiltonian systems is the conservation of the phase space vol-
ume corresponding to Liouville’s theorem. In terms of Lyapunov exponents this requires
the sum of the exponents to be zero (cf. sec. 2.1.2),

2N

∑
i & 1

λi � 0 �
where N is the number of degrees of freedom. Moreover, due to the symplectic structure of
the equations of motion the Lyapunov exponents are pairwise conjugated2 : λi �M� λ2N h 1 % i.
This property gives rise to very distinct signatures of Hamiltonian chaos, such as homoclinic
points, and it is thus advisable to include the phase volume conservation in a model of the
perturbation dynamics.

Hence the model should be characterized by a fluctuating exponential growth, a Hamil-
tonian structure, and linearity; taking these minimal requirements into account a simple
ansatz is the parametrically excited linear oscillator (also designated as random frequency
oscillator) [65, 63]:

d2w � dt2 �a7 E � ξ � t �98 w � 0 � W ξ � t � ξ � t � � X � 2σ2δ � t � t � �F� (2.13)

Generally we will assume that E can take on all values of the real axis. With the momentum
variable v 2 ẇ, the Hamiltonian of this system reads

H � w� v� t �$� 1
2

v2 � 1
2
7 E � ξ � t �98 w2 �

The random modulations of the frequency lead via parametric instability to an exponential
increase of the amplitude, i

w2 � v2 I eλt �
2an introduction into this topic can be found in [6]
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2 Stochastic Theory of the Lyapunov Exponent

characterized by the (Lyapunov) exponent λ . Unfortunately, the exponent λ can be ex-
pressed analytically only up to quadratures. Moreover, the non-Gaussian distribution of the
local Lyapunov exponent,

λ � t �(� 1
2t

ln � w2 � v2 �G�
brings about multiscaling, which hampers a simple correspondence to real systems. These
problems are treated in Ch. 5, where also analytic expressions for the Lyapunov exponents
can be found.

However, there exists a correspondence between the random frequency oscillator and
Hamiltonian systems with many degrees of freedom with a Hamiltonian of the form

H � 1
2

N

∑
1

p2
i � V � q1 �������'� qN �G�

where the q � p are the coordinates and conjugate momenta, resp. CASETTI et al. [19] used a
geometric approach to derive Eq. (2.13) as an approximation to the perturbation dynamics.
For this the authors assumed the system to be chaotic with a quasi-isotropic manifold. The
parameters of Eq. (2.13) are then connected with the curvature of the potential V as follows,

E � 1
N

- ∆V / µ � 2σ2 � τ
N

d Wj� ∆V � 2 X
µ �k- ∆V / 2

µ f �
where τ is a characteristic correlation time scale and µ denotes the microcanonical average.
This method has been succesfully applied to lattice systems, see e.g. [18, 9].

The random frequency oscillator also serves as a model in the theory of Anderson local-
ization; an application in the case of coupled chains is the subject of Ch. 4.

12



3 Coupling Sensitivity of Chaotic Systems

In 1985 DAIDO discovered by means of numerical simulations that the Lyapunov exponents
of weakly coupled chaotic maps show a very strong dependence on the strength of the
coupling [23]. He was able to find an approximate logarithmic scaling relation and coined
the notion “coupling sensitivity of chaos” for this behaviour. Further studies with different
systems indicated that the effect is very general [24, 25, 26].

In the first part of this chapter a stochastic continuous-time model is presented that cap-
tures the essential aspects of the perturbation dynamics (the basic idea of stochastic mod-
elling of chaotic fluctuations is explained in Sec. 2.2). This approach yields a general scal-
ing relation which includes as a limiting case the logarithmic scaling found by DAIDO. The
model further allows one to trace the origin of this effect and to identify the significant small
parameter as the coupling strength divided by the strength of the fluctuations. Thus an ap-
plication of perturbative methods such as the small noise expansion [8] is excluded. Results
of numerical simulations using chaotic maps are presented that confirm the predictions of
the derived scaling relation. Finally, a random walk picture is introduced that sheds light on
the origin of the logarithmic singularity.

It will be further shown that coupling sensitivity is absent for the null Lyapunov exponent
of continuous-time systems. This is qualitatively explained by taking into account the role
of fluctuations.

In the remaining part of the chapter analytic and numerical results for coupled Hamilto-
nian systems will be presented. The analytic approach employs a coupled version of the
second-order Langevin equation introduced in Sec. 2.2.2. The results prove the coupling
sensitivity of the non-zero Lyapunov exponents for Hamiltonian systems.

Parallel to our work, a similar stochastic model has been used by CECCONI and POLITI to
estimate the Lyapunov exponent of a coupled map lattice in the limit of weak coupling [21]
(see also Sec. 3.1.2). The numerical computations in Sec. 3.1.4 have been carried out by
VOLKER AHLERS and are described in detail in his dissertation [2]. Some of the results of
this chapter have been published in Refs. [68, 3, 69].
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3 Coupling Sensitivity of Chaotic Systems

3.1 Coupled Dissipative Systems

3.1.1 The Effect

DAIDO studied a system consisting of two coupled one-dimensional maps,

u1 � t � 1 ��� f � u1 � t ���l� κg � u2 � t ��� u1 � t ���G�
u2 � t � 1 ��� f � u2 � t ���l� κg � u1 � t ��� u2 � t ���G� (3.1)

where t � Z is the discrete time variable, κ is the coupling parameter (the coupling strength),
u1 and u2 are the state variables, f is a nonlinear map, and g is a coupling function. The
map f is assumed to be chaotic with a positive Lyapunov exponent Λ . In the following
we always choose the coupling to be diffusive:1 g � u2 � u1 �G� f � u2 �K� f � u1 � . It should be
emphasized, however, that the effects described in this chapter are also found for other
coupling functions.

Without coupling, κ � 0, we have two identical systems with equal Lyapunov exponents
Λ . When coupling is introduced, the Lyapunov exponents are in general different. Further-
more, their values depend on the coupling parameter κ . We thus have the two Lyapunov
exponents λ1 � κ � and λ2 � κ � .

The observation of Daido was that for small values of the coupling parameter, κ m 1, the
Lyapunov exponents diverge from each other and from the zero coupling value Λ according
to

λ1 � λ2 I 1�
lnκ

� � λ1 n 2 � Λ I 1�
lnκ

� � (3.2)

He found this to be a common behaviour of different maps f and different coupling func-
tions g [23].

As a simple example we study the dependence of two coupled skew Bernoulli maps on
the coupling parameter. The skew Bernoulli map is defined as (see also Sec. 2.1.4)

f : 7 0 � 1 8o
p7 0 � 1 8O� u P
RQ u � a if u S a �� u � a ���T� 1 � a � if u 
 a � (3.3)

with the parameter a �[� 0 � 1 � . The Lyapunov exponents of the system 3.1 of coupled maps
are calculated by standard numerical methods (cf. App. A.1). In Fig. 3.1 the differences
of the Lyapunov exponents λ1 n 2 from the single map value Λ are shown as functions of the
coupling parameter κ . From Fig. 3.1(b) it can be seen that for small values of coupling
these differences indeed scale according to

λi � Λ I 1�
lnκ

� � i � 1 � 2 �
1Naively choosing g " u2 q u1 #sr u2 t u1 would give rise to the possibility that the u1 u 2 " t v 1 # lie outside of the

interval that the map f is acting on.
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3.1 Coupled Dissipative Systems
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Figure 3.1: Coupled skew Bernoulli maps, Eq. (3.3). (a) The Lyapunov exponents λ1 w Λ1 (solid
line) and λ2 w Λ2 (dashed line) vs. κ for a x 1 y 4. (b) The same data in scaled coordinates.

3.1.2 Previous Theoretical Results

The first theoretical approaches to understand the origin of the coupling sensitivity stem
from DAIDO, who used an expansion of the local Lyapunov exponents of coupled maps and
hence was able to reproduce the 1 � � ln κ

�
dependence [24]. He pointed out the importance of

fluctuations of the local expansion rates and stressed that this prerequisite distinguishes the
coupling sensitivity from the usual sensitive dependence on initial conditions. He later in-
troduced a discrete-time stochastic model that shows the logarithmic singularity, but not the
quantitative dependence on the magnitude of fluctuations of the local expansion rate [26].

Further theoretical investigations have focused on the largest Lyapunov exponent of cou-
pled map lattices with weak coupling. In that context, which corresponds to the limit of in-
finitely many (instead of just two) coupled systems, a similar logarithmic singularity (with
different prefactors) is observed.

LIVI et al. found an analogy to the problem of directed polymers in random media. They
used a mean field approach and a tree approximation to estimate the dependence of the
Lyapunov exponent on the coupling strength [43]. While their model approximately shows
the 1 � � ln κ

�
dependence, it wrongly predicts a phase transition at a critical coupling strength.

Subsequently CECCONI and POLITI were able to improve the previous approach by using
an n-tree approximation [20]. They found that the critical coupling strength of the spurious
phase transition shifts to higher values of κ with increasing tree depth n.

Finally, CECCONI and POLITI used a continuous-time approximation of a discrete-time
model [21]. Parallel to our work, they found a relation similar to our result (3.12) (including
the quantitative dependence on the magnitude of fluctuations of the local expansion rate),
but with different prefactors because of the high dimensionality. Furthermore, they were
able to find an approximate result for coupled maps which have derivatives with fluctuating
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3 Coupling Sensitivity of Chaotic Systems

signs.
Our own approach does not start from coupled maps, but uses a simple continuous-

time stochastic model of the perturbation dynamics with the key ingredients of exponential
growth, finite-time fluctuations, and coupling. It further allows for different Lyapunov ex-
ponents of the coupled systems, which is needed to understand the phenomenon of avoided
crossing of Lyapunov exponents [2].

3.1.3 Analytical Approach

Stochastic Model

The universality of the effect of coupling sensitivity of chaos indicates that there exists an
underlying mechanism not connected with any special system. Furthermore, the effect has
been found for both two- and higher-dimensional systems. The basic ingredients common
to all studied systems are temporal fluctuations (due to the chaotic nature of the dynamics)
and weak coupling. The first property is provided by the stochastic model (2.10) in section
2.2.1. In the following we propose an extension of this model to a system of two diffusive
coupled Langevin equations:

dw1 � t ��� dt �V7 Λ1 � ξ1 � t �98 w1 � t �	� κ 7 w2 � t �A� w1 � t �98��
dw2 � t ��� dt �V7 Λ2 � ξ2 � t �98 w2 � t �	� κ 7 w1 � t �A� w2 � t �98�� (3.4)

Here the random processes ξ are normally distributed with zero mean and δ-correlated,W ξi � t � ξ j � t � � X � 2σ2
i δi jδ � t � t � �F� i � j � �

1 � 2 � �
These equations have to be interpreted in the Stratonovich sense. The Langevin approach al-
lows the application of the Fokker-Planck equation and hence allows an analytic expression
for the Lyapunov exponents, as is shown in the following section.

Three groups of parameters describe three important ingredients of the dynamics:

1. The Lyapunov exponents of the uncoupled systems are described by the constants
Λ1 n 2 .

2. The diffusion constants D1 n 2 of the logarithmic growth of the uncoupled systems
(cf. section 2.2.1) are given by the parameters σ2

1 n 2 . They account for the fluctuations
of local expansion rates. The value of σ2 can thus be calculated from the variance
of local Lyapunov exponents of a given chaotic system. In connection with the nu-
merical simulations in Sec. 3.1.4, the parameters σ2 will be calculated for different
systems.

3. The coupling is described by the coupling parameter κ . For a while a symmetrical
coupling is assumed, the case of asymmetrical coupling is considered in section 3.1.3.
Coupling sensitivity of the Lyapunov exponent is expected for κ 
 0.
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3.1 Coupled Dissipative Systems

It has to be stressed that we assume the statistical properties of the individual systems
(characterized by the distributions of the stochastic processes ξ1 n 2) to be independent of the
coupling. This assumption can be justified by means of results from a perturbation analysis
of weakly coupled maps [17], indicating that the invariant measure depends on the coupling
strength in a nonsingular way. In other words, the logarithmic singularity of the splitting of
the Lyapunov exponents, I 1 � � ln κ

�
, is much stronger than possible changes of the statistics

of the subsystems. Nevertheless, our model will certainly fail for strong coupling.
Without fluctuations, σ2

1 � σ2
2 � 0, and equal Lyapunov exponents of the uncoupled sys-

tems, Λ1 � Λ2 � Λ, we have a two-dimensional system of linear differential equations,

d
dt

] w1
w2 ^ � ] Λ � κ κ

κ Λ � κ ^ ] w1
w2 ^ �

The Lyapunov exponents are just the eigenvalues of the time-independent real symmetric
matrix (cf. section 2.1.2). We thus obtain

λ1 � Λ � λ2 � Λ � 2κ

for the Lyapunov exponents of the coupled systems. This means that without fluctuations of
the local expansion rates there is no coupling sensitivity of chaos, a result that was already
observed by DAIDO [23].

Analytical Expression for the Lyapunov Exponent

In the following the coupling dependence of the Lyapunov exponent will be explicitely
derived, using the stationary probability density of the associated Fokker-Planck equation.
The largest Lyapunov exponent is defined by

λ1 � lim
t � ∞

1
2t

W ln � w2
1 � w2

2 � X � lim
t � ∞

1
2t

ln � w2
1 � w2

2 �G� (3.5)

where the last equality corresponds to the self-averaging property of λ1 [46]. The averages
are over different realizations of the noise processes ξ1 n 2.

