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Summary 

The terrestrial biosphere impacts considerably on the global carbon cycle. In particular, 

ecosystems contribute to set off anthropogenic induced fossil fuel emissions and hence 

decelerate the rise of the atmospheric CO2 concentration. However, the future net sink 

strength of an ecosystem will heavily depend on the response of the individual processes to a 

changing climate. Understanding the makeup of these processes and their interaction with the 

environment is, therefore, of major importance to develop long-term climate mitigation 

strategies. 

Mathematical models are used to predict the fate of carbon in the soil-plant-atmosphere 

system under changing environmental conditions. However, the underlying processes giving 

rise to the net carbon balance of an ecosystem are complex and not entirely understood at the 

canopy level. Therefore, carbon exchange models are characterised by considerable 

uncertainty rendering the model-based prediction into the future prone to error. Observations 

of the carbon exchange at the canopy scale can help learning about the dominant processes 

and hence contribute to reduce the uncertainty associated with model-based predictions. For 

this reason, a global network of measurement sites has been established that provides long-

term observations of the CO2 exchange between a canopy and the atmosphere along with 

micrometeorological conditions. These time series, however, suffer from observation 

uncertainty that, if not characterised, limits their use in ecosystem studies.  

The general objective of this work is to develop a modelling methodology that synthesises 

physical process understanding with the information content in canopy scale data as an 

attempt to overcome the limitations in both carbon exchange models and observations. 

Similar hybrid modelling approaches have been successfully applied for signal extraction out 

of noisy time series in environmental engineering. Here, simple process descriptions are used 

to identify relationships between the carbon exchange and environmental drivers from noisy 

data. The functional form of these relationships are not prescribed a priori but rather 

determined directly from the data, ensuring the model complexity to be commensurate with 

the observations. Therefore, this data-led analysis results in the identification of the processes 

dominating carbon exchange at the ecosystem scale as reflected in the data. The description of 



 

these processes may then lead to robust carbon exchange models that contribute to a faithful 

prediction of the ecosystem carbon balance. 

This work presents a number of studies that make use of the developed data-led modelling 

approach for the analysis and interpretation of net canopy CO2 flux observations. Given the 

limited knowledge about the underlying real system, the evaluation of the derived models 

with synthetic canopy exchange data is introduced as a standard procedure prior to any real 

data employment. The derived data-led models prove successful in several different 

applications. First, the data-based nature of the presented methods makes them particularly 

useful for replacing missing data in the observed time series. The resulting interpolated CO2 

flux observation series can then be analysed with dynamic modelling techniques, or integrated 

to coarser temporal resolution series for further use e.g., in model evaluation exercises. 

However, the noise component in these observations interferes with deterministic flux 

integration in particular when long time periods are considered. Therefore, a method to 

characterise the uncertainties in the flux observations that uses a semi-parametric stochastic 

model is introduced in a second study. As a result, an (uncertain) estimate of the annual net 

carbon exchange of the observed ecosystem can be inferred directly from a statistically 

consistent integration of the noisy data. For the forest measurement sites analysed, the relative 

uncertainty for the annual sum did not exceed 11 percent highlighting the value of the data. 

Based on the same models, a disaggregation of the net CO2 flux into carbon assimilation and 

respiration is presented in a third study that allows for the estimation of annual ecosystem 

carbon uptake and release. These two components can then be further analysed for their 

separate response to environmental conditions. Finally, a fourth study demonstrates how the 

results from data-led analyses can be turned into a simple parametric model that is able to 

predict the carbon exchange of forest ecosystems. Given the global network of measurements 

available the derived model can now be tested for generality and transferability to other 

biomes. 

In summary, this work particularly highlights the potential of the presented data-led 

methodologies to identify and describe dominant carbon exchange processes at the canopy 

level contributing to a better understanding of ecosystem functioning. 



 

Zusammenfassung 

Der Kohlenstoffhaushalt der Erde wird maßgeblich von der bewachsenen Landoberfläche 

beeinflusst. Insbesondere tragen terrestrische Ökosysteme dazu bei, den Anstieg der 

atmosphärischen Kohlenstoffdioxid- (CO2-) Konzentration durch anthropogen verursachte 

Emissionen fossiler Brennstoffe zu verlangsamen. Die Intensität der Netto-CO2-Aufnahme 

wird allerdings in einem sich verändernden Klima davon abhängen, wie einzelne Prozesse auf 

Änderungen der sie beeinflussenden Umweltfaktoren reagieren. Fundierte Kenntnisse dieser 

Prozesse und das Verständnis ihrer Wechselwirkungen mit der Umwelt sind daher für eine 

erfolgreiche Klimaschutzpolitik von besonderer Bedeutung. 

Mit Hilfe von mathematischen Modellen können Vorhersagen über den Verbleib des 

Kohlenstoffs im System Boden-Pflanze-Atmosphäre unter zukünftigen Umweltbedingungen 

getroffen werden. Die verantwortlichen Prozesse und ihre Wechselwirkungen mit der Umwelt 

sind jedoch kompliziert und bis heute auf der Ökosystemskala nicht vollkommen verstanden. 

Entwickelte Modelle und deren Vorhersagen sind deshalb derzeit mit erheblichen 

Unsicherheiten behaftet. Messungen von CO2-Austauschflüssen zwischen einem Ökosystem 

und der Atmosphäre können dabei helfen, Vorgänge besser verstehen zu lernen und die 

Unsicherheiten in CO2-Austausch-Modellen zu reduzieren. Allerdings sind auch diese 

Beobachtungen, wie alle Umweltmessungen, von Unsicherheiten durchsetzt. 

Ziel dieser Arbeit ist es Methoden zu entwickeln, die physikalisches Prozessverständnis mit 

dem dennoch großen Informationsgehalt dieser Daten vorteilhaft zu vereinigen. Dabei soll 

vereinfachtes Prozessverständnis dazu genutzt werden, Zusammenhänge zwischen dem CO2-

Austausch und den umgebenden Umweltbedingungen aus den Beobachtungen abzuleiten. Das 

Besondere hierbei ist, dass diese Zusammenhänge direkt aus den Daten geschätzt werden, 

ohne vorher Annahmen über ihre funktionale Form zu machen. Die Daten als Ausgangspunkt 

der Modellentwicklung zu wählen gewährleistet, dass die Komplexität der Modelle dem 

Informationsgehalt der Messungen entspricht. Auf diese Weise lassen sich diejenigen 

Prozesse identifizieren, welche für den CO2-Austausch mit der Atmosphäre dominant sind. 

Die gewonnenen Erkenntnisse können dann in robuste CO2-Austauschmodelle für 

Ökosysteme überführt werden und zur Vorhersage von Kohlenstoffbilanzen beitragen. 



 

In der vorliegenden Arbeit werden diese entwickelten, datenbasierten Methoden zur Analyse 

und Interpretation von Netto-CO2-Flüssen eingesetzt. Die erste Studie führt ein datenbasiertes 

Modell ein, das unvermeidliche Lücken in Messzeitreihen zuverlässig interpoliert. Dies 

ermöglicht erweiterte Anwendungen der Daten. In einer nächsten Studie wird ein Verfahren 

vorgestellt, mit dem die Unsicherheiten in den Beobachtungen charakterisiert werden können. 

Dies ist nötig, um jährliche Kohlenstoffbilanzen von Ökosystemen unter Berücksichtigung 

der Messungenauigkeiten direkt aus den Daten herzuleiten. Dabei liegt die Unsicherheit in 

den betrachteten Waldstandorten bei maximal 11% des Jahreswertes. In einer weiteren Studie 

werden dieselben Modelle genutzt, um die Netto-CO2-Flüsse in Einzelkomponenten der CO2-

Assimilation und -Abgabe zu bestimmen. Diese Komponenten sowie die Nettobilanz sind 

zusammen mit ihren Ungenauigkeiten für Vorhersagen über das Kohlenstoffsenkenpotential 

eines Ökosystems von besonderer Bedeutung und können Abschätzungen des globalen 

Kohlenstoffhaushaltes maßgeblich unterstützen. Abschließend zeigt die letzte Studie ein 

Beispiel für die datenbasierte Entwicklung eines Modells, das die dominanten Prozesse des 

Kohlenstoffaustausches in Waldökosystemen beschreibt und erfolgreich vorhersagen kann.  

Dies unterstreicht insbesondere das Potenzial des vorgestellten Modellierungsansatzes, 

vorherrschende Prozesse zu identifizieren, zu beschreiben und damit zum verbesserten 

Verständnis des CO2-Austauschs zwischen Ökosystem und Atmosphäre beizutragen. 
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I. Introduction 

Terrestrial ecosystems play a major role in controlling the global carbon cycle through their 

uptake of carbon dioxide from the atmosphere via photosynthesis, the storage of this reduced 

carbon in plant and soil matter and its loss due to respiration. Understanding the mechanisms 

regulating these carbon exchange processes is particularly important when investigating the 

ecosystems potential to offset fossil fuel emissions (mitigation) or when trying to predict 

impacts of potential changes in climate on the fate of ecosystems (adaptation). In order to 

address these issues, mathematical models are being developed that are designed to describe 

the ecosystems behaviour under changing environmental conditions. However, ecosystem 

carbon fluxes are the result of multiple complex interactions on different temporal and spatial 

scales rendering their qualitative and quantitative description particularly challenging. 

I.1 Modelling ecosystem carbon fluxes  

Figure I-1 illustrates the dominant carbon fluxes in an ecosystem. Canopies trade CO2 for 

water through their stomata. The rate of this exchange primarily depends on the amount of 

incident radiation, the ambient temperature, the CO2 concentration and the vapour pressure 

deficit of the surrounding air and the water and nutrient availability in the system. Once CO2 

is assimilated in the mesophyll, complex physical and biochemical processes transform this 

reduced carbon to intermediate organic structures for further use within the plant. They are 

either invested into new plant tissue being allocated to roots, shoots and leaves, or they are 

oxidised back to CO2 to support plant maintenance. Subsequent litter fall adds to the organic 

soil carbon pool and stimulates the activity of soil mircoorganisms, releasing CO2 back to the 

atmosphere, particularly in the top layer of the soil. The individual processes giving rise to the 

carbon budget of an ecosystem obviously operate on a variety of scales and at different 

locations within the soil-canopy system. 
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Despite the complexity of the physiological processes in an ecosystem, many processes 

can be studied separately in controlled environments particularly for plants at the cell and leaf 

scale or for soils in columns or chambers. This way, a thorough understanding of the 

mechanisms regulating carbon assimilation and respiration at small scales has been 

accumulated (Jarvis 1995) and converted into sophisticated process models (e.g., Farquhar et 

al. 1980; von Caemmerer 2000; Ball et al. 1987; Lloyd & Taylor 1994). However, the 

representation of these processes at the plant and ultimately at the community level is subject 

to substantial uncertainty (e.g., Baldocchi et al. 2001b) because of spatial complexity, 

heterogeneity, and aggregation effects. As a result, scaling to the canopy level receives much 

attention in ecophysiology research and many different approaches are under investigation.  

Two somewhat opposed approaches to scale up physiological processes from a leaf to the 

canopy have been developed and widely applied for describing canopy behaviour. The ‘big 

leaf’ models consider the canopy as one operating unit and assume canopy photosynthesis to 

Figure I-1: Simplified illustration of carbon fluxes in an ecosystem (grey arrows) and controlling environmental
conditions. Incident solar radiation (S0), precipitation (P), vapour pressure deficit (VPD), temperature (T), soil 
moisture (SM), nutrient supply (N: nitrogen, P: phosphorus as representatives) are the most dominant environmental
factors. Major carbon fluxes are assimilation via gross photosynthesis (FG), autotrophic respiration by leaves, stems 
and roots (FRA), heterotrophic respiration by soil micro-organisms (FRH) and carbon allocation for maintenance and 
growth (FAL). See text for further explanation. 
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be a constant fraction of the single unshaded leaf photosynthesis. In an attempt to address the 

main criticism of such a big leaf approach, “two-leaf” models have been developed that 

consider sunlit and shaded leaves separately (de Pury & Farquhar 1997; Wang & Leuning 

1998). However, the parameters used to describe canopy photosynthesis are usually not 

measurable and the model’s validity heavily relies on the homogeneity of the canopy and the 

availability of information for the determination of remaining unknown parameters (e.g., 

Friend 2001). In contrast, ‘bottom up’ models are built in an attempt to thoroughly integrate 

the gas exchange over multiple layers of sunlit and shaded leaves to account for the vertical 

profile of the environmental conditions and the canopy architecture (e.g., Leuning et al. 1995; 

Williams et al. 1996; Knorr 2000). Provided the individual process descriptions and mutual 

interactions are correct and the parameters used to specify these descriptions are known, these 

models would deliver an entirely process-based simulation of the canopy behaviour under 

changing environmental conditions and could predict the response of ecosystems to possible 

future changes in climate. However, despite the complexity of the resulting models, their 

development still implies a number of simplifying assumptions and omissions, the impacts of 

which are impossible to quantify. On the other hand, it is the complexity of these systems 

(‘big leaf’ as well as ‘bottom up’ models) which are comprised of predominantly nonlinear 

process descriptions, in conjunction with a large number of uncertain parameters, that makes 

them suffer from considerable prediction uncertainty when compared with canopy 

observations (Franks & Beven 1997; Franks et al. 1997; Schulz et al. 2001).  

Interestingly, a good model for describing ecosystem carbon exchange does not necessarily 

involve a detailed description of leaf processes. In fact, the behaviour of an ecosystem might 

well be characterised by a less complex model system which traded on the possibility of 

simplifying effects of community organisation and resource optimisation, process aggregation 

and averaging over space and/or time (e.g., Canadell et al. 2000). For example, resource use 

efficiency models for light, water and nutrients (Monteith 1972, 1977; Dewar 1997) make use 

of the assumption that canopies behave as a functional unit that optimises the capture of 

available resources (Monteith et al. 1989). This leads to simple model structures with the 

efficiency parameters being downregulated by resource limitations. A popular example is the 

model for light utilisation with the conversion efficiency (light-use efficiency) defined as the 

ratio of dry matter production and absorbed radiation by the foliage. Evidence for this ratio to 

be conservative for well watered ecosystems during the growing period has been 

accumulating since the observations for a crop field by Montheith (1977). 

The light-use efficiency concept in conjunction with the advent of remote sensing 
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information on the spectral properties of vegetated surfaces, has paved the way for the 

generation of terrestrial productivity maps delivering a key component for the calculation of 

regional and global carbon budgets (e.g., Running et al. 2000; Lobell et al. 2002; Leuning et 

al. 2005). However, the resolution of routinely available satellite information is still rather 

coarse and the derived estimates imply several assumptions and uncertainties with respect to 

homogeneity, data processing and model structure and parameterisation. Therefore, an 

evaluation of such approaches, preferably with corresponding ground measurements, is 

required. This could reveal errors, suggest model modifications and/or reduce the uncertainty 

associated with these estimates. 

The success and limitations of the various approaches to modelling ecosystem carbon 

exchange highlight the importance of observations at the ecosystem scale. Long term 

continuous measurements can serve to rigorously evaluate simulation models, to test up and 

down scaling hypotheses, or to derive canopy responses to environmental forcings directly 

from the data. The latter aspect is particularly relevant when studying the dominant processes 

and regulations of carbon exchange at the canopy scale in order to derive robust models 

which have a level of complexity being in sympathy with the observations. Such an approach 

will be elaborated and discussed in the presented work. 

I.2 The FLUXNET database 

In the past two decades, the eddy covariance (EC) method has emerged as a suitable 

measurement technique of carbon, water and energy exchange processes at the canopy level. 

Provided a set of conditions for the study site and the atmosphere are met (see next section), 

the EC technique can be used to continuously record mass and energy fluxes between the 

terrestrial biosphere and the atmosphere over long time periods. The resulting data series 

consider the canopy as a single functional unit and represent an aggregate of the complex 

interactions between organisms in an ecosystem. Therefore, EC time series provide 

continuous information on the net carbon, water and energy exchange between the ecosystem 

and the atmosphere. With the growing network of eddy flux measurement stations around the 

world (FLUXNET, e.g., Aubinet et al. 2000; Baldocchi et al. 2001b) a considerable database is 

becoming available to help learn about ecosystem exchange processes in varying vegetation 

zones and climate conditions. The EC method is consistently used at all sites to measure the 

ecosystem response to short-term and long-term environmental variations. To date, more than 

250 EC towers deliver continuous half hourly to hourly time series of mass and energy 

exchange fluxes along with a range of micrometeorological variables. FLUXNET sites are 
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distributed fairly equally with respect to vegetation cover and climate across the United States 

(Hargrove et al. 2003) and to forests in Europe (Aubinet et al. 2000), whereas regional tower 

networks on the remaining continents are less mature. Nearly half of the EC stations are 

installed above forests, reflecting the assumed importance of these ecosystems in the 

terrestrial carbon cycle (Schimel 1995; Steffens et al. 1998). Standard instrumentation and 

methodology for data post processing (Aubinet et al. 2000; Baldocchi et al. 2001b) together 

with a common data archive (Oak Ridge National Laboratory Distributed Active Archive 

Center; http://www.ornl.gov) strengthens the integral network character and provides open 

data access for the scientific community and the public. 

I.3 Theoretical background of EC measurements and instrumentation 

Under turbulent conditions, mass and energy exchange between the surface and the 

atmosphere is dominated by eddies of different sizes within the surface boundary layer. 

Assuming horizontal homogeneity of the surface and atmospheric stationarity1 and that 

molecular diffusion is a negligible contributor to the flux2, the conservation equation for a 

given quantity simplifies to the covariance between the vertical wind velocity and the scalar 

concentration averaged over a specific time interval. Based on these theoretical principles, the 

eddy covariance (EC) technique measures the vertical flux densities of CO2, water vapour and 

temperature between the vegetation and the atmosphere by sampling the turbulent motions 

along with their scalar concentrations over a time integral (Baldocchi et al. 1988; Baldocchi et 

al. 1996). Because the integral frequency spectrum of the fluctuations is limited by the 

observation duration and the measurement instrument response, EC data need to be corrected 

for frequency response losses (e.g., Aubinet et al. 2000; Baldocchi et al. 2001b). Data post 

processing also includes corrections for potential violation of stationarity assumptions and 

fluctuations in the air density due to temperature variations (Aubinet et al. 2000; Baldocchi et 

al. 2001b). However, due to a combination of both data recording and post processing errors 

and the stochasticity of the processes EC platforms observe, EC measurements contain a 

stochastic noise component (Mahrt 1998; Hollinger & Richardson 2005) that needs to be 

accounted for when making use of these data. A characterisation of this noise based on first 

                                                 
1 To sample over the range of eddy sizes, an averaging time period of usually 30 to 60 minutes is necessary to 
derive representative flux values. This implies the assumption that the atmospheric turbulence conditions do not 
change over this averaging period. 

2 Obviously, when the boundary layer is in a tranquil state, this assumption may become invalid because the 
relative contribution of the diffusive pathway will become more important. Such conditions are often associated 
with nocturnal fluxes when turbulence in the boundary layer is no longer driven by surface warming from solar 
radiation. 
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principles accounting for the contribution of all single sources is impractical and this work 

will suggest an alternative approach (see Chapter III). 

Invariably, EC systems consist of a sonic anemometer for wind observations in three 

directions; a fast frequency response infrared gas analyser for measuring the concentrations of 

the scalars of interest (e.g., CO2, water vapour); and a suite of software for data processing 

(Aubinet et al. 2000, Baldocchi et al. 2001b). The measurement ensemble is usually mounted 

on a tower above the top layer of the canopy (Figure I-2). It is accompanied by a set of 

instruments measuring micrometeorological variables (e.g., temperature, radiation, pressure, 

saturation deficit, precipitation) to characterise the meteorological conditions in which the 

mass and energy fluxes have been recorded. 

Figure I-2: A typical setup of an eddy flux station adapted from Running et al. (1999). The net carbon exchange 
flux FN as the sum of all uptake and release fluxes is measured. 
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I.4 Scientific use of EC data 

The validity and applicability of the EC measurement technique is still an active area of 

research in its own right. In particular, stable conditions predominantly occurring at night, 

imply no turbulent mixing of the atmospheric boundary layer and hence zero flux. However, 

diffusive exchange within the boundary layer persists, particularly for CO2, resulting in a 

systematic underestimation of the CO2 efflux from the canopy (Aubinet et al. 2000). 

Commonly used approaches to limit this underestimation are to add a CO2 storage term within 

the canopy (e.g., Wofsy et al. 1993) or to replace the EC measurements with simulations of a 

temperature dependent respiration function derived from nighttime data collected during 

turbulent conditions (e.g., Goulden et al. 1996a). However, both methods are prone to 

distorting the measured carbon budget (Lavigne et al. 1997, Law et al. 1999) as CO2 stored 

over night will be either detected by the EC tower in the morning as a ‘flush out’ of the 

system, or will be readily assimilated by the canopy after sunrise. A standardised 

methodology for how to treat EC data collected under stable conditions has not been 

established yet and even its necessity is still under debate (Baldocchi 2003). Similarly, the 

validity of the EC towers in inhomogeneous terrain has been questioned (Aubinet et al. 2002). 

Fluctuations in wind speed and direction result in variations of the footprint of the tower 

blurring the separate contributions to the flux measured at the sensor (Schmid 2002). A large 

number of footprint models have been developed and applied to a range of site properties but 

there is still much scope for further investigations (Schmid 2002; Reithmaier et al. 2006). 

As already mentioned above, EC data are uncertain and it is important to understand the 

makeup and the characteristics of this noise when making use of these time series. Only 

recently, attention has been drawn to the EC observation uncertainty and its significance for 

any use of the data, in particular when calibrating parametric models (Hollinger et al. 2004; 

Medlyn et al. 2005; Hollinger & Richardson 2005; Richardson et al. 2006; Hagen et al. 

2006), or when extrapolating EC observations in space (Oren et al. 2006). As a result, the 

core of the EC data applications reviewed in the following paragraphs does not explicitly 

address the stochastic nature of the observations. The effect of this noise on inferences for 

annual carbon budgets directly from EC data will be studied in Chapter III and IV in this 

work.  

A global network such as FLUXNET offers the opportunity for cross-site analyses to further 

enhance understanding of the role of terrestrial ecosystems in the global carbon cycle. Many 

studies have examined the differences in the effects of location, climate, and vegetation cover 
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on ecosystem functioning (e.g., Valentini et al. 2000; Falge et al. 2001; Baldocchi et al. 

2001a; Falge et al. 2002; Law et al. 2002). Besides the spatial distribution of stations over the 

globe that furnish data for global carbon budget studies, this network concept also provides a 

framework for a potential confirmation of biome specific findings (e.g., Williams et al. 2000; 

Curtis et al. 2002; Churkina et al. 2003).  

EC observations represent an intermediate between leaf and single plant measurements and 

regional remote sensing information. As a result, their interrelation has been extensively 

investigated in order to gain insight into the effects of spatial and temporal scale on the 

effective description of carbon metabolism. Comparisons of EC data with smaller scale 

observations such as leaf cuvettes, soil chambers and biometric data and small scale model 

parameterisations highlight the differences in descriptions of biochemical process being 

dominant from leaves to the canopy and from hours to years, and emphasise the value of 

multi-scale observations for model derivation (e.g., Lavigne et al. 1997; Law et al. 1999; 

Barford et al. 2001; Curtis et al. 2002; Rayment et al. 2002).  

Likewise, how EC measurements relate to larger scale observations is investigated to 

assess the potential of extrapolating mass and energy fluxes beyond the footprint to larger 

regions and ultimately to the globe (e.g., Desjardins et al. 1997; Reich et al. 1999; Running et 

al. 1999; see Friend et al. 2006 for a comprehensive review). Given remote sensing 

information and EC net CO2 data provide information on different carbon components of an 

ecosystem, models are required to transform available data into comparable quantities. 

Usually, vegetation area indices, land cover and solar radiation data as deduced from remote 

sensing techniques are used within the above mentioned production efficiency model 

framework to estimate gross ecosystem production (Running et al. 1999). The resulting 

estimates can be compared to gross uptake derived from the EC net flux (e.g., Waring et al. 

1995; Leuning et al. 2005). The two different estimates show moderate agreement that only 

improves when aggregated monthly values are considered, suggesting that errors due to 

model simplifications and heterogeneity somewhat cancel (Waring et al. 1995). The analysis 

of EC data might therefore reveal information that sheds light particularly on model errors in 

large scale applications. This supports the role of EC data contributing to carbon accounting 

efforts demanded by the Kyoto protocol and the potential of improving the estimation of the 

carbon source-sink strength of the terrestrial biosphere (Steffen et al. 1998; Hutley et al. 

2005). 

