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GOLUSIN-KRYLOV FORMULAS IN COMPLEX ANALYSIS

ALEXANDER SHLAPUNOV AND NIKOLAI TARKHANOV

This paper is dedicated to the 130 th anniversary of Vladimir I. Smirnov.

Abstract. This is a brief survey of a constructive technique of analytic contin-

uation related to an explicit integral formula of Golusin and Krylov (1933). It

goes far beyond complex analysis and applies to the Cauchy problem for ellip-

tic partial differential equations as well. As started in the classical papers, the

technique is elaborated in generalised Hardy spaces also called Hardy-Smirnov

spaces.
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Introduction

The phenomenon of analytic continuation is of great interest in one complex
variable and all of mathematics and its applications. It is well understood for data
lying in the domain of analyticity. Otherwise there arises the problem in what sense
the limit values should be taken on. In function theory in the unit disk D ⊂ C one
commonly considers the Hardy spaces Hp(D) of holomorphic functions while the
boundary data are prescribed on a subset of positive measure on the unit circle.
The functions of Hardy classes converge to their limit values on the circle weakly
in the sense that

lim
ε→0+

∫
|ζ|=1−ε

f(ζ)g(ζ)dζ =

∫
|ζ|=1

f(ζ)g(ζ)dζ (0.1)

for all smooth functions g with compact support in the plane. Equality (0.1) allows
one to recover any function f ∈ H1(D) from its limit values on ∂D.
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2 A. SHLAPUNOV AND N. TARKHANOV

When considering analytic continuation from a boundary subset of a simply
connected domain D in the complex plane, one is looking for a substitute for
Hardy spaces in D. To this end one can use the Riemann mapping theorem and
parametrise the points of D by those of the unit disk under a conformal mapping
z = c(ζ) of D onto D. On replacing the homothety (1 − ε)D of D in (0.1) by its
image by c we arrive at diverse classes of holomorphic functions in D which can be
specified through their weak limit values on the boundary of D. A classical pattern
is the scale Ep(D) of Hardy-Smirnov spaces, where 1 ≤ p ≤ ∞. A holomorphic

function f on D belongs to Ep(D) if and only if p
√

c′(ζ) f(c(ζ)) ∈ Hp(D). This just
amounts to saying that the weak limit values of f on ∂D are of Lebesgue space
Lp(∂D).

If the boundary of D is a rectifiable curve then the function z = c(ζ) is con-
tinuous on the closed disk D and absolutely continuous on the unit circle. The
scale of Hardy-Smirnov spaces has proved to suit perfectly for the study of classical
boundary value problems for the Laplace equation in a plane domain bounded by
a nonsmooth curve which has a finite number of singular points (see [GT13] and
the references given there).

In contrast to boundary value problems for holomorphic functions similar to
the Riemann-Hilbert problem, analytic continuation goes beyond the theory of
Fredholm operators in Banach spaces. If the data are given on a nonempty open
arc S in ∂D, the problem of analytic continuation fails to be stable unless S = ∂D.
This makes it a challenge for mathematicians. The focus is therefore on bounded
domains D with smooth boundary, in which case c′(ζ) is bounded away from zero
on the circle. In this case the Hardy-Smirnov spaces in D reduce to push-forwards
of Hardy spaces in D.

Hardy spaces have been of limited interest in the general theory of partial dif-
ferential equations because of their rigidity. To some extent they are counterparts
to Sobolev spaces H1/p,p(D), as if the trace theorem still holds for them. On the
other hand, using Hardy spaces makes it technically easy to reduce a boundary value
problem to an overdetermined system of integral equations in Lebesgue spaces Lp

on the boundary.
It was G. M. Golusin, a PhD student of V. I. Smirnov, and V. I. Krylov [GK33],

who found an abstract idea of suppressing function to construct an explicit formula
for analytic continuation in Hardy spaces. They named their formula after T. Car-
leman who had used a simple trick to restore a holomorphic function in an angle on
its bisectrix through the values of the function on an arc connecting both sides of
the angle, see [Car26]. In [VGK83] the contribution of [GK33] was restored fairly
in the designation of the formula.

Since then the formula of [GK33] attracted considerable attention of researchers
in complex analysis. The monograph [Aiz93] sums up the results in this direction
to a great extent, including those for functions of several variables. Moreover,
the formula of [GK33] was precisely specified within the framework of ill-posed
problems of analysis and geometry. The book [Tar95] gives an introduction into
Hardy spaces of solutions to elliptic equations and contains a discussion of basic
facts on explicit formulas for solutions to instable problems of mathematical physics
up to date. Still, since the monographs were published there appeared a number of
new developments of [GK33].
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Among the new contributions into the Golusin-Krylov formulas in function the-
ory we mention a numerical experiment with the Riemann hypothesis on zeros of
the zeta function, see [Tar12]. In several complex variables the new developments
concern explicit formulas for the Dolbeault cohomology classes through their val-
ues on a part of the boundary, see [Tar10]. Another formulation of the Cauchy
problem for the Dolbeault complex and the related Goluzin-Krylov type formulas
can be found in [FS13]. In the Cauchy problem for elliptic equations these are
perhaps substantial applications of explicit formulas in inverse problems of cardi-
ology, see [Sea06, Ch. 7]. They actually give some evidence to a familiar argument
of M. A. Evgrafov and M. M. Postnikov from the early 1970 s that each result of
pure mathematics finds its first applications not earlier than in 50 years. In bound-
ary value problems for elliptic equations the progress consists in the development
of boundary equation method whose explicit formulas are actually counterparts of
Golusin-Krylov formulas, see [AT16]. Finally, one should mention Carleman type
formulas for solutions of nonstandard Cauchy problems for parabolic equations, see
[Ike09], [MMT16].

In this survery we focus on these new developments of results of the Saint Pe-
tersburg school of mathematics, which go back at least as far as V. I. Smirnov.

1. The problem of analytic continuation

Let D be a bounded simply connected domain in C whose boundary is a recti-
fiable Jordan curve. A holomorphic function f in D possesses angular limit values
almost everywhere on ∂D and can be restored through these limit values by means
of the Cauchy integral

f(z) =

∫
∂D

1

2πı

1

ζ − z
f(ζ)dζ (1.1)

for z ∈ D if and only if the integral∫
|c−1(z)|=r

|f(z)| |dz|

is bounded uniformly in 0 < r < 1. In this way we recover once again the Hardy-
Smirnov space E1(D).

Theorem 1.1. A holomorphic function f in D belongs to the Hardy-Smirnov space
E1(D) if and only if it possesses angular limit values almost everywhere on ∂D and
f can be restored through these limit values by Cauchy integral (1.1).

Proof. This is a familiar result of V. I. Smirnov published in 1928. A proof can be
found in [Gol66]. �

Suppose f ∈ Ep(D), where p ≥ 1. Then the angular limit values of f on ∂D
constitute a function in Lp(∂D). By Theorem 1.1 f is the Cauchy integral (1.1) of
these limit values. Hence it follows, that functions of Ep(D) are Cauchy integrals of
Lp -functions on the boundary curve. For non-extreme values 1 < p < ∞ the inverse
assertion is also true, and so the Hardy-Smirnov space Ep(D) can be identified with
a closed subspace of Lp(∂D), see [Dav82].

Corollary 1.2. Let g ∈ Eq(D), where 1 ≤ q ≤ ∞. For each function f ∈ Ep(D)
mit 1/p+ 1/q = 1 it follows that∫

∂D

1

2πı

1

ζ − z

g(ζ)

g(z)
f(ζ)dζ =

{ f(z), if z ∈ D,
0, if z ∈ C \ D.
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This is a generalisation of the Cauchy integral formula. One certainly assumes
that g(z) �= 0, otherwise the left hand side of the formula does not make any proper
sense.

Proof. By the Hölder inequality we conclude immediately that fg ∈ E1(D). The-
orem 1.1 now implies that fg can be represented in D by the Cauchy integral
formula. On applying (1.1) for fg and dividing both sides by g(z) �= 0 one derives
the formula for all z ∈ D. For z �∈ D the desired equality follows from the Stokes
formula. �

Note that whenever z ∈ D and g(z) �= 0 we get

1

2πı

1

ζ − z

g(ζ)

g(z)
=

1

2πı

1

ζ − z
+ rz(ζ) (1.2)

for all ζ ∈ D, where

rz(ζ) :=
1

2πı

g(ζ)− g(z)

ζ − z

1

g(z)

has a removable singularity at the point z. Hence, rz is also a function of class
Ep(D).