First we perform a transformation to new variables,

v1 � ln � w1 � w2 �F� v2 � ln � w1w2 �F�
For this it should be noted, that the regions w1 � w2 
 0 and w1 � w2 � 0 are absorbing ones
because for w1 � 0 we have ẇ1 � κw2 and for w2 � 0 we have ẇ2 � κw1 in Eq. (3.4). This
transformation leads to a partial decoupling of system (3.4):

dv1 � dt � χ1 � 2κsinhv1 � Λ1 � Λ2 � (3.6)

dv2 � dt � χ2 � 2κcoshv1 � Λ1 � Λ2 � 2κ � (3.7)
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3 Coupling Sensitivity of Chaotic Systems

where χ1 � ξ1 � ξ2 and χ2 � ξ1 � ξ2 . The equation for the evolution of v1 is a closed
Langevin equation for a random walk in the potential Φ � 2κcosh v1 �z� Λ1 � Λ2 � v1. Thus
we can write the Fokker-Planck equation for the probability density ρ � v1; t � [58] (see also
App. A.2),

∂ρ � v1; t �
∂t

�|{ 2κcosh v1 � 2κsinhv1
∂

∂v1
�k� Λ1 � Λ2 � ∂

∂v1
� 2σ2 ∂2

∂v2
1 } ρ � v1; t �6� (3.8)

where σ2 �V� σ2
1 � σ2

2 ��� 2. The stationary solution of (3.8) is given by [67]

ρstat � v1 �(� N exp d lv1 � κ
σ2 cosh v1 f?� (3.9)

where l �~� Λ1 � Λ2 ���T� 2σ2 � and N is a normalization constant. In order to calculate the
Lyapunov exponent we first express it in terms of v1 and v2:

ln � w2
1 � w2

2 �(� ln ] w1w2 ] w1

w2
� w2

w1 ^�^ � v2 � ln � 2cosh v1 �	�
According to the definition (3.5) the Lyapunov exponent is given by

λ1 � lim
t � ∞ � 1

2t
- v2 /l� 1

2t
- ln � 2cosh v1 ��/j���

The second term vanishes for t 
 ∞ because - ln � 2cosh v1 ��/ stat is finite and time-
independent. Since one is interested in the long-time limit, the stationary distribution (3.9)
of v1 may be used. In the first term, - v2 � t / can thus be replaced by - v̇2 / stat . Hence the
Lyapunov exponent can be calculated by averaging the r.h.s. of Eq. (3.7),

λ1 � 1
2

- v̇2 / stat � κ - coshv1 / stat � 1
2
� Λ1 � Λ2 � 2κ �G� (3.10)

Averaging with the stationary distribution ρstat � v1 � yields (see Ref. [67] for details)- coshv1 / stat � K1 %�� l � � κ � σ2 �l� K1 h(� l � � κ � σ2 �
2K � l � � κ � σ2 � �

where the Kl are modified Bessel functions (Macdonald functions) [1]. Substituting this in
Eq. (3.10) we obtain a final analytical formula for the largest Lyapunov exponent. We write
it in a scaling form,

λ1 �k� Λ1 � Λ2 � 2κ ��� 2
σ2 � κ

σ2

K1 %�� l � � κ � σ2 �	� K1 h(� l � � κ � σ2 �
2K � l � � κ � σ2 � � (3.11)

This form demonstrates that the essential parameters of the problem are the coupling param-
eter and the Lyapunov exponents’ mismatch normalized to the fluctuation of the exponents,

κ
σ2 and l � Λ1 � Λ2

2σ2 � respectively.
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3.1 Coupled Dissipative Systems

If the Lyapunov exponents of the two interacting systems are equal, Λ1 � Λ2 � Λ, the
parameter l vanishes and we obtain (cf. [21])

λ1 � Λ � κ
K1 � κ � σ2 �
K0 � κ � σ2 � � κ � (3.12)

Further insight into the scaling behaviour can be gained by approximating the modified
Bessel functions. Simplified expressions can be obtained in the following limiting cases:

Small coupling, equal Lyapunov exponents. In the limit κ � σ2 m 1, the functions K1 and
K0 in Eq. (3.12) can be expanded [1], resulting in

λ1 � Λ L σ2�
ln � κ � σ2 � � � (3.13)

This formula corresponds to DAIDO’s singular dependence of the Lyapunov exponent
on the coupling parameter [23, 24, 25] and will be checked by means of numerical
simulations in section 3.1.4. It is valid in all cases when identical chaotic systems
are coupled symmetrically, provided that the Lyapunov exponents in these systems
fluctuate (σ2 
 0). Moreover, even for different systems having, however, equal Lya-
punov exponents (but not necessarily equal fluctuations of the exponents) we get the
same singularity as for identical systems. DAIDO arrived at a similar result in his
analytical treatment of coupled one-dimensional maps, cf. Eq. (19) of Ref. [26].

No fluctuations. With vanishing fluctuations, σ2 
 0, and fixed coupling parameter,
we have κ � σ2 
 ∞. In this case the fraction in Eq. (3.12) becomes unity,
K1 � κ � σ2 ��� K0 � κ � σ2 ��
 1, and for the Lyapunov exponent we obtain

λ1 � Λ �
This is consistent with the result one directly gets from the model without fluctua-
tions, see previous section.

Small coupling, different Lyapunov exponents. The expansion (3.13) remains valid for
small values of mismatch

�
l
�
, more precisely if � κ � σ2 � � l � is close to 1. For larger

mismatch, when d κ
σ2 f � l � m 1 �

the largest Lyapunov exponent becomes

λ1 L 2σ2 � l � Γ � 1 � �
l
� �

Γ � 1 � �
l
� � d κ

2σ2 f 2 � l � � 1
2
� � Λ1 � Λ2

� � Λ1 � Λ2 �� ��� �& max � Λ1 n Λ2 � � (3.14)

19



3 Coupling Sensitivity of Chaotic Systems

0.0020.004
0.0060.0080.01

κ

0

0.05

0.1

0.15
0.2

l

0.15

0.2

0.25

λ
0.15

0.2

0.25

λ

Figure 3.2: The dependence of λ1 on the mismatch � l � and the coupling κ ; σ2 x 1.

The singularity is now of the power-law type, with the power depending on the sys-
tems’ mismatch. With increasing difference

�
l
�

the influence of the coupling on λ1
decreases. For large

�
l
�
we thus have λ1 L maxΛ1 n 2, such that the l.h.s. of Eq. (3.11)

becomes (for κ � σ2 m �
l
�
)

λ1 �k� Λ1 � Λ2 � 2κ ��� 2
σ2 L �

Λ1 � Λ2
� � 2 � κ

σ2 L �
l
� �

which can also be seen in Fig. 3.2.

The Second Lyapunov Exponent

The sum of Lyapunov exponents can be calculated from the divergence of the phase space
volume using Eqs. (3.4),

λ1 � λ2 ��� ∂ẇ1

∂w1
� ∂ẇ2

∂w2 � � Λ1 � Λ2 � 2κ �
This enables us to find an expression for the second Lyapunov exponent,

λ2 � Λ2 �Z�0� λ1 � Λ1 �A� 2κ � (3.15)

The singularity is the same as for the first Lyapunov exponent but with opposite sign. The
linear decrease corresponds to the synchronization effect, leading to a negative λ2 for cou-
pling strengths larger than some critical κc .
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3.1 Coupled Dissipative Systems

Asymmetrical Coupling

An interesting generalization of the stochastic model not covered so far is the case of asym-
metrical coupling,

dw1 � t ��� dt �V7 Λ1 � ξ1 � t �98 w1 � t �	� κ1 7 w2 � t ��� w1 � t �98��
dw2 � t ��� dt �V7 Λ2 � ξ2 � t �98 w2 � t �	� κ2 7 w1 � t ��� w2 � t �98��

We can reduce this problem to the symmetric case by means of the transformation�
w1 � e κ2w1 � �

w2 � e κ1w2 �
Hence for the Lyapunov exponent we obtain (cf. Eq. (3.11))

λ1 �k� Λ1 � Λ2 � κ1 � κ2 ��� 2
σ2 � κ

σ2

K1 %K� l � � κ � σ2 �l� K1 h�� l � � κ � σ2 �
2K � l � � κ � σ2 � �

with the effective coupling parameter and the effective mismatch

κ � e κ1κ2 and l � 1
2σ2 7�� Λ1 � κ1 �A�k� Λ2 � κ2 �98��

respectively [68].
An interesting limit is given by unidirectional coupling. Then one can calculate the Lya-

punov exponents directly from the system,

dw1 � t ��� dt �.7 Λ1 � ξ1 � t �98 w1 � t �G�
dw2 � t ��� dt �.7 Λ2 � ξ2 � t �98 w2 � t �	� κ 7 w1 � t ��� w2 � t �98��

For the first autonomous equation we obtain λ1 � Λ1. The sum of both Lyapunov exponents
can again be calculated from the divergence of the phase space volume. This gives us the
value of the second Lyapunov exponent: λ2 � Λ2 � κ . Thus for unidirectionally coupled
systems there is no coupling sensitivity [68].

3.1.4 Numerical Simulations

In this section the results obtained for the system of continuous-time Langevin equations
are compared with numerical calculations for discrete-time deterministic systems. The Lya-
punov exponents are calculated as described in App. A.1.

We first study systems of two diffusively coupled one-dimensional maps f1 n 2, Eq. (3.1).
To have a good correspondence to the theory, we use only mappings with a constant sign
of f � below, so that the fluctuations of the local expansion rate are the only source of ir-
regularity in the perturbation dynamics. Another source could be irregular changes of the
sign of the derivative f � (as for the logistic and the tent maps). Such an irregularity is not
covered by our continuous-time approach, but also leads to a logarithmic singularity similar
to Eq. (3.13), see Ref. [21].
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Figure 3.3: Coupled identical skew Bernoulli maps. (a) The Lyapunov exponents λ1 w Λ and λ2 w Λ
vs. κ for a x 1 y 3 (solid lines), a x 1 y 4 (dotted lines), a x 1 y 5 (dashed lines), and a x 1 y 6 (dash-
dotted lines). (b) The same graphs in scaled coordinates. The long-dashed lines show the analytic
results � λ1 w Λ �gy σ2 x 1 ys� ln � κ y σ2 � � and � λ2 w Λ ��y σ2 x w 1 y,� ln � κ y σ2 ��� , see Eqs. (3.13) and (3.15).

Skew Bernoulli Maps

We consider the skew Bernoulli map (3.3). For the uncoupled map, the Lyapunov exponent
and the magnitude of fluctuations are given by (see Sec. 2.1.4)

Λ �.� a lna �k� 1 � a � ln � 1 � a �F� (3.16)

and

σ2 � 1
2

a � 1 � a �@] ln
a

1 � a ^ 2 � (3.17)

respectively. For a � 1 � 2 we obtain the ordinary Bernoulli map. In this case, there are no
fluctuations of the local multipliers (σ2 � 0), and no coupling sensitivity of the Lyapunov
exponents is observed.

Figure 3.3(a) shows the differences λ1 n 2 � Λ versus κ for maps with different values of
a 4� 1 � 2. From Fig. 3.3(b) it can be seen that different curves collapse onto single lines for
both exponents when plotted in the rescaled form according to (3.11). The resulting lines are
in very good agreement with the leading term of the theoretical prediction � λ1 � Λ ��� σ2 �
1 � � ln � κ � σ2 � � , which is also shown.

Different Maps

One main result of the analytic approach is, that the singularity does only depend on the
average σ2 �V� σ2

1 � σ2
2 ��� 2 of the fluctuations of local expansion rates and on the mismatch
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Figure 3.4: Different maps. (a) λ1 w Λ and λ2 w Λ vs. κ for two coupled skew Bernoulli maps with
a x 1 y 4 (solid lines) as well as one skew Bernoulli map with a x 1 y 4 coupled with the different
map (3.18) (dotted lines). (b) � λ1 w Λ �gy σ2 and � λ2 w Λ �gy σ2 vs. 1 ys� ln � κ y σ2 � � for the same examples
as in Fig. 3.4(a). The long-dashed lines show the analytic results as in Fig. 3.3(b).

l ��� Λ1 � Λ2 ���T� 2σ2 � of the Lyapunov exponents of the uncoupled systems. Although no
singularity occurs if σ2 � 0, one can expect to observe coupling sensitivity in the case of one
system with fluctuations (σ2

1 
 0) coupled to a different one without fluctuations (σ2
2 � 0),

given that the mismatch l is sufficiently small.
In order to check this prediction we again numerically iterate the system (3.1) and its lin-

earized version, now choosing two different maps. The first map is again the skew Bernoulli
map (3.3), while the second map is defined as

f2 � u �$� eΛu � mod 1 �	� (3.18)

where Λ is set equal to the Lyapunov exponent of the skew Bernoulli map (see Eq. (3.16)).
With this choice we have the parameters σ2

1 
 0, σ2
2 � 0, and l � 0 (because Λ1 � Λ2 � Λ).

In Fig. 3.4 the result is compared with the previous result for two coupled identical skew
Bernoulli maps (a � 1 � 4 in either case). As expected, the logarithmic singularity is observed
in both cases, although the deviation

�
λi � Λ

�
is smaller if σ2

2 � 0. When rescaled with the
average σ2, however, the curves collapse onto single lines for the first and second Lyapunov
exponents, as can be seen in Fig. 3.4(b).

3.1.5 Random Walk Picture

The stochastic model allows to understand the origin of the logarithmic singularity by means
of a qualitative consideration [68, 3]. For simplicity we assume Λ1 � Λ2 � 0 and σ2

1 � σ2
2 �
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3 Coupling Sensitivity of Chaotic Systems

σ2 H κ, leading to the system

dw1 � dt � ση1 � t � w1 � κ 7 w2 � w1 8��
dw2 � dt � ση2 � t � w2 � κ 7 w1 � w2 8��

with - ηi � t ��/(� 0 � W ηi � t � η j � t � � X � 2δi jδ � t � t � �F� i � j � �
1 � 2 � �

Now we perform a time rescaling t 
 t � σ2, where we have also to rescale η 
 ση because
of the δ-correlation. Dividing by σ2 we then obtain

dw1 � dt � η1 � t � w1 � κ
σ2 7 w2 � w1 8K�

dw2 � dt � η2 � t � w2 � κ
σ2 7 w1 � w2 8K� (3.19)

Since the amplitudes of the noise processes η1 n 2 are of order one and κ � σ2 m 1, the coupling
in the first equation of (3.19) only influences the dynamics of w1 if w2 I σ2w1 � κ H w1. In
this case the influence of the coupling on the dynamics of w2 in the second equation of (3.19)
is small. The opposite situation occurs if w1 I σ2w2 � κ H w2. Thus the coupling leads to a
reflection of w1 and w2 in the direction of growing amplitude if the system reaches the lines
w2 � σ2w1 � κ and w1 � σ2w2 � κ in phase space, as illustrated in Fig. 3.5(a).

(a)
w

w

2

w

w1
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2
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=
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2σ
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κ

σ 2

(b)

2
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2
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1

ln κ
σ

Figure 3.5: A sketch of the perturbation dynamics in coupled systems. Curly lines show the random
walk not influenced by coupling; straight arrows demonstrate the effect of coupling.
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3.1 Coupled Dissipative Systems

For logarithmic variables v1 n 2 � lnw1 n 2 the model (3.19) is transformed to

dv1 � dt � η1 � t �l� κ
σ2 � ev2 % v1 � 1 �!�

dv2 � dt � η2 � t �l� κ
σ2 � ev1 % v2 � 1 �!� (3.20)

Now the coupling in the first equation only influences the dynamics of v1 if v2 I v1 ��
ln � κ � σ2 � � , and vice versa. Thus the dynamics of the system is restricted to a strip of vertical

and horizontal width 2
�
ln � κ � σ2 � � , see Fig. 3.5(b). Due to the additive noise processes in sys-

tem (3.20), the dynamics between the reflections correspond to a two-dimensional random
walk. The average time to reach the boundary from the middle diagonal is 7 ln � κ � σ2 �98 2 [31].
The reflections introduce a drift in direction of growing v1 n 2 , the contribution of each re-
flection to the way travelled due to this drift being

�
ln � κ � σ2 � � . Thus the mean drift velocity

(corresponding to the largest Lyapunov exponent λ1) is 1 � � ln � κ � σ2 � � . Inverting the time
rescaling, t 
 σ2t, we have to multiply the Lyapunov exponent by σ2 and we finally obtain

λ1 I σ2�
ln � κ � σ2 � � �

in perfect agreement with our theoretical result, Eq. (3.13). Furthermore, the random walk
picture underlines the connection between σ2 in the model and the diffusion constant of the
logarithmic growth in the corresponding chaotic system.

3.1.6 Scaling of the Null Lyapunov Exponent

In continuous-time systems one Lyapunov exponent is zero; it corresponds to perturbations
tangential to the trajectory. We also expect that the fluctuations of the corresponding growth
rate are suppressed. Following the argumentation of the previous section, this means that
there is no coupling sensitivity of the null Lyapunov exponent. In terms of the stochastic
model (3.4) such a behavior can be achieved by using high pass filtered noise. The corre-
sponding power spectrum vanishes at zero frequency which induces a vanishing diffusion
constant.