The net CO2 flux at an EC tower represents a measure of the sum of carbon assimilation 
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and respiration of the ecosystem. Several methodologies have been developed to disaggregate 

the measured flux into its major components to facilitate further model testing and 

comparison with remote sensing information (e.g., Goulden et al. 1996a; Reichstein et al. 

2005; Hagen et al. 2006). However, a thorough evaluation of the results is still missing due to 

the lack of comparable observations of the two components at the corresponding scale. One 

way to overcome this restriction could be the use of synthetic data as will be demonstrated in 

Chapter IV. 

One of the major objectives identified with the setup of the global network of flux 

measurement sites was to provide data to test and parameterise simulation models, these being 

seen as a key tool for predicting the regional and global terrestrial carbon balance (Baldocchi 

et al. 1996). A large number of models varying in complexity and spatial and temporal 

resolution have been evaluated against EC time series with varying levels of success (e.g., 

Aber et al. 1996; Williams et al. 2000; Churkina et al. 2003). Best agreement of model 

predictions and observations is achieved when comparing temporal aggregates or short time 

periods. As already mentioned above, Schulz et al. (2001) pointed to the problem of 

insensitive parameters in complex simulation models not being supported by observations and 

demonstrated the large prediction uncertainties arising from these uncertain parameters. As a 

result, data assimilation techniques are being investigated for their capacity to help 

constraining simulation models (Williams et al. 2005; Knorr & Kattge 2005; Raupach et al. 

2005). 

An alternative to assimilating the observations into pre-defined models is to explore what 

systematic/process behaviour can be observed within EC data. This data based modelling 

approach is receiving increasing attention in the FLUXNET community. Purely data based 

approaches such as artificial neural networks have been explored particularly in the context of 

gap filling EC measurements or flux partitioning (Aubinet et al. 2000; Papale & Valentini 

2003; Leuning et al. 2005). They also show potential to serve as diagnostic tools to identify 

dominant factors controlling the system under study as a first step of model building (e.g., van 

Wijk & Bouten 1999) although they lack transparency in this respect. An alternative approach 

would be to exploit simple model structures such as radiation and water use efficiencies 

(Monteith 1977) because these linear structures are particularly amenable to estimation from 

EC data. Despite their simplicity and notable success on the canopy level (e.g., Dewar 1997; 

van Wijk & Bouten 2002; Chapter V), light and water use models are only hesitantly 

incorporated in ecosystem simulation models and so far have rather served the utilisation of 

satellite data (Running et al. 2000). The reason for this reservation is the lack of faith in their 
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predictive capacity under climate change scenarios. However, such approaches have much to 

offer and deserve further investigation. 

A somewhat hybrid approach is introduced in the present work and has been adopted by 

others (Gove & Hollinger 2006). It is based on the interactive combination of mechanistic 

process understanding with data led analyses. Here, novel time series analysis techniques are 

applied to approach EC data with minimal prior assumptions. For this, simple model 

structures representing basic process understanding are used to help constrain the estimation 

problem. The objective of this modelling approach is to explore the information content of EC 

data that might lead to canopy carbon exchange models with a maximum complexity needed 

to explain the signal in the observations. 

I.5 The modelling concept 

Mechanistic simulation models for the carbon and water exchange of an ecosystem with the 

atmosphere play a particular role when trying to predict future ecosystem responses under 

climate change scenarios. However, given the temporal and spatial complexity of the 

underlying processes in an ecosystem, these upscaling approaches are inevitably prone to 

substantial uncertainty (e.g., Schulz et al. 2001). As a result, predictions will also be 

characterised by large uncertainties due to errors in the model structure, uncertainty in the 

parameters and the complex error propagation through (nonlinear) process descriptions. 

One way of tackling this problem could be to reduce the complexity of the model to an 

extent such that the remaining calibration parameters can be well defined from the data (e.g., 

Wang et al. 2001). In contrast, the modelling approach applied in this work (see Figure I-3) 

starts off with an ‘oversimplified’ model structure based on common ecophysiological 

process understanding with a minimum of prior functional assumptions. The available 

observations are then interrogated to constrain the model, i.e. the level of additional 

complexity is determined from the data directly. This procedure adopts many aspects of the 

data based mechanistic modelling (DBM) concept developed by Young and co-workers 

(Young 1999; Young & Pedregal 1999; Young 2000) that has been successfully employed for 

a diverse range of environmental research questions (e.g., Young & Beven 1994; Young et al. 

1996; Schulz & Jarvis 2004). 
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Given the enormous extent of observations from the EC tower network and the limited 

understanding of carbon processes at the canopy level, such a data led approach appears 

logical to complement the considerable efforts already put into the development of canopy 

simulation models, and ultimately one would hope to see convergence between these top-

down inductive and bottom up reductionist modelling paradigms (Monteith 1995). 

Two alternative modelling techniques are presented, differing in their underlying 

mathematical foundation but, as they are employed here, being driven by the same objective. 

The concept of time (TDP) and state dependent parameter (SDP) estimation (see Chapter V) 

has been developed for the analysis of nonlinear and nonstationary time series (Young 1999; 

Young 2000) forming a central part of the DBM approach for modelling nonlinear and 

nonstationary data. Here, parameters are allowed to vary with time or a specified driver(s) of 

the system under study in order to address dynamics that are not accounted for in the current 

model formulation. The estimation of these varying parameters is based on the recursive 

Kalman filter formulation that explicitly addresses noise in environmental observations as 

well as the stochastic nature of the system under study. The resulting (nonparametric) time or 

state dependencies are then to be interpreted based on mechanistic understanding and 

ultimately formulated as a function of the driver(s) found to dominate the behaviour of the 

system. Finally, a parametric model could be specified from these relationships and then 

calibrated and evaluated against the data in order to explore its validity and predictive 

capacity. To date, the use of TDP and SDP estimation is limited to the sum of one-

Figure I-3: Flowchart diagram of the modelling procedure as applied in the present work. 
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dimensional responses, hence applying to only a subsample of environmental systems. 

While being statistically less sophisticated, piecewise polynomials (see Chapters II-IV) 

allow for the simultaneous multidimensional estimation of dependencies. In the following this 

approach is referred to as being semi-parametric. Here, the values of the nodes joining the 

polynomials are optimised against the available data by minimising an appropriate objective 

function. The level of complexity allowed for the relationships can be controlled by varying 

the number of nodes. Similar to the TDP/SDP approach, the identified semi-parametric 

relationships could then be subject to mechanistic interpretation and ultimately 

parameterisation. 

Because environmental measurements are corrupted with noise and, as a result, the true 

signal of the observed ecosystem is usually not known, the efficacy of any inductive data led 

modelling paradigm has to be checked in some way. One approach is to make use of synthetic 

data series. Complex simulation models that are well established in the scientific community 

can be used to simulate the net CO2 flux under realistic environmental conditions thereby 

representing the behaviour of a virtual canopy. A known (synthetic) noise component can 

then be added to the simulated data to give rise to synthetic EC observation whose 

composition is known perfectly. From this any data analysis framework can be tested 

rigorously for both its capability to distinguish between signal and noise and its representation 

of the systematic behaviour of an ecosystem. This approach is novel in the analysis of EC 

data and is utilised in Chapters II-IV of this work. 

I.6 General objective 

This work is an attempt to contribute to the understanding of ecosystem carbon processes 

giving rise to carbon exchange fluxes between the terrestrial biosphere and the atmosphere. It 

aims to explore the information content on the systematic behaviour in the observations of 

these fluxes and to augment the data value for further carbon exchange studies. The following 

chapters are concerned with research questions directly arising from the general objective. 

These are: 

 Can the dominant factors regulating canopy carbon exchange be extracted objectively 

from EC data? 

 How can missing data in EC time series be overcome? 

 How should uncertainty inherent in EC observations be dealt with? 

 Can EC data contribute to carbon budget estimations given their limitations? 
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 Do the data allow for disaggregation into separate components? 

 Do EC data allude to generic functional relationships that could represent canopy 

carbon processes? 

These research questions shall be addressed by thoroughly interrogating the co-variations 

of EC net CO2 time series data and concurrent micrometeorological measurements recorded 

above canopies following the modelling approach introduced above. As will be seen, the 

development and use of such hybrid statistical-mechanistic methodologies allow for a data-

led identification of dominant systematic behaviour at the canopy scale as expressed in EC 

observations, whilst appreciating the stochastic nature of the observations. Based on the 

gained insights into canopy behaviour, the work sets out to explore simple model structures as 

representations of aggregated canopy carbon processes. 

I.7 Chapter overview 

The following work consists of four chapters each of which addresses different aspects of the 

overall objective elaborated above. The central product of this thesis forms a semi-parametric 

model for net CO2 fluxes above canopies that estimates the simultaneous response of the CO2 

fluxes to light, temperature and time from EC time series data, making use of 

multidimensional cubic splines. Chapters II – IV present different applications of this model 

highlighting the insights into this system opened up by such a hybrid modelling approach. 

In Chapter II it is shown that this model proves successful when estimating the systematic 

behaviour of the canopy net CO2 flux even if calibrated against noisy and patchy data where 

much of valuable information is corrupted and/or missing. An analysis of the effect of 

missing data on the model performance is facilitated by the use of synthetic data produced by 

several canopy simulation models. Based on the results, the semi-parametric model is 

introduced as a suitable methodology to fill missing information in the underlying 

deterministic component of CO2 flux time series provided by eddy flux towers. 

As will be seen in the course of this work, to faithfully replace missing values in real 

observations an additional noise model is required to account for the stochastic component in 

EC data. Therefore, Chapter III presents an attempt to characterise this noise in EC data. Here, 

the spline model from Chapter II serves as a means to partition the deterministic part of the 

EC data from the stochastic component, hence facilitating their separate analysis. Synthetic 

data support the success of this method to reproduce the stochastic behaviour of EC data. 

Using a nonparametric method to derive the properties of the noise, the effects of its 

propagation through flux integration are assessed within a Monte Carlo simulation 
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framework. It is shown how this application augments the value of the observations for 

annual carbon sequestration studies. 

In Chapter IV, the ability of the spline model to disaggregate the deterministic net CO2 flux 

into the carbon assimilation and respiration counterparts is assessed. Again, synthetic data is 

used to test the performance of the model. Compared to commonly applied parametric 

separation methodologies, the proposed scheme performs remarkably well while also 

accounting for observation uncertainty and error propagation in flux integrations. It is 

demonstrated how these estimates provide scope for the investigation of inter-site 

relationships with environmental site conditions. 

Finally, Chapter V presents a study on how nonparametric relationships derived directly 

from the data can guide to physically meaningful parametric models as an ultimate example 

application of hybrid data-led analyses. Here, simple functional relationships are used to 

predict daily gross photosynthesis and ecosystem respiration of two deciduous forests by 

accounting for nonlinear effects of temperature and time. This chapter can be viewed as an 

initial step towards the development of regional models for carbon exchange between a 

diverse range of terrestrial ecosystems and the atmosphere. 

An overall discussion (Chapter VI) integrates the four individual studies into the context of 

the general objective of the work and concludes with suggestions for further research and 

potential spin offs from the presented findings. 
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Abstract 

This paper introduces a method for modelling the deterministic component of eddy 

covariance CO2 flux time series in order to supplement missing data in these important data 

sets. The method is based on combining multi-dimensional semi-parametric spline 

interpolation with an assumed but un-stated dependence of net CO2 flux on light, temperature 

and time. We test the model using a range of synthetic canopy data sets generated using 

several canopy simulation models realised for different micrometeorological and vegetation 

conditions. The method appears promising for filling large systematic gaps providing the 

associated missing data do not over-erode critical information content in the conditioning data 

used for the model optimisation. 
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II.1 Introduction 

Quantitative descriptions for the exchange of energy and mass between the land surface and 

the atmosphere rely on the availability of suitable quality data for model identification, 

calibration and evaluation. The supply of data from the growing global network of tower 

measurements (FLUXNET; Baldocchi et al. 2001b) has become central to this model building 

process. The aim of these field campaigns is to provide long-run (multi-year) time series 

measurements of surface-atmosphere CO2, H2O and sensible heat fluxes, along with measures 

of the associated micrometeorological conditions, at a sampling interval of 30 to 60 minutes. 

However, due to a combination of the limitations on the applicability of the measurement 

techniques and the robustness of the measurement platforms, data rejection and missing data 

are inevitable leading to on average 65-75 percent data coverage across the season (Baldocchi 

et al. 2001b; Falge et al. 2001; Law et al. 2002). The resultant gaps in the time series 

measurements limit the use of these data in, for example, integrations to give seasonal carbon, 

energy and water balances. 

To overcome the restrictions imposed by missing data a number of ‘gap-filling’ procedures 

have been developed. The term ‘gap-filling’ is somewhat misleading as it implies a temporal 

interpolation procedure where the available time series data adequately sample the full range 

of behaviour of the system. This is probably true for small, randomly distributed gaps, but is 

not necessarily the case for more systematic gaps. The more the missing data are associated 

with conditions that are poorly sampled by the available data, the more gap-filling becomes 

an extrapolation and the greater the uncertainty will become in the predicted response if it is 

based on the available observations alone. Because of this, it is important that there is an 

opportunity to include supplementary information to help constrain gap-filled predictions, 

particularly in the poorly sampled regions of the data set in question.  However, in wanting to 

preserve the integrity of these valuable data we are wary about over-imposing our 

preconceptions about the underlying behaviour too strongly given the nonstationary and 

nonlinear nature of these systems and the uncertainties associated with the eddy covariance 

(EC) measurement technique (e.g. Goulden et al. 1996b; Moncrieff et al. 1996; Hollinger & 

Richardson 2005). 

This paradox is a good example of the environmental modellers dilemma, how to attach 

appropriate weights to uncertain observations and prior knowledge about the system when 

making predictions. To a certain extent, the range of gap-filling procedures developed to date 
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reflects these concerns. This range includes the use of moving averages (Falge et al. 2001; 

Reichstein et al. 2005); look-up tables (Falge et al. 2001; Law et al. 2002; Reichstein et al. 

2005); artificial neural networks (Aubinet et al. 2000; Papale & Valentini 2003); multivariate 

correlation (Hui et al. 2004); nonlinear regression (Goulden et al. 1996a; Grünwald & 

Bernhofer 2000; Falge et al. 2001; Pilegaard et al. 2001; Suyker & Verma 2001), Fourier 

regression (Hollinger et al. 2004) and mechanistic simulation models (Law et al. 2002). 

In what follows we devise a gap-filling scheme that attempts to address the problem of 

blending current observations and supplementary information when predicting the 

deterministic component of missing data in net CO2 flux time series. The starting point for 

this approach is to assume light, temperature and time as the dominant driving forces 

controlling the net canopy CO2 flux (Monteith & Unsworth 1973, 1990; Lloyd & Taylor 

1994). The challenge then is to extract the relevant linear or nonlinear relationships between 

net CO2 flux and each of these drivers, simultaneously, and without having to assume their 

parametric form a priori. Here, we achieve this by optimising a three dimensional 

hypersurface for net CO2 flux within the CO2 flux, light, temperature, time space. This 

hypersurface is constructed using piece-wise polynomials (cubic splines), hence allowing a 

certain degree of control over the rates of change within the hypersurface (i.e. the surface is 

smooth) whilst retaining the objectivity of the semi-parametric approach3.  

The use of semi-parametric and non-parametric optimisation to model EC data is not new. 

For example, Jarvis et al. (2004) used a sorting and kernel smoothing procedure to identify 

the functional form of the seasonal evolution of photosynthetic capacity and bulk respiration 

in EC net CO2 flux time series. Adopting a hybrid approach, Yi et al. (2004) used a kernel 

smoothing technique to estimate the temporal evolution of parameters within a specified light 

saturation function in addition to the temperature dependency of bulk respiration. These 

methods contrast with the more subjective approach of optimising fixed parametric 

relationships based on prior assumed model structures such as light response functions for 

photosynthesis (e.g. Goulden et al. 1996a; Aubinet et al. 2000; Falge et al. 2001) or 

Arrhenius and Q10 functions for respiration (e.g. Lloyd & Taylor 1994; Grünwald & 

Bernhofer 2000; Falge et al. 2001). The semi-parametric estimation in the flux-light-

temperature-time space being advocated in this paper is intermediate between gap-filling 

methods based on nonlinear regression of functional relationships (e.g. Grünwald & 

                                                 
3 Here, semi-parametric is used to distinguish cubic splines, which involve an internodal parameterisation of a 
cubic polynomial, from kernel smoothing where no such parameterisation is prescribed. For a good introductory 
text on this and related issues see Simonoff (1996). 
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Bernhofer 2000), and more statistical methods based on covariance analysis such as 

multivariate correlation (Hui et al. 2004). Another way of viewing this work is as an attempt 

to optimise a continuous look-up table in the light-temperature-time space, with the cubic 

splines acting as the interpolating condition, as opposed to a discrete look-up table derived 

from binning data (e.g. Falge et al. 2001).  

We assess the performance of this method using various synthetic data sets by introducing 

periods of artificial systematic gaps and comparing the results with the simulated fluxes. This 

provides a good test for gap-filling procedures because the systematic component of the EC 

observations is known perfectly, unlike with real data. As a result, deficiencies in the gap-

filling procedure can be evaluated unambiguously. By comparison, the often significant 

uncertainties associated with real EC observations introduce ambiguity over the source of 

failure of a scheme and hence whether to reject that scheme or not. This is important in the 

context of this work as we will attempt to demonstrate not only the efficacy of the approach 

but also its inability to capture the response if excessive extrapolation is required, hence, 

exposing the need for additional information. 

II.2 Methods 

Nonlinear and non-stationary CO2 flux model 

We start by assuming that light, temperature and time are the major controlling factors for the 

response of the net canopy CO2 flux, FN, to the surrounding environment. Here, the time 

dependency of FN denotes ‘change’ and covers all observed variation not attributable to either 

light or temperature. Similarly, the temperature dependency of FN is an aggregate that does 

not differentiate between effects on photosynthesis and respiration. Light, temperature and 

time impact on FN in a manner dependent on a diverse range of physical, biochemical and 

physiological processes. These processes may be well characterised at the sub-canopy scale, 

but their aggregation to the canopy scale and associated expression within EC measurements 

entrains a significant degree of uncertainty (e.g. Baldocchi 1993; Jarvis & Dewar 1993). This 

leads to ambiguities when specifying both the structure and parameterisation of relationships 

for FN that will be in sympathy with a particular data set. Therefore, to specify a model that is 

a faithful representation (and hence interpolator) of the relationships between light, 

temperature, time and FN in EC data requires a degree of objectivity when both structuring 

and subsequently parameterising the model. Because of this we start by simply assuming 
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0{ , , }NF f S T t e= +  (II-1) 

where S0 is the incident solar radiation, T is temperature and t denotes time and f{S0, T, t} is 

an unknown three dimensional function in S0, T and t which will be obtained by conditioning 

the relevant cubic spline hypersurface on the data. Speculating FN as a function of S0 is a 

convenient way of handling the commonly observed nonlinearity between S0 and FN within 

any particular day (Ruimy et al. 1995; Law et al. 2002). The model error, e, will include the 

stochastic behaviour of the system, the uncertainty of the EC observations (Goulden et al. 

1996b; Moncrieff et al. 1996; Hollinger & Richardson 2005) and the inadequacy of the model 

being applied. The choice of S0, T and t is not prescriptive and the reader is at liberty to 

suggest additional or alternative relationships they deem important in explaining their data, 

providing measurements of the relevant drivers are available to identify functionalities when 

performing the semi-parametric estimation and that the observations support the estimation of 

these relationships. An example response of FN to S0, TS and t is shown in Figure II-14. 

Spline estimation of f{S0, T, t} 

f{S0, T, t} is represented using a three dimensional hypersurface of piecewise cubic 

polynomials or splines. Piecewise cubic polynomials are popular because they provide a 

reasonable compromise between flexibility, smoothness and the number of parameters to be 

determined (Press et al. 1988, 1992). Each dimension in f{S0, T, t} is described by an interval 

[x1 ... xn] and is divided into n-1 subsections resulting in n node locations, each with node 

values y1 … yn. For each subinterval [xi ... xi+1], the polynomials P(xi) are estimated as cubic 

Hermite interpolating polynomials based on four interpolation conditions (de Boor 1978, 

2001), 
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4 It is interesting to note that the estimate for the FN, S0, TS, t hypersurface captured by f{S0, TS, t} would provide 
a valuable means of characterising the simultaneous response(s) of FN to S0, TS, t in eco-physiological and 
inference based modelling studies. 
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where P'(xi) denotes the first derivative of the interpolant P at xi, and di denotes the local slope 

at xi. Here, we use a shape-preserving interpolation proposed by Fritsch & Carlson (1980) 

because it is stiff enough to prevent an overshoot of the cubic polynomials between the nodes 

(i.e. they are only continuous up to the first derivative, Mohr 2004). This interpolation 

determines the slope at a node as the harmonic mean of the slopes in the two adjacent nodes. 

In case of opposite signs of the slope in the adjacent nodes, xi is a discrete local extremum and 

hence di is set to zero. The values of the nodes yi in each relationship are then optimised 

against the data through non-linear least squares minimisation of the prediction error model 

e = FN - f{S0, T, t} using Levenberg-Marquardt nonlinear least squares optimisation of the 

relevant node values y1 ... yn at locations [x1 ... xn] simultaneously in all three dimensions (S0, 

T and t). Note that this optimisation weighs all observations equally and does not account for 

factors such as the night-time fluxes being more uncertain when using real data (Goulden et 

al. 1996b; Moncrieff et al. 1996). To account for this, prior knowledge of bias and/or 

uncertainty would be required, and the observations weighted accordingly. 
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Figure II-1: 3D visualisation of the response of FN to S0, TS and t for the synthetic SPA data set. FN is plotted 
as grey dots in the S0-TS space. The vertical black lines indicate the temporal evolution of the f{S0,TS} surface 
as estimated in model (1). The remaining grey lines are illustrative interpolations of internodal splines lying 
in the hypersurface. 
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Optimising (II-1) for the synthetic data sets used in this study results in residual colour in 

e. This is expressed as a small but significant autocorrelation reflecting the spline model’s 

inability to reproduce the diurnal variation in the synthetic data that is not related to variations 

in S0 or T (i.e. e = e(t)). This mainly reflects small diurnal hysteretic effects in the simulation 

models used. Where appropriate, we address this by estimating an autoregressive model from 

e(t) and adding the systematic serial correlation to f{S0, T, t}. In addition, the least squares 

optimisation used here ideally implies Gaussian residuals, whereas this is seldom the case for 

this application. However, any bias this introduces is not important for this application as we 

are only interested in fitting and not in interpretation.  

The choice of the number of nodes and their allocation will obviously depend on the 

properties of the data. One is tempted toward a high node density because, in the extreme, if 

there were as many nodes as data points one could have an exact recreation of the available 

data. However, although introducing more nodes increases the flexibility of the model, this is 

at the cost of the semi-parametric relationships becoming increasingly sensitive to noise, 

hence making the predicted fluxes for the gap-filling increasingly uncertain. Therefore, as gap 

lengths increase so the node density has to fall in order to ensure nodes within gaps are 

constrained by adjacent available data. We use a six by six equidistant node matrix to 

represent the FN-S0-T space when estimating f{S0, T} as this number of nodes (36) proved 

sufficient. Only nodes lying within the dynamic range for S0 and T are optimised as estimates 

outside this range will be associated with no data. Given this range changes through the year 

the node allocation in the FN-S0-T space is changed accordingly. The choice of the location of 

nodes in time provides an opportunity to the modeller to intervene when accounting for 

medium term ‘changes’ in f{S0, T}. For example, the occurrence of a known ‘event’ could 

merit allocating nodes around this event whereas long periods of inactivity would not. 

Therefore, we advocate interrogating the data beforehand and exercising prior judgement 

when allocating the number and location of nodes in t, particularly in relation to gaps. 

It is important to appreciate that the optimisation of the node values and the resulting 

hypersurface is carried out against the data sorted with respect to the magnitude of S0, T and t. 

It is, therefore, the evolution of the sorted FN giving rise to the shape of the smoothed changes 

of the interpolant P in the FN-S0-T-t space and not a direct function of S0, T or t (see Young 

2000). Not only does this facilitate the estimation, it also has the additional benefit of 

shuffling temporally ordered systematic gaps, making them somewhat more random. 
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Evaluation of the gap-filling model 

To evaluate the performance of the gap-filling scheme we have elected to use synthetic data 

sets where we have full control over the nature of the missing data and the systematic and 

stochastic components of the observations. For this test we have simulated the canopy net 

CO2 flux for four different biomes using three different simulation models. Each data set is 

comprised of one year of hourly FN samples where FN = FNs + eS, with FNs being the 

deterministic simulation model output and eS a synthetic noise component. 

