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Chapter 1

Introduction

The purpose of this work is to apply recently developed nonlinear dimension-
ality reduction methods to real climate data, in order to build low dimensional
models for climate prediction. Reducing the number of dimensions could also
offer us a clearer view of how climate systems evolve, which could lead us to
a better interpretation of the physical processes.

Many physical systems, although multidimensional, exhibit a low dimen-
sional dynamics that makes modelisation more affordable. An extreme ex-
ample could be a vibrating string which is softly perturbed from its rest
position. Although the string is, ideally, infinite dimensional, only a finite
number of points is needed to characterise the full system and even predict
its subsequent behaviour. In more complicated systems, as climate ones, we
can observe similar properties. For example, El Nino, which is an extraordi-
nary phenomenon of heating in the Eastern tropical Pacific Ocean, is usually
represented with a one dimensional variable called the Southern Oscillation
Index (SOI), therefore receiving the name of El Nifio/Southern Oscillation,
or ENSO, for the whole process. The underlying physical idea can be better
understood with a thought experiment: let us consider a very long water pipe
of circular section. When the water flows slowly, the velocity pattern along
the pipe is quite simple due to symmetries and the low speed approximation.
Hence, only a few variables can represent the whole flow. However, when the
water flows more rapidly, the flow becomes turbulent, and more and more di-
mensions are needed to represent the complexity of the flow. In other words,
if we represent the system in a properly chosen coordinate space, the point
that represents it will move from a low dimensional manifold to a high di-
mensional manifold. Consequently, coordinates that were not needed in our
previous low speed representation will become more and more important and,
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consequently, not negligible.

Another example, which is closely linked with this work, refers to the
dynamics of the sea surface temperature (SST) in the tropical Pacific Ocean.
It is reasonable to suppose that the behaviour of the SST in each macroscopic
point of the surface of the sea is closely tied to the points around. This
means that a useful representation of the system can be obtained by giving
a discrete grid of finite size. Moreover, the dynamics and thermodynamics
of the fluid will link the behaviour of the set, therefore relating points with
their neighbours and, of course, reducing the information amount needed to
represent the whole system.

These examples take us from the physical to the mathematical problem:
how can we reduce the dimensionality of a system, capturing the essential
features and neglecting the irrelevant ones? The answer is not simple, of
course, as there are many ways of performing the operation. In other words,
the transformation of coordinates from the original physical variables to the
transformed mathematical (and therefore, not necessarily physical) ones is
not unique. For our aims, we could divide the bunch of methods that are
commonly used in two types: linear and nonlinear methods of dimensionality
reduction, in the sense that the original and new space of representation can
be transformed using a linear or a nonlinear function. In climate research,
for instance, a widely used linear method is the principal component analysis
(PCA) (Joliffe, 1986). In PCA, the system under study is approximated by
a linear combination of steady spatial patterns with time dependent coeffi-
cients. The relevant number of dimensions is determined from the cumulative
explained variance of the PCA modes and their physical interpretation. This
variance is closely related to the eigenvalues of the spectral decomposition.
Unfortunately, for many physical systems, these eigenvalues show a slow con-
vergence that hampers the selection of a minimum number of dimensions.

In this work, we shall apply a nonlinear method of dimensionality re-
duction to the observed sea surface temperature (SST) data in the tropical
Pacific Ocean. In the equatorial Pacific, the SST evolution is characterised
by a nonlinear superposition of two different oscillatory phenomena, ENSO
and the Annual Cycle. Attempts to reconstruct ENSO’s attractor have been
made using different nonlinear methods (Monahan (2001), Grieger and Latif
(1994)). The statistical analysis of ENSO is mostly based on SST anomalies
which are obtained by subtracting a mean Annual Cycle from the monthly
averaged SST data. Extracting a time-varying Annual Cycle and an ENSO
mode in a multivariate way from SST data is not simple and the results
may depend strongly on the assumptions used by different methodologies. In
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particular, linear methods may fail to disentangle both modes since ENSO
and the Annual Cycle exhibit in some sense a joint synchronised behaviour:
ENSO amplitude is strong during the boreal winter season. This behaviour
is reminiscent of an interactive coupling between the two modes (Pikovsky
et al., 2001). For this reason, the study of the interaction is of great impor-
tance for understanding the variability of ENSO. In the last years, several
articles discussing how ENSO and the Annual Cycle interact in the tropical
Pacific Ocean have been published (e.g. Chang et al. (1994), Xie (1995),
Jin et al. (1996), Tziperman et al. (1998), An and Wang (2001)). This type
of interaction, which could be nonlinear, may lead to erroneous conclusions
when subtracting a constant Annual Cycle from SST data under consider-
ation, as it is usually done in the analysis of ENSO dynamics. Therefore,
the data space cannot be decomposed into a sum of linear subspaces each of
them containing an independent variable because of the existing interaction.
So that, the separation of the SST into physically independent modes is not
possible. Our aim will be, first, to extract a low dimensional manifold where
the whole physical system could be embedded, and then, to make predictions
of future dynamical states of the physical system.

In Chapter 2, the basis of dimensionality reduction will be developed.
Linear and nonlinear techniques will be explained in detail. In particular, the
multidimensional scaling (MDS) point of view will serve to unify most of the
methods that will be used throughout this work.

Chapter 3 will be devoted to climate systems. More specifically, the state-
of-the-art of the El Nifio/Southern Oscillation (ENSO) and of the Annual
Cycle in the tropical Pacific Ocean will cover the majority of the chapter. On
one side, ENSO is the most dominant statistical and physical mode of climate
variability on interannual timescales (Philander, 1990). Climate models of
different complexity have been used to explore the origin of its oscillatory
character, its period and skewness (Zebiak and Cane (1987), Tziperman et al.
(1994), Jin (1997)). On the other side, the Annual Cycle in the tropical
Pacific area originates from a complex interplay between semi-annual solar
forcing and coupled air-sea instabilities (e.g. Li and Philander (1996), Xie
(1994)). As the strength of these instabilities varies slowly in time, one may
expect that the amplitude of the physical Annual Cycle is not stationary but
time-dependent. Both oscillations will be explained in detail.

Chapter 4 will verse about the application of the mathematical methods
developed in Chapter 2 to the physical systems explained in Chapter 3. This
will help to compare the application of linear and nonlinear methods of di-
mensionality reduction to real data. We shall see how nonlinear methods
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are more efficient in explaining the variability and the physical behaviour
of the data. The advantages and disadvantages of both approaches will be
commented.

The goal of the previous chapters will be accomplished in Chapter 5.
There, prediction of real states of the coupled model will be computed by
using two different methods. First, a model built by adjusting the data of
the reduced system found in Chapter 4 using a backfitting algorithm; and, on
the other, an ensemble of linear and nonlinear models. Both approaches will
be used to predict future Annual Cycle and El Nino events as a joint system.
We shall see how the models, despite their simplicity, predict future states
with a lead time of several months. The limits of the model will be discussed
as well.

Finally, this work will conclude in Chapter 6, where a broad view of the
whole Thesis will serve as first step to point out future directions of work.



Chapter 2

An overview of dimensionality
reduction

In this Chapter, a general theory of dimensionality reduction is presented.
Although a general framework of the problem, the Multidimensional Scaling
(MDS), can be used to explain most of the methods used in this work, we
shall start with a classical explanation of them. Beginning from the most
used techniques of linear analysis, we shall take a step forward into a more
general framework.

2.1 Linear methods of dimensionality reduc-
tion

In this section, we shall use the following notation. Let us define a matrix
X,xm of data, in such a way that Xj; is an observation of a certain physical
variable Xj at time t;. Usually, the set of variables {X;}i, shares the same
dimensionality. If not, an interesting problem arises, as we should adimension-
alise the variables either using statistical quantities or physical parameters,
although there is no unique way of doing it in general. We shall suppose
that the variables {X;}i%; form a field in a certain physical space, meaning
that the variable takes different values in different spatial points rj. We could
then rename Xj; as X(t;,r;). Let Y = XT. Then, {X;} is a vector of m
unidimensional variables measured at the same time, and {Y;}, which is a
column of the matrix X, will be a time series of n measures of the variable
ordered at position ¢. Summarising, the set of observations at different times
t1,...,t, builds up the matrix X, «,, so each row will correspond to an obser-

9



10 An overview of dimensionality reduction

vation of the set of variables at a certain time, {X;}, and each column will
represent the time series of a particular unidimensional variable {Y;}. Unless
otherwise stated, the temporal means are always set to zero in this section,
s0 Y1, Xy = 0. Moreover, we shall set )%, Xj; = 0 in section 2.1.1.

2.1.1 Principal Component Analysis

The Principal Component Analysis (PCA) is one of the most common used
methods of dimensionality reduction. PCA has been widely applied in many
fields of science. For this reason, a handful of names is used to refer to it:
empirical orthogonal function (EOF) analysis in the geoscience context (von
Storch and Zwiers, 1999), proper orthogonal decomposition (POD) in fluid
dynamics (Holmes et al., 1997) or Karhunen-Loeve (KL) decomposition if
the data are in continuous form (Karhunen (1946) and Loeve (1945)). In this
work, we shall use the name PCA, which is the most used in the bibliography
when analysing time series of data.

The mathematical idea of PCA is to span the original data space into a
sum of orthogonal subspaces with a particular optimal property. In this case,
the basis of the subspaces are the directions of maximal statistical variability
of the data. Let us define {Py};"; as a orthogonal basis of the data space.
Any point {X;} can be represented as

Xj= > pe ax(t;)Py (2.1)

where ay(t;) are called principal components and hold the time variability,
while Py (r) are called patterns or empirical orthogonal functions. In general,
the patterns are associated with the weight of the different variables. In this
case, they give information about the variation of the variables in space r.
Therefore the name pattern, a picture that represent a sort of spatial struc-
ture which is independent of time.

Although there are algorithms that extract the whole basis of patterns at
the same time, we shall follow a step-by-step procedure. The first pattern P,
will be the vector that minimises

S =< XX >-<(X-P)'X -Py) > (2.2)

where < XTX > is the statistical variance of X and we shall be denoted
as V. It is noteworthy that V is positive definite. Eq. (2.2) means that
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the projection of the data onto the vector P; takes the maximum possible
variance. The second step of the orthogonalisation minimises a function S,
that considers the part of the data that was not projected onto the P; and
so on. We can summarise this in the formula

j
Sj=<X'X >-) " < (X-Py)T(X-Py) > (2.3)
k=1
The minimisation of Eq. (2.3) can be achieved using a Lagrange multiplier
A, with a constraint P;TP;—1 = 0. So that
0
Wk[(x P)T(X - Pj) + A(P;"P-1)] =0 for k=1,...n = (XTX)P; =
J

VPJ' — )\ij (24)
This means that the directions of maximum variance are the eigenvectors of
the correlation matrix of data. Then, projecting the data into the directions

of the eigenvectors, we get the principal components ay(t;),for k = 1,...,m.
As V is definite positive, the eigenvalues are always non-negative.

There are many interesting properties of the eigenvalues, patterns and
principal components of the PCA decomposition. Here, we shall enumerate
some:

1. V=" PP,

2. >0, < PTP; >= PREPY
3. \ = P;"VP,

4. a;(t) = XP;

5. < a;(t)aj(t) >=0

Property 3. states that the eigenvalue associated with a certain sub-
space measures the variance of the projection of the data into that subspace.
Therefore, as we can order all the eigenvalues, the bigger will correspond to
the subspace of maximum variance. Let us order them in the following way:
AL > Ay > ... > Ay > 0. For this reason, we could carefully choose a certain
number of subspaces and approximate,

X ~ iaj(t)Pj (2.5)
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There are many criteria for choosing a proper number of representative sub-
spaces. This will be explained in detail in Chapter 4.