As an example we studied a system of two coupled one-dimensional delay differential
equations. Such an equation has an infinite number of Lyapunov exponents of which usually
a finite number is positive. In Ref. [68] it is shown that for coupled Ikeda equations the
positive and negative Lyapunov exponents exhibit coupling sensitivity whereas for the null
exponents no singular deviations are found.

One can also consider complex discrete maps with a null Lyapunov exponent. An exam-
ple is the following map:

z � n � 1 ��� α � 1 � �
z � n � � �o� 1 � i

�
z � n � � � z � n �6� z 2 x � iy � C � (3.21)
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3 Coupling Sensitivity of Chaotic Systems

In terms of amplitude and phase defined by z � Aexp � iφ � , Eq. (3.21) reads

A � n � 1 �(� αA � n ��7 1 � A � n �98g� 1 � A2 � n �(2 f 7 A � n �98�� φ � n � 1 �(� φ � n �	� arctan A � n �F�
For α �z7 0 � 3 � 54 8 the amplitude is confined to the interval 7 0 � 1 8 . The map f � A � is plotted
in Fig. 3.6. For α � 3 � 5 it is chaotic with a positive Lyapunov exponent Λ1. The phase
φ, however, has a vanishing Lyapunov exponent. That is, for the map (3.21) we have the
exponents Λ1 
 0, Λ2 � 0.

0.0 0.5 1.0

A

0.0

0.5

1.0

f(
A

)

Figure 3.6: The amplitude map f � A � ; α x 3 � 5.
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Figure 3.7: Two coupled complex maps. (a) λ1 and λ2 vs. κ for α x 0 � 35.
(b) λ3 and λ4 vs. κ for the same examples as in (a). The dashed lines show the linear fit with slope�

0 � 44, resp.
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3.2 Hamiltonian Systems

For the components x � y the map (3.21) assumes the following form:

x � n � 1 �(� g 7 x � n ��� y � n �98$� y � n � 1 �(� h 7 x � n ��� y � n �98 with

g � x � y �B� α � x �U� x � y � i x2 � y2 � y � x2 � y2 �9���
h � x � y �B� α � y ��� x � y � i x2 � y2 � x � x2 � y2 � � �

We introduce diffusive coupling of two maps (3.21) according to Eqs. (3.1):

x1 � n � 1 �$� g 7 x1 � n ��� y1 � n �98�� κ � g 7 x2 � n ��� y2 � n �98�� g 7 x1 � n ��� y1 � n �98;�T� y1 � n � 1 ��� h 7 x1 � n ��� y1 � n �98 �
x2 � n � 1 �$� g 7 x2 � n ��� y2 � n �98�� κ � g 7 x1 � n ��� y1 � n �98�� g 7 x2 � n ��� y2 � n �98;�T� y2 � n � 1 ��� h 7 x2 � n ��� y2 � n �98 �
Now we have four Lyapunov exponents which are in the absence of coupling given by
λ1 n 2 � Λ1 and λ3 n 4 � 0.

The numerical results are plotted in Fig. 3.7. They confirm the singular splitting of the
positive Lyapunov exponents, whereas the null exponent λ3 increases linearly with the cou-
pling. The coupling gives rise to nonlinear terms affecting the dynamics of the phases φ and
leads thus to an increase of λ3. The former null exponent λ4 decreases linearly with the
same rate as λ3. This is in contrast to continuous-time systems where at least one Lyapunov
exponent has to remain zero.

3.2 Hamiltonian Systems

3.2.1 Example: Standard Map

Here we show coupling sensitivity to exist in the case of weakly coupled standard maps.
This symplectic map (see [57] for details), which is a paradigm of Hamiltonian chaos, is
defined by

q � n � 1 �(� q � n �l� p � n � 1 �6� p � n � 1 �$� p � n �l� K sinq � n �6�
where n is the discrete time and K is the parameter. The phase space is invariant under
shifts q 
 q _ 2π, p 
 p _ 2π, which is why we consider only the sqare q � p �z7 0 : 2π � .
This map arises, for example, from a standard discretization of the pendulum equation. For
large values of K the phase space is chaotic and the Lyapunov exponent can be approxi-
mated, Λ1 L ln � K � 2 � . In order to check the coupling behavior, we consider the following
symplectically coupled version:

q1 � n � 1 �$� q1 � n �l� p1 � n � 1 �F� p1 � n � 1 ��� p1 � n �	� K sinq1 � n �l� κsin 7 q2 � n ��� q1 � n �98��
q2 � n � 1 �$� q2 � n �l� p2 � n � 1 �F� p2 � n � 1 ��� p2 � n �	� K sinq2 � n �l� κsin 7 q1 � n ��� q2 � n �98��

Without coupling there are two positive degenerate Lyapunov exponents, Λ1 � Λ2. For
small coupling we expect a singular splitting according to Eq. (3.2) into λ1 � κ � and λ2 � κ � .
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Figure 3.8: Two coupled standard maps. (a) λ1 w Λ1 and λ2 w Λ1 vs. κ for K x 35 (solid lines),
K x 40 (dotted lines), K x 45 (dashed lines). (b) � λ1 w Λ1 �gy D and � λ2 w Λ1 �gy D vs. 1 ys� ln � κ y D ��� for
the same examples as in (a). The long-dashed lines show the linear fits with slopes

�
0 � 39, resp.

The Lyapunov exponents of the coupled system have been numerically computed as a func-
tion of the coupling strength and for different values of K.

The results are shown in Fig. 3.8. There is indeed a singular splitting of the Lyapunov
exponents and the rescaled plot Fig. 3.8 (b) suggests the form

λ1 � Λ1 � A
D�

ln � κ � D � � � λ2 � Λ1 �Z� A
D�

ln � κ � D � � � (3.22)

with the diffusion constant D as defined by Eq. (2.6). This corresponds to the result (3.13)
for two coupled dissipative systems up to the value of A L 0 � 39, which is no longer unity.
This is not surprising; there are several examples (e.g. [21]) which confirm the singular
splitting with a magnitude depending on the details of the coupling and of the subsystems.

3.2.2 Analytical Approach

Here we consider a simple stochastic model for the dynamics of perturbations which should
also take into account the Hamiltonian structure. We propose the following extension of
model (2.13):

d2w1 � dt2 �a7 ω2 � ξ1 � t �98 w1 � κ � w2 � w1 �F�
d2w2 � dt2 �a7 ω2 � ξ2 � t �98 w2 � κ � w1 � w2 �F� (3.23)

The white noise is defined byW ξi � t � ξ j � t � � X � 2σ2δi jδ � t � t � �F� i � j � �
1 � 2 � �

For the following we assume
κ m 1 and ω H 1 �
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3.2 Hamiltonian Systems

which will allow an analytic estimate of the Lyapunov exponent. In the limit of large ω the
Lyapunov exponent of the uncoupled systems is given by Λ1 � σ2 � 4ω2 (cf. [41] and Ch. 5).
For the system (3.23) the exponent is defined by

λ1 � lim
t � ∞

1
2t

W ln � w2
1 � ẇ2

1 � w2
2 � ẇ2

2 � X �
The dependence of λ1 on coupling can be derived as follows.

First we transform to action and angle variables of the uncoupled systems,

wi � i
2Ii � ω̃ sinθi � ẇi � i

2Iiω̃ cosθi � i � 1 � 2 �
with ω̃2 2 ω2 � κ . The equations of motion in the new variables read

dI1

dt
� � 1

ω̃
ξ1I1 sin2θ1 � 2

κ
ω̃ e I1I2 sinθ2 cosθ1 �

dθ1

dt
� ω̃ � 1

ω̃
ξ1 sin2 θ1 � κ

ω̃

i
I2 � I1 sinθ1 sinθ2 �

dI2

dt
� � 1

ω̃
ξ2I2 sin2θ2 � 2

κ
ω̃ e I1I2 sinθ1 cosθ2 �

dθ2

dt
� ω̃ � 1

ω̃
ξ2 sin2 θ2 � κ

ω̃

i
I1 � I2 sinθ1 sinθ2 �

In order to simplify further calculations we change to the logarithms of the actions,

2ui � ln Ii �
To avoid a clumsy notation we temporarily define xt �¡� x1 � x2 � x3 � x4 � t 2¡� u1 � u2 � θ1 � θ2 � t .
The non-vanishing Kramers-Moyal coefficients (see App. A.2) read

D1 � κ
ω̃

eu2 % u1 sinθ2 cosθ1 � σ2

ω̃2 sin2 θ1 cos2θ1 �
D2 � κ

ω̃
eu1 % u2 sinθ1 cosθ2 � σ2

ω̃2 sin2 θ2 cos2θ2 �
D3 � ω̃ � κ

ω̃
eu2 % u1 sinθ1 sinθ2 � σ2

ω̃2 sin2 θ1 sin2θ1 �
D4 � ω̃ � κ

ω̃
eu1 % u2 sinθ1 sinθ2 � σ2

ω̃2 sin2 θ2 sin2θ2 �
D11 � σ2

4ω̃2 sin2 2θ1 � D13 �Z� σ2

2ω̃2 sin2θ1 sin2 θ1 � D33 � σ2

ω̃2 sin4 θ1 �
D22 � σ2

4ω̃2 sin2 2θ2 � D24 �Z� σ2

2ω̃2 sin2θ2 sin2 θ2 � D44 � σ2

ω̃2 sin4 θ2 �
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3 Coupling Sensitivity of Chaotic Systems

The corresponding Fokker-Planck equation, which governs the evolution of the probability
density ρ � x; t � , is defined by these coefficients as

∂ρ � x; t �
∂t

�M� 4

∑
i & 1

∂
∂xi

Diρ � x; t �	� 4

∑
i n j & 1

∂2

∂xi∂x j
Di jρ � x; t �¢�

The motion of the phases θ1 n 2 is dominated by a fast rotation with the large frequency
ω̃. Thus the coefficients may be averaged with respect to θ1 n 2 over the small period 2π � ω̃,
where we first consider terms which are not mixed in θ1 and θ2. This leads to a simplified
Fokker-Planck equation ρ̇ � u1 � u2 � θ1 � θ2; t �(� Lρ, where the operator L reads

L �z� ∂
∂u1

] κ
ω̃

eu2 % u1 cos θ1 sin θ2 � σ2

4ω̃2 ^ � ∂
∂u2

] κ
ω̃

eu1 % u2 sinθ1 cosθ2 � σ2

4ω̃2 ^� ∂
∂θ1

d ω̃ � κ
ω̃

eu2 % u1 sinθ1 sinθ2 f � ∂
∂θ2

d ω̃ � κ
ω̃

eu1 % u2 sinθ1 sinθ2 f� σ2

8ω̃2
∂2

∂u2
1
� σ2

8ω̃2
∂2

∂u2
2
� 3σ2

8ω̃2
∂2

∂θ2
1
� 3σ2

8ω̃2
∂2

∂θ2
2

�
Next we separate the directed motion by means of the following transformation:

v1 � u2 � u1 � v2 � u2 � u1 � φ � θ2 � θ1 � ϕ � θ1 � θ2 �
The Fokker-Planck equation defined by L is statistically equivalent to a new set of Langevin
equations which in the new variables reads

dv1

dt
� σ

2ω̃
η1 � t ��� κ

ω̃
sin ϕsinhv1 � κ

ω̃
sinφcosh v1 �

dv2

dt
� σ2

2ω̃2 � σ
2ω̃

η2 � t �l� κ
ω̃

sin ϕcoshv1 � κ
ω̃

sinφsinh v1 �
dφ
dt

� e 3σ
2ω̃

η3 � t ��� κ
ω̃

cosϕsinhv1 � κ
ω̃

cos φsinh v1 �
dϕ
dt

� 2ω̃ � e 3σ
2ω̃

η4 � t �	� κ
ω̃

cos ϕcoshv1 � κ
ω̃

cosφcosh v1 �
where the white noise sources fulfill - ηi � t � η j � t � ��/$� 2δi jδ � t � t � �£� i � j � �

1 � 2 � 3 � 4 � . There
are still fast oscillating terms left (those depending on ϕ) which stem from the mixed terms
that have not been averaged above. By virtue of the separation of the fast and slow angle
variables these terms can now be averaged, yielding a closed dissipative set of equations for
the variables v1 and φ:

dv1

dt
� σ

2ω̃
η1 � t ��� κ

ω̃
sinφcosh v1 � (3.24a)

dφ
dt

� e 3σ
2ω̃

η3 � t �l� κ
ω̃

cosφsinh v1 � (3.24b)
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Figure 3.9: The dynamics of system (3.24) without noise.

The deterministic dynamics of this system, i.e. the case η1 n 3 � 0, is sketched in Fig. 3.9.
There exists a stationary distribution of v1 which will be caclulated in the following. Our
initial goal to calculate the Lyapunov exponent should now be reformulated in terms of the
new variables. The Lyapunov exponent is hence given by (cf. derivation of Eq. (3.10))

λ1 � � d
dt

ln � I1 � I2 � � stat
� 1

2
- v̇2 / stat � d

dt
- lncosh � v1 � 2 ��/ stat �

The last term vanishes due to stationarity and we are left with λ1 � 1
2 - v̇2 / stat , which can be

rewritten as

λ1 � σ2

4ω̃2 �¥¤ κ
2ω̃

sinφsinh v1 ¦
stat

� Λ1 �¥¤ κ
2ω

sinφsinh v1 ¦
stat

� O � κ �@� (3.25)

where Λ1 � σ2 �T� 4ω2 � is the Lyapunov exponent of the subsystems. Because we are inter-
ested in the leading order in κ, we set ω̃ � ω in the following. To determine λ1 we need to
find from Eqs. (3.24) the stationary density ρ � φ � v1 � .

Unfortunately, we were not able to find the stationary solution in a closed analytic form.
We present here an estimate, using the smallness of κ. In order to normalize the noise terms
we rescale the time as t 
p� ω2 � σ2 � t, thus obtaining for Eqs. (3.24)

dv1

dt
� 1

2
η1 � t �A� κω

σ2 sinφcosh v1 � dφ
dt

� e 3
2

η3 � t �l� κω
σ2 cos φsinh v1 � (3.26)

The stationary Fokker-Planck equation now reads{ κω
σ2

∂
∂v1

sinφsinh v1 � κω
σ2

∂
∂φ

cosφsinh v1 � 1
4

∂2

∂v2
1
� 3

4
∂2

∂φ2 } ρ � φ � v1 ��� 0 � (3.27)
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3 Coupling Sensitivity of Chaotic Systems

Because κ m 1, the deterministic transport terms in (3.26) are small for v1 � �
ln � κω � σ2 � � .