For a temperate coniferous forest under seasonal rainfall biome we have used the Soil-

Plant-Atmosphere (SPA) model of Williams et al. (1996). The meteorological driving 

variables are taken from the Metolius FLUXNET site in Oregon (old-young ponderosa pine) for 

the year 2000 (Law et al. 2001; Anthoni et al. 2002; see also Williams et al. 2001 for a test of 

SPA against ponderosa pine EC data). In addition, soil respiration is described as an 

exponential function of soil temperature with a soil moisture dependent activation energy 

(Black et al. 1996; Goulden et al. 1996a; Lindroth et al. 1998; Fang & Moncrieff 2001). The 

relevant model outputs include FNs and ‘surface’ temperature, TS and are shown together with 

associated model input data in Figure II-2a. 

For a temperate deciduous forest under uniform rainfall we have used the Biosphere 

Energy-Transfer and Hydrology model (BETHY, Knorr 2000) applied to the Hainich 

FLUXNET site, Germany for the year 2000 (Knohl et al. 2003; Anthoni et al. 2004; see Knorr 

& Kattge 2005 for BETHY parameterisation). The relevant BETHY model inputs and outputs 

are shown in Figure II-2b.  

A tropical, high productivity biome and an artic low productivity biome were simulated 

using the model described in Leuning et al. (1995). The meteorological driving variables for 

the tropics are taken from the typical meteorological year database (TMY2, 2006) for 

Honolulu, Hawaii and the leaf area index (LAI) has been set to 6 m2/m2 (Figure II-2c). For the 

simulation of an arctic site we reduced the maximum catalytic activity for rubisco and the 

temperature maximum of the potential rate of the electron transport (von Caemmerer 2000). 

Input variables are taken from the TMY2 database for Yakuta, Alaska, US (Figure II-2d). 
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Figure II-2. Selected input and output series for the various simulations. a. SPA at the temperate coniferous 
forest site with seasonal rainfall.  b. BETHY at the temperate deciduous forest site with uniform rainfall. c. 
Leuning et al. (1995) model at a high productivity tropical site. d. Leuning et al. (1995) model at a low 
productivity artic site. S0 denotes incident radiation, Ta is air temperature, LAI is the leaf area index, TS and 
TSoil are surface and soil temperature, respectively. Pcum is cumulative annual rainfall, D is saturation deficit 
and FN is the synthetic net CO2 fluxes above the canopy (model plus noise). 
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The stochastic component eS comprise a zero mean white noise series with a standard 

deviation of ten percent of FNs (i.e. constant relative error) to simulate the measurement errors 

(Moore 1986; Hollinger & Richardson 2005) and the stochastic nature of the underlying 

processes (Wesely & Hart 1985). Similarly, a realistic quantity of constant variance white 

noise is added to S0 and T to represent measurement error. 

We evaluate the model performance by comparing the final deterministic estimates of FNs 

with f{S0, T, t} for the four synthetic data sets, a privilege afforded by using synthetic data. 

The analysis will focus on two related aspects, the statistical properties of the error series e* = 

FNs - f{S0, T, t} and, related to this, a comparison of the cumulative FNs and f{S0, T, t} fluxes 

across the years. This must be viewed as a particularly harsh evaluation given normally the 

model inadequacies exposed in e* would be obscured in the more common analysis of e by 

the significant observational uncertainty. 

The success of the scheme is tested against a gap-free scenario and a gap scenario for all 

four data sets. For the gap scenario we introduce regular, 20 day gaps interspersed by 13 day 

data series resulting in 60 percent of the entire data set missing. The choice of a uniform gap 

length of 20 days derives from the gap frequency spectrum in Falge et al. (2001) in that this 

length had an estimated probability of occurrence of just three percent and gap durations less 

than this did not prove very challenging to the estimation. 

For an intercomparison of this and other gap-filling methods using measured EC data sets 

from a range of FLUXNET sites see Moffat et al. (2006). 

II.3 Results and Discussion 

For all eight scenarios e* is free from any cross-correlation with T, but still shows a slight 

cross-correlation with S0 highlighting some inadequacies in (II-1). This is not surprising given 

the strong autocorrelation of S0 driving the simulation model in conjunction with the 

complexity of the simulation model(s) in comparison to (II-1). This does however highlight 

some scope for improvement. 

Table II-1 shows the estimates of the mean and two standard deviation values of e* derived 

from 105 random sub-sample draws for the eight scenarios. For the day-night data e* is zero 

mean except for the tropical and artic biome 60 percent gap scenarios. For the day data e* is 

also largely zero mean, whereas the model appears to miss-estimate the night fluxes slightly. 

This feature is only exposed when analysing the noise-free response and is probably due to a 

bias towards the larger daytime fluxes in the estimation given day and night fluxes are not 
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handled separately in the optimisation. Given the uncertainty in real EC flux observations this 

bias is not significant (Moffat et al. 2006) but again suggests room for improvement in the 

current model. 

Figure II-3 shows the cumulative deterministic fluxes. It would be appealing at this stage 

to have an estimate for the propagation of parametric uncertainty through the integration. 

However, given just one realisation of the spline hypersurface took approximately 7 minutes, 

the computing effort had to be directed solely at the optimisation. A Monte Carlo simulation 

that adequately sampled the distributions of the 6x6x9 nodes in the hypersurface exceeded the 

capacity of the computing resource used in this study5.  

                                                 
5 The 3D interpolation was performed using INTERP3 in MATLB v6 running on a 3.8 GHz PC. In addition, the 
hypersurface has to be evaluated incrementally due to memory constraints (2 GB RAM). 

Table II-1: Summary of the model evaluation for the four synthetic data series and two artificial gap scenarios. 
The statistical properties (mean and twice the standard deviation) of the deterministic model error e* are 
calculated from 105 randomly drawn sub-samples of e* where a 10 percent sample is drawn each time. Estimates 
have been normalised to the mean FN  for the sample for comparison and are expressed as percentages. For the
gap free scenario e* is calculated for all N = 24x365 data, whereas for the 60 percent gap scenario e* is only 
calculated for the missing data, i.e. N = 0.6 x 24 x 365. 

 Scenario *e (2σe*) [%] 

 Day Night Day-Night 

Temperate, coniferous forest  (SPA), all data -1.8 (1.8) -6.4 (1.3) 0.3 (2.7) 

Temperate, coniferous forest (SPA), 60% missing 1.9 (5.2) -5.8 (2.6) 5.4 (7.8) 

Temperate, decid. forest (BETHY), all data -1.6 (2.4) -4.4 (1.4) -0.4 (3.4) 

Temperate, decid. forest (BETHY), 60% missing -4.7 (6.3) -1.5 (3.5) -5.7 (8.7) 

Tropical, non-seasonal (Leuning et al. 1995), all data -1.3 (2.2) -3.1 (0.8) -0.3 (3.5) 

Tropical, non-seasonal (Leuning et al. 1995), 60% missing 5.4 (6.1) -3.6 (0.7) 10.5 (9.6) 

Arctic, low production (Leuning et al. 1995), all data 0.03 (5.6) 2.1 (3.3) -0.6 (7.6) 

Arctic, low production (Leuning et al. 1995), 60% missing -17.6 (12.8) 9.1 (4.7) -27.2 (17.4) 
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As can be seen, not surprisingly the optimisation of model (II-1) based on all data results in 

no significant bias in the estimate of the cumulative flux on time scales from days to year end 

for all four synthetic data sets. In addition, the results in Figure II-3 show that it is not the 

amount of missing data that controls the performance of the scheme but instead, it is the 

coincidence of gaps with periods that contain important information for constraining the 

estimation correctly. For example, the response of NF̂  to (rare) low temperatures in the 
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 Figure II-3: Cumulative sum of the deterministic simulation data (light grey) and the output of (1). The circles
underneath the graph denote the nodes in t. The upper panels show the results estimating (1) from the entire data 
series, the bottom panels show the results of the gap scenario (60% of the data missing, gaps indicated by light 
grey patches). Cumulative e* is shown underneath each panel. a. Results for the temperate coniferous forest 
(SPA) b. Results for the temperate deciduous forest (BETHY) c. Results for the tropical biome (Leuning et al.
1995) d. Results for the arctic biome (Leuning et al. 1995). 
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tropical simulation shown in Figure II-3c has been completely removed by the second gap 

period resulting in an unconstrained and hence uncertain extrapolation in f{T} (see Figure II-4 

and cv Figure II-2c and II-3c).  

Figure II-4 shows some example estimated responses of NF̂ to S0 and t. As can be seen in 

the top panels, the significant parametric uncertainty for f{S0} decreases rapidly with 

increasing temperature and the shape of the estimated relationship converges on its gap-free 

counterpart. Similarly, much of the information on the timing of senescence during the short 

vegetation period in the artic simulation together with the response of NF̂  to a series of bright 

sunny days in late summer has been lost in gap period seven and eight (cv Figure II-2d and II-

3d). As a result, the model picks up the temporal changes rather poorly, as well as the f{S0} 

being poorly defined for high S0 during this period (Figure II-4, bottom panels). The low 
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Figure II-4: Differences in the node values (and hence the interpolating polynomials) for the optimised model
(1) using either all data (light grey) or the 60 percent gap scenario (dark grey). The upper series of panels show 
the estimated response to light at t = 73 days and TS = 19.9, 21.4 and 22.9 °C. The bottom series of panels show 
the estimated response to time at TS = 8.1 °C for S0 = 322, 487 and 652 Wm-2. The vertical lines denote the 
confidence intervals for the estimated parameters. Note that the actual interpolating polynomials will have a
somewhat different shape depending on the nature of the covariation of S0, TS and t in this sector of the 
hypersurface. 
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parametric uncertainty of these estimates probably reflects the fact that this is a (temporal) 

interpolation which gives rise to confident, but wrong node value estimates. 

By way of contrast, the model performance for the two temperate biomes appears 

satisfactory despite 60 percent of the data being missing for the estimation (see Figure II-3a 

and b). This is a result of the seasonal distribution of S0, T and phenology being more uniform 

(see Figure II-2a and b) and hence the probability of loosing information on these responses 

being less than in systems subject to more rapid changes. Therefore, when missing data cover 

periods of significant change in boundary conditions then clearly more reliance on additional 

information is required. Ideally this would be supplemented by also characterising f{S0, T, t} 

on data taken from adjacent years at the same site. 

The reader will no doubt want to exercise their own judgment as which drivers to include 

when conditioning (II-1) to the observations. For example, we have not considered the effect 

of non-seasonal variations in water limitation (e.g. Hanson et al. 1993; Davidson et al. 1998; 

Reichstein et al. 2002) in the current analysis. It is important to appreciate however that in 

order to account for such effects, one would need a measure of that driver that related directly 

to the FN observations (i.e. was applicable at the canopy scale). This need not be accurate 

measures but only need to reflect changes in the appropriate designated state given these 

measures will only be used to sort FN into the relevant order for the spline estimation. 

II.4 Conclusions 

With gap-filling, we are generally in a 'data rich' situation compared to, for example, 

extrapolation to ungauged sites. As a result, gap-filling methodologies need to lean more 

toward the data, and use supplementary information to constrain the gap-filled predictions 

when data coverage in that area of the data space is sparse. Although there is no unique 

solution to this problem, we believe that estimating the semi-parametric relationships needed 

to reconcile simple model structures to the available data is a suitable hybrid methodology for 

achieving this compromise in many situations. 

Clearly, the performance of the scheme used here will, in part, depend on the number and 

location of nodes. Although one important benefit of using splines is that the coefficients of 

the polynomials are determined non-locally (Press et al. 1988, 1992), nodes located in 

sparsely sampled areas of the data set/model space will be less constrained by the data whilst 

still being potentially important for determining the response. It is, therefore, reasonable to 

assume that the node density should reflect the local density of the available data and an 
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automated procedure for this is currently being developed and evaluated by the authors. 

It is important to underscore the advantages of using synthetic data sets to evaluate gap-

filling procedures. To date, schemes have been exclusively evaluated on real data. However, 

the partitioning between the systematic and stochastic properties of real data is not known and 

as a result any evaluation is somewhat restricted by the significant uncertainties associated 

with EC flux data. In contrast, the components of synthetic data are known perfectly. This 

allows for a more comprehensive evaluation as one is in full control over the nature of the 

system giving rise to the observations, as well as which observations are missing. The same 

can be said for evaluating methods for partitioning fluxes between their photosynthetic and 

respiratory components or for exploring the expression of the aggregation of sub-canopy scale 

processes in canopy scale observations. 

Finally, if we are going to faithfully synthesise missing EC data then it is essential that we 

realise both the systematic and the stochastic components when filling gaps. The analysis here 

has focused on an assessment only of the noise free response in order to see how successfully 

the systematic components could be captured by the proposed method. However, when 

integrating fluxes to give estimates of annual sums the uncertainty that results from noise 

needs to be computed if inferences on annual sums are to be drawn. This would require the 

characterisation of a noise model for EC data. Interestingly, adding an appropriate noise 

signal to gap-filled data series appears to have been notably absent from gap-filling strategies 

to date and the gap-filled data sets produced as a result must be characterised by highly 

truncated noise sequences. 
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Abstract 

In this paper we use a stochastic model to estimate annual Net Carbon Exchange (NCE) from 

eddy covariance data taken from various sites. The stochastic model is comprised of a signal 

and a noise component. The signal component is characterized using a semi-parametric model 

relating CO2 flux to light, temperature and time fitted to the eddy covariance observations. 

The noise component is characterized from the resultant model residuals using empirical 

cumulative probability distribution. The estimates for NCE are then derived from multiple 

runs of the joint signal-noise model within a Monte Carlo framework. This model based 

approach to estimating NCE is evaluated using synthetic stochastic data and found to give a 

reasonable partitioning of the signal and noise in these data. Building on this, we derive 

estimates of NCE from observed annual eddy covariance data sets for various sites. The 

distributions of the annual NCE estimates appear relatively Gaussian despite the highly non-

Gaussian nature of the stochastic model giving rise to the estimates. For the six sites analyzed 

the noise to signal ratio for the annual NCE estimates exceeded 11 percent only once 

highlighting the value of eddy covariance observations for this application. 
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III.1 Introduction 

The land surface plays an important role in determining the fate of carbon in the global carbon 

cycle, but our understanding of the functioning of the terrestrial biosphere at this scale is 

subject to considerable uncertainty, especially with respect to the impacts of climate change 

(Janssens et al. 2003). One attempt to reduce this uncertainty is offered by the growing 

network of tower based observations of surface to atmosphere CO2 exchange located in a 

broad spectrum of biomes (Baldocchi et al. 2001b). These eddy covariance measurements, in 

conjunction with carbon stock observations, are central to constraining the estimates for 

carbon sequestration by terrestrial ecosystems (Steffen et al. 1998; Papale & Valentini 2003). 

However, like all environmental time series data, eddy covariance net CO2 flux observations 

are characterized by significant levels of noise which can impair its use. Therefore, knowing 

the makeup of the noise component within eddy covariance CO2 flux observations is 

important not only for the use of these valuable data for model identification, calibration and 

evaluation (Medlyn et al. 2005; Hollinger & Richardson 2005) but, possibly more so, when 

integrating these flux data to derive the estimates of the daily, monthly and annual Net Carbon 

Exchange (NCE) used in carbon inventory studies. This is because such integrations 

necessarily involve the summation of both signal and noise, the latter having profound effects 

on the level of cumulative uncertainty attached to the final NCE estimate. Therefore, 

quantifying this uncertainty is important if inferences on NCE are to be made. 

Noise in eddy covariance CO2 flux observations has many sources (Mahrt 1998; Goulden 

et al. 1996b; Hollinger & Richardson 2005). Firstly, the observations are of a complex 

ensemble of sources and sinks within the canopy whose underlying properties are both 

heterogeneous and stochastic (Oren et al. 2006). Secondly, the turbulent exchange that 

connects the source-sink footprint region of a tower to the sensing platform on the tower is by 

definition stochastic. Thirdly, the ability of the sensing platform to measure this turbulent 

exchange is imperfect and subject to measurement error. Fourthly, the data pre-processing 

methodology that derives the flux estimates from the relevant measured variables is an 

imperfect approximation of the turbulent transfer it seeks to represent and hence is also 

subject to uncertainty. Any investigation into the effects of noise on the derivation of NCE 

estimates from eddy covariance data relies in part on the characterization of the aggregate 

noise. 

There are several ways to approach noise characterization. Hollinger et al. (2004) and 

Hollinger & Richardson (2005) differenced parallel measurements made by adjacent towers at 
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the same site in order to eliminate the systematic component from flux data, assuming this to 

be identical in the two time series they analyzed. However, recently Oren et al. (2006) have 

attributed half of the variability in high temporal (half-hourly) resolution EC data to spatial 

heterogeneity in a uniform pine forest. This suggests that a significant element of the 

systematic signal will be likely to be left in the difference of two adjacent tower measurement 

series. Hollinger & Richardson (2005) and Richardson et al. (2006) differenced successive 

draws of flux observations collected under similar conditions at the same tower at the same 

times of the day, again as an attempt to eliminate the systematic signal leaving the noise. 

However, to get a large enough pool of data in each similar condition bin required quite 

coarse grouping of data which inevitably involved inclusion of signal in the noise estimates 

whilst also limiting the number of random draws possible before significant repeat draws 

were encountered. For both of these purely data based methods the resulting noise series were 

found to be heteroskedastic with a variance being dependent on wind speed and the 

magnitude of the CO2 flux itself, in line with the theoretical predictions of Lenschow et al. 

(1994), Mann & Lenschow (1994) and Finkelstein & Sims (2001). Based on these findings, 

Hollinger & Richardson (2005) and Richardson et al. (2006) approximated a parametric 

double exponential distribution for the noise probability density, although it was unclear from 

these studies to what extent the data were distributed in this way once the flux dependent 

variance had been accounted for.  

Apart from the study by Hagen et al. (2006) who used binned model residuals as a pool 

from which they derived the uncertainties associated with their gap-filled estimates, it appears 

that model-based noise characterization has been somewhat overlooked. The reason for this is 

that the results are likely to be model dependent and hence biased by the choice of the model 

(Richardson & Hollinger 2005). However, such an approach has been used in related areas 

such as hydrology (e.g., Sorooshian & Dracup 1980) and climatology (e.g., Grieser & 

Schönwiese 2001). If found to be robust, this approach could offer certain advantages. Firstly, 

it is not limited to sites where replicate tower observations have been made. Secondly, it does 

not rely on coarse grouping of observations with particular sets of boundary conditions but 

instead yields an estimate of the error for each observation. Thirdly, it is also important to 

appreciate that, at some stage in the derivation of NCE estimates from eddy covariance 

observations, use has to be made of some kind of model to fill the inevitable missing data 

gaps. Given this requirement, it appears sensible to postulate the need for sympathy between 

supplementing these missing data using a model in the derivation of the NCE estimates and 

their uncertainties i.e. NCE estimation is necessarily a model-data fusion exercise (Williams 
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et al. 2005; Gove & Hollinger 2006).  

In what follows we fit a semi-parametric model to eddy covariance data to approximate the 

deterministic signal component. We then use the resultant model residuals to characterize the 

noise and hence derive a stochastic CO2 flux model for the data set. To evaluate this approach 

we make use of a suitable synthetic data set (Stauch & Jarvis 2006) where the signal and 

noise characteristics are fully known beforehand. Having evaluated this method we then apply 

it to six real data sets covering various different biomes and climate regimes in order to give 

NCE estimates with uncertainty for these systems. 

III.2 Methods 

Half hourly eddy covariance observations of net CO2 flux, y(t), are comprised of a signal, x(t), 

and some noise, n(t), i.e. )()()( tntxty += . The aim is to first obtain an estimate of n(t) using 

the observations y(t) and a model for x(t) and then characterize n(t) in the form of a suitable 

stochastic model. This allows us to produce multiple realizations of these two models in order 

to derive an ensemble estimate of annual NCE where the i’th annual estimate is given by 

{ }∑
=

+=
N

t
itnitxiNCE

1
),(ˆ),(ˆ)( .        (III-1) 

Signal characterisation 

The model we apply for the signal x(t) is a three-dimensional spline model used to describe 

the relationships between x(t) and light, I, temperature, T, and time, t (Stauch & Jarvis 2006). 

All that is assumed about these relationships is that they are relatively smooth. The forms of 

these relationships are described by semi-parametric Hermite splines whose shape in relation 

to I, T and t is conditioned through optimizing the model output )(ˆ tx against the observations 

y(t) through adjusting the spline node values within a four dimensional hypersurface. This 

optimization involves minimizing the model prediction error )(ˆ)()( txtyte −=  using weighted 

least squares in order to account for any potential heteroskedacity of n(t) (Hollinger et al. 

2004; Hollinger & Richardson 2005; Medlyn et al. 2005; Richardson et al. 2006). Here, we 

apply an iterative optimization procedure that converges on weights which are the estimated 

flux dependent variance of the residuals. Providing )(ˆ tx  ≈ x(t) then e(t) ≈ n(t) and the 

characterization of the model for n(t) can be based on e(t) post optimization. This approach 

will be tested using the synthetic data where n(t) is known. 

The dependency of y(t) on I, T and t is simply obtained by sorting y(t) with respect to the 
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magnitude of these three factors. Therefore, it is only the sorted indexing of I, T and t that is 

being used when fitting the spline hypersurface to y(t) (Young 2000; Jarvis et al, 2004; Stauch 

& Jarvis 2006). As a result, the spline hypersurface is analogous to a lookup table linking y(t) 

to individual values of I, T and t (Stauch & Jarvis 2006). As a result, this approach has 

parallels with the data-based differencing approach to this application advocated by Hollinger 

& Richardson (2005) and Richardson et al. (2006). However, because the spline hypersurface 

is continuous, there is no course grouping of ‘like’ data into discrete bins, thereby avoiding 

the sampling issues this causes, but at the cost of having to employ a model. 

Noise characterisation 

In order to simulate n(t) and hence estimate the uncertainty in NCE we need to generalize its 

characteristics in the form of an appropriate stochastic model. Given the observations of 

Hollinger & Richardson (2005) that the probability density of n(t) is likely to be non-

stationary, this stochastic model needs to account for this type of behaviour. To do this in as 

an objective a fashion as possible we have elected to use a nonparametric statistical model (as 

opposed to a parametric statistical model) in order to avoid model structure biases. 

Because Hollinger & Richardson (2004) identified the dominance of the effects of x(t) on 

the variance of n(t) our analysis will focus on this effect, although this assumption is not a 

restriction of the methodology and needs to be evaluated for each annual data set. Having 

derived the optimal estimates for e(t) and assuming e(t) ≈ n(t), e(t) is sorted with respect to the 

magnitude of )(ˆ tx . Then discrete local estimates of the non-parametric cumulative probability 

of ))(ˆ( txe  in the neighbourhood of differing levels of )(ˆ tx are derived using the numerical 

method of Weibull (1939) and Kaplan & Meier (1958). For the synthetic data, a square data 

window of the width of 0.6 μmol m-2 s-1 within )(ˆ tx was used to sub-sample ))(ˆ( txe . The step 

size for this moving window was 0.06 μmol m-2 s-1 since this was found to give robust 

estimates of the local cumulative probability distribution, although this should be evaluated 

for individual data sets especially in relation to the distribution of missing data. An 

approximation of the equivalent continuous cumulative probability is obtained by linear 

interpolation of the local discrete cumulative probability. Having estimated the local 

continuous cumulative probability distributions we are then able to draw our stochastic 

estimate of ))(ˆ(ˆ txn from this distribution. An illustration of this stochastic model is shown in 

Figure III-1 for an example window of -0.75< x̂ <-0.15. 
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NCE estimates 

Having characterized x(t) and n(t) we are now in a position to produce annual time series 

which can be integrated to give daily, monthly or annual NCE estimates with their associated 

uncertainties using (III-1). Obviously one annual realization of x(t) and n(t) will only result in 

one estimate of NCE. Therefore we need multiple realizations of x(t) and n(t) within say, a 

Monte Carlo (MC) framework, in order to construct the distribution for the NCE estimates. 

This MC simulation needs to account for both the stochastic model for n(t) derived from the 

noise characterization and also the uncertainty associated with the optimized node values in 

the model for x(t) as reflected in the node value parameter covariance matrix derived from the 

weighted nonlinear least-squares optimization. 

For each MC run, )(ˆ tx is predicted using I(t), T(t) and t and the associated parameter 

covariance matrix for the spline node values. )(ˆ tx is then used to determine which cumulative 

probability distribution to use when drawing values for n(t). The i’th estimate of annual NCE 

using half hourly sampled data is then given by (III-1). 