Suppose f is a function on D of Hardy-Smirnov class E1(D). We look for an
analytic formula which enables us to recover f in all of D through its angular limit
values on a measurable subset S ⊂ ∂D of positive measure. If the values f(z) are
known almost everywhere on the boundary, one can use for example the Cauchy
integral.

The first formula of this kind was seemingly constructed by T. Carleman in his
book [Car26]. As D he took an angular domain bounded through two sides of an
angle and a rectifiable arc between the sides (denoted by S). The formula allowed
one to reconstruct a holomorphic function f in D on the hypotenuse through the
values of f on S. An idea of [Car26] was to introduce an additional function in the
Cauchy integral formula, which suppressed the contribution of the integral over the
complementary set ∂D \S through a limit passage. The abstract idea was perhaps
first clarified later in [GK33], where it was designated as the idea of a suppressing
function.

Suppose h is a bounded holomorphic function in D with the property that
1) |h(z)| = 1 almost everywhere on ∂D \ S;
2) |h(z)| > 1 for all z ∈ D.
In Section 2 we discuss concrete cases where one can construct such a function

explicitly.
We now consider the function

g(z) = (h(z))σ = exp(σ log h(z)) (1.3)

of z ∈ D, where σ is a positive number. This function is holomorphic and bounded
in D, hence

f(z) =

∫
∂D

1

2πı

1

ζ − z

(h(ζ)
h(z)

)σ

f(ζ)dζ

=

∫
∂D

1

2πı

1

ζ − z

(h(ζ)
h(z)

)σ

f(ζ)dζ +

∫
∂D\S

1

2πı

1

ζ − z

(h(ζ)
h(z)

)σ

f(ζ)dζ
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for all z ∈ D, which is due to the generalised Cauchy formula of Corollary 1.2. Since
|h(z)| = 1 almost everywhere on ∂D \ S and |h(z)| > 1 for all z ∈ D, the integral∫

∂D\S

1

2πı

1

ζ − z

(h(ζ)
h(z)

)σ

f(ζ)dζ

tends to zero uniformly in z on compact subsets of D, when σ → ∞. We thus
obtain

Theorem 1.3. Suppose h is a suppressing function in D. For each f ∈ E1(D) it
follows that

f(z) = lim
σ→∞

∫
S

1

2πı

1

ζ − z

(h(ζ)
h(z)

)σ

f(ζ)dζ (1.4)

uniformly in z on compact subsets of D.

Furthermore one obtains

lim
σ→∞

∫
S

1

2πı

1

ζ − z

(h(ζ)
h(z)

)σ

f(ζ)dζ

=

∫
S

1

2πı

1

ζ − z
f(ζ)dζ +

∫ ∞

0

dσ
d

dσ

∫
S

1

2πı

1

ζ − z

(h(ζ)
h(z)

)σ

f(ζ)dζ

=

∫
S

1

2πı

1

ζ − z
f(ζ)dζ +

∫ ∞

0

dσ

∫
S

1

2πı

1

ζ − z

(h(ζ)
h(z)

)σ

log
h(ζ)

h(z)
f(ζ)dζ,

the differentiation under the integral sigh is obviously possible here. Therefore, one
can write instead of (1.4)

f(z) =

∫
S

1

2πı

1

ζ − z
f(ζ)dζ +

∫ ∞

0

dσ

∫
S

1

2πı

1

ζ − z

(h(ζ)
h(z)

)σ

log
h(ζ)

h(z)
f(ζ)dζ (1.5)

for all z ∈ D.
The presence of limit passage in (1.4) or unproper integral in (1.5) displays the

instable character of the problem of analytic continuation from a proper subset S
of the boundary curve, see [Aiz93].

2. The Goluzin-Krylov formula

The Riemann mapping theorem yields readily a construction of suppressing func-
tion h in the case, when S is an arc of the boundary curve ∂D, see [GK33]. More
precisely, let D be a simply connected domain in C with rectifiable boundary curve
∂D. Let moreover S be a nonempty subset of ∂D. We choose a larger simply
connected domain D′ ⊂

�=C which contains D and whose boundary curve is formed

by the closure of ∂D \ S and by a rectifiable curve in the complement of D. Fix
z0 ∈ D′ \ D. By the Riemann theorem there is precisely one bijective conformal
mapping w : D′ → D, such that

w(z0) = 0,
w′(z0) > 0,

see Fig. 1.

Theorem 2.1. Under the above notation, let f be an E1 -function in D. Then it
follows that

f(z) = lim
σ→∞

∫
S

1

2πı

1

ζ − z

(w(z)
w(ζ)

)σ

f(ζ)dζ (2.1)

uniformly in z on compact subsets of D.
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	z


z

	w


w

S ′

S

D

D′

w = w(z)

Fig. 1. Conformal image of D.

Proof. It suffices to show that h(z) = 1/w(z) is a suppressing function on D. By
the construction of w = w(z) we get |h(z)| = 1/|w(z)| ≥ 1 for all z in the closure of
D′. Since w = w(z) maps the boundary of D′ onto the unit circle |w| = 1, it follows
that |h(z)| = 1 for all z ∈ ∂D \ S. Furthermore, |h(z)| > 1 holds for all z ∈ D,
for w = w(z) maps the domain D′ onto D. Finally the function h(z) is uniformly
bounded in D, for the image w(D) is bounded away from the origin. �

By (1.5), formula (2.1) can be equivalently formulated as

f(z) =

∫
S

1

2πı

1

ζ − z
f(ζ)dζ +

∫ ∞

0

dσ

∫
S

1

2πı

1

ζ − z

(w(z)
w(ζ)

)σ

log
w(z)

w(ζ)
f(ζ)dζ (2.2)

for z ∈ D.
In particular, one can choose w(z) = z in the case where D is a moon-shaped

domain in D with 0 �∈ D and S := ∂D ∩ D, see [Aiz93].

3. Criteria for analytic continuation

To our best knowledge, Theorem 2.1 gives the simplest explicit formula for ana-
lytic continuation in complex analysis. Based upon this formula, we show a criterion
of analytic continuability into D for a function f0 given on a nonempty open piece
S of the boundary ∂D. While polynomials of z are dense in the Banach space
C(S) unless S = ∂D, those functions on S which extend analytically to D form
a subspace of infinite codimension in C(S). In particular, a continuous functions
f0 �≡ 0 of compact support in S fail to have analytic continuation to the domain
D, which is a consequence of a familiar uniqueness theorem. The following result
is due to [Aiz95].

Theorem 3.1. Let f0 ∈ C(S) satisfy f0 �≡ 0. In order that there be a holomorphic
function f ∈ C(D ∪ S) in D, such that f(z) = f0(z) for all z ∈ S, it is necessary
and sufficient that

lim sup
n→∞

n

√∣∣∣ ∫
S

f0(z)

(w(z))n+1
dw(z)

∣∣∣ = 1. (3.1)

It suffices to prove this theorem in the case where S is a regular curve in D, whose
endpoints lie on the unit circle and which does not run through 0 (i.e. 0 /∈ S). The
curve S divides the disk D into two domains and we write D for the subdomain
of D that does not contain the origin 0. In this way we obtain a bounded domain
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with piecewiese smooth boundary which is referred to as lune. The boundary of D
consists of two parts, one of the two is the curve S and the other an arc of the circle
∂D, cf. Fig. 1. As is mentioned, in this case formula (2.1) holds for the identity
map w(z) := z.

Proof. Necessity. Given a nonzero function f0 ∈ C(S), we define the Cauchy-type
integral of f0 by

Cf0 (z) =

∫
S

1

2πı

1

ζ − z
f0(ζ)dζ

for z �∈ S. This is a holomorphic function away from the closure of S, and we denote
by C±f0 the restrictions of Cf0 to D and C\D, respectively. The Sokhotsky-Plemelj
formula says that

lim
ε→0+

(
C+f0 (ζ + εν(ζ))− C−f0 (ζ − εν(ζ))

)
= f0(ζ) (3.2)

holds uniformly in ζ on compact subsets of S, where ν(ζ) is the inward unit normal
vector to S at a point ζ ∈ S. In particular, if either of the functions C±f0 extends
continuously to S then so does the other function. The limit in (3.2) is obviously
zero, if ζ ∈ ∂D \ S.