Thus in this range (termed region I) of v1 we write the stationary density in the form ρI L
C exp 7 κ f � v1 � φ �98 . Inserting this ansatz in Eq. (3.27) we obtain in the leading order in κ

f �.� 4ω � σ2 � sin φsinh v1 �
Now we consider the outer region II: There v1 
 �

ln � κω � σ2 � � , thus the coshv1 term is large
and we neglect the noise terms of Eqs. (3.26) here. Due to the symmetry of the deterministic
motion (cf. Fig. 3.9) this part does not contribute to the average - sin φsinh v1 / . By virtue
of the transformation z � tanh v1 the deterministic motion is governed by a Hamiltonian
H � e 1 � z2 cosφ � cos φ � cosh v1, whereupon the density in region II can be written as
ρII I cosh % 2 v1F � cos φ � cosh v1 � . Here F is a limited function corresponding to the prob-
ability of the orbits with cos φ � cosh v1 � const. Hence ρII m ρI and we can estimate the
normalization constant C by considering only region I:

C % 1 L c π § 2% π § 2
dφ c � ln ¨ κω § σ2 © �%�� ln ¨ κω § σ2 © � dv1 exp 7�� 4κω � σ2 � sin φsinh v1 8lL 2π

�
ln � κω � σ2 � � �

The average in Eq. (3.25) is finally given by¤ κ
2ω

sinφsinh v1 ¦ L C % 1 c π § 2% π § 2 dφ c � ln ¨ κω § σ2 © �%K� ln ¨ κω § σ2 © � dv1
κ

2ω
sinφsinh v1 exp 7�� 4κω � σ2 � sin φsinh v1 8L 1

16πω2
σ2�

ln � κω � σ2 � � � (3.28)

Using that for ω H 1 the diffusion constant is D � Λ1 � σ2 � 4ω2 (see Sec. 5.5), the result
(3.28) can be rewritten as

λ1 � Λ1 � 1
4π

D�
ln � κ � D � � �

in exact agreement with the logarithmic singularity (3.22).

3.3 Summary and Perspectives

In order to gain insight into universal scaling properties of the Lyapunov exponents of
weakly coupled dynamical systems we used a Langevin approach. In this way we neglected
the specific properties of the chaotic systems by only taking into account the coupling and
the fluctuations of the exponential growth rate of perturbations. For the simplest system
of two coupled stochastic equations it is possible to obtain an analytical expression for the
Lyapunov exponents, for different values of parameters (coupling, Lyapunov exponents of
uncoupled systems, fluctuations of finite-time Lyapunov exponents). The logarithmic sin-
gularity, first discovered by DAIDO, is shown to exist even if rather different systems are
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3.3 Summary and Perspectives

coupled, provided their Lyapunov exponents coincide. We also gave a qualitative expla-
nation of the effect, based on the interpretation of the perturbations’ dynamics as random
walks which are confined due to the coupling.

An extension of the stochastic model to three coupled identical systems as well as nu-
merical simulations led to the asymptotic result [68]

λ1 � Λ I 4
3

σ2�
ln � κ � σ2 � � for

κ
σ2 
 0 �

We also investigated into a set of coupled Langevin equations of second order, which
reflect the symplectic structure of Hamiltonian chaotic systems. The numerical results for
coupled standard maps confirm the existence of coupling sensitivity of the Lyapunov ex-
ponents for simplectic systems. The analytic approach yielded a scaling relation for the
Lyapunov exponent which is of the same form as for dissipative systems.

Together with the results for the Largest Lyapunov exponent of weakly coupled
CMLs [43, 21], it can be summarized that the coupling sensitivity of chaos is a general
phenomenon of coupled fluctuating systems.

In the case of coupled continuous-time systems an interesting quantity is the null Lya-
punov exponent. It can be used as an indicator for the onset of phase-synchronization. Our
numerical results show that this exponent scales regularly with weak coupling, as one would
expect from a perturbation expansion. We attribute this to the fact that the fluctuations of
the null Lyapunov exponent are suppressed in an autonomous system. Recently it has been
shown by LIU et al. [42] that the null Lyapunov exponent of coupled chaotic oscillators with
multiple scrolls increases quadratically with the coupling.

The singular splitting of equal Lyapunov exponents for weak coupling leads to the inter-
esting phenomenon of avoided crossings of the Lyapunov exponents when a system param-
eter is varied. This is similar to the effect of energy level repulsion in quantum systems.
Details concerning this effect can be found in [4].

An interesting consequence of the coupling sensitivity of chaos is found in the context of
Anderson localization in disordered systems which is treated in the following chapter.

Lyapunov exponents are very hard to estimate from experimental time series. It is there-
fore difficult to directly observe the rather small effect of coupling sensitivity in experi-
ments. The coupling dependence of the localization length, however, may be observable
via its influence on transport coefficients like the electrical conductivity.
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4 Coupling Sensitivity of the Localization
Length

This chapter is devoted to weakly coupled disordered quantum systems which possess a
quasi-one-dimensional geometry. Such systems have been the subject of intense research,
mainly due to their nontrivial conductance properties and their accessibility to theoretical
investigations. The one-particle wave function in a disordered system can be exponentially
localized at zero temperature, where coupling to phonons and particle-particle interactions
are negligible. This problem was first discussed by ANDERSON 1958 [5] who addressed
quantum diffusion in random lattices. Physically the disorder can be connected, e.g., with
impurities or vacancies in the crystal lattice. Localized states cannot contribute to transport
and can thus lead to a vanishing DC conductivity. This concept is important for the under-
standing of the transition between insulating and metallic states of matter. The exponential
decay of the wavefunction is characterized by a localization length, which is an averaged
quantity corresponding to different realizations of the disorder. Following BORLANDs con-
jecture [16], the localization length is given by the inverse of the Lyapunov exponent, which
will be employed in the following sections.

Quantum localization is mainly due to interference effects of the wavefunction, which
implies the possibility to observe localization also for classical waves. These are experi-
mentally accessible; see e.g. [44]. An experimental realization of one-dimensional quantum
localization provide carbon nanotubes (see [35] and references therein). General theoretical
aspects of disordered systems are treated in [37, 41, 22, 11].

Considering weakly coupled one-dimensional chains we demonstrate in the following
that the localization length singularly increases as 1 � � ln κ

�
with the coupling strength κ.

The form of this singularity resembles the scaling of the Lyapunov exponent of coupled
chaotic systems, therefore we call the effect coupling sensitivity of the localization length.
Numerical evidence will be given for coupled random chains with different statistics of the
site potential. An analytic approach will be developed based on the Fokker-Planck treatment
of coupled stationary Schrödinger equations with δ-correlated random potentials. The effect
on the conductance will be discussed, allowing for different average definitions. Some of
the results of this chapter have been published in [70].
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4 Coupling Sensitivity of the Localization Length

4.1 Anderson Localization

A discrete description of a quantum particle in a periodic lattice potential is given by the
tight-binding approach. There one starts with the eigenstates of the on-site potentials as a
basis and treats the overlap energy between the sites as perturbation (see [56] for details).
The Anderson model allows for random on-site potentials, which can be described in a
dimensionless form by the following one-dimensional (single-band) Hamiltonian,

H � ∑
m

7 εm
�
m 
 � m

� � �
m 
 � m � 1

� � �
m � 1 
 � m

� 8ª� (4.1)

Here εm are the random energies of the states at the site m of the lattice, and the non-diagonal
terms describe the nearest-neighbor tunneling amplitude. The stationary Schrödinger equa-
tion for the state Ψ � ∑ψm

�
m 
 and eigenenergy e follows as� ψm h 1 � ψm % 1 � εmψm � eψm � (4.2)

The same equation appears also in the Kronig-Penney model, with a sligthly different inter-
pretation of εm and e. For the random potential we assume - εmεn /(�VW ε2

m
X

δmn and consider
several distributions. In the ordered case, i.e. εm 2 0, the eigenstates are periodic with
wavenumber k and energies e ��� 2cosk ��7J� 2 � 2 8 . For k 
 0 the eigenfunctions wave-
length (∝ 1 � k) becomes much larger than the lattice spacing, and Eq. (4.2) can be replaced
by a continuous stochastic equation:� ψ � � � U � x � ψ �.� e � 2 � ψ ; (4.3)

700 800 900 1000

m

−0.4

−0.2

0.0

0.2

0.4

ψ
m

Figure 4.1: Amplitudes ψm of a localized state, obtained by numerical diagonalization of (4.1) for
e x 1 � 89. The εm are box distributed with width w x 1.
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4.2 Coupled Disordered Chains

with a properly chosen random potential U � x � . This equation can also be interpreted as the
continuous Schrödinger equation for a particle in the random potential U � x � . It will be used
in the theoretical part of this chapter.

Equation (4.2) can be written in recursive form with a transfer matrix T as] ψm h 1
ψm ^ �«] εm � e � 1

1 0 ^ ] ψm
ψm % 1 ^ 2 T ] ψm

ψm % 1 ^ �
Thus the spatial evolution of ψm is given by a product of random matrices and the theorem
of OSELEDEC holds. That is, for almost any initial condition, ψm grows exponentially with
a rate given by the largest Lyapunov exponent defined by

λ1 � lim
m � ∞

1
2m

ln � ψ2
m � ψ2

m % 1 �G�
Furthermore the transfer matrix T is symplectic, so that for the second Lyapnov exponent
the relation holds

λ2 �M� λ1 �
The above statement ‘almost any’ allows for some initial conditions leading to states which
obey the boundary conditions connected with Eq. (4.2); a typical localized state is depicted
in Fig. 4.1. These states correspond to discrete energy eigenvalues e and decrease exponen-
tially at large distances from their maximum,�

ψm
� I �

ψmax
�
e %K�m � § l �

with the localization length l. It is plausible that the most probable decrease is determined
by the smallest in absolute value Lyapunov exponent, here given by λ1. This leads to BOR-
LANDs conjecture [16], namely that

l � λ % 1
1 �

This relation is the basis of the following sections which focus on the behavior of the
Lyapunov exponent.

4.2 Coupled Disordered Chains

4.2.1 Quasi-One-Dimensional Model

Starting from the Anderson model (4.2) we propose the following quasi-one-dimensional
model for two coupled disordered chains:� ψ1 n m h 1 � ψ1 n m % 1 � ε1 n mψ1 n m � κψ2 n m � eψ1 n m � (4.4a)� ψ2 n m h 1 � ψ2 n m % 1 � ε2 n mψ2 n m � κψ1 n m � eψ2 n m � (4.4b)
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4 Coupling Sensitivity of the Localization Length

¬¬­­
κ

m m+1m−1
1

2

Figure 4.2: Two coupled chains corresponding to Eqs. (4.4); the arrows indicate nearest-neighbor
hopping.

Here the local site energies ε1 n m, ε2 n m are assumed to be independent and equally distributed
in both chains. The amplitudes of the wave functions are now given by ψn n m where n � 1 � 2
labels the chains. We assume that the chains are coupled via the nearest-neighbor hopping
amplitude κ m 1, i.e. the inter-chain hopping probability is much smaller than the intra-
chain one. The geometry of this model is sketched in Fig. 4.2. Because the inter-chain
coupling is close to zero, the model is not well described by the DMPK 1 equation (see [11]
and references therein), which presumes isotropic scattering by neglecting the length scale
of transverse diffusion. The spatial evolution of the state Ψm 2®� ψ1 n m � ψ2 n m � ψ1 n m % 1 � ψ2 n m % 1 � t
is determined by a symplectic transfer matrix, Ψm h 1 � TmΨm , with

Tm �°¯±±² ε1 n m � e κ � 1 0
κ ε2 n m � e 0 � 1
1 0 0 0
0 1 0 0

³µ´´¶ �
Thus there are two positive Lyapunov exponents λ1, λ2 and the negative exponents are re-
lated to the positive ones by λ4 n 3 �+� λ1 n 2, resp. For vanishing coupling, κ � 0, the exponents
λ1 and λ2 coincide; we denote the largest exponent of the uncoupled system as Λ .

The localization length of the whole lattice is given by the smallest positive exponent:
l � 1 � λ2 . Our main interest lies in the deviations of this length from that of the uncoupled
system (4.2), which is 1 � Λ . By the results of Sec. 3.2 we expect a singular decrease of the
second Lyapunov exponent,

λ2 � Λ I.� A � e � D�
lnκ

� � (4.5)

with an energy-dependent strength A and a diffusion constant D defined by-�� ln ���
Ψm

��� � mΛ � 2 / ∝ Dm for m 
 ∞ �
This behavior transforms into a singular increase of the localization length,

l � κ ��� l0 I l2
0 A � e � D�

lnκ
� � (4.6)

1DMPK stands for Dorokhov-Mello-Pereyra-Kumar.
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Figure 4.3: (a) The upper graphs show the splitting λ1 � κ � w Λ vs. κ at e x w 0 � 09 for a two-point
(circles), a Gaussian (stars) and a box distribution of εk ·m; the latter with widths w x 2 � 6 (squares)
and w x 3 � 0 (triangles). At e x 2 � 5 the splitting is shown for the box distribution with w x 1 � 6
(diamonds). The lower graphs show λ2 � κ � w Λ for the same values of w and e. The dashed lines are
to improve readability.
(b) The same as (a) but in rescaled coordinates: � λ1 � κ � w Λ �gy D (upper graphs) and � λ2 � κ � w Λ �gy D
(lower graphs) vs. 1 y,� lnκ � . The dashed lines are linear fits with slopes

�
0 � 85 for e x w 0 � 09 and�

1 � 04 for e x 2 � 5, resp. The valid range of scaling (4.5) depends on e: in the band centre it is
κ ¸ 10 ¹ 5, while at the band edge ( � e � x 2) it expands up to κ º 10 ¹ 3.

We show in the following that this effect indeed exists, which we call coupling sensitivity
of the localization length.

4.2.2 Numerical Evidence of Coupling Sensitivity

In order to check relation (4.5) we calculated the Lyapunov exponents by iterating the vector
Ψm with the transfer matrix Tm , where we used a modified Gram-Schmidt algorithm (see
App. A.1). Additionally, for each setup of statistics we calculated the diffusion constant D
by iterating the uncoupled system (4.2). We considered several distributions of the random
potential εn n m, namely a box distribution, P � ε �1� Θ � w � �

ε
� ��� 2w,2 a two-point distribution,

P � ε �(� δ � ε � a ��� 2 � δ � ε � a ��� 2, and a Gaussian distribution. In Fig. 4.3(a) we present the
results for the different distributions of the site potential εn n m and different energies e. The
figure clearly demonstrates singular splitting of the first and second Lyapunov exponents.
Fig. 4.3(b) shows the same data in the scaled coordinates: � λ1 n 2 � κ ��� Λ ��� D vs 1 � � ln κ

�
.

Here the curves for the different distributions and the same e collapse on straight lines, as
expected according to Eq. (4.5). The linear fit, also shown in the figure, reveals that the
splitting is symmetric, i.e. λ2 � κ ��� Λ �Z�»� λ1 � κ ��� Λ � .

2Here Θ denotes the Heaviside function.
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Figure 4.4: (a) Splitting of λ1 · 2 in rescaled coordinates for two channels with random coupling
for e x 0 (circles) and e x w 1 � 8 (triangles). The dashed lines are linear fits with slopes

�
0 � 89 and�

0 � 97, resp. The on-site potential was choosen box distributed with w xz¼ 3 y 2.
(b) Four coupled channels: Splitting of the positive Lyapunov exponents in rescaled coordinates with
e x w 0 � 08 ½ w x 1 � 6. The dashed lines have slope

�
1 � 56 and

�
0 � 44 resp.

