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Summary

This thesis is focused on the study and the exact simulation of two classes of real-valued Brownian dif-
fusions: multi-skew Brownian motions with constant drift and Brownian diffusions whose drift admits a
finite number of jumps.

The skew Brownian motion was introduced in the sixties by Itô and McKean, who constructed it
from the reflected Brownian motion, flipping its excursions from the origin with a given probability. Such
a process behaves as the original one except at the point 0, which plays the role of a semipermeable
barrier. More generally, a skew diffusion with several semipermeable barriers, called multi-skew diffusion,
is a diffusion everywhere except when it reaches one of the barriers, where it is partially reflected with
a probability depending on that particular barrier. Clearly, a multi-skew diffusion can be characterized
either as solution of a stochastic differential equation involving weighted local times (these terms providing
the semi-permeability) or by its infinitesimal generator as Markov process.

In this thesis we first obtain a contour integral representation for the transition semigroup of the multi-
skew Brownian motion with constant drift, based on a fine analysis of its complex properties. Thanks
to this representation we write explicitly the transition densities of the two-skew Brownian motion with
constant drift as an infinite series involving, in particular, Gaussian functions and their tails.

Then we propose a new useful application of a generalization of the known rejection sampling method.
Recall that this basic algorithm allows to sample from a density as soon as one finds an - easy to sample -
instrumental density verifying that the ratio between the goal and the instrumental densities is a bounded
function. The generalized rejection sampling method allows to sample exactly from densities for which
indeed only an approximation is known. The originality of the algorithm lies in the fact that one finally
samples directly from the law without any approximation, except the machine’s.
As an application, we sample from the transition density of the two-skew Brownian motion with or without
constant drift. The instrumental density is the transition density of the Brownian motion with constant
drift, and we provide an useful uniform bound for the ratio of the densities. We also present numerical
simulations to study the efficiency of the algorithm.

The second aim of this thesis is to develop an exact simulation algorithm for a Brownian diffusion
whose drift admits several jumps. In the literature, so far only the case of a continuous drift (resp. of
a drift with one finite jump) was treated. The theoretical method we give allows to deal with any finite
number of discontinuities. Then we focus on the case of two jumps, using the transition densities of the
two-skew Brownian motion obtained before. Various examples are presented and the efficiency of our
approach is discussed.





Zusammenfassung

Über die exakte Simulation (skew) Brownsche Diffusionen mit
unstetiger Drift

In dieser Dissertation wird die exakte Simulation zweier Klassen reeller Brownscher Diffusionen untersucht:
die multi-skew Brownsche Bewegung mit konstanter Drift sowie die Brownsche Diffusionen mit einer Drift
mit endlich vielen Sprüngen.

Die skew Brownsche Bewegung wurde in den sechzigern Jahren von Itô and McKean als eine Brownsche
Bewegung eingeführt, für die die Richtung ihrer Exkursionen am Ursprung zufällig mit einer gegebenen
Wahrscheinlichkeit ausgewürfelt wird. Solche asymmetrischen Prozesse verhalten sich im Wesentlichen
wie der Originalprozess außer bei 0, das sich wie eine semipermeable Barriere verhält. Allgemeiner sind
skew Diffusionsprozesse mit mehreren semipermeablen Barrieren, auch multi-skew Diffusionen genannt,
Diffusionsprozesse mit Ausnahme an den Barrieren, wo sie jeweils teilweise reflektiert wird. Natürlich ist
eine multi-skew Diffusion durch eine stochastische Differentialgleichung mit Lokalzeiten (diese bewirken
die Semipermeabilität) oder durch ihren infinitesimalen Generator als Markov Prozess charakterisiert.

In dieser Arbeit leiten wir zunächst eine Konturintegraldarstellung der Übergangshalbgruppe der multi-
skew Brownschen Bewegung mit konstanter Drift durch eine feine Analyse ihrer komplexen Eigenschaften
her. Dank dieser Darstellung wird eine explizite Darstellung der Übergangswahrscheinlichkeiten der
zweifach-skew Brownschen Bewegung mit konstanter Drift als eine unendliche Reihe Gaußscher Dichten
erhalten.

Anschließend wird eine nützliche Verallgemeinerung der bekannten Verwerfungsmethode vorgestellt.
Dieses grundlegende Verfahren ermöglicht Realisierungen von Zufallsvariablen, sobald man eine leicht zu
simulierende Zufallsvariable derart findet, dass der Quotient der Dichten beider Zufallsvariablen beschränkt
ist. Unsere verallgmeinerte Verwerfungsmethode erlaubt eine exakte Simulation für Dichten, die nur ap-
proximiert werden können. Die Originalität unseres Verfahrens liegt nun darin, dass wir, abgesehen von
der rechnerbedingten Approximation, exakt von der Verteilung ohne Approximation simulieren.
In einer Anwendung simulieren wir die zweifach-skew Brownsche Bewegung mit oder ohne konstanter
Drift. Die Ausgangsdichte ist dabei die der Brownschen Bewegung mit konstanter Drift, und wir geben
gleichmäßige Schranken des Quotienten der Dichten an. Dazu werden numerische Simulationen gezeigt,
um die Leistungsfähigkeit des Verfahrens zu demonstrieren.

Das zweite Ziel dieser Arbeit ist die Entwicklung eines exakten Simulationsverfahrens für Brownsche
Diffusionen, deren Drift mehrere Sprünge hat. In der Literatur wurden bisher nur Diffusionen mit stetiger
Drift bzw. mit einer Drift mit höchstens einem Sprung behandelt. Unser Verfahren erlaubt den Umgang
mit jeder endlichen Anzahl von Sprüngen. Insbesondere wird der Fall zweier Sprünge behandelt, da
unser Simulationsverfahren mit den bereits erhaltenen Übergangswahrscheinlichkeiten der zweifach-skew
Brownschen Bewegung verwandt ist. An mehreren Beispielen demonstrieren wir die Effizienz unseres
Ansatzes.





Résumé

Simulation exacte de diffusions browniennes (biaisées) avec dérive
discontinue

Cette thèse de doctorat consiste en l’étude et en la simulation exacte de deux classes de diffusions brown-
iennes à valeurs réelles: le mouvement brownien biaisé en plusieurs points et les diffusions browniennes
avec dérive admettant un nombre fini de sauts.

Le mouvement brownien biaisé a été construit dans les années soixantes par Itô et McKean à partir du
mouvement brownien réfléchi, en retournant chacune de ses excursions indépendamment et avec une prob-
abilité donnée. Ce processus markovien admet un comportement semblable au processus original, excepté
au point 0 où le biais se produit, et qui joue le rôle de barrière semi-perméable. Plus généralement, on ap-
pelle diffusion biaisée en plusieurs points une diffusion évoluant entre plusieurs barrières semi-perméables.
Lorsqu’une telle diffusion atteint l’une de ces barrières, elle est partiellement réfléchie, avec une proba-
bilité dépendant de la barrière. Une diffusion biaisée peut être caractérisée comme solution d’une équation
différentielle stochastique incluant des temps locaux pondérés (en relation avec les coefficients de semi-
perméabilité) ou par son générateur infinitésimal.

Dans cette thèse nous obtenons tout d’abord une représentation du semi-groupe de transition du
mouvement brownien biaisé avec dérive constante sous la forme d’une intégrale de contour, grâce à l’étude
fine des propriétés complexes de ce semi-groupe. Cette représentation nous fournit alors une formule
explicite et novatrice pour la densité de transition du mouvement brownien avec dérive constante biaisé
en deux points. L’expression de cette densité consiste en une série de fonctions gaussiennes et spéciales.
Nous proposons dans un deuxième temps une nouvelle application d’une méthode généralisée de simulation
par rejet. La méthode classique permet de simuler à partir d’une densité f. Elle s’applique lorsque l’on
peut identifier une densité facilement simulable, dite instrumentale, par rapport à laquelle la densité f est
bornée. La généralisation offre la possibilité d’échantilloner de façon exacte à partir d’une densité, même
si elle n’est connue que par approximation, sans aucune autre erreur que celles de l’ordinateur.
Nous appliquons ensuite ce schéma à la simulation d’un mouvement brownien avec dérive constante, biaisé
en deux points. La densité instrumentale choisie est alors celle du mouvement brownien (non biaisé)
avec dérive constante. Chemin faisant, nous obtenons une borne uniforme pour le quotient de ces deux
densités. Nous présentons également des simulations numériques qui permettent d’étudier l’efficacité de
l’algorithme.

Un autre objectif de la thèse est de développer un algorithme de simulation exacte pour les diffusions
browniennes avec dérive admettant plusieurs sauts. Dans la littérature mathématique actuelle seul le cas
de dérives continues (respectivement dérives admettant un seul saut) a été traité. La méthode théorique
proposée permet d’étendre l’étude à un nombre quelconque de discontinuités. Nous nous concentrons sur
le cas de dérives à deux sauts, car pour la simulation nous utilisons l’expression explicite de la densité
de transition du mouvement brownien biaisé en deux points obtenue précédemment. Des exemples variés
sont présentés et l’efficacité de la méthode est discutée.
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Introduction

Many applications in Applied Sciences require simulations of random diffusions, in particular when the
complexity of the models makes impossible a theoretical analysis. For this reason, properties of the models
are mainly studied using massive Monte Carlo methods. Diffusions whose coefficients are discontinuous
emerged recently in geophysics or medical imaging, when the medium is very rough (or shows a high
heterogeneity). Indeed, when the local properties of the matter or tissues change abruptly, it leads to dis-
continuous parameters in the diffusions. Moreover, such discontinuities appear also in financial modeling,
due to the strong increase in the reactivity of markets.

The first classic algorithms for such simulations are the Euler-Maruyama one and all its variants.
These approximation algorithms provide non exact simulations whose error one needs to control. It is
well known that, in the case of diffusions with Lipschitz coefficients, the approximations converge to the
original process, but this is no longer the case when the coefficients are not regular. Moreover the rate
of convergence may depend on the nature of the singularities. For a nice summary of the state of the
art of approximation methods in case of non-globally Lipschitz coefficients, we refer the reader to the
introduction of Ankirchner, Kruse and Urusov [1] or to a comprehensive and easy-to-follow memoir by
Hutzenthaler and Jentzen [26].

The point of view of exact simulation is quite different. The challenge is to simulate directly from
the law of the diffusion, sampling exactly from its finite-dimensional distributions without approximations
(beyond the machine’s). The advantage of these algorithms is obvious since it allows to avoid the fine
analysis of approximation errors. The disadvantage lies in the theoretical and computational complexity
inherent in such algorithms. Notice also the existence of mixed method like the quasi-exact one proposed
by Lenôtre [40].
The exact simulation is a quite popular topic in many domains. Recall the famous “coupling from the
past” method by Propp and Wilson (‘96), which provided a perfect sampling of statistical mechanics
models. The exact approach is a new topic in the setting of diffusions. It is quite unexplored and not the
object of comparison with other methods yet. There are only a few results available in case of real-valued
Brownian diffusions (i.e. diffusions with unitary diffusion coefficient): either for drift which are continuous
(see Beskos, Papaspiliopoulos and Roberts [9]) or for drift admitting only one jump (treated recently by
Étoré and Martinez [20] or by Papaspiliopoulos, Roberts and Taylor [48]).
We think that exact simulation schemes for diffusions are going to be more and more useful in the future,
therefore a systematic analysis is needed. The aim of this thesis is producing a step in this direction.

The scheme provided in Chapter 3, which is inspired by [20], gives a theoretical simulation method
for a real-valued Brownian diffusion whose drift admits a finite number of jumps. As will be explained in
Section 3.3, it is based on properties of a process, called multi-skew Brownian motion, which describes a
Brownian particle moving in a field force and skewed by the presence of several semipermeable barriers. In
the first section of Chapter 1 and Chapter 2 we give precise definitions and a short historical introduction.
Let us just recall, for the moment, that these processes are solutions to a stochastic differential equation
involving symmetric local times of the process such as

dXt = dWt + b(Xt) dt+

∫
R
ν(dy)dLyt (X),

X0 = x, Lyt (X) =

∫ t

0

1{Xs=y}dL
y
s , y ∈ R,

i
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where ν =

n∑
j=1

βjδzj is a weighted sum of Dirac measures with βj ∈ (−1, 1) for all j = 1, . . . , n, and b is

the drift function which is measurable and bounded. For ν a general finite measure, and in presence of a
non constant diffusion coefficient σ(Xt), this kind of SDE describes a wide class of processes (see Le Gall
[31, 32]). The weighted local time acts as a semipermeable barrier and skews the motion.

The multi-skew Brownian motion (with possibly discontinuous drift) is interesting on its own and has
emerged in various contexts during the last years. As first example, in mathematical finance, Gairat and
Shcherbakov [23] apply its distribution to obtain explicit analytical formulas for pricing European options
following the local volatility model (a natural extension of the Black-Scholes model). In the latter model
the discontinuity appears in the diffusion coefficient which is two-valued. The skew Brownian motion
appeared even earlier in finance, see for example Decamps et al. [12, 13, 14] and Rossello [55]. There are
also many applications in geophysics related to advection-dispersion phenomenon across layered porous
medium, see Ramirez et al. [52]. We refer the reader to Appuhamillage and Sheldon in [2] and Lejay and
Pichot [37] for a more exhaustive list of references to the main applications for skew Brownian diffusions.

The main ingredient we need to produce exact algorithms of (skew) Brownian diffusions with discon-
tinuous drifts is an explicit expression of the transition density of the skew Brownian motion with constant
drift . The number of jumps in the drift induces the number of barriers for the skew diffusion. Therefore
such an explicit expression is required for any number of barriers. Up to now, the most advanced explicit
expression of the transition density was limited to the case of one barrier [19, 20]. Note also the result by
Lejay, Lenôtre and Pichot [35] in the case of skew Brownian motion with one barrier but a two-valued drift.
In the setting of multi-skew Brownian diffusions, the only existing explicit formula deals with the case of
two reflecting (that is impermeable) barriers, treated by Svennson [59], Veestraeten [63], and Linetsky [41].
In Chapter 1 we propose a new method to compute the transition density of the one-skew Brownian motion
with constant drift (Proposition 1.1.1). This approach is sufficiently general to allow us to extend it in
Chapter 2 to the case of the multi-skew Brownian motion, see Theorem 2.3.7.

Let us give a chapter-by-chapter description of the content of this document.
In the first chapter we give an historical introduction to the real-valued skew Brownian motion with and

without (constant) drift. We focus on its equivalent definitions with the purpose of finding its transition
density. At first we mention existing techniques, in particular the one proposed by Étoré and Martinez
[19]. Then we present a new method based on the properties of the divergence form operator associated
to the process. Briefly, the transition density is equal to the inverse Laplace transform of the resolvent
kernel. We interpret the Laplace transform as a contour integral and exploit this structure to get an
explicit formula.

In the second chapter we define properly the multi-skew Brownian motion and apply to this process
the method introduced in the first chapter. The latter yields a new explicit expression for the two-skew
Brownian motion with and without constant drift. We detail all the computations, in particular the
representation of its transition density as a series of Fourier transforms. The latter allows us to bound
it uniformly in space and time, which provides an indispensable estimate for the exact simulation. We
also provide a practical and easy exact method to sample from densities for which we know only an
approximation. We call it Generalized Rejection Sampling .

In the third chapter we obtain an exact simulation scheme for real-valued Brownian diffusions whose
drift admits several jumps. This is based on the knowledge of some asymptotic properties of the transition
density of the multi-skew Brownian motion, as the skewness approaches zero. In particular, in the case
of the Brownian motion with drift admitting two jumps, we detail the scheme and provide numerical
simulations. In this way, we have paved the way to the exact simulation of diffusions with drift admitting
several jumps.

In Appendix A the reader can find extracts of the Python code used in the simulations.



Chapter 1

The one-skew Brownian motion with
constant drift: various approaches to
compute its transition density

Outline of the chapter: In this chapter, we present various techniques to compute the transition densities
of the real-valued skew Brownian motion with one semipermeable barrier (also called one-skew) with
constant drift. Our personal contribution consists in developing a particular way which is suitable for the
extension to the case of the multi-skew Brownian motion moving through several semipermeable barriers,
which will be treated in Chapter 2 and Chapter 3. The method we propose relies on the representation
of the transition densities (resp. semigroup) as the inverse Laplace transform of Green’s function of the
resolvent (resp. of the resolvent). The last section discusses the applicability of our method to one-skew
Brownian diffusions with more general drifts. A particular attention is given to the case of a piecewise
constant drift.

1.1 The framework

1.1.1 The one-skew Brownian motion

Heuristically, the real-valued (one)-Skew Brownian Motion (SBM) is a Brownian motion showing a par-
ticular behavior when it reaches one point, say the origin 0, where it is partially reflected.

A. Lejay wrote a full and comprehensive survey paper [33] on that topic, to which we will refer at
several places in this section. In particular, he presents various equivalent representations of the associated
semigroup.

This process was first introduced by Itô and McKean in [27], as a Wiener process transformed by
flipping its excursions from the origin with probability 1−β

2 , for a certain β ∈ [−1, 1]. If β = 0 one
recognizes the usual Brownian motion. If β = 1 (resp. β = −1) one obtains the reflected Brownian motion
on the positive (resp. negative) semi-axis. This is a trajectorial construction.
Throughout this chapter we will denote this process by (β)-SBM if the permeability coefficient β does
matter, and by one-SBM otherwise.

The one-SBM can be characterized in several ways: for example as the solution of a stochastic differ-
ential equation involving a weighted local time, or by its infinitesimal generator.
The first one is a path construction based on the semimartingale decomposition of the process. Let us
denote by (Wt)t>0 a real-valued Brownian motion, and x0 ∈ R. It was proved by Harrison and Shepp
in [25] that if |β| ≤ 1, there is a unique strong solution to the following stochastic differential equation

1
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involving (L0
t )t≥0, the symmetric local time at the point 0:{

dXt = dWt + β dL0
t (X),

X0 = x0, L0
t =

∫ t
0
1{Xs=0}dL

0
s,

(1.1.1)

which is indeed the (β)-SBM starting in x0. Harrison and Shepp also proved that if |β| > 1 there is no
solution to (1.1.1).

The Markovianity of the SBM, as solution to the latter SDE, is not a trivial fact. Zaitseva, after
having underlined in [69] the specific difficulties to prove this property, shows it in [70] in a more general
multi-dimensional context. Her technique is based on the paper by Kulik [30].

The identification of the SBM through its infinitesimal generator can be attributed to Portenko who
introduced in [49] and [50] even more-dimensional skew processes moving through semipermeable surfaces.

He wrote down the following formal differential operator
1

2

d2

dx2
+ βδ0

d

dx
, involving a singular term given

by the Dirac measure at 0. And he developed links with the partial differential equation the transition
semigroup has to solve. In fact, the interplay between SDE, infinitesimal generator and PDE can provide
various methods to find explicitely the semigroup of the SBM. Let f ∈ Cb, then the transition semigroup
Ex [f(Xt)], as function of t and x, solves (uniquely) the following PDE:

(t, x) 7→ u(t, x) ∈ C1,2
(
R∗+ × R∗;R

)
∩ C

(
R∗+ × R;R

)
∂

∂t
u(t, x) =

1

2

∂2

∂x2
u(t, x) t ∈ R∗+, x ∈ R∗,

(1 + β)
∂

∂x
u(t, 0+) = (1− β)

∂

∂x
u(t, 0−) t ∈ R∗+,

u(t, 0+) = u(t, 0−) t ∈ R∗+,
u(0, x) = f(x) x ∈ R,

(1.1.2)

(see Proposition 1 in [33]). The boundary condition involving the skewness parameter β at the point 0 is
called transmission condition. It makes it hard to solve directly (1.1.2). To avoid this difficulty one can
equivalently consider a weak solution to the following problem (see Section 3 in [33]):

t 7→ u(t, ·) ∈ C(R+;L2(R, dx)) ∩ L2(R+;H1(R, dx)),

∂tu = Lu,

u(0, x) = ϕ(x) ∈ L2(R, dx),

(1.1.3)

where L is the divergence form operator on L2(R, dx)L =
1

2k(x)

d

dx

(
k(x)

d

dx

)
with k(x) :=

1− β
2

1R∗−(x) +
1 + β

2
1R+

(x),

D(L) =
{
ψ ∈ H1(R, dx) : k(x)ψ′(x) ∈ H1(R, dx)

}
.

(1.1.4)

The function space H1(R, dx) is as usual the set of L2(R, dx)-functions whose weak derivative exists and
belongs to L2(R, dx) too. The two-valued function k(x) is unique up to a multiplicative constant.
The solution of (1.1.3) is also a solution to the problem (1.1.2) and vice versa. Indeed, one proves that
the unique solution of (1.1.3) is the semigroup of the (β)-SBM, solution of (1.1.1).

Let us comment the operator (L,D(L)) on L2(R, dx). Notice that, if |β| < 1 then L2(R, k(x)dx) =
L2(R, dx) and H1(R, k(x)dx) = H1(R, dx).

Moreover the latter operator is symmetric on L2(R, dx): let f, g ∈ D(L) then, since L coincides with 1
2
d2

dx2

on R∗, one has∫
R
Lf(x) g(x) dx =

∫
R−

Lf(x) g(x) dx+

∫
R+

Lf(x) g(x) dx =

=

∫
R−

1

2
f ′′(x) g(x) dx+

∫
R+

1

2
f ′′(x) g(x) dx = −

∫
R−

1

2
f ′(x) g′(x) dx−

∫
R+

1

2
f ′(x) g′(x) dx =

=

∫
R−

1

2
f(x) g′′(x) dx+

∫
R+

1

2
f(x) g′′(x) dx =

∫
R
f(x)Lg(x) dx.
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The advantage of considering the divergence form operator L as infinitesimal generator is twofold. One
has at one’s disposal the theory of the associated bilinear form (which is a Dirichlet form) and of the self-
adjoint operators. More precisely, one knows that L is the infinitesimal generator of a Feller semigroup
associated to a continuous Markov process. Once one proves that the associated process is the one-SBM,
one gets directly its Markovianity. (See [36] for this kind of approach, which is applicable to more general
skew processes).
Since it can be shown that the operator is self-adjoint one can use a spectral analysis approach to give
a complex integral representation for the transition densities following the Green’s function method or
Titchmarsh-Kodaira-Yosida method (see for example Yosida et al. [67]). In particular, Gaveau, Okada
and Okada recover in this way the transition density of the (β)-SBM without drift, see Section 5 of Chapter
II in [24]. The transition density (first computed by Walsh in [64]) has the following form:

p(β)(t, x, y) = p(t, x, y) + β
(
1R+

(y)− 1R∗−(y)
)
p(t,−x, y),

where y 7→ p(t, x, y) is the transition density of the Brownian motion (without skew) at time t starting in
x ∈ R. It solves the Fokker-Planck equation

∂

∂t
p(β)(t, x, y) =

1

2

∂2

∂y2
p(β)(t, x, y) R∗+, y ∈ R∗,

∂

∂y
p(β)(t, x, 0+) =

∂

∂y
p(β)(t, x, 0−) t ∈ R∗+,

(1 + β) p(β)(t, x, 0−) = (1− β) p(β)(t, x, 0+) t ∈ R∗+
p(β)(0, x, y) = δx(y) y ∈ R.

(1.1.5)

Let us mention that interesting properties (like laws of functionals) of the (β)-SBM can be found in the
compendium written by Borodin and Salminen [11].

1.1.2 The (one-)skew Brownian motion with constant drift

We are now interested in the transition density of a slightly more general process, that is the one-SBM
perturbed by an additional constant drift µ, with semipermeable barrier at the point z ∈ R. It is the
unique strong solution to the following SDE (E(β, µ)) involving the weighted local time:Xt = X0 +Wt + µ t+ βLzt (X),

Lzt =

∫ t

0

1{Xs=z}dL
z
s.

E(β, µ)

Pathwise uniqueness and weak existence are guaranteed by (the more general) Theorem 2.3 by Le Gall
[32]. The solution is a Markov process, as in the driftless case (Zaitseva [70]), and its transition probability

admits a density, which we denote by p
(β)
µ :

p
(β)
µ : R∗+ × R× R → (0,+∞)

(t, x, y) 7→ p
(β)
µ (t, x, y).

Its specific decomposition is given in the next proposition.

Proposition 1.1.1. The transition density for the SBM with constant drift µ and semipermeable barrier
in z satisfies

p(β)
µ (t, x, y) = pµ(t, x, y)v(β)

µ (t, x, y),

where pµ(t, x, y) is the transition density of the Brownian motion with constant drift µ (without skew), and

v(β)
µ (t, x, y) :=

(
1− exp

(
− 2x1y1

t

))
1{x1y1>0}

+
(
1 + β

(
21[z,+∞)(y)− 1

))
exp

(
− 2x1y1

t
1{x1y1>0}

)
·

[
1− βµ

√
2πt exp

( (|x1|+ |y1|+ tβµ)
2

2t

)
Φc
(
|x1|+ |y1|+ tβµ√

t

)]
,
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where x1 := x− z, y1 := y − z and Φc(y) :=
1√
2π

∫ ∞
y

e−
u2

2 du is the tail of a standard Gaussian law.

This formula has been recently obtained by various authors using different methods.
The first one was given by Appuhamillage et al. in [4], followed by their correction of a computational
mistake in [3]. There, the authors compute the joint density of the one-SBM with constant drift, its
local time at the barrier and its occupation time on the positive half-line as follows: first they obtain a
Feynman-Kac formula for the SBM with drift and then they compute the Laplace transform of the joint
density of the triplet (as Karatzas and Shreve have done for the Brownian motion in [29]).
In the next two sections, we propose other - old and new - proofs of this result. We will first sketch in
Section 1.2 the method of Étoré and Martinez (see [19]) as an example of proof based on the trajectorial
construction of the one-SBM via Brownian excursions. Then we provide in Section 1.3 two new alternative
proofs, both based on the identification of the infinitesimal generator of the (β)-SBM with drift µ and the
resulting integral representation of the associated transition semigroup. These alternative proofs are our
starting point for the generalization in Chapter 2.

1.2 An approach via the path decomposition of the SBM and its
local time

We now recall briefly the method proposed by Étoré and Martinez to prove Proposition 1.1.1 (see Proposi-
tion 4.7 in [19]). Their proof consists of computing Ex [f(Xt)] for any continuous and bounded function f
and any fixed starting point x ∈ R and time t > 0. Thanks to Girsanov theorem they reduce the problem
to compute the joint density of the SBM without drift starting from x and the Brownian motion. To do
this they consider the bijection

Φx : R× R+ → Dx

(y, `) 7→ (y, y − x− β`),

where Dx := {(v, w) ∈ R2 : v − x ≥ w}. In particular the image through Φx of the pair of processes
(skew Brownian motion, its local time in 0) is the pair (skew Brownian motion, Wt − x), where (Wt)t≥0

is the Wiener process. Let us denote by ν(dx, d`) the law on R × [0,+∞) of the pair (skew Brownian
motion with initial condition x, its local time in 0) at time t. For x > 0, ν is the sum of two components
ν(dx, d`) = ν1(dx, d`) + ν2(dx)δ0(d`). The first one ν1(dx, d`) is absolutely continuous with respect to the
Lebesgue measure dxd` and concentrated on R×(0,+∞), and the second one ν2(dx)δ0(d`) is concentrated
on R×{0}, and ν2(dx) is absolutely continuous with respect to the Lebesgue measure dx (see Lemma 1 in
Zaitseva, [71]). Étoré and Martinez give explicitly the densities, relying on the definition of the one-SBM
as randomly flipped excursion of the reflected Brownian motion (see Proposition 4.5 in Section 4.2 of [19]).
They then define ∆x := {(v, w) ∈ R+ × R : v = w + x} and, using the bijection Φx, they compute the
joint density of the skew BM starting in x and Wt − x on Dx \ ∆x = Φx(R × R∗+) and on ∆x. This
completes the proof in the case of x > 0 and β > 0. The other cases can be derived from this case.

1.3 An approach via the Laplace transform of the resolvent of
the infinitesimal generator

The goal of this section is to derive an integral representation of the semigroup (resp. transition density)
of the one-SBM as inverse Laplace transform of the resolvent (resp. Green’s function of the resolvent)
of the infinitesimal generator of the process. It will be the key point for the two different proofs of
Proposition 1.1.1 that we will present in Section 1.3.4 and Section 1.3.5.

1.3.1 About the infinitesimal generator

Let us recall that in the case of the (β)-SBM with one semipermeable barrier in z without drift, the
infinitesimal generator on L2(R, dx) is the operator (L,D(L)) given by (1.1.4). Naturally the infinitesimal
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generator on L2(R, dx), in the case of a non-vanishing drift µ, is a slight modification of the operator
(1.1.4): {

A = 1
2k(x)

d
dx

(
k(x) d

dx

)
+ µ d

dx with k(x) = 1
2

(
1 + β

(
21[z,+∞) − 1

))
D(A) :=

{
ψ ∈ H1(R, dx) : kψ′ ∈ H1(R, dx)

}
.

The proof that this is the infinitesimal generator in the classical sense can be found in Étoré’s PhD thesis
[18] (through an argument similar to Theorem 3.1 in [32]) and in Lejay and Martinez [36].
However A is not self-adjoint on L2(R, dx) because it is not even symmetric.

Inspired by the Green’s function method used by Gaveau Okada and Okada (see [24]) we provide an
infinitesimal generator which is self-adjoint and a similar representation of the transition density function
associated to the (β)-SBM with constant drift µ ∈ R. Let us consider the following operator on the Banach
space L2(R, h(x)dx)L =

1

2h(x)

d

dx

(
h(x)

d

dx

)
with h(x) := e2µx

(
1

2
+ β

(
1[z,+∞)(x)− 1

2

))
,

D(L) =
{
ψ ∈ H1

0 (R, h(x)dx) : h(x)ψ′(x) ∈ H1(R, h−1(x)dx)
}
,

(1.3.1)

where
H1(R, ν) :=

{
u ∈ H1

loc(R, dx) : ‖u‖H1(R,ν) := ‖u‖L2(R,ν) + ‖u′‖L2(R,ν) < +∞
}
,

and H1
0 (R, ν) := C`H1(R,ν) (C∞c ) .

Notice that h(x) is positive but not bounded from above.
Let us first analyze this operator and its domain. The function ψ in the domain are in particular con-

tinuous functions such that they satisfy the transmission condition hψ continuous (by Sobolev embedding
theorem). Let us explicit the transmission condition in this case: (1−β)ψ′(z−) = (1+β)ψ′(z+). Moreover

the operator coincides with 1
2
d2

dx2 + µ d
dx in R \ {z}.

Lemma 1.3.1. The operator (L,D(L)) defined by (1.3.1) is self-adjoint in L2(R, h(x)dx) and its spectrum
σ(L) is a closed subset of (−∞, 0] containing 0.

Proof. First of all notice that the measure ν(dx) := h(x)dx is not a finite measure, therefore it is not
normalizable into a probability measure. The bilinear form

q : H1
0 (R, h(x)dx)×H1

0 (R, h(x)dx) → R
(f, g) 7−→ q(f, g) =

∫
R f
′(x)g′(x)h(x)dx,

(1.3.2)

is symmetric, semibounded and closed with domain Q(q) = H1
0 (R, h(x)dx) ⊆ L2(R, h(x)dx). Therefore

there exists a unique operator T with D(T ) ⊆ Q(q) such that q(u, v) = −〈u, Tv〉L2(R,h(x)dx) (see for
example Corollary 1.3.1 in [22], from the point of view of functional analysis this is a Riesz representation
theorem for Hilbert spaces). Moreover the operator T is self-adjoint.
Let us now prove the identity (2L,D(L)) = (T,D(T )).
Riesz representation theorem provides an implicit characterization of the domain of T as

D(T ) :=
{
ψ ∈ H1(R, h(x)dx) : ∃g ∈ L2(R, h(x)dx) 〈·, g〉L2(R,h(x)dx) = 〈·, ψ〉L2(R,h(x)dx) + q(·, ψ)

}
=
{
ψ ∈ H1(R, h(x)dx) : ∃f ∈ L2(R, h(x)dx) 〈·, f〉L2(R,h(x)dx) = q(·, ψ)

}
.