Assume that there is a holomorphic function f in D which is continuous up to
S and satisfies f = f0 on S. A simple manipulation with the Cauchy integral
formula for f shows that the difference C+f0 − f extends to a continuous (even
C∞) function on D∪S. Since f is continuous on D∪S, the integral C+f0 extends
to a continuous function on D ∪ S. By the above, C−f0 extends continuously to
D \ D, too.

Consider the function

F (z) =

{
C+f0 (z)− f(z), if z ∈ D ∪ S,
C−f0 (z), if z ∈ D \ D,

in the disk D. This function is holomorphic in D \S and continuous on all of D, for
C+f0 − f = C−f0 on S, which is due to Sokhotsky-Plemelj formula (3.2). From
the Morera theorem we easily deduce that F is actually holomorphic in the unit
disk D. Hence, the Taylor series of this function around the origin converges in all
of D. The series looks like

F (z) =
∞∑

n=0

cnz
n (3.3)

for |z| < 1, where

cn =
1

2πı

∫
S

f0(ζ)

ζn+1
dζ,

for F = C−f0 nearby the origin. From the Cauchy-Hadamard formula for the con-
vergence radius of power series we readily conclude that lim sup n

√|cn| ≤ 1. If this
limit is less than 1, then the series (3.3) converges in a a disk about the origin of
radius greater than 1. Hence, C−f0 extends to a holomorphic function in a neigh-
bourhood of the closure of S, and so does Cf0. On applying the Sokhotsky-Plemelj
formula once again we see that f0 ≡ 0 on S, a contradiction. This establishes (3.1),
as desired.

Sufficiency. To prove the converse theorem, let f0 be a continuous function on
the closure of S satisfying (3.1). By assumption, the integral C−f0 is holomorphic
in a disk of sufficiently small radius ε > 0 around the origin (take ε < dist (0,S)).
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Hence, C−f0 expands in this small disk as a power series whose coefficients are
given by

cn =
1

2πı

∫
S

f0(ζ)

ζn+1
dζ,

cf. (3.3). Condition (3.1) forces the power series (3.3) to actually converge in the
unit disk D to a holomorphic function F . By the uniqueness theorem, the integral
C−f0 extends holomorphically to all of D, and this analytic continuation is F .
Hence it follows that the integral C+f0 extends to a continuous function on D∪S.
We now set

f(z) := C+f0 (z)− F (z)

for z ∈ D ∪ S, thus obtaining a holomorphic function in D which is continuous up
to S and satisfies f(z) = f0(z) for all z ∈ S, as desired. �

The Riemann hypothesis is equivalent to the fact that the reciprocal function
1/ζ(s) extends from the interval (1/2, 1) to an analytic function in the quarter-strip
1/2 < 	s < 1, 
s > 0. Theorem 3.1 allows one to rewrite the condition of analytic
continuability in an elegant form amenable to numerical experiments, see [AAL99],
[Tar12].

4. Analytic continuation in higher dimensions

For n-dimensional vectors v1, . . . , vN with entries in a ring and nonnegative in-
tegers n1, . . . , nN with n1 + . . . + nN = n, we denote by Dn1,...,nN

(v1, . . . , vN ) the
determinant of order n whose first n1 columns are v1, the next n2 columns are v2
etc., the last nN columns are vN . We compute the determinant by columns, i.e.,
we define

det(vij) =
∑
I

(−1)εIvi11 . . . vinn

where εI denotes the signature of the permutation I = (i1, . . . , in) of the integers
(1, . . . , n).

Let v = v(z, ζ, t) be a smooth function on O×[0, 1] with values in C
n, U being an

open set not intersecting the diagonal {z = ζ} in C
n
z ×C

n
ζ . Fix 0 ≤ p ≤ n. Consider

the double differential forms K
(p)
q (v) of bidegree (p, q − 1) in z and (n − p, n − q)

in ζ, t given by

K(p)
q (v) =

(−1)q+(n−p)(q−1)

(2πi)nn!

(
n

p

)(
n− 1

q − 1

)
× Dp,n−p(∂z, ∂ζ) ∧D1,q−1,n−q

(
v, ∂̄zv, (∂̄ζ + dt)v

)
, (4.1)

for 1 ≤ q ≤ n, and K
(p)
0 ≡ K

(p)
n+1 ≡ 0.

The double forms (4.1) were first introduced by Koppelman [Kop67]. Here we
rehearse some elementary properties of these forms.

Lemma 4.1. For each smooth function f on U × [0, 1], we have the equality

K
(p)
q (fv) = fnK

(p)
q (v).

Proof. Indeed, if ∂ is one of the differentials ∂̄z, ∂̄ζ and dt, then the Leibniz formula
yields ∂(fv) = (∂f)v + f∂v. As the vector (∂f)v is proportional to v, it gives no
contribution to the last determinant on the right-hand side of (4.1). This proves
the lemma. �
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In particular, if v satisfies 〈v, ζ − z〉 �= 0 pointwise on the set U × [0, 1], then

K(p)
q

(
v

〈v, ζ − z〉
)

=
1

〈v, ζ − z〉n K(p)
q (v)

where 〈·, ·〉 denotes the standard bilinear form C
n ⊗ C

n → C. Thus, when consid-
ering a vector-valued function v with the property that 〈v, ζ − z〉 �= 0 on the set
U × [0, 1], after multiplication by a nonzero function we may actually assume that
〈v, ζ − z〉 = 1.

Lemma 4.2. Suppose v satisfies 〈v, ζ − z〉 = 1 on U × [0, 1]. Then, the equality
holds (

∂̄ζ + dt
)
K

(p)
q+1(v) = (−1)p+q ∂̄zK

(p)
q (v). (4.2)

Proof. See for instance Lemma 1.2 in [AD83] and elsewhere. �

Note that if vj = vj(z, ζ), j = 0, 1, are smooth functions on u with values in C
n,

both satisfying 〈vj , ζ − z〉 = 1 on U , then the linear homotopy vt = (1− t)v0 + tv1
between them still satisfies 〈vt, ζ − z〉 = 1 on the set U × [0, 1]. The lemma below
allows nonlinear homotopies, too.

Lemma 4.3. Let v satisfy 〈v, ζ − z〉 = 1 on U × [0, 1]. Write v0 and v1 for the
values of v at t = 0 and t = 1, respectively. Then

K
(p)
q+1(v1)−K

(p)
q+1(v0) = ∂̄zI

(p)
q+1(v)− (−1)p+q∂̄ζI

(p)
q+2(v), (4.3)

on the set U , where I
(p)
i (v) = (−1)p+(i−1)

∫ 1

0

(∂/∂t)�K(p)
i−1(v) dt.

Proof. It suffices to integrate equality (4.2) over t ∈ [0, 1] and take into account
that

∂̄ζ

∫ 1

0

(∂/∂t)�K(p)
q+1(v) dt = −

∫ 1

0

(∂/∂t)�∂̄ζK(p)
q+1(v) dt

because ∂̄ζ and dt anticommute. �

There is a universal solution to the equation 〈v, ζ−z〉 = 1 outside of the diagonal
in C

n
z × C

n
ζ , given by

v1(z, ζ) =
ζ − z

|ζ − z|2
for z �= ζ. Under this choice of v, the double forms K

(p)
q (v) fit together to give a

fundamental solution of convolution type to the Dolbeault complex on C
n.

Lemma 4.4. Let D be a bounded domain in C
n with a piecewise smooth boundary

and f ∈ C1(Λp,qT ∗
C
D). Then,

−
∫
∂D

f ∧K
(p)
q+1(v1) +

∫
D
∂̄f ∧K

(p)
q+1(v1) + ∂̄

∫
D
f ∧K(p)

q (v1) = χDf, (4.4)

where χD is the characteristic function of D.

Proof. Cf. the original paper [Kop67]. For a thorough treatment we also refer the
reader to [AD83]. �
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More precisely, let D be a bounded domain in C
n with piecewise smooth bound-

ary. This domain is called linearly convex at a boundary point ζ ∈ ∂D if there
exists a complex hyperplane Hζ = {z ∈ C

n : 〈v, z − ζ〉 = 0} through ζ which does
not meet D.