Note the observations y(t) are only used to condition the models for x(t) and n(t) and play 

no further role in the estimation of NCE after this. This is because we need multiple 

realizations as opposed to the single realization offered by y(t). In this study we used 103 MC 

realizations because it was found that beyond this further MC realizations did not have a 

significant impact on the final distribution of the annual NCE estimates. 
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Figure III-1: An example cumulative probability distribution for the model error e(t) in the range of )(ˆ tx of -
0.75 to -0.15 (grey dots). The solid line is the linearly interpolated continuous spline which is used for further
random draws from this distribution. 
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Figure III-2: The synthetic data used in the evaluation exercise. The relevant SPA model inputs are incident
radiation, I (a.) and surface temperature, T (b.) and output net CO2 flux output y(t) is shown in c.. The simulated 
measurement error series n(t) is shown in d. Positive fluxes for I and y(t) denote mass or energy transfer from the 
atmosphere to the canopy. 
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Evaluation using synthetic and real data 

Our synthetic evaluation data set is generated by the soil-plant-atmosphere (SPA) model 

(Williams et al. 1996) calibrated for the Metolius FLUXNET site in Oregon (Ponderosa pine) 

for the year 2000 (Law et al. 2001; Anthoni et al. 2002; see also Williams et al. 2001 for a 

test of SPA against ponderosa pine EC data). Following the analysis of Richardson et al. 

(2006), we elect to simulate n(t) as a normally distributed random variable with a variance of 

0.2x(t) and 0.05u(t) where u(t) is wind speed. Similarly, a white noise series with a constant 

variance of two and five percent of the annual mean of I(t) and T(t) are added to these two 

input series to simulate measurement error. The input and output data used for the 

optimization of the model for x(t) are shown in Figure III-2. For reference, Stauch & Jarvis 

(2006) have demonstrated the performance of this three dimensional spline model for several 

sample synthetic data sets. In that analysis they focused on an evaluation of )(ˆ tx . Here, the 

evaluation will focus on the success of the noise characterization, which is in effect the other 

side of the same coin. 

Clearly, the aim of the methodology is to estimate NCE from real flux data. Therefore we 

have chosen six different sites, i.e. four forests, a grassland and a crop site, to demonstrate the 

application on (see Table III-1 for a summary). The Hainich site in Germany (Knohl et al. 

2003; Anthoni et al. 2004) is a deciduous forest with beech as the dominant species in a 

temperate continental climate with a mean annual air temperature of 6.8 °C and an average 

annual precipitation of 775 mm. The Hesse site in France (Granier et al. 2000) is a young 

beech forest in a temperate oceanic climate with a mean annual air temperature of 9.9 °C and 

an average annual precipitation of 975 mm. The Puechabon site in France (Rambal et al. 

2003) is an evergreen oak forest in a Mediterranean climate with a mean annual air 

temperature of 13.5 °C and an average annual precipitation of 872 mm. The Yatir site in Israel 

(Grünzweig et al. 2003) is a pine forest in a semi arid climate with a mean annual air 

temperature of 18.2 °C and an average annual precipitation of 280 mm. The Shidler site in 

Oklahoma, USA (Suyker & Verma 2001; Suyker et al. 2003) is a (C4) grassland prairie in a 

temperate continental climate with a mean annual air temperature of 15.4 °C and an average 

annual precipitation of 835 mm. Finally, the Bondville site in Illinois, USA (Meyers & 

Hollinger 2004; Hollinger et al. 2005) is a crop land with maize and soybean in rotation in a 

temperate continental climate with a mean annual air temperature of 11.2 °C and an average 

annual precipitation of 990 mm. The selected year 1997 is under maize. 
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III.3 Results and Discussion 

Optimizing the spline model )(ˆ tx against the synthetic SPA output y(t) captures 98 percent of 

the variance in the SPA signal x(t) (see also Stauch & Jarvis 2006). A comparison of the 

properties of the model residual series e(t) with the synthetic noise n(t) is given in Figures III-

3 and III-4. The grouped probability distribution for e(t) and n(t) are shown in Figure III-3a. 

Note how the non-stationary variance for the underlying Gaussian distribution results in the 

elevated tails for the grouped distribution and hence the appearance of a double exponential 

type distribution (Hollinger & Richardson 2005). Figure III-3b shows how accounting for the 

flux dependency of the variance transposes back to quasi-Gaussian distributions whose 

properties vary as a function of )(ˆ tx as expected. Figure III-4 reveals e(t) and n(t) have similar 

properties in terms of mean and standard deviation for any given level of )(ˆ tx other than for 

values of )(ˆ tx close to zero (see also Figure III-3b). This reflects a small bias in )(ˆ tx resulting 

from an inadequate description of diurnal non-stationarity in the light response characteristics 

of SPA indicating the need for some increased flexibility in the spline model for )(ˆ tx . It must 

be stressed however that this effect is small and has little impact on the final NCE estimates 

(see below). 

Table III-1: Fluxnet sites used in this analysis with their site specific vegetation cover and climate conditions.

Site (year) Vegetation cover Climate References 

Hainich, Germany 
(2001) beech forest temperate, 

continental 
Anthoni et al. (2004); Knohl et 

al. (2003) 

Hesse, France 
(2001) young beech forest temperate, oceanic Granier et al. (2000) 

Puechabon, France 
(2002) oak forest Mediterranean Rambal et al. (2003) 

Yatir Forest, Israel 
(2002) pine forest semi arid Grunzweig et al. (2003) 

Shidler, Oklahoma 
(1999) grassland prairie temperate, 

continental 
Suyker & Verma (2001); 

Suyker et al. (2003) 

Bondville, Illinois 
(1999) agriculture (corn) temperate, 

continental 
Meyers & Hollinger (2004); 

Hollinger et al. (2005) 
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From Figures III-3 and III-4 we see that the variance of e(t) slightly overestimates the 

variance of n(t) over a range of values for )(ˆ tx . This is not surprising given the modelled 

uncertainties reflect a complex combination of the effects of the input noise processed 

through the spline model, the parametric uncertainty inherent in )(ˆ tx as well as any structural 

error in the spline model. Also, the small effects of wind speed on n(t) is not accounted for in 

the current noise characterization. However, the relatively close correspondence between the 

stochastic properties e(t) and n(t) in Figures III-3 and III-4 suggest that the characterization of 
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Figure III-3: a. The en bloc probability distributions for n(t) (light grey) and the model error proxy e(t) (dark 
grey). b. The probability distributions for n(t) (light grey) and the model error proxy e(t) (dark grey) for three 
different ranges of x̂ (t), [-2.3 -1.7], [-0.3 0.3] and [4.9 5.5] μmol m-2 s-1. 
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n(t) based on e(t) is valid providing it is acknowledged that this is likely to yield a slight 

overestimate of the uncertainty in the associated NCE estimates. This is shown in Figure III-5 

which compares the 95 percentile NCE envelopes for the true and estimated cases. Note how 

the estimated envelope embraces the true envelope highlighting the lack of significant bias 

despite the slight overestimation of )(ˆ tx for fluxes in and around zero. Note also how the NCE 

envelope grows slightly faster in the estimated case because of the slight overestimation of 

noise variance as discussed above. The small inset figure in Figure III-5 compares the year 

end NCE distributions again mirroring the various effects of the model based noise 

characterization discussed above. The range of accumulated carbon over the year is estimated 

to be 201.7 – 211.8 gC m-2 compared to the simulated range of 205.6 – 212.8 gC m-2. 

Figure III-6 shows the characterization of n(t) from e(t) for our six selected measurement 

sites. The mean is mostly insignificantly different to zero at all sites. Significant deviations 

from zero are found for low and high positive levels of x̂  (cv Figure III-6 b, e, f) indicating 

that the pattern of model bias is not systematic across sites. The variance increases with the 
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Figure III-4: Mean (a.) and standard deviation (b.) of n(t) (light grey) and e(t) (dark grey) as a function 
of )(ˆ tx for the synthetic SPA evaluation. Shown are the 95 percent confidence bounds derived from sub-
sampling data with replacement (bootstrapping). A window width of 0.6 μmol m-2 s-1 was used here, moved at 
increments of 0.06 μmol m-2 s-1 in x̂ (t) (see Methods). 
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magnitude of x̂  for all sites as expected6. As an aside, one would expect a higher relative 

uncertainty associated with nighttime eddy covariance observations due to low turbulence 

conditions (Richardson et al. 2006) or spatial heterogeneity (Oren et al. 2006), but this does 

not appear to be born out in the noise characteristics shown in Figure III-6.  

The propagation of the estimated uncertainty into the NCE estimates and the year end NCE 

distribution for each site are shown in Figure III-7 and their 95 percent confidence intervals 

are given in Table III-2. Not surprisingly, the width of the confidence intervals is different for 

each site highlighting the site-specific nature of the noise pattern not least due to the differing 

distribution and magnitude of x(t) across the year. Also shown in Figure III-7 is the single 

realization summation of a gap-filled observation series at each site for reference.  

                                                 
6 It is interesting to note that the differences in the variances of e(t) at different sites might give a valuable insight into the 
influence of site specific characteristics such as surface roughness, wind patterns, topography  and spatial heterogeneity on 
flux uncertainties. 
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Figure III-5: Cumulative NCE with 95 percent confidence bounds for the synthetic SPA data (dark grey) and
the stochastic model estimate of this (light grey). The inset panel shows the year end distributions for these two. 
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Table III-2 additionally lists NCE values published by the principle investigators at each 

site. Not surprisingly, most NCE estimates lie within the ranges calculated in this study 

provided the estimates are based on EC data from the same year. Note that, unlike the other 

estimates the NCE estimates for the Puechabon site are based on measurements of the radial 

growth increments and allometric relationships (Rambal, personal comm.).  
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Figure III-6: Same as Figure III-4 for the selected real data examples. a. Hainich, Germany; b. Hesse, France; c.
Puechabon, France; d. Yatir Forest, Israel; e. Shidler, OK; f. Bondville, IL. 
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Clearly, the range of the uncertainty at the end of the flux summation period will heavily 

depend on the length of time the summation is performed over, but for the annual NCE 

estimates considered here it is interesting to see that, using the data as given, these estimates 

are relatively well defined highlighting the value of eddy covariance data for this application. 

This is especially true if we consider that the estimated distributions for NCE we have derived 

are likely to be more uncertain than in reality given the effects of parametric uncertainty and 

model input uncertainty associated with the observations of I and T. The maximum noise to 

signal ratio for the annual forest NCE estimates was just 11.0 percent for the Yatir site and 

19.3 percent for the grassland site (see Table III-2). 

Table III-2: Estimated annual NCE range expressed as the 95 percent confidence intervals compared to 
previously published NCE estimates at these sites. The relative uncertainty is given by the ratio of the 
cumulative noise to signal at year end. 
 

Site (year) Published annual NCE 
[gC m-2] 

Estimated annual NCE 
[gC m-2] 

Rel. uncertainty 
[%] 

Hainich, Germany 
(2001) 

490 (2001)  

[Knohl et al 2003] 
[506  535] 5.6 

Hesse, France 
(2001) 

68 (1998); 296 (1999) 

[Granier et al. 2002] 
[543  592] 8.6 

Puechabon, France 
(2002) 

280 (2000-2002)  

[Rambal, unpublished data] 
[327  353] 7.8 

Yatir Forest, Israel 
(2002) 

130-240 (10/2000-09/2001) 

[Grünzweig et al. 2003] 
[160  178] 11.0 

Shidler, Oklahoma 
(1999) 

124 (04/1999-03/2000) 

[Suyker et al. 2003] 
[117  142] 19.3 

Bondville, Illinois 
(1997) 

532 (1997) 

[Hollinger et al. 2005] 
[502  544] 8.0 
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III.4 Conclusions 

Eddy covariance flux time series contain a significant stochastic component which we have 

referred to as noise. Therefore, even in the absence of missing data, an observed annual flux 

data set reflects just one realization of the underlying stochastic process leading to just one 

estimate of annual NCE with no information on the uncertainty of this estimate. However, this 

data set can be used to characterize the signal and noise components giving rise to these 

observations, leading to the generation of the multiple realizations required to construct the 

distribution of annual NCE estimates needed to draw inference for carbon inventory studies. 
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 Figure III-7: Same as Figure III-5 for the selected real data examples. a. Hainich, Germany; b. Hesse, France; c.
Puechabon, France; d. Yatir Forest, Israel; e. Shidler, OK; f. Bondville, IL. The solid black line in each case is
constructed using a combination of the available data where possible in addition to one realization of the
stochastic model for the gap-filling where required. 
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In this study we have used a data led modelling approach to do this characterization and 

subsequent estimation in an attempt to minimize model structure biases. However, we have 

seen that because of model error and input uncertainties it is impossible to exactly recreate the 

noise component in the observations given the input uncertainties will always be processed 

through the core model in a complex way. The only alternative would be to attempt to 

minimize input uncertainties in some way (e.g., Kavetski et al. 2002). However, for the 

synthetic case we considered here it appears these distortions are not sufficient to abandon 

this methodology. Indeed, we would argue that, because of the need to assume a model to 

supplement missing data in the first place, a stochastic model based approach such as this is a 

logical step when extracting NCE estimates from eddy covariance flux observations. 

Finally, the value of the evaluation based on synthetic data is again born out here (Stauch 

& Jarvis 2006) and we would argue that such evaluations should become commonplace in 

order to demonstrate the efficacy of model-data fusion exercises in this area. 
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IV. Objective Disaggregation of Eddy Covariance 

Observations to Infer Annual Carbon Uptake and 

Release 

IV.1 Introduction 

Understanding the fate of carbon in the terrestrial biosphere is important when speculating on 

regional carbon inventories within say the context of the Kyoto protocol (Steffen et al. 1998). 

Regional estimates of the net carbon balance in terrestrial ecosystems can help when 

identifying the potential carbon sink strength and its role in compensating for anthropogenic 

carbon emissions. At present, carbon accounting methods are based on national carbon stock 

estimates along with remote sensing information on changes in vegetation cover and land use 

(Steffen et al. 1998). The resulting estimates are prone to considerable uncertainty and an 

independent standard evaluation method is required, in particular when the objective is to 

establish a reliable carbon trading system (Schulze et al. 2002). The eddy covariance (EC) 

technique delivers (near) continuous observations of the net carbon exchange between the 

atmosphere and the land surface at the canopy scale. Given the global distribution of EC 

measurement sites organised under the umbrella FLUXNET, these data can contribute 

substantially when evaluating satellite-based estimates for the terrestrial net carbon exchange, 

hence reducing the uncertainties therein (e.g., Hutley et al. 2005; Friend et al. 2006). In 

addition, these multi-year time series provide a valuable data source to enhance the 

understanding of the underlying dominant physical processes at the canopy level. This aids 

the development of more faithful means for extrapolating to ungauged sites and/or changes in 

conditions at gauged sites. 
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The net carbon balance is composed by carbon uptake via photosynthesis and carbon 

release due to plant and soil respiration7. Each component responds differently to variations in 

environmental drivers. Prediction relies on characterising these dependencies. Although 

satellite data provide information on photosynthetic activity (e.g., Running et al. 1999), global 

estimates for the respiratory activity have to rely either on the extrapolation of local soil 

carbon inventories and/or on predictions from carbon exchange models (Steffen et al. 1998). 

The advent of the EC method has provided a direct measure of the net CO2 flux above 

canopies, FN. Therefore, provided a suitable disaggregation methodology is available, these 

data can help to derive scale consistent estimates for canopy carbon assimilation, FG and 

ecosystem respiration, FR. 

Apart from some studies that used additional field observations (e.g., Baldocchi et al. 

1987; Williams et al. 1997), most studies have derived partitioned estimates of the two 

components within EC CO2 flux data by making use of models. Most commonly, a 

temperature dependent respiration model is fitted to nighttime EC data to extract FR (e.g., 

Goulden et al. 1996a; Falge et al. 2002; Morgenstern et al. 2004). Other studies have applied 

nonlinear regression of different functional forms for the light response of FN (e.g., Ruimy et 

al. 1995; Gilmanov et al. 2003). Some applications address the change of these relationships 

over the season by temporally binning the data (e.g., Falge et al. 2002) or by explicitly 

estimating the temporal evolution of selected fitting parameters (Yi et al. 2004; Reichstein et 

al. 2005). Recently, Hagen et al. (2006) pointed to the importance of explicitly addressing 

observation noise and parametric uncertainty when inferring flux components from EC data.  

Interestingly, a comprehensive evaluation of the success of these partitioning methods has 

been notably absent from any analysis, due to the limited availability of suitable observations. 

An initial attempt to relate the estimated ecosystem respiration to chamber measurements of 

soil respiration was presented in Reichstein et al. (2005) but suffered from the scale mismatch 

of the two observation techniques. Unless reliable scale consistent observations become 

available, the use of canopy simulation data for model testing appears the only alternative to 

gain confidence in flux partitioning schemes (Chapter II, III). 

In the following, FN observations are disaggregated by making use of a semi-parametric 

hypersurface model for FN as introduced in Chapter II. For this, FR is derived from the light 

independent signal in the hypersurface. This approach does not rely on prior functional 

                                                 
7 apart from additional non-respiratory losses, e.g., from fire, harvest or transport of dissolved organic carbon 
into groundwater. 
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assumptions about the underlying carbon exchange processes and explicitly accounts for 

continuous seasonality of carbon assimilation and respiration in an ecosystem. First, the 

performance of the semi-parametric model to disaggregate FN is evaluated by using synthetic 

EC data derived from several deterministic, process based canopy exchange models. 

Following on from this, the hypersurface based estimates of FR and FG along with their 

associated uncertainties are used to calculate annual carbon uptake and release for eight 

FLUXNET sites in order to study their relative contributions to the net carbon budget at these 

sites.  

IV.2 Methods and Material 

Disaggregation of FN into carbon assimilation and respiration 

Owing to a range of different error sources, EC data are uncertain (e.g., Mahrt 1998) and 

therefore, we need a model to first determine the systematic signal of the net CO2 flux 

measurements prior to any further decomposition. Here, the semi-parametric spline model (in 

the following referred to as the spline model) introduced in Chapter II is used to characterise 

the relevant response hypersurface and to derive a stochastic model for the EC data set in 

question (Chapter II). The resulting hypersurface describes the simultaneous response of FN to 

the major environmental drivers, light, I, temperature, T, and time, t. The shape of the four-

dimensional hypersurface is conditioned directly from the data by estimating the values of 

nodes for cubic splines within a weighted least-squares optimisation procedure. As a result, 

any environmental condition described by Ii and Ti at a particular point in time of the i’th year 

can be assigned a value provided this combination lies within the boundary of the 

interpolating hypersurface, i.e. within the range of observations used for the optimisation (see 

Chapter II). 

Given that photosynthesis does not operate in the absence of light, ecosystem respiration 

can be characterised from the estimated hypersurface for I = 0. The resulting respiration 

component, FR is therefore a two-dimensional function of temperature and time, the form of 

which is determined by the entire set of data as opposed to the derivation of FR from 

nighttime observations alone (e.g., Goulden et al. 1996a). The estimated FR time series is 

deduced from the two-dimensional interpolated surface conditioned on the temperature range 

recorded over the year. FG is then calculated as the difference between the estimated FN flux 

derived from the hypersurface and the simulated FR, i.e., 
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where 
NFe  is the spline model residual series and the hats denote the spline model estimates 

for the different carbon flux components. Here, a positive sign denotes a carbon flux into the 

ecosystem and a negative sign indicates carbon loss to the atmosphere. Note, that the 

disaggregation in (IV-1) is based on the model results alone after having constrained the 

hypersurface for FN with the data. Therefore, provided the signal extraction with the spline 

model was successful, observation noise should not obscure the derivation of FG and FR. The 

stochastic integration to annual estimates for carbon uptake, ACU and release, ACR result 

instead from a noise characterisation based on the FN observations following the method 

proposed in Chapter III. A nested Monte Carlo simulation framework (N = 105) accounts for 

both, the parametric uncertainty derived from the optimisation of the hypersurface and the 

multiple realisation of the characterised noise for the corresponding FN observation (cv 

equation III-1), 
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where 
NFn̂ denotes the estimate for the observation noise as derived from the model residuals 

NFe (see Chapter III). Here, the same uncertainty for both components as characterised for the 

corresponding FN value is assumed, thereby doubling the overall variance of the noise 

distribution in the sum. One could argue that the observation noise should be partitioned in 

some way between the two components, for example according to their relative magnitudes 

(see Figure III-4). However, this approach requires assumptions on the stationarity of the 

relationship between the variance of the uncertainty and the magnitude of FN and its 

transferability to FG and FR. Clearly, this ambiguity suggests scope for further investigation 

and it is currently being subject of further research. 

Evaluation with synthetic data and application to FLUXNET sites 

To test the performance of this disaggregation method, synthetic data sets of FN produced by 

three different canopy exchange simulation models for four different vegetation and climate 
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conditions are used (see Chapter III). This way, the estimates for FG and FR can be evaluated 

unambiguously against the known deterministic components from the simulation model 

outputs. Figure IV-1 shows FN, FG and FR for one simulation year for (a) a coniferous pine 

forest in Oregon produced by the soil plant atmosphere model (SPA; Williams et al. 1996); 

(b) a deciduous forest in Germany produced by the biosphere energy transfer and hydrology 

model (BETHY; Knorr & Kattge 2005); (c) a low production arctic site produced by the 

model in Leuning et al. (1995); and (d) a high production tropic site produced by the model in 

Leuning et al. (1995). The sites and data sets are described in more detail in Chapter II and 

the references therein. 

The performance of the decomposition is evaluated by means of the correlation coefficient, 

r, as a measure for how well the variations in the true fluxes are captured. Also, the 

cumulative error for the entire year relative to the annual fluxes is calculated to test for the 
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Figure IV-1: Simulated carbon exchange flux components at four sites with different vegetation and climate 
conditions. FN is the net CO2 flux, FG is the gross carbon uptake and FR is ecosystem respiration. a. SPA model 
simulations for a temperate coniferous forest site in Oregon, USA. b. BETHY model simulations for a temperate 
deciduous forest site in Hainich, Germany. c. Model simulations after Leuning et al. (1995) for a hypothetical 
tropical forest. d. Model simulations after Leuning et al. (1995) for a hypothetical low productive arctic 
ecosystem. 
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models’ ability to identify the magnitudes of the two individual components from the net flux. 

For comparison, these measures are determined for three alternative partitioning 

methodologies commonly used in ecosystem studies based on EC data. The first two methods 

assume that ecosystem respiration responds as a parametric function of temperature 

(following either Lloyd & Taylor 1994: Falge et al. 2002, or Morgenstern et al. 2004). These 

functions are optimised against nighttime EC data for the entire year. To simulate the FR 

series, this relationship is extrapolated to the range of temperatures occurring during the day. 

FG is then calculated from the difference between the measured FN flux and the estimated FR 

series. A third method estimates canopy photosynthesis from a nonlinear regression of FN 

against photosynthetically active radiation (PAR) and a constant respiration term (Ruimy et 

al. 1995). This function is fitted to data periods of 3 days to account for change in the 

relationship and the respiration (Gilmanov et al. 2003). For a more comprehensive 

intercomparison of current flux partitioning schemes the reader is referred to Moffat et al. 

(2006). 

Obviously, the ultimate objective of this disaggregation technique is to deliver reliable 

estimates for carbon accumulation and respiration fluxes derived from real observations. 

Table IV-1: FLUXNET sites used in this analysis with their site specific vegetation cover and climate conditions. 
Tannual and Pannual are mean annual air temperature and mean annual precipitation, respectively. 

 Site (year) Vegetation Tannual [°C] Pannual [mm] References 

Hainich (HA), Germany 
(2001) beech forest 6.8 775 Knohl et al. (2003); Anthoni 

et al. (2004) 

Hesse (HE), France 
(2001) 

young beech 
forest 9.9 975 Granier et al. (2000) 

Puechabon (PU), France 
(2002) oak forest 13.5 872 Rambal et al. (2003) 

Yatir Forest (YA), Israel 
(2002) pine forest 18.2 280 Grunzweig et al. (2003) 

Howland Forest (HO), 
ME (2000) spruce forest 6.6 1040 Hollinger et al. (2004) 

University of Michigan 
Biological Station (UM), 
MI (2001) 

mixed 
hardwood 

forest 
6.2 750 Schmid et al. (2003) 

Shidler (SH), Oklahoma 
(1999) 

grassland 
prairie 15.4 835 Suyker & Verma (2001); 

Suyker et al. (2003) 

Bondville (BV), Illinois 
(1997) 

agriculture 
(corn) 11.2 990 Meyers & Hollinger (2004); 

Hollinger et al. (2005) 

 



IV. Disaggregation of Net CO2 Flux Observations 53

Eight different FLUXNET sites, six forests, a grassland and a crop site are chosen to apply the 

disaggregation method to. This must be seen as a rather provisional representation in 

attempting to cover a diverse range of biomes and climate conditions varying from 280 to 

1040 mm annual precipitation and from 6.2 to 18.2 °C annual average temperature. Table IV-

1 summarises the site characteristics and climate conditions for the considered measurement 

sites along with references for detailed descriptions. Figure IV-2 shows I, TS and FN for the 

Howland Forest site in the year 2000 and the Shidler site in the year 1999 as examples. 