Rotation of EOFs

When the patterns found by principal component analysis are difficult to in-
terpret in terms of physics, a useful, although controversial, mathematical
procedure is the rotation of the eigenvectors. The common procedure is first
to conduct a regular PCA, retain some of the eigenvectors and then recon-
struct the data using the truncated basis. Starting from this truncated basis,
a new basis is found by maximising some function. There are several of these
functions in literature: varimax, promax, etc... (Preisendorfer, 1988). Ro-
tations can be made keeping the orthogonality or not. In any of the cases,
the main property of the PCA is lost, that is the principal components are
no longer uncorrelated. It is important to note that rotation of eigenvectors
adds a new component of decision in the data analyst. There is no unique
way of doing this operation. As an example, the varimax rotation (Kaiser,
1958) tries to concentrate the explained variance in one of the new vectors,
R;,l =1,...,p < n by minimising the function

f= >0 (G oim R — e (0L RE)Y) (2.6)

which can be seen as a spatial variance of the squared vectors. But this is,
again, based on statistical ideas, not in physical reasoning in general.

2.1.2 Multidimensional Scaling

Consider again the matrix of data X,y,,. We can think that the matrix is
built up of n points {X;} in a R™ space, and that these points belong to a
trajectory as they are ordered in time.

In this space, for every two points {X;, X} in R™, the metric or distance
d;; = d(X;, X]) can be defined as a function onto nonnegative real numbers
that obeys the following rules:

1. djj =01if and only if i = j
2. dij = dji
3. dij + dji, > dyj, which is popularly known as the triangle inequality.
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The key idea of the multidimensional scaling (MDS) (Borg and Groenen,
1997) is that the distance can be interpreted as a measure of similarity: if
d;; < d;; we shall say that the physical state represented by X is closer to
X than Xy. Let us define

(D@ = dy? (2.7)

as a matrix of squared distances. This matrix is symmetric and positive
definite. Now let us transform D® via an operation called double-centring.
More precisely, let us define a matrix J as

Jij = 513' — 1/11 (28)
where 0;; is the Kronecker delta and a second matrix
Z® = -1JD®@J (2.9)
Then, Z® can be decomposed into its eigenvalues and eigenvectors,
Z(Z)Qi = Aidi (2.10)
Defining Aj; = \idy; with A; > A4y and @;; = ¢;; the component j of vector
qi, then Z®® = QAQ. If the set of eigenvalues have some leading com-
ponents {Aq,..., Ay} with M < m, and the rest decays very fast, meaning

A >> Mg, we could approximate Z(3) to its projection into the subspace
spanned by the eigenvectors {qy, ..., qu }-

The MDS framework is a generalisation of the PCA. In particular, defin-
ing D® using the definition of euclidean distance will take us to the same
algebraic results as in PCA, as we shall show in section 2.1.3. Moreover,
a step forward into a nonlinear generalisation can be taken with a suitable
definition of distance in Eq. (2.7).

2.1.3 Principal Coordination Analysis, or PCA revis-
ited
Let us define the scalar product in the data space as,

X Xy= > XXk (2.11)
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A space where the scalar product is defined as in (2.11) is called euclidean.
We also define the norm of a vector as

1Xill = vXi- X = ZXikak (2.12)
k=1

and the distance between two points X; and Xj as the norm of their difference

m

dij = X=Xl = | > (K — Xjp)? (2.13)
k=1

which is the well known expression of euclidean distance. Therefore, the
matrix of squared distances D® can be written in the form

D® = 1cT +c1T — 2XXT (2.14)

where the components of the vector ¢ are ¢; = Y, X3 and 1 is a vector
formed by ones and dimension n. Then, applying the centring and eigende-
composition as explained in section (2.1.2), we obtain,

1
7(2) _ _EJD@)J = XXT = QAQT = QA/2A2QT (2.15)

where A is the diagonal matrix of eigenvalues and Q is the matrix of eigenvec-
tors of Z(®. This allows us to make a representation of X in terms of Qi)\il /2
which is called principal coordinates analysis (PCO or PCoA) (Gower, 1966).
If the data have zero mean and variance one, the algebraic correspondence
with PCA arises. We remind that the correlation matrix V can be written

as,
V = XX = PAPT = PA2QTQAY?PT (2.16)

where QTQ = I. Finally, we can associate, by singular value decomposition,
X = QAY?PT, where QA'/? is the principal components matrix, A is the
diagonal matrix formed by the eigenvalues of the correlation matrix and P is
the matrix of patterns. Therefore, PCA and PCO get the same representation
in terms of components QA'/2. This way we can reduce the dimensionality
of the data by taking Qi)\il/z from ¢ = 1 to some value M < m, which could
be M << m.

In other words, PCA can be regarded as an euclidean MDS for normalised
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Figure 2.1: (a) Spiral with uniform noise (arbitrary units). (b) Result for the spi-
ral after PCA, the method cannot guess the true dimensionality (arbitrary units).
(c) Result for the spiral after Isomap, now the method unfolds the one dimensional
trajectory (arbitrary units). In the inner box, the cumulative variances ¢, against
the number of eigenvalues considered for Isomap (e) and PCA (H).
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data. We would like to stress that PCA is a linear method of decomposition,
where the data are projected into orthonormal linear subspaces. However, if
the data points belong to a nonlinear manifold, the orthonormal projection
spreads contributions to the variance onto the different principal components.
In that case, reducing the dimensionality of a physical system in which the
dynamics is not governed by linear processes or where there are nonlinear
relations between variables could lead to a wrong interpretation of the di-
mensionality. As a simple example, we can apply PCA to a simple nonlinear
dataset. For instance, we construct a trajectory of a particle moving on a
spiral with some added uniform noise (Fig. 2.1a). In this example we can
observe (Fig. 2.1b) that the PCA do not reconstruct the one-dimensional
trajectory. To reproduce the real dynamics we need, in this context, to use
a definition of distance that captures the nonlinear structure of the mani-
fold. The geodesic distance is the proper metric for measuring distances on
nonlinear manifolds, as we shall discuss in section 2.2.

2.2 Nonlinear methods of dimensionality re-
duction

In this section, two methods of nonlinear dimensionality reduction are pre-
sented. These methods, Isomap (Tenenbaum et al., 2000) and Local Linear
Embedding (Roweis and Saul, 2000) were originally developed in the context
of cognitive sciences as a way of representing the reduction of dimensionality
in visual perception (Seung and Lee, 2000). It is important to stress why
the word nonlinear is used. Generally speaking, dimensionality reduction is
a transformation of coordinates 7 from a data space X to a new one of lower
dimensionality @, therefore ® = 7(X). If 7 is not a linear transformation
connecting the original and new spaces, we shall say that the reduction is
nonlinear.

2.2.1 Isometric Feature Mapping or Isomap

The natural metric for nonlinear manifolds is the geodesic distance (for a
complete review on differential geometry, see Do Carmo (1976)). Let us have
an euclidean space of data X of coordinates {Xjy, ..., X;,}. Suppose there is
a manifold ® C X represented by the coordinates {©q,...,0,}. The metric
of ® is the matrix g with elements defined by,

m 90X 0X
9ij = k=1 96, a@; (2.17)
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For a general metric g, the distance between two points 6; and 0, in © is
then

22

01 ij=1

In the case of a euclidean manifold, ¢g;; = ¢;; and we recover Eq. (2.13) for
the discrete case.

For example, let us think of a particular manifold @, in our case a spiral
similar to that one shown in Fig. 2.1a. The equations of the spiral are:

r =tsint

Yy =1tcost

where t belongs to a real interval. The euclidean distance dg between
two points (z1,41) = (2(t1),y(t1)) and (z3,43) = (2(t2),y(l2)) is dp =
V(@ —29)2 + (y1 — y2)2 = /1] + 13 — 2t1t5 cos(t; — t9). The path from one
point to another one is a straight line that does not belong to the spiral. But,
if we restrict ourselves to a path inside the spiral, the geodesic distance can be
calculated as dg = ;12 V1+2dt = H{ta\/1 + 3 — t1\/1+ 13 + arcsinh(t,) —
arcsinh(t1)}. It is interesting to note that small euclidean distances may cor-
respond to large geodesic distances. For this reason, measuring similarities
based on inadequate distances could lead to misleading results. Consequently,
the idea is to substitute the euclidean distance in the MDS method (hence,
the scalar product defined by the statistical correlation in the case of PCA)
by the geodesic distance between each pair of points. Tenenbaum et al. (2000)
proposed Isomap, a method for computing geodesic distances through graph
distances. The method could be divided in several phases:

1. In a first step, Isomap approximates the geodesic distance using a
graph constructed by connecting nearest neighbours in the euclidean
R™ space. More specifically, we shall say that a point X; is one of the
nearest neighbours of X if it belongs to a ball centred on X; with radius
e. Alternatively, we could also define X; as a nearest neighbour of X; if
it is one of the K closest points (measured by the euclidean distance)
to Xj in the set.

2. After the nearest neighbours are defined, they are connected via weighted
edges where the weight is the euclidean distance between connected
points.
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3. Then, the minimum graph distance between each pair of points is com-
puted.

This distance is used as a fair approximation to the true geodesic distance (for
discussion and proofs, see Tenenbaum et al. (2000) and references therein).
The crucial point lies on finding an interval of €, or a number of K, where the
solution is robust. Low values of € or K will not connect all the points, while
too many will overestimate the dimension of the manifold. After the new ma-
trix of squared distances is computed, the MDS procedure is applied, starting
at Eq. (2.9). The dimensionality of the manifold (the optimum number of
dimensions needed to capture the variability of the data) can be measured via
the eigenvalues of the MDS procedure. These eigenvalues are a measure of
the error made when we project the whole dataset onto the directions defined
by the corresponding eigenvectors. The cumulative variance c,, of dimension
p is defined using ¢, = ZgleA”, and takes the value ¢, = 0 if no statistical
variance is explained, and ¢, = 1 if all the variability is taken into account.
The Isomap algorithm has two computational bottlenecks (Silva and Tenen-
baum, 2003). The first is the calculation of the n? shortest-paths distance
matrix. The second is the eigenvalue calculation after the double-centring
operation in Eq. (2.9) of the n? rank matrix Z®. These two inefficiencies
can be avoided by designating n” < n landmark points. Instead of comput-
ing the whole set of distances, only the n x n’ matrix of distances from each
data point to the landmarks are calculated. Of course, if n’ << n, a lot
of computing time is saved. The fact that the use of landmarks is feasible
can be justified from the assumption that the data are embedded in a low-
dimensional manifold (Silva and Tenenbaum, 2003).

Using the same example as in the preceeding section, we apply Isomap (k = 5)
to the spiral set with noise represented in Fig. 2.1a. For the spiral, the di-
mensionality is one (Fig. 2.1c, inner box), in contrast with the results offered
by PCA. We can observe how the spiral is unfolded into an approximately one
dimensional set in the Fig. 2.1c. Comparison of the eigenvalues calculated by
PCA and Isomap confirms that the dimensionality of the spiral is correctly
guessed by Isomap, and that PCA overestimates the true dimensionality (Fig.
2.1c, inner box). A second academic and, nevertheless, clarifying example is
the so-called swiss roll (Fig. 2.2). In Fig. 2.3 (left), we observe how Isomap
can unfold the original three dimensional data. It is important to note that
this method is rotationally invariant, as distance is an invariant measure for
these transformations. Therefore, rotating the resulting data does not change
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Figure 2.2: Three dimensional plot of the swiss roll data.

the results, only the physical interpretation of them.