We first prove that D(T ) ⊆ D(L) and that 2L coincides with T on D(T ).
Take v ∈ D(T ). We want to show that the weak derivative (hv′)′ exists in L2(R, h−1(x)dx). But by the
previous characterization of the domain, there exists f ∈ L2(R, h(x)dx) such that q(·, v) = 〈·, f〉L2(h(x)dx)

(indeed f = −Tv since q(·, v) = −〈·, T v〉L2(R,h(x)dx)). Hence, for all u ∈ C∞c (R)∫
R
h(x)u′(x)v′(x)dx =

∫
R
h(x)u(x)f(x)dx,
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and by the definition of weak derivative (hv′)′ = −hf . This implies that (hv′)′ ∈ L2(R, h−1(x)dx) and
also that 2Lv = Tv, since f = −Tv.
Then one can prove that q(u, v) = −〈u, 2Lv〉L2(R,h(x)dx) for any u ∈ H1(R, h(x)dx) and v ∈ D(L), just
showing that the equality holds for u ∈ C∞c (R) and passing to the limit for a sequence converging to u in
H1(R, h(x)dx). If one supposes D(L) 6= D(T ), there would be a contradiction: we have shown that 2L
is an extension of T such that D(L) ⊆ Q(q) and q(u, v) = − < u,Lv >L2(R,h(x)dx), but T is the unique
operator with these properties.
Since the operator is self-adjoint, it has spectrum σ(L) ⊆ R and one can easily check that the spectrum is
contained in (−∞, 0] since for each u ∈ D(L) 〈Lu, u〉L2(R,h(x)dx) ≤ 0.

Lemma 1.3.2. The operator (L,D(L)) defined on L2(R, h(x)dx) by (1.3.1) is the infinitesimal generator
of the (β)-SBM with drift µ.

Proof. One possible (quick but indirect) way to identify L as the infinitesimal generator we are looking
for, is to apply results related to (more general) Dirichlet forms obtained by Ouknine, Russo and Trutnau
in [47]. The Hunt process whose semigroup is associated to the closed form (q,Q(q)) in (1.3.2) is the
(β)-SBM with drift with semipermeable barrier in z. By uniqueness of the self-adjoint operator associated
to the form, we conclude that the operator (L,D(L)) is nothing but the infinitesimal generator of this
SBM.
We now sketch a direct proof based on showing the convergence, when t vanishes, of 1

t (Ptφ− φ) to Lφ in
L2(R, h(x)dx) for φ ∈ D(L). We denote by J the set of discontinuities of h. In our framework, J = {z}.
The space C∞c (R \ J) of smooth functions with compact support in R \ J is dense in L2(R, h(x)dx) and
contained in D(L).
The Itô-Tanaka formula applies to any function φ ∈ C∞c (R \ J) and one gets:

Ptφ(x)− φ(x) = Ex [φ(Xt)− φ(x)]

= Ex
[∫ t

0

1

2

(
φ′(X+

s ) + φ′(X−s )
)
dXt +

1

2

∫
R
Lat (X)φ′′(a)da

]
.

Using the occupation time formula and the fact that the SBM satisfies E(β, µ), one obtains

Ex
[∫ t

0

1

2

(
φ′(X+

s ) + φ′(X−s )
)

(dBs + µds+ β dLzs(X)) +
1

2

∫ t

0

φ′′(Xs)ds

]
= Ex

[∫ t

0

1

2

(
φ′(X+

s ) + φ′(X−s )
)
dBs

]
+ µEx

[∫ t

0

1

2

(
φ′(X+

s ) + φ′(X−s )
)
ds

]
+ Ex

[
β

∫ t

0

1

2

(
φ′(X+

s ) + φ′(X−s )
)
1{Xs=z} dL

z
s(X) +

1

2

∫ t

0

φ′′(Xs)ds

]
= Ex

[∫ t

0

φ′(Xs)1{Xs 6=z}dBs + µ

∫ t

0

φ′(Xs)1{Xs 6=z}ds+ 0 +
1

2

∫ t

0

φ′′(Xs)ds

]
= 0 + Ex

[∫ t

0

1

2
φ′′(Xs) + µφ′(Xs)ds

]
.

Hence

Ptφ(x)− φ(x)

t
= Ex

[
µ

∫ t

0

φ′(Xs)ds+
1

2

∫ t

0

φ′′(Xs)ds

]
.

Notice that Lφ(x) = 1
2φ
′′(x) + µφ′(x) for all x ∈ R \ J . Let us now check the convergence of Ptφ(x)−φ(x)

t
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in L2(R, h(x)dx):

lim
t→0

∫
R

(
1

t
Ex
[

1

2

∫ t

0

φ′′(Xs)ds+ µ

∫ t

0

φ′(Xs)ds

]
− Lφ(x)

)2

h(x)dx

=

∫
R

lim
t→0

(
1

t
Ex
[

1

2

∫ t

0

φ′′(Xs)ds+ µ

∫ t

0

φ′(Xs)ds

]
− 1

2
φ′′(x)− µφ′(x)

)2

h(x)dx

=

∫
R
Ex
[

lim
t→0

∫ t

0

(
1

2
φ′′(Xs) + µφ′(Xs)

)
ds− 1

2
φ′′(x)− µφ′(x)

]2

h(x)dx

=

∫
R
Ex
[

1

2
φ′′(X0) + µφ′(X0)− 1

2
φ′′(x)− µφ′(x)

]2

h(x)dx

= 0,

where we could exchange integrals and limit by dominated convergence, thanks to the compactness of the
support of φ.

Now, for any fixed initial condition x ∈ R, the transition density (t, y) 7→ p
(β)
µ (t, x, y) of the (β)-SBM

with drift µ, given in Proposition 1.1.1, solves the Fokker-Plank equation:

∂

∂t
p(t, x, y) =

1

2

∂2

∂y2
p(t, x, y)− µ ∂

∂y
p(t, x, y) t > 0, y ∈ R \ {z},

p(0, x, y) = δx(y) y ∈ R
1

2

∂

∂y
p(t, x, z+) − µ p(t, x, z+) =

1

2

∂

∂y
p(t, x, z−) − µ p(t, x, z−) t ∈ R+,

(1 + β) p(t, x, z−) = (1− β) p(t, x, z+) t ∈ R+,

(1.3.3)

The transmission conditions are obtained using the continuity of y 7→ 1

h−1(y)
p(t, x, y) and

y 7→ h(y)(h(y)p(t, x, y))′, where h is given in (1.3.1).

Remark 1.3.3. Since the SBM is a one-dimensional process, following Feller’s approach, one can charac-
terize it by its scale function s and its speed measure m. In the driftless case, µ = 0, Itô and McKean did
it in [27]. In presence of a drift, we obtain the following explicit expressions for the scale function and the
speed measure of the (β)-SBM with constant drift µ and barrier in z:

s(x) =
e2µx − 1

2µh(x)
, m(dx) = 2h(x)dx,

where h(x) is given by (1.3.1).
The infinitesimal generator can also be written through s and m. Lejay, Lenôtre and Pichot show in

Section 1.2 of [35] that the infinitesimal generator is given by

Af = DmDsf where D(A) := {f ∈ Cb(R̄) : DmDsf ∈ Cb(R̄)}, (1.3.4)

as soon as Dm and Ds have a sense. Hence A is formally of the same shape than L, but associated to the
domain

D(A) = {f ∈ Cb(R̄) : h(z+)f(z+) = h(z−)f(z−), f ∈ C2(R \ {z}) }.

They provide the result for the skew diffusions which is a larger class of processes, containing the (β) −
SBM . It is composed by the Feller processes associated to the divergence form operator

L̃u(x) :=
ρ

2
∇(a(x)∇u) + b(x)∇u(x)

for measurable real functions ρ, a and b such that a, ρ are have positive bounds from below and above and
|b| is bounded.
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1.3.2 Integral representation of the semigroup through Green’s function of
the resolvent

Any self-adjoint operator in a Banach space with spectrum which is bounded from above generates a
strongly continuous semigroup Pt satisfying ‖Pt‖ ≤ e−ω t for some ω ∈ R, see Lumer and Phillips [42].
We apply this result to the operator (L,D(L)) defined on the Hilbert space L2(R, h(x)dx). As a con-
sequence, the assumptions of the Hille-Yosida theorem are satisfied. Therefore the differential operator
(L,D(L)) is closed, its domain is dense in L2(R, h(x)dx) and for any λ ∈ (ω,+∞) the resolvent operator
Rλ := (λ− L)−1 has a norm bounded by M

λ−ω for some constant M > 0. From Hille-Yosida theorem one
also deduces that the resolvent exists more generally for any λ ∈ C such that <e(λ) > ω, and in this case
its norm admits a similar bound as above.
Now, under these conditions the associated semigroup is analytic and admits the below integral repre-
sentation (1.3.5). (All these results are available in [53], see Theorem 12.22 for Lumer-Phillips Theorem,
Theorem 12.17 for Hille-Yosida Theorem and Theorem 12.31 for the analyticity and the integral represen-
tation of the semigroup.)

The transition semigroup Pt associated to the one-SBM with drift can be represented as follows:
for all bounded function ϕ ∈ L2(R, h(x)dx),

Ptϕ(x) =
1

2πi

∫
Γ

eλtRλϕ(x) dλ (1.3.5)

where Γ is a contour in the complex plane around the spectrum σ(L) (see Figure 1.2) and Rλ
is the resolvent. Recall that for λ /∈ σ(L), Rλϕ is equal to (λ− L)−1ϕ.

Therefore Pt admits a transition density which satisfies

p(t, x, y) =
1

2πi

∫
Γ

eλtG(x, y;λ) dλ (1.3.6)

where G(x, y;λ) is Green’s function of the resolvent, that is, for any fixed y ∈ R and λ ∈ C\σ(L),
x 7→ G(x, y;λ) solves in D(L) the equation

(λ− L)G(·, y;λ) = δy. (1.3.7)

Let us notice that, for fixed λ, the solution x 7→ G(x, y;λ) belongs to D(L), in particular it is continuous,

vanishing at infinity, and its first derivative satisfies the transmission conditions: h(x)
d

dx
G(x, y;λ) is

continuous. Moreover y 7→ 1

h(y)
G(x, y;λ) ∈ D(L) or equivalently y 7→ G(x, y;λ) ∈ D(L∗) where L∗g :=

hL
(
g
h

)
is the formal adjoint of L in L2(R, dx).

Lemma 1.3.4. For each λ ∈ C \ R− Green’s function is given by

G(x, y;λ) = −2h(y)
U+(y, λ)U−(x, λ)1{x≤y} + U+(x, λ)U−(y, λ)1{y<x}

h(x0)W (U−, U+)(x0, λ)

where the functions U± ∈ D(L) are respectively solution to:

(λ− L)U±(x, λ) = 0, lim
x→+∞

U+(x, λ) = 0, lim
x→−∞

U−(x, λ) = 0, (1.3.8)

while W (U−, U+)(x0, λ) = U−(x0, λ)U ′+(x0, λ)− U ′−(x0, λ)U+(x0, λ) is the Wronskian in x0 ∈ R.

Proof. One can easily prove that the function x 7→ h(x)W (U−, U+)(x, λ) is constant, since its derivative
vanishes. The function x 7→ G(x, y;λ) belongs to D(L) because so do the functions U− and U+ and is
a solution to (1.3.7). Since the latter equation admits a unique solution for any fixed y, λ, the proof is
completed.
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The remaining work is to obtain explicitly the functions U± solutions to (1.3.8) and it will be done in
the following section.

In [35] Lejay, Lenôtre and Pichot show in a different way that the transition densities are the inverse
Laplace transform of the resolvent kernel for a wider class of Feller processes, the skew diffusions. In Section
1.3 they give a detailed description of the resolvent kernel, including the functions U±, as the solution to
a Sturm-Liouville problem. Their proof is based on the identification of the infinitesimal generator of the
skew diffusions as the operator DmDs (see (1.3.4)). We will give some more details on that in Section 1.4.

1.3.3 Explicit computation of Green’s function in our framework

This section is devoted to Green’s function in the case of the (β)-SBM with one barrier in z, and in
particular to the computation of the functions U±(x, λ) solutions to (1.3.8). Actually they are linear
combinations of

u± :R× C \ [0,+∞)→ R

(x, λ) 7→ u±(x, λ) = exp
(
−µx∓

√
µ2 + 2λx

)
,

the two (continuous) eigenfunctions of the operator 1
2
d2

dx2 +µ d
dx associated to the eigenvalue λ, and satisfying

u±(0) = 1 (Sturm-Liouville problem). Notice that the functions u+ and u− vanish at +∞ and −∞
respectively. One sets

U−(x, λ) =

{
u−(x, λ) x ∈ (−∞, z),
A(λ)u−(x, λ) +B(λ)u+(x, λ) x ∈ (z,+∞),

and

U+(x, λ) =

{
E(λ)u−(x, λ) + F (λ)u+(x, λ) x ∈ (−∞, z),
u+(x, λ) x ∈ (z,+∞),

as in Figure 1.1.

z

u− Au− +Bu+

z

Eu− + Fu+ u+

Figure 1.1: The functions U− and U+.

The coefficients A,B,E, F are uniquely determined by the fact that U± belongs to the domain D(L);
therefore they have to be continuous in z and to satisfy the transmission condition (continuity of x 7→
h(x)′U±(x, λ)). 

A(λ) = 1
β+1

(
1 + βµ√

µ2+2λ

)
, B(λ) = (1−A(λ))e2

√
µ2+2λz,

F (λ) = 1
(1−β)

(
1 + βµ√

µ2+2λ

)
, E(λ) = (1− F (λ))e−2

√
µ2+2λz.

One compute the Wronskian at any point, exploiting the fact that x 7→ h(x)W (U−, U+)(x, λ) is constant,
and obtain

W (U−, U+)(x, λ) ≡ −2
√
µ2 + 2λF (λ) exp (−2µx).

This leads to the following result.

Lemma 1.3.5. Green’s function satisfy

G(x, y;λ) = 2h(y)
U−(x ∧ y, λ)U+(x ∨ y, λ)

βµ+
√

2λ+ µ2

=
eµ(y−x)e−

√
2λ+µ2|y−x|

2λ+ µ2 + βµ
√

2λ+ µ2

 2∑
j=1

cj(y, µ;
√

2λ+ µ2)e−
√

2λ+µ2aj(x,y)

 (1.3.9)
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a)

R

iR

Γ

φ(Γ)

b)

R

iR

−µ
2

2

Γ

φ(Γ)

Figure 1.2:

a) Let µ = 0. The picture shows the (green) image of the (blue) contour Γ under φ : λ 7→
√

2λ. The
spectrum of the operator (L,D(L)) is contained in the (red) semi-axis (−∞, 0], which coincides with
the complement of the domain of φ.

b) Let µ ∈ R. The picture shows the image of the contour Γ under φ : λ 7→
√

2λ+ µ2. The line (−∞, 0]

contains the spectrum of the operator (L,D(L)) and the dashed line (−∞,−µ
2

2 ] is the complement of
the domain of φ.

where{
c1(y, µ; ξ) = βµ+ ξ

c2(y, µ; ξ) = βξ
(
21[z,+∞)(y)− 1

)
− βµ,

and

{
a1(x, y) ≡ 0

a2(x, y) = |y − z|+ |x− z| − |y − x|.
(1.3.10)

Notice that a2(x, y) ≥ 0 for all x, y ∈ R.
The dependence on λ of Green’s function given by (1.3.9) is actually a dependence on φ(λ) where

φ : C \ (−∞,−1

2
µ2]→ {ζ ∈ C : <e(ζ) > 0}

λ 7→ φ(λ) :=
√

2λ+ µ2.

Let us consider the integral representation of the density (1.3.6); the contour integral Γ contains (−∞, 0]
(see Figure 1.2.b), hence the change of variables ξ := φ(λ) is allowed and one has

p(β)
µ (t, x, y) =

1

2πi

∫
Γ

eλtG(x, y;λ)dλ

= eµ(y−x)−µ
2

2 t
1

2πi

∫
φ(Γ)

e
ξ2

2 t
e−ξ|y−x|

ξ + βµ

 2∑
j=1

cj(y, µ; ξ)e−ξaj(x,y)

 dξ.

(1.3.11)

In the next two sections, starting from the latter integral on the curve φ(Γ), we compute the transition
density of the (β)-SBM with drift µ in two different ways.
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a)

R

βµ > 0

φ(Γ)

|µ|−βµ

b)

R

βµ < 0

φ′

γ

|µ|−βµ

Figure 1.3:

a) Case βµ > 0: The red segment (0, |µ|] is the image under φ of (−µ
2

2 , 0].

b) Case βµ < 0: The curve φ(Γ) is decomposed as the union of a green curve φ′ that avoids the unique
pole −βµ ∈ (0, |µ|] and the cycle γ containing it.

1.3.4 First method: computing the residues

If βµ > 0 the integrand in (1.3.11) is holomorphic as a function of ξ on the region between the contour
φ(Γ) and the imaginary line. If βµ < 0 the integrand has exactly one pole of order one in ξ = −βµ. We
then decompose the curve φ(Γ) as the union of a curve φ′ and γ, where γ is a loop around the pole and
φ′ avoids the pole (see Figure 1.3).
Both φ(Γ) and φ′ can be deformed to the imaginary line (through H : [0, 1]×R→ R2 given by H(t, u) =
U(1− t) + tU ′) as in Figure 1.4, if the following Lemma is satisfied.

Lemma 1.3.6.

lim
|u|→+∞

∫
ρU

e
ξ2

2 t
e−ξ|y−x|

ξ + βµ

 2∑
j=1

cj(y, µ; ξ)e−ξaj(x,y)

 dξ = 0,

where ρU is the segment in Figure 1.4 connecting the points U and U ′.

Proof. First of all notice that the integral is equal to

Iu :=

∫
ρU

e
ξ2

2 t e−ξ|y−x|
(

1 +
c2(y, µ; ξ)

ξ + βµ
e−ξa2(x,y)

)
dξ.

Let `(u) := |UU ′|, then notice that limu→∞ `(u) = 0. The segment ρU can be parametrized as ρU =
{U + w; w ∈ (0, `(u))} and

|Iu| ≤
∫ `(u)

0

e−
(u2−w2)

2 te−w|y−x|
(

1 +

∣∣∣∣c2(y, µ;w + iu)

w + iu+ βµ

∣∣∣∣ e−w a2(x,y)

)
dw.
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R

iR

a)

φ(Γ)

U ρU
U ′ = `(u) + U

-U

|µ|

φ′

R

iR

b)

U ρU
U ′ = `(u) + U

-U

|µ|pole

Figure 1.4:

a) The picture shows the contour φ(Γ) which shrinks to the imaginary line (in blue). The segment ρU
connects the unique point U ′ ∈ φ(Γ) with imaginary part u to its projection U on the imaginary line.

b) The picture shows the contour φ′ which shrinks to the imaginary line (in blue). The segment ρU
connects the point U = iu to its unique projection U ′ ∈ φ′.

For u large enough

∣∣∣∣c2(y, µ;w + iu)

w + iu+ βµ

∣∣∣∣ = |β|

√(
w
(
21[z,+∞)(y)− 1

)
− µ

)2
+ u2

(w + βµ)2 + u2
≤ 1,

therefore

|Iu| ≤
∫ `(u)

0

e−
(u2−w2)

2 te−w|y−x|
(

1 + e−w a2(x,y)
)
dw,

that converges to zero if |u| goes to infinity.
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The expression (1.3.11) can be written, for any value of βµ ∈ R, as follows

p(β)
µ (t, x, y) = eµ(y−x)−µ

2

2 t
1

2πi

∫
φ′
e
ξ2

2 t
e−ξ|y−x|

ξ + βµ

( 2∑
j=1

cj(y, µ; ξ)e−ξaj(x,y)
)
dξ

+ 1R−(βµ) eµ(y−x)−µ
2

2 t
1

2πi

∫
γ

e
ξ2

2 t
e−ξ|y−x|

ξ + βµ

( 2∑
j=1

cj(y, µ; ξ)e−ξaj(x,y)
)
dξ

= eµ(y−x)−µ
2

2 t
2∑
j=1

1

2π

∫
R
e−

w2

2 t 1

iw + βµ
cj(y, µ; iw)e−iw(aj(x,y)+|x−y|)dw

−βµ1R−(βµ)
(
1 + β

(
21[z,+∞)(y)− 1

))
eµ(y−x)−µ

2

2 te
β2µ2

2 teβµ(|y−z|+|x−z|)︸ ︷︷ ︸
(∗)

.

(1.3.12)

The last equality is obtained by shrinking
∫
φ′

towards
∫
iR, changing variable ξ := iw and computing the

integral on the loop γ in Figure 1.3.b through the method of residues.
We interpret the last equality of equation (1.3.12) as the sum of (∗) and two Fourier transforms computed
at the value (aj(x, y) + |x− y|) of the two functions

w 7→ e−
w2

2 t

iw + βµ
cj(y, µ; iw)

=

e−
w2

2 t if j = 1

β
((

21[z,+∞)(y)− 1
)

+ µ
(
1 + β

(
21[z,+∞)(y)− 1

))
i

w−iβµ

)
e−

w2

2 t if j = 2.

By Fourier transform of f , we mean F(f)(ω)(= f̂(ω)) =
1√
2π

∫
R
e−iωyf(y) dy.

In both cases, these functions are integrable in w, so the transition density can now be written as

p(β)
µ (t, x, y) =

1√
2π
eµ(y−x)−µ

2

2 t
2∑
j=1

F
(
e−

w2

2 t 1

iw + βµ
cj(y, µ; iw)

)
(aj(x, y) + |x− y|)

−βµ
(
1 + β

(
21[z,+∞)(y)− 1

))
eµ(y−x)−µ

2

2 te
β2µ2

2 teβµ(|y−z|+|x−z|)
1R−(βµ).

It is straightforward to see that if β = 0 we get the simple Brownian motion with drift (without skew),
and if µ = 0 we get the (β)-SBM whose transition density is already known.
Therefore we now focus only on the case βµ 6= 0.

Lemma 1.3.7. If a ∈ R∗, then

F
(
w 7→ 1

w − ia

)
(ω) = i

√
2π (21R+(a)− 1) eaω 1R− (aω) .

Proof. It is true since

1

w − ia
= F−1

(
i
√

2π (21R+(a)− 1) eaω 1R− (aω)
)

(w)

=
1√
2π

∫
R

(
i
√

2π (21R+(a)− 1) eaω 1R− (aω)
)
ei ω w dω.

Using F
(
e−

w2

2 t
)

(ω) = 1√
t
e−

ω2

2t and Lemma 1.3.7, we get

F
(
e−

w2

2 t c2(y, µ; iw)

iw + βµ

)
(ω) =

β√
t

(
21[z,+∞)(y)− 1

)
e−

ω2

2t

− 1√
t
|βµ|

(
1 + β

(
21[z,+∞)(y)− 1

))
·
(
ew βµ1R− (βµw) ∗ e−w

2

2t

)
(ω).
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We compute the convolution as(
ew βµ1R− (βµw) ∗ e−w

2

2t

)
(ω)

=
√
te

(βµ)2

2 t+βµω
√

2π

1R−(βµ)︸ ︷︷ ︸
(∗∗)

+ (21R+(βµ)− 1) Φc
(
ω√
t

+ βµ
√
t

) .

The term (∗∗) arising from the convolution is actually the opposite to the term (∗) in (1.3.12) arising from
the integration on the cycle γ containing the pole. Therefore the transition density becomes

p(β)
µ (t, x, y) =

1√
2πt

eµ(y−x)−µ
2

2 t

(
e−

(a1(x,y)+|x−y|)2
2t + β

(
21[z,+∞)(y)− 1

)
e−

(a2(x,y)+|x−y|)2
2t

)
−
(
1 + β

(
21[z,+∞)(y)− 1

))
βµ

· eµ(y−x)−µ
2

2 te
(βµ)2

2 t+βµ(a2(x,y)+|x−y|)Φc
(
a2(x, y) + |x− y|√

t
+ βµ

√
t

)
.

Isolating the density of the Brownian motion with drift µ without skew, we recognize the expected expres-
sion, that is,

p(β)
µ (t, x, y) =pµ(t, x, y)

(
e−

(|x−y|)2−|x−y|2
2t + β

(
21[z,+∞)(y)− 1

)
e−

(|x−z|+|y−z|)2−|x−y|2
2t

)
− pµ(t, x, y)

√
2πtβµ

(
1 +

(
21[z,+∞)(y)− 1

)
β
)

· eβµa2(x,y)e
(βµt+|x−y|)2

2t Φc
(
|x− z|+ |y − z|+ βµt√

t

)
,

which completes the proof of Proposition 1.1.1.

1.3.5 Second method: contour integral

The method we develop here differs from the previous in the tricky way to deal with the integral (1.3.11).
It has the advantage to prove Proposition 1.1.1 without distinguish between the different cases βµ < 0,
βµ = 0 or βµ > 0, and in particular without computing explicitly the residue.

The idea is based on the fact that the integrand of the contour integral given by (1.3.11) is holomorphic
on the curves φ(Γ) and a+ iR, where a > 0 is as in Figure 1.5.a, and on the region between the two curves.
It is indeed clear that the integrand is holomorphic everywhere except at the pole on −βµ. In addition it
is easy to show that the analogous to Lemma 1.3.6 for the segment [iu, a + iu] holds, which implies that
the integral on ρU in Figure 1.5.a is vanishing if |U | → ∞ as well.
Let us state the announced lemma, which actually implies Lemma 1.3.6.

Lemma 1.3.8.

lim
|u|→+∞

∫
ρ′U

e
ξ2

2 t
e−ξ|y−x|

ξ + βµ

 2∑
j=1

cj(y, µ; ξ)e−ξaj(x,y)

 dξ = 0

where ρ′U is the segment connecting U = iu and a + U .

Proof. Let us consider the integral

Iu :=

∫
ρ′U

e
ξ2

2 t e−ξ|y−x|
(

1 +
c2(y, µ; ξ)

ξ + βµ
e−ξa2(x,y)

)
dξ

and the following parametrization of the segment ρ′U = {U + w; w ∈ (0, a)}. Then

|Iu| ≤
∫ a

0

e−
(u2−w2)

2 te−w|y−x|
(

1 +

∣∣∣∣c2(y, µ;w + iu)

w + iu+ βµ

∣∣∣∣ e−w a2(x,y)

)
dw.
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For u large enough ∣∣∣∣c2(y, µ;w + iu)

w + iu+ βµ

∣∣∣∣ = |β|

√(
w
(
21[z,+∞)(y)− 1

)
− µ

)2
+ u2

(w + βµ)2 + u2
≤ 1,

so

|Iu| ≤ e−
u2

2 te
a2

2 t

∫ a

0

2dw = 2ae
a2

2 te−
u2

2 t

which vanishes if u tends to infinity.

As shown in Figure 1.5.a, the integral on the contour φ(Γ) in (1.3.11) shrinks to the integral on the
line a + iR and the transition density can be written as

p(β)
µ (t, x, y) = eµ(y−x)−µ

2

2 t
1

2πi

∫
a+iR

e
ξ2

2 t
e−ξ|y−x|

ξ + βµ

 2∑
j=1

cj(y, µ; ξ)e−ξaj(x,y)

 dξ,

where aj(x, y) and cj(y, µ; ξ) are given by (1.3.10).
A priori the integral does not depend on the choice of a, as soon as the latter has been chosen bigger

than any pole, and (as a consequence of Lemma 1.3.8 for ρ′U ) one can choose to shrink the integral to any
line a′ + iR as in Figure 1.5.b. In particular, if βµ > 0 there is no pole, hence one can choose directly
a = 0, and obtain the case of Figure 1.3.a.

Let us do the following change of variable: ξ := a + iw. Then v(β)
µ (t, x, y) :=

p
(β)
µ (t, x, y)

pµ(t, x, y)
is equal to

v(β)
µ (t, x, y) = e

1
2t (|y−x|−at)2

√
t√

2π

∫
R
e−

w2

2 teiwat
2∑
j=1

e−iw(aj(x,y)+|x−y|)e−a aj(x,y)pj(w)dw,

where the ratio pj(w) :=
cj(y, µ; a + iw)

iw + a + βµ
, j = 1, 2, is given by

p1(w) = 1, p2(w) =
(
21{y≥z} − 1

)
β + βµ

(
1 +

(
21{y≥z} − 1

)
β
) i

w − i(a + βµ)
.

We expect that the dependence on a cancels. Let us make the computations explicitly.

v(β)
µ (t, x, y) = 1 + e

1
2t (|y−x|−at)2

e−a a2(x,y)

√
t√

2π

∫
R
e−

w2

2 te−iw(a2(x,y)+|x−y|−at)p2(w)dw

= 1 +
(
21{y≥z} − 1

)
β e

1
2t (|y−x|−at)2

e−a a2(x,y)e−
(a2(x,y)+|x−y|−at)2

2t

+ βµ
(
1 +

(
21{y≥z} − 1

)
β
)√

t e
1
2t (|y−x|−at)2

e−a a2(x,y)F
(
w 7→ e−

w2

2 t i

w − i(a + βµ)

)
(ω̄)

= 1 +
(
21{y≥z} − 1

)
β e−

1
t |y−x|a2(x,y)− 1

2ta2(x,y)2

+ βµ
(
1 +

(
21{y≥z} − 1

)
β
) √t√

2π
e

1
2t (|y−x|−at)2

e−a a2(x,y)F
(
e−

w2

2 t
)
∗ F

(
i

w − i(a + βµ)

)
(ω̄),

where
ω̄ := a2(x, y) + |x− y| − a t = |x− z|+ |y − z| − a t. (1.3.13)

Thanks to Lemma 1.3.7, the convolution of the Fourier transforms can be explicit as

F
(
w 7→ e−

w2

2 t
)
∗ F

(
w 7→ i

w − i(a + βµ)

)
(ω̄)

= − 1√
t
e−

1
2tw

2

∗
(√

2πe(a+βµ)w
1(−∞,0)(w)

)
(ω̄)

= − 2π√
t

exp

(
− ω̄

2

2t
+

(ω̄ + (a + βµ)t)
2

2t

)
Φc
(
ω̄ + (a + βµ)t√

t

)
,
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a)

φ(Γ)

a + iR

a + U
ρU

U ′

a− U

|µ|pole

b)

R

a′ + U
ρ′U

a + U

a′ − U

a′ + iR a + iR

pole

Figure 1.5:

a) The figure represents the vertical line a + iR on the right of the curve φ(Γ) and the segment ρU con-
necting the point U = a + iu to its unique projection on φ(Γ). The segment (0, |µ|] contains all possible

singularities (poles) with positive real part. It is the image under φ of (−µ
2

2 , 0] (see Figure 1.2.b).

b) The segment ρ′U connects here the point a + U with its projection on a′ + iR. The real number a′ is
chosen smaller than a but larger than any pole.



1.4. ABOUT THE CASE OF PIECEWISE CONSTANT DRIFT 17

where Φc(w) = 1
2π

∫ +∞
w

e−
u2

2 du.
One can then conclude

v(β)
µ (t, x, y) = 1 +

(
21{y≥z} − 1

)
β e−

1
t |y−x|a2(x,y)− 1

2ta2(x,y)2

− βµ
(
1 +

(
21{y≥z} − 1

)
β
)√

2π ·

· exp

(
(|y − x| − at)2 − 2ta a2(x, y)− ω̄2 + (ω̄ + (a + βµ)t)

2

2t

)
Φc
(
ω̄ + (a + βµ)t√

t

)
.

Let ω̄ as in (1.3.13) and recall that a2(x, y) = |x − z| + |y − z| − |x − y|. To conclude the proof of
Proposition 1.1.1, one just needs to notice that ω̄ + at + βµt = a2(x, y) + |x − y| + βµt does not depend
on a and neither the following sum.

(|y − x|−a t)2 − 2 t a a2(x, y)− ω̄2 + (ω̄ + (a + βµ)t)
2

= (|y − x| − a t)2 − 2 t a a2(x, y) + (a + βµ)2t2 + 2t(a + βµ)(a2(x, y) + |x− y| − a t)

= −a2(x, y) (a2(x, y) + 2|x− y|) + (βµt+ a2(x, y) + |x− y|)2.

1.4 About the case of piecewise constant drift

The purpose of this section is to identify the difficulties in finding the transition densities of the one-SBM
when the drift is not constant anymore.

Let us first consider the case of a piecewise constant drift.
The assertions at the beginning of Section 1.3 do not depend on the fact that the drift is constant. Thus, if
b is a two-valued drift (i.e b(x) := b− 1(−∞,z)(x)+b+ 1[z,∞)(x)), the infinitesimal generator of the (β)-SBM
with drift b is, as in (1.3.1),L =

1

2h(x)

d

dx

(
h(x)

d

dx

)
where h(x) :=

1

2

(
1 + β

(
21[z,+∞) − 1

))
e2B(x),

D(L) =
{
ψ ∈ H1

0 (R, h(x)dx) : h(x)ψ′(x) ∈ H1(R, h−1(x)dx)
}
,

where B(x) :=

∫ x

0

b(u) d u is a primitive of b.

The integral representation of the transition density presented in (1.3.6), Section 1.3, holds in this case as
well. Actually it holds in the larger context of skew diffusions with discontinuous but piecewise regular
coefficients (their finite jumps should form a subset of R without accumulation points). In that case,
Green’s function can be computed, through a space transformation, from the one of a SBM with unitary
diffusion coefficient; see Lejay, Lenôtre, and Pichot [35].

For a two valued drift b ∈ {b−, b+} as above, they compute explicitly the transition density in two
special cases.