Pick an open set S on the boundary of D, such that D is linearly convex at each
point of ∂D\S. We thus get a distribution Hζ of hyperplanes in TCD parametrised
by the points ζ ∈ ∂D \ S.

Assume that v(ζ) extends to a smooth function in the closure of D, such that
no hyperplane Hζ with ζ ∈ D passes through a fixed point a ∈ C

n. In other words,

〈v(ζ), a− ζ〉 �= 0 holds for all ζ ∈ D.
Set

v0(z, ζ) =
v(ζ)

〈v(ζ), ζ − z〉 ,

thus obtaining a smooth function of (z, ζ) ∈ C
n ×D away from the null set of the

denominator 〈v(ζ), ζ − z〉. By assumption, v0 is smooth on the set D × (∂D \ S),
and so we readily find

I2((1− t)v0 + tv1) =
(−1)n

(2πı)n
dζ ∧

n−2∑
k=0

D1,1,k,n−2−k

(
v0, v1, ∂̄ζv0, ∂̄ζv1

)

for all (z, ζ) ∈ D × (∂D \ S).
Theorem 4.5. Under the above assumptions, if f ∈ C(D) is holomorphic in D,
then

f(z) = −
∫
∂S

f(ζ) I2

(
(1− t)v0 + tv1

)

− lim
N→∞

∫
S
f(ζ)

(
K1(v1)−

(
1−

( 〈v, z − a〉
〈v, ζ − a〉

)N+1)n

K1(v0)
)

(4.5)

for all z ∈ D satisfying sup
ζ∈∂D\S

∣∣∣ 〈v(ζ), z − a〉
〈v(ζ), ζ − a〉

∣∣∣ < 1.

Proof. On applying the Bochner-Martinelli formula (cf. (4.4) for p = q = 0) we
obtain

f(z) = −
∫
∂D

f(ζ)K1(v1)

for z ∈ D. Write the integral on the right-hand side as the sum of two integrals,
the first of the two being over S and the second being over ∂D \ S. For z ∈ D and
ζ ∈ ∂D\S, we use (4.3) for p = q = 0, to get K(v1) = K(v0)− ∂̄ζI2((1− t)v0+ tv1).
This yields

f(z) = −
∫
S
f(ζ)K1(v1)−

∫
∂D\S

f(ζ)
(
K1(v0)− ∂̄ζI2((1− t)v0 + tv1)

)

= −
∫
∂S

f(ζ) I2((1− t)v0 + tv1)
)
−

∫
S
f(ζ)K1(v1)−

∫
∂D\S

f(ζ)K1(v0)

(4.6)

for each z ∈ D, which is due to Stokes’ formula. It remains to transform the last
integral.
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By Lemma 4.1,

K1(v0) =
( 1

〈v, ζ − z〉
)n

K1(v)

and furthermore

1

〈v, ζ − z〉 =
1

〈v, ζ − a〉
1

1− 〈v, z − a〉
〈v, ζ − a〉

= lim
N→∞

(
1−

( 〈v, z − a〉
〈v, ζ − a〉

)N+1) 1

〈v, ζ − z〉 ,

the limit exists because
∣∣∣ 〈v, z − a〉
〈v, ζ − a〉

∣∣∣ < 1 holds for all ζ ∈ ∂D \ S. Hence it follows

that

K1(v0) = lim
N→∞

(
1−

( 〈v, z − a〉
〈v, ζ − a〉

)N+1)n

K1(v0), (4.7)

each member of the sequence being smooth on the closure of D, for no hyperplane
〈v(ζ), z − ζ〉 = 0 passes through a whenever ζ ∈ D.

Our next goal is to show that each member of the sequence in (4.7) is a ∂̄ -closed
differential form in D. Since the differential forms are smooth on D, it suffices to
verify this only for those ζ ∈ D which satisfy 〈v(ζ), ζ−z〉 �= 0. When differentiating
the form

FN =
(
1−

( 〈v, z − a〉
〈v, ζ − a〉

)N+1)n

K1(v0),

we take into account that ∂̄ζK1(v0) = 0, which is a consequence of Lemma 4.2. It
follows that

∂̄FN = ∂̄ζ

(
1−

( 〈v, z − a〉
〈v, ζ − a〉

)N+1)n

∧K1(v0)

= n
(
1−

( 〈v, z − a〉
〈v, ζ − a〉

)N+1)n−1

(−1)(N+1)
( 〈v, z − a〉
〈v, ζ − a〉

)N

∂̄ζ
〈v, z − a〉
〈v, ζ − a〉 ∧K1(v0)

and

∂̄ζ
〈v, z − a〉
〈v, ζ − a〉 ∧K1(v0) =

〈∂̄ζv, z − a〉〈v, ζ − a〉 − 〈v, z − a〉〈∂̄ζv, ζ − a〉
〈v, ζ − a〉2 ∧K1(v0)

= (−1)n−1 (n− 1)!

(2πı)n
〈v, z − a〉〈v, ζ − a〉 − 〈v, z − a〉〈v, ζ − a〉

〈v, ζ − a〉2〈v, ζ − z〉n dζ ∧
n∧

j=1

∂̄ζvj

= 0,

as desired.
Combining (4.7) with Stokes’ formula yields∫

∂D\S
f(ζ)K1(v0) = lim

N→∞

∫
∂D\S

f(ζ)FN

= lim
N→∞

(∫
∂D

f(ζ)FN −
∫
S
f(ζ)FN

)

= − lim
N→∞

∫
S
f(ζ)FN ,
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for every fFN is ∂̄ -closed in D and continuous up to the boundary. On substituting
this into (4.6) we arrive at (4.5). �

In particular, let B be the unit ball around the origin in C
n and S a smooth

surface in B \ {0} which divides the ball into two domains. Denote by D the
domain which does not contain the origin. We simply choose v(ζ) = ζ and a = 0,
obtaining

sup
ζ∈∂D\S

∣∣∣ 〈ζ, z〉〈ζ, ζ〉
∣∣∣ ≤ |z|

which is less than 1 for all z ∈ D. Then, given any function f ∈ C(D) holomorphic
in D, the formula holds

f(z) =

∫
∂S×[0,1]

f(ζ)K1

(
(1− t)v0 + tv1

)

− lim
N→∞

∫
S
f(ζ)

(
K1(v1)−

(
1−

( 〈ζ, z〉
|ζ|2

)N+1)n

K1(v0)
)

for all z ∈ D.

5. The Cauchy problem for the Dolbeault cohomology

We now return to the general setting of Theorem 4.5. The same proof still goes
when we drop the assumptions q = 0, thus studying ∂̄ -closed differential forms of
bidegree (p, q) in D.

Assume that D is a bounded domain in C
n with piecewise smooth boundary and

S ⊂ ∂D an open set, such that D is linearly convex at each point of ∂D \ S. Just
as in Section 4, we define

v0(z, ζ) =
v(ζ)

〈v(ζ), ζ − z〉 ,

which is a smooth function of (z, ζ) ∈ C
n × D away from the null set of the de-

nominator 〈v(ζ), ζ − z〉. By assumption, v0 is smooth on the set D × (∂D \ S)
whence

I(p)q ((1− t)v0 + tv1) =
(−1)n+(n−p+1)q

(2πi)nn!

(
n

p

)

× Dp,n−p(∂z, ∂ζ) ∧
n−q∑
k=0

(
n−2−k

q − 2

)
D1,1,q−2,k,n−q−k

(
v0, v1, ∂̄zv1, ∂̄ζv0, ∂̄ζv1

)

for 2 ≤ q ≤ n. One also defines I
(p)
1 ≡ I

(p)
n+1 ≡ 0.

Using the double differential form I
(p)
q+1((1 − t)v0 + tv1), we may introduce a

∂̄ -homotopy operator

h(p)
q f (z) = −

∫
∂D\S

f ∧ I
(p)
q+1

(
(1− t)v0 + tv1

)
+

∫
D
f ∧K(p)

q (v1), z ∈ D,

on differential forms f of bidegree (p, q) in D continuous up to the part ∂D \ S
of the boundary. The interest of the operator h

(p)
q lies in the fact that we obtain

∂̄ h
(p)
q f = f in D, provided f is ∂̄-closed in D and vanishes (or is merely ∂̄b -exact)

on S.
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Theorem 5.1. If f is a ∂̄ -closed differential form of bidegree (p, q) in D continuous
up to the boundary, then

f(z) = −
∫
∂S

f(ζ) ∧ I
(p)
q+2

(
(1− t)v0 + tv1

)
−

∫
S
f(ζ) ∧K

(p)
q+1(v1)

+ ∂̄ h(p)
q f (z) (5.1)

for all z ∈ D.