2.2.2 Local Linear Embedding

The objective of the Local Linear Embedding (LLE) is to reconstruct a lower
dimensional manifold ® from a high dimensional one X by imposing a linear
metric in the neighbourhood of each point of the manifold X. The steps of
LLE are the following:

1. First, we assign neighbours to each data point {X;} using, for example,
an euclidean metric.

2. Then, we introduce the assumption that neighbouring points can be
embedded in a linear manifold if the data are well sampled. This is
done by computing the weights WW;; that minimises the error

(W) = Z X, — Zwijxjf (2.19)

subject to two constraints: first, that each data point {X;} is recon-
structed only from its neighbours, so W;; = 0 if {X;} is not a neighbour
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Figure 2.3: Isomap (left) and LLE (right) two dimensional embeddings for the
swiss roll data. Actual values of the coordinates are not shown.

of {Xi}; second, that >_; W;; = 1. The minimisation of Eq. 2.19 is a
least-squared problem.

3. Finally, compute the new points {®;} by minimising a cost function

©(O)=> [6;— ) W;6 (2.20)

As with the previous method, Isomap, there is a rotational, translational
and scaling invariance. A fundamental difference is that the LLE algorithm
needs the embedding number of dimensions as input for Eq. 2.20. The
example of the swiss roll is successfully disentangled by LLE, as observed in
Fig.2.3(right), but, on the other hand, the number of dimensions had to be
used as input to reach this result.
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2.2.3 Kernel PCA is a kernel view

The nonlinear algorithms explained in this section share a common charac-
teristic: they induce a local neighbourhood structure to construct a global
map from a high dimensional space to a lower one. The main difference is the
type of algorithm used to find the global embedding. There is an interest-
ing way of interpreting the different classes of algorithms as kernel methods
(Ham et al., 2004). Summarising, considering the data space X, a positive
definite kernel k is a real-valued function on X x X with the property that
there exists a map ® into a dot product space, P, ® : X — P such for all
x,x' € X, there exists (x,2') = k(z,2’). With this definition, the PCA prob-
lem is transformed into a problem that can be solved in terms of a kernel £ in
the following way. In PCA, as explained in section 2.1.1, the key operation is
the diagonalisation of the covariance matrix V. Therefore, the patterns can
be written as Pj = § > (X; - P;j)X;, so the patterns are spanned into a sum of
the data vectors. Let us consider a covariance matrix V = 3.7 | &(X;) ' ®(X;)
as a result of the map ®. This matrix can be diagonalised, AP = VP.
Now, VP = AP = A} «a;®(X;) and substituting in the eigenvalue equa-
tion, VP = >3 0;®(X;)2(X)T2(X;) = D> oiK(X, X;)@(X;) and we
can rewrite a new eigenvalue problem Ka = Aa. These calculations were
done supposing zero mean for the variables. In a more general case, the new
kernel can be written as K’ = (I — 11T)K(I — 117), where I is the identity
matrix of dimension n.

In the case of Isomap, the kernel can be defined as Kisomep = —%(I —
11T)D®(I-117), meaning that we centre the squared-distance matrix, while
in the case of LLE, the weight matrix W is the one that defines the kernel
Krrg = Amael— (I—=W)(I—=WT) where A4, is the maximum eigenvalue. In
conclusion, Isomap and LLE can be seen as kernel PCA with particular ker-
nel matrices. This is the starting point of an increasing amount of literature
about generalisation of these nonlinear methods. In particular, a continuum
generalisation of Isomap (Zha and Zhang, 2003) could be interesting for find-
ing reduced equations for classical infinite dimensional equations.






Chapter 3

A short introduction to
geophysics in the tropical
Pacific Ocean

In this Chapter, an overview about two physical phenomena occurring in
the tropical Pacific Ocean will be given. First of all, we shall focus on the
physics of El Nino phenomenon. After the main description is given, the
annual oscillation in the tropical Pacific Ocean will be described. There is no
current mathematical model for it, although many physical features are being
better understood over the last years. In the last part of the Chapter, three
climate models of different complexity will be explained in detail: the Zebiak-
Cane (ZC) model (Zebiak and Cane, 1987), the delayed oscillator (DO) model
(Tziperman et al., 1994) and the recharge oscillator (RC) model (Jin, 1997).
These two phenomena join together in a complex oscillation that embeds
most of the variability of the physical variables in that region of the Earth.
The interaction between them is still not well known. One of the problems
that difficults the modeling of the interaction is the separation of the two
oscillations. In other words, how can we distinguish which contribution from
the total value of the variable corresponds to the effect of the solar forcing,
the Annual Cycle, and which to the interannual oscillation, El Nino.

23
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3.1 A general physical framework for the trop-
ical Pacific Ocean

The atmosphere and the ocean are essentially composed by fluids. There-
fore, the Navier-Stokes equations are fundamental in the study of physical
phenomena concerning both systems. Let us first start with a quite general
Navier-Stokes equation on a rotating frame at constant angular velocity €2,

%—Y+(V-V)V+ZQXV:—%Vp+UV2V+g' (3.1)
where V is the velocity field of the fluid, p is the density of the fluid, p is the
pressure, ¢’ is the gravity minus the centripetal force (which can usually be
neglected) and v = n/p is the dynamical viscosity, being 71 the shear viscosity.
Let us apply this equations to the particular case of a thin layer of fluid on
the Earth, i. e. the scale of horizontal motions are much larger than the
scale of vertical motions. Thus we assume that the fluid is confined to a layer
which is much thinner than it is wide. A second assumption is that vertical
motions only change the layer depth and that the pressure gradient is near
hydrostatic. In the case, the equations are usually called the Laplace tidal
equations and, in spherical coordinates A (longitude) and ¢ (latitude) are
(Gill, 1982),

5+(V.v>u_(2Q+TCOS¢)USIH¢__TCOS¢5 (3.2)
E"‘(V‘V)U—i— <29—i— rcosqb)usm(b__;a_(p (3.3)
on 1 0 ) B
ot " reoso {5[(1{ Fn)ul + 55 [(H + n)v]} =0 (3.4)

where u is the horizontal velocity in the longitudinal direction, taking the
eastward flow as positive, v is the meridional flow, taking the northward flow
as positive and r is the radius of the Earth. Vertical motion is neglected except

when affecting 7, the thickness of the water layer which has an equilibrium
o 0

9z’ 9y ) *
It is convenient to define a new variable h = gn that will help to simplify
further equations. Although the system we are dealing with is spherical, if
we restrict ourselves to the tropical region, we can approximate the spherical

coordinates to a local cartesian frame (z, y, z) fixed to the Earth surface. Near

depth of H in absence of motion. Thus, the V operator is defined as
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the Equator, ¢ is small so sin ¢ ~ ¢ and cos ¢ ~ 1. We shall take the variable
xr = r\ as positive in the East direction, the variable y = r¢ is positive in
the North direction, and the z following the cross product rule. The Coriolis
parameter f is defined as f = 2Q2sin ¢. We define the 3 parameter as,

ﬁzld_f_QQcosgb (3.5)

rdop r
so we approximate f = [y near the Equator. The parameter § = 2.3 X
10~ "m~1s7!is exact at the Equator and approximately constant in the rest of
the tropics. This approach is called the Fquatorial Beta plane approximation.
Substituting in Eqs. (3.2)-(3.4) and assuming that the velocities are small
enough to consider that the squared velocities are much smaller than the
velocities themselves we get the following equations:

ou _@

ov oh

ot + PByu = 3 (3.7)
oh ou Ov
5+gH(a—x+8—y)_o (3.8)

These equations are known as the linear shallow water equations. After some
complex manipulation (see Gill (1982)), they can be reduced to a single equa-
tion for v,

v P ov 1 v A2 ov

o0t oot Por  gHor  gH ot " (39)

A general solution of this equation is of the form v = V(y)exp(ikx — iwt).
Substituting this in Eq.(3.9) gets the equation,

2 2 2,2
o°V (w kQ—@—By)V:O

oy? + gH W gH

(3.10)

This is the well-known Schrodinger equation for the harmonic oscillator.
There is a solution for V' = 0 that gives the dispersion relation w? = (¢H)k?.
It is clear now that the constant ¢ = \/¢gH is a natural velocity of the wave
equation. Only the positive solution is physical because the negative one gives
unbounded values for u. For V' # 0, the discrete eigenvalues are,

w? L B

H—k ——:—H(2n+1) for neZ* (3.11)
9 w 9
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The corresponding eigenfunctions are the well-known parabolic cylinder func-
tions D,, = exp(—f3/(2c%y))H,(\//cy) where H, are Hermite polynomials.
We shall not go further on them, but it is interesting to say they are or-
thogonal, and symmetric around the Equator for n even and antisymmetric
for n odd. The natural scaling distance R = \/0/7 is called the equatorial
radius of deformation. Of course, having v we can compute h and u simply
by substituting v into Egs. (3.6-3.8). h and u are also related to the Hermite
polynomials and are symmetric when v is antisymmetric and viceversa.

Now we shall focus on some particular types of waves. The dispersion
relation w = ck is associated to a wave called Kelvin wave. Its main property
is that it has no meridional velocity, as v = 0. It is easy to see that the
propagation of this wave is toward the east with the natural velocity ¢, as the
dispersion relation is w = ck, with k positive. The low frequency solutions
are called Rossby waves. Their existence is due to the fact that the Coriolis
parameter f is not constant. An approximate dispersion relation can be
obtained from Eq.(3.11) by neglecting the squared term in w,

_ Pk
The limit of small wavenumber is very interesting. The dispersion relation
can be approximated to,

—ck

W=-—> 3.13
(2n+1) (3:13)
so these waves are nondispersive and propagate towards the west. For n =1,
the speed is one third of that of the Kelvin wave. It is noteworthy that the
Rossby waves have a maximum frequency. In the case n = 1, the correspond-
ing period is of around fifteen days. Thus, a forcing of a greater frequency
will not excite Rossby waves, but Kelvin waves instead. Finally, for long

frequencies, the dispersion relation is, approximately,

w?=¢? (k2 + ﬁ(2n - 1)) (3.14)

c
These waves are called gravity waves.

3.1.1 Forced shallow water equations

There are two main forces that could affect the ocean dynamics: diabatic
heating, which is affecting the density and pressure variables, and the wind



3.2 The Annual Cycle in the tropical Pacific Ocean 27

stress, which affects the momentum balance. A useful approximation that
considers both effects modify the shallow water equations in this simple way,

o YT Tar TH

ov oh T,

E"‘ﬁyU——a—y—Fﬁ (315)
oh ou Ov
v Hl=+==) - _
ot T (890 * 8y) s¢

where 7, and 7, are the wind stress components and s@ is a scaled diabatic
heating component. The equations can now be solved by expanded parabolic
cylinder equations.

3.1.2 Boundary reflections

In ocean dynamics (and in general wave dynamics), reflection of waves is an
important process for the dynamic adjustment of the tropical basin. For the
region we are considering in this work, coasts parallel to the Equator will not
be considered. In the low frequency regime, there are three types of waves:
the eastward Kelvin wave, which is trapped in the equator; the long wave
westward Rossby waves, and the short wave eastward Rossby waves. When
a Kelvin wave reaches a eastern coast, it is reflected as a coastal Kelvin wave
(Philander, 1990). It propagates poleward at a speed ¢ and it is confined to a
coastal zone with width of the order of the radius of deformation R. The short
wave Rossby waves are also trapped near the coast and they travel poleward
as well. At low frequencies, the westward Rossby waves are reflected as an
equatorial Kelvin wave with a smaller amplitude. The rest of the energy is
reflected as shortwave Rossby waves that are dissipated before they move
back far from the boundary. The islands do not affect the dynamics in any
of the cases, because their latitudinal scale is small relative to the radius of
deformation, as is the case of the Galapagos and Gilbert islands in the tropical
Pacific Ocean.