• The Bang-Bang SBM : b+ = −b−. The transition density has been first obtained by Fernholz,
Ichiba and Karatzas, see formulas (6.8),(6.9) and (6.10) in [21]. In [35], the authors recover this
result computing the resolvent kernel and its inverse Laplace transforms. Since the resolvent kernel

depends on λ only through
√

2λ+ b2+, one could also follow the procedure developed in Section 1.3.4.

For the same reason, in the case β = 0, our method recovers the formula given by Karatzas and
Shreve (through a stochastic calculus approach, see Proposition 5.1 in [29]).

• The constant Péclet case: b− =
1 + β

1− β
b+ ,|β| ∈ (0, 1). In this case the resolvent kernel depends on λ

trough two functions φ±(λ) :=
√

2λ+ b2±. The combination of these functions is non trivial, which

makes more difficult to transform the contour integral as we did in Section 1.3. In [35], the authors
obtain an integral representation of the transition density. It may be that the integral involved there
leads to transcendental functions different from the cumulative distribution function of a Gaussian.
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If the drift b is not piecewise constant, in general it is difficult to compute Green’s function of the resol-

vent, i.e to find the regular eigenfunctions u± of the operator 1
2
d2

d2x + b(x) d
dx associated to the eigenvalue

λ ∈ C \ (−∞, 0] and such that u±(0) = 1.

In conclusion: if b is piecewise constant one can compute Green’s function, but it can involve some
combination of terms which makes highly non trivial the computation of the inverse Laplace transform.
If b is not piecewise constant, even the computation of Green’s function is difficult.



Chapter 2

The multi-skew Brownian diffusions

Outline of the chapter: In this chapter we obtain an explicit representation of the transition density
of the skew Brownian motion with constant drift and two semipermeable barriers in terms of Gaussian
transition densities and of cumulative distribution functions (Theorem 2.3.7). We illustrate also a gen-
eralization of the rejection sampling method for sampling from densities which are expressed as a sum
of series (Proposition 2.5.2). In particular the latter method can be applied to obtain samples from the
two-skew Brownian motion. We devote then the last section (Section 2.5) to some numerical simulations
for showing the performance of our sampling method. The main results in this chapter, together with the
method proposed in Section 1.3, have been the object of the publication [16]. The latter paper includes a
version of Theorem 2.3.7 which is only valid in some particular cases. The final version of the theorem, as
it appears in this document, has been given in [15].

2.1 The framework

There are many possible generalizations of the skew Brownian motion presented in the first chapter: one-
dimensional skew Brownian motion with more semipermeable barriers (Le Gall [32], Ouknine [46], Ramirez
[51]), d-dimensional skew BM with one permeable barrier, as it is called by Ouknine [46] (referring to
Portenko [49] and [50]), and distorted Brownian motion which is the Hunt process associated to a Dirichlet
form studied by Ouknine, Russo and Trutnau [47]. We devote this chapter to the extension of the skew
Brownian motion by considering several semipermeable barriers and we find an explicit expression of the
transition density following the method illustrated in Section 1.3.

Let us denote by (β1, β2, . . . , βn)-SBM the skew Brownian motion with n semipermeable barriers of per-
meability coefficients respectively (β1, β2, . . . , βn). For simplicity we denote it multi-SBM if the skewness
coefficients do not matter.

The existence of several barriers does not allow anymore a trajectorial interpretation as randomly
flipped excursions as for the (β)-SBM. Nevertheless one can define the process as the unique strong
solution to a slight modification of equation (1.1.1). The stochastic differential equation satisfied by the
(β1, β2, . . . , βn)−SBM with drift µ ∈ R and starting at x0 ∈ R is

dXt = dWt + µdt+ β1dL
z1
t (X) + β2dL

z2
t (X) + . . .+ βndL

zn
t (X),

X0 = x0,

L
zj
t =

∫ t
0
1{Xs=zj}dL

zj
s , j = 1, 2, . . . , n,

E((β1, β2, . . . , βn), µ)

where the coefficients βj ∈ [−1, 1] and barriers z1 < z2 < · · · < zn. In the case µ = 0, Ramirez [51]
constructed the solution process through a Brownian time change using the scale function and the speed
measure. A general proof of the existence and uniqueness of the solution, even in the case µ 6= 0 is due to
Le Gall [31, 32].

If for some j ∈ {1, . . . , n}, |βj | = 1 there is a complete reflection at the barrier zj : to the right if βj = 1
(resp. to the left if βj = −1). Therefore, if the starting point x0 is in (zj ,+∞) (resp. (−∞, zj)), the

19
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process will almost surely do not reach the barriers z1, . . . , zj−1 (resp. zj+1, . . . , zn). This kind of process
is called skew-reflected Brownian motion. Song, Wang and Wang consider in [56] the case of two barriers
(n = 2) without drift (µ = 0): one reflecting and the other semipermeable.

Let us first notice that it is not possible to find the transition density of the two-SBM (i.e. n = 2)
by following the approach recalled in Section 1.2. That’s because the latter approach is based on the
trajectorial interpretation (i.e. through excursions) of the one-SBM.
However one can find the transition densities using the method presented in Section 1.3. In particular the
infinitesimal generator of the multi-SBM with constant drift µ is the self-adjoint operator (L,D(L)) on
L2(R2, h(x)), generalizing the expression (1.3.1):L =

1

2h(x)

d

dx

(
h(x)

d

dx

)
with h(x) := k(x)e2µx,

D(L) =
{
ψ ∈ H1

0 (R, h(x)dx) : h(x)ψ′(x) ∈ H1(R, h−1(x)dx)
}
,

(2.1.1)

with

k(x) :=

n∏
j=1

1

2

(
1 + βj

(
21[zj ,+∞)(x)− 1

))
(2.1.2)

(unique up to a multiplicative constant). Moreover the transition density of the multi-SBM with or without
drift satisfies the contour integral representation (1.3.6)

p(t, x, y) =
1

2πi

∫
Γ

eλtG(x, y;λ)dλ

where G(x, y;λ) is Green’s function of the resolvent (λ − L)−1 and Γ is a complex contour around the
spectrum σ(L). Then, following the method presented in Section 1.3.5, one can compute Green’s function
of the resolvent, which satisfies Lemma 1.3.4.

Let us first focus on the transition density of the two-SBM. To the best of our knowledge, the transition
density of the real-valued two-SBM with constant drift was not yet given as a closed formula, not even for
the driftless version. In Section 5, Chapter II of [24], Gaveau, Okada and Okada have given a non explicit
formula for the transition density of the two-skew Brownian motion without drift. They just identify it
through a “kind of θ-function”

h(t, ξ, C, α) =
1

2π

∫ +∞

−∞
e−w

2teiwξ
(
1 + Ceiwα

)−1
dw. (2.1.3)

Here we obtain in Proposition 2.2.4 a closed formula for the transition density of the two-SBM without
drift, and with drift in Theorem 2.3.7, as series of Gaussian transition densities and cumulative distribution
functions.

2.2 The transition density of the two-skew Brownian motion

In this section we treat only the two-SBM without drift. Let us explicit the infinitesimal generator (2.1.1)
in this driftless case with two semipermeable barriers z1, z2:

L =
1

2k(x)

d

dx

(
k(x)

d

dx

)
, D(L) =

{
ψ ∈ H1(R, dx) : k(x)ψ′(x) ∈ H1(R, dx)

}
,

where the function k(x) assumes three different values:

k(x) =

(
1

2
+ β1

(
1[z1,+∞)(x)− 1

2

))(
1

2
+ β2

(
1[z2,+∞)(x)− 1

2

))

=


1
4 (1− β1)(1− β2) x < z1,
1
4 (1 + β1)(1− β2) z1 ≤ x < z2,
1
4 (1 + β1)(1 + β2) x ≥ z2.

(2.2.1)

Notice that it is a straightforward generalization of (1.1.4). We refer again to Étoré’s PhD thesis [18] and
Lejay and Martinez [36] for the proof that this is actually the infinitesimal generator in the classical sense.
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2.2.1 Green’s function of the resolvent

In this section we compute explicitly Green’s function of the resolvent, whose generic form is given in
Lemma 1.3.4. One has to find the eigenfunctions U± of L associated to the eigenvalue λ, i.e. solution
to (1.3.8). The two semi-permeable barriers z1, z2 divide the real line into three intervals over which the

functions U± are linear combinations of u−(x) = exp
(√

2λx
)

, u+(x) = exp
(
−
√

2λx
)

. The functions

u± are the fundamental solutions of the homogeneous problem (λ − L)u = 0 (Sturm-Liouville): the
eigenfunctions of L for the eigenvalue λ ∈ C \ (−∞, 0] and vanish either at +∞ or −∞.

z1 z2

u− Au− +Bu+ Cu− +Du+

z1 z2

Gu− +Hu+ Eu− + Fu+ u+

Figure 2.1: The functions U− (on the left) and U+ (on the right).

Therefore, as in Figure 2.1,

U− =


u− x ≤ z1,

A(λ)u− +B(λ)u+ z1 ≤ x ≤ z2,

C(λ)u− +D(λ)u+ x ≥ z2;

U+ =


G(λ)u− +H(λ)u+ x ≤ z1,

E(λ)u− + F (λ)u+ z1 ≤ x ≤ z2,

u+ x ≥ z2,

(2.2.2)

with eight coefficients to be determined. Notice that since U± ∈ D(L), they

• are continuous functions and

• have to satisfy the so-called transmission conditions derived from the continuity of x 7→ k(x)U ′±(x, λ).

These conditions determine the eight coefficients:
A(λ) = (1 + β1)−1;

B(λ) = A(λ)β1e
2
√

2λz1 ;

C(λ) =
(
β1β2e

−2
√

2λ(z2−z1) + 1
)

((1 + β1)(1 + β2))
−1

;

D(λ) =
(
β1e

2
√

2λz1 + β2e
2
√

2λz2
)

((1 + β1)(1 + β2))
−1

;
G(λ) = −

(
β2e
−2
√

2λz2 + β1e
−2
√

2λz1
)

((1− β1)(1− β2))
−1

;

H(λ) =
(
β1β2e

−2
√

2λ(z2−z1) + 1
)

((1− β1)(1− β2))
−1

;

E(λ) = −F (λ)β2e
−2
√

2λz2 ;

F (λ) = (1− β2)−1.

The second step is to compute the Wronskian. Let k as in (2.2.1). Since for each λ fixed x 7→
k(x)W (U−, U+)(x, λ) is constant, one can compute it choosing a favorite point.

x 7→W (U−, U+)(x, λ) ≡ −2
√

2λH(λ).

This leads to the following lemma.

Lemma 2.2.1. Green’s function is given by

G(x, y;λ) =
1

φ(λ)
e−φ(λ) |x−y|

∑4
j=1 cj(y)e−φ(λ) aj(x,y)

β1β2e−2φ(λ) z + 1
,

where φ(λ) :=
√

2λ, z := z2 − z1 is the distance between the barriers, and
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c1(y) ≡ 1

c2(y) =
(
21[z1,+∞)(y)− 1

)
β1

c3(y) =
(
21[z2,+∞)(y)− 1

)
β2

c4(y) =
(
1− 21[z1,z2)(y)

)
β1β2,

(2.2.3)


a1(x, y) ≡ 0

a2(x, y) = |y − z1|+ |x− z1| − |y − x|
a3(x, y) = |y − z2|+ |y − z2| − |y − x|
a4(x, y) = 2 (z2 −max(x, y, z1))

+
+ 2 (min(x, y, z2)− z1)

+
.

(2.2.4)

Proof. We present the computations just in one case, since the other cases are similar. Let x < z1 < z2 < y.
Since there is no drift (µ = 0), h ≡ k where k is the function given in (2.2.1). From Lemma 1.3.4, Green’s
function has the following form

G(x, y;λ) = −2k(y)
U+(y, λ)U−(x, λ)

−2
√

2λH(λ)
= −2k(y)

u+(y, λ)u−(x, λ)

− 1
2

√
2λ(1 + β1β2e−2

√
2λz)

=
1√
2λ

4k(y)e−
√

2λ(y−x)

1 + β1β2e−2
√

2λz
.

Noticing that aj(x, y) = 0 for j ∈ {1, 2, 3, 4} and that
∑4
j=1 cj(y) = 4k(y), one concludes the proof.

Remark 2.2.2. Let us notice some useful facts

(i) The function φ is a well defined biholomorphism between C \ (−∞, 0] and {ζ ∈ C; <e(ζ) > 0}.

(ii) The function at the denominator λ 7→ 1 + β1β2e
−2φ(λ) z has no zero in C \ (−∞, 0].

(iii) aj(x, y) ≥ 0 for j ∈ {1, 2, 3, 4}.

2.2.2 The explicit representation of the transition density

Since the dependence on λ of Green’s function is given only through φ(λ) =
√

2λ, one can apply the change
of variable λ 7→ φ(λ) =: ξ to the contour integral representation in equation (1.3.6):∫

Γ

e
φ(λ)2

2 t G(x, y;φ(λ)) dφ(λ) =

∫
φ(Γ)

e
ξ2

2 t G(x, y; ξ) dξ

where G(x, y;φ(λ)) := φ(λ)G(x, y;λ) and G(x, y, λ) is given in Lemma 2.2.1. See Figure 2.2.a.

Since the integrand e
ξ2

2 tG(x, y; ξ) is holomorphic on the closed subset of the complex plane between iR
and φ(Γ), we deform (shrink) the contour φ(Γ) to the imaginary line by an homotopy, see Figure 2.2.b.
One still needs to check that the following lemma holds.

Lemma 2.2.3. Consider the function

G(x, y, ξ) = e−ξ|x−y|
∑4
j=1 cj(y)e−ξaj(x,y)

β1β2e−2ξz + 1
,

where the functions cj and aj are given respectively by (2.2.3) and (2.2.4), and z := z2 − z1.
Let u ∈ R. Let U ′ be the unique point with imaginary part u in φ(Γ) and ρU be the segment connecting
U ′ with its projection U = i u on iR (see Figure 2.2.b), then

lim
u→±∞

∫
ρU

e
ξ2

2 t G(x, y; ξ) dξ = 0.
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a)

R

iR

Γ

φ(Γ)

R

iR

a)

φ(Γ)

U ρU
U ′ = `(u) + U

-U

|µ|

Figure 2.2:

a) Let µ = 0. The picture shows the (green) image of the (blue) contour Γ under φ : λ 7→
√

2λ. The
spectrum of the operator (L,D(L)) is contained in the (red) semi-axis (−∞, 0], which coincides with
the complement of the domain of φ.

b) The picture shows the contour φ(Γ) which shrinks to the imaginary line (in blue). The segment ρU
connects the unique point U ′ ∈ φ(Γ) with imaginary part u to its projection U on the imaginary line.

Proof. Let us show that the absolute value converges to zero.∣∣∣∣∫
ρU

e
ξ2

2 t G(x, y; ξ) dξ

∣∣∣∣ ≤ ∫
ρU

∣∣∣∣e ξ22 t G(x, y; ξ)

∣∣∣∣ dξ =

∫ `(u)

0

e
(w2−u2)

2 t
∣∣G(x, y; iu+ w)

∣∣ dw
with `(u) := |U − U ′| (hence U ′ = `(u) + U) and limu→∞ `(u) = 0. Let us notice that

∣∣G(x, y; iu+ w)
∣∣ ≤ e−w|x−y|∑4

j=1 |cj(y)| e−waj(x,y)∣∣β1β2e−2(iu+w)z + 1
∣∣ ,

therefore ∣∣∣∣∫
ρU

e
ξ2

2 t G(x, y; ξ) dξ

∣∣∣∣ ≤ e−u2

2 t

∫ `(u)

0

e
w2

2 t e−w|x−y|
∑4
j=1 |cj(y)| e−waj(x,y)

1− |β1β2| e−2wz
dw

that clearly converges to zero if |u| goes to infinity.

Therefore the integral in (1.3.6) becomes (with ξ = iw)

p(β1,β2)(t, x, y) =
1

2π

∫
R
e−

w2

2 t

∑4
j=1 cj(y)e−iw(aj(x,y)+|x−y|)

β1β2e−2iwz + 1
dw. (2.2.5)

One can also rewrite it using the function h defined by equation (2.1.3):

p(β1,β2)(t, x, y) =

4∑
j=1

cj(y)h

(
t

2
,− (aj(x, y) + |x− y|) , β1β2,−2z

)
,



24 CHAPTER 2. THE MULTI-SKEW BROWNIAN DIFFUSIONS

which is the integral representation given by Gaveau, Okada and Okada in [24].
Nevertheless, since |β1β2| ≤ 1, we can explicit further the expression (2.2.5) and write it as a series of
Fourier transforms.

Proposition 2.2.4. The transition density of the (β1, β2)-SBM admits the following expansion

p(β1,β2)(t, x, y) = p(t, x, y)v(β1,β2)(t, x, y)

with v(β1,β2)(t, x, y) =

∞∑
k=0

(−β1β2)k
4∑
j=1

cj(y)e−
(aj(x,y)+2 z k)2

2t e−|x−y|
aj(x,y)+2 z k

t ,
(2.2.6)

where p(t, x, y) is the usual transition density function from x to y of the Brownian motion and the
functions cj and aj are given respectively by (2.2.3) and (2.2.4), and z := z2 − z1.

Proof. First let us do the case |β1β2| < 1. Let us consider the expression (2.2.5). The denominator can
be seen as the sum of a geometric series

1

1 + β1β2e−2 i w z
=

∞∑
k=0

(−β1β2e
−2 i w z)k .

Therefore the density can be written as

p(β1,β2)(t, x, y) =
1

2π

∫
R

∞∑
k=0

(−β1β2)ke−
w2

2 te−iw|x−y|
4∑
j=1

cj(y)e−iw(aj(x,y)+2 z k)dw.

We can exchange integral and series, because the series of absolute values e−
w2

2 t 1
1−|β1β2| is integrable.

We conclude that the transition density is a series of Fourier transforms:

p(β1,β2)(t, x, y) =

∞∑
k=0

(−β1β2)k
4∑
j=1

cj(y)

2π

∫
R
e−

w2

2 te−iw(aj(x,y)+2 z k+|x−y|)dw

=
1√
2π

∞∑
k=0

(−β1β2)k
4∑
j=1

cj(y)ĝt(aj(x, y) + 2 z k + |x− y|)

=
1√
2πt

∞∑
k=0

(−β1β2)k
4∑
j=1

cj(y)g1

(
aj(x, y) + 2 z k + |x− y|√

t

)
(2.2.7)

where gt(w) := e−
w2

2 t = g1(w
√
t) and its Fourier transform satisfies ĝt(ω) = 1√

t
gt(

ω
t ) = 1√

t
g1

(
ω√
t

)
. We

notice that g1(a+ b) = g1(a)g1(b)e−ab hence we can write the density as

p(β1,β2)(t, x, y) =
1√
2πt

g1

(
|x− y|√

t

)
v(β1,β2)(t, x, y)

v(β1,β2)(t, x, y) =

∞∑
k=0

(−β1β2)k
4∑
j=1

cj(y)g1

(
aj(x, y) + 2 z k√

t

)
e−
|x−y|
t (aj(x,y)+2 z k).

Using the identity p(t, x, y) = 1√
2πt

g1

(
|x−y|√

t

)
we conclude and obtain (2.2.6).

Now let us do the remaining case |β1β2| = 1. Here we need to adopt a trick: instead of pushing the
contour integral on the imaginary axis, we push it on the line a + iR = {z | <e(z) = a} for some a > 0.
The same proof as in Lemma 2.2.3 shows that we are allowed to do so and we are reduced to compute the
integral (by substituting ξ with a + iw in (1.3.6)

p(β1,β2)(t, x, y) =
1

2π

∫
R
e(−w2

2 +iwa+ a2

2 )t

∑4
j=1 cj(y)e−(iw+a)(aj(x,y)+|x−y|)

β1β2e−2az−2iwz + 1
dw.
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Since |β1β2e
−2az−2iwz| = e−2az < 1 we can expand the denominator as a geometric series and obtain

p(β1,β2)(t, x, y) =
1

2π

∫
R

∞∑
k=0

(−β1β2)ke(−w2

2 +iwa+ a2

2 )te−(a+iw)|x−y|
4∑
j=1

cj(y)e−(a+iw)(aj(x,y)+2 z k)dw.

Since the sum of the series of the absolute values e−
1
2w

2t e
( 1

2
a2t+a(|x−y|+aj(x,y)))

2π(1−e−2zat) is integrable in w, one can

exchange the integral and the series. After interpreting the sum of integrals as a sum of Fourier transforms,
one has

p(β1,β2)(t, x, y) =
1√
2πt

∞∑
k=0

(−β1β2)k
4∑
j=1

cj(y)e
a2

2 t−a(aj(x,y)+2zk+|x−y|)g1

(
aj + 2zk + |x− y|+ at√

t

)
.

After simplifying the latter sum becomes equal to (2.2.7) which does not depend on a.

2.2.3 Interpretation as an additive perturbation of the transition density of
the Brownian motion

One can notice that the transition density of the two-SBM is a multiplicative perturbation (by v(β1,β2)) of
the transition density of the Brownian motion. Actually we can interpret it as an additive perturbation,
writing v(β1,β2) as 1 + V (β1,β2). Indeed Green’s function can be rewritten as

G(x, y;λ) =
1

φ(λ)
e−φ(λ) |x−y|

(
1 +

∑4
j=1 c̄j(y)e−φ(λ) āj(x,y)

β1β2e−2φ(λ) z + 1

)
.

where φ(λ) :=
√

2λ and z := z2−z1 is the distance between the barriers. For j = 2, 3, 4, āj(x, y) and c̄j(y)
are given by (2.2.4) and (2.2.3) respectively, and

c̄1(y) := −
(
1− 21[z1,z2)(y)

)
c4(y) = −β1β2, ā1(x, y) := 2z.

Therefore, following the proof of Proposition 2.2.4, one obtains the following new version of (2.2.6):

p(β1,β2)(t, x, y) = p(t, x, y)v(β1,β2)(t, x, y),

where v(β1,β2)(t, x, y) = 1 +

∞∑
k=0

(−β1β2)k
4∑
j=1

c̄j(y)e−
(āj(x,y)+2 z k)2

2t e−|x−y|
āj(x,y)+2 z k

t .
(2.2.8)

In particular, in case x and y are both on the same unbounded side of the barriers, one gets that c̄4 = −c̄1
and ā4 = ā1 = 2 z, and each term of the infinite series is a sum of only two terms (j=2,3).

2.3 The transition density of the two-SBM with constant drift

In this section we provide the transition density for the (β1, β2)-SBM with constant drift µ, in terms of
Gaussians and the transcendental cumulative distribution function of Gaussians. To simplify the notations,
without loss of generality we assume that the barriers are located in 0 and z > 0.

Its infinitesimal generator on L2(R, h(x)dx) is the self-adjoint operator given by (2.1.1) where h(x) =
e2µxk(x) with k(x) given by (2.2.1).

2.3.1 Green’s function of the resolvent

Let us define four non negative functions
a1(x, y) ≡ 0

a2(x, y) = |x|+ |y| − |y − x|
a3(x, y) = |x− z|+ |y − z| − |y − x|
a4(x, y) = 2 (z −max(x, y, 0))

+
+ 2 min(x, y, z)+.

(2.3.1)
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Case i)
0 z

x ∧ y x ∨ y
Case ii)

0 z

x ∧ y x ∨ y

Case iii)
0 z

x ∧ y x ∨ y

Figure 2.3: The different values of aj , j = 1, 2, 3, 4, according to the relative positions of x, y and z:

Case i) For all j = 1, 2, 3, 4, aj = 0

Case ii) a1 = a2 = 0 and a3 = a4 = 2 (z − x ∨ y)

Case iii) a1 = 0, a2 = −2x ∨ y, a3 = 2 (z − x ∨ y), a4 = 2z.

Let us also introduce polynomials of second order in ξ setting

cj(y, µ; ξ) := ξ2 cj,0(y) + ξ µcj,1(y) + µ2cj,2(y), j ∈ {1, 2, 3, 4},

where
c1,0(y) = 1,

c2,0(y) =
(
21{y>0} − 1

)
β1

c3,0(y) =
(
21{y>z} − 1

)
β2

c4,0(y) =
(
1− 21[0,z)(y)

)
β1β2

,


c1,1(y) = β1 + β2

c2,1(y) = −β1 − c4,0(y)

c3,1(y) = −β2 + c4,0(y)

c4,1(y) = 0

,


c1,2(y) = β1β2

c2,2(y) = β1c3,0(y)

c3,2(y) = −β2c2,0(y)

c4,2(y) = −c4,0(y).

(2.3.2)

The polynomials cj can be rewritten as
c1(y, µ; ξ) = (ξ + β1µ)(ξ + β2µ)

c2(y, µ; ξ) =
(
21{y>0} − 1

) (
β1ξ −

(
21{y>0} − 1

)
β1µ

) (
ξ −

(
21{y>z} − 1

)
β2µ

)
c3(y, µ; ξ) =

(
21{y>z} − 1

) (
β2ξ −

(
21{y>z} − 1

)
β2µ

) (
ξ +

(
21{y>0} − 1

)
β1µ

)
c4(y, µ; ξ) =

(
1− 21{0≤y<z}

) (
β1β2ξ

2 − β1β2µ
2
)
.

Let a be a fixed real number and define

Cj,0 := cj,0, Cj,1 := µcj,1 + 2cj,0a, Cj,2 := cj,2µ
2 + cj,1µa + cj,0a

2, (2.3.3)

which are y-dependent.

Lemma 2.3.1. Green’s function is given by

G(x, y; ξ) =
1

ξ
eµ(y−x)e−ξ|x−y|

∑4
j=1 cj(y, µ; ξ)e−ξaj(x,y)

β1β2e−2 ξ z(ξ2 − µ2) + (ξ + β1µ)(ξ + β2µ)
,

where z is the distance between the barriers and ξ :=
√

2λ+ µ2 ∈ {ζ ∈ C s.t. <e(ζ) > 0} (λ ∈ C\(−∞, 0]).
The functions aj(x, y) are the non negative functions defined by (2.3.1), and cj(y, µ; ξ) = ξ2cj,0(y) +
ξµcj,1(y) + µ2cj,2(y) are given by (2.3.2).

Proof. The form of Green’s function is given by Lemma 1.3.4, hence one has to compute the functions U±.
They are linear combinations of

u−(x) = e−µx+
√
µ2+2λx, u+(x) = e−µx−

√
µ2+2λx,

generalizing (2.2.2). One finds U± imposing the continuity of U± and of hU ′±. The latter condition yields
the transmission conditions

k(0−)U ′±(0−) = k(0+)U ′±(0+), k(z−)U ′±(z−) = k(z+)U ′±(z+),

where k is given by (2.2.1). One computes then the Wronskian, using the fact that w 7→ h(w)W (U−, U+)(w, λ)
is constant.
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2.3.2 Some preliminary lemmas

Before presenting our main result, let us develop some useful technical lemmas.

About Green’s function

Let x, y ∈ R be fixed. We first study the singularities of Green’s function ξ 7→ G(x, y; ξ) for ξ ∈ C such
that the real part <e(ξ) is non negative. Since Green’s function is a ratio of holomorphic functions, it is
meromorphic and the singularities are poles.

Lemma 2.3.2 (Possible singularities of Green’s function). Let β1, β2 ∈ [−1, 1], µ ∈ R and z > 0.

• If 2zβ1β2µ+ β1 + β2 6= 0 then 0 is an erasable singularity for Green’s function. Moreover

– If β1µ > 0 and β2µ > 0 or if β1β2 < 0 but 2zβ1β2µ
2 + β1µ+ β2µ > 0, there are no poles.

– If 2zβ1β2µ
2 + β1µ+ β2µ < 0, there is a pole of the first order.

– If β1µ < 0, β2µ < 0 and 2 z β1β2µ
2 + β1µ+ β2µ > 0, there are two poles of the first order.

• If 2zβ1β2µ+β1+β2 = 0, then 0 is either erasable singularity (for example in Case i) of Figure 2.3) or
a pole of order 1 and it may be a pole of order two for a special choice of the parameters z, µ, β1, β2.
And there is a positive pole of the first order only if β1µ < 0, β2µ < 0.

Proof. Let us consider the denominator of Green’s function, which is

D(ξ) := β1β2(ξ2 − µ2)e−2 ξ z + (ξ + β1µ)(ξ + β2µ)

and let us study its zeros on {ζ ∈ C s.t. <e(ζ) ≥ 0}.
Clearly D(0) = 0, the others zeros of ξ 7→ D(ξ) can only be on R∗+, actually on the interval (0, |µ|]. Indeed
fix the u := =m(ξ) ∈ R∗ and consider the function on R∗+ w 7→ D(w + iu). One can check that the real
part and the imaginary part of this function do not have the same zeros. This proves that the zeros of
D have to be real (i.e. u = 0). Therefore we can identify the location and the number of the solutions

ξ ∈ (0, |µ|) of the equation e−2zξ = (ξ+β1µ)(ξ+β2µ)
β1β2(µ2−ξ2) on (0, |µ|) through a simple study of variations of a real

function. In particular one sees that the zeros cannot be greater than |µ| and localize the zeros in [0, µ].
If the curves are tangent in 0 one gets the condition 2zβ1β2µ

2 + β1µ + β2µ = 0. The order of the poles
can be verified directly.
Moreover, comparing case by case the denominator with a convenient function, we show that if ξ̄ is a non
negative zero of the function ξ 7→ D(ξ), then

ξ̄ ≤ max (0,−2β1µ,−2β2µ). (2.3.4)

The following lemma implies that the integral over ρU in Figure 2.4.b (resp. over ρ′U in Figure 2.5.a.)
vanishes if U →∞.

Lemma 2.3.3. Let a ≥ 0, and assume |β1β2| ≤ 1. Then the integral of the function

ξ 7→ e
ξ2

2 te−ξ|x−y|
∑4
j=1 cj(y, µ; ξ)e−ξaj(x,y)

β1β2e−2ξz(ξ2 − µ2) + (ξ + β1µ)(ξ + β2µ)

on the segment ρU = [iu; a + iu] vanishes if |u| → ∞.

Proof. One should prove that lim|u|→∞ Iu = 0 where

Iu :=

∫ a

0

e
(w+iu)2

2 te−(w+iu)|x−y|
∑4
j=1 cj(y, µ;w + iu)e−(w+iu)aj(x,y)

β1β2e−2(w+iu)z((w + iu)2 − µ2) + (iu+ w + β1µ)(iu+ w + β2µ)
dw.
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First

|Iu| ≤ e−
1
2u

2

∫ a

0

e
w2

2 t
∑4
j=1 |cj(y, µ;w + iu)|e−w(|x−y|+aj(x,y))

|β1β2e−2(w+iu)z((w + iu)2 − µ2) + (iu+ w + β1µ)(iu+ w + β2µ)|
dw.

Let us consider separately the numerator and the denominator appearing in the integrand. It is straight-

forward to prove that the numerator is smaller than Ka

∑4
j=1

∑2
h=0 |µ2−h|

(
a2 + u2

)h
2 , where Ka is a

positive constant.
If |β1β2| < 1, the denominator is greater or equal than√

(u2 + (w + β1µ)2)(u2 + (w + β2µ)2)− |β1β2|(u2 + w2 + µ2) ≥ (1− |β1β2|)u2 − |β1β2|(µ2 + a2),

which does not depend on w and is positive for u large enough. Therefore, since∫ a

0

e
w2

2 te−w(|x−y|+aj,k(x,y))dw ≤ ae
1
2a

2

,

one has

lim
|u|→∞

|Iu| ≤ ae
1
2a

2

lim
|u|→∞

e−
1
2u

2 Ka

∑4
j=1

∑2
h=0 |µ2−h|

(
a2 + u2

)h
2

(1− |β1β2|)u2 − |β1β2|(µ2 + a2)
= 0.

If |β1β2| = 1, then one considers separately the cases β1β2 = −1 and β1β2 = 1 and the proof is similar.
If β1β2 = −1 the denominator

(
(w + iu)2 − µ2

) (
1− e−2 z (iu+w)

)
has absolute value bigger than 2|uµ|. If

β1β2 = 1 instead, the denominator is (ξ + µ)
(
(ξ + µ) + e−2 z (iu+w)(ξ − µ)

)
and its absolute value is, at

least for large u, bigger than
√
µ2 + u2

(
|u|
(
1− e−2 z a

)
− 2|µ|

)
.

Useful Fourier transforms and integrals

Let us define
g : R× R → [0,+∞)

(ω, a) 7→ g(ω, a) := eaω1(−∞,0)(ω),
(2.3.5)

and, for a1, a2 ∈ R such that a1 6= a2 and k ∈ N,

fk+1(ω, a1, a2) :=

√
2π

(a1 − a2)2k+1k!
·
k∑

n=0

(2k − n)!

n!(k − n)!
(a1 − a2)nωn [g(ω, a2)− (−1)ng(ω, a1)] . (2.3.6)

Lemma 2.3.4 (Partial fractional decomposition). Let a, b ∈ R∗, a 6= b and k ∈ N, then

1

(w − ia)k+1(w − ib)k+1

= i

k∑
j=0

1

(a− b)2k+1−j

(
2k − j
k − j

)(
ij

(w − ib)j+1
− (−1)j

ij

(w − ia)j+1

)
.