Proof. This follows by the same way as in Theorem 4.5, the only difference being in
the fact that we apply Lemmas 4.4 and 4.3 with q = 0 replaced by arbitrary q ≥ 1.

If q > 0, then the double form K
(p)
q+1(v0) vanishes for ζ ∈ ∂D \ S because v0 is

holomorphic in z on the set 〈v(ζ), ζ − z〉 �= 0. Therefore, we need not approximate
it uniformly in ζ ∈ ∂D\S by ∂̄ -closed differential forms on the closure of D, which
simplifies the proof. �

Since formula (5.1) does not contain any limit passage, it demonstrates rather
strikingly that the Cauchy problem for the Dolbeault cohomology in D with data
on S is stable, if posed in appropriate function spaces. In particular, this includes
a uniqueness result.

Corollary 5.2. Let f be a differential form of bidegree (p, q) and of class C1 on the
closure of D. If moreover f is ∂̄ -closed in D and ∂̄b -exact on S, then f is ∂̄ -exact
in D.

Proof. Assume that f = ∂̄bu on S where u is the restriction to S of a smooth
(p, q − 1) -form in a neighbourhood of S. Let us transform the right-hand side of
(5.1). On the boundary of S which belongs to ∂D \S we can invoke decomposition
(4.3) to obtain

−
∫
∂S

f ∧ I
(p)
q+2(vt) =

∫
∂S

u ∧ (−1)p+q−1∂̄ζI
(p)
q+2(vt)

=

∫
∂S

u ∧
(
K

(p)
q+1(v1)−K

(p)
q+1(v0)− ∂̄zI

(p)
q+1(vt)

)
,

where we write vt = (1 − t)v0 + tv1 for short. On the other hand, integrating by
parts and using Lemma 4.2 we get

−
∫
S
f ∧K

(p)
q+1(v1) = −

∫
S
∂̄u ∧K

(p)
q+1(v1)

= −
∫
∂S

u ∧K
(p)
q+1(v1)− ∂̄

∫
S
u ∧K(p)

q (v1)

for all z ∈ D. Adding these two equalities yields

−
∫
∂S

f(ζ) ∧ I
(p)
q+2(vt)−

∫
S
f(ζ) ∧K

(p)
q+1(v1)

= −
∫
∂S

u ∧K
(p)
q+1(v0) + ∂̄

(
−
∫
∂S

u ∧ I
(p)
q+1(vt)−

∫
S
u ∧K(p)

q (v1)

)

for z ∈ D.
Note that the double form K

(p)
q+1(v0) vanishes identically away from the set of

singularities of v0, if q > 0. Indeed, the determinant (4.1) contains at least one
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column ∂̄zv0, if q − 1 > 0, and ∂̄zv0 ≡ 0 because v0 is holomorphic in z. It follows
from Theorem 5.1 that

f = ∂̄

(
−
∫
∂S

u ∧ I
(p)
q+1(vt)−

∫
S
u ∧K(p)

q (v1) + h(p)
q f

)
in D, proving the corollary. �

6. The Riemann-Hilbert boundary value problem

Consider a system of first order partial differential equations with constant co-
efficients of the form

A1∂1f + . . .+An∂nf = 0 (6.1)

in R
n, where A1, . . . , An are (k × k) -matrices of complex numbers, ∂j the partial

derivative in the j th coordinate xj , for j = 1, . . . , n, and f is an unknown function
with values in C

k. We will write A for the partial differential operator on the left-
hand side of (6.1). The system (6.1) is called a generalised Cauchy-Riemann system
if each solution f to (6.1) has only harmonic components f j (see [AT16] and the
references given there). Every generalised Cauchy-Riemann system is elliptic, i.e.,
its symbol

σ(A)(ξ) :=
n∑

j=1

Aj(ıξj)

is invertible for all ξ ∈ R
n \ {0}. Obviously, there is no restriction of generality in

assuming that A1 = Ek, the identity matrix of type k×k. The matrices A2, . . . , An

of system (6.1) with A1 = Ek are immediately specified as representations of gen-
erators of the Clifford algebra Cn−1 over the field C in the algebra of all linear
mappings of Ck.

Another characteristic property of generalised Cauchy-Riemann equations is the
so-called rotational invariance. Hence it follows that one rewrite them, by rotating
the coordinate system x if necessary, in an equivalent form Au = 0 with A satisfying
A∗A = −EkΔ, where A∗ is the formal adjoint operator for A and Δ the Laplace
operator in R

n.
Let D be a bounded domain with smooth boundary in R

n. Given a function f0
at ∂D with values in C

k/2, we look for a solution f to (6.1) in D which moreover
satisfies

Bf = f0 on ∂D, (6.2)

where B is a (k/2×k) -matrix of continuous functions on ∂D whose rank is maximal,
i.e., k/2. Problem (6.1), (6.2) is usually referred to as the Hilbert boundary value
problem.

Remark 6.1. Since each generalised Cauchy-Riemann operator A has a fundamen-
tal solution Φ of convolution type, the inhomogeneous system Af = g in D is
reduced to the homogeneous one by substituting f +Φ(χDg) for f , where χD is the
characteristic function of D.

The study of the Hilbert boundary value problem for general elliptic systems of
first order partial differential equations in a bounded domain D ⊂ R

n goes back at
least as far as [Ava82]. The problem was reduced to a system of singular integral
equations the boundary of D and both a condition for the Fredholm property and
an index theorem were given. In [MMT11] the Hilbert boundary value problem is
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studied for generalised Maxwell equations. These equations have more complicated
structure than (6.1).

For the classical Cauchy-Riemann equations we get k = 1, and so k/2 fails to
be a whole number. To dispense with the assumption on the evenness of k one can
rewrite equations (6.1) in the obvious way over the field of real numbers. Then
condition (6.2) takes the form 	 (B′f) = f0 on ∂D, where B′ is a nonsingular
(k × k) -matrix of continuous functions on ∂D and f0 a function on the boundary
with values in R

k.
The rows of the matrix B(x) are linearly independent at each point x ∈ ∂D. On

applying the Gram-Schmidt orthogonalisation one can orthonormalise them in C
k.

The properties of continuity and smoothness of the matrix elements do not change.
Hence, we can assume without restriction of generality that the rows of B(x) form
pointwise an orthonormal system.

The task is now to find those conditions on the boundary coefficients and ge-
ometry of the domain D under which the Hilbert boundary value problem has
the Fredholm property. When considered in the Sobolev spaces, a boundary value
problem for an elliptic system is Fredholm if and only if it satisfies the Shapiro-
Lopatinskij condition. The paper [Ste93] studies in detail the adjoint boundary
value problem to apply the general theory of elliptic boundary value problems to
the Hilbert problem in the case, where the Shapiro-Lopatinskij condition is ful-
filled. This is precisely the border line over which elliptic theory no longer works,
and so the boundary Fourier method in the Hilbert boundary value problem is well
motivated.

The boundary Fourier method is based on an integral identity specifying the
complementary part of Bu in the Cauchy data of u on the boundary of D relative
to the generalised Cauchy-Riemann operator A(∂) = A1∂1 + . . . + An∂n. By the
above, there is no loss of generality in assuming that the rows of the matrix B(x) are
pointwise orthonormal. Under rather broad (still necessary) topological conditions
on B there is a (k/2×k) -matrix C of smooth functions on ∂D, such that the block
matrix

T (x) =
(
B(x)
C(x)

)
is unitary for all x ∈ ∂D.

Lemma 6.2. There are unique matrices Badj and Cadj of continuous functions on
∂D with the property that∫

∂D

(
(Bf,Cadjg)x − (Cf,Badjg)x

)
ds =

∫
D
((Af, g)x − (f,A∗g)x) dx (6.3)

for all f ∈ H1(D,Ck) and g ∈ H1(D,Ck), where ds is the surface measure on the
boundary.