3.2 The Annual Cycle in the tropical Pacific
Ocean

The Annual Cycle in the tropical Pacific area originates from a complex inter-
play between semi-annual solar forcing and coupled air-sea instabilities (e.g.
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Li and Philander (1996), Xie (1994)). As the strength of these instabilities
varies slowly in time, one may expect that the amplitude of the physical
Annual Cycle is not stationary but time-dependent. In this section, several
general features about the behaviour of the seasonal cycle will be explained.
The most relevant processes in the atmosphere of the tropical Pacific region
are known as the Hadley and Walker circulation. The Hadley circulation
creates a cell of air that rises in the equatorial region and descends at higher
latitudes. The cell is driven by the latent heat that occurs in the Equator.
Due to the conservation of angular momentum, the mean winds are easterly
(i.e. going from east to west) at the sea surface near the Equator. These
winds are named trade winds. The Walker circulation operates on the Equa-
torial plane. There is air rising over the West Pacific area and air sinking over
the East Pacific that complete the Walker cell with the westward winds we
mentioned before. The second relevant characteristic of the tropical Pacific
Ocean atmosphere is the existence of a band with persistent cloudiness and
heavy precipitation, the Intertropical Convergence Zone (ITCZ). This band
is located north of the Equator and is characterised by high moisture and
convection. During the northern summer, the I'TCZ is strong all across the
Pacific. The transition to winter shows a weaker convection in the western
Pacific with a minimum in January. Moreover, the ITCZ is located around
12°N in August and September, while it moves south to the vicinity of the
Equator in March and April. Location of the ITCZ may vary depending on
variations in solar forcing (Xie (1996), Xie (1996)). In the convective zones,
the surface pressure is low and rainfall is high. The winds generally blow from
the high pressure zones towards the convective regions. Therefore, the sea-
sonal cycle also implies changes in the intensity and even in the direction of
the winds. On average, there is a northward surface flow across the Equator
due to the asymmetry of the ITCZ. The trade winds attain their maximum
speeds around 15°N and 15°S. In the North, the maximum is attained in
March and April, when the ITCZ is close to the Equator. In the South, the
maximum happens in September. Concerning the SST, the moist air rises
where the SST is highest while dry air subsides where waters are cold. For
this reason, the warmest waters are in the western tropical Pacific and in
a band of latitudes just north of the Equator, where the ITCZ is located.
Seasonally, SST in the eastern tropical Pacific is at its maximum during the
northern spring when the southeast trades are relaxed and are at a minimum
during the northern summer and autumn when these winds are intense. The
description in terms of the thermocline (which is the isotherm with a sea
temperature of 20°C) is that it is deeper in the west than in the east, and it
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moves up and down depending on the season.

3.3 El Nino/Southern Oscillation

El Nifio is the most dominant statistical and physical mode of climate vari-
ability on interannual human timescales (Philander, 1990). Their effects reach
worldwide extension and can be reflected even in human health (Kovats et al.,
2003). A phenomenological description needs the consideration of the main
elements of the mean state of the equatorial Pacific ocean and atmosphere
that play a role in its dynamics. Then, the El Nino/Southern Oscillation
(ENSO) could be seen as a perturbation of the mean state described in sec-
tion 3.2. Concerning the atmosphere, El Nino is characterised by the Southern
Oscillation Index (SOI). The SOI is defined as the difference of pressure at
the sea level between Darwin (Australia) and Tahiti. In normal conditions,
the pressure in Tahiti is higher than in Darwin (winds go from east to west).
An accepted theory is that El Nino is created by a perturbation located in
the central Pacific Ocean that weakens the trade winds, eventually reverting
them. For this reason, when El Nifio is not present, the SOI is negative, while
it is positive if El Nino is on stage. The wind stress perturbation creates a
Kelvin wave that moves to the east, deepening the thermocline. This causes
SST to increase in the South American coast and a local increase in moist
convection. This involves a diabatic heating anomaly of the atmosphere.
The Kelvin wave is, after some time, reflected from the eastern boundary as
Rossby waves which will reinforce the instability growth in the east but will
not travel back as the move poleward. At the same time in the west, west-
ward Rossby waves are created and reflected in the western boundary as a
Kelvin wave that moves fast to the east and helps to end the process. There
are several models that describe the phenomenon mathematically. In the fol-
lowing subsections, we shall describe the most widely accepted schemes from
different levels of complexity: from the coupled ocean-atmosphere model of
Zebiak and Cane to the heuristic description of the oscillations given by the
delayed and the recharge oscillators.

3.3.1 The Zebiak-Cane model

The Zebiak-Cane (ZC) model (Zebiak and Cane, 1987) is an ocean-atmosphere
coupled model. The dynamics of the atmosphere follows the steady-state lin-
ear shallow-water on an equatorial beta plane approximation (Gill, 1980). A
Rayleigh friction and a Newtonian cooling are used for linear dissipation. A
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heating anomaly is used to force circulation. This anomaly depends on local
heating and moisture convergence. The convergence feedback is introduced
by iterating the set of equations using in each step n the convergence field
in n — 1. The feedback is nonlinear because the moisture-related heating is
operative only when the total wind field is convergent, and this depends not
only on the convergence anomaly, but also on the mean convergence (Eq.
3.18). The effect of the feedback is to focus the atmospheric response to SST
anomalies into or near the regions of mean convergence, in particular, the
Intertropical Convergence Zone (ICTZ) and the South Pacific Convergence
Zone (SPCZ). The whole set of equations for the atmosphere are (Zebiak,
1986),

ety — Boyvy = —(p/po)a (3.16)
vy + Boyug = —(p/po)y (3.17)
e(p/po) + 63[(@&2)9: + ()] = —Qs — Q7" (3.18)
Qs = (aT)exp[(T — T,)/Ty] (3.19)
)" = B[M( + ") — M ()], (3.20)
where
M(z) = { g Ty (3.21)

In this equations, 7" is the mean monthly SST, T is the anomaly in SST, ¢ is
the anomalous convergence. At iteration n, its value is,

¢ = —(ug)e = (v3)y (3.22)

The ocean basin is a rectangle at 124E to 8OW and 29N to 29S. The dynamics
are represented by a linear reduced gravity model, commonly used for simulat-
ing thermocline depth anomalies and surface pressure changes during El Nino
events. Such models produce only depth-averaged baroclinic currents, but the
surface current is usually dominated by a frictional component. Therefore,
a shallow frictional layer of constant depth of 50 m is added to simulate the
surface intensification of wind-driven currents in the real ocean. The dynam-
ics of this layer are kept linear, and the Rayleigh friction is used to stand in
for nonlinear influences at the equator (Eqgs. 3.27 and 3.28). The influence
of temperature changes occurring in the surface layer alone is neglected, so
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only the thermocline depth variation is taken into account.

uy — Boyv = —g'he + 179 /pH — ru (3.23)
Boyu = —g'hy + 7Y /pH — rv (3.24)
hy + H(uy +vy) = —rh, (3.25)
where
u = H71<H1u1—|—H2u2> (326)

Indexes 1 and 2 refer to the surface layer and the underlying layer, respec-
tively. The border between them is the thermocline. The equations for the
interphase are,

TsUs — ﬁoyvs = T(x)/(le) (327)
TsUs + ﬁoyus = T(y)/(le) (328)
(3.29)
where
Us = u; — Uz (3.30)

The thermodynamics describe the evolution of temperature anomalies in the
model surface layer. It includes advection by the mean and anomalous cur-
rents. The surface heat flux anomaly is proportional to the local SST anomaly,
acting to adjust the temperature field toward its climatological mean state.
The temperature equation for the surface layer is,

aT _ _

E:—ul-V(T+ T)—u; -VT — [M(ws +ws) — M(w)]T, (3.31)
T-T,

H,

where u; and w; are the mean horizontal surface currents and upwelling,
respectively, T" is the mean SST, which is prescribed, and T, is the prescribed
mean vertical temperature gradient. The function M accounts for the fact
that surface temperature is affected by vertical advection only in the presence
of upwelling. The anomalous vertical temperature gradient, T, is defined by

T. = (T - T.)/H, (3.33)

— M (i, + w,) —a, T (3.32)

where H; is the surface layer depth and T, is the temperature anomaly en-
trained into the surface layer. This entrainment temperature anomaly, T, is
defined by

Tw="Tsw+ (1 —)T (3.34)
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The model parametrises subsurface temperature anomalies Ty, in terms of
thermocline motions. More specifically, the parametrisation assumes a fixed
vertical temperature profile for the thermocline structure and simply displac-
ing this profile up and down with the thermocline depth determined by the
shallow water dynamics (Eqs. 3.23-3.25). This temperature profile is fitted
to a simple functional form based in observations,

Towy = Ty {tanh[b; (h + h)] — tanh(b1h)}, h > 0
T_{tanh[by(h — h)] — tanh(boh)}, h < 0 (3.35)

where h is the prescribed mean upper layer depth. For the coupling, the ZC
model considers that the ocean is forced by surface wind stress anomalies.
This stress anomalies are generated by a standard bulk formula. The at-
mosphere model is steady-state and is run previously with specified monthly
mean SS'T anomaly to simulate the wind anomalies. There are two approaches
to simulate the changes. One is to calculate the steady response to the SST
anomaly field at each time step, assuming that the atmosphere adjusts very
rapidly (2-3 days) to the changes in the boundary forcing. This assumption
cannot be justified. The second is to add the time dependence explicitly to
the model. This is computationally costly, as inertial gravity waves requires
a time resolution of two hours. The alternative proposed in the ZC model is
to allow time dependence only in the moisture convergence component of the
heating. Typical parameter values for this model are € = 0.5 day~*, ¢, = 60
ms™1 a = 0.031 m?s73/°C, 8 = 1.6 x 10* m?*s™2, r = 0.4 year™, ¢ = 2.9
ms~t, H =150 m, H, =50 m, r, = 0.5 day~!, ay = 0.008 day~', v = 0.75,
T, = 30°C, T, = 16.7 °C, T} = 28 °C, Ty, = —40 °C, by = 1/80 m~! and
by =1/33 m™1.