Proof. The function f(x) = 1
(w−ia)k+1(w−ib)k+1 is a rational function with two poles x1 = ia, x2 = ib of

order k + 1. We follow a standard method for computing the decomposition: there exist coefficients αi,j
such that the function can be written as f(x) =

∑2
i=1

∑k+1
j=1

αi,j
(x−xi)j . Since the αi,j are the residues in xi

of the function gi,j(x) = (x− xi)j−1f(x), we computed them explicitly.

Lemma 2.3.5. If a > 0 and k ∈ N, then

F
(
w 7→ 1

(w − ia)k+1

)
(ω) = ik+1

√
2π

(−ω)k

k!
g(ω, a),

where g(ω, a) is defined in (2.3.5). More generally if a ∈ R∗ and k ∈ N then

F
(
w 7→ 1

(w − ia)k+1

)
(ω) = ik+1

√
2π
(
21(−∞,0)(a)− 1

) (−ω)k

k!
eaω 1R− (aω) .
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Proof. If k = 0 it coincides with Lemma 1.3.7, otherwise the function 1
(w−ia)k+1 ∈ L1(R, dx) ∩ L2(R, dx)

and one computes its Fourier transform at the point ω through the method of residues.

Lemmas 2.3.4 and 2.3.5 imply that the function fk(ω, a1, a2) defined by (2.3.6), for any ω ∈ R and
a1 > 0, a2 > 0, is equal to

fk(ω, a1, a2) = F
(
w 7→ −1

(w − ia1)k(w − ia2)k

)
(ω).

Let us give the last useful lemma.

Lemma 2.3.6. Let q ∈ N. The function

Iq(resp. Ĩq) : R → R

w 7→
∫ w

−∞
uq e−

u2

2 du

(
resp. −

∫ +∞

w

uq e−
u2

2 du

)
satisfies 

I0(w) :=
√

2πΦ(w) =
√

2πΦc(−w) (resp. −
√

2πΦc(w)) q = 0,

I1(w) := −e−w
2

2 q = 1,

Iq(w) = I0(w)(q − 1)!! + I1(w)
∑ q

2−1

k=0 w
q−2k−1 (q−1)!!

(q−2k−1)!! q ≥ 2 even,

Iq(w) = I1(w)
∑ q−1

2

k=0 w
(q−1−2k)2k

( q−1
2 )!

( q−1
2 −k)!

q ≥ 3 odd ,

where (2n+ 1)!! = (2n+ 1) · (2n− 1) · . . . · 3 · 1, n ∈ N.

Proof. Straightforward for q = 0, q = 1, and for q ≥ 2 one can use the integration by parts for the integral∫
wqe−

w2

2 dw = −
∫
wq−1 d

dw

(
e−

w2

2

)
dw and obtain the recursive formula

Iq(w) = wq−1I1(w) + (q − 2)Iq−2(w)

that yields the conclusion.

2.3.3 The main result

Let us now define some functions which will be used in our main result. For any K,m, n ∈ N, ω ≥ 0, and
a, τ ∈ R:

GK,m,n(ω, a, τ) := (−1)K(K +m)!

bK+m
2 c∑
`=0

(−1)`

2`
1

`!(K +m− 2`)!
SK+m−2`,n(ω, a, τ) (2.3.7)

where

SL,n(ω, a, τ) =

n∑
n′=0

L∑
L′=0

(
n

n′

)(
L

L′

)
(ω + τ)n−n

′
(a + τ)L−L

′
Jn′+L′(ω, τ),

and
Jq(ω, τ) := e−

1
2ω

2

e
1
2 (ω+τ)2

Iq(ω + τ), (2.3.8)

where Iq is defined in Lemma 2.3.6. The latter function satisfies the recursive relationship

Jq(ω, τ) = (q − 1)Jq−2(ω, τ) + (−1)q−1(ω + τ)q−1J1(ω, τ),

hence, following Lemma 2.3.6,

Jq(ω, τ) :=



√
2πe−

1
2ω

2

e
1
2 (ω+τ)2

Φc(ω + τ) q = 0,

−e− 1
2ω

2

q = 1,

J0(ω, τ)(q − 1)!!− J1(ω, τ)
∑ q

2−1

k=0 (ω + τ)q−2k−1 (q−1)!!
(q−2k−1)!! q ≥ 2 even,

J1(ω, τ)
∑ q−1

2

k=0(ω + τ)(q−1−2k)2k
( q−1

2 )!

( q−1
2 −k)!

q ≥ 3 odd ,

where (2n+ 1)!! = (2n+ 1) · (2n− 1) · . . . · 3 · 1, n ∈ N.
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Theorem 2.3.7. Let β1, β2 ∈ [−1, 1], µ ∈ R and a ≥ max (0,−2β1µ,−2β2µ). The transition
density of the (β1, β2)-SBM with constant drift µ and barriers in 0 and z > 0 decomposes as

p(β1,β2)
µ (t, x, y) = pµ(t, x, y)v(β1,β2)

µ (t, x, y) (2.3.9)

where the function v
(β1,β2)
µ , which does not depend on a, admits the following series representa-

tion

v(β1,β2)
µ (t, x, y) =

∞∑
k=0

(−β1β2)k
4∑
j=1

Fj,k(ωj,k, a), (2.3.10)

where

Fj,k(ωj,k, a) :=


(−1)k+1 Cj,k(a)

(2k + 1)!
Gk+h−s,m,2k+1(ωj,k, a

√
t, β1µ

√
t), if β1µ = β2µ;

k∑
n=0

(
2k − n
k

)
Cj,k(a)

n!(β1µ
√
t− β2µ

√
t)2k+1−n

Fk+h−s,m,n(ωj,k, a), if β1µ 6= β2µ;

(2.3.11)

ωj,k(x, y) :=
aj(x, y) + 2zk + |y − x|√

t
, j = 1, 2, 3, 4, k ∈ N; (2.3.12)

Cj,k(a) := e
1
2ω

2
1,0

k∑
m=0

k−m∑
s=0

2∑
h=0

Cj,2−h(y)

(
k −m
s

)(
k

m

)
(−2a

√
t)k−m−s(µ2 − a2)s ts

with Cj,h(y) given in (2.3.3), aj(x, y) in (2.3.1) and the function GK,m,n given by (2.3.7).
The function FK,m,n is defined by

FK,m,n(ω, a) := GK,m,n(ω, a
√
t, β2µ

√
t)− (−1)nGK,m,n(ω, a

√
t, β1µ

√
t).

Let us notice that Fj,k(ωj,k, a) is actually a function depending on (t, x, y). This is the case of ωj,k(x, y)
and Cj,k(a) as well. The latter functions should be written ωj,k(t, x, y) and Cj,k(t, x, y, a) respectively.

We now present a proof of Theorem 2.3.7 which is quite technical and divided in several steps. Nev-
ertheless, some ideas are derived from the proof of Proposition 2.2.4 (recognize a geometric sum) and
from the proof of Proposition 1.1.1 presented in Section 1.3.5 (there is no need to compute the possible
residues).

Proof of Theorem 2.3.7. In Section 2.1 we have seen that the transition density of the (β1, β2)-SBM with
constant drift µ admits the contour integral representation (1.3.6), i.e.

p(β1,β2)
µ (t, x, y) =

1

2πi

∫
Γ

eλtG(x, y;λ)dλ,

where Γ is a contour of (−∞, 0] and G(x, y;λ) is Green’s function of the resolvent. Let us consider the
explicit expression of Green’s function, given by Lemma 2.3.1. We have already noticed that it depends

on λ though the function φ(λ) =
√

2λ+ µ2 which is defined on λ ∈ C \ (−∞,−µ
2

2 ] (see Figure 2.4.a).

Therefore a change of variable is possible, and one obtains the following expression for v
(β1,β2)
µ (t, x, y):

p
(β1,β2)
µ (t, x, y)

pµ(t, x, y)
=

√
t√

2πi
e

(y−x)2

2t

∫
φ(Γ)

e
ξ2

2 te−ξ|x−y|
∑4
j=1 cj(y, µ; ξ)e−ξaj(x,y)

β1β2e−2ξz(ξ2 − µ2) + (ξ + β1µ)(ξ + β2µ)
dξ. (2.3.13)

Let us assume for the moment that the integrand has no poles on the region between the imaginary
line and the contour φ(Γ) (i.e. it does not have poles in [0, µ2], see Lemma 2.3.2) and that the integrand
is also holomorphic on the entire imaginary line. Being in the case of Figure 1.3.a, let ρU as in the figure,
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a)

R

iR

−µ
2

2

Γ

φ(Γ)

b)

φ(Γ)

a + iR

a + U
ρU

U ′

a− U

|µ|pole

Figure 2.4:

a) Let µ ∈ R. The picture shows the image of the contour Γ under φ : λ 7→
√

2λ+ µ2. The line (−∞, 0]

contains the spectrum of the operator (L,D(L)) and the dashed line (−∞,−µ
2

2 ] is the complement of
the domain of φ.

b) The figure represents the vertical line a + iR on the right of the curve φ(Γ) and the segment ρU
connecting the point U = a + iu to its unique projection on φ(Γ). The segment (0, |µ|] contains all

possible singularities (poles) with positive real part. It is the image under φ of (−µ
2

2 , 0].

since the integral on this segment vanishes if U goes to infinity (see Lemma 2.3.3), one can deform the
contour φ(Γ) to the imaginary line, obtaining the transition density as

v(β1,β2)
µ (t, x, y) = e−

(x−y)2

2t +µ(y−x)

√
t√

2π

∫
R
e−

w2

2 t

∑4
j=1−cj(y, µ; iw)e−iwaj(x,y)e−iw|x−y|

β1β2e−2iwz(w2 + µ2) + (w − iβ1µ)(w − iβ2µ)
dw.

On one hand one recognizes that this is a Fourier transform (of a complicated function), on the other hand
one wants to shrink to a contour that allows the computations even if there are some poles (i.e. for any
possible choice of the parameters β1, β2, µ as in the hypotheses). As we have seen in Lemma 2.3.2, the
possible singularities with positive real part could only be located in [0, |µ|] (which is the image through
φ of [−µ2/2, 0], see Figure 2.4.b) and have to be smaller than max (0,−2β1µ,−2β2µ).

Let us fix a non negative real number a as in Figure 2.4.b. In particular it is bigger than any pole of
the integrand, because the poles are smaller than the minimum between |µ| and max (0,−2β1µ,−2β2µ)
(see inequality (2.3.4)).
One can deform the contour φ(Γ) to the line a + iR because the integrand is holomorphic on the region
between the two curves, continuous on the curves and on the segment ρU where the integral is vanishing
if |U | → ∞ (by Lemma 2.3.3).

Noticing that ωj,0 =
aj(x,y)+|x−y|√

t
, one has

v(β1,β2)
µ (t, x, y) =

√
t√

2πi
e

1
2ω

2
1,0

∫
a+iR

e
ξ2

2 te−ξ|x−y|
∑4
j=1 cj(y, µ; ξ)e−ξaj(x,y)

β1β2e−2ξz(ξ2 − µ2) + (ξ + β1µ)(ξ + β2µ)
dξ

η=ξ
√
t

=
1√
2πi

e
ω2

1,0
2

∫
a
√
t+iR

e
η2

2

∑4
j=1 cj(µ

√
t, y; η)e

−η
aj(x,y)+|x−y|

√
t

β1β2e
−2η z√

t (η2 − µ2t) + (η + β1µ
√
t)(η + β2µ

√
t)
dη.
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Setting η = iw + a
√
t one gets

v
(β1,β2)
µ (t, x, y) =

1
√

2π

∫
R

e
1
2
ω2

1,0 e
(iw+a

√
t)2

2
∑4
j=1 cj(µ

√
t, y; iw + a

√
t)e
−(iw+a

√
t)
aj(x,y)+|x−y|

√
t

β1β2e
−2(iw+a

√
t) z√

t ((iw + a
√
t)2 − µ2t) + ((iw + a

√
t) + β1µ

√
t)((iw + a

√
t) + β2µ

√
t)

dw.

Taking a = 0 one obtains the same integral that one would obtain in the case without poles.
For simplicity (but without loss of generality) we continue the computation supposing t = 1. Let us

define the non negative constants
ai := a + βiµ, i = 1, 2.

v(β1,β2)
µ (1, x, y) =

1√
2π
e

1
2 (ω2

1,0+a2)

∫
R

e−
w2

2

∑4
j=1

∑2
h=0

(
−cj,2−h(y)µ2−h(iw + a)h

)
e−iw(ωj,0−a)e−aωj,0

(w − ia1)(w − ia2)
(

1 + e−i2zwe−2za β1β2(w2−a2+µ2−2iwa)
(w−ia1)(w−ia2)

) dw.

(2.3.14)

Since we assume a ≥ 0, a ≥ −2β1µ, a ≥ −2β2µ, it is easy to prove that∣∣∣∣−e−2zaβ1β2
(w2 − a2 + µ2 − 2iwa)

(w − ia1)(w − ia2)

∣∣∣∣ < 1.

Therefore one factor of the integrand is a geometric series:

1

1 + e−i2zwe−2za β1β2(w2−a2+µ2−2iwa)
(w−ia1)(w−ia2)

=

∞∑
k=0

(
−e−i2zwe−2za β1β2(w2 − a2 + µ2 − 2iwa)

(w − ia1)(w − ia2)

)k
.

Hence, exchanging integral and series one obtains the series of Fourier transforms
v

(β1,β2)
µ (1, x, y) =

∞∑
k=0

(−β1β2)k
4∑
j=1

Fj,k(ωj,k, a),

Fj,k(ωj,k, a) := e
1
2 (ω2

1,0+a2)e−aωj,kF
(
w 7→ e−

w2

2 cj(y, µ; iw + a)
−(w2 − a2 + µ2 − 2iwa)k

(w − ia1)k+1(w − ia2)k+1

)
(ωj,k − a),

(2.3.15)
where ωj,k is given by (2.3.12). We could exchange the integral and the series since there exists a bound
for the absolute value of the k − th term of the series, such that the series of these bounds converges (see
Proposition 2.5.3 for an explicit bound).

The Fourier transform in Fj,k can be rewritten as the following convolution of Fourier transforms

1√
2πµ2k

F

(
e−

w2

2

(
2∑

h=0

cj,2−h(y)µ2−h(iw + a)h

)
(w2 − a2 + µ2 − 2iwa)k

)
︸ ︷︷ ︸

(1)

∗F

(
−1

[(w − ia1)(w − ia2)]
k+1

)
︸ ︷︷ ︸

(2)

.

(2.3.16)
Let us first study the term (2). This Fourier transform is computed using Lemma 2.3.5 if β1µ = β2µ,
otherwise using jointly Lemma 2.3.4 and Lemma 2.3.5 we obtain the function fk+1(ω, a1, a2) given by
(2.3.6).
Let us now consider the term (1) in (2.3.16). One uses the properties of the iterated derivatives of Gaussian
densities, and the functions G given by (2.3.7).

The coefficients defined in (2.3.3) are such that

2∑
h=0

cj,2−h(y)µ2−h(iw + a)h =

2∑
h=0

Cj,2−h(y)ihwh, hence

the first term of the Fourier transform becomes

F

(
e−

w2

2

(
2∑

h=0

Cj,2−h(y)ihwh

)
(w2 − a2 + µ2 − 2iwa)k

)
.
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Developing the power of binomials one obtains

2∑
h=0

Cj,2−h(y)

k∑
m=0

(
k

m

) k−m∑
s=0

(
k −m
s

)
(−2a)k−m−s(µ2 − a2)s ik−m−s+hF

(
e−

w2

2 wk+m−s+h
)
.

Finally one computes the Fourier transforms F
(
e−

w2

2 wn
)

(w) = in
dn

dwn
e−

w2

2 and concludes that

1

µ2k
F

(
e−

w2

2

(
2∑

h=0

Cj,2−h(y)ihwh

)
(w2 − a2 + µ2 − 2iwa)k

)

=

k∑
m=0

(
k

m

) k−m∑
s=0

(
k −m
s

)
(−2a)k−m−s

(µ2 − a2)s

µ2k

2∑
h=0

Cj,2−h(y) (−1)k+h−s d
k+m+h−s

dwk+m+h−s e
−w2

2 .

Define now

GK,m,n(ω, a, βiµ) := e
1
2a

2

e−aω(−1)K
(
dK+m

dwK+m
e−

w2

2 ∗ wng(w, ai)

)
(ω − a) i = 1, 2.

One has to show that this function coincides with the expression given in (2.3.7).
Let (Hn(w))n be the Hermite polynomials, then

dn

dwn
e−

w2

2 = (−1)ne−
w2

2 Hn(w).

Hence

GK,m,n(ω, a, βiµ) = e
1
2a

2

e−aω(−1)m
(
wng(w, ai) ∗HK+m(w)e−

w2

2

)
(ω − a)

= (−1)me−
1
2ω

2

e
1
2 (ω+βiµ)2

∫ −(ω+βiµ)

−∞
(w + ω + βiµ)ne−

w2

2 HK+m(−ai − w)dw.

One then uses the explicit expression of the Hermite polynomials

Hn(w) = n!

bn2 c∑
`=0

(−1)`
1

2`
1

`!(n− 2`)!
wn−2`.

Replacing the polynomials inside the integral and defining

SL,n(ω, a, βiµ) := e−
1
2ω

2

e
1
2 (ω+βiµ)2

∫ −(ω+βiµ)

−∞
(w + ω + βiµ)ne−

w2

2 (ai + w)Ldw,

one recovers the expression in (2.3.7).
The final step consists in checking the formula giving the function SL,n. Let us expand the n− th power
with the help of the binomial formula,

SL,n(ω, a, βiµ) = e−
1
2ω

2

e
1
2 (ω+βiµ)2

n∑
n′=0

L∑
L′=0

(
n

n′

)(
L

L′

)
(ω + βiµ)n−n

′
aL−L

′

i

∫ −(ω+βiµ)

−∞
wn
′+L′e−

w2

2 dw.

Recognizing the function Jq(ω, βiµ) given by (2.3.8) one concludes.
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a)

R

a′ + U

ρ′U
a + U

a′ − U

a′ + iR a + iR

pole

biggest

b)

R

U
ρ′′U

a + U

−U

a + iR

pole

Figure 2.5:

a) The segment ρ′U connects here the point a + U with its projection on a′ + iR. The real number a′ is
chosen smaller than a but larger than any pole.

b) The figure represents the imaginary line (in green), the line a + iR on the right of any pole and the
rectangular cycle (in red dashed) around a pole situated in (0, |µ|]. The segment ρ′′U connects here the
point a + U with U = iu.
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2.3.4 Degenerate cases and special cases

In this section we give some comments on the main result, Theorem 2.3.7.

• In [16], we have provided the transition density assuming both β1µ and β2µ to be positive, because
in this simpler case there is no residue to compute (see Section 1.3.4). Later in [15], we have proved
the complete formula presented in this document, following the approach in Section 1.3.5, which
does not require an explicit knowledge of the singularities of Green’s function. Indeed, if there is no
singularity located on the interval [0, |µ|], the two approaches coincides: one can choose a = 0 and
shrink the contour φ(Γ) to the imaginary line (see Figure 2.2.b).

• If there are poles in [0, |µ|] (see Lemma 2.3.2 for a summary of the possible cases), the situation is
much more delicate. In Figure 2.5.b we illustrate the link of the “a-method” (Section 1.3.5) with the
“residues-method” used in Section 1.3.4.
If 2zµβ1β2 + β1 + β2 6= 0, thanks to Lemma 2.3.3 one can easily show that

∫
a+iR =

∫
iR + residues.

However, the computation of the residue is usually not trivial at all, but one can give an explicit series
expression making the difference of the explicit series expressions coming from the integrals on the
curves a′ + iR and iR. The integral on the imaginary line gives formula (2.3.11) with a := 0 and the

function (ω, τ) 7→ J0(ω, τ) in (2.3.8) redefined as J0(ω, τ) :=
√

2πe−
1
2ω

2

e
1
2 (ω+τ)2 (

Φc(ω + τ)− 1{τ<0}
)

(see Lemma 2.3.6).

• The transition density is independent from a once a is larger than any pole of the integrand in
(2.3.13) (the inequality (2.3.4) give a lower bound for a). The left hand side of (2.3.10) does not
depend on a, even if each term (2.3.11) of the series does depend on it. One can then choose to
integrate on a particular vertical line a′ + iR, as in Figure 2.5.a. A choice that simplifies some terms
is a = |µ|.

• The transition density of the two-SBM with constant drift can be seen as an additive perturbation
of the transition density of the Brownian motion with the same constant drift. This means that the
analogous of equation (2.2.8) holds. To prove it we consider Green’s function given in Lemma 2.3.1
and we write it as

G(x, y; ξ) =
1

ξ
eµ(y−x)e−ξ|x−y|

(
1 +

∑4
j=1 c̄j(y, µ; ξ)e−ξāj(x,y)

β1β2e−2 ξ z(ξ2 − µ2) + (ξ + β1µ)(ξ + β2µ)

)
,

where z is the distance between the barriers and ξ :=
√

2λ+ µ2 ∈ {ζ ∈ C s.t. <e(ζ) > 0} since
λ ∈ C \ (−∞, 0]. For j = 2, 3, 4, the functions āj(x, y) are the non negative functions aj(x, y)
defined by (2.3.1), and c̄j(y, µ; ξ) = ξ2c̄j,0(y) + ξµc̄j,1(y) +µ2c̄j,2(y) are the polynomials cj(y, µ; ξ) =
ξ2cj,0(y) + ξµcj,1(y) + µ2cj,2(y) with coefficients cj,h given by (2.3.2). Moreover

ā1(x, y) := 2z c̄1(y, µ; ξ) = −
(
1− 21[z1,z2)(y)

)
c4(y, µ; ξ) = −β1β2(ξ2 − µ2)

and the latter is equal to ξ2c̄1,0(y) + ξµc̄1,1(y) + µ2c̄1,2(y), with c̄1,h(y) = −
(
1− 21[z1,z2)(y)

)
c4,h(y)

for h = 0, 1, 2.
Equation (2.3.10) is then equal to

v(β1,β2)
µ (t, x, y) = 1 +

∞∑
k=0

(−β1β2)k
4∑
j=1

F̄j,k(ωj,k, a),

where F̄j,k is defined by (2.3.11) with the functions Cj,h given by (2.3.3) replaced by their analogous
with c̄j,h, instead of cj,h (h = 0, 1, 2).

For particular choices of the parameters and shrinking the two barriers, formulas (2.3.10) and (2.3.11)
reduce to simpler cases.
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• For β2 = 0, the correspondent barrier z2 is completely permeable, so it is like if it disappears, and
one obtains, as expected, the transition density of the β1-SBM with drift µ. (The analogous holds if
β1 = 0.)
One can notice that expression (2.3.10) is not a series anymore since (β1β2)k is a factor of the k− th
term. Moreover only Fj,0(ωj,0) for j ∈ {1, 2} do not vanish.

• For µ = 0 one recovers the formula (2.2.6) of the two-SBM without drift.

• If z → +∞ one expects to obtain the density of the β1-SBM with drift. In fact, if the second barrier
is really far from the starting point of the process, at every finite time the trajectory has no way to
see the latter barrier and is effected only by the reflection coefficient β1.
More precisely: First notice that, since z → +∞, the functions a3(x, y), a4(x, y) go to +∞ which
implies ωj,k → ∞ as soon as k 6= 0 or j 6= {1, 2}. Consider the expression for Fj,k: in (2.3.16), it
is a Fourier transform of a L2(R, dx)-function, hence it is in L2(R, dx). It admits a limit at infinity
(implied by Proposition 2.5.3) and a fortiori the limit is zero. Therefore the unique non vanishing
terms are again given by j = 1, 2 and k = 0.

• If z → 0 one obtain the transition density of a one-SBM with drift µ. The skewness coefficient is
given by β1+β2

1+β1β2
(see Proposition 2.4.1 for a proof).

To check that the transition density we propose fulfills this property, one notices that the limits of
the functions in (2.3.1) satisfy a1(x, y) = a4(x, y) = 0 and a2(x, y) = a3(x, y) = |x| + |y| − |x − y|
and the limit of ωj,k, given by (2.3.12), is actually independent from k and is ωj =

aj(x,y)+|x−y|√
t

,

j = 1, 2, 3, 4.

• If |β1β2| = 1 the most interesting case is of course the reflected Brownian motion with constant
drift, i.e. β1 = 1, β2 = −1. The transition density in that case has been computed by Svensson [59],
Veestraeten [63] and Linetzky [41] with different techniques. Notice that formula (11) in [63] is an
infinite sum of Gaussian densities as ours.

2.4 Towards the transition density of the multi-skew Brownian
diffusions

In this section we discuss the possibilities to find the transition density of the multi-SBM using the
techniques developed above. In the drifted case, we continue the reasoning given in Section 1.4. Moreover,
we give a convergence result when n barriers shrinks to a unique barrier.

The multi-skew Brownian motion without drift

The representation of the density as contour integral of Green’s function holds and one can compute

Green’s function of the resolvent, given by Lemma 1.3.4, starting from the functions u±(x) = e∓
√

2λx as
in Figure 2.6.

z1 z2 z3 zn

u− F−1 u− + F+
1 u+ F−2 u− + F+

2 u+ F−n u− + F+
n u+

G−1 u− +G+
1 u+ G−2 u− +G+

2 u+ G−3 u− +G+
3 u+ u+

Figure 2.6: The functions U− and U+.

The change of variable ξ :=
√

2λ is still possible and one reduces to integrate on the curve φ(Γ) as in
Figure 2.2.a.
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The key point to shrink the integral is the nature of the denominator of Green’s function, i.e the nu-
merator of the Wronskian. Actually the denominator is the numerator of the constant function w 7→
k(x)W (U−, U+)(w, λ), i.e. the numerator of G+

1 in Figure 2.6.
Let us consider the easiest example not yet considered: the three-SBM (n = 3). In this case the

denominator of Green’s function is

1 + β1β2e
−2ξ(z2−z1) + β1β3e

−2ξ(z3−z1) + β2β3e
−2ξ(z3−z2) , ξ ∈ C, <e(ξ) > 0

for β1, β2, β3 ∈ [−1, 1]. We need to localize the zeros of this function. For example there is no zero between
φ(Γ) and iR if the coefficients β1, β2, β3 have a small absolute value. Hence one can shrink the contour φ(Γ)
to the imaginary line as in Figure 2.2.b. Moreover one can identify the sum of a geometric series and explicit
the integral as a series of Fourier transforms if |β1β2e

−2 i w(z2−z1) +β1β3e
−2 i w(z3−z1) +β2β3e

−2 i w(z3−z2)| <
1 for all w > 0.

In conclusion we may notice that, possibly under additional condition on the parameters (such as large
distances between the barriers, or for small skewness parameters), Green’s function

• is holomorphic on the region between the imaginary line and φ(Γ), or between φ(Γ) and a + iR for
some a > 0,

• has a factor which is the sum of a geometric series.

Therefore, it may be possible to obtain an explicit expression of the transition density.

The multi-skew Brownian motion with constant drift

It may be possible to obtain an explicit expression also in the case of the multi-skew Brownian motion
with constant drift µ, at least for some choices of skewness coefficients close to 0 and/or large distances
between the barriers (or equivalently small times).

The situation is similar to the one discussed in Section 1.4. Green’s function satisfies Lemma 1.3.4 and
is constructed as in Figure 2.6 using

u± (x, λ) := exp
(
−µx∓

√
2λ+ µ2 x

)
,

for λ ∈ C\(−∞,− 1
2µ

2]. The functions U± are then obtained imposing the continuity and the transmission
conditions at the barriers. One has then the following system for j = 1, . . . , n:{

G−j u−(zj) +G+
j u+(zj) = G−j+1 u−(zj) +G+

j+1 u+(zj)

k(z−j )
(
G−j u

′
−(zj) +G+

j u
′
+(zj)

)
= k(z+

j )
(
G−j+1 u

′
−(zj) +G+

j+1 u
′
+(zj)

)
where G−n+1 := 0, G+

n+1 = 1 and k is the (n + 1)-valued function given by (2.1.2). Hence one has the
recursive relationship:
G+
j
u+(zj)
u−(zj)

= 1
2 G
−
j+1

(
1−
√

2λ+µ2

µ

)(
1− k(z+

j )

k(z−j )

)
+ 1

2 G
+
j+1

u+(zj)
u−(zj)

((
1 +

k(z+
j )

k(z−j )

)
−
√

2λ+µ2

µ

(
1− k(z+

j )

k(z−j )

))
G−j = 1

2 G
−
j+1

((
1 +

k(z+
j )

k(z−j )

)
−
√

2λ+µ2

µ

(
1− k(z+

j )

k(z−j )

))
+ 1

2 G
+
j+1

u+(zj)
u−(zj)

(
1−
√

2λ+µ2

µ

)(
1− k(z+

j )

k(z−j )

)
.

Let us notice that
u+(zj)
u−(zj)

= e−2
√

2λ+µ2 zj . One can impose the analogous conditions on F±j . There is no

obstacle in computing the coefficients G±j , F
±
j and with them, Green’s function. The transition density

could nevertheless be difficult to obtain as an explicit series of Gaussians and other transcendent functions.

The limit of the multi-skew Brownian motion for several barriers converging to one

Proposition 2.4.1. Let β1, β2 ∈ [−1, 1], µ ∈ R and z
(m)
2 = z1 + 1

m , m ∈ N. Let

β :=
β1 + β2

1 + β1β2
.
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Let us denote by (X
(m)
t )t the (β1, β2)−SBM with drift µ and barriers in z1 and z

(m)
2 , and (Yt)t the (β)−SBM

with drift µ and barrier in z1. Let us assume X
(m)
0 = Y0, then X(m) converges to Y in the following sense:

E

(
sup
s∈[0,t]

|X(m)
s − Ys|

)
m→∞→ 0 for all t ≥ 0.

The same holds in the case of n ≥ 3 barriers merging. In this case (X
(m)
t )t is the (β1, β2 . . . , βn)−SBM

with drift µ ∈ R, skewness parameters β1, β2, . . . , βn ∈ [−1, 1] and barriers z1 ∈ R, zj+1 := j 1
m + z1 for all

j = 1, . . . , n− 1. The skewness parameter of the limit one-SBM is given by

β :=

∏n
j=1(1 + βj)−

∏n
j=1(1− βj)∏n

j=1(1 + βj) +
∏n
j=1(1− βj)

.

In particular

β =

∑n
j=1 βj +

∑
j1<j2<j3

βj1βj2βj3 + . . .+
∑
j1<...<jn−1

βj1 · · ·βjn−1

1 +
∑
j1<j2

βj1βj2 +
∑
j1<...<j4

βj1βj2βj3βj4 + . . .+ β1β2 · · ·βn
,

if n is even, and

β =

∑n
j=1 βj +

∑
j1<j2<j3

βj1βj2βj3 + . . .+ βj1 · · ·βjn
1 +

∑
j1<j2

βj1βj2 +
∑
j1<...<j4

βj1βj2βj3βj4 + . . .+
∑
j1<...<jn−1

βj1 · · ·βjn−1

if n is odd.

Proof. The result in the case of two barriers is due to Zaitseva [68]. For any n ≥ 2, we propose a proof
based on a straightforward application of Theorem 3.1 by LeGall [32] which ensures the convergence of
Brownian diffusions under some assumptions on their skewness. Let (Wt)t be a Brownian motion. The
(β1, . . . , βn)−SBM with drift µ is the continuous semimartingale such that:

X
(m)
t = X0 + µ t+Wt +

∫
R
Lwt (X(m))νm(dw) with νm(dw) :=

n∑
j=1

βjδzj (dw).

On the other hand the (β)− SBM with drift µ and semipermeable barrier z1 is given by

Yt = Y0 + µ t+Wt +

∫
R
Lwt (Y )ν(dw) with ν(dw) := βδz1(dw).

Clearly the measures ν and νm are discrete finite measures concentrated on the barriers z1 and z1 < z2 <
. . . < zn respectively. Since these measures are finite, one can define fm and f , functions of bounded
variation such that limw→−∞ f(w) = 1 and f ′(dx) + (f(x+) + f(x−)) ν(dx) = 0 (and similarly for fm and
νm). Thus

fm(w) := 1(−∞,z1)(w) +

n−1∏
j=1

1− βj
1 + βj

1[zj ,zj+1)(w) +

n∏
j=1

1− βj
1 + βj

1[zn,+∞)(w),

f(w) := 1(−∞,z1)(w) +
1− β
1 + β

1[z1,+∞)(w).