This symmetry, important for the analytic approach below, can be explained as follows.
The sum of positive Lyapunov exponents is related to the density of states via a general-
ization of the Thouless formula [22]. Because the eigenstates non-singularly depend on the
coupling, the sum of the positive Lyapunov exponents also depends on κ in a non-singular
way. Therefore, in order to cancel out in the sum, the singular deviations of λ1 and λ2 are
to be symmetric.

Randomly Coupled Chains

Coupling sensitivity also appears in the case of fluctuating coupling, which underlines the
robustness of the effect. We investigated the following generalization of model (4.4):� ψ1 n m h 1 � ψ1 n m % 1 � ε1 n mψ1 n m � κξ1 n mψ2 n m � eψ1 n m �� ψ2 n m h 1 � ψ2 n m % 1 � ε2 n mψ2 n m � κξ2 n mψ1 n m � eψ2 n m �
The random numbers ξn n m are again assumed to be independent equally distributed in both
chains. The rescaled plot of the positive Lyapunov exponents is shown in Fig. 4.4(a) for
two values of the energy. The linear fits confirm the singular behavior according to relation
(4.5).

40



4.2 Coupled Disordered Chains

N Coupled Chains

The model (4.4) can be straightforwardly generalized to the case of N coupled chains. We
still assume that the hopping amplitudes κ between the chains are much less than those
inside the chains; furthermore periodic boundary conditions in the transverse direction are
used: ψN h 1 n m � ψ1 n m. Now one has to deal with N positive Lyapunov exponents which
coincide for κ � 0.3 The rescaled plot Fig. 4.4(b) shows a different slope for the splitting of
λ1 n 4 and λ2 n 3, resp. Again the splitting is symmetric. The localization length determined by
λ4 thus increases according to relation (4.6).

4.2.3 Two-Site Hopping Model

A slight modification of the geometry in Fig. 4.2 allows an interpretation in terms of two-
site coupling as follows (see [50] for numerical results). We consider the system of weakly
coupled chains as shown below. The inter-chain hopping amplitude, indicated by the dashed

+1
1

2

m−1 m

κ

m

lines, is again much smaller than the intra-chain one.
This coupling scheme is equivalent to one chain with next-neighbor and second-neighbor

coupling as sketched below. The next-neighbor coupling is indicated by the dashed curves,

m+1

κ

m−1 m

the second-neighbor coupling by the solid curves. Thus we have the somewhat uncommon
situation that the second-neighbor tunneling is favored compared to the next-neighbor one.

3For the relation of these exponents to electrical conductance properties see [51, 36].
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4 Coupling Sensitivity of the Localization Length

Numerical simulations [50] confirmed the expectation that this two-site hopping model
shows coupling sensitivity of the localization length for weak coupling.

4.2.4 Qualitative Picture

The results of the numerical simulations can be explained with the help of qualitative consid-
erations similar to the random walk picture in Sec. 3.1.5. We consider two weakly coupled
channels. The wave functions in both channels ψ1 n m, ψ2 n m spatially decrease exponentially
in average, with the same rate given by the Lyapunov exponent. However, due to different
fluctuations in statistically independent channels, it may happen that the wave function in
one channel attains much larger values than in the other one, i.e.

�
ψ1 n m � � �

ψ2 n m � 
 κ % 1.
In this case it is favorable for the wave function to concentrate in channel 1, which is ac-
complished by hopping from 2 to 1. Then the decrease continues until the ratio between
the wave functions will be again of order of κ % 1 and a new hopping occurs, etc. Because
the values ln � ψ2

1 n m � ψ2
1 n m % 1 � and ln � ψ2

2 n m � ψ2
2 n m % 1 � perform biased random walks in space

with the diffusion constant D, a characteristic length to reach a distance
�
lnκ

�
between them

is mh LZ� lnκ � 2 � D. This is a characteristic distance between inter-channel hopping. At each
hopping the quantity ln

�
Ψm

�
increases by ∆ � ln �

Ψm
� �KL �

lnκ
�
. Thus the logarithmic de-

cay rate of the wave function decreases by ∆ � ln �
Ψm

� ��� mh L D � � ln κ
�
, which corresponds

to the singular increase (4.6) of the localization length.
In Fig. 4.5 it is demonstrated how the localized states of weakly coupled chains look like.

By numerically diagonalizing the coupled version of the tight-binding Hamiltonian (4.1)
the amplitudes of the localized states have been obtained for different values of coupling.

m

Ψ1
Ψ2

100 300 500 700 900

Figure 4.5: The amplitudes ψ1 ·m ½ ψ2 ·m vs. m for different values of κ . Chain 2 is shifted w.r.t.
chain 1, and this pair is shifted by a larger amount for the values (starting from the bottom) κ x
10 ¹ 5 ½ 10 ¹ 4 ½ 10 ¹ 3 ½ 10 ¹ 2, resp.
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4.3 Analytical Approach

The number of lattice sites has been chosen as N � 2000, i.e. 1000 per chain. In the figure
these amplitudes are plotted for the energy value e � 0 � 0944 (at κ � 0) and the width of the
box distribution w � 0 � 8. It should be stressed that the plotted amplitudes result from one
realization of the random potential on a quite short lattice length N, so that there is a strong
influence of finite size effects. At κ � 0 there exists a localized state only on one chain
because we are dealing with a one-particle Hamiltonian. With small coupling the hopping
to the other chain occurs, as described qualitatively above. For larger coupling (κ � 10 % 2)
one can also see the back-hopping. As a result, small coupling leads to a considerable
spread of the localized state.

4.3 Analytical Approach

For the theory we consider a coupled version of the continuous Schrödinger equation (4.3),� d2ψ1 � dx2 � U1 � x � ψ1 � κψ2 �.� e � 2 � ψ1 � (4.7a)� d2ψ2 � dx2 � U2 � x � ψ2 � κψ1 �.� e � 2 � ψ2 � (4.7b)

For convenience we have set the lattice constant equal to unity. The random potential is
assumed to be a δ-correlated Gaussian random variable: - Ui � x1 � U j � x2 ��/�� 2σ2δi jδ � x1 � x2 � .
Because of the symmetry (cf. Sec. 4.2.2) λ2 � κ �(� Λ �¾�0� λ1 � κ �$� Λ � , it is sufficient to
calculate the largest Lyapunov exponent in order to determine the coupling sensitivity of
the localization length. We define this exponent by (cf. Eqs. (3.5),(3.10))

λ1 � lim
x � ∞

1
x
- ln �

Ψ � x � � /(� � d
dx

ln
�

Ψ � x � � � stat
�

with Ψ �¿� ψ1 � ψ �1 � ψ2 � ψ �2 � t , and the average on the r.h.s. refering to the stationary
distribution. The Lyapunov exponent Λ of the uncoupled subsystems can be represented
analytically; this is shown in more detail in Sec. 5.2.

Negative Energies
Here we develop an analytic approach for energies below the band edge and for weak cou-
pling, i.e.

e � � 2 � κ m 1 �
First let us consider the subsystems without coupling. Then the variables vn � x �(2 ψ �n � ψn

perform a random walk in a potential Φ � v � ,
dvn

dx
�Z� dΦ

dv
� Un � x � with Φ � v �1� v3 � 3 ��� e � 2 � v �

The potential is plotted in Fig. 4.6; it has a minimum at vmin � i �
e � 2

�
, however, globally

it is unstable. This instability relates to the nodes of the wave function as follows. A change
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Figure 4.6: The potential Φ � v � for e x w 4 with minimum at vmin xzÀ � e Á 2 � .
of sign of ψn corresponds to the limit vn 
Â� ∞ followed by a reinjection at vn �+� ∞. Thus
there is a probability flow along the v-axis which is proportional to the density of nodes of
the eigenfunction ψn.
For the stable minimum of Φ at vmin one can write the Kramers escape time (see e.g. [58])
as

TK � �
e � 2

� % 1 § 2 exp � 4 �
e � 2

� 3 § 2 � 3σ2 � �
For TK H 1 we may assume that the variable vn is trapped sufficiently long around the
minimum, i.e. absence of a node on long intervals and hence we may presume ψn 
 0.

For the coupled system we now introduce the variables w1 � v1 � v2, w2 � v1 � v2, and
z � ln � ψ1 � ψ2 � , which obey the following set of differential equations:

dw1 � dx � U1 � U2 � w1w2 � 2κsinh z � (4.8a)

dw2 � dx � U1 � U2 � w2
1 � w2

2
2

� 2 � e � 2 �	� 2κcosh z � (4.8b)

dz � dx � w1 � (4.8c)

The maximal Lyapunov exponent can be written in terms of the new variables as

λ1 � - w2 /
2

�
We now differentiate the equation (4.8c) for z , which yields

d2z
dx2 � U1 � U2 � w2

dz
dx

� 2κsinh z L U1 � U2 � 2λ1
dz
dx

� 2κsinh z � (4.9)
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4.3 Analytical Approach

For the latter approximation we adopted a mean field approach by replacing w2 by its mean
value 2λ1. For this one has to neglect correlations between the variables w1 and w2, which
is a rather crude assumption. Now z performs a Brownian motion in the potential 2κcosh z
and the stationary solution is given by the Boltzmann distribution [31]:

ρstat � z � ∝ exp { � λ1

σ2 2κcosh z } �
Averaging the r.h.s. of equations (4.8 a,b) with this distribution leads to,

dw1 � dx � U1 � U2 � w1w2 �
dw2 � dx � U1 � U2 � w2

1 � w2
2

2
� 2 � e � 2 �l� 2

σ2 � 2λ1�
ln � 2λ1κ � σ2 � � �

for small κ (for the evaluation of the corresponding integral we refer to [1]). Hence the
coupling corresponds to a small shift of the effective energy, whereupon the correction to
the Lyapunov exponent due to coupling is given by

λ1 � κ �A� Λ � dΛ
d
�
e
� σ2 � 2Λ�

ln � 2Λκ � σ2 � � � (4.10)

This holds for e � � 2, where we used the fact that the largest Lyapunov exponent is an
increasing function of

�
e
�
. This result confirms the logarithmic singularity of the Lyapunov

exponent (4.5).
To check the validity of formula (4.10) we performed numerical simulations of the

coupled Anderson model (4.4). For this we used that the continuous Schrödinger equation

−4.0 −3.5 −3.0 −2.5 −2.0 −1.5
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A

Figure 4.7: The strength A vs. e for box distributed potential with width w x ¼ 3 y 2. Shown are the
numerical results (diamonds) and the analytic approach (circles).
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4 Coupling Sensitivity of the Localization Length

(4.3) is a good approximation of the discrete model (4.2) at the lower band edge, i.e. for
e SÃ� 2. In Fig. 4.7 the prefactor A in the relation λ1 � κ ��� Λ � A � � lnκ

�
obtained from

numerical simulations is compared with the theoretical one. The analytic results reasonably
agree with the numerical calculations, while the agreement is lost with the energy tending
to the band centre. As already indicated by Fig. 4.3(b), the strength A increases with

�
e
�

ascending from the band centre.

Large Positive Energies
In the limit e H 1 we can adopt the results of Sec. 3.2.2 for coupled Hamiltonian systems. If
we identify ω2 � e � 2, the system (3.23) is equivalent to the coupled Schrödinger equations
(4.7). Hence we obtain with the result (3.28),

λ1 � Λ ∝
D�

ln � κ � D � � �
in accordance with relation (4.5). However, the strength A of the singularity (4.5) can not
be determined within this approach. This is because the discrete model is not well decribed
by the continuous one in the large energy limit.

4.4 Conductance Properties

The coupling sensitivity of the localization length should also affect the conductance G at
small couplings, which is demonstrated in the following. We use the Landauer formula [39]
for the calculation of the conductance, where G is related to the transmission of electrons
through the disordered system. A detailed discussion of the conductance in disordered sys-
tems can be found in [22, 62]. Because G is a fluctuating quantity one considers proper
averages. Here we consider the typical conductance G̃ � exp 7�- lnG /98 and the average con-
ductance - G / .

The typical conductance can be related to the Lyapunov exponent as [22]

G̃ I e % 2 Ä λ2 for Å6H 1 �
where Å is the sample length. Applying relation (4.5) leads in the leading order to a singular
increase of the typical conductance,

G̃ � G̃0 I 1 � 2 Å D � � lnκ
� �

where G̃0 is the conductance at zero coupling.
In order to obtain information about the average conductance we consider the generalized

localization lengths [22], defined by

lq � lim
x � ∞

1
qx

ln W � Ψloc � x � � % q X �
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4.4 Conductance Properties

where Ψloc is a localized state. By employing the Borland conjecture these lengths can be
related to the generalized Lyapunov exponents (introduced in Sec. 2.1.3) by

l % 1
q � L � q �F�

Here the generalized Lyapunov exponents are defined by

L � q �(� lim
x � ∞

1
qx

ln - � Ψ � x � � q /3�
where Ψ is a generic exponentially increasing solution of the continuous Schrödinger equa-
tion (4.7).

First we consider L � 2 � which can be deduced from the exponential growth of the second
moment vector

Y2 2 W � ψ2
1 � ψ1ψ �1 � ψ � 21 � ψ2

2 � ψ2ψ �2 � ψ � 22 � ψ1ψ2 � ψ1ψ �2 � ψ2ψ �1 � ψ �1ψ �2 � t X �
By applying the Furutsu-Novikov formula (see App. A.2), the spatial evolution of Y2 is
given by two constant matrices A � B as

d
dx

Y2 �Z� A � κB � Y2 �
Thus L � 2 � is given by the largest real part of the eigenvalues of this linear system. The
eigenvalues, however, can be obtained by standard perturbation theory in the small coupling
parameter κ , whereupon the second generalized Lyapunov exponent is given by a series
expansion,

L � 2 �(� L0 � 2 �l� ∞

∑
j & 1

a jκ j �
where L0 � 2 � is the value at zero coupling. The same procedure applies to higher moments.

Now, by means of the transmission coefficient t, the average conductance can be esti-
mated by - G /�IZW � t � 2 X I.W � Ψ2

loc
��X I e % 2 Ä L ¨ 2 © for Å6H 1 �

Thus we conclude that standard perturbation theory also holds for the average conductance,
i.e. that it can be expanded as - G /��.- G / 0 � ∞

∑
j & 1

b jκ j �
Hence - G / shows no coupling sensitivity.
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4 Coupling Sensitivity of the Localization Length

4.5 Summary and Perspectives

In this chapter we demonstrated that small coupling of one-dimensional disordered chains
yields a singular increase of the typical localization length. We have performed numerical
simulations of a tight-binding model which has the form of coupled Anderson models and
have demonstrated the singularity for two and four coupled chains. In order to examine the
robustness of the effect we allowed for different distributions of the random potential as well
as small randomized coupling. The results for the behavior of the Lyapunov exponents at
small couplings agree with the analytic findings that we obtained for a continuum disordered
model, whereupon the effect seems to be a general phenomenon in systems with linear
localization. Formally the effect is closely related to the coupling sensitivity of chaotic
Hamiltonian systems, which is treated in Sec. 3.2 (cf. also [64]).