 
 

IV.3 Results and Discussion 

Model performance 

The correlation coefficients (r) for the two flux components FG and FR for the different 

synthetic data sets are given in Table IV-2. These results suggest that the spline model 

consistently performs well and outperforms the other three flux partitioning methodologies. 
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Figure IV-2: Real data examples for a. Howland Forest and b. Shidler. I is the incident radiation, TS is the soil 
temperature, FN is the net CO2 flux measured by the EC system, and FG and FR are the estimated carbon 
accumulation and respiration flux components using the semi-parametric model. 
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Table IV-3 shows the relative cumulative error between the true and the modelled fluxes for 

the different data sets and modelling approaches. In general, the spline model identifies the 

relative magnitudes for the two components well and in particular, the cumulative error for FG 

is consistently below 5% of the annual sum indicating a minor underestimation of carbon 

assimilation. The results for FR are similarly satisfying despite some systematic 

underestimation of the magnitude of the flux especially for the SPA data and the low 

production site. Interestingly, the results for the other methods are more inconsistent 

suggesting a dependency of the models’ performances on the data set and hence the 

underlying process descriptions in the simulation model being used8. This highlights the 

benefit of estimating flexible semi-parametric relationships as opposed to fixed parametric 

functions for this particular application. 

                                                 
8 The three simulation models differ in the model formulation for the separate respiration fluxes in that some are 
based on a soil carbon content dependent Q10 function (e.g., BETHY, Knorr 1997), others are modelled with a 
temperature dependent exponential function after Lloyd & Taylor (1998) with an implemented discrete soil 
moisture dependence (SPA, Leuning model). 

Table IV-2: Correlation coefficients, r for the two estimated true components FG and FR for the different data 
sets and methods. Splines as the method introduced here, L-T denotes the respiration model after Lloyd & Taylor 
(1994), Q10 denotes the respiration model with a Q10 function, and RH is the model for the assimilation with a 
rectangular hyperbola. 

 
 SPA BETHY Leuning tropic Leuning arctic 

 r {FG} r {FR} r {FG} r {FR} r {FG} r {FR} r {FG} r {FR} 

Splines 0.99 0.97 0.99 0.94 0.99 0.99 0.95 0.98 

L-T 0.97 0.91 0.99 0.86 0.99 0.98 0.99 1.0 

Q10 0.98 0.90 0.99 0.91 0.99 0.66 0.99 0.88 

RH 0.99 0.77 0.99 0.73 0.99 0.54 0.96 0.35 

 

Table IV-3: Relative cumulative error, Σe for the two estimated true components FG and FR for the different 
data sets and methods. The model notation is the same as in Table IV-1. 

 SPA BETHY Leuning tropic Leuning arctic 

 ΣeFG [%] ΣeFR [%] ΣeFG [%] ΣeFR [%] ΣeFG [%] ΣeFR [%] ΣeFG [%] ΣeFR [%] 

Splines 4.7 7.8 3.4 4.9 1.3 1.9 1.3 8.5 

L-T 6.4 10.85 4.6 6.9 1.2 1.8 2.5 3.9 

Q10 -8.5 -15.3 1.5 2.1 -10.4 -14.3 -3.4 -5.3 

RH 4.3 7.2 2.0 2.9 0.5 0.8 8.2 12.9 
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Figure IV-3 shows the cumulative sum of FR and FG when accounting for the parametric 

uncertainties associated with the spline model calibration. The ‘true’ integrated fluxes in 

black are encompassed by the 95 percent quantiles except for the respiration component in the 

SPA data (Figure IV-3a) and the low production data (Figure IV-3d), as already indicated by 

the relative cumulative error (Table IV-3). Given the simple form of equation (IV-1), such 

model inadequacies are not surprising. For example, equation (IV-1) estimates the sensitivity 

of FN to one temperature T, whereas in reality, the processes dominating FG and FR respond to 

different temperatures. FG will predominantly be affected by the ambient air temperature 

mostly within the canopy, while the soil respiration share in FR is driven by some superficial 

soil temperature diverging from air temperature (see Chapter V). It is interesting to note that, 

FR is systematically underestimated predominantly during the summer daytime, indicating 

that the sensitivity of FR to temperature is not sufficiently accounted for in the T-t surface. 

Again, this is not surprising given the summer daytime FN fluxes will be dominated by 

0 50 100 150 200 250 300 350

−400

−200

0

200

400

600

t [d]

F
R
, F

G
 [

g
 m

−2
]

a. 
0 50 100 150 200 250 300 350

−1000

−500

0

500

1000

1500

t [d]

F
R
, F

G
 [

g
 m

−2
]

b. 

0 50 100 150 200 250 300 350

−1500

−1000

−500

0

500

1000

1500

2000

t [d]

F
R
, F

G
 [

g
 m

−2
]

c. 
0 50 100 150 200 250 300 350

−15

−10

−5

0

5

10

15

20

t [d]

F
R
, F

G
 [

g
 m

−2
]

d. 

 
Figure IV-3: Annual cumulative evolution of the uptake (positive) and release (negative) fluxes for the four 
synthetic data sets. The grey envelopes show the propagation of the parametric uncertainty through the 
integration. The black line is the deterministic ‘true’ flux from the simulation model. a. SPA; b. BETHY; c. 
Leuning et al. (1995) high production; d. Leuning et al. (1995) low production. 
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assimilatory processes somewhat covering the respiration signal. Also, as already mentioned, 

the influence of canopy temperature on FR (as opposed to soil temperature) will become 

increasingly important with a rising fraction of plant respiration. Finally, the smooth nature of 

the cubic splines in the temporal space might result in a slightly lower amplitude of the FN 

flux and hence of the derived FG and FR. However, these inadequacies are small and will most 

likely become masked by the observation noise present in real EC data (Chapter III). 

Carbon uptake and release for real data examples 

The spline model in equation (IV-1) explains the variations in FN well for all data sets at the 

eight FLUXNET sites (r between 0.9 and 0.95). The derived deterministic estimates for FG and 

FR at the Howland Forest site and the Shidler site are shown in Figure IV-2 as example 

representations of the disaggregation with the spline model. With the characterised 

observation noise and the parameter uncertainties associated with the estimated flux 

components, it is now possible to analyse the relative contributions of ACU and ACR to the 

annual net ecosystem carbon balance following equation (IV-2). In Figure IV-4, ACR is 

plotted against ACU for the eight FLUXNET sites. All sites acted as significant net carbon sinks 

in the selected year (see also Falge et al. 2002 for a similar result based on an analysis of EC 

data from northern hemispheric ecosystems). Furthermore, these two components appear to 
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Figure IV-4: The relationship between annual carbon uptake, ACU and release, ACR for the six sites. BV: 
Bondville site; UM: University of Michigan Biological Station site; HF: Howland Forest site; HA: Hainich site;
SH: Shidler site; HE: Hesse site. YA: Yatir site; PU: Puechabon site. The dotted line is the 1-to-1 line along 
which the ecosystem is carbon neutral. The black line is the result of a reduced major axis regression (Sokal &
Rohlf 1995) minimising the Euclidean distance to a straight line through the origin. 
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be strongly positively correlated as indicated by a reduced major axis regression (slope of 

1.4 ± 0.002, r2 = 0.87). 

Clearly, given the rather small number of sites, these results have to be interpreted with 

care and a substantial expansion of the database is currently underway. However, these 

preliminary results provide scope for some interesting speculation. A positive annual net 

balance indicates that the ecosystem is acquiring more carbon than is lost due to respiration. 

Several reasons could be responsible for this observed trend. Firstly, as discussed briefly in 

chapter I, the EC measurements used for the analysis of the carbon balance could suffer from 

systematic errors. For example, stable atmospheric conditions occurring particularly at night 

prevent the turbulent mixing of the atmospheric boundary layer giving rise to a systematic 

underestimation of the EC nighttime fluxes as the surface boundary layer exchange becomes 

dominated by diffusion rather than turbulence (e.g., Moncrieff et al. 1996; Aubinet et al. 

2000). As a result, on an annual basis, carbon neutral ecosystems might misleadingly appear 

as sinks. Secondly, net carbon uptake would be generally expected in forest sites covered with 

developing vegetation given they will not have reached equilibrium (Schimel et al. 2001). 

The ecosystems considered here were all fully closed and older than 90 years. As a result, it 

would be somewhat surprising if ACU = 1.4ACR for this reason alone. Thirdly, ACU > ACR 

could also originate from direct fertilisation effects of increased atmospheric CO2 

concentration on the photosynthetic activity (e.g., Ehleringer & Björkman 1977). Again 

however, although at the leaf level over short periods of time the effect of a 100 ppmv rise in 

CO2 can be significant, the accommodated response of whole plants over longer intervals is 

invariably much less (Drake et al. 1997). However, what CO2 fertilisation can induce is 

certain indirect effects such as the alleviation of nutrient and water limitations over longer 

timeframes (Drake et al. 1997). This, coupled to other global enhancements in productivity 

such as through enhanced nitrogen deposition (Schimel 1995) and increases in the diffuse 

component of down-welling solar radiation (Roderick et al. 2001) may go some way to 

explaining the degree of net accumulation expressed in Figure IV-4. This is supported by 

global studies that identified northern-hemispheric ecosystems as net carbon sinks (e.g., Tans 

et al. 1990; Keeling et al. 1996). In this context, the sensitivity of ACU and ACR to 

environmental conditions will be of particular interest for assessing the role of terrestrial 

ecosystems in the global carbon cycle in a changing climate. 
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Abstract 

Novel nonstationary and nonlinear dynamic time series analysis tools are applied to multiyear 

eddy covariance CO2 flux and micrometeorological data from the Harvard Forest and 

University of Michigan Biological Station field study sites. Firstly, the utility of these tools 

for partitioning the gross photosynthesis and bulk respiration signals within these series is 

demonstrated when employed within a simple model framework. This same framework offers 

a promising new method for gap filling missing CO2 flux data. Analysing the dominant 

seasonal components extracted from the CO2 flux data using these tools, models are inferred 

for daily gross photosynthesis and bulk respiration. Despite their simplicity, these models fit 

the data well and yet are characterised by well defined parameter estimates when the models 

are optimised against calibration data. Predictive validation of the models also demonstrates 

faithful forecasts of annual net cumulative CO2 fluxes for these sites. 
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V.1 Introduction 

Through their interactions with the environment, plants modulate surface energy balance, 

geochemistry and hydrology, whilst acquiring atmospheric carbon to grow and reproduce. 

Concerns over the potential climatic impacts of increasing levels of atmospheric CO2 have 

focused attention on the significance of the role played by plants in the modulation of land 

surface-atmosphere fluxes, especially since the relevant biochemical and physiological 

processes of the plant are themselves CO2 sensitive (Sellers et al. 1996a). In an attempt to 

improve the representation of the control on land surface-atmosphere fluxes exerted by 

vegetation, models of the structure, biochemistry and physiology of plant gas exchange have 

frequently been incorporated into canopy scale flux schemes (Dickinson et al. 1986; Wang & 

Jarvis 1990; Sellers et al. 1996b; Cox et al. 1998). 

Despite attempting to structure these models such that many of the associated model 

parameters can be specified a priori, there invariably remains a need for some 

parameterisation of the associated process descriptions to accommodate variations in scale, 

time and space. As a result, the parameterisation of models is often with reference to site and 

scale specific data, such as eddy covariance and associated micrometeorological 

measurements (e.g., see Lloyd et al. 1995; Baldocchi & Harley 1995; Cox et al. 1998; 

Hollinger et al. 1998). Recent studies have clearly demonstrated that the information content 

of such data is not rich enough to support the calibration of many components of current 

generation canopy scale flux models (Franks et al.1997; Franks & Beven 1997; Schulz et al. 

2001). As a result, much of the model functionality being proposed is not constrained by the 

calibration process, rendering predictions from these schemes somewhat uncertain. This 

indicates that, to obtain robust descriptions of these systems, the level of complexity of the 

models being used needs to be commensurate with the information content of the calibration 

data being used. 

Recognising the need for an appropriate level of parsimony in canopy model descriptions 

Monteith (1995) writes “There are two complementary ways of moving forward – to remove 

routines from the complex models that contribute little to their predictive power, or to add 

routines to the simple models that will make them more robust.” The obvious question is, 

what to omit or what to add? One strategy for tackling this question is to start by specifying a 

model of the canopy whereby the model parameters can be estimated unambiguously from 

canopy scale observations such as eddy covariance time series. Then, since the model 

parameters can be estimated for specified time periods, significant temporal evolution of these 
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parameters, as conditioned by the measured time series data, can be used to objectively 

identify what additional complexity needs to be introduced to describe the system as 

observed. Obviously, changes in properties of the canopy that fall outside the domain of the 

observations e.g. defoliation, wind throw or fire, may lead to compromised predictive 

performance in such models. Therefore, it is important that the resultant inductive models are 

interrogated in order to identify the mechanisms they represent. 

The procedure for model identification eluded to here parallels certain aspects of the data-

based mechanistic model identification and estimation methodologies developed by Young 

and co-workers (see e.g., Young & Pedegral 1999; Young 1999; Young 2000) for modelling 

stochastic, non-stationary and nonlinear dynamic systems. This paper applies one such 

methodology known as State Dependent Parameter (SDP) estimation to deriving descriptions 

for annual carbon acquisition dynamics in two forest systems as expressed in eddy covariance 

time series. The starting point for this analysis is the following generic description for the 

canopy net CO2 flux, FN, 

RN FSF −= 0.ε          (V-1) 

where S0 is the incident down-welling solar radiation, FR is the canopy-soil respiration rate 

and ε is the radiation capture and utilisation coefficient. 

(V-1) can be viewed as the basis for terrestrial CO2 flux modelling, with the differences 

between models being defined by the functional relationships assumed to describe ε and FR. 

These range from relatively simple descriptions used in resource capture type models (e.g., 

Monteith 1972, 1977; Field et al. 1995) to the relatively complex descriptions used in 

photosynthetic bio-physical and biochemical models (e.g., Dickinson et al. 1986; Wang & 

Jarvis 1990; Leuning et al. 1995). In this paper the aim will be to extract the functional forms 

for ε and FR directly from eddy covariance and micrometeorological measurements and assess 

the level of complexity in the functional relationships for ε and FR that the observations 

support. Initially this will focus on accounting for the seasonal dynamics within cumulative 

daily data. 

(V-1) is an obvious candidate model structure for SDP estimation and model identification 

procedures due to its simple regression-type format and the availability of time series 

measurements for FN and S0 at the canopy scale. As will be seen in this paper, (V-1) in 

conjunction with the SDP estimation procedure may provide a useful top-down framework for 

both identifying and estimating canopy models from eddy covariance and 



V. Identification of a Canopy CO2 Flux Model from Observations 62

micrometeorological data, which, in conjunction with a priori knowledge of the relevant 

canopy processes could yield robust hybrid statistical-mechanistic models for canopy CO2 

exchange. 

In similar work, Falge et al. (2002) applied a variant of (V-1) to eddy covariance 

measurements of CO2 flux to derive time varying estimates for the parameters in predefined 

nonlinear descriptions for both ε and FR estimated using a simple nonlinear least squares 

window function. The approach adopted here differs significantly from their approach 

principally in that the functional forms of ε and FR do not need to be specified a priori, but 

instead can be objectively inferred directly from the observations. An additional benefit of 

this approach is that it provides an objective methodology for filling gaps in CO2 flux data, 

through combining elements of current gap filling methodologies within a coherent, data-led 

framework. 

V.2 Materials and Methods 

Data sources and site descriptions 

Two different FLUXNET (Baldocchi et al. 2001b) deciduous forest sites have been chosen 

for the illustration of the model development: Harvard Forest, Massachusetts (HF, 1994-1999, 

Barford et al. 2001; Wosfy & Munger 2003) and University of Michigan Biological Station, 

Michigan (UMBS, 1999-2001, Schmidt et al. 2003, Curtis 2003). The two sites differ 

especially in the mean annual precipitation (1066 mm at HF and 750 mm at UMBS) and the 

mean annual temperature (7.8 °C at HF and 6.2 °C at UMBS). The different climatic 

conditions are mirrored in the vegetation type. While HF is a temperate deciduous forest site, 

the vegetation at UMBS is characterised by an intermediate mix of temperate deciduous and 

boreal forest (Curtis et al. 2002). Both forests are of similar age and stage of maturity (70 

years at HF, 90 years at UMBS). 

State dependent parameter estimation 

Young and co-workers (see e.g., Young & Pedegral 1999; Young 1999; Young 2000) have 

developed recursive parameter estimation algorithms, based on Kalman filtering and 

smoothing techniques. These allow for the evolution of parameters to be estimated directly 

from time series data and hence identification of any non-stationary and/or state dependency 

of these parameters. In particular, the State Dependent Parameter (SDP) algorithm, which is 

able to optimally estimate a broad class of non-stationary and nonlinear dynamic regression 

models, is well suited to the current study. This can be seen when expressing (V-1) in an 
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equivalent SDP format (see Young 2000). 

)(),(ˆ)().,(ˆ)( 0 ttxFtStxtF NRN ξε ++=       (V-2) 

Here ˆ( , )x tε  and ˆ ( , )RF x t  are estimates for the evolution of ε and FR, ξN(t) is the regression 

model error series and x is the state(s) on which ε and FR are assumed to be dependent. 

To objectively identify the nature of the functional relationships between the variations in 

ε, FR and the relevant measured states of the system, the regression model (V-2) is 

implemented such that the incremental variations in ˆ( , )x tε  and ˆ ( , )RF x t  are estimated using 

the paired measures of S0 and FN, but with these series sorted with respect to the ascending 

magnitude of x, where here x is the measured surface temperature, TS. Surface temperature 

was found to be an appropriate state in this study where the focus is on the seasonal dynamics. 

The stochastic evolution of each parameter in (V-2) is assumed to be described by the 

following random walk process (Young 1999), 

)()1,(ˆ),(ˆ ttxtx εηεε +−=  (V-3a) 

)()1,(ˆ),(ˆ ttxFtxF RRR η+−=  (V-3b) 

where η is a zero mean, white noise sequence allowing for stochastic variability in the 

parameters. Although apparently complex at first sight, the assumption that the model 

parameters evolve as non-stationary stochastic variables is simply a statistical device to allow 

for the estimation of parametric change. It ensures that the recursive parameter estimates at 

the t’th sample depend only on the data in the vicinity of this sample in the sorted state space. 

In the case of the random walk model (V-3), this weighting effect of the data on the parameter 

estimates has a Gaussian-like shape with maximum weight at the t’th sample and declining 

weight to either side (see Young & Pedregal, 1999). The 'bandwidth' of this Gaussian window 

function is characterised by the Noise Variance Ratio, NVR = σ2(η(t))/σ2(ξ(t)). As a result, a 

high value of the NVR means that only data in the immediate vicinity of the t’th sample are 

used for the t’th estimate. On the other hand, an NVR of zero ensures that the parameter is 

assumed constant across the entire observation interval (i.e., the same as in standard en bloc 

regression where all data have equal weighting in the estimation). The former case is 

particularly useful in the present context because it results in variations in the parameter 

estimates that are conditioned by the time series data being used. Of course, one of the keys to 

the employment of (V-2) and (V-3) when estimating the SDPs, is specifying the magnitude of 
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the NVRs within the SDP model. Here, the methods of Young (1999) are used where the 

required NVRs are optimised via maximum likelihood prediction error decomposition. 

Once the non-parametric (graphical) form of the state dependency has been identified from 

the observed relationship between ˆ( , )x tε , ˆ ( , )RF x t  and x, a suitable parametric function can be 

specified to describe this form, and the resultant model can be parameterised using standard 

optimisation procedures such as nonlinear least squares or maximum likelihood (Young 

2000). The selection of the parametric function may also be guided by relevant prior 

knowledge of canopy processes and so attempt to guard against spurious predictions made 

beyond the domain of the observations. The focus of this study was to derive descriptions for 

the seasonal dynamics of two forest systems, therefore, the SDP model identification 

procedure was implemented on the cumulative daily data. 

Gap filling 

A very useful property of the recursive SDP approach to parameter estimation is that missing 

values in the output series are readily interpolated in an objective, non-parametric manner, 

conditioned only by the properties of the model (V-2) and the available input-output data. As 

a result, not only does this approach facilitate the objective model identification, which forms 

the central theme to this paper, but also the objective gap filling of the hourly eddy covariance 

time series needed to derive the daily cumulative CO2 fluxes utilised in this paper. Because 

this gap filling procedure is based on the recursive implementation of a Gaussian-like window 

function within a Kalman filter-regression framework, it can be viewed as a logical synthesis 

and extension of current gap filling methodologies (e.g., Goulden et al. 1996a; Anthoni et al. 

1999; Grünwald & Bernhofer 2000; Falge et al. 2001; Pilegaard et al. 2001). 

Utilising the SDP estimation procedure described above, ˆ( , )x tε  and ˆ ( , )RF x t  are estimated 

out of temporal order (see the explanation in Young 2000) using hourly values for S0 and FN, 

with the ordering determined by the sorted order of TS. Because of the sorting out of temporal 

order the systematic gaps in the time series become much smaller nonsystematic gaps in the 

sorted temperature space. These smaller gaps are readily traversed by a small estimation 

window that is able to pass the majority of the systematic variations in FN(t). The optimised 

NVRs for the hourly data are 5 10-6 for ˆ( , )ST tε and 5 10-5 for ˆ ( , )R SF T t . These NVRs are such 

that ξN(t) are serially uncorrelated, and zero mean, but it is interesting to note that this error 

series demonstrates seasonality in its variance (see Figure V-1f). The estimates for FN(t) 

derived from realising (V-2) are then used to fill in the gaps in the measured FN(t) series to 
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form a continuous time series which is resorted back into temporal order. It must be stressed 

that, although TS is used to determine the sorted order of the SDP estimation, only paired 

values of S0(t) and FN(t) are used in the estimation itself. Also, the NVRs used are such that 

the gap filling procedure is not constrained by a linear model. Indeed, ˆ( , )x tε  and ˆ ( , )RF x t  are 

free to vary such that ξN(t) are serially uncorrelated, and zero mean. 

Example hourly estimates for ˆ( , )x tε  and ˆ ( , )RF x t  are shown in Figure V-1c and d, the 

latter of which providing the estimates for the daily ˆ
RF  and hence gross canopy 

photosynthesis, ĜF , used later in the model identification. Corrections of FN under quiescent 

atmospheric conditions (see Aubinet et al. 2000; Falge et al. 2001) are not considered here. 

Instead, the available flux series are treated as accurate, if somewhat uncertain, measures of 

the underlying canopy-atmosphere exchange processes. 

For the gap filling of the input series (light and temperature; see later), measurement gaps 

of three hours or less were filled using a random walk procedure identical to (V-3). For gaps 

greater than three hours, values from the Typical Meteorological Year (TMY2) data set 

(Renewable Resource Data Center 2003) from the nearest meteorological station were 

inserted. 

V.3 Results 

Model identification 

Non-parametric Variations in ε(t) and FR(t) 

Figures V-1a and b show a one-year time series of hourly S0 and FN measured above HF 

(1996) along with the associated gap-filled estimates. The estimates of ˆ( , )x tε , ˆ ( , )RF x t  and 

hence ˆ ( )GF t  are shown in Figures V-1c, d and e, respectively. It is worth noting that, here, 

estimates of ˆ
RF  are based on all hourly data, as opposed to deriving estimates from the most 

uncertain night time fluxes (see e.g., Aubinet et al. 2000; Grünwald & Bernhofer 2000). As a 

result, the SDP estimates of ˆ
RF  are well defined and are used here to define ecosystem 

respiration. Close inspection of the estimates of ˆ( , )x tε  reveals that, although some within day 

variation is observed, this is dominated by the seasonal variations (Figure V-1c). Therefore, 

one would anticipate that attempts to estimate any nonlinear relationship between S0 and FN, 

using blocked hourly data, would be prone to significant uncertainties (see e.g., Grünwald & 

Bernhofer 2000), especially as it is unclear to what extent these variations in ˆ( , )x tε  within 
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any particular day are attributable to light saturation kinetics or other processes. The 

underlying causes of the observed seasonal variations in ˆ( , )x tε  are likely to be complex, 

incorporating the effects of the emergence, development and senescence of the vegetative 

canopy (Waring et al. 1995). Similarly, from Figure V-1d we observe that the significant 

variations in ˆ
RF  are also dominated by seasonality, which likewise aggregates multiple 

−100

100

300

500

700

900

S
0

[W
 m

−2
]

a.

−100

100

300

500

700

900

S
0

[W
 m

−2]

−6
−3

0
3
6
9

12

F
N

[μ
m

o
l C

 m
−2

 s
−1

]

b.