It is straightforward to prove that, for any K > 0,

∫ K

−K
|fm(w)− f(w)| dw m→∞−→ 0, hence Theorem 3.1 in

[32] can be applied, which means that (X(m))m converges to Y in the desired sense.
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2.5 Simulations

In this section we illustrate an exact simulation scheme to sample the two-SBM (with constant drift) at
time t > 0. The scheme is exact in the sense that it generates random variates distributed according to the
desired law. Usually, an exact sampling of a random variable can be achieved using the rejection sampling
method, introduced by Neumann in [45].

The rejection method allows to sample a random variable X with density h (w.r.t. the Lebesgue
measure) from a sample variate of an instrumental random variable Y with density g if for all x ∈ R,

h(x) ≤ mg(x) where m is a finite positive constant. Let us denote by f the function ratio f(x) :=
1

m

h(x)

g(x)
.

The sample variates y of Y is accepted as a sample of X if and only if u < f(y) , where u is a draw of
a uniform random variable U ∼ U[0,1]. Therefore the acceptance-rejection corresponds to a sample of a
Bernoulli random variable with random parameter f(Y ): 1{U<f(Y )}. Notice that the densities h(x) and
g(x) do not need to be normalized.

In our framework, the one-dimensional projection at time t of a (β1, β2)-SBM (resp. with drift µ)
starting at x has a density whose ratio with respect to the well known transition probability density of
the Brownian motion (resp. with drift µ) is a series, as we saw in equation (2.2.6) (resp. (2.3.10)). The
technique we propose allows to evaluate only a finite number of terms of the series, and at the same time,
to maintain the exactness of the sampling.

2.5.1 Generalized rejection sampling method

Let us introduce the method by explaining a toy example for simulating exactly a Bernoulli random

variable X ∼ Bp with unknown parameter p ∈ [0, 1]. If the parameter is known, then clearly X
(d)
= 1{U≤p},

hence an exact simulation consists of sampling the uniform random variable U ∼ U[0,1] and checking if the
sample is smaller (or bigger) than p to decide if X = 1 (or X = 0).

Lemma 2.5.1. Suppose p is an unknown parameter which is approximated by a sequence (pn)n. Suppose
the rate of convergence is (δn)n where (δn)n is a vanishing sequence (i.e. for all n |p − pn| < δn, and

δn
n→∞→ 0). Then it is possible to simulate exactly a Bernoulli random variable of parameter p since

X := 1{∃n; |U−pn|>δn, U<pn} ∼ Bp.

Proof. One needs to show that P(X = 1) = p. It is sufficient to show that the following equality holds

{U < p} = {∃n ∈ N; |U − pn| > δn, U < pn} .

Let us show the inclusion (⊆): Let ω ∈ {U < p} then u < p where u denotes the draw U(ω). Let us notice
that the sequence (pn− 2δn)n converges to p and each term is smaller than p, hence there exists an n such
that u < pn − 2δn < p. In particular |u− pn| > δn and u < pn.
Let us show the other inclusion: Let ω ∈ {∃n ∈ N; |U − pn| > δn, U < pn} and let us denote by u the
draw U(ω) then |u− pn| > δn which implies u < pn − δn which implies u < p since p ∈ (pn − δn, pn + δn).

0 1
pu u+ δn u′u′ − δnpn

pn − δn pn + δn

0 1pu u+ δnpn

pn − δn pn + δn

0 1p uu′ − δnpn

pn − δn pn + δn

Figure 2.7: How to sample a Bernoulli random variable X of unknown parameter p: if u < p then X := 1,
otherwise X := 0. In the first image u < pn − δn hence u < p (resp. u′ > pn + δn hence u′ > p). The
second (resp. third) image shows that, if u < pn − δn < u + δn < pn (resp. pn < u′ − δn < pn + δn < u)
then u < p (resp. u′ > p) anyway.
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The scheme of the algorithm is:

1. sample from U , obtain u

2. find n such that |u− pn| > δn,

3. if u < pn, then u < p hence X := 1 otherwise X := 0 (see Figure 2.7).

This idea allows an extension of the rejection sampling method for sampling X ∼ h(x)dx knowing just
an approximation of the density h, and therefore of f .

Proposition 2.5.2 (Generalized rejection sampling method: GRS). Let Y be the instrumental random
variable with (unnormalized) density x 7→ g(x). Then one can sample the random variable X with (un-
normalized) density x 7→ h(x) under the following assumptions:

(i) the ratio between the functions g and h is bounded:

∃m > 0 such that 0 < f(y) :=
1

m

h(y)

g(y)
≤ 1 for all y ∈ R;

(ii) there exists a sequence of explicitly computable functions (fn)n converging pointwise to f at a van-
ishing and explicitly computable rate (Rf

n) (i.e. ∀y ∈ R |fn(y)− f(y)| ≤ Rf
n(y) for all n).

Then X ∼
(
Y | ∃n; U < fn(Y )−Rf

n(Y )
)

i.e. an exact simulation is possible.

Proof. It is well known from the standard rejection sampling that X ∼ (Y |U < f(Y )) (see for example
[54]). Lemma 2.5.1 ensures that we can simulate exactly without knowing f(Y ) with complete accuracy.
The acceptability of the draw y = Y as a sample from X is a Bernoulli r.v. with parameter f(y) and we
can compute explicitly a sequence converging to this quantity fn(y)(=: pn) and its rate of convergence
Rf
n(y) (=: δn).

An analogous version of the sampling method in Proposition 2.5.2 has been first introduced by Devroye
in [17] with the name of Series method for random variate generation. The generalized rejection sampling
(GRS) allows in particular to sample from a density h from an instrumental density g (both w.r.t. the
Lebesgue measure), once the ratio between the densities h/g is an infinite bounded series. Let us recall

that f(x) :=
1

m

h(x)

g(x)
, where m is an upper bound of the ratio, is a series.

In Algorithm 1 we propose a pseudo-code referring to this particular case. Let us first notice that with
probability one the algorithm terminates itself in a finite number of steps and yet delivers draws which
are exactly from the desired density. We introduce the quantity Nmax ∈ N in order to prevent the
zero-probability event that the algorithm keeps turning.

The implementation of the algorithm that we propose requires the following quantities and functionals:

• g: instrumental density under which it is known how to sample,

• Nmax: the maximal number of terms of the series one decides to consider (Nmax ≥ 1),

• (fN )N=0,...,Nmax : the partial sums of the series f ,

• (Rf
N )N=0...,Nmax : sequence of bounds for the absolute value of the remainder f − fN ,

• IfR: the inverse function of Rf
N

IfR : (0, 1) → {0, . . . , Nmax}
u 7→ IfR(u) = inf{N ≤ Nmax : Rf

N ≤ u} ,

with the convention that inf ∅ = Nmax.
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Let us notice that, a priori, the sequence of bounds for the remainder may be a function which is a

vanishing sequence for each y fixed:
(
Rf
N (y)

)
N

is the sequence of bound for |f(y)− fN (y)|. If this is the

case, then the function u 7→ IfR(u) has to be defined, for each y, as the inverse of Rf
N (y). In the cases we

consider, Rf
N is a simple sequence independent from y.

Algorithm 1: The generalized rejection sampling GRS

Input : g, Nmax, (fN )N ; (Rf
N )N , IfR.

Output: x, exact: x is a sample from the desired density and exact is True if the sample is exact
(obtained considering less than Nmax fN , N = 0, . . . , Nmax) or False if it is a good
approximation.

reject ← True;
while reject do

sample a standard uniform u;
sample y from g;
N ← 0;

while |fN (y)− u| < Rf
N (y) and N < Nmax do

N ← IfR(|fN (y)− u|);
if N == Nmax then

reject ← False;
x ← y and exact ← False;

else if fN > u then
reject ← False ;
x ← y and exact ← True;

return x and exact

The function IfR(u) has a special role in the above algorithm. It provides an alternative to the natural
approach and, in some cases, it speeds up the rejection step in the algorithm. More precisely, once
|fN (y)− u| is smaller than Rf

N (y), the natural approach consists in taking as next index N̂ = n + 1 and

check again the same condition. Instead, one can choose to take IfR(|fN (y) − u|). Intuitively this choice
improves the chances to conclude the acceptance/rejection at the immediate next step. Indeed it is easy

to show that IfR(|fN (y)− u|) ∈ N + 1, . . . , Nmax. In particular if n 7→ Rf
n(y) is decreasing quickly enough

the two ways are equivalent.

One is drawing exactly form the desired law if each sample has been accepted or rejected considering
less than Nmax terms of the series fN . Therefore one may have to consider a big number of terms of
the series fN , but we can control the maximal number Nmax fixing it to Nmax = inf{N ∈ N : Rf

N ≤
0.00005}(= IfR(0.00005)), i.e. the smallest integer N such that 2Rf

N is smaller than 0.0001. Indeed the
probability that for all N ≤ Nmax one has not been able to accept or reject a sample is smaller than
twice the bound Rf

Nmax
. In this unfortunate case, our strategy would be to accept the variate as a good

approximation of the real one, but the outputs inform that the variate is not necessarily “exact”.

All sequences of functions y 7→ (Rf
N (y))N considered in this document are in fact independent from

y and exponentially decreasing in N . In particular IfN (u) is the first integer greater or equal than
log |fN (y)− u|

log(Rf
N )

and it is at least N + 1. Moreover all simulations turn out to be exact, i.e. one takes the

decision to accept or reject without the need to consider Nmax) and the procedure to accept or reject is
really fast since usually it is done by computing only f0, f1 and f2.
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2.5.2 A Gaussian bound for the transition density

In this section we check that the hypotheses of Proposition 2.5.2 are satisfied in order to provide random
variates of the (β1, β2)-SBM (with constant drift µ) at time t, starting at x.

The case of the two-SBM without drift

We already noticed in Proposition 2.2.4 that the density y 7→ p(β1,β2)(t, x, y) is absolutely continuous with
respect to the one of the Brownian motion y 7→ p(t, x, y) with ratio given by equation (2.2.6):

v(β1,β2)(t, x, y) =

∞∑
k=0

(−β1β2)k
4∑
j=1

cj(y)e−
(aj(x,y)+2zk)2

2t e−|x−y|
aj(x,y)+2zk

t .

Let us denote by (v(β1,β2))k(t, x, y) the k − th term of the series v(β1,β2)(t, x, y).

For each k ∈ N, there exists an upper bound uniform in y for (v(β1,β2))k:

sup
y∈R

∣∣∣(v(β1,β2))k(t, x, y)
∣∣∣ ≤ (1 + |β1|)(1 + |β2|)|β1β2|ke−2 z2

t k =: vk(t).

In fact the bound vk(t) is uniform in x as well. Moreover for each t > 0, vk(t) ≤ vk(0) := (1+ |β1|)(1+
|β2|)|β1β2|k which is uniform in t ∈ R∗+.

The proof is straightforward, one just need to notice that 1
2 (aj(x, y)+2zk)2+|x−y|(aj(x, y)+2zk) ≥ 2z2k,

hence ∣∣∣(v(β1,β2)
)
k

(t, x, y)
∣∣∣ ≤ |β1β2|k e−2 z

2

t k

 4∑
j=1

|cj(y)|

 = (1 + |β1|)(1 + |β2|) |β1β2|k e−2 z
2

t k.

Let us denote by
[
v(β1,β2)

]
N

(t, x, y) and RNv
(β1,β2)(t, x, y) the truncated series up to the term N and

its remainder: [
v(β1,β2)

]
N

(t, x, y) =

N∑
k=0

(−β1β2)k
4∑
j=1

cj(y)e−
(aj(x,y)+2zk)2

2t e−|x−y|
aj(x,y)+2zk

t ,

RNv
(β1,β2)(t, x, y) = v(β1,β2)(t, x, y)− v(β1,β2)

N (t, x, y).

Let us then define

v̄(t) :=
(1 + |β1|)(1 + |β2|)

1− |β1β2|e−2 z
2

t

<
(1 + |β1|)(1 + |β2|)

1− |β1β2|
. (2.5.1)

One can easily check that for any fixed t, v̄(t) is a bound for v(β1,β2)(t, x, y) uniform in x and y:

v(β1,β2)(t, x, y) ≤ v̄(t) and |RNv(β1,β2)(t, x, y)| ≤ v̄(t) |β1β2|N+1 e−2 z
2

t (N+1).

For the Algorithm 1, we choose the functions

f(y) :=
1

v̄(t)
v(β1,β2)(t, x, y),

fN (y) :=
1

v̄(t)

[
v(β1,β2)

]
N

(t, x, y), Rf
N := |β1β2|N+1 e−2 z

2

t (N+1),

(2.5.2)

with x ∈ R, t > 0, z > 0, N ∈ N and v̄(t) given by (2.5.1).
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The case of the two-SBM with constant drift µ

We already noticed in Theorem 2.3.7 that the density y 7→ p
(β1,β2)
µ (t, x, y) is absolutely continuous with

respect to the one of the Brownian motion with constant drift µ y 7→ pµ(t, x, y) with ratio given in (2.3.15)
as series of Fourier transforms.

Proposition 2.5.3. Let us denote by (v
(β1,β2)
µ )k(t, x, y) the k − th term of the series v

(β1,β2)
µ (t, x, y) in

(2.3.15). For each k ∈ N, there exists an upper bound uniform in y for (v(β1,β2))k:

sup
y∈R

∣∣∣(v(β1,β2)
µ )k(t, x, y)

∣∣∣ ≤ C(β1, β2, k) e−2 z2

t k =: vk(t).

If β1 > 0, β2 > 0 the constant C(β1, β2) does not depend on k.

Proof. The proof is quite laborious and divided into several steps. For simplicity, but without loss of
generality, let us fix t = 1. Let us consider then the representation as series of Fourier transforms (2.3.15):
v

(β1,β2)
µ (1, x, y) =

∞∑
k=0

(−β1β2)k
4∑
j=1

Fj,k(ωj,k, a),

Fj,k(ωj,k, a) := e
1
2 (ω2

1,0+a2)e−aωj,kF
(
w 7→ e−

w2

2 cj(y, µ; iw + a)
−(w2 − a2 + µ2 − 2iwa)k

(w − ia1)k+1(w − ia2)k+1

)
(ωj,k − a),

where ωj,k and a are defined as in Theorem 2.3.7, and let us recall that ai = a + βiµ.
Let us rewrite the functions Fj,k:Fj,k(ωj,k, a) := e

1
2 (ω2

1,0+a2)e−aωj,kΨj,k(ωj,k, a)

Ψj,k(ωj,k, a) := F
(
w 7→ e−

w2

2 pj(w)
(w2 − a2 + µ2 − 2iwa)k

(w − ia1)k(w − ia2)k

)
(ωj,k − a)

where

pj(w) :=
−cj(y, µ; iw + a)

(w − ia1)(w − ia2)
.

The latter functions are equal to

p1(w) = 1

p2(w) =
(
21{y>0} − 1

)
β1 −

β1µ(1+(21{y>0}−1)β1)

iw+a1
− 21{y>z}

β1β2µ
iw+a2

+ 21{y>z}
β1β2µ

2(1+β1)
(iw+a1)(iw+a2)

p3(w) =
(
21{y>z} − 1

)
β2 −

β2µ(1+(21{y>z}−1)β2)

iw+a2
+ 21{y≤0}

β1β2µ
iw+a1

+ 21{y≤0}
β1β2µ

2(1−β2)
(iw+a1)(iw+a2)

p4(w) =
(
1− 21{0≤y<z}

)
β1β2

(
1 + µ(1−β1)

iw+a1
− µ(1+β2)

iw+a2
− µ2(1−β1)(1+β2)

(iw+a1)(iw+a2)

)
.

Let us notice that the proof is over once one shows for each j = 1, 2, 3, 4 that there exists a positive
constant Cj(β1, β2, k) such that

|Ψj,k(ω)| ≤ Cj(β1, β2, k)

|β1β2|k
e−

1
2ω

2

(2.5.3)

and
∑
k Cj(β1, β2, k) eω

2
1,0−ω

2
j,k is finite.

Let us now prove the statement (2.5.3) for the function Ψ1,k. Ψ1,k is the Fourier transform of the
product of a Gaussian and the k − th power of the fractional function

(w2 + µ2)

(w − ia1)(w − ia2)
= 1− µ2(1− β1)(1− β2)

(w − ia1)(w − ia2)
− i (1− β1)µ

w − ia2
− i (1− β2)µ

w − ia2
.

Let

Ψ0,k(w) :=
(w2 + µ2)k

(w − ia1)k(w − ia2)k
.
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Using the binomial formula the latter quantity can be expressed as follows.

Ψ0,k(w) =

k∑
n=0

(
k

n

)(
1− µ2(1− β1)(1− β2)

(w − ia1)(w − ia2)

)k−n(
−i (1− β2)µ

w − iβ2µ
− i (1− β1)µ

w − ia2

)n

=

k∑
n=0

k−n∑
n1=0

n∑
n2=0

(
k

n

)(
k − n
n1

)(
n

n2

)(
−µ

2(1− β1)(1− β2)

(w − ia1)(w − ia2)

)n1
(

(1− β2)µ

iw + a2

)n2
(

(1− β1)µ

iw + a1

)n−n2

=

k∑
n=0

k−n∑
n1=0

n∑
n2=0

(
k

n

)(
k − n
n1

)(
n

n2

)
(−1)n1 ((1− β2)µ)

n1+n2 ((1− β1)µ)
n−n2+n1

(iw + a2)n1+n2(iw + a1)n−n2+n1
.

Notice that the latter function is a sum of constants (when n1 = 0, n2 = 0, n = 0) and of square integrable
complex functions. In particular, let n1, n2 ∈ N, the Fourier transform of (iw + a1)−n1(iw + a2)−n2 has
support on (−∞, 0] because is the convolution of two functions supported on (−∞, 0] (see Lemma 2.3.5).
Hence, since

Ψ1,k =
1√
2π

(
w 7→ e−

1
2ω

2
)
∗ F (w 7→ Ψ0,k) ,

we have

|Ψ1,k(ωj,k − a)| ≤ 1√
2π

∫
R
e−

1
2 (ωj,k−a−y)2

∣∣∣Ψ̂0,k(y)
∣∣∣ dy ≤ e− 1

2 (ωj,k−a)2

‖e−a· Ψ̂0,k(·)‖L1(R,dx).

The L1(R, dx)-norm of e−ωaF (w 7→ (iw + a1)−n1(iw + a2)−n2) is equal to |β1µ|−n1 |β2µ|−n2 (see Lemma 3.4.5),
hence

‖e−a· Ψ̂0,k(·)‖L1(R,dx) ≤
k∑

n=0

k−n∑
n1=0

n∑
n2=0

(
k

n

)(
k − n
n1

)(
n

n2

)(
1− β2

|β2|

)n1+n2
(

1− β1

|β1|

)n−n2+n1

=

k∑
n=0

(
k

n

)(
1− β1

|β1|
+

1− β2

|β2|

)n(
1 +

(1− β1)(1− β2)

|β1β2|

)k−n
=

(
1 +

(1− β1)(1− β2)

|β1β2|
+

1− β1

|β1|
+

1− β2

|β2|

)k
=

(1− β1 + |β1|)k(1− β2 + |β2|)k

|β1β2|k
.

Let C1(β1, β2, k) := (1−β1 + |β1|)k(1−β2 + |β2|)k. Notice that this quantity is equal to 1 if β1 > 0, β2 > 0.
We have proven (2.5.3) for j = 1.

Let us check (2.5.3) for j = 2, 3, 4. Notice that the functions pj(w), j = 2, 3, 4 are sums of constants
and functions whose Fourier transforms have support on (−∞, 0). Let us define p̂j , j = 2, 3, 4 as

p̂2(w) =
√

2π
(
21{y>0} − 1

)
β1 − β1µ(1 +

(
21{y>0} − 1

)
β1)F

(
1

iw+a1

)
−21{y>z}β1β2µF

(
1

iw+a2

)
+ 21{y>z}β1β2µ

2(1 + β1)F
(

1
(iw+a1)(iw+a2)

)
p̂3(w) =

√
2π
(
21{y>z} − 1

)
β2 − β2µ(1 +

(
21{y>z} − 1

)
β2)F

(
1

iw+a2

)
+21{y≤0}β1β2µF

(
1

iw+a1

)
+ 21{y≤0}β1β2µ

2(1− β2)F
(

1
(iw+a1)(iw+a2)

)
p̂4(w) =

(
1− 21{0≤y<z}

)
β1β2

(√
2π + µ(1− β1)F

(
1

iw+a1

)
− µ(1 + β2)F

(
1

iw+a2

)
−µ2(1− β1)(1 + β2)F

(
1

(iw+a1)(iw+a2)

))
.

Hence one has

|Ψj,k|(ωj,k − a) ≤ |p̂j |√
2π
∗ |Ψ1,0|(ωj,k − a)

=

∫
R

|p̂j(y)|√
2π
|Ψ1,k(ωj,k − a− y)|dy ≤ C1(β1, β2, k)

|β1β2|k

∫
R

|p̂j(y)|√
2π

e−
1
2 (ωj,k−a−y)2

dy.
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The latter inequality holds because Ψ1,k satisfies (2.5.3). For the constant term of pj we do not actually
compute the convolution, we keep the formal presentation anyway, for the sake of simplicity. One now
notices that the Fourier transforms involved in pj have support on the negative semi-line, hence

|Ψj,k|(ωj,k − a) ≤ C1(β1, β2, k)

|β1β2|k
e−

1
2 (ωj,k−a)2

∫ 0

−∞

|p̂j(y)|√
2π

ea y e−
1
2y

2

dy.

Hence (2.5.3) holds, with Cj(β1, β2, k) ≥ C1(β1, β2, k)
∫ 0

−∞
|p̂j(y)|√

2π
ea y e−

1
2y

2

dy for example
C2(β1, β2, k) = C1(β1, β2, k)

(
1 + 2|β1|+ 21{y>z}(1 + β1 + |β1|)

)
C3(β1, β2, k) = C1(β1, β2, k)

(
1 + 2|β2|+ 21{y≤0}(1− β2 + |β2|)

)
C4(β1, β2, k) = C1(β1, β2, k) (1− β1 + |β1|) (1 + β2 + |β2|) .

To conclude the proof, we need to show that

∞∑
k=0

4∑
j=1

Cj(β1, β2, k)eω
2
1,0−ω

2
j,k < +∞.

It is easy to check that ω2
1,0 − ω2

j,k < −2 z
2

t k
2, therefore if C(β1, β2, k) :=

∑4
j=1 Cj(β1, β2, k), one has

∞∑
k=0

4∑
j=1

Cj(β1, β2, k)eω
2
1,0−ω

2
j,k ≤

∞∑
k=0

C(β1, β2, k)e−2 z
2

t k
2

.

If β1 > 0, β2 > 0, then C1(β1, β2, k) = 1 and C(β1, β2, k) do not depend on k. Moreover the sum∑∞
k=0 e

−2 z
2

t k
2

is finite because it is controlled by the geometric sum
∑∞
k=0 e

−2 z
2

t k = 1

1−e−2 z
2
t

.

Instead, at least for small t or big distance between the barriers z, it is always true that C1(β1, β2, k)e−
2z2

t k2 ≤
|β1β2|ke−

z2

t k which yields a geometric sum as well.
If z and t are fixed, than one exploits the fact that for k big enough one has again a geometric sum.

The bound vk(t), which is not sharp, is uniform in x.

Denote by
[
v

(β1,β2)
µ

]
N

(t, x, y) and RNv
(β1,β2)
µ (t, x, y) the truncated series up to the term N and its re-

mainder. Let us consider the case β1 > 0, β2 > 0, in that case C(β1, β2, k) does not depend on k hence we
will denote it by C(β1, β2). Then let

v̄µ(t) :=
C(β1, β2)

1− e−2 z
2

t

.

(Removing the previous assumption, for t or z appropriate one can take v̄µ(t) = C(β1,β2)

1−|β1β2|e−
z2
t

.)

One can easily check that

v(β1,β2)
µ (t, x, y) ≤ v̄µ(t) and |RNv(β1,β2)

µ (t, x, y)| ≤ v̄µ(t) e−2 z
2

t (N+1).

For the Algorithm 1, we choose the functions

f(y) :=
1

v̄µ(t)
v(β1,β2)
µ (t, x, y),

fN (y) :=
1

v̄µ(t)

[
v(β1,β2)
µ

]
N

(t, x, y), Rf
N := e−2 z

2

t (N+1).

(2.5.4)

x ∈ R, t > 0, z > 0 and N ∈ N.

Let N be the random number of steps necessary to take the decision in the generalized rejection

sampling. Using Wald’s equation one can easily show that E[N] ≤
∑∞
n=0 R

f
n = e−2 z

2

t

1−e−2 z
2
t

.
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2.5.3 Sampling from the density: the two-skew Brownian motion

Let x ∈ R, t > 0, z > 0 be fixed, one can apply the GRS Algorithm 1 (given by Proposition 2.5.2) with the
functions given by equation (2.5.2) and sample from the density y 7→ p(β1,β2)(t, x, y) in equation (2.2.6).
One can then simulate exactly the Markov process (β1, β2)-SBM starting at x, up to a time T > 0 simply
taking a discretization of the time interval [0, T ] (see for example Figure 2.8).

The same holds for the transition density y 7→ p
(β1,β2)
µ (t, x, y) using the functions given by (2.5.4).

t

Xt

Figure 2.8: Exact simulation of a path of the
(0.7,−0.2)-SBM starting at time 0 in x = 0.5.
The barriers are z1 = 0 and z2 = 1. The time
discretization is δt = 0.001.

Figure 2.9: Comparison between the function
y 7→ p( 1

2 ,−
1
2 )(1, 0.5, y) obtained from 50000 ex-

act simulations through generalized rejection
sampling method and the plot of its truncated
version at the tenth term (Nmax = 10). The
barriers are z1 = 0 and z2 = 1.

For simplicity, we always take time t = 1, starting point x = 0.5 and we assume that the barriers are
fixed in z1 = 0 and z2 = 1. Let us compare now the approximation of the density y 7→ p(β1,β2)(t, x, y) in
equation (2.2.6) obtained truncating the series at the Nmax−th term and an histogram of a large number of
exact samples from the untruncated density computed through the generalized rejection sampling method.

We represent in Figure 2.9, as typical situation, the function y 7→ p( 1
2 ,−

1
2 )(1, 0.5, y). In this case, 100%

of the 50000 simulations are exact. The average number of terms of the series that are necessary in order
to decide if to accept or reject the simulations is slightly larger than 1, actually it is 1.19 (it would have
been around 2 with the rougher bound v̄(0)). From now on we will denote this number as Nac.
The transition density in this case is mainly concentrated inside of the interval between the barriers (z1, z2)
since β1 > 0 and β2 < 0. Choosing Nmax = 10 the truncated series differs from the untruncated one at
most of v |β1β2|11 ∼ 6 · 10−7.

In Figure 2.10 and 2.11 we propose skewness parameters with different absolute values and pointing
respectively inward and outward. All our simulations are exact and Nac ∼ 1.15 is low as expected. In
these cases δn = 0.028n+1, v = 2.8 and v1 = 2.3. We can observe in Figure 2.10 that the process tends
to stay between the barriers because when it reaches the barrier z1 it has probability 1+β1

2 = 0.65 to be

reflected to this region and when it reaches z2 the probability is 1−β2

2 = 0.85. If the process leaves (z1, z2),
then the probability to be before z1 is larger than to be after z2 because 1− β1 > 1 + β2.
In Figure 2.11 the parameters β1 = −0.7 and β2 = 0.3 induce that the process is more likely to be outside
the region between the barriers because it is reflected outside this region with probability 1−β1

2 = 0.85 in
z1 and with probability 0.65 in z2.

Figure 2.12 represents a case where β1β2 > 0. From the simulated density function the behavior we
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Figure 2.10: Comparison between the trunca-
tion at the 10− th term of the series expression
of y 7→ p(0.3,−0.7)(1, 0.5, y) given in (2.2.6) and
the histogram resulting from 50000 exact sim-
ulations obtained through generalized rejection
sampling. The barriers are z1 = 0 and z2 = 1.
The average acceptance number is Nac = 1.15.

Figure 2.11: Comparison between the trunca-
tion at the 10− th term of the series expression
of y 7→ p(−0.7,0.3)(1, 0.5, y) given in (2.2.6) and
the histogram resulting from 50000 exact sim-
ulations obtained through generalized rejection
sampling. The barriers are z1 = 0 and z2 = 1.
The average acceptance number is Nac = 1.15.

expected is confirmed: the process after a time t will be more likely to stay on the left (respectively right
if the parameters are positive) side of the barriers. We chose the parameters β1 < β2 in such a way that
the process would more likely stay in (−∞, z1).

Another interesting example is the case of a completely reflecting barrier and a partially reflecting
one: in Figure 2.13 we choose β1 = 1 and β2 < 0, i.e. z1 totally reflecting and z2 semipermeable with
semipermeabiliy coefficient β2 = −0.4. The process shows the tendency to stay between the barriers
(z1, z2), while it will have probability zero to be in (−∞, z1).
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Figure 2.12: Comparison between the trunca-
tion at the 10− th term of the series expression
of y 7→ p(−0.8,−0.6)(1, 0.5, y) given in (2.2.6) and
the histogram resulting from 50000 exact sim-
ulations obtained through generalized rejection
sampling. The barriers are z1 = 0 and z2 = 1.
The average acceptance number is Nac = 1.37.

Figure 2.13: Comparison between the trunca-
tion at the 10− th term of the series expression
of y 7→ p(1,−0.4)(1, 0.5, y) given in (2.2.6) and
the histogram resulting from 50000 exact sim-
ulations obtained through generalized rejection
sampling. The barriers are z1 = 0 and z2 = 1.
The average acceptance number is Nac = 1.27.



Chapter 3

Brownian diffusions with drift
admitting several jumps: an exact
simulation

Outline of the chapter: The aim of this chapter is to provide an exact simulation algorithm for real
valued Brownian diffusions whose drift admits a finite number of jumps. The method is based on the
retrospective rejection sampling scheme introduced in [9] (in the case of regular coefficient) and generalized
to coefficients with one finite jump in [20, 48]. We propose here a non trivial extension of this algorithm
in the case where the drift admits several jumps. We treat explicitly and extensively the case of two
jumps, providing numerical simulations. Our main contribution is to manage the technical difficulty due
to the presence of two jumps thanks to the new explicit expression of the transition density of the skew
Brownian motion with two semipermeable barriers and a constant drift proved in Chapter 2. We provide
the pseudo-code of the retrospective rejection sampling. The content of this chapter is the object of a
submitted preprint [15].

3.1 The framework

The aim of this chapter is to develop an exact simulation method for the following real-valued Brownian
diffusion {

dXt = dWt + b(Xt)dt, t ∈ [0, T ], T <∞
X0 = x0 x0 ∈ R,

(3.1.1)

where the drift function b is a bounded regular map on R except on a finite set J := {z1, . . . , zn} ⊂ R
where jumps occur.

The existence and uniqueness of Pb, the weak solution of (3.1.1), is straightforward because the coef-
ficients of the equation are measurable and bounded (Varadhan and Strook in [58]). Moreover the strong
existence and uniqueness holds as well by Zvonkin and Yamada-Watanabe results (see [72, 66]) indeed
pathwise uniqueness holds because the unit drift coefficient trivially satisfies the assumption (c) of Theo-
rem 1.3 in Le Gall [32].
See also the results of Ariasova and Pilipenko (Theorem 1.1 in [6]) on strong existence and uniqueness of
solutions for irregular drift b.

Beskos, Papaspiliopoulos and Roberts in [10, 8, 9] propose algorithms for simulating exactly the solution
of (3.1.1) in the case where the drift b is regular everywhere. The method has been recently improved first
by Étoré and Martinez [20] and then by Papaspiliopoulos, Roberts and Taylor [48, 62], in case of a drift
with a unique jump (n = 1). We provide here a generalization of these results, proposing a theoretical
exact simulation scheme in the case of a drift with several jumps (n > 1) and treating explicitly the case
of two discontinuities (n = 2).

49
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Our approach is inspired by the one in [20], and is based on the explicit representation of the transition
density of a skew Brownian motion with constant drift and two semipermeable barriers (see Theorem 2.3.7).

3.1.1 The measures involved: definitions and notations

Consider C := C([0, T ],R) the canonical continuous path space and C the Borel σ-algebra on C induced
by the supremum norm.

Let us fix x0 ∈ R and denote by P the Wiener measure on (C,C ), law of a Brownian motion (Wt)t
starting from x0. (Xt)t always denotes the canonical process.

Let us introduce the various measures which are involved in this chapter.

• Pb denotes the law of the Brownian motion with drift b, weak solution of (3.1.1).

• For 0 6= |β| ≤ 1 let P(β) denote the law of the (β)-skew Brownian motion (SBM), solution of the
stochastic differential equation (1.1.1).