Proof. Since T (x) is a unitary matrix for all x ∈ ∂D, we get T ∗T = Ek, which is
equivalent to B∗B + C∗C = Ek.

Given any f ∈ H1(D,Ck) and g ∈ H1(D,Ck), the Green formula of [Tar95,
9.2.2] shows that ∫

∂D
(σf, g)x ds =

∫
D
((Af, g)x − (f,A∗g)x) dx

where σ(x) := σ(A)(−ıν(x)) for x ∈ ∂D and ν(x) is the unit outward normal vector
to the boundary at x. On substituting u = (B∗B +C∗C)u into this formula yields
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(6.3) with

Cadj = Bσ∗,
Badj = −Cσ∗, (6.4)

as desired. �

From (6.4) it follows immediately that the ranks of both Cadj and Badj are equal
to k/2.

Formula (6.3) is said to be a Green formula related to the boundary value prob-
lem {A,B}. The formula is not uniquely determined by the pair {A,B}, for the
complementary part C of B in the Cauchy data {B,C} can be chosen in many
ways. On choosing C we fix a duality on the manifold with boundary D associated
with {A,B}. The problem {

A∗g = h in D,
Badjg = g0 on ∂D (6.5)

is called adjoint to {A,B} with respect to the Green formula. Clearly, (6.5) is of
Hilbert type, too.

From the Green formula it follows that for the solvability of problem (6.1), (6.2)
it is necessary that ∫

∂D
(f0, C

adjg)x ds = 0 (6.6)

for all g ∈ H1(D,Ck) which satisfy the homogeneous problem corresponding to
(6.5), i.e., A∗g = 0 in D and Badjg = 0 on ∂D. The moment conditions (6.6)
specify a closed space of boundary data f0 which contains the range of the Hilbert
boundary value problem. However, this space need not have finite codimension,
for the space of solutions of the homogeneous adjoint problem may be infinite
dimensional.

For a smooth function f in D, we set fε(y) := f(y − εν(y)), thus obtaining a
family of smooth functions on ∂D parametrised by a small parameter ε > 0. We
say that f admits distribution limit values on ∂D, if

lim
ε→0+

∫
∂D

fεg ds =: 〈f0, g〉 (6.7)

exists for all g ∈ C∞(∂D). In this case the limit defines a distribution f0 on the
boundary and the convergence is not only in the weak sense but also in the strong
topology on D′(∂D). A harmonic function f in D admits distribution limit values
on ∂D if and only if f is of finite order of growth near ∂D, i.e., there is an integer
N and C > 0, such that |f(x)| ≤ C/(dist(x, ∂D))N for all x ∈ D, see Theorem 1.1
in [Str84].

Let now f be a smooth function in D with values in C
k satisfying the generalised

Cauchy-Riemann equations Au = 0 in D. If there exists an integer N and C > 0,
such that |f(x)| ≤ C/(dist(x, ∂D))N for all x ∈ D, then the same is true for the
components of f . By the above, each component admits distribution limit values
on ∂D. Hence, f admits limit values on the boundary which form is a continuous
linear functional on C∞(∂D,Ck). Moreover, both Bu and Cu admit limit values
on ∂D which are distributions with values in C

k. This is precisely the sense in
which we interpret them in the following formula analogous to the Cauchy integral
formula.
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Let e(x) be the standard fundamental solution of convolution type for Δ, i.e.,
e(x) = (2π)−1 log |x|, if n = 2, and

e(x) =
1

σn

1

2− n

1

|x|n−2
,

if n ≥ 3, where σn is the surface area of the unit sphere in R
n. The matrix Φ = −A∗e

is a (two-sided) fundamental solution of convolution type of the operator A, i.e.,
ΦA = AΦ = I on compactly supported distributions in R

n whose values belong to
C

k.

Lemma 6.3. For each solution f to equations (6.1) in D of finite order of growth
near ∂D, it follows that

−
∫
∂D

(
(Bf,CadjΦ(x− ·)∗)y − (Cf,BadjΦ(x− ·)∗)y

)
ds =

{ f(x), if x ∈ D,
0, if x ∈ R

n \ D.
(6.8)

Note that (Φ(x − y))∗ = (Ae)(x − y) for all x and y away from the diagonal of
R

n × R
n, as is easy to check.

Proof. See Theorem 9.4.1 of [Tar95]. �

This reasoning, when looked at from a more general point of view, leads to new
investigations of Fredholm boundary value problems in Hardy-Smirnov spaces, see
[Tar95, 11.2.2].

The operator-theoretic foundations of the method of Fischer-Riesz equations
within the framework of the Cauchy problem for solutions of elliptic equations
are elaborated in [Tar95, 11.1]. It goes back at least as far as [PF50]. Here we
adapt this method for studying the Hilbert boundary value problem for generalised
Cauchy-Riemann equations.

Any solution of generalised Cauchy-Riemann equations in D is a k -column of
harmonic functions in this domain. Therefore, the k -fold product of the Hardy-
Smirnov space E2(D) (for which we write E2(D,Ck)) fits well to constitute the
domain of problem (6.1), (6.2). When endowed with the L2(∂D,Ck) -norm, this
space is Hilbert.

Denote by H1 the closed subspace of E2(D,Ck) consisting of those f which
satisfy Af = 0 in D. When endowed with the induced unitary structure, H1 is
a Hilbert space. Besides, set H2 = L2(∂D,Ck/2) and H = H2 × L2(∂D,Ck/2).
Consider the mapping M : H1 → H given by Mf = (Bf,Cf), which corresponds
to the Cauchy problem for solutions of Au = 0 in D with Cauchy data Bf = f0
and Cf = f1 on ∂D. The operator M is continuous and has closed range. Write
M∗ : H → H1 for the operator adjoint to M : H1 → H in the sense of Hilbert
spaces. The null-space kerM∗ of the operator M∗ is separable in the topology
induced from H. Let SA∗(D) stand for the space of all solutions to the formal
adjoint system A∗g = 0 on neighbourhoods of D. Since A∗ is elliptic, these are real
analytic functions with values in C

k.

Lemma 6.4. Assume that g ∈ SA∗(D). Then the couple (Cadjg,−Badjg) belongs
to kerM∗.
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Proof. One has to show that (Mf, (Cadjg,−Badjg))H = 0 for all f ∈ H1. By the
Green formula, we get

(Mf, (Cadjg,−Badjg))H =

∫
∂D

(
(Bf,Cadjg)x − (Cf,Badjg)x

)
ds

= 0,

as desired. �

The subspace of kerM∗ consisting of all elements of the form (Cadjg,−Badjg),
where g ∈ SA∗(D), is separable. Hence, there are many ways to choose a sequence
{gi}i=1,2,... in SA∗(D), such that the system {(Cadjgi,−Badjgi)} is complete in this
subspace. In Example 6.6 we show some explicit sequences {gi} with this property.
In fact, one establishes that the system {(Cadjgi,−Badjgi)}i=1,2,... is complete in
kerM∗.

Write P for the orthogonal projection of H onto the first factor H2. The com-
position PM = B acting from H1 to H2 just amounts to the operator of bound-
ary value problem (6.1), (6.2) in the updated setting. More precisely, given any
f0 ∈ L2(∂D,Ck/2), find f ∈ E2(D,Ck) satisfying Af = 0 in D and Bf = f0 weakly
on the boundary of D. The following lemma expresses the most important property
of the system {gi}.
Lemma 6.5. The system {Badjgi}i=1,2,... is complete in L2(∂D,Ck/2) if and only
if PM is injective.

Proof. See [AT16]. �

After removing the elements which are linear combinations of the previous ones
from the system {Badjgi}i=1,2,..., we get a sequence {gin} in SA∗(D), such that
the system {Badjgin} is linearly independent. Applying then the Gram-Schmidt
orthogonalisation to the system {Badjgin} in L2(∂D,Ck/2), we obtain a new sys-
tem {en}n=1,2,... in SA∗(D), such that {Badjen} is an orthonormal system in the

space L2(∂D,Ck/2). Moreover, {Badjen} is an orthonormal basis in L2(∂D,Ck/2),
provided that PM is injective. Note that the elements en of the new system have
explicit expressions through the elements {gi1 , . . . , gin} of the old system in the
form of Gram’s determinants.