3.3.2 The delayed oscillator model

The delayed oscillator (DO) model (Tziperman et al., 1994) (a seminal DO
model can be found in Suarez and Schopf (1988)), is a low-order chaotic
system driven by a external force associated to the seasonal cycle. The basic
idea is that the equatorial Pacific ocean-atmosphere oscillator can go into
nonlinear resonance with the 12-month frequency oscillator and, with strong
enough coupling between the ocean and the atmosphere, the system may
become chaotic as a result of irregular jumping of the system among different
resonances. The idea below the basic equation is the following: a positive SST
perturbation along the eastern tropical Pacific weakens the easterly winds
above the equator. The change in the winds excite a downwelling wave in the
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thermocline that travels eastward as equatorial Kelvin waves and an upwelling
signal that travels westward as equatorial Rossby waves. The Kelvin wave
heatens the South American coast, what is considered as El Nino. The Rossby
waves are reflected from the western boundary of the Pacific Ocean as an
upwelling Kelvin wave, which collapses with the first downwelling Kelvin
wave, ending the event. The heuristic equation of the thermocline depth
anomalies h is,

—bA[h(t — <C—[;( + i))] + ¢ cos(wqt) (3.36)

where L is the basin width and w, is the annual frequency of the seasonal
forcing. The first term on the right represents a wind-forced Kelvin mode
that travels at a speed Cg, so it takes a time L/(2Ck) to reach the east-
ern boundary from the middle of the basin. The second term is due to the
westward-traveling Rossby wave of speed Cg excited by the wind a time
t — L/Cx — L/(2Cg) and reflected as a Kelvin wave. Considering that the
speed of a Kelvin wave is three times faster than that of the Rossby wave,

and defining the delay times by 7 = é, we can rewrite the model as,
dh(t
% = aA[h(t — 1)] — bA[L(t — T2)] + ¢ cos(wqt) (3.37)

where 71 = 1.15 months, 75 = 57, a = 1/180 days™* and b = 1/120 days~'.
The function A(h) relates wind stress to thermocline depth and SST. Its non-
linear form reflects the nonlinear relationships between the physical variables
in the ocean and represents the gradient of the vertical temperature profile
in it. The particular form of A(h) is of little interest for this work. We shall
only point that is an hyperbolic tangent modified by a straight-line segment
near the origin (Tziperman et al., 1998). The nonlinearity is measured by a
parameter . The slope of A(h) at h = 0 is a measure of the strength of the
coupling between ocean and atmosphere. In this model, as the nonlinearity
measured by « is increased, the system follows the quasi-periodicity route to
chaos. For small x, the solution is periodic with a frequency of w,, correspond-
ing to the Annual Cycle. As k increases, a second frequency w,, associated
to the natural frequency of the ocean-atmosphere system appears. The first
and second frequencies are not commensurate, therefore an irregular, but not
chaotic, oscillation arises. These irregular oscillations are not locked to the
seasonal cycle. For even bigger k, the system is again locked to a rational
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multiple of the annual frequency, showing a nonlinear resonance between w,,
and w,. Finally, for sufficiently large nonlinearity, the system becomes chaotic
and the phase-space reconstruction is that of a strange attractor. Neverthe-
less, the system stays partially locked to the frequency w,. Typical values of
r for the four cases described are 0.9, 1.2, 1.5 and 2.0 respectively.

3.3.3 The recharge oscillator model

The recharge oscillator (RO) model (Jin, 1997), is a low-order ENSO model
derived from a simplified version of the ZC model using a two-box and a two-
strip approximation (Jin (1997)). The upper ocean is a box model version of a
shallow-water model for the equatorial ocean combined with a mixed layer of
fixed depth. The atmosphere is approximated in terms of a linear relationship
between surface winds and the SST gradient. A thermal relaxation towards a
radiative-convective equilibrium temperature 7, is assumed. The heat budget
can be expressed as:

dTy - U(TZ - Tl)
dT2 . w<T2 - Tsub)
S =—a(lh-T,) - Ly (3.39)

where T and T5 represent the eastern and western equatorial temperature,
respectively. 1/a measures a typical thermal damping timescale, the term
T, denotes the temperature being upwelled into the mixed layer, w is the
upwelling velocity, u is the zonal advection velocity, which is taken as pro-
portional to the wind stress. Finally, H,, and L denote the depth of the
mixed layer and the basin width, respectively. As the equatorial upwelling is
essentially due to Ekman flow divergence (the flow caused in the upper layer
by wind stress) and its dominating meridional component is proportional to
zonal wind stress 7 we obtain a second pair of equations:

@z~
(H—“:n) — —(Br (3.40)

where € and ¢ measure the strength of the zonal and vertical advection, re-
spectively, and can be used as bifurcation parameters. Neglecting the role of
the Hadley circulation and other external sources for wind stress anomalies,
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the wind stress related to the Walker circulation can be expressed as,

7 = p(Th — Ty)[ycos(wat) + o€ — 1]/ (3.41)

where o€ represents a Gaussian white noise of variance o2 and -y is the strength
of the Annual Cycle of frequency w,. A typical value for 7 is 0.2. Ty, depends
strongly on the thermocline depth, and can be parametrised as

Tr — TrO 1 tanh(H + h2 — ZQ)

Tsu - Tr -
’ 2 h*

(3.42)

In this equation, hs is the depth departure of the eastern equatorial ther-
mocline from its reference depth H, zy is the depth at which w takes its
characteristic value and h* measures the sharpness of the thermocline. The
east-west contrast of thermocline depth is determined by the Sverdrup bal-
ance between the pressure gradient and equatorial wind stress. An instan-
taneous adjustment of the thermocline gradient to wind stress changes is
assumed. This is a reasonable approximation because the traveling time of
Kelvin waves in the equatorial Pacific is short compared to the dynamical
adjustment time of the western equatorial Pacific thermocline. Its dynamics
come from zonally integrated Sverdrup meridional mass transport resulting
from wind-forced Rossby waves with timescale 1/r. The dynamical equations
for the thermocline are,

hg = hl + bLT
dhy bLt

where h; and hy are the western and eastern thermocline depth anomalies
respectively. The parameter b considers the efficiency of the windstress 7
in driving the thermocline tilt. It is important to note that the wind stress
equation is not (3.41) but 7 = (7T} —T3)/3, where the Annual Cycle and the
noise component are not considered because the wave propagation processes
are filtered out. Hence, this model considers noise and seasonal forcing only
in the temperature equations (3.38) and (3.39). Typical parameter values are,
in this model, T,y = 16 °C, T, = 29.5 °C', a = 1/180 day~*, r = 1/400 day 1,
H, =50m, H=100m, zg = 75 m, h* = 62 m, p = 0.0026 K~ day™!,
ubL/B =22 mK~', ¢ = 1.3 and L = 15 x 10° m. In this model, the zonal
advection strength e acts as bifurcation parameter. For small € a periodic
oscillation of period 2.5 years is observed. When € reaches the value 0.082, a
second oscillation appears, showing a period doubling situation. Increasing to
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0.086 reveals irregular oscillations with decadal amplitude changes. A further
increase to e=0.12 gets back a periodic orbit of 4-5 years. The decadal changes
are not forced externally, as previous models. This dynamical system can be
understood as follows (Timmermann and Jin (2002),Timmermann (2003)):
ENSO undergoes long-term amplitude modulations as well as period doubling
bifurcations; the dynamical system (3.38) - (3.43) exhibits chaotic dynamics in
a homoclinic/heteroclinic chaos scenario, where a homoclinic orbit associated
with a saddle focus is characterised by an oscillation which grows in amplitude
in an unstable manifold until a critical value is attained. Eventually, the
orbit grows in a stable third direction, reducing the amplitude of the original
oscillation around the tropical mean state.

3.4 Motivation for constructing a new model

As we have seen, the most commonly used ENSO models introduce the An-
nual Cycle ad hoc, usually as a combined effect of a sinusoidal wave plus
atmospheric data. Our purpose is to find a combined model for both El Nino
and the Annual Cycle without using external inputs, in order to achieve a
better comprehension of the interaction between both oscillations. As it was
previously stated, the separation of variables is a complicated task, as linear
methods usually do not disentangle both modes because of the interactive
coupling between the two oscillations. Our plan will be, first, to separate the
different physical phenomena using new nonlinear methods of dimensionality
reduction; second, to analyse the resulting data in order to find a suitable
model for representation of the system. Once the model is found, we shall
have a clearer view of how El Nino and the Annual Cycle interact. Finally,
to predict future states and compare them with the real physical measured
variables.



Chapter 4

Application of dimensionality
reduction to climate data

This chapter is centred on the application of the nonlinear methods explained
in chapter 2 to the climate phenomena explained in chapter 3. We shall show
how linear methods fail in separating the oscillations corresponding to El
Nino and the Annual Cycle. However, some nonlinear methods, in particular,
Isomap, successfully disentangle both oscillations, therefore projecting the
multivariate data space into a much lower dimensional space.

4.1 Separation of mathematical modes

As we previously explained, the statistical analysis of ENSO is mostly based
on SST anomalies which are obtained by subtracting a mean Annual Cycle
from the monthly averaged SST data. Extracting a time-varying Annual Cy-
cle and an ENSO mode in a multivariate way from SST data is not simple
and the results may strongly depend on the assumptions used by different
methodologies. In particular, linear methods may fail to disentangle both
modes since ENSO and the Annual Cycle exhibit in some sense a joint syn-
chronised behaviour, as ENSO amplitude is strong during the boreal winter
season. This behaviour is reminiscent of an interactive coupling between the
two modes (Pikovsky et al., 2001). For this reason, the study of the inter-
action is of great importance for understanding the variability of ENSO. In
the last years, several articles discussing how ENSO and the Annual Cycle
interact in the tropical Pacific Ocean have been published (e.g. Xie (1995),
Jin et al. (1996), Tziperman et al. (1998), An and Wang (2001)). There
has been also some attempt to analyse the variability of the Annual Cycle

37
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due to its interaction with El Nino by using linear methods of decomposition
(Tozuka and Yamagata, 2003). This type of interaction, which could be non-
linear, may lead to erronous conclusions when subtracting a constant Annual
Cycle from SST data under consideration, as usually done in the analysis of
ENSO dynamics. Therefore, the data space cannot be decomposed into a
sum of linear subspaces each containing an independent variable because of
the existing interaction. So that, the separation of the SST into physically
independent modes is not possible. Our aim is to extract a low dimensional
manifold where the whole physical system could be embedded. First of all,
we shall apply the usual linear methods, as PCA. Later, we will consider
nonlinear methods of dimensionality reduction.

4.1.1 Selection of datasets

We have taken Sea Surface Temperature (SST) data from public databases
(e.g. http://ingrid.ldeo.columbia.edu/). More precisely, we have made
use of two databases:

1. the Reynolds-Smith (RS) database (Reynolds and Smith, 1995) for the
region limited by 89.5W to 149.5E and 20.5N to 20.5S, from November
1981 to October 2002, with a resolution of one month in time and one
degree in space. This means that there are 5,124 spatial measurements
for 252 months.

2. the Kaplan Extended (KE) database (Kaplan et al., 1998) for the region
limited by 87.5W to 147.5E and 17.5N to 17.5S, from January 1856 to
October 1981, with a resolution of one month in time and five degrees
in space. In this case, the spatial resolution is 208 points with 1,762
time points.

RS is used to complement the data of KE in the November 1981 to Octo-
ber 2002 time range. The time evolution of the temperature on the Equator
is shown in Fig. 4.1a. If we focus on a fixed position in the ocean, we can
observe two principal oscillations, a rather regular one associated with the
Annual Cycle, and an irregular one associated with ENSO (Fig. 4.1b).

There are several reasons to select these databases and these particular
ranges of data. The reason to choose SST is, basically, because the phenomena



4.1 Separation of mathematical modes 39

Longitude

Znog Aenuzp

AN WY

20 =

LI}
Al

pali 150 =T

(a) (b

os | fdenuer

20 25 30

Figure 4.1: (a) Evolution of the temperature pattern along the Equator from
January 1982 to January 2002 (resolution one month). We can observe the warm
pool in the west and the cold tongue in the east punctuated by ENSO events
(marked with arrows). (b) Time evolution of the temperature at the point (115E,
ON).
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Figure 4.2: Map of the Pacific Ocean. The big rectangle shows the region under
study in comparison to the regions where NINO3 and NINO4 are defined in the
literature.

are very well reflected in the SST. Moreover, the ocean drives the atmosphere
in the tropics (Patil et al., 2001). So we expect that the SST will be a good
representation of the whole phenomenon. Focusing on the SST, we chose the
reconstructed KE database because it is the longest time series available with
a good resolution. Proxy data are not useful in our case because they lack
of spatial regularity (Cobb et al., 2003). The region chosen in Fig. 4.2 is the
maximum available if we want to explore the combined effect of ENSO and
the Annual Cycle. If we extend the data further north and south, we shall
overpass the tropics, where the physical processes are different. In particular,
the Annual Cycle show a different behaviour as the ITCZ does not exist and
ENSO is a second order oscillation.