• P(β)
b will denote the law of the (β)-skew Brownian motion with drift b.

• Analogously P(β1,β2) (respectively P(β1,β2)
b ) is the law of the (β1, β2)−skew Brownian motion with

two semipermeable barriers at z1 and z2, z1 < z2, (resp. with drift b).

The two-SBM is a particular case of the multi-SBM, whose law is denoted by P(β1,...,βn). Let J =
{z1, . . . , zn} be an ordered set of n barriers (or jumps) with respective skewness coefficient β1, · · · , βn ∈
[−1, 1]. The law of the (β1, . . . , βn)−SBM with drift b, P(β1,...,βn)

b , is the weak solution of the following
equation: Xt = X0 +Wt +

∫ t

0

b(Xs) ds+

n∑
j=1

βjL
zj
t (X)

L
zj
t (X) =

∫ t
0
1{Xs=zj} dL

zj
s , j ∈ {1, · · · , n}

. (3.1.2)

In conclusion we can arrange the above measures in a simple diagram:

skew β1 more barriers
P −→ P(β1) . . .−→ . . . P(β1,...,βn)

drift b ↓ ↓ ↓ drift b

Pb −→ Pb(β1) . . . −→ . . . Pb(β1,...,βn).

3.1.2 Useful theorems

We are going to introduce here the Itô-Tanaka formula (see for example Kallenberg [28], theorem 22.5 for
the statement and page 588 for the history of the result) and the occupation time formula (Meyer [43] and
Wang [65]).

Occupation time formula

Let X be a continuous real-valued semimartingale. Almost surely for all functions f positive and Borel
measurable, ∫ t

0

f(Xs) d〈X〉s =

∫
R
f(w)Lwt (X) dw,

where s 7→ 〈X〉s is the quadratic variation of the process.
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The Itô-Tanaka formula

Let X be a continuous semimartingale with symmetric local time in y at time t, Lyt (X). Let B : R → R
be difference of two convex functions, then

B(XT )−B(X0) =

∫ T

0

B′(X+
t ) +B′(X−t )

2
dXt +

1

2

∫
R
Lyt (X)µB(dy).

where x 7→ B′(x−) (resp. B′(x+)) is the left (resp. right) derivative of B, and µB is the measure defined
by ∫

R
g(x)µB(dx) = −

∫
R
g′(x)

1

2

(
B′(x+) +B′(x−)

)
dx for all g ∈ C1

c (R).

Let us check that this formula can be applied to the primitive of b, B(x) :=
∫ x

0
b(y)dy. If b is of bounded

variation on R, then the primitive is well defined (since b is locally integrable) and it is indeed the difference
of two convex functions.

Application to a particular case

Let us assume that b is a function of bounded variation that has a jump in z equal to 2θ but elsewhere it is
continuous and has continuous derivative which admits a left and right limit at z. Let B be the primitive
of b, then the measure µB is the measure

µB(dw) = 1{w 6=z}b
′(w) dw + 2θ δz (dw).

The Itô-Tanaka formula yields

B(XT )−B(X0) =

∫ T

0

1

2

(
B′(X+

t ) +B′(X−t )
)
dXt +

1

2

∫
R
LwT (X)1{w 6=z}B

′′(w)dw

+

∫
R
LwT (X)

B′(z+)−B′(z−)

2
δz(dw)

=

∫ T

0

1

2

(
b(X+

t ) + b(X−t )
)
dXt +

1

2

∫ T

0

b′(Xt)d〈X〉t + θ LzT (X),

where we recall θ :=
b(z+)− b(z−)

2
is half of the jump height. In the last equality the second term is due

to the occupation time formula and the third term comes from the continuity of b on R \ {z}.
Let us define the function b and b′ on the discontinuity as follows:

b(z) :=
1

2

(
b(z+) + b(z−)

)
b′(z) :=

1

2

(
b′(z+) + b′(z−)

)
.

Let us explicit the Itô-Tanaka formula in two special cases.

Example 3.1.1. Under Pµ, the law of the Brownian motion with constant drift µ, one has

B(XT )−B(X0) =

∫ T

0

b(Xt)dWt +

∫ T

0

b(Xt)µdt+
1

2

∫ T

0

b′(Xt)dt+ θ LzT (X).

Example 3.1.2. Under P(β)
µ , the law of the (β)-skew Brownian diffusion with drift µ, one has

B(XT )−B(X0) =

∫ T

0

b(Xt)dWt +

∫ T

0

b(Xt)µdt+
1

2

∫ T

0

b′(Xt)dt+ (θ + β b(z))LzT (X).
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3.1.3 Assumptions on the drift

Let us now spell out the assumptions on the drift b in order to apply the exact algorithm.
Let J be the set {z1 < . . . < zn}. Let b be a function, continous on R \ J of bounded variation on R and
whose weak derivative is bounded, continuous on R \ J and admits left and right limits at every point of
J . So there exist left and right derivative ∂±b(zj) for j = 1, . . . , n.
At each of the n discontinuity points z1, . . . , zn ∈ J , b admits a jump with (half) height (θj)j=1,...,n defined
by

θj =
b(z+

j )− b(z−j )

2
. (3.1.3)

Since only the left and right limit values b(z−i ) and b(z+
i ) (and not b(zi)) do matter, for simplicity, we

define the function b at each point zi as the average value

b(zi) :=
b(z+

i ) + b(z−i )

2
, zi ∈ J. (3.1.4)

Similarly, at the points of discontinuity, b′ can be arbitrarily defined for example as

b′(zi) :=
∂+b(zi) + ∂−b(zi)

2
, zi ∈ J.

The primitive of b, B(y) :=
∫ y

0
b(w) dw, is well defined since b is locally integrable (because bounded) and

it is the difference of convex functions because b has bounded variation on R. Therefore one can apply the
Itô-Tanaka formula recalled before.
The boundedness of b and b′ comes from the fact that we need 1

2

(
b2 + b′

)
to be bounded. Moreover, since

b is bounded, one can apply Girsanov Theorem.

3.2 Existing results for drifts admitting a unique jump

In this section we first recall the general retrospective rejection sampling scheme. Then we introduce the
difficulties arising in case of a drift admitting one or more jumps. We finally propose two different solutions
contained in the literature in the one-jump-case, and we discuss the possibility to extend them to the case
of several discontinuities. Our main contribution is the extension, which is the object of Section 3.4

3.2.1 Retrospective rejection sampling scheme

We now recall briefly the main idea introduced in [10] which allows to simulate exactly the law of the
diffusion Pb on the canonical continuous path space C. The first key point is the following:

There should exist another probability measure Q on C, called instrumental measure, such that

• it is known how to sample from Q (actually from its finite-dimensional distributions)

• Pb is absolutely continuous with respect to this instrumental probability measure and

Pb(dX) ∝ e−Φb(X) Q(dX) where Φb(X) :=

∫ T

0

φ+
b (Xt) dt. (3.2.1)

In other words, the log-density of Pb with respect to Q has the form of an additive functional, whose
integrand φ+

b is supposed to be positive and bounded (on R \ J in our framework). The proportionality
sign ∝ indicates that there might be a renormalizing constant.
Once one has found an instrumental measure, it is possible to construct a rejection sampling scheme
according to Proposition 1 in [10] and Theorem 1 in [8]: given a sample path ω from the instrumental
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measure, one needs an event A with conditional probability with respect to ω equal to the Radon-Nikodym
derivative e−Φb(ω). Then one accepts or rejects ω as a sample from the target measure depending on
whether the event A|ω is satisfied or not.
In fact the desired event A is obtained as follows: let Ψ be an homogeneous Poisson point process of unit
intensity on the rectangle [0, T ]× [0, ‖φ+

b ‖∞], then one sets

A = {all points of Ψ are above the graph of t 7→ φ+
b (ωt)}.

The resulting procedure to accept a given path is called retrospective rejection method:

– First realize the random Poisson field Ψ, which yields M points

(τ1, x1), . . . , (τM , xM ) ∈ [0, T ]× [0, ‖φ+
b ‖∞].

– Then, for each time τj , sample Xτj under the law Q.

– Finally check if there is some point (τj , xj) satisfying xj < φ+
b (Xτj ). If this is not the case, accept

(τj , xj)j=1,...,M , else start again.

The algorithm returns a skeleton of a path (Xt(ω))t∈[0,T ] under Pb: (Xτ1(ω), Xτ2(ω), . . . , XτM (ω), XT (ω)) .
The skeleton can be enlarged/completed adding the position of the process at any intermediary time
t ∈ [0, T ], following a bridge dynamics. The pseudocode of this method is similar to Algorithm 2 in
Section 3.5.2.
In conclusion, the main issue is to find in our context the appropriate instrumental measure Q and the
appropriate functional Φb to apply the retrospective rejection sampling scheme.

3.2.2 Looking for the instrumental measure Q

In the context of Brownian motion with drift admitting jumps, it is quite natural to apply Girsanov
theorem, the Itô Tanaka-Formula and the occupation time formula to find an instrumental measure. One
can proceed as follows:

Step 1. Apply Girsanov theorem to obtain the Radon-Nikodym derivative of Pb with respect to P:

Pb(dX) = exp
(∫ T

0

b(Xt)dXt −
1

2

∫ T

0

b2(Xt)dt
)
P(dX).

To replace the Itô stochastic integral

∫ T

0

b(Xt)dXt by a Stieltjes one, introduce the function

B(x) :=

∫ x

0

b(y)dy,

primitive of b, and apply the Itô-Tanaka formula (see Example 3.1.2)

B(XT )−B(X0) =

∫ T

0

b(X+
t ) + b(X−t )

2
dXt +

1

2

∫
R\J

Lxt (X)b′(x)dx+

n∑
j=1

θjL
zj
T (X)

where Lyt is the symmetric local time in y at time t and θj , j = 1, · · · , n, is the (half) j − th jump height
of b given by (3.1.3).

Step 2. Thanks to the occupation time formula, obtain the decomposition (3.2.1)

Pb(dX) ∝ exp (−Φb(X)) exp

(
B(XT )−B(X0)−

n∑
j=1

θjL
zj
T (X)

)
P(dX)︸ ︷︷ ︸

∝ Q(dX)
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where Φb(X) :=

∫ T

0

φ+
b (Xt) dt with

φ+
b (x) :=

1

2

(
b2(x) + b′(x)− inf

y∈R\J

(
b2(y) + b′(y)

))
. (3.2.2)

In conclusion,

The instrumental measure is

Q(dX) ∝ exp

(
B(XT )−B(X0)−

n∑
j=1

θjL
zj
T (X)

)
P(dX). (3.2.3)

In the case of one discontinuity (n = 1), in the literature there are two possible approaches to sample from
the finite-dimensional distributions of Q. We briefly illustrate them in the next two sections.

3.2.3 Sampling via a convergence of schemes for skew Brownian motions

In this section we summarize the ideas presented in Étoré and Martinez’s publications [19, 20].
Let Q be defined by (3.2.3). The canonical process X under this law, is a Brownian motion conditioned

on (XT , L
0
T (X)) ∼ h(y, `)dyd` with

h(y, `)dy d` ∝ exp (B(y)−B(x)− θ`)P(XT ∈ dy, L0
T (X) ∈ d`). (3.2.4)

Since it is difficult to sample from the joint density of (XT , L
0
T (X)) and the density of the joint bridges,

the authors observe that one just needs to sample XT under Q. Therefore they use a limit argument to
provide the finite-dimensional distributions and sample under the measure Q. This approach is based on
the following key points:

• There is weak convergence of a sequence of P(1/n)
b towards Pb (see Theorem 3.1 in Le Gall [32]).

• It is possible to apply the retrospective rejection sampling method for the one-skew with discontin-
uous drift b: let β ∈ [−1, 1] there exists an instrumental law Q(β) such that it is easy to sample from
its finite-dimensional distributions and

P(β)
b (dX) ∝ e−Φb(X)Q(β)(dX).

• The weak convergence implies convergence of the instrumental measure and of the exact algorithms
to a limit algorithm which is exact as well.

We follow this approach and we show that the same limit argument is possible even if the drift admits
several discontinuities, and it is not necessary to provide an exact simulation for any multi-SBM (see
Section 3.3).
In addition we provide a parallel method to sample from the finite-dimensional distribution of the instru-
mental measure Q (3.2.3).

3.2.4 Sampling from the joint distribution of Brownian motions and its local
times

Papaspiliopoulos, Roberts and Taylor in [48] (extracted from Taylor PhD’s thesis [62]) sample from Q
using the explicit expression of some conditional laws of the Brownian motion and its symmetric local
time at one point.
Q is interpreted as the law of the “local time tilted biased Wiener process”. This is a disintegration of the
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Brownian motion P conditioned at its marginals at the initial time t = 0 and at the final time T .
Their approach has two crucial steps: first simulating from the bivariate distribution at time T of the
path and its local time (XT , L

0
T (X)) and second sampling Xti and L0

ti(X) at a finite number of times
(ti)i=1,...,M conditioning on (X0, 0) and (XT , L

0
T (X)).

For (XT , L
0
T ) they jointly simulate if the unique jump θ is negative, else they decompose the joint law as

the marginal of XT and the conditional law of L0
T |XT . The latter approach is based on the observation

that (3.2.4) can be interpreted as the joint distribution of the Brownian motion and its local time biased

by the terms eB(XT ) and e−θL
0
T (X).

The authors need then to sample from the conditional laws of

(L0
t (X)|Xs, Xt, L

0
s(X)) and of (Xt, L

0
t (X)|Xs, Xu, L

0
s(X), L0

u(X))

where 0 ≤ s < t < u ≤ T . We refer to sections 2.1-2.4 of [48] for the explicit densities.
According to us this approach is not generalizable to the case of a drift with several discontinuities

because the joint distribution of the Brownian motion and its local times at several points is not explicit.
It seems quite complicated to obtain and probably difficult to handle as well.

3.3 On the way: the exact simulation scheme of a multi-skew
Brownian diffusion whose drift admits jumps

The goal of the chapter is to provide an exact simulation of the brownian motion with drift b admitting
a finite number of jumps, whose law is denoted by Pb. Up to now we have found a measure Q, given
by (3.2.3) such that the factorization (3.2.1) holds. This is the framework in which we can apply the
retrospective rejection sampling scheme presented in Section 3.2.1. If one can sample from the finite-
dimensional distribution of Q, then one has provided the desired exact simulation scheme for Pb.

As announced we generalize the scheme presented in Section 3.2.3. We notice that we can provide the
exact simulation of Pb by finding an exact simulation scheme for the multi-skew Brownian motion, of law

P(β1,...,βn)
b , with small skewness parameters (βj)j=1,...,n and then using a limit argument.

In fact we are able to find β1, . . . , βn ∈ [−1, 1] (Lemma 3.3.1) which allow to develop the scheme presented
in Section 3.2.1

1. there exists an instrumental measure Q(β1,...,βn) such that

P(β1,...,βn)
b (dX) ∝ exp (−Φb(X)) Q(β1,...,βn)(dX)

where P(β1,...,βn)
b is the law of the multi-SBM with drift defined by (3.1.2);

2. the weak convergence of P(β1,...,βn)
b to the law of the Brownian motion with drift Pb, when the

βj ’s tend to 0, implies the weak convergence of the instrumental measures Q(β1,...,βn) to Q (see
Lemma 3.4.1);

3. the exact simulation scheme propagates at the limit:

P(β1,...,βn)
b (dX) ∝ exp (−Φb(X)) Q(β1,...,βn)(dX)

βj → 0 ↓ ↓ βj → 0

Pb(dX) ∝ exp (−Φb(X)) Q(dX)

(3.3.1)

and the previous limit result provide also a method for sampling from the finite-dimensional distri-
bution of Q. See Section 3.4.1 for the explanation and Section 3.4.4 for the simulation method.

Let us now present the retrospective rejection sampling scheme for the multi-SBM with drift b (i.e. the
point 1 of this list).
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3.3.1 The instrumental measure

One knows by Girsanov theorem, and Itô-Tanaka formula, that

P(β1,...,βn)
b (dX) ∝ exp (−Φb(X)) exp

(
B(XT )−B(X0)−

n∑
j=1

βjCβjL
zj
T (X)

)
P(β1,...,βn)(dX), (3.3.2)

where Cβj = b(zj) +
θj
βj

, and b(zj) is defined in (3.1.4).

Except for the precise values βj = − θj
b(zj)

, j = 1, . . . , n for which Cβj = 0, the local time terms in (3.3.2) do

not vanish, which makes the simulation hard. One can get around this difficulty choosing the coefficients
βj and a real number µ such that

P(β1,...,βn)
b (dX) ∝ exp (−Φb(X)) exp

(
B(µ)(XT )−B(µ)(X0)

)
P(β1,...,βn)
µ (dX),︸ ︷︷ ︸

∝ Q(β1,...,βn)(dX)

(3.3.3)

where B(µ)(x) := B(x)−µx is a primitive of b−µ. Indeed, for our purpose, we are free to let the coefficients
(βj)j=2,...,n depend from β1, as long as limβ1→0 βj = 0 for j = 2, . . . , n.

Thus, knowing how to sample under the measure Q(β1,...,βn), it would be possible to simulate exactly

P(β1,...,βn)
b following the retrospective rejection sampling method described in Section 3.2.1.

In the next lemma, we show how to choose β1, . . . , βn ∈ [−1, 1] and µ ∈ R in such a way that identity
(3.3.3) holds.

Lemma 3.3.1. The representation (3.3.3) holds as soon as the skewness parameters and the
constant µ satisfy

βj = β1
θj

θ1 + β1

(
b(z1)− b(zj)

) , j = 2, . . . , n, and µ = b(z1) +
θ1

β1
. (3.3.4)

Proof. Girsanov theorem yields

P(β1,...,βn)
b (dX) ∝ exp

(
B(µ)(XT )−B(µ)(X0)− Φb(X)−

n∑
j=1

βj

(
Cβj − µ

)
L
zj
T (X)

)
P(β1,...,βn)
µ (dX).

To erase the coefficients in front of the local times, it is sufficient to set µ = Cβ1
= · · · = Cβn , which leads

to the identities (3.3.4).

Remark 3.3.2. Notice that, for the choice of β1, . . . , βn and µ in Lemma 3.3.1, since βjµ = b(zj)βj + θj
one has limβ1→0 βjµ = θj and also limβ1→0 βj = 0 for any j = 2, . . . , n. The latter limit will be very useful
in what follows.

Remark 3.3.3. Choosing appropriately a piecewise constant function µ, one can obtain the identity
(3.3.3) for any choice of β1, . . . , βn ⊂ [−1, 1] not necessarily small. If all Cj ’s either vanish or are equal
to an unique constant C, one considers the constant drift µ = C. Otherwise assume there exist at least
two indices j1, j2 such that Cβj1 6= Cβj2 and both do not vanish. One then defines the piecewise constant

function µ =
∑n−1
j=1 Cβj1[zj ,zj+1) +Cβn1[zn,∞). In this case a retrospective rejection sampling for P(β1,...,βn)

b

is possible as soon as an explicit expression for the transition density of the skew Brownian motion with
piecewise constant drift is known (see Section 1.4 or Chapter 4).



3.3. EXACT SIMULATION OF THE MULTI-SBM WITH DISCONTINUOUS DRIFT 57

3.3.2 Simulation of Q(β1,...,βn)

The simulation of Q(β1,...,βn)(dX), consist in sampling from the finite-dimensional marginals, i.e. giving
a finite number of sample variates - called skeleton (X(t1), . . . , X(tM ), XT ) = (y1, . . . , yM , y) - from the
density

h(β1,...,βn)(y)

M−1∏
i=0

q(β1,β2,...,βn)
µ (ti+1 − ti, T − ti, yi, y, yi+1)dy1 . . . dyMdy, (3.3.5)

where t0 := 0, y0 := X0 = x0 and q
(β1,...,βn)
µ is the transition density of the bridge of P(β1,...,βn)

µ . The
density function h(β1,...,βn)(y) of the conditioned law of XT |X0 = x0 satisfies

h(β1,...,βn)(y) ∝ exp
(
B(µ)(y)−B(µ)(x0)

)
p(β1,...,βn)
µ (T, x0, y),

where p
(β1,...,βn)
µ is the transition density of P(β1,...,βn)

µ , as already introduced.

The relationship between q
(β1,...,βn)
µ and p

(β1,...,βn)
µ is, as usual for bridges of a Markov process, given by

q(β1,...,βn)
µ (t, T, x1, x2, y) =

p
(β1,...,βn)
µ (t, x1, y) p

(β1,...,βn)
µ (T − t, y, x2)

p
(β1,...,βn)
µ (T, x1, x2)

.

Let us write for simplicity pµ instead of p
(0,··· ,0)
µ (resp. qµ instead of q

(0,··· ,0)
µ ) for the transition density of a

Brownian motion with constant drift µ (resp. for the transition density of a Brownian bridge with constant
drift µ). Recall also that in fact qµ does not depend on the drift µ and is equal to q0, the transition density
of the Brownian bridge.

The challenge is therefore

• to obtain an explicit expression for the transition density p
(β1,...,βn)
µ involving an instru-

mental density from which it is known how to sample, namely pµ the transition density of
the Brownian motion with drift µ

p(β1,...,βn)
µ (t, x, y) = pµ(t, x, y) v(β1,...,βn)

µ (t, x, y). (3.3.6)

• to bound uniformly the function (x, y) 7→ v
(β1,...,βn)
µ (t, x, y).

In the case n = 2 these facts are rigorously proved in Theorem 2.3.7 and Proposition 2.5.3. In Chapter 4
we discuss about the adaptability of this method to the case n ≥ 3.
We assume these facts for n ≥ 2 in the remainder of the section. Hence the densities involved in (3.3.5)
are given by

q(β1,...,βn)
µ (t, T, x1, x2, y) = q0(t, T, x1, x2, y)

v
(β1,...,βn)
µ (t, x1, y)v

(β1,...,βn)
µ (T − t, y, x2)

v
(β1,...,βn)
µ (T, x1, x2)

, (3.3.7)

and h(β1,...,βn)(y) ∝ exp
(
B(µ)(y)−B(µ)(x0)

)
pµ(T, x0, y) v(β1,...,βn)

µ (T, x0, y).

One may then apply the generalized rejection sampling method thanks to the uniform boundedness of the

function v
(β1,...,βn)
µ . This important property also implies the integrability of h(β1,...,βn), as we prove in the

next lemma.

Lemma 3.3.4. Let x0 ∈ R. Under our assumptions on the drift b, for any choice of β1, . . . , βn ∈ [−1, 1]
and µ ∈ R, the density function y 7→ h(β1,...,βn)(y) is integrable and therefore normalizable.
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Proof. The density h(β1,...,βn)(y) satisfies

h(β1,...,βn)(y) ∝ eB(y)−B(x0) p0(T, x0, y) v(β1,...,βn)
µ (T, x0, y). (3.3.8)

Since b is bounded, its primitive B satisfies B(y)−B(x0) ≤ ‖b‖∞|y − x0|. We have∫
R
eB(y)−B(x) p0(T, x, y) v(β1,...,βn)

µ (T, x, y) dy ≤ ‖v
(β1,...,βn)
µ (T, x0, ·)‖∞√

2πT

∫
R
e‖b‖∞|y−x0| e−

(y−x0)2

2T dy

= ‖v(β1,...,βn)
µ (T, x0, ·)‖∞ e

‖b‖2∞
2 T .

The integrability follows.

Notice the reformulation (3.3.8) of the definition of h(β1,...,βn), which depends on µ only through vµ
(β1,...,βn).

3.4 A drift with two or more jumps: exact simulation scheme
for the associated Brownian diffusion

3.4.1 The exact simulation scheme of Pb as a limit scheme

In the entire section, we correlate the parameters (βj)j=1,...,n and µ as in Lemma 3.3.1. The following

convergence result provides a method for sampling under the measure Q, once p
(β1,...,βn)
µ is made explicit

and uniformly bounded. This result yields the completion of the simulation scheme for Pb.

Lemma 3.4.1. Take β1 = 1
κ and define the other skewness parameters βj(κ), j = 2, . . . , n, by the rela-

tionship (3.3.4): βj(κ) =
θj

κθ1 + b(z1)− b(zj)
and µ(κ) = b(z1) + κθ1. Then

P( 1
κ ,β2(κ),...,βn(κ))
b −→

κ→∞
Pb and Q( 1

κ ,β2(κ),...,βn(κ)) −→
κ→∞

Q,

where the convergences hold in the weak topology.

Proof. First notice that even a stronger convergence holds in the following sense: If Y is the strong solution
of equation (3.1.1) and Y (κ), κ ≥ 1, is the strong solution of equation (3.1.2) with skewness coefficients
β1 = 1

κ , β2(κ), · · · , βn(κ), then the sequence (Y (κ))κ converges in L1(C) to Y :

lim
κ→∞

E
(

sup
s∈[0,T ]

|Y (κ)
s − Ys|

)
= 0.

This is due to Theorem 3.1 in [32], slightly extended in Theorem 5.1 in [20]. Strong convergence then

implies the weak convergence of (P( 1
κ ,β2(κ),...,βn(κ))
b )κ towards Pb.

The weak convergence of the sequence Q( 1
κ ,β2(κ),...,βn(κ)) is straightforward once one has noticed that the

function defined on C by X 7→ exp (Φb(X)) is bounded and continuous in the topology of the sup-norm.

As an immediate consequence one obtains the desired relationship (3.2.1), see the scheme 3.3.1.
Therefore the retrospective rejection sampling for Pb is possible as soon as one can sample from Q.
Moreover Lemma 3.4.1 yields also the sampling method for the instrumental measure Q. Indeed the

weak convergence of Q( 1
κ ,β2(κ),...,βn(κ)) ensures the convergence of the finite-dimensional distributions

with density given by (3.3.5) to the finite-dimensional marginals of Q. And, if the sequences of density

(h( 1
κ ,β2(κ),...,βn(κ)))κ and (q(

1
κ ,β2(κ),...,βn(κ))(t, T, x1, x2, ·))κ admit pointwise limits h(θ1,...,θn) and q(θ1,...,θn)(t, T, x1, x2, ·)

respectively (see (3.3.7) and (3.3.8)), then the limit of the expression (3.3.5) is given by

h(θ1,...,θn)(y)

M−1∏
i=0

q(θ1,...,θn)(ti+1 − ti, T − ti, yi, y, yi+1) dy1 . . . dyMdy. (3.4.1)
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Thanks to Scheffé’s Lemma, one can easily conclude that (3.4.1) is the density of (Xt1 , Xt2 , . . . , XtM , XT )
under Q.

We focus directly on the limits h(θ1,...,θn)(y)dy and q(θ1,...,θn)(t, T, x1, x2, y)dy, providing a rejection
sampling scheme for them with instrumental densities the transition density of the Brownian motion
p0( T

1−δ , x0, y) (for some δ ∈ (0, 1)) and the transition density of the Brownian bridge q0(t, T, x1, x2, y)
respectively.
It is necessary to find positive functions fHδ and fBx1,x2

smaller than 1 such that

h(θ1,θ2,...,θn)(y)

p0( T
1−δ , x0, y)

= CH · fHδ (y), and
q(θ1,θ2,...,θn)(t, T, x1, x2, y)

q0(t, T, x1, x2, y)
= CB · fBx1,x2

(y). (3.4.2)

One introduces a parameter δ ∈ (0, 1), for some reason that will be explained when we explicit the

ratio h(θ1,θ2,...,θn)(y)

p0( T
1−δ ,x0,y)

, see (3.4.15). The normalizing constant CH (resp. CB) depends only on the jumps

(θ1, . . . , θn), the time T , the bound of the drift ‖b‖∞, and δ (resp. on (θ1, . . . , θn), t, T, x1, x2).
Assuming that the decomposition (3.3.6) holds and assuming that there exists a pointwise limit

v(θ1,...,θn) for v
( 1
κ ,β2(κ),...,βn(κ))

µ(κ) when κ tends to ∞, one can pass to the limit in the equations (3.3.7

and 3.3.8) obtaining the relationships

q(θ1,...,θn)(t, T, x1, x2, y) = q0(t, T, x1, x2, y)
v(θ1,...,θn)(t, x1, y)v(θ1,...,θn)(T − t, y, x2)

v(θ1,...,θn)(T, x1, x2)
,

h(θ1,...,θn)(y) ∝ exp (B(y)−B(x0)) p0(T, x0, y) v(θ1,...,θn)(T, x0, y).

(3.4.3)

It is then sufficient to prove the existence of a uniform bound for (x, y) 7→ v(θ1,...,θn)(t, x, y) in order to
develop the rejection sampling scheme from h(θ1,...,θn) and q(θ1,...,θn). Moreover this bound yields the
integrability of h(θ1,...,θn), analogously to Lemma 3.3.4.
In conclusion, Lemma 3.4.1 ensures that the exact simulation scheme for the skew Brownian motion with
drift b is transposed to the desired exact simulation scheme for the Brownian diffusion with drift b.

3.4.2 The limit of the SBM

From now on we will consider the case of a drift with two discontinuities (n = 2) at the points 0 and
z > 0, that is J = {0, z}. In this case the transition density of the (β1, β2)-SBM with drift µ admits the

decomposition (3.3.6) (Theorem 2.3.7), and for any t > 0 (x, y) 7→ v
(θ1,...,θn)
µ (t, x, y) is uniformly bounded

(Proposition 2.5.3).
In fact we are mainly interested in the asymptotic regime for small skewness: κ large integer, β1 = 1

κ ,

β2(κ) = θ2
κθ1+b(0)−b(z) and µ(κ) = b(0) + κθ1 as in Lemma 3.4.1. Recall that limκ→∞ β2(κ) = 0 and

limκ→∞ βj(κ)µ(κ) = θj , j = 1, 2 (see Remark 3.3.2).

The function (t, x, y) 7→ v
(β1,...,βn)
µ (t, x, y) admits a pointwise limit (t, x, y) 7→ v(θ1,θ2)(t, x, y) which is

bounded from above uniformly on (x, y). This is the content of Proposition 3.4.2 and Proposition 3.4.3.
Let us define the polynomials c̃j(y; ξ) := limκ→∞ cj(y, µ(κ)

√
t; ξ), j = 1, 2, 3, 4, where cj(y, µ(κ)

√
t; ξ)

are given by (2.3.2). They satisfy
c̃1(y; ξ) = (ξ + θ1

√
t)(ξ + θ2

√
t)

c̃2(y; ξ) = −θ1

√
t
(
ξ −

(
21{y>z} − 1

)
θ2

√
t
)

c̃3(y; ξ) = −θ2

√
t
(
ξ +

(
21{y>0} − 1

)
θ1

√
t
)

c̃4(y; ξ) = −
(
1− 21{0≤y<z}

)
θ1θ2t.

(3.4.4)

Their coefficients c̃j,h, defined by the relationship c̃j(y; ξ) =
∑2
h=0 c̃j,2−h(y)ξh, satisfy

c̃1,0(y) = 1,

c̃2,0(y) = 0

c̃3,0(y) = 0

c̃4,0(y) = 0

,


c̃1,1(y) = θ1

√
t+ θ2

√
t

c̃2,1(y) = −θ1

√
t

c̃3,1(y) = −θ2

√
t

c̃4,1(y) = 0

,


c̃1,2(y) = θ1θ2t

c̃2,2(y) =
(
21{y≥z} − 1

)
θ1θ2t

c̃3,2(y) = −
(
21{y>0} − 1

)
θ1θ2t

c̃4,2(y) = −
(
1− 21[0,z)(y)

)
θ1θ2t.
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They are obtained as the limit for κ→∞ of µ(κ)h cj,h, with cj,h given by (2.3.2). Finally, for any a, C̃j,h
are defined, analogously to (2.3.3), by

C̃j,0 = c̃j,0, C̃j,1 = c̃j,1 + 2c̃j,0a, C̃j,2 = c̃j,2 + c̃j,1a + c̃j,0a
2, j = 1, 2, 3, 4. (3.4.5)

Proposition 3.4.2. Let θ1, θ2 ∈ R. Let us denote by v(θ1,θ2) the pointwise limit for κ→∞ of the functions

(t, x, y) 7→ v
(1/κ,β2(κ))
µ(κ) (t, x, y) defined by (2.3.10). Recall that ωj,k is defined by (2.3.12) and c̃j by (3.4.4).

Let a ≥ 0 such that a > max (−2θ1,−2θ2). Then the following representation holds

v(θ1,θ2)(t, x, y) =

∞∑
k=0

(−θ1θ2)ktk
4∑
j=1

F̃j,k(ωj,k(x, y), a
√
t) (3.4.6)

where F̃j,k, which is actually a function of (t, x, y, a), satisfies

F̃j,k(ωj,k, a) = e
1
2 (ω2

1,0+a2)e−aωj,kF
(
w 7→ e−

w2

2 c̃j(y; iw + a)
−1

(w − iã1)k+1(w − iã2)k+1

)
(ωj,k−a) (3.4.7)

where ãi := a
√
t+ θi

√
t.

