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Mental arithmetic exhibits various biases. Among those is a tendency to overestimate
addition and to underestimate subtraction outcomes. Does such “operational
momentum” (OM) also affect multiplication and division? Twenty-six adults produced
lines whose lengths corresponded to the correct outcomes of multiplication and division
problems shown in symbolic format. We found a reliable tendency to over-estimate
division outcomes, i.e., reverse OM. We suggest that anchoring on the first operand
(a tendency to use this number as a reference for further quantitative reasoning)
contributes to cognitive biases in mental arithmetic.
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momentum

COMPETING BIASES IN MENTAL ARITHMETIC: WHEN DIVISION
IS MORE AND MULTIPLICATION IS LESS

Even in educated adults, understanding quantities is contaminated by systematic biases. This was
previously shown in simple arithmetic tasks where they overestimate addition and underestimate
subtraction outcomes, both with symbolic and with non-symbolic operands (McCrink et al., 2007;
Knops et al., 2009, 2014). For example, when presented with a horizontal line flanked by 0 and
10 on both sides, adults indicate the result of ‘‘4 + 2’’ further rightward than the result of ‘‘8–2’’
(Pinhas and Fischer, 2008; see also Pinhas et al., 2014, 2015). These mental arithmetic biases are
called ‘‘operational momentum’’ (OM) effects.

Explanations for OM can be classified into non-spatial vs. spatial accounts, depending on
whether they invoke spatial-numerical associations. A first non-spatial account of OM assumes
that addition and subtraction are semantically associated with ‘‘more’’ or ‘‘less’’, respectively
(McCrink and Wynn, 2009); this ‘‘more-or-less heuristic’’ assumes that we overestimate addition
and underestimate subtraction outcomes due to superficial thinking, regardless of number format
or response mode. A second non-spatial account of OM assumes that we calculate, throughout life,
with logarithmically compressed number representations, resulting in over- or underestimations
of outcomes (see Chen and Verguts, 2012; Knops et al., 2014). This is the ‘‘compression account’’
of OM (e.g., McCrink et al., 2007).

In contrast, spatial accounts of OM postulate cognitive operations on a ‘‘mental number
line’’ (MNL), a spatially oriented representation of number concepts in ascending order (for
review see Fischer and Shaki, 2014): The ‘‘attentional-shift account’’ suggests that OM originates
from movements of attention along the MNL, causing ‘‘overshoots’’ in the direction associated
with the arithmetic operation, namely leftward (towards smaller numbers) for subtraction and
rightward (towards larger numbers) for addition (Knops et al., 2013, 2014; see also Klein et al.,
2014). Alternatively, the ‘‘spatial-competition account’’ postulates that the spatial activations
induced by the operands (i.e., single numbers), the operator (i.e., plus or minus signs) and the
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computed outcome (Pinhas and Fischer, 2008; Pinhas et al., 2014,
2015) together induce OM. This account acknowledges multiple
sources of OM but has not yet been sufficiently elaborated
to determine the relative weights of these contributions to
overall OM.

Given the evidence for OM in addition and subtraction,
similar biases should exist in multiplication and division.
Examining these predictions is important because we expect
fundamental principles of cognition to generalize across
cognitive operations. Moreover, comparing across tasks can
refine our understanding of any given cognitivemechanism, such
as its range of applicability. For example, it is puzzling to see
larger OM in zero- compared to non-zero problems (e.g., 3 +
0 vs. 2 + 1) although the second operand ‘‘zero’’ requires no
movements along theMNL (see Pinhas and Fischer, 2008; Pinhas
et al., 2015).