The following results are obtained by using the normalised (unit variance
and zero mean) KE database. This allows us to compare PCA and Isomap
using the same normalised data. It is important to stress that the results
obtained with both databases are similar. This means that the results are
consistent independently of the length of the time series, supposing it is suffi-
ciently large. A second point to consider is the planar approximation. We are
assuming that the grid is cartesian, meaning that all the points are equally
separated. Of course, due to the spherical shape of the Earth, this is not
rigorously true, but the approximation is good to a 1% in the worst case of a
point located in the tropical line.
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Figure 4.3: (a) Coordinates and (b) power spectra of, from top to bottom, the
first, second and third principal components for the KE dataset from January 1982
to January 2002 (resolution one month) computed via PCA.

4.1.2 Linear methods

The analysis of SST with PCA shows an annual oscillation (Fig. 4.3a) which
is present in all the principal components, as we check using the Fourier
spectrum for each variable (Fig. 4.3b). The convergence of ¢, with the
number of dimensions is slow (Fig. 4.4). For this reason, it is difficult to
select the number of dimensions that best describes the physical process.
Depending of the criterion selected, we get different cut-offs in the number of
relevant components. It is important to note that any available criterion is
not based on mathematical or physical reasons, so there is an important lack
of rigourousness when selecting a particular number of components.
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Figure 4.4: Cumulative variances ¢, against the number of eigenvalues considered
for Isomap (o) and PCA (A).

4.1.3 Nonlinear methods. The mathematical modes
made physical

We turn now our efforts to Isomap to compare its results in terms of di-
mensionality. For the KE database, the radius of the ball that defines the
nearest neighbours was taken as € = 9. Similar results were found when ¢
was ranging from 9 to 30. Although the use of landmark points is suggested
for n > 1000, we used the whole set of data points for calculating the eigen-
values of Z(?. This was done so because, for the KE database, n = 1762
points, and the use of the Floyd’s algorithm (Floyd, 1962) when computing
distances saved enough time of computation without sacrificing accurateness
in the calculation of the eigenvalues of Z(?), as they are needed for finding
the dimensionality of the data.

The cumulative variances calculated by PCA and Isomap are shown in
Fig. 4.4. We observe that the dimensionality found by Isomap is three, while
the convergence of PCA’s cumulative variance is much slower. The first three
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Figure 4.5: Embedding of the KE SST into the dimensions defined by the first
three eigenvalues.

components found by Isomap are,

0.(t;) = N/’py;

Oa(t;) = Ay ’pyy (4.1)
Os(t;) = A3/ *ps;

which we can plot in a three dimensional coordinate space (Fig. 4.5). We can
observe a twelve-month oscillation in a plane with some deviation in a coor-
dinate perpendicular to that plane. To isolate the twelve-month oscillation
we can rotate the new three dimensional points because the representation
in terms of distances is equivalent to any orthonormal transformations. The
optimal plane can be found by computing the plane that best embeds a mean
12-month cycle over the whole trajectory. After applying this particular ro-
tation,

(@1, O,, @3) — (171,562,563) (4-2)

the three time series shown in Fig. 4.6a are extracted. We can see that there
are major differences between the second and third components of Fig. 4.3a
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Figure 4.6: (a) Coordinates and (b) power spectra of, from top to bottom, the
first, second and third principal components for the KE dataset from January 1982
to January 2002 (resolution one month) computed via Isomap. The double headed
arrows indicate the approximate duration of El Nifio events.

and Fig. 4.6a. Moreover, the third Isomap component faithfully represents
ENSO, as all the well known events have their corresponding peak in the
time series of the third component. Unfortunately, there is some correlation
between the third variable and the amplitude of the oscillations of the first
and, specially, the second variables. This suggests that the separation cannot
be complete due to the interaction between oscillations, which is particularly
represented in the second variable.

The results show that the complex dynamics due to the interaction be-
tween ENSO and the Annual Cycle can be well approximated by a three
dimensional manifold. It is worth noting that the selection of the number of
variables comes naturally from the method of dimensionality reduction used.
No criterion was chosen to cut the series of components other than the sta-
bility of the variance explained. In fact, if we go back to the PCA results in
section 4.1.2 and we make use of the information obtained with Isomap, we
can obtain a similar three dimensional space where, with a carefully selected
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Figure 4.7: Third normalised Isomap coordinate (top) in comparison with the
index NINO3.4 (bottom). The amplitude of the events changes slightly from one
method to the other.

rotation, similar components to those in 4.2 can be found. This suggests that
the interaction between the Annual Cycle and ENSO, if nonlinear, shows only
a weak nonlinearity:.

We would like to observe that PCA introduces a particular normalisation
in the data because the matrix of the eigendecomposition is the correlation,
which is naturally normalised to variance one. But we can apply MDS and
Isomap to the raw data, without any other mathematical operation. The
results are similar to the usual indexes that describe ENSO, as we can see
in Fig. 4.7. This plot shows how this decomposition provides a useful way
to characterise ENSO by using the third Isomap component. Moreover, we
observe that the occurrence of the events is essentially preserved, although
the amplitude and the probability distribution function found by the decom-
position are slightly different. This is due to the fact that now the Annual
Cycle is not approximated by a periodic function, as in the NINO3.4 or other
indexes.

In summary, we have shown that the SST in the tropical Pacific Ocean can
be described by a three dimensional system. Contrary to other nonlinear
methods of dimensionality reduction (Hsieh, 2001), Isomap offers a physi-
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Figure 4.8: Embedding of the KE SST into the dimensions defined by the first
three eigenvalues. Arbitrary units not shown.

cally appealing method to face the problem. One could ask if LLE is also
suitable for accomplishing this task. The answer comes by inspection of Fig.
4.8. We can observe how the components found by LLE are somewhat twisted
and, because of that, they cannot be decomposed in a physically meaningful
way as [somap components are. Therefore, our task, in the next chapter, will
be to find a model that can be adjusted to our three new time series.



Chapter 5

Prediction of the coupled
system El Nino-Annual Cycle

In this chapter, we use two different methods to predict states of the system
composed by El Nino and the Annual Cycle (Gdmez et al., 2006a). The first
method tries to model a nonlinear dynamical system in order to represent
the dynamics of the data. Once found, we shall try to reproduce the Isomap
components found in chapter 4. The second method is based on ensemble
prediction: the dataset will be used to construct an ensemble of models in
order to predict states of the system. We shall point out the efficiency of the
methods as compared to different methods and models found in the literature.
The limits of the prediction will also be outlined.

5.1 Estimation of a model using nonparamet-
ric regression

Let us consider that each point x(t) = (z1,zq,23) € R? of the output of

Isomap is a realisation of the flow in phase space represented by the general

equation,

& = (x(t)) (5.1)

where ® : R? — R3, one obtains as a best estimator of (5.1) in the least-square
sense (Kantz and Schreiber, 1997),

(PZ‘ZE[I“”ZEM...,I‘m] y (52)
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with E[-|-] the conditional expectation value (CEV) operator. In practice the
CEV is calculated by using the neighbours of «, as in most nearest neighbour
methods. Extracting analytical models from this formula is very hard, and
visualization is obviously impossible for m > 2.

To encounter this drawback, we start building the model from the simplest
version in terms of estimation and cast the r.h.s. of Eq. (5.1) into an additive
model:

P, = Z bij(z;) . (5.3)

After having estimated the components ¢;;(z;), we can easily visualise the
functions and try analytical formulae for the ¢;;. With (5.3), we have a less
general model than (5.1), but a wider model class than in parametric meth-
ods, because we do not rely on a given set of basis functions. Rigorous results
related to a nonparametric additive representation of a general function are
given in a classical work of Kolmogorov and later on refined by Vitushkin (Vi-
tushkin, 1977). If it turns out that the strictly additive model is not sufficient,
successively more complicated dependencies will be taken into account.

The optimal estimate for the ¢;; is calculated by the backfitting algorithm
(Haerdle and Hall, 1993), which is a class of the general Alternating Condi-
tional Expectation value (ACE) algorithm (Breiman and Friedman, 1985). It
works by alternately applying the CEV operator to projections of ®; on the
coordinates: ¢i;(z;) = E[z; — Y2, ;i | 5], and is proven to converge to
the global optimum. For the application to spatio-temporal data analysis,
see Voss et al. (1998) and Abel (2004). The estimation of the CEV can be
realised numerically by running mean, local linear fits, polynomials, etc... In
Haerdle and Hall (1993) it is shown that smoothing splines are optimal for
nonparametric regression; they are suitable for many applications because of
their differentiability. It is important to note that the parameters used by
splines, averages, etc... are method-inherent and not prescribed by a prese-
lected model. In this sense, the model is parameter free.

As an overall quality measure, instead of the least-square error, we use
the correlation coefficients Cjy between the r.h.s. and the Lh.s. in Eq. (5.3).
The correlation C;; between the jth term in the sum (5.3) with the sum of
the remaining terms indicates its statistical weight for the model:

Cy=C

Gy Pi — Z ¢ik] (5.4)

k#j
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where C'is the correlation function. A correlation close to 1 means a good
model, close to 0 a bad one. It is worth noting the geometrical aspect of
the approach: Eq. (5.1) defines a hypersurface in R™, approximated by the
sum of the functions ¢;;, cf. (5.3). Naturally, the dynamical and topological
properties of the original system must be mirrored in embedding space. Long-
term predictions of the dynamics are thus possible on the basis of the obtained
model.

In the particular case of the system composed by El Nino and the Annual
Cycle, we shall consider the three time series as a minimal input for modeling
a dynamical system that could represent the whole dataset. This system can
be modeled as a dynamical system as follows,

1= fi(zy, z2, 23)
jZ‘Q = f2<l’1,$2,.§(]3) (55)
3= f3(x1, 22, 23)

This will be our first ansatz. In principle, f;, fo and f3 could be any non-
linear functions of the variables z1, x5 and w3, which are the three Isomap
coordinates. This ansatz is essentially mathematical. But, to bring the model
closer to physical reality, we could also admit the existence of a delayed term
related to the second and third variables, xo(t — 7) and x3(t — 7). From now
on, we rename x4(t) = x3(t—7) and x5(t) = x2(t —7) to simplify the notation.
As the third variable is associated to El Nino process, and the second one is
strongly correlated to it, the introduction of the delay terms is bond to the
fact that the existence of Kelvin and Rossby waves are capital to the evolu-
tion of the process, as explained in the delayed oscillator scheme. Anyway,
the method is able to neglect its effect if the correlation is low. So that, if the
delay is not affecting the data evolution, the variables &, 5 and 23 would
not depend on x4 or x5. As we shall see later, the first variable is not directly
affected by delayed variables, as x; is essentially capturing the effect of the
Annual Cycle. The model then is transformed into

T1 = fi(z1, z2, z3)
o = fox1, 9, 23,24, T5) (5.6)
&3 = f3(z1, 2, T3, T4, T5)

The model depicted by the Eqgs. (5.6) represents an oscillatory process
in the first two equations, with a main contribution by El Nino in the sec-
ond. The third equation is, essentially, the evolution of El Nino. Here, two
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contributions are considered, one is the delay and the second is the coupling
to the Annual Cycle represented by the solutions of the first two equations.
Even considering the new contributions, the model (5.6) is too complicated
to be parametrised. Thus, more heuristic reasoning is required to simplify
the equations. Obviously, a period of twelve months has to appear in the
solution of variables xq, 9. We require therefore that the annual period is
reproduced by the first two equations and assume that the contribution of z;
to the first equation and of x5 to the second one is linear. Furthermore, we
shall restrict the model to be fully additive. Including these information we
obtain the model

@1 (t) = —c12a(t) + fra(w2(t)) + fiz(ws(t))
Bo(t) = cor1(t) + far(z1(t)) + fos(w3(t)) + foa(a(t)) + fos(s5(t))  (5.7)
13(t) = far(@1(t)) + faa(w2(t)) + faz(wa(t)) + foa(za(t)) + fas(25(2))

The frequency of the Annual Cycle can be analitically calculated as w =
V/cica. The functions f;; where i = 1,2,3 and j = 1,2,3,4,5 are nonlinear
corrections, not necessarily polynomials. This will be the input to the method
we shall explain in the next chapter.