Proof. Without loss of generality we can prove the statement for t = 1. To prove it, it is sufficient to pass
to the limit into the integral (2.3.14). One then finds (3.4.6) and (3.4.7). Proposition 3.4.3 guarantees
that integral and series can be exchanged.
Remark that F̃j,k can also be defined as the pointwise limit of the functions Fj,k given in (2.3.11) and
therefore

F̃j,k(ωj,k, a) =


∑k
n=0

(
(2k−n)!

(k−n)!n!k!
e

1
2
ω2

1,0

(θ1−θ2)2k−n+1

∑2
h=0 C̃j,2−h(y)F̃h,n(ωj,k, a)

)
, θ1 6= θ2;

(−1)k+1

(2k+1)!

∑2
h=0 C̃j,2−h(y)e

1
2ω

2
1,0Gh,0,2k+1(ωj,k, a, θ1), θ1 = θ2,

(3.4.8)

where F̃h,n(ω, a) := Gh,0,n(ω, a, θ2)− (−1)nGh,0,n(ω, a, θ1) and the functions C̃j,h are given by (3.4.5). The
function Gh,0,n is defined by (2.3.7).
Notice that, due to our appropriate choice of a, we can obtain the latter formula from (3.4.7) proceeding
as for Theorem 2.3.7. Indeed, since a is strictly larger than any pole of the limit expression, there exists
κ0 such that, for any κ > κ0, a is larger than max(−2 1

κµ(κ),−2β2(κ)µ(κ)).

3.4.3 A uniform bound for v(θ1,θ2)

The main result in this section is the following proposition.

Proposition 3.4.3 (Uniform bound for (x, y) 7→ v(θ1,θ2)(t, x, y)). Let θ1, θ2 be any real numbers. Let us
denote by

(
v(θ1,θ2)

)
k

(t, x, y) the k−th term of the series v(θ1,θ2)(t, x, y) given by (3.4.6). There exists a
positive constant C, depending only on θ1, θ2, such that

sup
x,y

∣∣∣(v(θ1,θ2)
)
k

(t, x, y)
∣∣∣ ≤ C e−

2z2 k
t .

More precisely, one can take

C =

1 + max {ψ(θ1, θ2), ψ(θ2, θ1)}+ min

{
1,

∣∣∣∣θ1θ2

√
t

θ1 − θ2

∣∣∣∣ ∣∣∣ϕ(θ1

√
t)− ϕ(θ2

√
t)
∣∣∣} if θ1 6= θ2,

1 + 2
√
t|θ1|ϕ(θ1

√
t) + 3θ2

1t if θ1 = θ2,

(3.4.9)

where

ϕ(w) :=
√

2πe
w2

2 Φc(w) (3.4.10)
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and

ψ(θ1, θ2) := |θ1|
√
tϕ(θ1

√
t)+|θ2|

√
tϕ(θ2

√
t)+min

{
2,

(∣∣∣∣θ1 + θ2

θ1 − θ2

∣∣∣∣− 1

)
|θ1|
√
tϕ(θ1

√
t) + 2

∣∣∣∣θ1θ2

√
t

θ1 − θ2

∣∣∣∣ϕ(θ2

√
t)

}
.

Moreover, there the sum of the series is uniformly bounded

sup
x,y

∣∣∣v(θ1,θ2)(t, x, y)
∣∣∣ ≤ C

1− e− 2z2

t

, (3.4.11)

and if RNv
(θ1,θ2) denotes the remainder after the (N + 1)− th term of the series (3.4.6) which represents

v(θ1,θ2), then

sup
x,y

∣∣∣RNv(θ1,θ2)(t, x, y)
∣∣∣ ≤ C

1− e− 2z2

t

e−
2z2

t (N+1). (3.4.12)

The proof is similar to the one of Proposition 2.5.3, nevertheless the combinations of the steps is
different.
Considering formula (3.4.6), it is clear that the proof of (3.4.11) is complete as soon as one finds an
appropriate bound for supx,y F̃j,k(ωj,k, a

√
t) for each j ∈ {1, 2, 3, 4} and k ∈ N. This is done in the next

lemma.

Lemma 3.4.4. Let us define F̃j,k by (3.4.7) and ωj,k by (2.3.12) for any j = 1, 2, 3, 4 and k ∈ N. Then
there exists a positive constant Cj, depending on j and (θ1, θ2) but not on k, such that

sup
x,y
|θ1θ2t|k

∣∣∣F̃j,k(ωj,k, a
√
t)
∣∣∣ ≤ Cj e− 2z2

t k.

Proof of Lemma 3.4.4. It becomes straightforward once one shows that, for each j = 1, . . . , 4 and k ∈ N,
there exists a positive constant Cj not depending on k such that

sup
x,y
|θ1θ2t|k

∣∣∣F̃j,k(ωj,k, a
√
t)
∣∣∣ ≤ Cj e− (ω2

j,k−ω
2
1,0)

2 . (3.4.13)

Indeed, since aj(x, y) ≥ 0 for all j = 1, 2, 3, 4, the following estimate holds

1

2
(ω2

1,0 − ω2
j,k) ≤ − 1

2t
(aj(x, y) + 2kz)

2 ≤ −2z2

t
k.

Let us prove (3.4.13). To simplify the notation, in the rest of the proof, one take t = 1.Then we define
ãi = a + θi for i = 1, 2 and also

p̃j(w) :=
−c̃j(y; iw + a)

(w − iã1)(w − iã2)

where the polynomials c̃j(y;w) are given by (3.4.4). Equations (3.4.6, 3.4.7) can be rewritten as{
v(θ1,θ2)(1, x, y) =

∑∞
k=0(−θ1θ2)k

∑4
j=1 F̃j,k(ωj,k, a),

F̃j,k(ωj,k, a) = −e
1
2 (ω2

1,0+a2)e−aωj,k
(
F(p̃j)√

2π
∗ e−w

2

2

)
∗ fk(w,ã1,ã2)√

2π
(ωj,k − a), j = 1, 2, 3, 4,

where fk is defined in (2.3.6).
The rest of the proof of Lemma 3.4.4 is tricky and divided in several steps.

First one need to compute the convolution between the Fourier transform of p̃j and a Gaussian kernel: it
will lead to the product between a Gaussian kernel and a linear combination of translations of the func-
tion ϕ defined by (3.4.10). Then one has to compute the convolution of this quantity with the function
fk(·, ã1, ã2), which is positive with support on (−∞, 0). Its L1-norm is computed in Lemma 3.4.5. We will
complete the proof finding an estimate of the convolution which uses this latter information.
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Let us compute now the convolution of a Gaussian kernel with the Fourier transforms F(p̃j), j =
1, 2, 3, 4.
First we’ll focus on the case θ1 6= θ2 where



1√
2π
F(p̃1) ∗ e−w

2

2 = e−
ω2

2

1√
2π
F(p̃2) ∗ e−w

2

2 = e−
ω2

2

(
−θ1

θ1+(21{y≥z}−1)θ2
θ1−θ2 ϕ(ω + ã1) + 21{y≥z}

θ1θ2
θ1−θ2 ϕ(ω + ã2)

)
1√
2π
F(p̃3) ∗ e−w

2

2 = e−
ω2

2

(
−θ2

θ2−(21{y>0}−1)θ1
θ1−θ2 ϕ(ω + ã2)− 21{y≤0}

θ1θ2
θ1−θ2 ϕ(ω + ã1)

)
1√
2π
F(p̃4) ∗ e−w

2

2 = e−
ω2

2

(
21[0,z)(y)− 1

)
θ1θ2
θ1−θ2 (ϕ(ω + ã2)− ϕ(ω + ã1)) .

The Gaussian component is positive and decreasing on (0,+∞), and the function ϕ, defined by (3.4.10),
is positive and decreasing on R.

The bound of the convolutions
∣∣∣( 1√

2π
F(p̃j) ∗ e−

w2

2

)
∗ fk(w,ã1,ã2)√

2π

∣∣∣ (ωj,k − a) is then controlled by the con-

volutions∣∣∣(e−w2

2 ϕ(ãi + w)
)
∗ fk(w, ã1, ã2)

∣∣∣ (ωj,k − a) =

∣∣∣∣∫
R
e−

(ωj,k−a−y)2

2 ϕ(θi + ωj,k − y)fk(y, ã1, ã2)dy

∣∣∣∣ , i = 1, 2.

Notice that fk has support on (−∞, 0). Then∣∣∣∣(e−w2

2 ϕ(w + ãi)
)
∗ fk(w, ã1, ã2)√

2π

∣∣∣∣ (ωj,k − a) ≤ ϕ(ωj,k + θi)e
aωj,ke−

a2

2

∫ 0

−∞
e−

(ωj,k−y)2

2

∣∣∣∣e−ay fk(y, ã1, ã2)√
2π

∣∣∣∣ dy
≤ ϕ(ωj,k + θi)e

−
(ωj,k−a)2

2
1√
2π
‖e−ayfk(y, ã1, ã2)‖L1(R,dx).

Suppose we knew that ‖e−a·fk(·, ã1, ã2)‖L1(R,dx) =
√

2π
|θ1θ2|k , as we will prove in Lemma 3.4.5 below.

We can then complete the proof in the following way. Since ωj,k ≥ 0, ϕ(ωj,k + θi) ≤ ϕ(θi) and

|v(θ1,θ2)(1, x, y)| =
∞∑
k=0

|θ1θ2|k
4∑
j=1

∣∣∣F̃j,k(ωj,k, a)
∣∣∣ ≤ ∞∑

k=0

4∑
j=1

mj e
−
ω2
j,k−ω

2
1,0

2

where the coefficients mj are given by

m1 = 1

m2 = |θ1|ϕ(θ1) + 1{y≥z}min
(

2, 2
∣∣∣ θ1θ2θ1−θ2

∣∣∣ϕ(θ2) + |θ1|
(∣∣∣ θ1+θ2
θ1−θ2

∣∣∣− 1
)
ϕ(θ1)

)
m3 = |θ2|ϕ(θ2) + 1{y<0}min

(
2, 2

∣∣∣ θ1θ2θ1−θ2

∣∣∣ϕ(θ1) + |θ2|
(∣∣∣ θ1+θ2
θ1−θ2

∣∣∣− 1
)
ϕ(θ2)

)
m4 = min

(
1,
∣∣∣ θ1θ2θ1−θ2

∣∣∣ |ϕ(θ1)− ϕ(θ2)|
)
.

The fact that e−
ω2
j,k−ω

2
j,0

2 ≤ e− 2z2

t k yields the conclusion.
If θ1 = θ2 then, analogously,

F(w 7→ p̃1(w) e−
w2

2 )(ω)
1√
2π
F(p̃2) ∗ (e−

w2

2 )(ω) = e−
ω2

2

[
−θ1ϕ(ω + ã1) + 21{y≥z}θ

2
1 (1− (ω + ã1)ϕ(ω + ã1))

]
1√
2π
F(p̃3) ∗ (e−

w2

2 )(ω) = e−
ω2

2

[
−θ1ϕ(ω + ã1)− 21{y<0}θ

2
1 (1− (ω + ã1)ϕ(ω + ã1))

]
1√
2π
F(p̃4) ∗ (e−

w2

2 )(ω) = e−
ω2

2

(
21[0,z)(y)− 1

)
θ2

1 (1− (ω + ã1)ϕ(ω + ã1)) .

Following the same procedure as before, the conclusion comes from the fact that 0 ≤ wϕ(w) ≤ 1 for
w ≥ 0.
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Lemma 3.4.5. Suppose a 6= 0, a1, a2 > 0 and k ∈ N∗. Then∥∥∥∥F (w 7→ 1

(w − ia)k

)
(ω)

∥∥∥∥
L1(R,dx)

=

√
2π

|a|k
and ‖fk(·, a1, a2)‖L1(R,dx) =

√
2π

(a1a2)k
,

where fk is defined in (2.3.6).

Proof. If a > 0, by Lemma 2.3.5,
∣∣∣F (w 7→ 1

(w−ia)k+1

)
(ω)
∣∣∣ =
√

2π1R−(ω) |ω|
k

k! e
aω.

Integrating by part,∥∥∥∥F (w 7→ 1

(w − ia)k+1

)
(ω)

∥∥∥∥
L1(R,dx)

=

√
2π

a k!

∫ 0

−∞
a (−ω)keaω dω =

1

a

∥∥∥∥F (w 7→ 1

(w − ia)k

)
(ω)

∥∥∥∥
L1(R,dx)

.

So the first identity follows from the inductive hypothesis.

If a < 0 then F
(
w 7→ 1

(w−ia)k+1

)
(ω) = −ik+1

√
2π (−ω)k

k! eaω1R+(ω) and the proof works as before.

To compute the second norm proceed as follows:

‖fk+1(·, a1, a2)‖L1(R,dx) =
1√
2π

∫
R

∣∣∣∣F ( 1

(w − ia1)k+1

)
∗ F

(
1

(w − ia2)k+1

)
(ω)

∣∣∣∣ dω
=

∫
R

∣∣∣∣(−1)k
√

2π(k!)2

∫
R
(−y)kea1y1R−(y)(y − ω)kea2(ω−y)

1R−(ω − y)dy

∣∣∣∣ dω
Since the integrand is positive, we can exchange the integration order and then use the previous result to
conclude:

‖fk+1(·, a1, a2)‖L1(R,dx) =
√

2π(k!)2

(∫
R

(−y)kea1y1R−(y) dy

)(∫
R

(−y)kea2y1R−(y)dy

)
=

1√
2π
‖F
(

1

(w − ia1)k+1

)
‖L1(R,dx)‖F

(
1

(w − ia2)k+1

)
‖L1(R,dx) =

√
2π

ak+1
1 ak+1

2

.

3.4.4 Sampling from the instrumental measure Q

One can produce the skeleton of random variates from expression (3.4.1), (i.e. sample under Q) through
generalized rejection sampling schemes (see Proposition 2.5.2) for both functions h(θ1,θ2) and q(θ1,θ2) defined
in (3.4.3). The necessary assumptions for applying the Algorithm 1 are satisfied thanks to Proposition 3.4.3.
Indeed v(θ1,θ2)(t, x, y) is a bounded series (see (3.4.6)) with bound (3.4.11) uniform in x and y. Let us
denote the renormalized series, its truncation at the (N + 1)− th term and the bound for the remainder
as

rv(θ1,θ2)(t, x, y) :=
1− e− 2z2

t

C
v(θ1,θ2)(t, x, y), rNv

(θ1,θ2)(t, x, y), RNv
(θ1,θ2)(t) = e−

2z2

t (N+1), (3.4.14)

respectively, where z is the distance between the barriers and C is given in (3.4.9). For any fixed δ ∈ (0, 1),
the density h(θ1,θ2)(y) satisfies

h(θ1,θ2)(y)

p0( T
1−δ , x0, y)

=
Cθ,x0,T√

1− δ
eMB

C

1− e− 2z2

T︸ ︷︷ ︸
CH

e−
(y−x0)2

2T δ eB(y)−B(x0)

eMB
rv(θ1,θ2)(T, x0, y)︸ ︷︷ ︸

fHδ (y)

,
(3.4.15)

where Cθ,x0,T is the normalizing constant for the density h(θ1,θ2) and MB ≤ ‖b‖2∞T
2δ is an upper bound

for B(y)−B(x)− (y−x)2δ
2T . Indeed the parameter δ is introduced to control the possibly unbounded term
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eB(y)−B(x) with e−
(y−x)2

2T δ and an appropriate choice of δ, for each specific case, can make the bound
sharper.
One obtains a decomposition of the density y 7→ q(θ1,θ2)(t, T, x1, x2, y) as

q(θ1,θ2)(t, T, x1, x2, y)

q0(t, T, x1, x2, y)
=

(C)
2(

1− e− 2z2

t

)(
1− e−

2z2

T−t

) 1

v(θ1,θ2)(T, x1, x2)︸ ︷︷ ︸
CB

rv(θ1,θ2)(t, x1, y) rv(θ1,θ2)(T − t, y, x2)︸ ︷︷ ︸
fBx1,x2

(y)

.

(3.4.16)

Remark 3.4.6. The probability to accept a simulation from the instrumental density is respectively the
inverse of CH and CB. Therefore, it is of great importance to get a bound as small as possible for MB and
v(β1,β2) as in Proposition 3.4.3.

Therefore (3.4.15) and (3.4.16) are on the form we expected, see (3.4.2). Let us show how to control
the (finite sum) approximation of fBx1,x2

and its vanishing rate of convergence, as well as the respective

quantities for fHδ .

Lemma 3.4.7. There exists a sequence of finite series (fBN )N (resp. (fHN )N ) that converges pointwise to
fBx1,x2

(resp. to fHδ ) for N →∞ with an exponentially vanishing rate of convergence.

Proof. One has to find functions fHN (resp. fBN ) and an exponentially decreasing sequence RHN (resp. RBN )
such that, for all y ∈ R,

∣∣fHδ (y)− fHN (y)
∣∣ ≤ RHN (resp.

∣∣fBx1,x2
(y)− fBN (y)

∣∣ ≤ RBN ).

Proposition 3.4.3 yields the following choices of truncated densities and rest term{
fBN := rNv

(θ1,θ2)(t, x1, y) · rNv(θ1,θ2)(T − t, y, x2)

RBN := e−
2z2

t (N+1) + e−
2z2

T−t (N+1) − e−2z2( 1
t+ 1

T−t )(N+1)
(3.4.17)

and fHN := rNv
(θ1,θ2)(T, x0, y) exp

(
B(y)−B(x0)− (y − x2)2

2T
δ −MB

)
RHN := RNv

(θ1,θ2)(T ).
(3.4.18)

where rNv and RNv are given in (3.4.14).

Notice that the series fHN contains N + 1 terms, but fBN contains (N + 1)2 terms, since it is the product
of two truncated series, each one with N + 1 terms. Indeed, if RrNv

(θ1,θ2) is the remainder of rNv
(θ1,θ2),

one can write

fBx1,x2
=
(
rNv

(θ1,θ2)(t, x1, y) +RrNv
(θ1,θ2)(t, x1, y)

)(
rNv

(θ1,θ2)(T − t, y, x2) +RrNv
(θ1,θ2)(T − t, y, x2)

)
=
(
rNv

(θ1,θ2)(t, x1, y) · rNv(θ1,θ2)(T − t, y, x2)
)

+
(
rNv

(θ1,θ2)(t, x1, y) ·RrNv(θ1,θ2)(T − t, y, x2)+

+rNv
(θ1,θ2)(T − t, y, x2) ·RrNv(θ1,θ2)(t, x1, y) +RrNv

(θ1,θ2)(t, x1, y) ·RrNv(θ1,θ2)(T − t, y, x2)
)
.

The exact simulation scheme for Pb is now completed.
As one can see our approach is a variant of the one in [20]. The difference is that in that case the

densities h(β1,β2)(y) and q
(β1,β2)
µ (t, T, x1, x2, y) were expressed as in (3.3.7 and 3.3.8). Moreover the bound

in Proposition 2.5.3 was used to obtain a (generalized) rejection sampling method (analogously to (3.4.2))
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for h(β1,β2)(y) and q
(β1,β2)
µ (t, T, x1, x2, y). The latter converged to a rejection sampling for the respective

pointwise limit functions h(θ1,θ2)(y) and q(θ1,θ2)(t, T, x1, x2, y) once β1 tends to 0 (Proposition 3.4.2).
In order to do an approach amenable to the case of more discontinuities (n ≥ 3), we tried to reduce

the use of the explicit knowledge of the transition density of the multi-skew Brownian motion, as we will
discuss in Chapter 4. Nevertheless in the cases n = 1 and n = 2 one can do everything directly.

3.5 Simulations

In this section we provide some numerical simulations for Pb, solution to (3.1.1). We also measure the
performance of the exact simulation method in comparison with the classical Euler-Maruyama method,
which has the disadvantage to smooth the effect of the discontinuous drift. The smaller is the discretization
time step, the weaker is the effect and so the exact method becomes more and more competitive.

The section is organized as follows. First we recall the appropriate functions to use for applying
the generalized rejection sampling method (see Proposition 2.5.2 and Algorithm 1) to sample from the
instrumental measure. In particular we sample from the densities h(θ1,θ2) and q(θ1,θ2)(t, T, x1, x2, ·) given
in (3.4.3). We devote the second part to the pseudo-code of the retrospective rejection sampling (see
Section 3.2.1), which relies on the simulation from the finite-dimensional distributions of the instrumental
measure Q given by (3.4.1). In order to minimize the necessary CPU time we propose two different ways
to apply the scheme. In the last part we illustrate our simulations.

We coded in Python 3 and executed the programs on a personal computer equipped with an Intel Core
i5 processor, running at 2.5 Ghz.

3.5.1 The generalized rejection sampling for sampling under Q (GRS)

In Algorithm 1 we have given the pseudo-code of the generalized rejection sampling (GRS), which allows
to sample a random variable from an instrumental random variable once the bounded ratio between the
densities is an infinite series whose remainder is vanishing. Let us recall the relevant quantities: if g(x)
and h(x) are respectively the instrumental density (w.r.t. the Lebesgue measure) and the density from

which one would like to sample, then let us denote by f(x) the function ratio
1

m

h(x)

g(x)
, where m is an upper

bound of the function
h

g
. The Algorithm 1 requires the following quantities and functionals:

• g: instrumental density under which it is known how to sample,

• Nmax: the maximal number of terms of the series one decides to consider,

• (fN )N=0,...,Nmax : the partial sums of the series f ,

• (Rf
N )N=0...,Nmax : decreasing sequence of bounds for the remainder f − fN ,

• IfR: a (piecewise constant) non decreasing function (0, 1)→ {0, . . . , Nmax}, inverse of Rf
N :

IfR(u) = inf{N ≤ Nmax : Rf
N ≤ u},

As we have seen in the Section 3.4.4, the GRS enables us to sample from the finite-dimensional distri-
butions of Q (3.4.1). In particular we sample from the densities h(θ1,θ2)(T, x0, ·) and q(θ1,θ2)(t, T, x1, x2, ·)
in (3.4.3) with instrumental densities the two Gaussian densities p0

(
T

1−δ , x0, ·
)

and q0(t, T, x1, x2, ·) re-

spectively.
The sequence (fN , R

f
N )N≤Nmax for h(θ1,θ2) and q(θ1,θ2) are provided by (3.4.18) and (3.4.17) respectively.

Both sequences (Rf
N )N considered in this section are exponentially decreasing, hence the piecewise con-

stant functions IfR are easy to compute explicitly. Moreover all simulations turn out to be exact (i.e.
one takes the decision to accept or reject without the need to consider Nmax, as explained at the end of
Section 2.5.1).
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Let us recall that we fix the integer Nmax = IfR(0.00005), such that the probability that for all

N ≤ Nmax one has not been able to accept or reject a sample, is smaller than twice the bound Rf
Nmax

,
i.e. 0.0001.

3.5.2 The retrospective rejection sampling

The following algorithm describes the scheme that returns the pair (T + t0, XT ). XT is a sample of the
solution Pb on [t0, T + t0] of (3.1.1) at the final time T + t0. The sample is obtained through retrospective
rejection sampling from the finite-dimensional distributions of the instrumental measure Q.

The algorithm needs some parameters derived from the given drift b, such as the (half) heights θ1, θ2

of the two jumps, the bounded non negative function φ+
b defined in (3.2.2) and its sup norm ‖φ+

b ‖∞.
Moreover it recalls the external function GRS.

Algorithm 2: The retrospective rejection sampling RRS

Input : The starting point x0 (at the time t0), the time increment T ;
Output: A sample of XT at the final time T + t0.
reject ← True;
while reject do

reject ← False;

simulate a Poisson Point Process on [0, T ]× [0, ‖φ+
b ‖∞]: (τk, xτk)k=1,...,M ;

sample XT from the density h(θ1,θ2) through GRS;
τ0 ← 0, y0 ← x0;
for k = 1 to M do

sample yk through GRS for the bridge density q(θ1,θ2) connecting (τk−1, yk−1) and (T,XT ) ;

if φ+
b (xτk) > yk then
reject ← True;
exit from this cycle and start again;

return XT .

The retrospective rejection sampling procedure is such that the output can actually be more rich: it
can return the skeleton of the Brownian motion with drift b: the vectors (t0, τ1 + t0, . . . , τM + t0, T +
t0), (x0, y1, . . . , yM , XT ). One can then add to the skeleton the simulation at any time instance t in
(t0, T + t0) using the bridges dynamics.

In order to make the algorithm more efficient one notices that, if the time increment T is large, there
will be a large number of Poisson points which slows down the algorithm since it can reject more often.
One can improve the algorithm in two directions.
First, simulating the Poisson point process on the rectangle [t0, T + t0]× [0, ‖φ+

b ‖∞] progressively within
the rejection procedure.
Second, using the Markov property of the considered process. One can split the time increment into
congruent time intervals of length t smaller than a fixed value Tel. One then applies the RRS on the
different time intervals of length t with new initial conditions given by the ending point on the previous
interval. We will call SRRS the split RRS obtained choosing Tel ≤ ‖φ+

b ‖−1
∞ in a convenient way in

order to minimize the computational times. If Tel were ‖φ+
b ‖−1
∞ , the Poisson process on the rectangle in

RRS would have intensity 1. Therefore, with probability higher than e−1 (when the Poisson process on
[0, t]× [0, ‖φ+

b ‖∞] has an empty realization), one avoids to apply GRS for bridges.
We are proposing the next pseudo-code whose inputs are the same as for the algorithm RRS.
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Algorithm 3: The split retrospective rejection sampling SRRS

Input : The initial conditions (t0, x0),
the time increment T ,
the function φ+

b and its upper bound m (see (3.2.2));
Output: A sample of XT at the final time T + t0.
Split the interval [0, T ] in m′ congruent intervals of length smaller than Tel = m−1;
forall j = 1, . . . ,m′ do

obtain XTel∗j through the RRS with input the time interval Tel and the initial conditions
(Tel ∗ (j − 1), x0);

return XT

We compare in the next subsection the CPU times using the retrospective rejection sampling described
above for some piecewise smooth drift b defined by (3.5.1), see Figure 3.1.

3.5.3 Numerical results

Let us consider two examples of Brownian diffusions starting from x0 = 0.5 whose drift b1 (resp. b2) is
piecewise smooth and admits two discontinuity points at 0 and z = 1:

b̄1(x) :=


0 x < 0

1 0 < x < 1

0 x > 1

, b̄2(x) :=


−2 cos(x) x < 0

sin(x) 0 < x < 1

cos(x− z) + sin(z) x > 1

, (3.5.1)

and b̄1(0) = 1
2 , b̄1(1) = 1

2 as in (3.1.4), and θ1 = 1/2 = −θ2 (resp. b̄2(0) = −1, b̄2(1) = 1
2 , and θ1 = 1 and

θ2 = 1/2). (Figure 3.3 represents the drift b̄2.)
In each case we need to choose the time length Tel (to apply the SRRS, see Algorithm 3) and the

parameter δ ∈ (0, 1) appearing in (3.4.15). In the first case we fixed Tel = 0.55 (≤ ‖φ+
b̄1
‖−1
∞ = 2) and

δ = 0.75. In the second case we choose Tel = 0.2 and δ = 0.6. Let us briefly explain how we took our
decision.
Once Tel has been fixed, we choose δ such that the quantity 1

2‖b̄1‖
2
∞
Tel
δ is as small as possible (hence

we can take MB in (3.4.15) equal to it). Indeed the sharpness of this quantity and of the constant C in
(3.4.11) determines the probability to accept a sample from the instrumental density as a sample from
h(θ1,θ2). The latter probability is the inverse of the constant CH given explicitly in (3.4.15). Let us recall
that the constant C is a factor of the quantity CB (see (3.4.16)) as well, hence determines the probability
of accepting a sample of a Brownian bridge as a sample from the desired density.
The choice of Tel is more delicate and it is based on the computational time of the algorithm RRS. The
algorithm SRRS splits the given interval (0, T ) into intervals of length between 1

2Tel and Tel and applies
RRS. We choose Tel such that RRS is fastest on ( 1

2Tel, Tel).
The CPU time for the RRS does not grow linearly with the time, as one can easily notice from

Figure 3.1. The Euler-Maruyama method and SRRS instead show an asymptotic linear growth of the
CPU time as function of the time T . Sometimes the growth factor of SRRS is considerably faster, and
sometimes slower as in the cases of the drift b̄2. This is due to the nature of the drifts and to the quality
of the bounds.

Figure 3.2 shows that the Euler-Maruyama scheme needs a very small discretization step to be more
precise at the discontinuities of the drift.
Considering the drift b̄1 which is a indicator function, our simulation of the 105 samples is exact and it
is much faster than Euler-Maruyama with discretization step 10−5. The average time for a single sample
is respectively of 0.09 and 0.18 seconds. The Euler-Maruyama scheme with step 10−2 instead is faster
(0.0002 seconds).
In the other considered case, the Euler-Maruyama method is faster. For the drift b̄2, the average CPU
times for one simulation of X0.6, is 0.29 s and 0.1 s for the exact simulation through the SRRS and the
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Figure 3.1: If XT is the Brownian diffusion with drift b̄ at time T , then the curves represent the ratio
between the CPU times to sample XT and the time T with the different methods. The (red) dashed lines
represent the multiples of the maximal length for a split interval in the algorithm SRRS (Tel ≤ ‖φ+

b̄
‖−1
∞ ).

The curve obtained through the RRS method reaches its minimum between the first two dashed lines
(orange and red). We considered 1000 simulations and computed the average time.
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Figure 3.2: The kernel density estimations of the density obtained from 105 samples with the Euler-
Maruyama scheme (10−5 dashed line, and 10−2 dotted line) and the exact SRRS algorithm (with Tel and
δ chosen above). The dashed vertical lines represent the points of discontinuity of the drift. The process
has fixed initial condition X0 = 0.5.

finest Euler-Maruyama respectively. To obtain X0.6 the SRRS has applied three times RRS to intervals
of length 0.2.

Let us quantify the average number of rejections for a single sample from the densities h(θ1,θ2)(y) (see
(3.4.15)). For b̄1 with T = Tel = 0.55, it is around 5; indeed the probability of accepting a sample is the
inverse of the constant CH and it is about 0.196. For the densities q(θ1,θ2)(t, T, x0, x2, ·), t < T , the average
number of rejections is around 2. Moreover, as expected, the number of terms of the series necessary to
the decision (accept or reject) its rarely bigger than 1 and the average is around 1. This holds also in the
case of the drift b̄2. Finally the average number of path rejection for each RRS in the SRRS is slightly
larger than 5.

Let us consider the drift b̄2. In this case the average number of rejections for a single sample from the
densities h(θ1,θ2)(y) and q(θ1,θ2)(t, T, x0, x2, ·), t < T are respectively around 7 and 6. Finally the average
number of path rejection for each RRS in the SRRS is slightly bigger than 9.

Figure 3.4 shows the realization of a path of the Brownian diffusion with drift b̄1. The path has been
simulated as follows: given the skeleton with SRRS, it is sampled at each time of the discretization of step
10−3 following the bridges dynamics.
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Figure 3.3: The drift b̄2.
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Figure 3.4: A realization of a path t 7→ Xt up
to time T = 2 under Pb̄1 . The horizontal lines
represent the points of discontinuity of the drift.
The dots on the path are the skeleton of the
process obtained by SRRS which splits [0, 2] in
five subintervals delimited by the dotted vertical
lines.



Chapter 4

Possible extensions and open
questions

Outline of the chapter: This chapter is devoted to some comments on possible extensions of the content
of this document. At first we propose the natural extension of Sections 1.4 and 2.4. Then we discuss
improvements and alternatives to the exact simulation method proposed in Chapter 3.

4.1 More on the transition density of general skew diffusions

4.1.1 Towards an explicit expression

Let us recall the main steps of the procedure we presented in Section 1.3 to obtain an explicit expression
of the transition density of the SBM with constant drift. We continue here the discussion started in
Sections 1.4 and 2.4 with the aim to treat the multi-skew case. The key steps are:

Step 1. the contour integral representation for the transition density (along a contour Γ) (1.3.6);

Step 2. the explicit computation of Green’s function of the resolvent (Lemma 1.3.4);

Step 3. the regularity of Green’s function of the resolvent on the half-plane of complex numbers with
positive real part (after the possible change of variable through the complex square root φ). In particular

1. its holomorphy between the curve φ(Γ) and its continuous deformation to an appropriate curve
a + iR;

2. the localization of existing poles and therefore a criterion for choosing a in an appropriate way;

Step 4. the reduction of the contour integral to an integral on the real line and the identification of a
geometric sum;

Step 5. the identification of the result as a series of Fourier transforms and the explicit computations of
them.