−2

0

2

4

6

8

F
N

[μm
o

l C
 m

−2 s
−1]

−0.01

0

0.01

0.02

ε
[μ

m
o

l C
 J

−1
] c.

−0.01

0

0.01

0.02

ε
[μm

o
l C

 J
−1]

−0.8

−0.6

−0.4

−0.2

0

F
R

[μ
m

o
l C

 m
−2

 s
−1

]

d.

−0.9

−0.8

−0.7

−0.6

−0.5

F
R

[μm
o

l C
 m

−2 s
−1]

−6
−3

0
3
6
9

12
15

F
G

[μ
m

o
l C

 m
−2

 s
−1

]

e.

−2
0
2
4
6
8
10

F
G

[μm
o

l C
 m

−2 s
−1]

0 50 100 150 200 250 300 350

−5

−2.5

0

2.5

5

S
D

P
 r

es
id

u
al

s
[μ

m
o

l C
 m

−2
 s

−1
]

Time [days]

f.

2 4 6 8 10 12 14

−2

−1

0

1

2

S
D

P
 resid

u
als

[μm
o

l C
 m

−2 s
−1]

Time [days]

<

<

< >

>

>

Figure V-1. Hourly data for HF in 1996. The appended plots on the right are sections of 14 days chosen to
elucidate associated gap filled periods (dashed lines). Panels a and b show the interpolated hourly measurements 
of total downwelling solar radiation, S0, and net CO2 flux, FN. Panels c and d show the temporal evolution of 
radiation use, ε̂ , and bulk respiration, RF̂ , estimated using (1) (NVRs = 5 10-6 and 5 10-5 respectively). Panel e
shows the resulting gross photosynthesis, 

ĜF , estimated as ˆ
N RF F− . Panel f shows the error series between the 

SDP fit of (1) and the FN measurements shown in panel b. 
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sources of variation through its dependency on soil and canopy respiratory CO2 sources. 

Parameterisations for ε and FR 

Because it appears that both ε and FR are dominated by seasonal variations we have elected to 

analyse the cumulative daily flux data derived from summing the hourly fluxes. This is likely 

to have the additional benefit of linearising the relationship between daily FN and S0 on 

timescales of weeks (Ruimy et al. 1995), hence simplifying the final model formulation. 

Figures V-2a/c and b/d demonstrate that the seasonal variations in ˆ( , )x tε  and ˆ ( , )RF x t  can be 

represented as functions of the measured surface temperature, TS. The use of surface rather 

than air temperature provided a superior descriptor for variations in both ˆ( , )x tε  and ˆ ( , )RF x t , 

which is not surprising in light of the thermal inertia of the system allied to potential lag 

effects of plant and soil metabolism (Jones 1983; Linder & Flower-Ellis 1992; Su et al. 1996; 

Dewar et al. 1998; Baldocchi et al. 2001a). 

The seasonal temperature dependency of ε was parameterised in sympathy with the SDP 

relationship shown in Figure V-2a/c using the following smooth transition relationship (e.g. 

Granger & Terasvirta 1993; Young et al. 2003): 

)(
max

2/11 TTke −+
=

εε          (V-4) 

where k determines the rate of the transition between the lower (zero) and upper (εmax) levels 

of ε and T1/2 is the temperature at the inflection point where one half of the transition is 

experienced and hence, along with k, determines the temperature switching characteristics of 

the canopy between winter and summer. Consistent with the SDP result (Figure V-2a/c), the 

lower level of ε is set to zero, i.e. no photosynthetic activity at low temperatures. (V-4) can be 

viewed as a temperature scalar for ε (Field et al. 1995). The form of this scalar differs from 

those used by Field et al. (1995) since significant decreases in ε with increasing temperature 

were not identified in these particular data. For the two data sets analysed the relationship (V-

4) was found to be relatively stationary across all years, irrespective of whether the canopy 

was dormant, emerging, fully expanded or senescing, implying a close correlation between 

variations in temperature, leaf area and photosynthetic capacity of the canopy across the 

season. This is somewhat fortuitous since it facilitates realisation of ε without having to 

specify a dynamic state description for, for example, leaf area. However, it was found that the 

response of ε to TS was lagged by approximately five days. As a result, TS was replaced by the 

lagged temperature, Tτ, in (V-4) with the magnitude of the lag being determined in the final 
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parametric model optimisation. 

The SDP relationship between TS and ˆ ( , )RF x t  is shown in Figure V-2b/d. This relationship 

is typically represented as an Arrhenius function, which may be justified for the UMBS data, 

but not for HF where non-stationarity in the data masks any potential nonlinearity, precluding 

the parameterisation of this type of function. Therefore, we have chosen a linear 

parameterisation so as to be able to compare the sensitivities of respiration to temperature for 

the two sites. 

Model calibration 

So far, we have used non-parametric parameter estimation to identify candidate parametric 

models to describe the daily variations in FG and FR as functions of S0 and TS (and hence Tτ). 

This leads to the following two stage parameter optimisation for FG and FR against three years 

Figure V-2. The non-parametric relationships between a/c ε̂  and b/d ˆ
RF , and the surface temperature, TS, at HF 

1994 to 1996 (panels a and b), and at UMBS 1999 to 2001 (panels c and d) on an hourly time step. The 
estimates for ε̂  and ˆ

RF  are those shown in Figures 1c and d respectively. 
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(HF 1994-1996; UMBS 1997-2000) of daily data: 

( ) )()(.
1

)( 0)(
max

2/1
ttS

e
tF GTtTG ξε

τ
+⎟

⎠
⎞

⎜
⎝
⎛
+

= −       (V-5a) 

where, 

)1()()1()( −+−= tTtTtT S ττ αα  (V-5b) 

and, 

)()()( tbtaTtF RSR ξ++=  (V-5c) 

Interestingly, one stage optimisation of the full model (V-5) against the daily FN data is not 

possible since the aggregation of the daily FG and FR within FN masks the co-variation of ε  

and FR with temperature. As a result, confident estimation of dependencies of ε  and FR on 

temperature is only facilitated by the partitioning of FN into ε  and FG and ε  and FR afforded 

by the non-parametric procedures employed on the hourly data. 

The optimised parameter sets for both the HF and UMBS are given in Table V-1. Here, 

Levenberg-Marquardt nonlinear least squares optimisation has been used. Both of the model 

error residuals ξG(t) and ξR(t) were found to be zero mean with no significant serial 

correlation, although some cross-correlation between ξG(t) and the cumulative residual rainfall 

was found (see later). As can be seen in Figure V-1f, the FN(t) time series contains a strong 

seasonality in the residual variance, with the larger variance being associated with the summer 

measurements. Due to the low pass nature of the SDP estimates for FR, this residual effect is 

only present in the FG series. To make ξG(t) constant variance, hence satisfying the 

assumptions of maximum likelihood estimation, an appropriate non-constant variance white 

noise signal was added to the daily FG series to make the model residuals ξG(t) constant 

variance. 
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Table V-1 shows that, because the model structures have been identified directly from the 

calibration data, the optimisation of the model leads to highly significant estimates of the 

model parameters, whilst also explaining the variations in FN, FG and FR (rT
2 of 0.86, 0.86 and 

0.83 respectively for the full three year simulation of HF). The model proved similarly 

successful when optimised against three years of UMBS data (see Table V-1; rT
2 of 0.84, 0.88 

and 0.97 for FN, FG and FR respectively). The parameterised models for ε (V-4) and FR (V-5c) 

for both sites are shown in Figure V-3. 

Model evaluation 

An initial model evaluation was based on predictive validation over the full six-year period 

(1994-1999) at the HF site. This provided validation rT
2 of 0.80, 0.75 and 0.82 to the daily FN, 

FG and FR respectively (see Figure V-4a). To test for systematic errors within the model, 

forecast against the accumulated net flux were made as shown in Figure V-5a. The forecasting 

results presented in Figure V-5a must be viewed as a particularly stringent evaluation of the 

model for two reasons. Firstly, the parameter estimates used in the simulation have been 

derived from a two stage optimisation against FG and FR and not the net CO2 accumulation 

series. Secondly, in integrating the daily flux predictions over six years small systematic 

errors will become amplified since the model is realised in a true predictive mode initiated at 

t = 0 and only driven by the input variables. 

Table V-1: Results of the model calibration for the two sites, HF 94-96 and UMBS 99-01 (r2 of 0.86 and 0.84 
for FN at HF and UMBS respectively). Figures in brackets are standard deviations. Estimates have been made
using Levenberg-Marquardt nonlinear least squares optimisation of model (4a, b and c) against continuous three
year blocks of daily CO2 flux data. 

Parameters Units HF 94-96 UMBS 99-01 

εmax g C MJ-1 0. 39 (4.66 10-3) 0.34 (4.45 10-3) 

k °C-1 -1.11 (8.72 10-2) -0.70 (5.97 10-2) 

T1/2 °C 11.88 (8.31 10-2) 11.10 (1.08 10-1) 

α - 0.79 (2.27 10-2) 0.87 (9.82 10-3) 

a (slope) g C m-2 d-1°C-1 -0.10 (1.37 10-3) -0.15 (8.39 10-4) 

b (offset) g C m-2 d-1 -0.85 (1.48 10-2) -0.51 (9.13 10-3) 
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From Figure V-5a we see that the prediction envelope of the model largely encompasses 

that of the observations for the annual net CO2 accumulation series (rT
2 = 0.99). However, 

there are notable departures particularly in years 1994, 1997 and 1998. Investigation of the 

cause for the departures revealed that these arise from small but significant variations in εmax 

over the six year period (see Figure V-5b). εmax was then estimated as a non-stationary 

parameter within the model framework (V-5a and b) and variations in εmax were found to be 

significantly cross correlated (peak correlation of 0.6 at a lag of 70 days) with perturbations in 

the accumulated residual rainfall (Σ(precipitation – evapotranspiration), compare Figures V-

5b and c). Here, perturbations in the accumulated residual rainfall are used as an index of 

moisture availability (Wilson 1983). The apparent lag of 70 days between variations in water 

balance and εmax probably reflects dynamic changes in water storage in the system. 

The model evaluation also includes inter-comparison between the HF and UMBS 

optimised parameter sets given in Table 1. Figure V-3a illustrates that the principle difference 

in the description for ε is that HF experiences a significantly higher εmax in summer (εmax: HF: 

0.39 g C MJ-1 ± 4.66 x 10-3; UMBS: 0.34 g C MJ-1 ± 4.45 x 10-3) and, hence, higher FG, allied 

to a more marked transition in ε with temperature (k: HF: -1.11 ºC-1 ± 8.72 x 10-2; UMBS: -

0.70 ºC-1 ± 5.79 x 10-2). This is consistent with the fact that, unlike UMBS, HF is 

predominately deciduous and hence experiences stronger seasonality in photosynthesis. With 

respiration we observe that UMBS experiences greater sensitivity to TS (a: HF: -0.10 g C m-2 
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Figure V-3. Parameterised functions for ε(Tτ) (panel a) and FR(TS) (panel b) at HF (dark grey) and UMBS (light 
grey). The patches in a indicate the 95 percent uncertainty bounds caused by the propagation of the uncertainties
in the associated parameter estimates, as obtained by a Monte Carlo Simulation (N = 1000). For parameter
values and associated uncertainties see Table V-1. 
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d-1 ºC-1 ± 1.37 x 10-3; UMBS: -0.15 g C m-2 d-1 ºC-1 ± 8.39 x 10-4). Finally, we note that the 

temperature lag for HF is slightly smaller than that for UMBS (4.2 ± 0.26 and 6.9 ± 0.21 days 

respectively). This presumably reflects the fact that the greater seasonality at the HF site 

requires a less persistent temperature cue. 

V.4 Discussion 

Simplified models of canopy behaviour trade on fundamental ordering of biological processes 

at the organism to community level (Field et al. 1995) as well as the potential linearising 

effects associated with temporal and spatial aggregation. For example, nonlinear relationships 

observed between incident radiation and leaf photosynthesis can often be subsumed within a 

much simpler quasi-linear relationship at the whole plant-canopy level due to the optimal 

allocation of photosynthetic apparatus through the depth of the canopy in parallel with the 

distribution of light attenuation (Haxeltine & Prentice 1996). Here, the lack of any strong 

diurnal patterns in the estimated variations in ε would support this observation, and has 

focused this work on accounting for the more significant seasonal effects using daily data. 

So far, we have extracted a site-specific model structure for canopy scale CO2 fluxes 

directly from the relevant time series data and have calibrated and provisionally evaluated this 

model. Previously, calibration of canopy CO2 flux models has tended to focus on short 

periods of data where much of the seasonality effects are not observed (e.g., Baldocchi & 
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Figure V-4. Results of the model (4a, b and c) calibration and evaluation for FN for HF 1994 to 1999 (panel a, r2

= 0.80) and UMBS 1999 to 2001 (panel b, r2 = 0.84) plotted against the FN measurements. Note that the 
simulated FN are the sums of the two separately calibrated (and forecasted) fluxes ˆ
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Harley 1995; Cox et al. 1998; although see Aber et al. 1996). Although this may prove 

attractive when demonstrating the efficacy of a selected model representation, until robust 

representations for how the model parameters change over a season can be specified, practical 

implementation of these models to describe other time periods, even at the same site, prove 

impracticable. Here, despite retaining a credible, if somewhat simplistic, representation of the 

short-term response of FN to light, the dominant seasonality effects are explicitly handled 

through treating them as functions of TS. As a result, the calibrated model is able to capture a 

significant proportion of the annual variability in FG, FR and hence FN. Also, because the 

model is well defined in relation to the calibration data, the associated parameters can be 

estimated with a known degree of certainty, and genuine probabilistic forecasts can be 
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Figure V-5. Forecast of the net carbon accumulation at HF 1994-1999 (panel a). The thick solid line denotes the 
measured net carbon accumulation. The grey patch represents the 95 percent uncertainty band obtained by a
Monte Carlo Simulation of (4a, b and c) accommodating both the parametric uncertainty given in Table 1 and 
the model residual uncertainty (N = 1000). The calibration interval is 1994-1996 whilst the validation interval is 
1997-1999. Panel b shows the estimated temporal variation of maximum radiation use εmax plotted along with the 
estimated 95% confidence band. Note the higher uncertainty in the winter estimates as expected. Panel c shows 
the accumulated residual rainfall with the mean trend removed. Here, this is used as an index for water
availability as it reflects changes in storage and runoff from the site. Variations in εmax shown in panel b are 
significantly cross-correlated with those in panel c with a peak correlation of 0.6 at a lag of 70 days. 
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generated as seen in Figure V-5a. 

The observation that (V-4) captures variations in ε that must, in principle, be dependent on 

variations in both leaf area and intrinsic photosynthetic capacity is interesting. Much of our 

initial research with this data focused on attempting to disaggregate these two components of 

ε with only limited success (Stauch 2002), hence the alternative approach is adopted here. 

One would anticipate that any fortuitous correlations between temperature, leaf area and 

photosynthetic capacity would only operate during the emergent phase of canopy 

development (Goudriaan & Monteith 1990) and that, as a result, a pronounced hysteresis 

could be observed in the relationship between TS and ε during senescence. The fact that this is 

not observed for these data would suggest that both the development and senescence of leaf 

area and photosynthetic capacity are coordinated and strongly related to variations in 

temperature (Berry & Raison 1981; Sparks & Menzel 2002). This could be explored by 

disaggregating ε into its light interception and photosynthetic capacity components using, for 

example, remote sensing information on the fraction of absorbed radiation (Waring et al. 

1995). 

It is a common observation at the leaf scale that FN falls when temperature exceeds a 

certain level, and this is a ubiquitous feature of most detailed canopy CO2 flux models that is 

not included in (V-4). The fact that this is not observed in Figure V-2a/c may be due to the 

temperatures having not reached a level where this effect is observable. The response of the 

canopy being lagged behind surface temperature highlights the dynamic nature of the 

transduction of temperature signals by these canopies because one would assume that soil-

surface temperature already reflects the thermal equilibrium of the canopy-soil system. Such 

lag effects would suggest that the temperature regulation of leaf development and 

photosynthetic metabolism involves some form of filtering mechanism (e.g., Berry & Raison 

1981; Baldocchi et al. 2001a), presumably to remove any unwanted stochastic cues from the 

environment, hence guarding against the vagaries of the weather. 

The annual CO2 fluxes at both sites are somewhat similar (
ĜF∑ : HF (n=6): 928.10 g C a-1 

± 8.61; UMBS (n=3): 917.95 g C a-1 ± 57.06; ˆ
RF∑ : HF (n=6): -657.84 g C a-1 ± 52.08; 

UMBS (n=3): -663.98 g C a-1 ± 8.00). Therefore, the differences in the estimated parameter 

values represent the differences in how photosynthetic and respiratory activity is distributed 

over the season. Presumably, this distribution is itself a reflection of the composition of the 

canopy and its adaptation to the local climatology, hydrology and nutrient availability. 

Identifying these higher level controls may offer an opportunity to develop the current model 
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beyond its somewhat restricted site specific form. 

Obviously one needs to be cautious when using correlations like the ones shown in Figure 

V-2 to make more general predictions and it is important to understand the connections 

between these simple representations and the underlying canopy processes they represent if 

we wish to extend these models to different conditions. For example, it is clear from Figure 

V-5b and c that drought episodes are capable of affecting the relationship between TS and ε 

and should be accommodated into the model structure to improve its predictive properties 

(Field et al. 1995). However, although we endorse the view that an understanding of the 

underlying processes is important for constructing robust predictions, we also stress the 

importance of the uncertainties associated with temporal and spatial scaling of processes 

descriptions (Beven et al. 2000) and, therefore, the need to also adopt an inductive model 

building paradigm that places appropriate emphasis on the observations at the scale of 

interest. The approach advocated here should not be viewed as purely black box exercise, but 

instead may be both data-based and mechanistic (Young 2000) through providing an 

opportunity to include process understanding but only to a level commensurate with the 

information content of the available data at that scale. 

V.5 Conclusions   

The proliferation of flux tower sites worldwide has resulted in the collection of large 

quantities of flux and associated micrometeorological times series data sets. Due to the 

seasonal nature of the behaviour of plant canopies, these data are often characterised by 

nonstationary and nonlinear dynamics. This, allied to the inherently uncertain nature of the 

measurements, results in data that can prove difficult to analyse, especially when it is 

punctuated by significant measurement gaps. 

The novel nonstationary and nonlinear dynamic time series tools applied here appear well 

suited to both the objective interpolation of missing data and also the signal extraction needed 

for model formulation. Not surprisingly, the dominant modes of the behaviour of the canopy 

scale carbon fluxes identified here are clearly related to light and temperature, as it is in 

process based counterparts to this model. However, in focusing only on the seasonal 

functionality it is not surprising that the identified model resembles resource capture models 

such as CASA (Field et al. 1995). This does not appear to distract from either the ability to 

parameterise this model, or its predictive power. Indeed, one could argue that this model has 

distinct advantages over its process-based counterparts in both cases. The generality of these 
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descriptions obviously needs to be investigated using flux data from a more diverse range of 

sites. 

Even if ones preference is for more complex model formulations, the SDP interpolation 

over measurement gaps should be viewed as a significant advance over current gap filling 

practice given that it maximises the retention of information in the interpolated data 

conditioned only on the available data. However, it seems entirely reasonable to propose that 

gap filling and model derivation should be closely related as illustrated here, especially if the 

objective of any such modelling exercise is to provide a robust predictive framework for 

annual net carbon accumulation. 
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VI. Discussion and Conclusions 

This work set out to derive a modelling methodology that attempts to explore the 

information content of EC net CO2 flux time series. In the previous chapters, the potential of 

this methodology to answer the research questions raised in Chapter I has been explored. In 

the following, the results of the separate studies shall be integrated into four somewhat 

overarching subjects to discuss them in a broader context. First, the capacity of the data-led 

modelling approach to serve as a multiple purposes tool for analysing noisy time series is 

discussed. Second, the way the data-led model can address limitations in the observations is 

examined with particular emphasis on data augmentation where data augmentation 

summarises; replacing missing data, the characterisation of observation noise and the 

subsequent probabilistic flux integration. Third, the potential of the data-led model to 

disaggregate the net CO2 flux into carbon assimilation and respiration is elaborated. Finally, 

opportunities to derive canopy process understanding from the data with this modelling 

approach are discussed opening up interesting scope for further research. 

VI.1 The data-led modelling approach: potentials and limitations 

This thesis presented a modelling methodology that objectively approaches EC data in order 

to ensure the conservation of the information content for mechanistic interpretation. It is 

explicitly designed for signal extraction from noisy observation series based on a simplified 

model structures and minimal prior assumptions. The corresponding model development must 

be seen as an iterative learning procedure, adding constraints to the model structures 

incrementally when required. The tight interaction of system understanding and data 

interrogation leaves enough opportunity to adjust the model structures to the available 

information in the data as opposed to being committed to a prior assumed fixed parametric 

structure for the dependencies in question. On the other hand, both modelling techniques 

applied here allow for a substantial level of control over the nature of the investigated 

relationships, e.g., by the choice of the number and location of nodes when optimising 

multidimensional splines or, by the selection of the noise variance ratio, NVR when estimating 

time or state dependent parameters. As a result, this procedure allows for objective model 

building being in sympathy with the observations held at the particular scale of interest. In 



VI. Discussion and Conclusions 78

this way, prediction uncertainties that inevitably arise when having to constrain a model with 

observations remain traceable and can ultimately be quantified for e.g., model assessment. 

However, such data-led modelling approaches unavoidably suffer from limitations. In line 

with their development, the derived models are largely only valid within the range of 

environmental conditions observed, rendering their extrapolation to conditions outside that 

range somewhat uncertain. Provided the identified relationships are smooth and there is 

evidence that they can be assumed smooth beyond the observed range, inference can be drawn 

from these models when employed with care. Obviously, as discussed in Chapter II, the 

success of this modelling approach will substantially depend on the quality of the data the 

model development is based upon. The performance of the derived model will therefore suffer 

from poorly sampled conditions or missing data for potentially important system behaviour. 

The database used here for model derivation is normally characterised by a dense sampling of 

current environmental conditions. Additionally, the EC measurement technique is subject to a 

comprehensive quality control overseen by a large scientific community.  

Processes in an ecosystem occur continuously and the diverse factors controlling them 

naturally operate simultaneously in space and time. As a result, one dimensional data analyses 

of the response of a system to a selected driver will be disrupted by concurrent effects of other 

drivers. In Chapter II it was demonstrated that the multiple effects of dominant factors can be 

objectively extracted from EC data. The estimation of smoothing splines was shown to be 

particularly suitable for signal extraction because of its interpolating and multidimensional 

nature. In contrast, binning the relevant environmental data into classes of discrete sizes (e.g., 

Falge et al. 2001; Hollinger et al. 2004) will most likely leave dynamic behaviour within the 

classes being lost for further analyses. 

A particular novelty of the data-led CO2 exchange modelling approach applied here is the 

explicit consideration of time as a driver. So far, any dynamic in identified relationships such 

as the response of canopy photosynthesis to light has only been addressed by allowing 

selected parameters within prescribed model structures to change (Falge et al. 2002; Yi et al. 

2004; Gove & Hollinger 2006). In contrast, the hypersurface approach presented in Chapter II 

acknowledges a more complex evolution of the dependencies with time whilst providing 

scope to subsequently infer parametric descriptions. Similarly, the SDP approach applied in 

Chapter V enabled the investigation of the response of CO2 assimilation to drivers other than 

light. 
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As it is demonstrated particularly in Chapter V, such data based analyses initially resulted 

in restricted site specific models. A test of their general applicability obviously requires an 

extensive evaluation on a multiplicity of observation series. However, given the large data set 

available through FLUXNET we are in a good position to meet this demand. It should be 

noted that an expansion of the data base used might even elucidate additional controls being 

important when intending to generalise model structures.  

A particular strength of the semi-parametric spline model is its ability to serve more than 

one application. Estimating the hypersurface from EC observations provides (i) the 

disaggregation into a systematic signal and a residual series for noise characterisation, (ii) 

consistent gap-filled estimates allowing for series aggregation to a coarser temporal 

resolution, (iii) stochastic estimates for ecosystem carbon assimilation, respiration and net 

exchange components from net flux observations and (iv) a diagnostic tool to objectively 

study ecosystem functioning and ultimately derive parametric process descriptions on the 

community level.  

Although a detailed comparison is beyond the scope of this thesis, it is interesting to note 

that both techniques presented here for the hybrid stochastic-mechanistic model derivation 

produce very similar results when applied to the same model identification problem (e.g., the 

model structure in Chapter V). This can be viewed as an evaluation of the model structure 

confirmed by two independent methods showing the data to unambiguously reveal the same 

systematic behaviour.  