Qualitatively, the effect results from a consideration of coupled random walks, where
the “walkers” are the logarithms of the norms of the wave function in the chains. In terms
of the motion of a particle, the coupling gives rise to the possibility to tunnel between the
disordered subsystems when one “walker” goes far ahead, i.e. when the conditions for the
particle propagation in one chain are more favorable than in the other one. This leads already
for very small couplings to a considerable spread of the wave function that is reflected in
the singular increase of the localization length.

An experimentally accessible quantity of disordered systems is the conductance. We de-
omonstrated that the typical conductance exp 7�- lnG /98 shows coupling sensitivity, whereas
the average conductance scales according to standard perturbation theory for weak cou-
pling. This different scaling also underlines the role of conductance fluctuations in disor-
dered systems. From the theoretical point of view it would be interesting to investigate into
models with many coupled chains, which better reflect real systems.
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5 Lyapunov Exponent Statistics of the Random
Frequency Oscillator

In this chapter we focus on the exponential growth rate of the parametrically excited linear
oscillator. Despite of its simplicity, this model eludes complete analytic solution. The ran-
dom frequency oscillator, introduced in Sec. 2.2.2, Eq. (2.13), has already been employed in
Sec. 3.2.2 as a model for the dynamics of perturbations in chaotic Hamiltonian systems, and
in Sec. 4.1 as a continuous Schrödinger equation 1 for a localized particle in a disordered
potential. Another field of application is the theory of parametric resonance which appears,
e.g., in a pendulum with randomly vibrating suspension axis [38].

In all applications the exponential growth rate of the oscillations, determined by the Lya-
punov exponents, is of major interest. Generally, one cannot characterize this rate with
a single number, so one speaks of multiscaling. This property can be characterized in a
twofold way. On one hand it is possible to characterize the fluctuations of the exponential
growth with the local (finite-time) Lyapunov exponent λ � t � . Then one describes multiscal-
ing in terms of the corresponding probability density. Recently it has been shown [60] that
for certain parameter values the distribution of the local Lyapunov exponent deviates from
the Gaussian form, leading to non-vanishing higher cumulants. Thus the usual Lyapunov
exponent alone is not sufficient for a statistical characterization why we treat the problem
with the help of generalized Lyapunov exponents, corresponding to growth rates of different
moments of the amplitude. In the presence of multiscaling these growth rates are different,
what gives a complementary characterization.

Our main goal in this chapter is to define the range of parameters where multiscaling is
essential, and to relate the asymptotical scaling of the generalized exponents to the form of
the tails of the density P � λ; t � . After an introduction of the generalized Lyapunov exponents
we will perform a time rescaling, which leaves a noise renormed frequency as the sole rele-
vant parameter. Some known properties of the Lyapunov exponent of the random oscillator
will be recalled, which we will supplement with results for negative frequencies. The non-
Gaussian properties of the distribution of the local Lyapunov exponent will be investigated,
using numerical results and some analytic estimates. Some of the following results have
been published in [71].

1Here the time is interpreted as the spatial variable
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5 Lyapunov Exponent Statistics of the Random Frequency Oscillator
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Figure 5.1: Typical orbit of the random frequency oscillator for E x 25, σ2 x 10; the final point is
marked by the square.

5.1 Parametric Instability

The parametrically excited oscillator is defined by the following equations,

d2x � dt2 ��7 E � ξ � t �98 x � 0 � - ξ � t ��/(� 0 � - ξ � t � ξ � t � ��/(� 2σ2δ � t � t � �G� (5.1)

with the Gaussian white noise ξ � t � . A typical trajectory of model (5.1) obtained by numer-
ical integration is shown in Fig. 5.1. In the following we will also allow for negative values
of E . For some applications the oscillator has a linear damping term 2γ ẋ. However, such
an equation can be transformed to Eq. (5.1) as follows.

Consider the damped oscillator

ẍ ÁÇÆ E Á ξ � t �ÉÈ x Á 2γ ẋ x 0 �
Applying the transformation y x eγt x yields the undamped equation,

ÿ Á<Æ E w γ2 Á ξ � t �ÉÈ y x 0 �
If y grows exponentially as exp � λt � , the growth of x is given by exp ÆÊ� λ w γ � t È where λ also depends
on γ. Thus there is a threshold which divides exponential growth due to noisy pump from shrinking
due to damping.

We start with the definition of quantities that characterize the growth of oscillations in
our basic model. The fluctuations in (5.1) lead to an exponential (on average) growth of the
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5.1 Parametric Instability
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Figure 5.2: Typical fluctuations of the exponential growth with mean Λ t.

amplitude:
A 2 i

x2 � ẋ2 I exp � Λt �6�
Because of the similarity to linearized equations for the growth of small perturbations in
chaotic systems, the exponent Λ is called the Lyapunov exponent. The local (finite-time)
Lyapunov exponent (cf. Sec. 2.3) is defined as

λ � t �E� 1
t

lnA � t � ; (5.2)

it converges to Λ as time tends to infinity and is a self-averaged quantity [22]:

λ � t ���C

t � ∞

Λ � � d
dt

lnA � stat
� (5.3)

The average on the r.h.s. refers to the stationary distribution. Due to different realizations
of the noise the local Lyapunov exponent fluctuates corresponding to its probability density
P � λ; t � , and we will inspect in Sec. 5.6 to what extent this density can be approximated by a
Gaussian. These relations are outlined in Fig. 5.2.

The fluctuations of λ � t � can be characterized with the help of the generalized Lyapunov
exponents (see Sec. 2.1.3), defined as the growth rate of moments of the amplitude:

L � q �E� 1
q

lim
t � ∞

1
t

ln - Aq � t ��/3� (5.4)

Because of the fluctuations these rates generally differ from Λ. Definition (5.4) includes the
usual Lyapunov exponent as a special case:

Λ � lim
q � 0

L � q �F�
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5 Lyapunov Exponent Statistics of the Random Frequency Oscillator

By standard theorems of probability theory it can be shown that the quantity qL � q � is a
convex function of q. Generally, all L � q � are different and are necessary to characterize the
growth of oscillations, as shall be discussed below in Sec. 5.3.

5.2 Analytic Expressions for the Lyapunov Exponents

In this section we recall some known properties of the Lyapunov exponent of the noise-
driven oscillator (5.1), which we supplement with results for negative frequency E .

5.2.1 Largest Lyapunov Exponent

The exponent Λ can be calculated as follows (see [41] for details). First we apply the
Hopf-Cole transformation: y � ẋ � x � dln

�
x
� � dt . Hence Eq. (5.1) reduces to the first-order

nonlinear Langevin-type equation

dy � dt �M� y2 � ξ � t ��� E �
Here y, after reaching � ∞, is reinjected at � ∞ which corresponds to a zero-crossing of x � t � .
This implies a probability flow along the y-axis (cf. Sec. 4.3, Negative energies). The next
step is the application of the Fokker-Planck theory: for the distribution of y one can write the
Fokker-Planck equation and find its stationary solution (which is a solution with a constant
probability flow):

ρstat � y �(� 1e πσ4 § 3 e % y3 § 3σ2 % Ey § σ2 Ë y% ∞ ex3 § 3σ2 h Ex § σ2
dxË ∞

0 x % 1 § 2 e % x3 § 12 % Ex § σ4 Ì 3 dx
�

Averaging y with use of this solution yields the following expression for the Lyapunov
exponent:

Λ � � dln
�
x
�

dt � stat
�:- y / stat � σ2 § 3

2

Ë ∞
0 x1 § 2 e % x3 § 12 % Ex § σ4 Ì 3

dxË ∞
0 x % 1 § 2 e % x3 § 12 % Ex § σ4 Ì 3 dx

� (5.5)

For large
�
E

�
one can approximate the integrals, which is shown in Sec. 5.5.

5.2.2 Generalized Lyapunov Exponents

For q � 2 � 4 � 6 ������� in Eq. (5.4) the following analytic approach can be used.
Because Eq. (5.1) is a linear stochastic equation, the evolution of the moments of order q of

the type - xq % k ẋk / obeys a closed linear system of equations. The latter can be derived as the
following (another way to derive this system is presented in [60]). Consider the temporal
derivative of the moments obtained by application of Eq. (5.1):

d
dt

¤ xq % k ẋk ¦ �V� q � k � ¤ xq % k % 1ẋk h 1 ¦ � kE ¤ xq % k h 1ẋk % 1 ¦ � k ¤ ξ � t � xq % k h 1 ẋk % 1 ¦ �
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Figure 5.3: The Lyapunov exponents Λ (solid line) and L � 2 � (dashed line) vs. E ; σ2 x 1.

The averaging of the last term can be carried out by using the Furutsu-Novikov-formula
(see App. A.2),

k ¤ ξ � t � xq % k h 1 ẋk % 1 ¦ �.� k � k � 1 � σ2 ¤ xq % k h 2ẋk % 2 ¦ �
Defining

M � � d xq � xq % 1ẋ �������'� xq % k h 1ẋk % 1 �������'� ẋq f t � �
the evolution of M is now determined by a q � 1 Í q � 1 matrix: Ṁ � TM. The sparse matrix
T has the following form:

¯±±±±±±±±±±±±±±²

0 q 0 0� E 0 q � 1 0
. . .

2σ2 � 2E 0 q � 2
. . .

0 2 Í 3σ2 � 3E 0
. . .

. . . . . . . . . . . .
0 2 0� 1 � q � E 0 1� q � 1 � qσ2 � qE 0

³µ´´´´´´´´´´´´´´¶
� (5.6)

Thus the largest real part of the eigenvalues determines the exponential growth of the mo-
ments of order q. By definition (5.4) the generalized exponent L � q � for even q is thus equal
to this value divided by q.2

2For odd q follows Î xq Ï�Ðr�ÎÒÑ xq Ñ Ï and this approach does not provide the Lyapunov exponent.
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5 Lyapunov Exponent Statistics of the Random Frequency Oscillator

In the simplest case of q � 2 the exponent L � 2 � is a solution of the cubic equation
γ3 � Eγ � 0 � 5σ2 � 0:

L � 2 �o�
��������� �������� 2 % 2 § 3σ2 § 3 ÓÔÔÕ�Ö 1 �a× 1 � d 42 Ì 3E

3σ4 Ì 3 f 3 Ø 1 § 3 � 42 Ì 3E

3σ4 Ì 3 Ù 1 hKÚ 1 hFÛ 42 Ì 3E
3σ4 Ì 3 Ü 3 Ý 1 Ì 3 ÞÊßßà if E

σ4 Ì 3 ) � 3
42 Ì 3

2 � �E �
3 cos = 1

3 arctan × d 42 Ì 3 �E �
3σ4 Ì 3 f 3 � 1> if E

σ4 Ì 3 � � 3
42 Ì 3 �

(5.7)

For larger q one has to find the roots of the corresponding polynom of order q � 1 numer-
ically, but this is a straightforward task. In Fig. 5.3 the dependence of Λ and L � 2 � on the
parameter E is plotted.

5.3 Multiscaling in Terms of Lyapunov Exponents

What follows from the analytic expressions for the generalized Lyapunov exponents, is that
they are in general different which means multiscaling. Here we remind some outcomes of
Sec. 2.1.3 which deals with the relation between the generalized Lyapunov exponents and
the fluctuations of λ � t � , the latter described by the probability density P � λ; t � .

It turns out that the generalized Lyapunov exponent is the asymptotic cumulant-
generating function of P � λ; t � :

L � q �D� lim
t � ∞

∞

∑
n & 1

qn % 1tn % 1

n!
Kn � t ��� Λ � q

2
D � lim

t � ∞

∞

∑
n & 3

qn % 1tn % 1

n!
Kn � t �F� (5.8)

Hence L � q � can be expanded in a power series around q � 0 with coefficients given by the
cumulants of the local Lyapunov exponent. It follows that

Λ � L � 0 �F� D � 2L � � 0 �G�
There is also a connection between L � q � and the entropy function f � λ � , the latter defined

by
P � λ; t ��I exp 7J� t f � λ �98 for t H 1 �

The entropy function is determined by the generalized Lyapunov exponent via a Legendre
transformation [48, 22]:

f � λ ��� qλ � qL � q �F� d
dq

qL � q �$� λ � (5.9)
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5.4 Reduction of Parameters

The expansion of the entropy function around λ � Λ reads f L.� λ � Λ � 2 � 2D, which yields
a Gaussian distribution of the local Lyapunov exponent. In the tails, however, deviations
from the Gaussian will be present in general.

In case the Gaussian approximation holds, higher cumulants (n ) 3) vanish and we ob-
tain:

L � q �(� Λ � Dq
2

� (5.10)

Then all generalized Lyapunov exponents are fully determined by the two coefficients Λ and
D [or, equivalently, by Λ and L � 2 � ] and this situation can be characterized as “monoscaling”.
However, we will show below that for the noise-driven oscillator (5.1) this holds only for�
E

� H σ4 § 3.

5.4 Reduction of Parameters

Before proceeding with the detailed analysis of the Lyapunov exponents, we explore the
scaling dependence on the parameters E , σ. The analytic expressions (5.5) and (5.7) suggest
the scaling relation L � q �@� σ2 § 3 fq � Eσ % 4 § 3 � with some q-dependend function fq. To show
that this scaling holds for all the exponents L � q � we perform the time rescaling t �+� � E � � σ2 � τ
in Eq. (5.1), whereupon it can be written in the following form:

d2x
dτ2 � =l] E

σ4 § 3 ^ 3 � ] �
E

�
σ4 § 3 ^ 3 § 2

η � τ � > x � 0 � - η � τ � η � τ � ��/(� 2δ � τ � τ � �G� (5.11)

The Lyapunov exponents determined by Eq. (5.11) obviously depend only on the parameter
E 2 Eσ % 4 § 3, and we write them as L̄ � q;E � .

Returning back to time t we have to reset the time scale by multiplying these exponents
with σ2 � � E � � σ2 § 3σ4 § 3 � � E �

; this gives for the Lyapunov exponents

L � q;E � σ �<� σ2 § 3 σ4 § 3�
E

� L̄ � q;E �E2 σ2 § 3L̃ � q;E �F� (5.12)

The essential behavior is presented by the exponents L̃ � q;E � ; thus throughout the rest of
the chapter this quantity is examined. That is, we consider the following one-parameter
equation (now denoting τ as t):

d2x � dt2 ��7 E � ξ � t �98 x � 0 � - ξ � t ��/(� 0 � - ξ � t � ξ � t � ��/�� 2δ � t � t � �F� (5.13)

For simplicity we will omit the tilde in the sequel; relation to previous formulae can be
achieved by inserting E instead of Eσ % 4 § 3 in the corresponding expressions (5.5) and (5.7).
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5 Lyapunov Exponent Statistics of the Random Frequency Oscillator

5.5 Gaussian Distribution for large á E á
In this section we demonstrate, using approximate methods, that for

�
E
� H 1 the Gaus-

sian approximation to the distribution of the local Lyapunov exponent or, equivalentely,
Eq. (5.10) holds.

5.5.1 Large Positive Values of E

In the high-frequency limit E H 1 the fast oscillating terms can be averaged out in the same
way as in Sec. 3.2.2, but now without coupling. Details can also be found in [41].