Considering that not all the variance of the data will be explained by
Eqgs.(5.7), a stochastic part u; of the measurement is added to represent the
model uncertainty. The corresponding model reads,

21(t) = —c12(t) + fi2(22(t)) + fia(zs(t)) +
Ta(t) = cax1(t) + far(z1(1)) + fas(zs(t)) + faa(za(t)) + fos(@5(1)) + p2 (5.8)
@3(t) = far(@1(t)) + faa(@a(t)) + fas(@s(t)) + faa(wa(t)) + fas(ws(t)) + p3

These equations can be numerically integrated using standard algorithms
for stochastic equations. The Euler integration is sufficiently accurate for our
purposes.

5.1.1 Results of the Regression

As a preprocessing, we have to calculate the derivative from the Isomap data
series. We used a spectral estimator, which turned out to be numerically well

behaved and fast. For details see Abel et al. (2005). For the delay, it turned
out that a value of approximately 7 = 6 months yeld an optimal correlation
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Figure 5.1: Variation of the correlation C' in the model when introducing delay
terms in the functional dependence. The left graph is for x5 and right graph is for
T4

for the second and third variable, which is consistent with the time evolution

of Kelvin waves in the Pacific ocean, as explained in Chapter 3. This is shown
in Fig. 5.1.

Now, we shall take a closer look into the first equation. A scatter plot of
Z1 vs. xg yields Fig. 5.2a. A slope of value ¢; = —1 approximates quite well
the optimal straight line through the data. A fully nonlinear analysis yields
the thick line in Fig. 5.2a, which, up to the usual effects at the boundaries
(Abel, 2004), follows quite nicely a curve with a strong linear behaviour. For
o, although the linear analysis yields a value of 0.30, we fix it to be 0.27416
in order to get a main oscillation of annual period. The corresponding plot is
in Fig. 5.2b. The reason to adjust these coefficients ad hoc is that, if we input
the functions directly obtained by regression, we do not reproduce the annual
oscillation because, due to the lack of data, the linear coefficients ¢; and ¢y
are not accurate enough. This can be seen as a rough approximation to the
data. Nevertheless, we see in Fig. 5.2 that a nonlinear polynomial fitting
yields similar results up to the usual effects at the boundaries (Abel, 2004).
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Figure 5.2: (a) Plot of ©1 vs. x2. A straight line of slope ¢; = —1 is a good

approximation of the nonlinear function fit (thick line). (b) Plot of &5 vs. 1. A
straight line of slope co = 0.27416 approximates the nonlinear function fit (thick
line)

A nonlinear fit does not work particularly well due to insufficient number of
data and the very inhomogeneous scatter. So that, for the reasons previously
explained, we shall consider that the functions fi5 and fo; are linear. The
third component x3 has a significant linear coupling in the first and second
equation with functions shown in Fig. 5.3, while the rest of the variables are
not relevant (not shown).

The most relevant equation in terms of the system and also in terms of
the modeling difficulties is the third equation. It turns out that the x; and z5
components are close to zero for central values. The deviation at the bound-
aries is mainly due to the inhomogeneous data distribution. The correlations,
however are high. So that, there are two options for the modeling: the first
could consider that the contribution of these components is not relevant, the



5.1 Estimation of a model using nonparametric regression 53

2 2
1 1
»
e
1 1
251 0 1 2 2T o 1 T2
X3 X4

Figure 5.3: The functions representing the different functional dependencies be-
tween &1 and x3(left) and between @9 and x4(t)(right).

second would try to adjust some nonlinear functions to the data. When we
run the model, we find that f3; is responsible for a rapid divergence of the
solutions, while f3, is not affecting the stability of the system. Therefore, we
shall assume that f3; = 0. For the x3 and z, components, the contributions
are relevant, in good agreement with the model of delayed oscillator (Tziper-
man et al., 1994). Summarising all these considerations, the regression of the
functions represented in Fig. 5.4 gives the following results for the functions
defined in the Egs. (5.8):

1= —1

Co = 0.27416

Ji2 = 0

fiz= —0.01+ 0.4523
for = 0

f24 == —0.13$4
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Figure 5.4: From left to right, the functions representing the three different
functional dependencies in the &3 equation: x3, x4 and x5.

fa1 = 0

fas = 0.01 — 1.3325 + 2.3523 — 0.7523
faa = —0.02 + 0.85x4

fa5 = 0.2625 — 0.0122 — 0.6523

The first equation is purely linear. It contains a term that develops a regular
Annual Cycle and a linear contribution of El Nino that modulates it. The
second equation contains the regular cycle term and a linear contribution from
the delayed wave originated by El Nino. Finally, the third equation contains
two terms that evoke the delayed oscillator paradigm with a nonlinear term
and a complex nonlinear contribution from the interaction variable xo(t — 7).
This is the model that we are going to integrate in the next section.

5.1.2 Simulation of the Model

The method we are using for the integration is the classic Euler algorithm
with a time step At = 0.001, meaning that a thousand integrations are needed
to make the system evolve one month. This is sufficient for our purposes, as
the Runge-Kutta algorithm is much more tricky due to the presence of noise
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Figure 5.5: From left to right, normalised probability distribution functions corre-
sponding to the &1, @2 and &3 equations. The lines correspond to the corresponding
approximations to gaussian distributions.

and delay in the same equations. To model the stochastic part in Egs. (5.8),
11, po and pg, we shall fit different functional forms of noise to the residuals
of the backfitting algorithm. As we see in Fig. 5.5, a good approximation is
the selection of gaussian white noise with variance oy, o9 and o3, that can be
calculated directly from the fitting. The selection of functional forms that are
different from the gaussian does not significantly change the results. We also
consider different noise strengths in order to find the most adequate fitting
to the results.

The strength of the noise is fundamental when analysing the stability of
the model (5.8). The three components behave differently when noise is in-
creased. For the first and the second, as representations of the Annual Cycle,
increasing the noise implies an increase in the amplitude of the cycle, and the
amplitude of the oscillations tends to infinity as time increases (not shown).
For the third variable, which is a representation of the ENSO oscillation, the
dynamical behaviour is richer. As we see in Fig. 5.6, in absence of noise,
there is a relaxation to a fixed point with a transient time of approximately
one year. As noise is increasing (variance 0.1, 0.5, 1.0 and 5.0), the system
undergoes irregular oscillations at low (o3 = 0.1) variance first, then regular
oscillations are created (o3 = 0.5,1.0) that are smoothly destroyed when noise
is increasing to reach irregular oscillations. We observe that a noise of o3 = 5.0
promotes irregular oscillations that are, in a mean, partially phase-locked to
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Figure 5.6: From top to bottom, sample simulation of the @3 equation for noise
variances o3 = 0,0.1,0.5,1.0,5.0. The approximate value for o3 taken from the
backfitting algorithm is equal to 0.136.

rational multiples of six months. Increasing the noise to values greater than
5.0 suppose non-physical solutions that we are not considering. In fact, the
physical solutions are similar, in the long run, to the solutions found for noise
around o3 = 0.1, which is, precisely, the value found by adjusting the variance
unexplained by the backfitting algorithm (Fig. 5.5).

5.1.3 Prediction of El Nino events. Limits of the model

In this section, we are using the model depicted in section (5) to predict future
states of the system. It is worth pointing out that the predicted points in the
low-dimensional system can be converted into approximate spatio-temporal
SST values by parametrising a function that transforms the spatio-temporal
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Figure 5.7: Mean variance of the first (— e —), second (—M—) and third (—A—)
variable for the fifty representations of the predicted data points for different time
predictions.

data in the Isomap points and its inverse (see, for example, Poggio and Girosi
(1990)).

We shall make calculations for prediction times ranging from one month
to one year. The noise variance will be set to the adjusted values o7 = 0.142,
o9 = 0.123 and o3 = 0.136. We run fifty realisations of noise in order to make
a mean value for each predicted point. The mean variance of each predicted
point can be calculated to get a measure of the probability distribution of the
different realisations. This is done in Fig. 5.7. We observe how the highest
variance for all prediction times stands for the first variable, while the second
variable is the less spread in terms of noise dispersion. This is a reflection of
the magnitude of the variables. The first variable is oscillating between —1.5
and 1.5, while the second and third oscillate around —1 and 1.

Two typical measures of the model prediction skills are the statistical cor-
relation coefficients and the root mean square (r.m.s) error. In Fig. 5.8, we
observe that, as expected, the prediction capabilities of the model worsens
when the time for prediction is increased. This is reflected in the fact that
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Figure 5.8: Correlation coefficients (left) and root mean square error (right) of
the first (— e —), second (—M—) and third (—A—) variable as a function of the lead
time used for predicting the observed data.

the correlation coefficients are approaching to zero and the r.m.s errors are
increasing. It is interesting to note that the correlation coefficients are inde-
pendent of the magnitude of each variable (they are defined in the interval
from —1 to +1). On the other hand, the r.m.s. error is magnitude dependent.
Variables with higher values will tend to have higher r.m.s. errors, therefore
the difference between the errors in the first variable as compared to the other
two. We could also normalise the r.m.s. error by dividing by the variance,
but this is not common in climate literature. Therefore, we shall keep the
definitions as they are. It is noteworthy to say that the system works worse
after certain conditions of high El Nino events. If we measure the correlation
for different decades, we observe big differences in the predictability of the
system. In particular, the 1900 and the 1980 decades were particularly bad
for prediction, as we see in Fig. 5.9.
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Figure 5.9: Correlation skills of the first (—e —), second (—Hl—) and third (—A—)
variable in different decades of the time series for different lead times: three months
(left), six months (middle) and twelve months (right).

Summarising, the model faithfully represents the first and second vari-
ables for lead times under one year, while the third variable shows lower pre-
dictability in most of the decades for lead times bigger than six months. It is
important to say that the dynamical system proposed here does not achieve
the prediction capabilities for the third variable of some other ENSO models
found in literature (see Latif et al. (1998), Latif et al. (1994) for reviews),
although beats the delayed-oscillator model for particular decades (Kirtman
and Schopf , 1998). Anyway, there are several drawbacks to consider in our
case: first, there are few data points to input in the backfitting algorithm;
second, the system is not trained; third, it is not artificially pumped with
external data; fourth, it does not consider effects out of the boundaries of the
tropics and is not sustained by the atmosphere. Therefore, we expect that
the dynamical system could be improved by considering some atmospheric
influence, more specifically the related with the creation of Kelvin waves by
easterly winds in the western Pacific Ocean. It is interesting to note that the
noise intensity is not improving the results. In Fig. 5.10 we observe how in-
creasing the noise worsens the model, as expected. The somewhat surprising
behaviour comes when analysing differences between the regimes of low noise
and no noise. We observe almost no differences between the performance of
the model. This suggest, as previously stated, that the unexplained variance
using the backfitting algorithm cannot be fully explained by noise, but also
by some external variable.