We derived the following predictions: first, the
more-or-less heuristic generalizes to state ‘‘if addition is more,
multiplication is much more’’ and ‘‘if subtraction is less, division
is much less’’ (for similar reasoning, see the ‘‘multiplication
makes bigger, division makes smaller’’ (MMBDMS) heuristic
of Katz and Knops, 2014). This reasoning captures the fact
that multiplication can be characterized as repeated addition,
although this is usually only regarded as typical of less advanced
calculators. Similarly, the size of attention shifts should scale
with the operator, inducing larger biases for multiplication than
addition and larger biases for division than subtraction. Next,
according to the compression account, larger numbers are more
compressed than small numbers. As a result, the dividend is
more compressed than the divisor, leading to underestimation
of the outcomes of division problems. As both operands in
multiplication problems are much smaller than of the dividend,
their mental representations are less compressed, leading to
higher outcome estimation than in division, and strong OM is
predicted. Finally, in the absence of empirical evidence about
spatial associations of these operators, and without using zero
as an operand, spatial competition predicts larger OM for
multiplication than division.

A recent study (Katz and Knops, 2014) attempted to measure,
for the first time, OM in multiplication and division. Adult
participants were presented with two operands, one on each side
of the operator, and both in either symbolic or non-symbolic
format. This was followed by a choice display containing five
different possible solutions in the same format. The authors
found OM with non-symbolic dot patterns: a bias to select
larger than correct outcomes in multiplication and smaller
than correct outcomes in division. However, there was no OM
with symbolic operands. The authors explained this null result
with the fact that response choices were all larger than the
operands for multiplication, and smaller than the operands for
division. Therefore, the proposed MMBDMS heuristic could
not be applied. Alternatively, the lack of OM for symbolic
numbers may reflect the fact that participants had to select
1 of 5 visually presented numbers, thus triggering overlearned
fact knowledge that can be directly retrieved from memory
(e.g., Campbell, 1987; Ashcraft, 1992). For a similar failure
to find OM with symbolic notation using this method, see

Knops et al. (2009). However, the relatively low accuracy levels
for symbolic multiplication (87%) and division (74%) speak
against this alternative explanation.

Here we adopt an improved method to re-assess the presence
of OM with symbolic numbers in multiplication and division.
Specifically, in contrast to Katz and Knops (2014) discrete
symbolic number choices, we present a line whose length must
match the outcome of a multiplication or division problem (for
details, see below; for previous applications of this production
method, see Shaki et al., 2015). This production task should
be more sensitive to the presence of OM in multiplication and
division because it provides a direct measure of the outcome
of both operations while its non-verbal nature reduces the
probability that participants draw on overlearned multiplication
and division knowledge.

MATERIALS AND METHODS

Participants
Twenty-six students (19 females, mean age 22.3 years, range
19–28 years, four left-handed) from Ariel University participated
in one 45-min session for course credit. All participants reported
normal or corrected-to-normal vision and were naïve about the
purpose of the experiment.

Stimuli and Apparatus
The method is visualized in Figure 1 (left panel). Six two-digit
numbers (12, 18, 21, 24, 27 and 28), six multiplication problems
(4 × 3; 6 × 3; 7 × 3; 8 × 3; 9 × 3 and 7 × 4) and six division
problems (48:4; 36:2; 63:3; 48:2; 54:2 and 112:4) constituted
the stimulus set. These problems were taken from Katz and
Knops (2014; Table 1) and their two-digit outcomes served as a
baseline. Black stimuli were shown on white background (Times
New Roman, bold, 30 points). Horizontal lines were three pixels
tall and appeared black-on-white on a 19-inch display with
1280× 1024 pixels resolution (landscape orientation). Each pixel
measured 0.25 mm and participants sat approximately 50 cm
from the display. The presentation of instructions and stimuli,
event timing and response recording were controlled by in-house
software. Responses were made using a standard keyboard placed
flat on the table with response keys centered under the display.

Design
We used the production method of Shaki et al. (2015)
which removes horizontal spatial biases from participants’
responses (see p. 472 for a more detailed argument). In
the beginning of the experiment, two standards, ‘‘one unit’’
(25 pixels) and ‘‘forty units’’ (1000 pixels), were presented on
white A4 paper (8.3 × 11.7 inches) in landscape orientation.
Participants’ task was to produce the line length matching
either the magnitude of the 2-digit number or the result of
an arithmetic problem (multiplication or division) based on
these standards. Participants produced lines with the ‘‘Up’’ and
‘‘Down’’ arrow keys.