It has to be stressed again that the use of synthetic data for rigorous model testing as a 

routine part of the model development exercise should receive further attention in canopy 

exchange modelling. In the particular applications presented here (Chapters II, III, IV), this 

approach proved indispensable as the different components of EC data are only known in this 

situation thereby facilitating rigorous evaluation. 

VI.2 Data augmentation  

The previous chapters highlight the substantial value of EC observations for carbon exchange 

studies and address only a small subsample of their possible applications. However, we have 

seen that we have to be aware of their stochastic properties when making use of these time 

series. As EC data represent the sum of two or more unknown components, additional 

information is by necessity required to determine those components. This work demonstrates 

that a suitable model can help to overcome this problem and hence to broaden the range of 

data applications whilst keeping track of the associated uncertainties. 
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The importance of explicitly addressing observation noise has been somewhat overlooked, 

although a few methods for noise extraction have been proposed recently (Hollinger et al. 

2004; Hollinger & Richardson 2005; Richardson et al. 2006). These purely data-based 

approaches highlight the importance of the choice of an appropriate objective function when 

using these data for parameter optimisation. However, they suffer from coarse stationarity 

assumptions (Richardson et al. 2006) or limited applicability (Hollinger & Richardson 2005). 

The approach being advocated here (Chapter III) results in estimates of both the deterministic 

series as a representation of FN and a semi-parametric characterisation of the stochastic 

properties of the uncertainty in the FN observations. Clearly, this model-based characterisation 

will suffer from uncertainties due to model error and the propagation of input noise. However, 

as demonstrated in Chapter III, these errors appear to be small compared to the estimated 

observation noise. It is important to appreciate that this procedure is not restricted to the 

spline model used in Chapter III. The characterisation of the noise component can rather be 

based on any model provided no significant systematic signal is left in the model residuals. 

Therefore, if the spline model proved inappropriate for a particular site, alternative model 

structures could be applied for the estimation of FN followed by a noise characterisation. 

A characterisation of the observation noise is relevant when replacing missing data. For 

example, a complete series is required when inferring temporal integrals needed in model 

derivation, testing and evaluation studies. Given that the observations include one realisation 

of an unknown random variable, simply replacing missing data in the measurements with a 

deterministic model (e.g., Goulden et al. 1996a; Aubinet et al. 2000; Falge et al. 2001; Law et 

al. 2002; Reichstein et al. 2005) will result in a statistically inconsistent series. The derived 

semi-parametric model in Chapter II delivers a data-led estimate for the systematic FN while 

the semi-parametric distributions from the model residuals (Chapter III) provide a means to 

produce a ‘best’ estimate for a statically consistent gap-filled time series. 

As presented in Chapter III, a full noise characterisation allows us to derive probabilistic 

temporal (annual) flux integrals based on the estimate of the underlying deterministic flux 

component and the associated error distributions. In contrast, the straightforward integration 

of the (half-) hourly noisy measurements to deterministic temporal aggregates (e.g., Lee et al. 

1999; Aubinet et al. 2002; Griffis et al. 2003) will give a false impression of accuracy whilst 

running the risk of significant error propagation. The significant uncertainties due to spatial 

variation in the turbulent fluxes however (Oren et al. 2006) highlight the scope for further 

research on the representativeness of EC observations for classified biomes (Hargrove et al. 

2003), in particular when extrapolating the derived values to give regional estimates. 
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VI.3 Disaggregation of the net flux  

The modelling approach introduced in this work facilitates the disaggregation of the EC net 

CO2 flux time series into several components. As discussed above, the decomposition of the 

observations into a systematic signal and a stochastic component is crucial for any further use 

of these time series despite this having been somewhat overseen in the past. In contrast, the 

determination of an assimilation component and an estimate for ecosystem respiration from 

EC data has received a lot of attention, motivated by the demand for these quantities in 

regional to global ecosystem models and terrestrial carbon inventories. The methodologies 

applied so far primarily suffer from the oversimplification of the models used for flux 

disaggregation (Reichstein et al. 2005). Similarly, the assumption of a stationary temperature 

response of ecosystem respiration extrapolating from conditions in the absence of light to the 

daytime regime has surely to be questioned. Interestingly, the stochastic noise component in 

EC observations has not been consistently addressed in such studies. The approach presented 

in this work successfully addresses some of these limitations. Firstly, the semi-parametric 

model is constrained by all available data avoiding a somewhat truncated data analysis. The 

resulting hypersurface is then used to derive a light-independent seasonal response to 

temperature that is referred to as ‘ecosystem respiration’. Secondly, the multidimensional 

nature of the spline model implicitly allows the components to evolve with several drivers 

simultaneously and, hence, includes the required additional complexity. Thirdly, given the 

characterised EC observation noise from Chapter III and the parameter covariance structure 

from the model optimisation, observation and parameter uncertainty can be traced throughout 

the disaggregation. The decomposed fluxes FG and FR may serve further disaggregation, 

signal extraction and model derivation, testing and evaluation (see next section). 

Alternatively, probabilistic flux integrals can be inferred from these quantities as is required 

for carbon budget studies and/or cross-site analyses (see Chapter III and IV). It will be 

interesting to compare the disaggregation scheme introduced in this study particularly with 

other nonparametric approaches such as artificial neural networks (Papale & Valentini 2004; 

Braswell et al. 2005). Such an intercomparison is currently underway (Moffat et al. 2006).  

VI.4 Opportunities for inferences on canopy behaviour and parametric models 

The semi-parametric hypersurfaces are unique in their multidimensional representation of the 

variations in the carbon exchange fluxes (e.g., FN, FG, FR). Given that experiments on the 

canopy level in controlled environments inevitably accompany substantial financial 

investment, such set ups are rare and the data availability is limited as a result (e.g., Ellsworth 
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et al. 1995; Osmond et al. 2004). Therefore, the semi-parametric modelling approach offers a 

readily available (cheap) alternative for a diagnostic analysis of the responses of carbon fluxes 

to separate drivers based on EC data, provided these signals can be extracted from the data. 

Figure VI-1 shows the derived FR surface and the remaining FG hypersurface for the SPA 

simulation data set (see Chapters II-IV) that could provide a basis for further characterisation 

of the flux components. Obviously, a comprehensive analysis is beyond the scope of this 

thesis, but it is worthwhile pointing out scope for further investigation. It has to be noted 

again that these studies will only prove beneficial when initially working with an entirely 

known system, i.e. synthetic data from a simulation model. One obvious objective would be 

to explore the separate dependencies to light, temperature or time under fixed environmental 

conditions. Here, all the complexity and interaction implemented in the simulation model is 

unlikely to be uncovered by the simple spline model structure. Therefore, the investigation 

should focus on specific aspects of canopy carbon exchange. For instance, the FG 

hypersurface in Figure VI-1a allows for the identification of the temporal evolution of the 

light response curve at different temperature levels. It would be interesting to investigate how 

this dynamic might be related to downregulations of photosynthesis due to environmental 

factors, e.g., as represented in production efficiency models (e.g., Potter et al. 1993; Runyon 

et al. 1994). Another aspect of interest related to this could be the investigation of the 

temperature optimum of photosynthesis at light saturation as deduced from the FG 

hypersurface. Here, the temporal evolution of this value could provide information on 

possible downregulations due to limiting environmental conditions or the plasticity of this 

property in response to shifts in the background meteorological conditions (Berry & 

Bjorkman 1980). Obviously, this is only a small subsample of a wide range of research 

questions the hypersurfaces invite. 
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The success of the multidimensional spline model to explain the variations in FN during the 

day and over the year endorses the three driving forces, light, temperature and time as being 

major regulating factors in many ecosystems. However, owing to the flexible nature of the 

splines, other controls might be confronted. Provided all variations in the response to incident 

radiation and temperature have been accounted for in the light and temperature dimension of 

the hypersurface, the variations in FN in the temporal space will reflect a conglomeration of 

the effects of all other environmental drivers. For example, the semi-parametric spline model 

as implemented here does not explicitly account for the effects of water limitations over and 

above that of the climatic mean. As a result, any medium term effects of dry periods will be 

projected onto the estimated phenological evolution of the canopy. Such model inadequacies 

might become obvious when analysing the residuals similar to those shown in Chapter V for 

LUEmax when allowed to vary over time. Water limited sites have not been a particular focus 

of this study and the estimation of the splines from such data might suggest choosing different 

environmental drivers. Such changes of drivers could be readily incorporated into the spline 

framework and tested for appropriate data providing relevant measures of the drivers were 

available for the sites in question.  

As has been demonstrated in Chapter V, semi- and nonparametric modelling techniques 

provide a promising framework for exploring the derivation of simple parametric model 

structures to explain the variations in ecosystem exchange data. While the nature of the 

modelling approach ensures the data support during the model derivation, the physical 

interpretation of the semi- or nonparametric relationships demands some considerable 

comprehension of the system. Fortunately, understanding of plant scale processes including 

resource use efficiency provide a valuable source to draw from. Therefore, this approach to 

a. b.

 Figure VI-1: Gross photosynthetic uptake, FG as a function of light, temperature and time (a) and ecosystem
respiration, FR as a function of temperature and time (b) derived from the SPA synthetic data. The simulated
‘true’ components are added as grey dots. 
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model derivation can be seen as complementary to both purely process based modelling and 

simple ‘top down’ approaches, as they are commonly applied when assimilating remote 

sensing information. The tight coupling between CO2 uptake and water loss through stomatal 

control for instance could be explored in a similar way while also making use of some 

products of this work as already indicated by the correlation of LUEmax and the index for 

water availability shown in Chapter V. 

As we have seen, temporal aggregation of the observations is likely to result in simpler 

model structures. The daily model for the net CO2 flux in Chapter V for instance, could be 

reduced to two dimensions compared to the three dimensional hypersurface based on hourly 

data (Chapters II, III, IV). On the other hand, valuable information might get lost due during 

data aggregation (van Wijk & Bouten 2002). This dilemma highlights the importance of 

defining research question(s) prior to any model development (Goldenfeld & Kadanoff 1999). 

The data being used for the analysis can then be chosen appropriately. 

Given the data availability for FLUXNET sites in a range of vegetation and climate 

conditions, the generality of the derived model structures can be extensively tested in order to 

assess the predictive performance. Obviously, for a rigorous test of the temperature dependent 

light-use efficiency model presented in Chapter V, the available resources on different biomes 

were not exhausted. It is, therefore, appealing to evaluate the model for more EC tower 

locations and subsequently to relate the differences in the derived parameters to biome 

information and site characteristics. Such relationships might then pave the way for 

regionalised models for the CO2 exchange between the vegetated surface and the atmosphere 

derived from EC observations. 

Finally, it is worthwhile noting that, in line with the iterative model building philosophy 

used here, the semi-parametric modelling approach provides the framework to include more 

process information. This could be afforded by replacing selected parts of the spline model 

with particular parametric structures. In this way, physical process understanding would be 

linked with information in the data progressively, leading to full parametric models 

commensurate with the observations at the scale of interest. 



 

VII. References 

Aber JD, Reich PB, Goulden ML (1996) Extrapolating leaf CO2 exchange to the canopy: a 
generalized model of forest photosynthesis compared with measurements by eddy 
correlation. Oecologia, 106, 257-265. 

Amthor JS, Goulden ML, Munger JW, Wofsy SC (1994) Testing a mechanistic model of 
forest-canopy mass and energy exchange using eddy correlation: carbon dioxide and 
ozone uptake by a mixed-oak stand. Australian Journal of Plant Physiology, 21, 623-
651. 

Anthoni PM, Law BE, Unsworth MH (1999) Carbon and water vapor exchange of an open-
canopied ponderosa pine ecosystem. Agricultural and Forest Meteorology, 95, 151-168. 

Anthoni PM, Unsworth MH, Law BE, Irvine J, Baldocchi DD, Moore D (2002) Seasonal 
differences in carbon and water vapor exchange in young and old-growth ponderosa 
pine ecosystems. Agricultural and Forest Meteorology, 111, 203-222.  

Anthoni PM, Knohl A, Rebmann C et al. (2004) Forest and agricultural land-use-dependent 
CO2 exchange in Thuringia, Germany. Global Change Biology, 10, 2005-2019. 

Aubinet M, Grelle A, Ibrom A et al. (2000) Estimates of the annual net carbon and water 
exchange of forests: the EUROFLUX methodology. Advances in Ecological Research, 30, 
113-175. 

Aubinet M, Heinesch B, Longdoz B (2002) Estimation of the carbon sequestration by a 
heterogeneous forest: night flux corrections, heterogeneity of the site and inter-annual 
variability. Global Change Biology, 8, 1053-1071. 

Baldocchi DD, Verma SB, Anderson DE (1987) Canopy photosynthesis and water use 
efficiency in a deciduous forest. Journal of Applied Ecology, 24, 251-260. 

Baldocchi DD, Hicks BB, Meyers TP (1988) Measuring biosphere-atmosphere exchanges of 
biologically related gases with micrometeorological methods. Ecology, 69, 1331-1340. 

Baldocchi DD (1993) Scaling Water Vapor and Carbon Dioxide Exchange from Leaves to a 
Canopy: Rules and Tools. In: Scaling Physiological Processes: leaf to Globe. (eds. 
Ehleringer JR, Filed CB), pp. 77-114. Academic Press, San Diego, California. 

Baldocchi DD, Harley PC (1995) Scaling carbon dioxide and water vapour exchange from 
leaf to canopy in a deciduous forest. II. Model testing and application. Plant, Cell and 
Environment, 18, 1157-1173. 

Baldocchi DD, Valentini R, Running S, Oechel W, Dahlman R (1996) Strategies for 
measuring and modelling carbon dioxide and water vapour fluxes over terrestrial 
ecosystems. Global Change Biology, 2, 159-168. 

Baldocchi DD, Falge E, Wilson K (2001a) A spectral analysis of biosphere-atmosphere trace 
gas flux densities and meteorological variables across hour to multi-year time scales. 
Agricultural and Forest Meteorology, 107, 1-27. 



VII. References 86

Baldocchi DD, Falge E, Gu L et al. (2001b) FLUXNET: a new tool to study the temporal and 
spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux 
densities. Bulletin of the American Meteorological Society, 82, 2415-2434. 

Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide 
exchange rates of ecosystems: past, present and future. Global Change Biology, 9, 479-
492. 

Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its 
contribution to the control of photosynthesis under different environmental conditions. 
In: Progress in Photosynthesis Research. (eds Biggens J), pp. 221–224, Martinus 
Nijhoff, CZ Zoetermeer, Netherlands. 

Barford CC, Wofsy SC, Goulden ML et al. (2001) Factors controlling long- and short-term 
sequestration of atmospheric CO2 in a mid-latitude forest. Science, 294, 1688-1691. 

Berry JA, Björkman O (1980) Photosynthetic response and adaptation to temperature in 
higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 31, 
491-543. 

Berry JA, Raison JK (1981) Responses of macrophytes to temperature. In: Physiological 
Plant Ecology I: Responses to the Physical Environment (eds Lange OL, Nobel PS, 
Osmond CB, Ziegler H), 12A, 277-338, Springer-Verlag, Berlin, Heidelberg, New 
York. 

Beven K, Schulz K, Franks S (2000) The use of generalised likelyhood measures for 
uncertainly estimation in high-order models of environmental systems. In: J. Feyen and 
K. Wiyo (Editors), Proceedings Leuven InternationalWorkshop: Modelling of Transport 
Processes in Soils at Various Scales in Time and Space. Institute of Land and Water 
Management. Katoliek University Leuven, Belgium. pp. 725 - 735. 

Black TA, DenHartog G, Neumann HH et al. (1996) Annual cycles of water vapour and 
carbon dioxide fluxes in and above a boreal aspen forest. Global Change Biology, 2 (3), 
219-229. 

Canadell JG, Mooney HA, Baldocchi DD et al. (2000) Carbon Metabolism of the Terrestrial 
Biosphere: a Multitechnique Approach fro Improved Understanding. Ecosystems, 3, 
115-130. 

Churkina G, Tenhunen J, Thornton P et al. (2003) Analysing the Ecosystem Carbon 
Dynamics of Fout European Coniferous Forests Using a Biogeochemistry Model. 
Ecosystems, 6, 168-184. 

Cox PM, Huntingford C, Harding RJ (1998) A canopy conductance and photosynthesis model 
for use in a GCM land surface scheme. Journal of Hydrology, 212-213, 79-94. 

Curtis PS (2003) UMBS Forest Carbon Cycle Research. UMBS research. Ameriflux network. 
UMBS data access. http://cdiac.esd.ornl.gov/ftp/ameriflux/data/us-sites/preliminary-
data/UMBS (data accessed on February 14, 2003). 

Curtis PS, Hanson PJ, Bolstad P, Barford C, Randolph JC, Schmid HP, Wilson KB (2002) 
Biometric and eddy-covariance based estimates of annual carbon storage in five eastern 
North American deciduous forests. Agricultural and Forest Meteorology, 113, 3-19. 

Davidson EA, Belk E, Boone RD (1998) Soil water content and temperature as independent 
or confounded factors controlling soil respiration in a temperate mixed hardwood forest. 
Global Change Biology, 4, 217-227. 



VII. References 87

de Boor C (1978, 2001) A Practical Guide to Splines, rev. ed (eds Marsden JE, Sirovich L), 
Springer-Verlag, New York, Berlin, Heidelberg, 346 pp. 

de Pury DGG, Farquhar GD (1997) Simple scaling of photosynthesis from leaves to canopies 
without the errors of big-leaf models. Plant, Cell and Environment, 20, 537-557. 

Desjardins RL, MacPherson JI, Mahrt L, Schuepp P, Pattey E, Neumann H, Baldocchi DD, 
Wofsy S, Fitzjarrald D, McCaughey H, Joiner DW (1997) Scaling up flux 
measurements for the boreal forest using aircraft-tower combinations. Journal of 
Geophysical Research-Atmospheres, 102, D24, 29125-29133. 

Dewar RC (1997) A Simple Model of Light and Water Use Evaluated for Pinus radiata. Tree 
Physiology, 17, 259-265. 

Dewar RC, Medlyn BE, Mc Murtrie RE (1998) A mechanistic analysis of light and carbon 
use efficiencies. Plant, Cell and Environment, 21, 573-588. 

Dickinson RE, Henderson-Sellers A, Kenedy PJ, Wilson MF (1986) NCAR Tech. Note 
NCAR/TN-275+STR, National Center for Atmospheric Research, Boulder, Colorado. 

Drake BG, Gonzalez-Meler MA, Long SP (1997) More efficient plants: a consequence of 
rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular 
Biology, 48, 609-639. 

Ehleringer JR, Björkman O (1977) Quantum yields for CO2 uptake in C3 and C4 plants – 
dependence on temperature, CO2 and O2 concentration. Plant Physiology, 59 (1), 86-90. 

Ellsworth DS, Oren R, Huang C et al. (1995) Leaf and canopy responses to elevated CO2  in a 
pine forest under free-air CO2 enrichment. Oecologia, 104 (2), 139-146. 

Falge E, Baldocchi DD, Olson R et al. (2001) Gap filling strategies for defensible annual 
sums of net ecosystem exchange. Agricultural and Forest Meteorology, 107, 43-69. 

Falge E, Baldocchi DD, Tenhunen J et al. (2002) Seasonality of ecosystem respiration and 
gross primary production as derived from Fluxnet measurements. Agricultural and 
Forest Meteorology, 113, 53-74. 

Fang C, Moncrieff JB (2001) The dependence of soil CO2 efflux on temperature. Soil Biology 
& Biochemistry, 33, 155-165. 

Farquhar GD, von Caemmerer S, Berry JA (1980) A Biochemical Model of Photosynthetic 
CO2 Assimilation in Leaves of C3 Species. Planta, 149, 78-90. 

Farquhar GD, von Caemmerer S (1982) Modelling of Photosynthetic Response to 
Environmental Conditions. In: Physiological Plant Ecology II, Water Relations and 
Cabon Assimilation. (eds Lange OL, Nobel PS, Osmond CB, Ziegler H). Encyclopedia 
of Plant Physiology, New Series, Volume 12B, pp. 549-587, Springer-Verlag, Berlin. 

Field CB, Randerson JT, Malmström CM (1995) Global net primary production: combining 
ecology and remote sensing. Remote Sensing of the Environment, 51, 74-88. 

Finkelstein PL, Sims PF (2001) Sampling error in eddy correlation flux measurements. 
Journal of Geophysical Research, 106, NO. D4, 3503-3509. 

Franks SW, Beven KJ (1997) Bayesian estimation of uncertainty in land surface-atmosphere 
flux predictions. Journal of Geophysical Research, 102 (D20), 23991–23999. 

Franks SW, Beven KJ, Quin PF, Wright IR (1997) On the sensitivity of soil-vegetation-
atmosphere transfer (SVAT) schemes: equifinality and the problem of robust 
calibration. Agricultural and Forest Meteorology, 86, 63–75. 



VII. References 88

Friend AD (2001) Modelling canopy CO2 fluxes: are ‘big leaf’ simplifications justified? 
Global Ecology & Biogeography, 10, 603-619. 

Friend AD, Arneth A, Kiang NY et al. (2006) Fluxnet and modeling the global carbon cycle. 
Global Change Biology, 12, doi: 10.1111/j.1365-2486.2006.01223.x 

Fritsch FN, Carlson RE (1980) Monotone Piecewise Cubic Interpolation, SIAM Journal on 
Numerical Analysis, 17 (2), 238-246. 

Gilmanov TG, Verma SB, Sims PL et al. (2003) Gross primary production and light response 
parameters of four Southern Plains ecosystems estimated using long-term CO2-flux 
tower measurements. Global Biogeochemical Cycles, 17 (2), art. No. 1071. 

Goldenfeld N, Kadanoff LP (1999) Simple Lessons from Complexity. Science, 284, 87-89. 

Goudriaan J, Monteith JL (1990) A mathematical function for crop growth based on light 
interception and leaf area data. Annals of Botany, 66, 695-701. 

Goulden ML, Munger JW, Fan S-M, Daube BC, Wofsy SC (1996a) Exchange of Carbon 
Dioxide by a Deciduous Forest: Response to Interannual Climate Variability. Science, 
271, 1576-1578. 

Goulden ML, Munger JW, Fan S-M, Daube BC, Wofsy SC (1996b) Measurements of carbon 
sequestration by long-term eddy covariance: methods and a critical evaluation of 
accuracy. Global Change Biology, 2, 169-182. 

Gove JH, Hollinger DY (2006) Application of a dual unscented Kalman filter for 
simultaneous state and parameter estimation in problems of surface-atmosphere 
exchange. Journal of Geophysical Research, 111 (D8), Art. No. D08S07, doi: 
10.1029/2005JD006021. 

Granger CWJ, Terasvirta T (1993) Modelling nonlinear economic relationships. Oxford 
University press, Oxford, 187 pp. 

Granier A, Ceschia A, Damesin C et al. (2000) The carbon balance of a young Beach forest. 
Functional Ecololgy, 14, 312-325. 

Grieser J, Schönwiese C-D (2001) Process, Forcing, and Signal Analysis of Global Mean 
Temperature Variations by Means of a Three-Box Energy Balance Model. Climatic 
Change, 48, 617-646. 

Griffis TJ, Black TA, Morgenstern K et al. (2003) Ecophysiological controls on the carbon 
balances of three southern boreal forests. Agricultural and Forest Meteorology, 117, 53-
71. 

Grünwald T, Bernhofer C (2000) Regression modelling used for data gap filling of carbon 
flux measurements. In: Forest ecosystem modelling, upscaling and remote sensing. (eds 
Ceulemans RLM, Veroustraete F, Gond V, Van Rensbergen JBHF), pp. 61-67. SPB 
Academic Publishing bv, The Hague, The Netherlands. 

Grünzweig JM, Lin T, Rotenberg E, Schwartz A, Yakir D (2003) Carbon sequestration in 
arid-land forest. Global Change Biology, 9 (5), 791-799. 

Hagen SC, Braswell BH, Linder E, Frolking S, Richardson AD, Hollinger AD (2006) 
Statistical uncertainty of eddy flux-based estimates of gross ecosystem carbon exchange 
at Howland Forest, Maine. Journal of Geophysical Research, 111(D8), D08S03, 
doi:10.1029/2005JD006154. 

Hanson PJ, Wullschleger SD, Bohlman SA, Todd DE (1993) Seasonal and topographic 
patterns of forest floor CO2 efflux from an upland oak forest. Tree Physiology, 13, 1-15. 



VII. References 89

Hargrove WW, Hoffman FM, Law BE (2003) New analysis reveals representativeness of the 
Ameriflux network. EOS Transactions, American Geophysical Union, 84 (48), 529-544. 

Haxeltine A, Prentice IC (1996) A general model for the light-use efficiency of primary 
production. Functional Ecology, 10, 551-561. 