We can plot some predicted intervals in order to get a clearer view of what
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Figure 5.10: Correlation coefficients for the third variable for different one reali-
sation noise intensities for the period 1976-2000: no noise (—e —), 0.1 (—0-), 0.2
(A=), 1.0 (—x —) and 5.0 (—o —).

has been written till now. Fig. 5.11 shows the prediction series compared
to the Isomap data for the decade of 1990. We observe years were predic-
tion is good for the three variables even using a lead time of twelve months,
while after an ENSO event like the one of 1997 or the short previous in the
mid-nineties, the prediction skills for the three variables worsens dramati-
cally even for three months forecasts. In particular, we also observe that the
model does not reproduce the Annual Cycle immediately after a major ENSO
event. We suggest that this is because the interaction between them during
El Nifio and Annual Cycle peaks (December-April) causes instabilities in the
system. This could be related to the well-know spring barrier of prediction
(Latif et al. (1998) and references therein). A final remark for this section is
that the system prediction capabilities could be enhance by a careful tuning
of the coefficients of the polynomials in the model (5.8). This path is far out
of the philosophy of this work, although it could be interesting to explore it
with greater detail.



5.1 Estimation of a model using nonparametric regression 61

normalised temperature

1990 1992 1994 1996 1998 2000

-2
1990 1992 1994 1996 1998 2000

D

-2
1990 1992 1994 1996 1998 2000
time (years)

Figure 5.11: Prediction of the first (top), second (middle) and third (bottom)
variables for lead times of three (— o —), six (=A—) and twelve (— + —) months
compared to the Isomap time series (thick line).
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5.2 Prediction of El Nino events using ensem-
ble model prediction

In this section, we are applying ensemble prediction to our three dimensional
system. Ensemble building is a common way to improve the performance
of a model for prediction tasks because an ensemble of individual predictors
performs better than a single predictor in the average. This is based on the
bias-variance decomposition of ensemble models (Krogh and Sollich, 1997).
Usually an ensemble consists of models taken from one single class, as neural
networks, although, in order to introduce more diversity, which is the cen-
tral feature of the ensemble approach, several models from different model
classes can be trained and combined to build the final ensemble (Wichard
and Ogorzalek, 2004). The ensemble prediction can be mathematically de-
scribed the following way:

Let us average the output y(x) of several different models f;(x), and define
the ensemble model as f(x) = Zfil wifi(x). We assume that the model
weights sum to one (3.1, w; = 1). If we define the ambiguity on  of a single
member of the ensemble as a;(x) = (f;(x) — f(x))?, the ensemble ambiguity
will be defined as,

a= Zwiai(m) = sz(fz(w) — f())® (5.9)

and quantifies the disagreement among the predictors on input . The
quadratic errors of predictor ¢ and ensemble are, respectively,

6i(@) = (y(@) - fi(x))’
e(x) = (y(z) — f(z))?
Adding and subtracting y(x) in Eq. 5.9 yields,
e(x) = €(x) — a(x) (5.10)

where €(x) = ), wi€e;(x) is the average error of the individual models. Es-
sentially, Eq. 5.10 states that, the more the models in an ensemble differ, the
less the error of the whole ensemble.

In our particular case, we shall use two types of ensembles in order to pre-
dict the three dimensional time series. First, we build an ensemble consisting
in linear models

3
filw) = ag; + Z i T, (5.11)
k=1
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The coefficients are calculated with the standard method for ridge regression
(Hastie et al., 2001). The optimal ridge parameter is evaluated by perform-
ing a cross-validation on the training data. Five cross-validation rounds were
used in this case. The second type of model we are using is a nearest trajec-
tory model, which is based on a strategy for time series prediction introduced
by McNames (1998). It is based on the assumption that the time series stems
from a dynamical system and the states can be reconstructed with a time
delay embedding. The nearest trajectory model looks for the nearest trajec-
tory segments in the reconstructed state space. The prediction is done with
a local linear model of the closest trajectory points as described in McNames
(1998). The number of neighbouring trajectories is chosen randomly at the
start of the training algorithm.

The results for the Isomap data prediction are plotted in fig. 5.12. The
first 300 points of the dataset were used for one step ahead prediction us-
ing 20-dimensional state space vectors. We observe that the linear ensemble
model fits better than the nearest trajectories model ensemble in the majority
of the cases. We suggest two possible explanations for this fact: first, we sus-
pect that nonlinearities in the time series are not very strong, in accordance
with model 5.8; second, the lack of a large number of data makes the nearest
trajectories model less robust, as it is not always possible to find a nearest
trajectory to predict from the existing dataset.

We can also observe how the dynamical system is able to achieve better
predictions for short lead times. For longer times the linear model ensem-
ble achieves results that are comparable to those found in the literature for
more complicated models (Latif et al. (1998), Galanti et al. (2003), Chen
et al. (2004)), although for longer lead times very complex atmosphere-ocean
coupled models offer better results. Concerning the decadal variability (Fig.
5.13, we can appreciate that the differences are, as in the previous case, re-
markable. As in the previous case, Figs. 5.14 and 5.15 show the prediction
series compared to the Isomap data for the nineties. In these two cases, the
system shows good prediction skills even for the short mid-nineties events,
while it still worsens after the 1997 El Nino event. The shift in this peak is
also common in several models found in the literature (Kirtman and Schopf
(1998), (Tang and Hsieh, 2002)).

In summary, ensemble model prediction offers very good results even for
long lead times for the first and second variables. The third variable shows
lower predictability for lead times bigger than six months. In general, as
we previously suggested, the linear ensemble offers better results due to its
robustness. Compared to more complex ensemble model prediction schemes,
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Figure 5.12: Correlation coefficients (left) and r.m.s. error (right) for the first
(top), second (middle) and third (bottom) variables for the dynamical system
model (— e —), linear model ensemble (—M—) and nearest trajectories model en-
semble (—A—).
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Figure 5.14: Prediction of the first (top), second (middle) and third (bottom)
variables for lead times of three (— o —), six (=A—) and twelve (— + —) months
compared to the Isomap time series (thick line).

as in Tang et al. (2005), the predictability is better. This could be a hint
for what we previously suggested, that most of the physics of the system is
related to the ocean rather than to the atmosphere. Although the dynamical
system fails in predicting in a long lead time due to the little amount of data
and the hidden variables, the ensembles chosen in this work are enough to
predict with the same capability, at least, as that of more complex hybrid

models (Tang et al., 2005).
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Chapter 6

Conclusions

This work was devoted to the study of the coupled system formed by El
Nino/Southern Oscillation and the Annual Cycle. More precisely, the work
was focused on two main problems:

e How to separate both oscillations into an affordable model for under-
standing the behaviour of the whole system.

e How to model the system in order to achieve a better understanding of
the interaction, as well as predict states of the system.

The answers to these problems could be summarised in these two points:

e Linear methods are not suitable for characterising the dimensionality
of the sea surface temperature in the tropical Pacific Ocean, therefore they
do not help to separate the oscillations by themselves. Instead, nonlinear
methods of dimensionality reduction are proven to be better in defining a
lower limit for the dimensionality of the system as well as in explaining the
statistical results in a more physical way (Géamez et al., 2004).

e A three dimensional dynamical system could be a starting point for de-
scribing the dynamics of the sea surface temperature in the tropical Pacific
Ocean. Although not all the variability is explained, ensemble modeling pre-
diction reveals that most of the information is present in just three variables,
in comparison with more complicated models. Relevant predictions for short
lead times can be made using a low dimensional system, despite its simplicity
(Géamez et al., 2006a). The analysis of the SST data suggests that nonlinear
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interaction between the oscillations is small, and that noise plays a secondary
role in the fundamental dynamics of the oscillations.

6.1 Final remarks

6.1.1 On nonlinear dimensionality reduction of climate
data

In Chapter 4, we suggested that nonlinear dimensionality reduction methods
provide a useful way of analysing and modeling high dimensional data when
nonlinear interactions are present. If the physical process can be embedded
into a low dimensional manifold, the reduction of the relevant components
is better achieved by nonlinear methods than by linear ones. In particular,
Isomap (Tenenbaum et al., 2000) provides a physically appealing method
of decomposing the data, as it substitutes the euclidean distances in the
manifold by an approximation of the geodesic distances. We expect that this
method could be successfully applied to other oscillatory extended systems
and, in particular, to meteorological phenomena. Reduction allows to model
the physical process by a low dimensional nonlinear dynamical system strictly
based on data in order to make predictions of future states.

6.1.2 On the prediction of El Nino and the Annual Cy-
cle

In Chapter 5, a well known non-parametric regression method was applied to
the Annual Cycle and ENSO oscillations, as obtained by a particular method
of dimensionality reduction, Isomap. The backfitting algorithm allowed us to
build a model for the joint system of Annual Cycle and ENSO. We observed
that, although the amount of data was low, we could predict future behaviours
of the coupled ENSO-Annual Cycle system with an accuracy of less than six
months, although the constructed system presented several drawbacks: few
data points to input in the backfitting algorithm, untrained model, lack of
forcing with external data and simplification using a close system. More-
over, ensemble prediction techniques show that the prediction skills of the
three dimensional time series are as good as those found in much more com-
plex models. This suggests that the climatological system in the tropics is
essentially explained by the ocean dynamics, while the atmosphere plays a
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secondary role in the physics of the process (Patil et al., 2001). For the lead
times of six months or less, the prediction skills are similar to more compli-
cated models found in literature (Chen et al. (2004), Tang and Hsieh (2002)).
A second point of interest is the particular relationship between the Annual
Cycle and ENSO. Observing that the particular functions found by regression
in Chapter 5 are not unique in the sense that different adjusted polinomials
give similar results, it is important to point that the interaction between
ENSO and the Annual Cycle is apparently directed mainly from ENSO to-
wards the Annual Cycle, but this could be an effect of mixing if the variables
are not totally separated.

A global view of the work shows a general procedure to face modeling of
climatological systems. First, we should find a suitable method of either linear
or nonlinear dimensionality reduction. Then, low dimensional time series
could be extracted out of the method applied. Finally, a low dimensional
model could be found using a backfitting algorithm in order to predict future
states of the system.

6.2 Outlook

A bunch of different working lines arise from this Thesis. Here, we are sug-
gesting several of them.

e Mathematical development of the idea Isomap is constructed. A non-
linear reduction of dimensionality could be helpful when dealing with com-
plex equations, as Navier-Stokes equations, the same way Fourier analysis
(Franceschini, 1983) or PCA (Holmes et al. (1997), Duane and Tribbia (2001),
Zoldi and Greenside (1997)) were successful in previous treatment of the prob-
lem. For example, the Kuramoto-Sivashinsky equation shows a remarkable
difference in the dimensionality of the embedding subspace if turbulence is
present (Meixner et al., 2000). Isomap could provide a better understanding
of the transition via the relationship between correlation length and dimen-
sionality (Gamez et al., 2006b).

e Exploration of the phase synchronisation scheme for the complex non-
linear system depicted in Chapter 5. Using the mathematical tools already
at our disposal, we could achieve a mathematical proof of why El Nino peaks
in December (Gdmez et al., 2006c¢).
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e Building a higher dimensional model of the interaction between the
Annual Cycle and El Nino. Using the information we already know in the
low dimensional space, we could model a high dimensional model of the joint
Annual Cycle and El Nino system, considering not only the SST, but also the
atmosphere, in order to achieve a better knowledge of the physics involving
both oscillations as well as better prediction skills.
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