For one group of participants, the line (or ‘‘starting-point’’)
initially was a ‘‘dot’’ (2 pixels wide) and for the other group
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the ‘‘starting-point’’ was a line 1000 pixels wide. Each stimulus,
either a number or a problem, was repeated six times per
block, resulting in 108 trials for each participant. Stimulus order
was randomized within a block and participants were assigned
randomly to the two ‘‘starting-point’’ conditions.

Procedure
Upon arrival, participants signed a consent form before looking
at the standards. They performed the task without standards
being visible. On each trial, one randomly selected stimulus was
presented 200 ms after participants pressed an arrow key. The
stimulus was shown for 600 ms; then the display turned blank
until participants pressed one of the mid-sagittally aligned (near
or far) arrow keys to display the starting point for responding.
Each button press adjusted line lengths by 2 pixels (↑ for longer,
↓ for shorter lines); continuous pressing adjusted line length at
30 Hz. Both increasing and decreasing length adjustments were
permitted. When participants were satisfied they pressed the
‘‘Enter’’ key to register their response; this started the next trial
without feedback.

RESULTS

An analysis of variance (ANOVA) evaluated effects of
three stimulus types (two-digit numbers, multiplication,
division) and six target numbers (12, 18, 21, 24, 27, 28) as
within-subjects factors and two starting points (dot, line)
as between-subject factor on line-length productions. The
main effect of stimulus type was significant, F(2,48) = 26.44,
MSE = 1066, p < 0.001, partial η2 = 0.524. Contrary to the
OM prediction, participants produced longer lines for results
of division (395 pixels) than for results of multiplication
(370 pixels) or two-digit numbers (374 pixels; see right panel of
Figure 1). Post hoc comparisons with 0.05-level with Bonferroni
correction indicated that division results were longer than
either multiplication results or two-digit numbers. However,
multiplication results did not differ from two-digit numbers.

The effect of target number was also significant,
F(5,120) = 114.29, MSE = 4557, p < 0.001, partial η2 = 0.826:

as instructed, participants produced longer lines for larger
target numbers. The interaction stimulus type X target number,
F(10,240) = 2.22, MSE = 1726, p = 0.017, partial η2 = 0.085,
reflected larger increments in division compared to the other
conditions, specifically for largest outcomes. Average line lengths
did not reliably differ between starting-point groups, F(1,24) < 1,
with means of 388 and 371 pixels for the ‘‘line’’ and ‘‘dot’’
starting conditions, respectively, and also did not interact with
any factors, all F’s< 1.42, p > 0.17.

DISCUSSION

Comparing both operation outcomes to the baseline reveals that
multiplication outcomes were not different from the baseline.
However, participants produced longer lines in division than
in the baseline condition. Thus, contrary to prediction, we
found a reverse OM effect: participants produced longer lines to
reflect division outcomes compared to multiplication outcomes.
Reverse OM was previously reported by Knops et al. (2013) in
non-symbolic addition and subtraction, perhaps reflecting lack
of arithmetic knowledge in the children tested. It was also found
in a spatial pointing task with adults by (Pinhas et al. (2015), see
also Klein et al., 2014), due to reversal of the visually presented
number interval. Importantly, none of the OM accounts can
explain the reverse OMwe foundwhen comparingmultiplication
and division.

In order to meet this challenge, we propose the presence of
two competing heuristics and biases in mental arithmetic:

(1) A ‘‘more-or-less’’ heuristic—building on the suggestion of
McCrink and Wynn (2009) for addition and subtraction,
Katz and Knops (2014) argued that OM can also originate
from the intuition that ‘‘multiplication makes bigger,
division makes smaller’’ (MMBDMS). This intuition is
gradually acquired through daily life, where multiplications
create larger outcomes and divisions create smaller
outcomes, hence biasing our estimation or acceptance of
multiplication and division outcomes.