Example 6.6. Since D is a bounded domain with smooth boundary, its comple-
ment has only finitely many connected components. Choose a finite number of
points {xi} away from the closure of D, such that each connected component of
R

n \ D contains at least one of the points xi. Then the columns of the matrix
∂αΦ(xi − ·)∗ belong obviously to SA∗(D) and the system {Badj∂αΦ(xi − ·)∗} is
complete in the subspace of L2(D,Ck/2) formed by elements of the type Badjg with
g ∈ SA∗(D).

The proof of this fact actually repeats the reasoning of Example 11.4.14 in
[Tar95]. Apparently the system of Example 6.6 is most convenient for numerical
simulations.

Given any f1 ∈ L2(∂D,Ck/2), we denote by kn(f1) the Fourier coefficients of f1
with respect to the system {Badjen}, i.e.,

kn(f1) =

∫
∂D

(f1, B
adjen)y ds
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for n = 1, 2, . . ..

Lemma 6.7. If f ∈ E2(∂D,Ck) satisfies Af = 0 in D, then

kn(Cf) =

∫
∂D

(Bf,Cadjen)y ds,

where n = 1, 2, . . ..

Proof. Using Lemma 6.4 we obtain

kn(Cf) =

∫
∂D

(Cf,Badjen)y ds+ (Mf, (Cadjen,−Badjen))H

=

∫
∂D

(Bf,Cadjen)y ds,

as desired. �

Thus, in order to find the Fourier coefficients of the data Cf on the boundary
with respect to the system {Badjen} in L2(∂D,Ck/2), it suffices to know only the
data Bf of problem (6.1), (6.2).

Theorem 6.8. Let f0 ∈ L2(∂D,Ck/2). In order that there be a f ∈ E2(D,Ck)
such that Au = 0 in D and Bu = u0 on ∂D, it is necessary and sufficient that

1)

∞∑
n=1

|cn|2 < ∞, where cn =

∫
∂D

(f0, C
adjen)y ds, and

2)

∫
∂D

(f0, C
adjg)y ds = 0 for all g ∈ SA∗(D) satisfying Badjg = 0 on the bound-

ary.

Proof. See [AT16]. �

The convergence of the series in 1) guarantees the stability of boundary value
problem (6.1), (6.2). Under this condition, the range of the mapping PM is de-
scribed in terms of continuous linear functionals on the space H, cf. 2) , which
is impossible in the general case. On the other hand, if the homogeneous adjoint
boundary value problem (6.5) has no smooth solutions in D different from zero, then
condition 1) is necessary and sufficient for the existence of a solution f ∈ E2(D,Ck)
to problem (6.1), (6.2).

Note that the proof of Theorem 6.8 works without the assumption that the oper-
ator PM in H is injective. Our next objective will be to construct an approximate
solution to boundary value problem (6.1), (6.2). To this end it is natural to as-
sume that the corresponding homogeneous boundary value problem has only zero
solution in the space E2(D)k, i.e., the mapping PM is injective. In this case the
orthonormal system {Badjen} is actually complete in the space L2(∂D,Ck/2). The
orthonormal bases in L2(∂D,Ck/2) of this form are said to be special, cf. [Tar95,
11.3].

For x ∈ D \ ∂D, we denote by kn(B
adjΦ(x − ·)∗) the k -row whose entries are

the Fourier coefficients of the columns of the ((k/2)×k) -matrix BadjΦ(x−·)∗ with
respect to the orthonormal basis {Badjen}n=1,2,... in L2(∂D,Ck/2). More precisely,
we set

kn(B
adjΦ(x− ·)∗) =

∫
∂D

(BadjΦ(x− ·)∗, Badjen)y ds
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for n = 1, 2, . . .. The coefficients kn(B
adjΦ(x−·)∗) are analytic functions in D\∂D

with values in (Ck)∗.
We now introduce the (Schwartz) kernels ΦN defined for x ∈ D and y in a

neighbourhood of D by

ΦN (x, y) =

N∑
n=1

kn(B
adjΦ(x− ·)∗)∗ en(y)∗,

where N = 1, 2, . . .. Obviously, the kernels ΦN are analytic in x ∈ D and y
in a neighbourhood of D, and A∗(y, ∂)ΦN (·, y)∗ = 0 on this set. The sequence
{ΦN} provides a very refined approximation of the fundamental solution Φ on the
boundary of D.

Lemma 6.9. The sequence {Badj (Φ(x− ·)− ΦN (x, ·))∗}N=1,2,... converges to zero

in the norm of L2(∂D,C(k/2)×k) uniformly in x on the compact subsets of the
domain D.

In this way we recover immediately the concept of a suppressing function within
the framework of the Hilbert problem for generalised Cauchy-Riemann equations.
More precisely, on determining QN from the equality Φ − ΦN = eQN Φ we get
formally

QN (x, y) = log
(
I − ΦN (x, y)Φ(x− y)−1

)
for all x ∈ D and y in a neighbourhood of D. Hence, whenever ΦN (x, y) approx-
imates Φ(x − y) the logarithm on the right- hand side tends to −∞. For such
(x, y) ∈ D × ∂D the factor eQN suppresses Φ, as N → ∞. This allows one to
reconstruct solutions f of the class E2(D,Ck) to Af = 0 in D through their data
Bf .

Theorem 6.10. Every function f ∈ E2(D,Ck) satisfying Au = 0 in D can be
represented by the integral formula

f(x) = lim
N→∞

(
−

∫
∂D

(Bf,CadjRN (x, ·)∗)y ds
)

for all x ∈ D, where RN = Φ− ΦN .

Proof. Fix a point x ∈ D. Since RN (x, ·)∗ and Φ(x−·)∗ differ by a k -row of smooth
solutions of the system A∗g = 0 in a neighbourhood of D, one can write by the
Green formula

f(x) = −
∫
∂D

(
(Bf,CadjRN (x, ·)∗)y − (Cf,BadjRN (x, ·)∗)y

)
ds (6.9)

for any N = 1, 2, . . .. From f ∈ E2(D,Ck) we deduce that Cf ∈ L2(∂D,Ck/2).
Hence it follows by Lemma 6.9 that

lim
N→∞

∫
∂D

(Cf,BadjRN (x, ·)∗)y ds = 0.

Thus, letting N → ∞ in (6.9) establishes the formula. �

As mentioned, for many problems of mathematical physics formulas for approx-
imate solution like that of Theorem 6.10 were earlier obtained by Kupradze and
his colleagues, see [Kup67]. Note that V. I. Smirnov supervised a PhD thesis of
V. Kupradze in the 1930s, cf. also [KK58].
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7. A nonstandard Cauchy problem for parabolic equations

The problem we discuss with in this sections originates from [LRS80] and it
consists in finding an explicit formula for the temperature inside a domain by using
partial lateral and initial data. This problem is treated in [Ike09]. A more general
class of related formulas was obtained in [MMT16].

Let D be a bounded domain with smooth boundary in R
n and S a nonempty

open piece of the boundary surface ∂D. Consider the Cauchy problem for the heat
equation in the cylinder CT = D × (0, T ) with data on the strip S × (0, T ) of the
lateral surface of the cylinder, where (0, T ) is a finite interval of the time axis. More
precisely, given functions f in CT and u0, u1 on S × (0, T ), find a function u in CT
which satisfies ⎧⎨

⎩
u′
t = Δu+ f in CT ,
u = u0 on S × (0, T ),
u′
ν = u1 on S × (0, T ),

(7.1)

where ν is the unit outward normal vector for ∂D.
The uniqueness of a solution to the problem can be easily proved in anisotropic

Sobolev or Hölder spaces by the same method as for elliptic equations, see for
instance [LO74]. Since in any slice t = t0 (7.1) is a Cauchy problem for an elliptic
equation, the problem is ill-posed in standard function spaces unless S = ∂D, see
[LRS80].

To construct an explicit formula for solutions to problem (7.1) of Golusin-Krylov
type, we continue the data f and u0, u1 to the whole semicylinder t > 0, i.e., we
assume T = ∞ in the sequel. On applying the Laplace transform in the variable
t ∈ (0,∞)

û(x, τ) := Lu (x, τ) =
∫ ∞

0

e−ıτtu(x, t) dt

to all equations of (7.1) we get the family of Cauchy problems⎧⎪⎨
⎪⎩

(Δ− ıτ)û(·, τ) = −u(·, 0)− f̂(·, τ) in D,

û(·, τ) = û0(·, τ) on S,
û′
ν(·, τ) = û1(·, τ) on S

(7.2)

in the domain D, parametrised by the complex parameter τ running over a hori-
zontal line in the lower half-plane. For any fixed τ , one readily specifies (7.2) within
the framework of ill-posed Cauchy problem for the Helmholtz equation in D with
data on S.