First we perform a standard transformation to amplitude and phase variables in Eq. (5.13):

x � Asinψ � ẋ � e E Acosψ �
The equations of motion then become

dψ
dt

� e E � 1e E
ξ � t � sin2 ψ � dAq

dt
�Z� q

2 e E
ξ � t � Aq sin2ψ � (5.14)

where the equation for the amplitude has been generalized to the equation for its qth power.
With the new variable u � lnA the largest Lyapunov exponent is with Eq. (5.3) given by:

Λ �:- u̇ / stat �â� 1
2 e E

- ξ � t � sin 2ψ / stat � (5.15)

For large positive E the deterministic phase velocity e E in the l.h.s. of (5.14) dominates
over the typical diffusion rate which is of order 2 � E . Thus for E 3 § 2 H 1 the probability
density of the phase becomes uniform on the interval 7 0 � 2π 8 and averaging the correspond-
ing Fokker-Planck equation over ψ yields the evolution of the reduced probability density
ρ � u; t � :

∂ρ � u; t �
∂t

�|{ã� 1
4E

∂
∂u

� 1
8E

∂2

∂u2 } ρ � u; t �6�
This is equivalent to simple Brownian motion with a constant drift 1 � 4E . Hence u and,
accordingly, λ � t � are normally distributed and for the exponents holds:

Λ � 1
4E

� L � q �(� d 1 � q
2
f Λ �(ä D � Λ � (5.16)

The last statement is known as single parameter scaling, the distribution of the local Lya-
punov exponent being determined by its mean value alone.

If one considers the parametric oscillator (5.13) as a continuous approximation to the
discrete Anderson model for large wavelengths, i.e. around the lower band edge, then neg-
ative E correspond to the band gap of the Anderson model, the band edge being located
at E � 0 (cf. Sec. 4.1). Increasing positive E translates to an approach to the band centre
where single parameter scaling is known to exist. This property has been widely discussed
in the context of Anderson localization [62, 27, 61].
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5.6 Multiscaling of the Growth Rate

5.5.2 Large Negative Values of E

For negative E we transform to the eigenvectors of the noiseless system:

x � x̃ � ỹ � ẋ � �
E
� 1 § 2 � x̃ � ỹ � ;

whereupon the equations of motion become

dx̃
dt

� �
E
� 1 § 2 x̃ � 1

2
�
E
�
1 § 2 ξ � t ��� x̃ � ỹ �F� dỹ

dt
�M� �

E
� 1 § 2 ỹ � 1

2
�
E
�
1 § 2 ξ � t ��� x̃ � ỹ �G�

The dynamics of ỹ incorporates deterministic damping and random growth due to the para-
metric noise. We estimate the average growth by neglecting x̃ :W ˙̃y

X Iå� �
E
� 1 § 2 - ỹ /�� 1

2
�
E
�
1 § 2 - ξ � t � ỹ /��â� �

E
� 1 § 2 - ỹ /	� 1

4
�
E
� - ỹ / ;

where we used the Furutsu-Novikov theorem (see App. A.2). Hence the average grows as
exp 7�� � E � % 1 � 4 � �

E
� 1 § 2 � t 8 , i.e. for large

�
E
� 3 § 2 the damping dominates and one can neglect ỹ

compared to x̃ in the equation for ˙̃x.
Hence the time evolution of u � ln

�
x̃
�
is given by

du
dt

� �
E
� 1 § 2 � 1

2
�
E
�
1 § 2 ξ � t �F�

which again leads to a Gaussian distribution of the local Lyapunov exponent, the latter given
for large times by u � t. For the generalized Lyapunov exponents we obtain

Λ � �
E
� 1 § 2 � L � q �$� �

E
� 1 § 2 � q

2
�
E
� L �

E
� 1 § 2 � (5.17)

Here there is no single parameter scaling (5.16) because D � Λ % 2.
Notice that in both cases, E 
 0 and E � 0, the asymptotic results are obtained for�

E
� 3 § 2 H 1 �

5.6 Multiscaling of the Growth Rate

5.6.1 Non-Gaussian Fluctuations

We have demonstrated in the previous section that for large
�
E
�
the distribution of the local

Lyapunov exponent is nearly Gaussian. Here we will show that this does not hold for small�
E
�
(see also [60]), with two numerical tests regarding the second and the third cumulant.
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Figure 5.4: (a) The diffusion constant D as a function of the frequency E. The diamonds show the
numerical result whereas the solid line depicts the Gaussian presumption D x L � 2 � w Λ.
(b) Numerical result for the limiting cumulant limt æ ∞ K3 y t2; the dashed line is to improve readabil-
ity.

Suppose that the local Lyapunov exponent is normally distributed. Then the whole set of
generalized Lyapunov exponents can be expressed, according to Eq. (5.10), in terms of the
analytically known exponents Λ and L � 2 � :

L � q �E� Λ � D
2

q � Λ � q
2

7 L � 2 �A� Λ 8ª� (5.18)

In particular, the diffusion constant D equals L � 2 ��� Λ and the third cumulant K3 in expan-
sion (5.8) vanishes.

In Fig. 5.4(a) the numerically computed diffusion constant for the noise-driven oscillator
is compared with the Gaussian assumption (5.18), indicating that there are deviations for
values of E close to zero. The coefficient limt � ∞ K3 � t2 of the cumulant expansion (5.8) is
plotted in Fig. 5.4(b). It is clearly different from zero for small

�
E
�
.

These results suggest, that in the intermediate regime,
�
E
�µç

1, the linear form of L � q � is
not correct. This is elucidated by writing explicitely the local Lyapunov exponent in terms
of amplitude and phase (compare Eq. (5.15)):

λ � t �(�Z� 1
2 e E t

c t

0
ξ � τ � sin2ψ � τ � dτ �

Because the noise and the phase are coupled according to Eqs. (5.14), the process
ξ � τ � sin2ψ � τ � resembles Gaussian white noise only for E 3 § 2 H 1, as has been shown in
Sec. 5.5.

In terms of the localization theory the point E � 0 corresponds to the band edge, where
indeed a complicated behavior of the corresponding distributions is expected [62, 27, 61].

58



5.6 Multiscaling of the Growth Rate

−12 −8 −4 0 4 8 12 16 20

E

1

10

100

qL
(q

) ,
 q

=
4,

6,
...

,2
0

Figure 5.5: qL � q � vs. E for even values of q increasing from q x 4 at the bottom to q x 20 at the
top. The solid lines show the numerical result, the dashed lines show the parabolic approximation
(5.18). The threshold q ys�E � 3 è 2 x 0 � 4 is marked by the circles.

5.6.2 Parameter Range of Non-Gaussian Fluctuations

In Sec. 5.5 we have shown that the distribution of λ � t � is Gaussian for
�
E
� 3 § 2 H 1. Taking

this into account we assume hypothetically that the relevant scale variable is given by
�
E
� 3 § 2.

To be precise, we assume that the cumulants of the density P � λ; t � vanish for large
�
E
�
as

Kn I ] 1�
E
�
3 § 2 ^ n

for n ) 3 � (5.19)

Then the expansion (5.8) is a power series in the parameter q � � E � 3 § 2, and the deviation of
the generalized Lyapunov exponent from the Gaussian form (5.18) scales as follows:

L � q �A��é Λ � q
2
7 L � 2 ��� Λ 8�êëI ∞

∑
n & 3

an d q � � E � 3 § 2 f n
;

with constant coefficients an. According to this assumption, the generalized exponent L � q �
deviates from the Gaussian value (5.18) when the parameter q � � E � 3 § 2 is large.

To test this numerically we show in Fig. 5.5 the exact generalized Lyapunov exponent
together with the Gaussian approximation (5.18), as a function of E for several values of
the parameter q. The indicated threshold q � � E � 3 § 2 � 0 � 4 divides well the region of agree-
ment between the correct value and the approximation from the region where these values
strongly disagree, thus confirming our hypothesis.
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5.6.3 Asymptotic Scaling of Generalized Lyapunov Exponents

In this section we study the asymptotic behavior of L � q � for large q. This problem can be
formulated as the problem of asymptotic properties of the eigenvalues of matrix (5.6) as
q 
 ∞. We expect the scaling to be a power law,

L � q �(I qα % 1 � α � E �B��� 1 � 2 �¢� (5.20)

Because the largest element of matrix (5.6) scales as q2 for large q, L � q �$I q sets an upper
limit to the scaling (5.20). This can be shown as follows (for mathematical details see
[40, 13]).

We consider the matrix T defined by (5.6) for E � E , σ2 � 1. First we calculate a suitable
matrix norm, which we choose as �

T
� � max

j

q h 1

∑
i & 1

�
Ti j

� �
i.e. we choose the greatest column sum of absolute values of the matrix elements. Now, for
j � 2 ��������� q � 1, we have
q h 1

∑
i & 1

�
Ti j

� � q � j � 2 � j
�
E
� � j � j � 1 �3S q � j � 1 �[� j � 1 � � E � �ì� j � 1 ��� j � 2 �A� q h 1

∑
i & 1

�
Ti ¨ j h 1 © � �

Hence it is easy to see that�
T
� � q h 1

∑
i & 1

�
Ti ¨ q % 1 © � � 3 ��� q � 1 � � E � �a� q � 1 � q �C


q � ∞
q2 �
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Figure 5.6: ln Æ qL � q �ÉÈ vs. lnq (dot-dashed) for E x w 10 (a) and E x 10 (b). The solid lines are
numerical derivatives: d ln Æ qL � q �ÉÈ�y dlnq; the dashed lines correspond to α x 1 � 28 and α x 1 � 38,
resp.
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Figure 5.7: The crossover lnqc vs. lnE. The dashed line has slope 1 � 47 º 3 y 2.

Employing a standard theorem of matrix calculus we have that for any matrix norm,�
T
� ) max

j

�
γ j

� �
where γ j are the eigenvalues. Because the quantity qL � q � is given by the largest real part of
the eigenvalues, we arrive at the above result α � 2.

The numerical results, presented in Fig. 5.6 for two values of E , give α � 1 � 28 for E �� 10 and α � 1 � 38 for E � 10.
The fact that asymptotically α � 2 means that the tails of the distribution of the local

Lyapunov exponent are suppressed in comparison to the Gaussian form. Indeed, by virtue
of the Legendre transformation (5.9), the scaling of L � q � for large q translates into a scaling
of the entropy function f � λ � for λ H 1:

f � λ �(IV� α � 1 � ] λ
α ^ α §'¨ α % 1 ©

for λ H 1 �
The linear approximation (5.18) would give α � 2, i.e. a Gaussian form of P � λ; t � . For
α � 2, however, f � λ � obeys a power law with an exponent α �T� α � 1 �¢
 2. That is, P � λ; t �
decays faster than the Gaussian distribution for large values of λ .

We also note a definite crossover in the scaling in Fig. 5.6 (b), which is clearly seen
as a maximum in the dependence of the slope dlnqL � dln q on q. The position of this
crossover, qc, is plotted as a function of E in Fig. 5.7 which suggests a scaling qc I E3 § 2.
This is another support for the scaling relation (5.19) separating Gaussian and non-Gaussian
behavior of the Lyapunov exponents.

We emphasize that convergence problems of the numerical methods used to solve the
eigenvalue problem stated by Eq. (5.6), did not allow us to find the asymptotic exponent α
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5 Lyapunov Exponent Statistics of the Random Frequency Oscillator

with sufficient accuracy. This is due to the growing size of the matrix ( I q) and the strong
difference in magnitude of its elements ( I q2) for large values of q.

5.7 Summary and Perspectives

We presented numerical and analytic arguments confirming a nontrivial distribution of the
local Lyapunov exponent in the case of the linear noise-driven oscillator (5.1). In order
to describe multiscaling, we considered the generalized Lyapunov exponents L � q � , which
characterize the fluctuations of the local Lyapunov exponent. With the help of a parameter
reduction we were able to represent all the exponents L � q � as functions of a renormalized
“energy” E � Eσ % 4 § 3.

A linear form of the generalized Lyapunov exponents is equivalent to a normal distribu-
tion of the local Lyapunov exponent which, however, is valid for the noise-driven oscillator
only in the limit

�
E
� 
 ∞. To be more precise, the normal distribution is only an approx-

imation in the vicinity of the mean value. We have found that the parameter range where
the linear approximation for the exponent L � q � is valid, depends on the index q and reads�
E
� 3 § 2 � E3 § 2σ % 2 H q. In other words, the exponential growth of moments - Aq / of qth

order is determined by the Gaussian part of the distribution within this parameter range.
Our numerical findings in the limit q H 1 suggest a scaling relation L � q �@I qα % 1. The

corresponding exponent α L 1 � 4 can be connected to the probability of large deviations
of the local Lyapunov exponent from its average value via the Legendre transformation.
We demonstrated that this results in a suppression of the tails compared to the Gaussian
distribution.

Our results also shed light upon the difference between possible definitions of the expo-
nential growth rate, given by L � q � for different q. In the Gaussian regime this difference
is linear in q. For

�
E
� 3 § 2 ç

q , however, this linearity is destroyed and one has to take into
account multiscaling of the Lyapunov exponents.
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6 Conclusion

In this work a stochastic theory of the Lyapunov exponents has been applied to weakly
coupled chaotic systems and to weakly coupled disordered quantum systems. For such
systems coupling sensitivity of the Lyapunov exponents is observed. The choice of the
statistical framework was motivated by the observed universality, which manifests itself in
scaling laws which are valid for a wide range of different systems. By replacing the chaotic
fluctuations in the linearized perturbation dynamics by stochastic processes, we were able to
give explanations for the observed universality and to obtain analytic or approximate results.
In the case of the stochastic model for the perturbation dynamics of Hamiltonian systems,
the parametrically excited oscillator, it has been examined to what extend the distribution
of the finite-time Lyapunov exponent incorporates multiscaling.

In the following, we discuss our main results. Finally, we report open questions and
future perspectives.

6.1 Discussion of Main Results

Coupling Sensitivity of Chaos

We have introduced a stochastic continuous-time model for the perturbation dynamics of
weakly coupled chaotic systems, which includes the key ingredients of exponential growth,
temporal fluctuations, and coupling (Ch. 3 and Refs. [68, 3, 69]). By means of the Fokker-
Planck equation we have been able to derive a general analytic expression for the coupling
dependence of the Lyapunov exponents. In contrast to previous models [26, 43, 21] it is also
valid for coupled nonidentical systems. As a special case for very small coupling and iden-
tical Lyapunov exponents of the uncoupled systems, we have obtained as an approximation
the 1 � ln κ dependence of the largest Lyapunov exponent known as coupling sensitivity of
chaos [23]. In agreement with previous observations [23], our results underline the necessity
of fluctuations of the local multipliers (or finite-time Lyapunov exponents) for this singular
behaviour of the Lyapunov exponent. A comparison with results of numerical simulations
for coupled maps proved the validity of our theoretical results. Finally we have shown that
our simple stochastic model allows a qualitative understanding of the coupling sensitivity
of chaos as a restricted random walk phenomenon.

Numerical results for coupled time-continuous systems showed that the null Lyapunov
exponent exhibits no coupling sensitivity. We have also checked this for coupled complex
maps, where the motion of the angle in the complex plane has a zero Lyapunov exponent.
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6 Conclusion

Taking into account the role of fluctuations for the existence of coupling sensitivity, we
conclude that the fluctuations of the growth rate corresponding to the null exponent are
suppressed. This fact reveals a limitation of the simple stochastic approach, which assumes
an unlimited diffusion in the perturbation dynamics.