(2) An anchoring bias—for identical arithmetic outcomes, the
first operand is (on average) larger in division than in

FIGURE 1 | Methods (left panel) and main results (right panel) of the experiment (error bars = 1 SEM).
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multiplication. Hence, division involves initial activation
of larger number concepts compared to multiplication
(see Tversky and Kahneman, 1974, for a demonstration
of anchoring within multiplication). Anchoring is present
early in development (Smith, 1999) and is a powerful and
unconscious cognitive mechanism (Kahneman, 2011).

These two components of OM can explain the present results
as well as several previous observations. Reverse OM, indicated
by longer lines for division than multiplication outcomes,
reflects strong anchoring on the large first operands in division,
overruling the weaker ‘‘more-or-less’’ heuristic. The lack of
difference between multiplication and baseline outcomes reflects
(a) stronger anchoring in baseline trials due to our controlled
outcomes; (b) the counteracting influence of the ‘‘more-or-less’’
heuristic that is only relevant in arithmetic operations and not for
single numbers.

Anchoring is an explanation for reverse OM in division when
compared to multiplication. Why has it not been noticed in
subtraction problems where the first operand is also bigger?
Indeed, we think that anchoring sheds a fresh light on the
previous puzzle of larger OM for zero compared to non-zero
problems (Pinhas and Fischer, 2008; Pinhas et al., 2015):
specifically, the computation of OM for zero problems is based
on comparing problems with identical first operands (e.g., 3 +
0 vs. 3–0), thus equating the anchoring effect. In contrast,
computing OM for non-zero problems with controlled outcomes
(e.g., 2 + 1 vs. 4–1) dilutes OM in the second example because
its first operand is larger and its associated anchoring bias
counteracts the expected bias towards smaller numbers and thus
the overall OM.

Why has anchoring not yet been acknowledged as a relevant
factor in mental arithmetic? This could be due to a prevalence
of problems with similar small-number concepts that are not
sufficiently different from each other to reveal the influence of
anchoring. Alternatively, anchoring has been overlooked because
mentally calculating with symbolic notation, especially in the
small number range, taps retrieval processes and thus leaves
little uncertainty that enables anchoring to emerge, at least with
traditional methods.

We briefly address two methodological concerns: first,
anchoring is also reflected in perceptual biases, e.g., when
producing lines from a small or large starting point, respectively
(see Jewell andMcCourt, 2000; Shaki et al., 2015). The absence of
this perceptual anchoring in the present results probably reflects
the between-group manipulation of the starting point condition
and helps us to compare the results between groups. Second, both
groups were Hebrew speaking healthy adults who read arithmetic

problems from left to right; hence, the first operand is their
anchor and reading direction for text is an irrelevant concern
here (see also Fischer and Shaki, 2016).

Considering the proposed interplay of the ‘‘more-or-less’’
heuristic and the anchoring bias also explains the results of Katz
and Knops (2014) who found non-symbolic OM: the initially
available anchoring was probably diluted by the presentation
of multiple dot patterns for OM assessment, thus allowing the
weaker heuristic to dominate the outcomes. As stated by (Tversky
and Kahneman, 1974, p. 1131), ‘‘. . . adjustment from an anchor
(. . .) is usually employed in numerical prediction when a relevant
value is available.’’

An open issue at this point is the lack of complete reversal
of OM in subtraction when compared to the present division
outcomes. We assume that the use of a production task in the
present study removed contributions to OM from other spatial
biases, such as attention shifts or sign-space associations (see
above). These factors contribute to the magnitude of OM but
were absent here, thus leaving only two competing players in
the OM game and supporting our assumption of the strength
of anchoring. Future studies are directed at determining the
relative weights of the various components of OM, ideally by
investigating all arithmetic operations in a single study. Possible
cognitive benefits of OMneed to be investigated in future studies.
In this endeavor it might also be useful to apply neuroimaging
techniques (e.g., Naseer and Hong, 2015) to assess brain regions
involved in the different components of OM.
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