Hollinger DY, Kelliher FM, Schulze E-D et al. (1998) Forest-atmosphere carbon dioxide 
exchange in eastern Siberia. Agricultural and Forest Meteorology, 90, 291-306. 

Hollinger DY, Aber J, Dail B et al. (2004) Spatial and temporal variability in forest-
atmosphere CO2 exchange. Global Change Biology, 10 (10), 1689-1706. 

Hollinger DY, Richardson AD (2005) Uncertainty in eddy covariance measurements and its 
applications to physiological models. Tree Physiology, 25, 873-885. 

Hollinger SE, Bernacchi CJ, Meyers TP (2005) Carbon budget of mature no-till ecosystem in 
North Central Region of the United States. Agricultural and Forest Meteorology, 130, 
59-69. 

Hui D, Wan S, Su B, Katul G, Monson R, Luo Y (2004) Gap-filling missing data in eddy 
covariance measurements using multiple imputation (MI) for annual estimations. 
Agricultural and Forest Meteorology, 121, 93-111. 

Hutley LB, Leuning R, Beringer J, Cleugh HA (2005) The utility of the eddy covariance 
technique as a tool in carbon accounting: tropical savanna as a case study. Australian 
Journal of Botany, 53 (7), 663-675. 

Janssens IA, Freibauer A, Ciais P et al. (2003) Europe’s Terrestrial Biosphere Absorbs 7 to 
12% of the European Anthropogenic CO2 Emissions. Science, 300, 1538-1542. 

Jarvis PG (1995) Scaling processes and problems. Plant, Cell and Environment, 18, 1079-
1089. 

Jarvis PG, Dewar RC (1993) Forests in the Global Carbon Balance: From Stand to Region. 
In: Scaling Physiological Processes: leaf to Globe. (eds. Ehleringer JR, Filed CB), pp. 
191-221. Academic Press, San Diego, California. 

Jones HG (1983) Plants and Microclimate. Cambridge University Press, Cambridge, 323 pp. 

Kaplan EL, Meier P (1958) Nonparametric Estimation from Incomplete Observations. 
Journal of the American Statistical Association, 53 (282), 457-481. 

Kavetski D, Franks SW, Kuczera G (2002) Confronting Input Uncertainty in Environmental 
Modelling, in Calibration of Watershed Models, AGU Water Science and Applications 
Series, vol. 6, edited by Q. Duan, H. V. Gupta, S. Sorooshian, A. N. Rousseau, R. 
Turcotte, pp 49-68, AGU, Washington, D. C. 

Keeling RF, Piper SC, Heimann M (1996) Global and hemispheric CO2 sinks deduced from 
changes in atmospheric O2 concentration. Nature, 381, 218-221. 

Knohl A, Schulze E-D, Kolle O, Buchmann N (2003) Large carbon uptake by an unmanaged 
250-year-old deciduous forest in central Germany. Agricultural and Forest 
Meteorology, 118, 151-167. 

Knorr W (1997) Satellite remote sensing and modeling of the global CO2 exchange of land 
vegetation: a synthesis. PhD thesis, Max Planck Institute for Meteorology, Hamburg. 

Knorr W (2000) Annual and interannual CO2 exchanges for the terrestrial biosphere: process 
based simulations and uncertainties. Global Ecology and Biogeography, 9, 225-252. 



VII. References 90

Knorr W, Kattge J (2005) Inversion of terrestrial ecosystem model parameter values against 
eddy covariance measurements by Monte Carlo sampling. Global Change Biology, 11, 
1333-1351. 

Lavigne MB, Ryan MG, Anderson DE, et al. (1997) Comparing nocturnal eddy covariance 
measurements to estimates of ecosystem respiration made by scaling chamber 
measurements at six coniferous boreal sites. Journal of Geophysical Research, 102 
(D24), 28977-28985. 

Law BE, Baldocchi DD, Anthoni PM (1999) Below-canopy and soil CO2 fluxes in a 
ponderosa pine forest. Agricultural and Forest Meteorology, 94, 171-188. 

Law BE, Falge E, Gu L et al. (2002) Environmental controls over carbon dioxide and water 
vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 113 (1-
4), 97-120. 

Law BE, Thornton P, Irvine J, Van Tuyl S, Anthoni P (2001) Carbon storage and fluxes in 
ponderosa pine forests at different developmental stages. Global Change Biology, 7 (7), 
755-777. 

Lee X, Fuentes JD, Staebler RM, Neumann HH (1999) Long-term observation of the 
atmospheric exchange of CO2 with a temperate deciduous forest in southern Ontario, 
Canada. Journal of Geophysical Research, 104 (D13), 15975-15984. 

Lenschow DH, Mann J, Kristensen L (1994) How long is long enough when measuring fluxes 
and other turbulence statistics? Journal of Atmospheric and Oceanic Technology, 11, 
661-673. 

Leuning R, Kelliher FM, de Pury DGG et al. (1995) Leaf nitrogen, photosynthesis, 
conductance and transpiration: scaling from leave to canopies. Plant, Cell and 
Environment, 18, 1183-1200. 

Leuning R, Dunin FX, Wang Y-P (1998) A two-leaf model for canopy conductance, 
photosynthesis and partitioning of available energy. II. Comparison with measurements. 
Agricultural and Forest Meteorology, 91, 113-125. 

Leuning R, Cleugh HA, Zegelin SJ, Hughes D (2005) Carbon and water fluxes over a 
temperate Eucalyptus forest and a tropical wet/dry savanna in Australia: measurements 
and comparison with MODIS remote sensing estimates. Agricultural and Forest 
Meteorology, 129 (3-4), 151-173. 

Linder S, Flower-Ellis JGK (1992) Environmental and physiological constraints to forest 
yield. In: Responses of Forest Ecosystems to Environmental Changes. (eds Teller A, 
Mathy P, Jeffers JNR), pp 149-164. Elsevier, London. 

Lindroth A, Grelle A, Moren AS (1998) Long-term measurements of boreal forest carbon 
balance reveal large temperature sensitivity. Global Change Biology, 4 (4), 443-450. 

Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Functional 
Ecology, 8, 315-323. 

Lloyd J, Grace J, Miranda AC et al. (1995) A simple calibrated model of Amazon rainforest 
productivity based in leaf biochemical properties. Plant, Cell and Environment, 18, 
1129-1145. 

Lobell DB, Hicke JA, Asner GP, Field CB, Tucker CJ, Loss SO (2002) Satellite estimates of 
productivity and light use efficiency in United States agriculture, 1982-98. Global 
Change Biology, 8, 722-735. 



VII. References 91

Mahrt L (1998) Flux Sampling Errors for Aircraft and Towers. Journal of Atmospheric and 
Oceanic Technology, 15, 416-429. 

Mann J, Lenschow DH (1994) Errors in airborne flux measurements. Journal of Geophysical 
Research, 99 (D7), 14519-14526. 

Medlyn BE, Robinson AP, Clement R, McMurtrie RE (2005) On the validation of models of 
forest CO2 exchange using eddy covariance data: some perils and pitfalls. Tree 
Physiology, 25, 839-857. 

Meyers TP, Hollinger SE (2004) An assessment of storage terms in the surface energy 
balance of maize and soybean. Agricultural and Forest Meteorology, 125, 105-115. 

Moffat A, Papale D, Reichstein M et al. (2006) http://www.bgc-jena.mpg.de/~antje.moffat/, 
gap filling comparison. 

Mohr C (2004) Numerical Computing with Matlab, Society for Industrial and Applied 
Mathematics, Philadelphia, 354 pp. 

Moncrieff JB, Mahli Y, Leuning R (1996) The propagation of errors in long-term 
measurements of land-atmosphere fluxes of carbon and water. Global Change Biology, 
2 (3), 231-240. 

Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. Journal of 
Applied Meteorology, 9, 747-766. 

Monteith JL (1977) Climate and the efficiency of crop production in Britain. Philosophical 
Transactions of the Royal Society, Series B, 281, 277–294. 

Monteith JL, Huda AKS, Midya D (1989) Modelling Sorghum and Pearl Millet. RESCAP: A 
resource capture model for Sorghum and Pearl Millet. In:  Modelling the Growth and 
Development of Sorghum and Pearl Millet. (eds Vilmani SM, Tandon HLS, 
Algarswamy G), ICRISAT Research Bulletin, Patanchern, India, pp. 31-34. 

Monteith JL, Unsworth M (1973, 1990) Principles of Environmental Physics, 2nd ed., 
Butterworth- Heinemann, Oxford, 291 pp. 

Monteith JL (1995) Accommodation between transpiring vegetation and the convective 
boundary-layer. Journal of Hydrology, 166, 251-263. 

Moore CJ (1986) Frequency response corrections for eddy covariance systems. Boundary 
Layer Meteorology, 37, 17-35. 

Morgenstern K, Black TA, Humphreys ER et al. (2004) Sensitivity of the carbon balance of a 
Pacific Northwest Douglas-fir forest during an el Niño/La Niña cycle. Agricultural and 
Forest Meteorology, 123, 201-219. 

Nemry B, Francois L, Gerard JC et al. (1999) Comparing global models of terrestrial primary 
productivity (NPP): analysis of the seasonal atmospheric CO2 signal. Global Change 
Biology, 5 (Suppl. 1), 65-76. 

Oren R, Hsieh C-I, Stoy P, Albertson J, McCarthy HR, Harrell P, Katul GG (2006) 
Estimating the uncertainty in annual net ecosystem carbon exchange: spatial variation in 
turbulent fluxes and sampling errors in eddy-covariance measurements. Global Change 
Biology, 12, 883-896. 

Osmond B, Ananyev G, Berry J et al. (2004) Changing the way we think about global change 
research: scaling up in experimental ecosystem science. Global Change Biology, 10, 
393-407. 



VII. References 92

Papale D, Valentini R (2003) A new assessment of European forests carbon exchanges by 
eddy fluxes and artificial neural network spatialization. Global Change Biology, 9 (4), 
525-535. 

Pilegaard K, Hummelshoj P, Jensen NO, Chen Z (2001) Two years of continuous CO2 eddy-
flux measurements over a Danish beech forest. Agricultural and Forest Meteorology, 
107, 29-41. 

Potter CS, Randerson JT, Field CB et al. (1993) Terrestrial ecosystem production: a model 
based on global satellite and surface data. Global Biogeochemical Cycles, 7 (4), 811-
841. 

Press WH, Flannery BP, Tenkolsky SA, Vetterling WT (1988, 1992) Numerical Recipes in C: 
The Art of Scientific Computing, 2nd ed., Cambridge University Press, Cambridge, New 
York, Port Chester, Melbourne, Sydney, 994 pp. 

Rambal S, Ourcival J-M, Joffre R, Mouillot F, Nouvellon Y, Reichstein M, Rocheteau A 
(2003) Drought controls over conductance and assimilation of a Mediterranean 
evergreen ecosystem: scaling from leaf to canopy. Global Change Biology, 9 (12), 
1813-1824. 

Raupach MR, Rayner PJ, Barrett DJ et al. (2005) Model-data synthesis in terrestrial carbon 
observation: methods, data requirements and data uncertainty specifications. Global 
Change Biology, 11, 378-397. 

Rayment MB, Loustau D, Jarvis PG (2002) Photosynthesis and respiration of black spruce at 
three organizational scales: shoot, branch and canopy. Tree Physiology, 22, 219-229. 

Reich PB, Turner DP, Bolstad P (1999) An Approach to Spatially Distributed Modelling of 
Net Primary Production (NPP) at the Landscape Scale and Its Application in Validation 
of EOS NPP Products. Remote Sensing of the Environement, 70, 69-81. 

Reichstein M, Tenhunen JD, Roupsard O et al. (2002) Severe drought effects on ecosystem 
CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current 
hypothesis? Global Change Biology, 8 (10), 999-1017. 

Reichstein M, Falge E, Baldocchi DD et al. (2005) On the separation of net ecosystem 
exchange into assimilation and ecosystem respiration: review and improved algorithm. 
Global Change Biology. 11 (9), 1424-1439. 

Reithmaier LM, Gockede M, Markkanen T, Knohl A, Churkina G, Rebmann C, Buchmann N, 
Foken T (2006) Use of remotely sensed land use classification for a better evaluation of 
micrometeorological flux measurement sites. Theoretical and Applied Climatology, 84 
(4), 219-233. 

Renewable Resource Data Center (RreDC) (2003) National Renewable Energy Laboratory. 
Solar Radiation Resource Information, US Department of Energy. 
http://rredc.nrel.gov/solar/ (accessed on April 3, 2003). 

Richardson AD, Hollinger DY (2005) Statistical modelling of ecosystem respiration using 
eddy covariance data: Maximum likelihood parameter estimation, and Monte Carlo 
simulation of model and parameter uncertainty, applied to three simple models. 
Agricultural and Forest Meteorology, 131, 191-208. 

Richardson AD, Hollinger DY, Burba GG et al. (2006) A multi-site analysis of random error 
in tower-based measurements of carbon and energy fluxes. Agricultural and Forest 
Meteorology, 136, 1-18. 



VII. References 93

Roderick ML, Farquhar GD, Berry SL, Noble IR (2001) On the direct effect of clouds and 
atmospheric particles on the productivity and structure of vegetation. Oecologia, 129 
(1), 21-30.  

Ruimy A, Jarvis PG, Baldocchi DD, Saugier B (1995) CO2 fluxes over plant canopies and 
solar radiation: a review. Advances in Ecological Research, 26, 1-68. 

Ruimy A, Kergoat L, Field CB, Saugier B (1996) The use of CO2 flux measurements in 
models of the global terrestrial carbon budget. Global Change Biology, 2, 287-296. 

Running SW, Baldocchi DD, Turner DP, Gower ST, Bakwin PS, Hibbard KA (1999) A 
global terrestrial monitoring network integrating tower fluxes, flask sampling, 
ecosystem modeling and EOS satellite data. Remote Sensing of Environment, 70 (1), 
108-127.  

Running SW, Thornton PE, Nemani RR, Glassy JM (2000) Global Terrestrial Gross and Net 
Primary Productivity from the Earth Observing System. In: Methods in Ecosystem 
Science, Sala O, Jackson R, and Mooney H (Eds). Springer-Verlag, New York. 

Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H (2004) A 
continuous satellite-derived measure of global terrestrial primary production. 
Bioscience, 54 (6), 547-560. 

Runyon J, Waring RH, Goward SN, Welles JM (1994) Environmental limits on net primary 
production and light-use efficiency across the Oregon transect. Ecological Applications, 
4 (2), 226-237. 

Schimel DS (1995) Terrestrial Ecosystems and the Carbon Cycle. Global Change Biology, 1 
(1), 77-91. 

Schimel DS, House JI, Hibbart KA et al. (2001) Recent patterns and mechanisms of carbon 
exchange by terrestrial ecosystems. Nature, 414, 169-172. 

Schmid HP (2002) Footprint modelling for vegetation atmosphere exchange studies: a review 
and perspective. Agricultural and Forest Meteorology, 113, 159-183. 

Schmid HP, Su H-B, Vogel CS, Curtis PS (2003) Ecosystem-atmosphere exchange of carbon 
dioxide over a mixed hardwood forest in northern lower Michigan. Journal of 
Geophysical Research – Atmosphere, 108 (D14), 4417, doi: 10.1029/2002JD003011.  

Schulz K, Jarvis AJ, Beven KJ, Soegaard H (2001) The predictive uncertainty of land surface 
fluxes in response to increasing ambient carbon dioxide. Journal of Climate, 14(12), 
2551-2562. 

Schulz K, Jarvis AJ (2004) Environmental and biological controls on the seasonal variations 
in latent heat fluxes derived from flux data for three forest sites. Water Resources 
Research, 40, W12501. 

Schulze E-D, Valentini R, Sanz M-J (2002) The long way from Kyoto to Marrakesh: 
Implications of the Kyoto Protocol negotiations for global ecology. Global Change 
Biology, 8, 505-518. 

Sellers PJ, Los SO, Tucker CJ, Justice CO, Dazlich DA, Collatz GJ, Randall DA (1996b) A 
revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: the 
generation of global fields of terrestrial biophysical parameters from satellite data. 
Journal of Climate, 9, 706-737. 

Sellers PJ, Randall DA, Collatz GJ et al. (1996a) A revised land surface parameterization 
(SiB2) for atmospheric GCMs. Part I: model formulation. Journal of Climate, 9, 676-
705. 



VII. References 94

Simonoff JS (1996) Smoothing Methods in Statistics. Springer Series in Statistics, Springer 
Verlag, 338 pp. 

Sokal RR, Rohlf FJ (1995) Biometry the principles and practice of statistics in biological 
research. 3rd edition. W. H. Freeman and Co.: New York. 887 pp. 

Sorooshian S, Dracup JA (1980) Stochastic parameter estimation procedures for hydrologic 
rainfall-runoff models: Correlated and heteroscedastic error cases. Water Resources 
Research, 16 (2), 430-442. 

Sparks TH, Menzel A (2002) Observed changes in seasons: an overview. International 
Journal of Climatology, 22, 1715-1725. 

Stauch VJ (2003) Identification of a data-based canopy carbon balance model derived from 
agricultural eddy flux measurements. Diploma thesis. Technical University of 
Braunschweig, Germany, 77 pp. 

Steffen W, Noble I, Canadell J et al. (The International Geosphere-Biosphere Programme 
Terrestrial Carbon Working Group) (1998) The Terrestrial Carbon Cycle: Implications 
for the Kyoto Protocol. Science, 280, 1393-1394. 

Su HB, Paw KT, Shaw RH (1996) Development of a coupled leaf & canopy model for the 
simulation of the plant-atmosphere interaction. Journal of Applied Meteorology, 35(5), 
733-748. 

Suyker AE, Verma SB (2001) Year-round observations of the net ecosystem exchange of 
carbon dioxide in a native tallgrass prairie. Global Change Biology, 7 (3), 279-289. 

Suyker AE, Verma SB, Burba GG (2003) Interannual variability in net CO2 exchange of a 
native tallgrass prairie. Global Change Biology, 9 (2), 255-265. 

Tans PP, Fund IY, Takahashi T (1990) Observational constraints on the global atmospheric 
CO2 budget. Science, 247, 1431-1438. 

TMY2 (2006) http://rredc.nrel.gov/solar/old_data/nsrdb/tmy2/, accessed in January 2006. 

Valentini R, Matteucci G, Dolman AJ et al. (2000) Respiration as the main determinant of 
carbon balance in European forests. Nature, 404, 861-865. 

Van Wijk MT, Bouten W (1999) Water and carbon fluxes above European coniferous forests 
modelled with artificial neural networks. Ecological Modelling, 120, 181-197. 

Van Wijk MT, Bouten W (2002) Simulating Daily and Half-Hourly Fluxes of Forest Carbon 
Dioxide and Water Vapor Exchange with a Simple Model of Light and Water Use. 
Ecosystems, 5, 597-610. 

Von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of 
photosynthesis and the gas exchange of leaves. Planta, 153 (4), 376-387. 

Von Caemmerer S (2000) Biochemical Models of Leaf Photosynthesis, CSIRO Publishing, 
Australia, 165 pp. 

Wang Y-P, Jarvis PG (1990) Description and validation of an array model - MAESTRO. 
Agricultural and Forest Meteorology, 51, 257-280. 

Wang Y-P, Leuning R (1998) A two-leaf model for canopy conductance, photosynthesis and 
partitioning of available energy I: Model description and comparison with a multi-
layered model. Agricultural and Forest Meteorology, 91, 89-111. 



VII. References 95

Wang Y-P, Leuning R, Cleugh HA, Coppin PA (2001) Parameter estimation in surface 
exchange models uising nonlinear inversion: how many parameters can we estimate and 
which measurements are most useful? Global Change Biology, 7, 495-510. 

Waring RH, Law BE, Goulden ML, Bassow SL, McCreight RW, Wofsy SC, Bazzaz FA 
(1995) Scaling gross ecosystem production at Harvard Forest with remote sensing: a 
comparison of estimates from a constrained quantum-use efficiency model and eddy 
correlation. Plant, Cell and Environment, 18, 1201-1213. 

Weibull W (1939) A Statistical Theory of Strength of Materials. Proceedings of the Royal 
Academy of Science, 15. 

Wesely ML, Hart RL (1985) Variability of short term eddy correlation estimates of mass 
exchange. In: Forest-Atmosphere Interaction: Proceedings of the Forest Environmental 
Measurements Conference, (eds Hutchinson BA, Hicks BB), pp. 591-612. Reidel 
Publications, Dordrecht, Netherlands. 

Williams M, Rastetter EB, Fernandes DN et al. (1996) Modelling the soil-plant-atmosphere 
continuum in a Quercus-Acer stand at Harvard Forest: the regulation of stomatal 
conductance by light, nitrogen and soil/plant hydraulic properties. Plant, Cell and 
Environment, 19, 911-927. 

Williams M, Rastetter EB, Fernandes DN, Goulden ML, Shaver GR, Johnson LC (1997) 
Predicting gross primary productivity in terrestrial ecosystems. Ecological Applications, 
7 (3), 882-894. 

Williams M, Eugster W, Rastetter EB, McFadden JP, Chapin FS (2000) The controls on net 
ecosystem productivity along an Arctic transect: a model comparison with flux 
measurements. Global Change Biology, 6 (Suppl. 1), 116-126. 

Williams M, Law BE, Anthoni PM, Unsworth M (2001) Using a simulation model and 
ecosystem flux data to examine carbon-water interactions in ponderosa pine. Tree 
Physiology, 21, 287-298. 

Williams M, Schwarz PA, Law BE, Irvine J, Kurpius MR (2005) An improved analysis of 
forest carbon dynamics using data assimilation. Global Change Biology, 11, 89-105. 

Wilson EM (1983) Engineering Hydrology, MacMillan, 309 pp. 

Wofsy SC, Goulden ML, Munger Jw, Faan SM, Bakwin PS, Daube BC, Bassow SL, Bazzaz 
FA (1993) Net exchange of CO2 in a mid-latitude forest. Science, 260, 1314-1317. 

Wofsy SC, Munger JW (2003) Harvard University. Atmospheric Sciences. Forest and 
Atmospheric Measurements. Data exchange. NIGEC data archive. http://www-
as.harvard.edu/data/nigec-data.html (accessed on June 23, 2003). 

Yi c, Li R, Bakwin PS et al. (2004) A nonparametric method for separating photosynthesis 
and respiration components in CO2 flux measurements. Geophysical Research Letters, 
31, L17107. doi:10.1029/2004GL020490. 

Young PC, Beven KJ (1994) Data-based mechanistic modelling and the rainfall-flow 
nonlinearity. Environmetrics, 5 (3), 335-363. 

Young PC, Parkinson S, Lees M (1996) Simplicity out of complexity in environmental 
modelling: Occam’s razor revisited. Journal of Applied Statistics, 23 (2-3), 165-210. 

Young PC, Pedregal DJ (1999) Recursive and en-bloc approaches to signal extraction. 
Journal of Applied Statistics, 26, 103-128. 



VII. References 96

Young PC (1999) Nonstationary time series analysis and forecasting. Progress in 
Environmental Science, 1 (1), 3-48. 

Young PC (2000) Stochastic, dynamic modeling and signal processing: time variable and 
state dependent parameter estimation. In: Nonlinear and Nonstationary Signal 
Processing, (eds Fitzgerald WJ, Smith RL, Walden AT, Young PC), pp. 74-114. 
Cambridge University Press, Cambridge, New York. 

Young PC, Garnier H., Jarvis AJ (2003) The identification of continuous-time linear and 
nonlinear models: a tutorial with environmental applications, Proceedings International 
Federation on Automatic Control (IFAC) SYSID Conference, Rotterdam, 2003. 

 


	Titlepage
	Summary
	Zusammenfassung
	Contents
	I. Introduction
	I.1 Modelling ecosystem carbon fluxes
	I.2 The FLUXNET database
	I.3 Theoretical background of EC measurements
	I.4 Scientific use of EC data
	I.5 The modelling concept
	I.6 General objective
	I.7 Chapter overview

	II. Interpolation of net CO2 flux observations
	Abstract
	II.1 Introduction
	II.2 Methods
	II.3 Results and discussion
	II.4 Conclusions

	III. Characterisation of uncertainties in net CO2 flux observations
	Abstract
	III.1 Introduction
	III.2 Methods
	III.3 Results and discussion
	III.4 Conclusions

	IV. Disaggregation of net CO2 flux observations
	IV.1 Introduction
	IV.2 Methods and material
	IV.3 Results and discussion

	V. Identification of a canopy CO2 flux model from observations
	Abstract
	V.1 Introduction
	V.2 Materials and methods
	V.3 Results
	V.4 Discussion
	V.5 Conclusions.

	VI. Discussion
	VI.1 The modelling approach: potentials and limitations
	VI.2 Data augmentation
	VI.3 Disaggregation of the net flux
	VI.4 Inferences on canopy behaviour and parametric models

	VII. References