Finally we have examined the coupling behavior of a stochastic Hamiltonian model for
the perturbation dynamics. Numerical simulations for coupled standard maps showed cou-
pling sensitivity of the Lyapunov exponents to occur also for symplectic maps. This has
been confirmed by analytic results for the stochastic model in the limit of large frequencies.

Coupling Sensitivity of the Localization Length

Having taken into account the formal similarity to the stochastic model for Hamiltonian
chaotic systems, we investigated coupled disordered quantum chains which show Anderson
localization (Ch. 4 and Ref. [70]). The weak coupling regime we were interested in, is
not well described by the DMPK equation [11] which presumes isotropic scattering. We
have obtained numerical results for weakly coupled one-dimensional Anderson models, and
found the 1 � ln κ dependence of the smallest positive Lyapunov exponent on the coupling
strength κ for different distributions of the random potential. Thus the localization length,
given by the inverse of this Lyapunov exponent, increases singularly with the coupling
which to our knowledge has not been reported before. We have found this phenomenon
also for several coupled chains and for weak random coupling.

The analytic results we have obtained for a continuum disordered model confirmed the
numerical findings, whereupon the effect seems to be a general phenomenon in systems
with localization due to disorder.

We have also given a qualitative explanation of this effect, which considers coupled ran-
dom walks, the “walkers” being the logarithms of the norms of the wave function in the
chains.

An investigation of two common conductance definitions has shown that the typical con-
ductance increases singularly with the coupling in the same manner as the localization
length, wheras the average conductance can be expanded in a power series of the coupling
strength.

Lyapunov Exponents of the Noise-Driven Oscillator

Finally we have studied the linear oscillator with parametric noise, which is used as a model
in the theory of localization and in the theory of Hamiltonian chaos (Ch. 5 and Ref. [71]).
The noise leads to an exponential growth of the oscillations due to parametrical instability,
which is described by the Lyapunov exponent.

We have investigated the distribution of the finite-time (local) Lyapunov exponent by
calculating the generalized Lyapunov exponents L � q � . Using a time rescaling we have iden-
tified a single parameter relevant for the scaling of these exponents. Employing numerical
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and analytic methods, the parameter range where the non-Gaussian part of the distribution
of the local Lyapunov exponent is significant has been identified. Thus we have determined
the range where the exponential growth of higher moments of the amplitude is governed by
the non-Gaussian part of the distribution and multiscaling is essential.

In the limit of large q we have found a power law scaling of the exponents L � q � . With
the help of the Legendre transformation we have related the corresponding exponent to the
probability of large deviations of the local Lyapunov exponent from its mean value. This
reveals that the tails of the distribution are suppressed compared to a Gaussian one.

6.2 Open Questions and Perspectives

An interesting direction of further research should be the study of manifestations of our
theoretical results in physical systems. To observe directly the coupling dependence of the
Lyapunov exponents (Ch. 3) in experiments with weakly coupled chaotic systems is ex-
pected to be difficult, although some methods exist to estimate at least the largest Lyapunov
exponent from experimental time series [34]. A more promising approach could be to look
for effects on measurable quantities that depend on the Lyapunov exponents. Here espe-
cially the Lyapunov exponents of disordered systems could be useful, as they are connected
with the localization length, the electrical conductance, and correlation functions [22, 36].
The coupling sensitivity of the localization length (Ch. 4) should be accessible to experi-
mental verification, though the realization of the weak coupling seems to be tricky. In this
context optical experiments with disordered media [59] and carbon nanotubes [35] are most
promising.

From the theoretical point of view the coupling dependence of the null Lyapunov expo-
nent of continuous-time systems deserves further research. Recent results [42] have shown
a quadratic increase of the null exponent of coupled attractors with multiple scrolls. If this
turns out to be a universal phenomenon for such attractors, a simple model reflecting the
corresponding mechanism would be desirable.

Concerning the coupling sensitivity of the localization length, it would be interesting to
consider quasi-one-dimensional models with many coupled chains. It seems also promising
to study in more detail the effect that the singular increase of the localization length has
upon experimentally accessible quantities.

Furthermore the existence of multiscaling in the simple random frequency oscillator
model (Ch. 5) suggests that such behavior should be present in a large class of chaotic sys-
tems. Especially the statistics of the local Lyapunov exponent of high dimensional Hamil-
tonian systems, for which the noisy oscillator serves as a model [19], is of interest. Such
research, however, would demand a high numerical effort. Regarding the use of the noisy
oscillator model in the theory of localization, further research is necessary to clarify the
connection of our results to conductance fluctuations.
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A Appendix

A.1 Numerical Calculation of Lyapunov Exponents

This work is mainly concerned with the Lyapunov exponents, the latter either as indicators
for the stability properties of dynamical systems or as the inverse localization length of
disordered quantum chains. Here we describe the methods used in this work to numerically
calculate these exponents (see also , e.g. Ref. [47]). A comparison of different methods for
calculating Lyapunov exponents can be found in Ref. [32].

A.1.1 Discrete Maps

To calculate all N Lyapunov exponents of an N-dimensional map, we have to follow the
dynamics of N perturbation vectors wi, i � 1 ������� � N, which for t � 0 are linearly independent
and normalized to unit length. The largest Lyapunov exponent is then given by

λ1 � lim
t � ∞

1
t

ln
�

w � t � � � (A.1)

it does not depend on the norm. The sum of the n largest Lyapunov exponents is given by

n

∑
i & 1

λi � lim
t � ∞

1
t

lnVn � t �	� (A.2)

where Vn is the volume spanned up by the perturbation vectors w1 ������� � wn.
At this point we face two problems. First, the norm

�
w � t � �

grows or shrinks exponen-
tially if λ1 is greater or less than zero, respectively. So already for moderate values of t
the norm can either not be calculated due to numerical overflow, or is zero due to limited
numerical precision. In both cases, λ1 cannot be calculated from Eq. (A.1). Second, if
λ1 is positive and some other perturbation vector wi, i 
 1, has a component in the direc-
tion of w1, this component grows with a larger exponential rate than the components in all
other directions. In this way the different perturbation vectors rapidly align in the direction
of largest growth. As a result the calculation of volumes spanned up by different vectors
becomes impossible due to limited numerical precision.

The remedy for these problems is reorthonormalization of the perturbation vectors w i
after not too long time intervals. The growth rate of the linear system is independent of the
length of the vectors, such that renormalization of the vectors is a valid way to overcome
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the first problem. Reorthogonalizing the vectors ensures that w1 points in the direction of
largest growth, w2 points in the direction of second largest growth perpendicular to w1, and
so on. Furthermore, the volumes are now rectangular and we have

lnVn � n

∑
i & 1

ln
�

wi
� �

So we can subtract the expressions (A.2) for different n to directly calculate λ i,

λi � 1
NortTort

Nort

∑
j & 1

ln
�

wi � t j � � �
where Nort H 1 and Tort I 1 are the number of and the time interval between reorthonor-
malizations, and t j is the time of the j-th reorthonormalization. The reorthonormalization
method used for the numerical calculations in this work is the modified Gram-Schmidt algo-
rithm, which is numerically more accurate than the classical Gram-Schmidt algorithm [14].
Before the calculation of the λi starts, a sufficiently long transient phase is necessary to en-
sure that the system is on its attractor. It should be kept in mind that in practice one always
calculates finite-time Lyapunov exponents.

A.1.2 Differential Equations

For an N-dimensional system of ordinary differential equations the algorithm is essentially
the same as for discrete maps. The numerical integration schemes used in this work (Runge-
Kutta, Bulirsch-Stoer [55]) calculate u � t � at discrete times t � tn. The Lyapunov exponents
are calculated according to

λi � 1
T

Nort

∑
j & 1

ln
�

wi � t j � � �
with the (long) integration time T H 1.

A.1.3 Generalized Lyapunov Exponents

The q-th generalized Lyapunov exponent is defined as

L � q �(� lim
t � ∞

1
t

ln - � w � t � � q /1�
where the average is over different trajectories of the system. This average has to be carried
out explicitly, i.e. there have to be computed two limits, one due to the averaging and one
regarding t 
 ∞. This makes the numerical calculation of generalized Lyapunov exponents
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much more difficult than the calculation of the usual Lyapunov exponents. The standard
approach consists of first calculating Lm � q � by approximating (in the discrete-time case)- � w � m � � q /(L 1

n

n

∑
j & 1

�
w j � m � � q �

where j denotes different realizations or trajectories, resp. The value of L � q � is then calcu-
lated by considering Lm � q � as a function of 1 � m and extrapolating to 1 � m 
 0. Details can
be found in Ref. [22].
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A.2 Stochastic Differential Equations

In the following we briefly review some facts for stochastic differential equations that are
needed in this work. The subject is treated in detail in Refs. [31, 58, 65].

A.2.1 Langevin Equation

Differential equations with a stochastic driving term are usually called Langevin equation.
For a one-dimensional stochastic variable x � t � it is given by (in Stratonovich form, see
below)

dx � t �$� f � x � dt � g � x �	í dW � t �	�
where W � t � is a Wiener process (i.e. the displacement of a Brownian particle with starting
point W � 0 �(� 0). It has a Gaussian distribution characterized by- W � t ��/$� 0 � W W � t � W � t � � X � min � t � t � �	�
In general, the functions f and g can also be time-dependent. In this work, we often write
Langevin equations in the intuitive form

dx � t ��� dt � f � x �l� g � x � ξ � t �	�
where ξ � t �(� dW � t ��� dt is a Gaussian stochastic process with zero mean, unit variance, and
no temporal correlations, - ξ � t ��/$� 0 � W ξ � t � ξ � t � � X � δ � t � t � �F�
also known as white noise.

The simplest Langevin equation reads

dx � t �1� dW � t �	�
Its solution is given by

x � t �$� x � 0 �l� c t

0
dW � t̃ ��� x � 0 �l� W � t �G�

This simple example demonstrates that the variable x � t � depends on W � t � . For the solution
of a multiplicative noise equation,

dx � t �1� g � x �	í dW � t �	�
it is thus not clear how the integral in the solution

x � t �1� x � 0 �	�kc t

0
g � x � t̃ ���	í dW � t̃ �
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shall be calculated. There is no definite answer to this question, one has to decide between
different interpretations of the Langevin equation. In the Stratonovich interpretation the
solution is given by

x � t �(� x � 0 �	� lim
N � ∞

N % 1

∑
n & 0

g ] x � tn h 1 �	� x � tn �
2 ^ 7W � tn h 1 ��� W � tn �98 with tn � nt

N
�

For this choice the variable x � t � can be transformed by the usual rules of calculus, which is
not the case for other interpretations. One can also argue that the Stratonovich interpretation
is closer to physical processes (which are never exactly δ-correlated).

In this work Langevin equations are used as models of chaotic processes. Since these
models are constructed to match the properties of the chaotic processes, we have to choose
one specific interpretation in advance. Throughout this work, the Stratonovich interpretation
is used.

A.2.2 Furutsu-Novikov Relation

At several points in this work it is necessary to calculate averages of the form - ξ � t � F 7 ξ 8;/ ,
where F 7 ξ 8 is a functional of ξ � t � (e.g. an integral). For a Gaussian stochastic process ξ � t �
with zero mean the Furutsu-Novikov relation provides a very convenient way to evaluate
averages of this kind [30, 45]. The relation reads- ξ � t � F 7 ξ 8;/�� cîW ξ � t � ξ � t � � X � δF 7 ξ 8

δξ � t � � � dt � �
where δF � δξ is the functional derivative, and the integral extends over the interval which t �
is defined on.

As an example which is of particular importance for this work we study

dx � dt � a � x �l� b � x � ξ � t �
with t ��7 0 � ∞ � and the Gaussian noise process ξ � t � :- ξ � t ��/(� 0 � W ξ � t � ξ � t � � X � 2σ2δ � t � t � �	�
We are interested in averages of the form - f � x � ξ � t ��/ . Using the chain rule, the functional
derivative is calculated as

δ f � x �
δξ � t � � � Q ∂ f

∂x
δx

δξ ¨ t ï © � ∂ f
∂x b � x � if t �l��7 0 � t 8��

0 else.

The Furutsu-Novikov relation thus gives- f � x � ξ � t ��/1�®c t

0
2σ2δ � t � t � � � ∂ f

∂x
b � x � � dt � � σ2 � ∂ f

∂x
b � x � �

(note that only one half of the δ-distribution contributes to the integral).
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A.2.3 Fokker-Planck Equation

Given a Langevin equation, one is usually not interested in individual trajectories. Rather
averages, such as moments - xq / , which are in general time-dependent are of interest in
practice. All information about the distribution of x � t � can be obtained from the probability
density ρ � x; t � . The temporal evolution of ρ � x; t � is described by the Fokker-Planck equation
which can be derived as follows.

Consider the one-dimensional Langevin equation

dx � dt � a � x � t �l� b � x � t � ξ � t �£� - ξ � t � ξ � t � ��/(� 2σ2δ � t � t � �F�
with the Gaussian noise ξ � t � . The probability density is defined by

ρ � y; t �1�Z- δ 7 y � x � t �98;/0�
Using the chain rule the time derivative can be written as

∂ρ � y; t �
∂t

� ∂
∂t

- δ 7 y � x � t �98;/� � 7 a � x � t �	� b � x � t � ξ � t �98 ∂
∂x

δ 7 y � x � t �98 �� � ∂
∂y

-'7 a � x � t �l� b � x � t � ξ � t �98 δ 7 y � x � t �98;/� � ∂
∂y

a � y � t � ρ � y; t ��� ∂
∂y

b � y � t �T- ξ � t � δ 7 y � x � t �98;/0�
The last term can be evaluated with the help of the Furutsu-Novikov theorem:- ξ � t � δ 7 y � x � t �98;/R� � ∂

∂y
c t

0
dt � 2σ2δ � t � t � �TW b � x � t � � δ 7 y � x � t �98 X� � ∂

∂y
σ2b � y � t � ρ � y; t �£�

Hence the Fokker-Planck equation reads as

∂ρ � x; t �
∂t

�ð� ∂
∂x

a � x � t � ρ � x; t �l� σ2 ∂
∂x

b � x � t � ∂
∂x

b � x � t � ρ � x; t �ñ�ð� ∂J � x � t �
∂x

�
It has the form of a continuity equation for the probability current J. A stationary distribu-
tion requires the probability current to be constant. The quantities

D1 � a � x � t �l� ∂b � x � t �
∂x

b � x � t �F� D2 � b2 � x � t �
are known as drift and diffusion coefficient, resp.
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Notation

t time
x space
u state vector with components ui
w perturbation vector
f nonlinear function
J Jacobian of f
P product matrix ∏J
PT transpose of P

A amplitude
φ � θ phase
Ψ quantum state
δ � x � DIRAC delta-function

κ coupling parameter
D diffusion constant
ε site energy (Ch. 4)
E frequency parameter (Ch. 5)

λi Lyapunov exponents
Λi Lyapunov exponents of uncoupled systems
λ � t � local (finite-time) Lyapunov exponent
L � q � generalized Lyapunov exponents

χ � ξ � η stochastic processes
2σ2 intensity of δ-correlated stochastic process
W � t � Wiener process
ρ � s � probability density of stochastic variable s

ODE ordinary differential equation
PDE partial differential equation
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