Denote by Ĝ(x; τ) the fundamental solution of convolution type for the Helmholtz
operator Δ− ıτ in the class of temperate distributions on R

n. The Goluzin-Krylov
techniques of the suppressing function enable one to construct an approximate so-
lution of problem (7.2). To wit, one finds a sequence of kernels ĈN (x, y; τ), for

N = 1, 2, . . ., which differ from Ĝ(x− y; τ) by a smooth solution of the Helmholtz
equation in y ∈ D and whose Cauchy data in y tend to zero at ∂D \ S, see [Tar95].
Then, for fixed τ , an approximate solution of (7.2) is obtained from the so-called
Carleman formula

û(x, τ)= lim
N→∞

(
−
∫
S

(
ĈN (x, ·; τ)∂ν û− ∂νĈN (x, ·; τ)û

)
ds+

∫
D
ĈN (x, ·; τ)(Δ− ıτ)û dy

)
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for all x ∈ D, where ds is the surface measure on ∂D. Then, assuming that the
inverse Laplace transform is possible under the limit passage in the last formula,
we arrive at the formula

u(x, t) = lim
N→∞

(
−
∫
D
(L−1ĈN )(x, ·; t)u(·, 0)dy

−
∫
S

∫ t

0

(
(L−1ĈN ) (x, ·; t−t′)∂νu− ∂ν(L−1ĈN )(x, ·; t−t′)u

)
dsdt′

+

∫
D

∫ t

0

(L−1ĈN )(x, ·; t−t′)(Δ− ∂t′)u dydt
′
)

whenever (x, t) ∈ CT . For (x, y) away from the diagonal in D×D and for t > 0, set

CN (x, y; t) = L−1ĈN (x, y; τ) =
1

2π

∫
	τ=γ

eıtτ ĈN (x, y; τ) dτ,

where γ is a sufficiently small negative number. A direct calculation shows that

(Δy − ∂t)CN (x, y; t) =
1

2π

∫
	τ=γ

eıtτ (Δy − ıτ)ĈN (x, y; τ) dτ

= 0

for (x, y) and t in the domain of CN . Moreover, CN (x, y; t) tends to zero in certain
sense in y away from S on the boundary of D, as N → ∞.

Hence, the sequence of kernels CN (x, y; t) generalises immediately the concept of
Carleman function in the Cauchy problem for elliptic equations to problem (7.1),
see [Tar95].

Lemma 7.1. If CN (x, y; t) is a Carleman function of problem (7.1), then the for-
mula

uN = Pi,N (u(·, 0)) + Ps,N (u1) + Pd,N (u0) + Pv,N (f)

gives an approximate solution of the problem in the cylinder CT , where

Pi,N (u(·, 0))=−
∫
D
CN (x, ·; t)u(·, 0)dy, Ps,N (u1)=−

∫
S

t∫
0

CN (x, ·; t−t′)u1dsdt
′,

Pd,N (u0)=

∫
S

t∫
0

∂νCN (x, ·; t−t′)u0dsdt
′, Pv,N (f)=−

∫
D

t∫
0

CN (x, ·; t−t′)fdydt′.

We now show how it works for the so-called cap type domains. To this end
assume that D is a bounded domain in the upper half-space {x3 > 0} of R3 whose
boundary consists of a smooth surface S lying in the half-space {x3 > 0}, and a
closed piece of the plane {x3 = 0}. Let σ be a positive number. Consider the entire
function

K(w) = exp(σw2)

of complex variable w ∈ C. The restriction of K to any vertical line w = u0 + ıv
just amounts to K(u+ ıv) = K(u) exp(2ıσuv− σv2), which is a rapidly decreasing
function of v.

Given two different points x = (x′, x3) and y = (y′, y3) in R
3, set r′ = |y′ − x′|

and introduce the integral

Φ(x, y) =
−1

2π2

1

K(x3)

∫ ∞

0



( K(w)

w − x3

) cosλϑ√
r′2 + ϑ2

dϑ, (7.3)



GOLUSIN-KRYLOV FORMULAS IN COMPLEX ANALYSIS 23

where w = y3 + ı
√
r′2 + ϑ2 and λ is a complex parameter. On separating the

imaginary part we get

Φ(x, y) =

∫ ∞

0

k(x, y;ϑ) cosλϑ dϑ

with k(x, y;ϑ) given by

−1

2π2

eσ(y
2
3−x2

3)e−σ(r′2+ϑ2)

ϑ2 + r2

(
(y3 − x3)

sin 2σy3
√
r′2 + ϑ2

√
r′2 + ϑ2

− cos 2σy3
√

r′2 + ϑ2
)
.

The convergence of the improper integral on the right-hand side of (7.3) is thus

guaranteed by the factor e−σϑ2

.
The following two lemmas are crucial for the Carleman formula.

Lemma 7.2. As defined by equality (7.3), the function Φ(x, y) is represented in
the form

Φ(x, y) =
−1

4π

e−λr

r
+R(x, y),

where R(x, y) is a twice continuously differentiable function of the variable y ∈ R
3

including the point y = x.

Lemma 7.3. As defined in (7.3), the function Φ(x, y) satisfies the Helmholtz equa-
tion ΔΦ− λ2Φ = 0 in y ∈ R

3 \ {x}.
Following (7.3) we introduce

Ĉσ(x, y; τ) =
−1

2π2

1

K(x3)

∫ ∞

0



( K(w)

w − x3

)cos(√ıτϑ)√
r′2 + ϑ2

dϑ,

where w = y3 + ı
√
r′2 + ϑ2 and τ is a complex parameter. An easy calculation

shows that

Ĉσ(x, y; τ) =

∫ ∞

0

kσ(x, y;ϑ) cos(
√
ıτϑ) dϑ

where kσ(x, y;ϑ) is given by

−1

2π2

eσ(y
2
3−x2

3)e−σ(r′2+ϑ2)

ϑ2 + r2

(
(y3 − x3)

sin 2σy3
√
r′2 + ϑ2

√
r′2 + ϑ2

− cos 2σy3
√

r′2 + ϑ2
)
.

Hence it follows that

kσ(x, y;ϑ) =
1

2π2

e−σx2
3e−σ(r′2+ϑ2)

ϑ2 + r2
,

∂y3kσ(x, y;ϑ) =
1

π2

e−σx2
3e−σ(r′2+ϑ2)

(ϑ2 + r2)2
x3

(
1 + σ(ϑ2 + r2)

)
on the plane y3 = 0. On applying Lemma 7.3 we conclude that Ĉσ(x, y; τ) is
a Carleman function of Cauchy problem (7.2) in the domain D with data on S,
parametrised by τ . It remains to evaluate the inverse Laplace transform

Cσ(x, y; t) = L−1Ĉσ(x, y; τ) =

∫ ∞

0

kσ(x, y;ϑ)L−1 cos(
√
ıτϑ) dϑ

of Ĉσ(x, y; τ), which reduces to evaluating the inverse Laplace transform of the
function cos(

√
ıτϑ) within the theory of [GS53].
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Theorem 7.4. Let D be a cap type domain in R
3. Then, given any u in the

anisotropic Sobolev space H2,1(CT ), it follows that

u(x, t) = lim
σ→∞

(
−

∫
D
Cσ(x, ·; t)u(·, 0)dy

−
∫
S

∫ t

0

(Cσ(x, ·; t−t′)∂νu− ∂νCσ(x, ·; t−t′)u) dsdt′

+

∫
D

∫ t

0

Cσ(x, ·; t−t′)(Δ− ∂t′)u dydt
′
)

for all (x, t) ∈ CT .
For λ = 0 in formula (7.3), Lemmas 7.2 and 7.3 are still valid for the particular

choiceK(w) = exp(σw), which leads to a simple suppressing function in the Cauchy
problem for the Laplace equation in the cap type domains in R

3, see [Yar04]),
[Ike09].
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