We discussed the first step in Section 1.4. We recall that Lejay, Lenôtre and Pichot [35] proved the
extendibility of the contour integral representation for the transition density (1.3.6) for a class of skew
diffusions with non constant diffusion coefficient. This class contains the multi-skew Brownian motion
with discontinuous drift. They also proved that the zeros of Green’s function are reals (partial answer to
Step 2 and Step 3). In their paper, our Step 3-5 are replaced by computing the inverse Laplace transform
when possible.

Consider first Step 2. Even in the case of a piecewise smooth drift with a finite number of discontinu-
ities, it is difficult to find explicitly Green’s function of the resolvent, i.e. to complete Step 2.

71
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Let us focus on the multi-skew Brownian diffusion with piecewise constant drift.
Assume that the drift µ has a finite number of discontinuities at the skewness points z1 < z2 < . . . < zn
and satisfies:

µ(w) := µ11(−∞,z1)(w) +

n−1∑
j=1

µj+11[zj ,zj+1)(w) + µn+11(zn,∞)(w), µ1, . . . , µn+1 ∈ R .

As in Section 1.4, one can provide a self-adjoint infinitesimal generator and then show that its spectrum
is contained in (−∞, 0] (partial Step 3). The associated Green’s function satisfies Lemma 1.3.4 and is

constructed from the functions u
(j)
± (w) = e−µjw∓

√
2λ+µ2

jw for j = 1, . . . , n + 1. It suffices to define the

functions U± as in Figure 2.6 replacing u± with the functions u
(j)
± on the j − th interval. The required

conditions on U± are continuity and the transmission conditions at the barriers:

k(z−j )

(
G−j

d

dw
u

(j)
− (zj) +G+

j

d

dw
u

(j)
+ (zj)

)
= k(z+

j )

(
G−j+1

d

dw
u

(j+1)
− (zj) +G+

j+1

d

dw
u

(j+1)
+ (zj)

)
.

These conditions are clearly more complicated, but it remains possible to compute the functions U±.
Therefore in case of a multi-skew Brownian diffusion with piecewise constant drift Step 2 is doable.

Once Green’s function is explicit, one considers Step 3.

Let J be the union of the set of discontinuity points of the drift and the set of skewness points.
For any x, y /∈ J we claim that λ 7→ G(x, y;λ) is holomorphic on the resolvent set. This should
be a consequence of the holomorphy of the resolvent there.

We have not been able to find an explicit proof of this assertion in the literature.
In the case of a piecewise constant drift Green’s function includes non trivial combinations of functions of

φj(λ) :=
√

2λ+ µ2
j for different j ∈ {1, . . . , n}. These are biholomorphisms between C \ (−∞,− 1

2µ
2
j ] and

{ξ ∈ C; <e(ξ) > 0}. Let us define by φ the φ̂ associated to the smallest |µ̂|. This function induces a change
of variable in the contour integral (1.3.6). In particular Green’s function is transformed into ξ 7→ Ḡ(x, y; ξ)

such that ξ :=
√

2λ+ µ2
̂ which, if the above claim is true, is holomorphic on {ξ ∈ C; <e(ξ) > 0} \ [0, |µ̂|].

The possible singularities are poles (because the function is meromorphic) and are contained in [0, |µ̂|].
Therefore the integrand is holomorphic between the curves φ(Γ) and a + iR as soon as a > |µ̂|.
If our claim about holomorphy is true, one could check the analogous of Lemma 2.3.3, and this
would complete Step 3.
As indication, in the case of the three-SBM without drift (µ ≡ 0), we can prove that the denominator of
Green’s function does not have any real zero, but for the moment we cannot show that, for any choice
of the parameters, there are no complex zero with positive real part. However we believe it is true, see
Section 2.4. We also think that the analogous of Lemma 2.3.3 holds, but up to now we do not have a
general proof.

Let us consider now Step 4. Once one is integrating on a line a + iR, then a change of variable
provides an integral on R. We foresee difficulties in proving in general that the denominator gives rise to
a geometric series. We think it does, at least if one chooses the constant a big enough (think about the
case of the three-SBM without drift).

Let us assume we can rewrite the transition density as a series of Fourier transforms using the pre-
vious step. The difficulty consists in dealing with the non trivial combinations of functions of the kind√
w2 + (µ2

j1
− µ2

̂ )e
−i ω

√
w2+(µ2

j2
−µ2

̂ ) for some ω ∈ R and j1 6= j2 ∈ {1, . . . , n + 1}. This is similar to

the problem encountered in Section 1.4, and makes treating Step 5 in full generality not yet feasible.
We think that those Fourier transforms will be made of transcendental functions such as the cumulative
distribution function of a Gaussian or other kinds.



4.2. EXACT SIMULATION OF SKEW DIFFUSIONS 73

4.1.2 Its Gaussian bound

As we underlined in Section 3.3.2, the ratio between the transition densities of the multi-skew Brownian
motion with constant drift µ and the Brownian motion with constant drift µ should be uniformly bounded.
Recall that we prove this result in Proposition 2.5.3 for n = 2 semipermeable barriers. We believe to
be able to extend this result in some particular cases with n ≥ 3 (probably under some conditions on
the parameters). Such results seem more complicated to obtain in the case of piecewise constant drift
coefficients. New ideas need to be developed.
Note that for skew diffusions, there already exist Gaussian upper and lower bounds (see Stroock [57] who
extended results by Aronson [5] and Nash [44]). But, to the best of the author’s knowledge, these bounds
are not explicit and can not be exploited in the exact simulation scheme presented in Chapter 3.

4.1.3 The Brownian motion with piecewise constant drift

Following the ideas developed in Chapter 2, we believe that the explicit computation of the transition
density of the Brownian motion with piecewise constant drift in the case of two discontinuities (that is a
three-valued drift) is achievable. This result would have at least two interesting applications.

First we could make a comparison between this explicit transition density and the empirical one
obtained through the exact simulation algorithm plotted in Figure 3.2 (see Section 3). Obviously the
non exact simulation provided by the Euler scheme already confirms that our exact algorithm is correct.
But a comparison with the exact transition density is all the more convincing.

A second application involves an extreme setting when both barriers merge and the drift between the
barriers goes to infinity. This extreme regime is related to many models in geophysics when heterogeneous
medium contains thin slices of different matters. We suspect that the process converges to a one-SBM
with two-valued drift. It seems likely that the proof could probably be done considering directly Green’s
function and checking that it converges to the one we expect. Another proof using the scale function and
the speed measure is possible as well.

4.2 Exact simulation of skew diffusions

There are some alternatives to the exact simulation scheme provided in Chapter 3 for some skew diffusions
with discontinuous drift. If the diffusion coefficient is discontinuous and the drift b 6= 0, to the best of
our knowledge, no exact simulation scheme have been provided. However there is a recent “quasi-exact”
method which uses the explicit expression of Green’s function of the resolvent (see Lenôtre [40]).

In the next subsections we present some possible extensions of the algorithms in this document and
some new exact algorithms we would like to develop in the future.

4.2.1 The multi-skew Brownian motion, a new method for drawing a path

The multi-skew Brownian motion behaves as a Brownian motion everywhere except when it reaches the
barriers z1 < . . . < zn, i.e. the effect of the barriers is purely local. Based on this observation we propose a
theoretical scheme for sampling at the time T . The method, not yet completed, does not need the explicit
knowledge of the transition densities but it relies on knowing how to simulate the one-SBM starting from
its barrier, say z, and conditioned to stay in a symmetric band (z − l, z + l), with l > 0. This task
seems to be achievable using the Itô-McKean representation via the flipping excursions. To the best of
our knowledge, this is still unknown but it should be similar to the Brownian case.

Let us present briefly the scheme of the algorithm. Let x0 be the starting point of the process. The
aim is to provide an exact simulation of the process at time T . If x0 is not (respectively is) a barrier, we
start the algorithm at Step 1 (respectively at Step 2).

Step 1. The initial point x0 ∈ R is not a barrier. Let us denote by z̄ the distance from x0 to the closest
barrier zi. Let us consider x0− z̄ and x0 + z̄; at least one of them is the barrier zi. Let us sample the first
time τ such that a Brownian motion starting from x0 hits the levels x0± z̄. One flips a fair coin to decide
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whether it is x0 − z̄ or x0 + z̄. Then one repeats Step 1 until, either the motion reaches a barrier, or τ is
greater than T . In the latter case we simulate a Brownian motion starting from x0 conditioned on staying
in the band (x0 − z̄, x0 + z̄). The value of this process at time T provides the expected exact simulation.
If the process reaches a barrier, we simulate the rest of the process from this barrier using the Step 2.

Step 2. The starting point x0 is at the barrier zj , the process is a βj-SBM. Let z̄ be the distance from
the closest other barrier (it is either zj − zj−1 or zj+1 − zj). As before, one samples the first time τ
that a Brownian motion starting from x0 reaches one of the levels x0 ± z̄. Thanks to the Itô-McKean
representation, this stopping time is also the first time such that the βj-SBM reaches x0± z̄. If it surpasses
the time horizon T , we conclude the algorithm with Step 3. Otherwise one flips a biased coin to choose
the final point equal to x0 ± z̄ with probability 1±β

2 . Then one goes back to Step 1 or 2 depending on
whether the result is a barrier or not.

Step 3. If τ is beyond T and the initial point x0 is a barrier, say zj . One samples a βj-skew Brownian
motion conditioned on staying between x0 − z̄ and x0 + z̄. Using again the Itô-McKean representation,
we simulate first a Brownian motion starting from x0 conditioned on staying between x0 − z̄ and x0 + z̄
and we flip a biased coin to choose the final point.

Notice that to apply this simulation scheme one needs in addition to be able to sample exactly from the
θ-function giving the density of τ . If so, the method is exact and works for any discrete number of barriers.
This algorithm cannot be extended in the drift case because of its strong dependence on the Itô-McKean
trajectorial representation.

4.2.2 Possible improvements of the exact simulation of the Brownian motion
with discontinuous drift

The main challenge of the exact simulation method for the Brownian motion with drift admitting several
discontinuities consists in sampling from the finite-dimensional distribution of the instrumental measure.
The solution we proposed in this document is based on the generalized rejection sampling method of some
densities for which one knows an approximation and an estimate of the error.

We believe that the retrospective rejection sampling method can be extended to the case of a possibly
infinite discrete set of discontinuities. Moreover, even in the case of a finite number of discontinuities,
it might profit from some simplifications. For example, we think it is possible to sample under Q even

without the explicit expression of the function v
(β1,...,βn)
µ (t, x, y) (and therefore without h

(β1,...,βn)
µ and

q
(β1,...,βn)
µ ).

In fact, in the context of the two-SBM with constant drift, we provided an alternative proof of Propo-
sition 3.4.2 passing directly to the limit inside the contour integral. Unfortunately we don’t have a general
result in this direction but we believe that this way could be explored.

Similarly, we expect the limit v(θ1,...,θn) to be a series of Fourier transforms. But we also could try
to approximate the integral, with a bound on the error, and to apply the generalized rejection sampling
method (Algorithm 1) without an explicit expression of these functions.

4.2.3 Skew Brownian diffusions with discontinuous drift

In Remark 3.3.3 we have seen that the explicit knowledge of the transition density of the multi-SBM with
piecewise constant drift would provide an exact simulation for all multi-SBM with drift b as in Section 3.3.2.
The most difficult part of this approach is to sampling under the instrumental measure. In particular the
challenge is to find explicit appropriate Gaussian bounds needed in the rejection sampling procedure.

4.2.4 Numerical comparisons with other recent methods

In the five last years, several new simulation schemes (exact or not) and results have been developed for
skew diffusions.

It would therefore be useful to compare them. One work in this direction is done by Lejay and Pichot
in [38], but there is still a lot to be done. For instance the exact simulations methods can be explored,
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improved and compared with the non-exact ones, especially when they are supposed to deal with several
discontinuities in the coefficients.

4.3 ... and other unexplored dimensions!

Another direction of generalization of the modest present study is to consider multi-dimensional skew
processes.
There have been some older work for defining these processes, see for example Portenko [49, 50], Takanobu
[61, 60] and some more recent ones e.g. Zaitseva[69] and the very recent Atar and Budhiraja [7]. In the
latter paper the authors provide a new proof of the weak existence and uniqueness for the n−dimensional
SBM.
Apparently the unique existent simulation scheme in the multi-dimensional case is provided by Lejay [34].
Lenôtre in his PhD thesis [39] propose some way to extend these results. Anyway the (exact) simulation
of multi-dimensional skew processes is a conceptually difficult question and there is much to be done, for
simple barrier and for exotic barrier shapes...
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Appendix A

Codes

Generalized rejection sampling method

The following class contains the implementation of Algorithm 1.

Listing A.1: GRS.py

1 import matp lo t l i b . pyplot as p l t
2
3 from numpy . random import random
4 from numpy import arange
5
6 c l a s s GRSVariable :
7
8 # Samples a value accord ing to the ins t rumenta l dens i ty
9 de f IDS( s e l f ) :

10 r a i s e NotImplementedError
11 de f IDF( s e l f , y ) :
12 r a i s e NotImplementedError
13
14 # Computes the N−th term o f the s e r i e s in y
15 de f Term( s e l f , y ,N) :
16 r a i s e NotImplementedError
17
18 # Computes a bound f o r the remainder o f the s e r i e s
19 de f BRS( s e l f ,N) :
20 r a i s e NotImplementedError
21 # Inve r s e Bound Remainder : f i n d s the f i r s t N such that BRS(N) < d
22 de f IBR( s e l f , d ) :
23 r a i s e NotImplementedError
24
25 # Returns the bound f o r the complete s e r i e s v
26 de f Boundv( s e l f ) :
27 r a i s e NotImplementedError
28
29 ’ ’ ’ INPUT:
30 ∗) Nmax i s the maximal number o f terms o f the s e r i e s
31 we are going to con s id e r .
32 OUTPUT:
33 ∗) y the sample from the goa l random v a r i a b l e

77
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34 ∗) Fa l se i f i t i s not an exact sample and True i f i t i s ’ ’ ’
35 de f Genera l i zedReject ionSampl ing ( s e l f ,Nmax=None ) :
36 i f Nmax i s None :
37 Nmax=min ( s e l f . IBR(0 . 00005 ) ,10)
38 whi l e (1 ) :
39 y=s e l f . IDS ( ) # Sample from the ins t rumenta l dens i ty
40 u=random ( ) # Sample a uniform
41
42 N=0 # we s t a r t c o n s i d e r i n g the f i r s t term o f the s e r i e s
43 p a r t i a l s e r i e s=s e l f . Term(y ,N)
44 whi l e abs ( p a r t i a l s e r i e s −u)< s e l f .BRS(N) and N<=Nmax:
45 # Chooses w i s e l y the next va lue o f N
46 newN=max(N+1,min ( s e l f . IBR( abs ( p a r t i a l s e r i e s −u) ) ,Nmax) )
47 whi l e N<newN : # Computes the s e r i e s up to newN
48 N+=1
49 p a r t i a l s e r i e s+=s e l f . Term(y ,N)
50 i f N>Nmax:
51 p r i n t ( ’The r e s t at N=%s i s %s ’ %(N, s e l f .BRS(N) ) )
52 re turn (y , Fa l se ) # Return the nonexact va lue y
53 ’ ’ ’ This happens only with p r o b a b i l i t y sma l l e r than
54 2∗ s e l f .BRS(Nmax+1) , which i s :
55 − sma l l e r than 0.0001 i f s e l f . IBR(0 . 00005 ) i s sma l l e r than 10 ,
56 − e l s e sma l l e r then 2∗ s e l f .BRS(10) which i s a b i t b i gge r ’ ’ ’
57 e l i f ( p a r t i a l s e r i e s > u) :
58 # Return the value y and s i g n a l s i t i s an exact s imu la t i on
59 return (y , True )

Transition density functions

We will apply Algorithm 1 to sample from the following densities.

Two-Skew Brownian motion without drift

This class contains the implementation of the functions needed to simulate the two-SBM (see (2.5.2)).

Listing A.2: TDFTwoSkew.py

1 from GRS import GRSVariable
2
3
4 from math import c e i l
5 from math import s q r t
6 from math import l og
7 from math import exp
8 from math import p i
9

10 from numpy import s i gn
11 from numpy . random import normal
12
13 import matp lo t l i b . pyplot as p l t
14
15 from sc ipy . s t a t s import norm
16
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17 from sc ipy . s p e c i a l import f a c t o r i a l
18 from sc ipy . s p e c i a l import binom
19
20
21 c l a s s TwoSkew( GRSVariable ) :
22
23 de f i n i t ( s e l f , b1=None , b2=None , i t=None , x0=None , z=None ) :
24 i f b1 i s None or b2 i s None or i t i s None or x0 i s None or z i s None :
25 p r i n t ( ””” Please i n s e r t the r i g h t inputs :
26 f i r s t and second skewness parameters ,
27 t , the s t a r t i n g po int and the second b a r r i e r $z$ ””” )
28 s e l f . beta1=b1
29 s e l f . beta2=b2
30 s e l f . t=i t # time increment
31 s e l f . x=x0 # s t a r t i n g po int
32 s e l f . z=z # b a r r i e r s d i s t ance ( one b a r r i e r i s 0 , the other i s z )
33
34 de f IDS( s e l f ) :
35 re turn normal ( s e l f . x , s q r t ( s e l f . t ) )
36
37 de f IDF( s e l f , y ) :
38 re turn norm . pdf (y , s e l f . x , s q r t ( s e l f . t ) )
39
40 de f Boundv( s e l f ) :
41 re turn (1+abs ( s e l f . beta1 ) ) ∗ (1+abs ( s e l f . beta2 ) ) /\
42 (1−abs ( s e l f . beta1 ∗ s e l f . beta2 ) ∗exp(−2∗( s e l f . z ∗∗2) / s e l f . t ) )
43
44 de f Term( s e l f , y ,N) :
45 i f s e l f . beta1 ∗ s e l f . beta2==0 and N !=0:
46 re turn 0
47 c =[ ]
48 c . append (1 )
49 c . append ( s i gn ( y ) ∗ s e l f . beta1 )
50 c . append ( s i gn (y−s e l f . z ) ∗ s e l f . beta2 )
51 c . append ( s i gn ( y∗(y−s e l f . z ) ) ∗ s e l f . beta1 ∗ s e l f . beta2 )
52
53 a =[ ]
54 a . append (0)
55 a . append ( abs ( y )+abs ( s e l f . x )−abs (y−s e l f . x ) )
56 a . append ( abs (y−s e l f . z )+
57 abs ( s e l f . x−s e l f . z )−
58 abs (y−s e l f . x ) )
59 a . append (2∗max( s e l f . z−max( s e l f . x , y , 0 ) ,0 ) +
60 2∗ max( min ( s e l f . x , y , s e l f . z ) , 0 ) )
61 S=0
62 f o r i in range (0 , 4 ) :
63 S+= c [ i ]∗ exp(−(a [ i ]+2∗ s e l f . z∗N) ∗∗2/(2∗ s e l f . t ) ) ∗\
64 exp(−(a [ i ]+2∗ s e l f . z∗N) ∗abs (y−s e l f . x ) /( s e l f . t ) )
65 re turn (− s e l f . beta1 ∗ s e l f . beta2 ) ∗∗N∗S/ s e l f . Boundv ( )
66
67 de f BRS( s e l f ,N) :
68 re turn ( abs ( s e l f . beta1 ∗ s e l f . beta2 ) ∗
69 exp(−2∗ s e l f . z ∗∗2/ s e l f . t ) ) ∗∗(N+1)
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70
71 de f IBR( s e l f , d ) :
72 re turn c e i l ( l og (d) / log ( abs ( s e l f . beta1 ∗ s e l f . beta2 ) ∗
73 exp(−2∗ s e l f . z ∗∗2/ s e l f . t ) ) )

Auxiliary functions

The file contains the functions given by (2.3.7). It contains also (3.4.10) and (3.4.11) of Proposition 3.4.3.

Listing A.3: vTermElem.py

1 from math import s q r t
2 from math import exp
3 from math import p i
4
5 from sc ipy . s t a t s import norm
6
7 from sc ipy . s p e c i a l import f a c t o r i a l
8 from sc ipy . s p e c i a l import f a c t o r i a l 2
9 from sc ipy . s p e c i a l import binom

10
11
12 de f J (q , omega , arg ) :
13 J0= s q r t (2∗ pi ) ∗exp ( ( ( omega+arg ) ∗∗2) /2 + norm . l o g s f ( omega+arg ) )
14 J1= −exp(−(omega∗∗2) /2)
15 J0= −J0∗J1
16 i f q==0:
17 re turn J0
18 e l i f q==1:
19 re turn J1
20 e l i f q%2==0:
21 SumJ=0
22 f o r k in range (0 , q //2) :
23 SumJ+=( f a c t o r i a l 2 (q−1,True ) / f a c t o r i a l 2 (q−2∗k−1,True ) ) ∗\
24 ( omega+arg ) ∗∗(q−2∗k−1)
25 re turn J0 ∗( f a c t o r i a l 2 (q−1,True ) )−J1∗SumJ
26 e l s e :
27 SumJ=0
28 f o r k in range (0 , q//2+1) :
29 SumJ+= (2∗∗k ) ∗( f a c t o r i a l ( q //2 , True ) ) /( f a c t o r i a l ( q//2−k , True ) ) ∗\
30 ( omega+arg ) ∗∗(q−1−2∗k )
31 re turn SumJ∗J1
32
33
34 de f S(L , n , omega , alpha , arg ) :
35 Sum=0
36 f o r k in range (0 , n+1) :
37 f a c t o r 1=binom (n , k ) ∗( omega+arg ) ∗∗(n−k )
38 f o r l in range (0 ,L+1) :
39 f a c t o r 2=binom (L , l ) ∗( arg+alpha ) ∗∗(L−l )
40 Sum+= f a c t o r 1 ∗ f a c t o r 2 ∗J ( k+l , omega , arg )
41 re turn Sum
42
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43
44 de f G(K,m, n , omega , alpha , arg ) :
45 Su=0
46 f o r l in range (0 ,1+(K+m) //2) :
47 Su+= ((−1) ∗∗( l ) ) ∗S(K+m−2∗ l , n , omega , alpha , arg ) /\
48 (2∗∗ l ∗ f a c t o r i a l ( l , True ) ∗ f a c t o r i a l (K+m−2∗ l , True ) )
49 re turn ((−1)∗∗K) ∗ f a c t o r i a l (K+m, True ) ∗Su
50
51
52 de f F( arg1 , arg2 ,K,m, n , omega , alpha ) :
53 re turn G(K,m, n , omega , alpha , arg2 )−(−1)∗∗n ∗ G(K,m, n , omega , alpha , arg1 )
54
55
56 ’ ’ ’ Use fu l f o r h and q ’ ’ ’
57 de f varphi ( theta ) :
58 re turn s q r t (2∗ pi ) ∗exp ( ( theta ) ∗∗2 /2 +norm . l o g s f ( theta ) )
59
60
61 de f Ctheta ( theta1 , theta2 ) :
62 S1= abs ( theta1 ) ∗ varphi ( theta1 ) + abs ( theta2 ) ∗ varphi ( theta2 )
63 i f abs ( theta1−theta2 )<exp(−10) :
64 re turn 1 + S1+3 ∗ theta1 ∗∗2
65 c o e f f 1= ( abs ( theta1+theta2 )−abs ( theta1−theta2 ) )
66 c o e f f 2= 2∗ abs ( theta1 ∗ theta2 )
67 ps i 1= min(2∗ abs ( theta1−theta2 ) ,
68 c o e f f 1 ∗abs ( theta1 ) ∗ varphi ( theta1 )+c o e f f 2 ∗ varphi ( theta2 ) )
69 ps i 2= min(2∗ abs ( theta1−theta2 ) ,
70 c o e f f 1 ∗abs ( theta2 ) ∗ varphi ( theta2 )+c o e f f 2 ∗ varphi ( theta1 ) )
71 S2=max( ps i1 , p s i 2 )
72 S3=min ( abs ( theta1−theta2 ) , c o e f f 2 ∗ abs ( varphi ( theta1 )−varphi ( theta2 ) ) /2)
73 re turn 1+S1+ ( S2+S3 ) /( abs ( theta1−theta2 ) )
74
75
76 de f Bound v ( theta1 , theta2 , t , z ) :
77 re turn min ( Ctheta ( theta1 , theta2 ) /(1−exp(−2∗( z ∗∗2) / t ) ) , 3 )

Two-Skew Brownian motion with drift

This class contains the implementation of the functions needed to simulate the two-SBM with drift, see
(2.5.4).

Listing A.4: TDFTwoSkewDrift.py

1 from GRS import GRSVariable
2 from vTermElem import ∗
3
4 from math import c e i l
5 from math import s q r t
6 from math import l og
7 from math import exp
8 from math import p i
9

10 from numpy import s i gn
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11 from numpy . random import normal
12
13 import matp lo t l i b . pyplot as p l t
14
15 from sc ipy . s t a t s import norm
16
17 from sc ipy . s p e c i a l import f a c t o r i a l
18 from sc ipy . s p e c i a l import binom
19
20
21
22 c l a s s TwoSkewDrift ( GRSVariable ) :
23
24 de f i n i t ( s e l f , b1=None , b2=None ,mu=None , i t=None , x0=None , z=None ) :
25 i f b1 i s None or b2 i s None or mu i s None or \
26 i t i s None or x0 i s None or z i s None :
27 p r i n t ( ””” Please i n s e r t the r i g h t imputs :
28 f i r s t and second skewness parameters , the constant d r i f t ,
29 t , the s t a r t i n g po int and the second b a r r i e r $z$ ””” )
30 s e l f . beta1=b1
31 s e l f . beta2=b2
32 s e l f .mu=mu∗ s q r t ( i t ) # constant d r i f t
33 s e l f . t=i t # time increment
34 s e l f . x=x0 # s t a r t i n g po int
35 s e l f . z=z # b a r r i e r s d i s t ance
36
37 de f IDS( s e l f ) :
38 re turn normal ( s e l f . x+s e l f .mu∗ s e l f . t , s q r t ( s e l f . t ) )
39
40 de f IDF( s e l f , y ) :
41 re turn norm . pdf (y , s e l f . x+s e l f .mu∗ s e l f . t , s q r t ( s e l f . t ) )
42
43 de f Boundv( s e l f ) :
44 re turn 4 / (1−exp(−2∗( s e l f . z ∗∗2) / s e l f . t ) )
45
46 de f Term( s e l f , y ,N) : # The N−th term o f the normal ized s e r i e s v
47 i f abs ( s e l f . beta1 ∗ s e l f . beta2 )<exp(−10) and N>0:
48 re turn 0
49
50 # The v ec to r s o f the c o e f f i c i e n t s o f the polynomia ls
51 c1=[
52 1 ,
53 ( s e l f . beta1+s e l f . beta2 ) ∗ s e l f .mu,
54 s e l f . beta1 ∗ s e l f . beta2 ∗ s e l f .mu∗∗2
55 ]
56 c2=[
57 s e l f . beta1 ∗ s i gn ( y ) ,
58 − s e l f . beta1 ∗ s e l f .mu−s i gn ( y∗(y−s e l f . z ) ) ∗ s e l f . beta1 ∗ s e l f . beta2 ∗ s e l f .mu

↪→ ,
59 s e l f . beta1 ∗ s e l f . beta2 ∗( s e l f .mu∗∗2) ∗ s i gn (y−s e l f . z )
60 ]
61 c3=[
62 s e l f . beta2 ∗ s i gn (y−s e l f . z ) ,
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63 − s e l f . beta2 ∗ s e l f .mu+s ign ( y∗(y−s e l f . z ) ) ∗ s e l f . beta1 ∗ s e l f . beta2 ∗ s e l f .mu
↪→ ,

64 − s e l f . beta1 ∗ s e l f . beta2 ∗( s e l f .mu∗∗2) ∗ s i gn ( y )
65 ]
66 c4=[
67 s i gn ( y∗(y−s e l f . z ) ) ∗ s e l f . beta1 ∗ s e l f . beta2 ,
68 0 ,
69 −s i gn ( y∗(y−s e l f . z ) ) ∗ s e l f . beta1 ∗ s e l f . beta2 ∗( s e l f .mu) ∗∗2
70 ]
71 # cons t ruc t the matrix o f the c [ j , h ]
72 c=[c1 , c2 , c3 , c4 ]
73
74 alpha=min ( abs ( s e l f .mu) ,
75 max(0 ,−2∗ s e l f . beta1 ∗ s e l f .mu,−2∗ s e l f . beta2 ∗ s e l f .mu) )
76
77 C1=[c1 [ 0 ] , c1 [1 ]+2∗ alpha ∗ c1 [ 0 ] , c1 [2 ]+ alpha ∗ c1 [1 ]+( alpha ∗∗2) ∗ c1 [ 0 ] ]
78 C2=[c2 [ 0 ] , c2 [1 ]+2∗ alpha ∗ c2 [ 0 ] , c2 [2 ]+ alpha ∗ c2 [1 ]+( alpha ∗∗2) ∗ c2 [ 0 ] ]
79 C3=[c3 [ 0 ] , c3 [1 ]+2∗ alpha ∗ c3 [ 0 ] , c3 [2 ]+ alpha ∗ c3 [1 ]+( alpha ∗∗2) ∗ c3 [ 0 ] ]
80 C4=[c4 [ 0 ] , c4 [1 ]+2∗ alpha ∗ c4 [ 0 ] , c4 [2 ]+ alpha ∗ c4 [1 ]+( alpha ∗∗2) ∗ c4 [ 0 ] ]
81 C=[C1 , C2 , C3 , C4 ]
82
83 a =[ ]
84 a . append (0)
85 a . append ( abs ( y )+abs ( s e l f . x )−abs (y−s e l f . x ) )
86 a . append ( abs (y−s e l f . z )+abs ( s e l f . x−s e l f . z )−abs (y−s e l f . x ) )
87 a . append (2∗max( s e l f . z−max( s e l f . x , y , 0 ) ,0 ) +\
88 2∗ max( min ( s e l f . x , y , s e l f . z ) , 0 ) )
89
90 omega =[ ]
91 f o r i in range (0 , 4 ) :
92 omega . append ( ( a [ i ]+2∗N∗ s e l f . z+abs (y−s e l f . x ) ) / s q r t ( s e l f . t ) )
93
94 i f abs ( ( s e l f . beta1−s e l f . beta2 ) ∗ s e l f .mu)<exp(−10) :
95 Su=0
96 f o r m in range (0 ,N+1) :
97 f a c t o r 1= binom (N,m)
98 f o r s in range (0 ,N−m+1) :
99 f a c t o r 2= binom (N−m, s ) ∗((−2∗ alpha ) ∗∗(N−m−s ) ) ∗\

100 ( s e l f .mu∗∗2−alpha ∗∗2) ∗∗ s
101 f o r i in range (0 , 4 ) :
102 f o r h in range (0 , 3 ) :
103 f a c t o r 3=C[ i ] [2−h ]∗\
104 G(N+h−s ,m,2∗N+1,omega [ i ] , alpha , s e l f . beta1 ∗ s e l f .mu)
105 Su+= f a c t o r 1 ∗ f a c t o r 2 ∗ f a c t o r 3
106 re turn exp ( ( s e l f . x−y ) ∗∗2/(2∗ s e l f . t ) ) ∗(−( s e l f . beta1 ∗ s e l f . beta2 ) ∗∗N) /\
107 ( f a c t o r i a l (2∗N+1,True ) ) ∗Su/ s e l f . Boundv ( )
108
109 Su=0
110 f o r n in range (0 ,N+1) :
111 f a c t o r 0= binom (2∗N−n ,N) /( f a c t o r i a l (n , True ) ∗\
112 ( ( s e l f . beta1−s e l f . beta2 ) ∗ s e l f .mu) ∗∗(2∗N+1−n) )
113 f o r m in range (0 ,N+1) :
114 f a c t o r 1=binom (N,m)
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115 f o r s in range (0 ,N−m+1) :
116 f a c t o r 2= binom (N−m, s ) ∗((−2∗ alpha ) ∗∗(N−m−s ) ) ∗\
117 ( s e l f .mu∗∗2−alpha ∗∗2) ∗∗ s
118 f o r i in range (0 , 4 ) :
119 f o r h in range (0 , 3 ) :
120 f a c t o r 3=C[ i ] [2−h ]∗ exp ( ( s e l f . x−y ) ∗∗2/(2∗ s e l f . t ) ) ∗\
121 F( s e l f . beta1 ∗ s e l f .mu,
122 s e l f . beta2 ∗ s e l f .mu,
123 N+h−s ,
124 m,
125 n ,
126 omega [ i ] ,
127 alpha )
128 Su+= f a c t o r 0 ∗ f a c t o r 1 ∗ f a c t o r 2 ∗ f a c t o r 3
129 re turn ((−1)∗∗N) ∗( s e l f . beta1 ∗ s e l f . beta2 ) ∗∗N ∗Su/ s e l f . Boundv ( )
130
131 de f BRS( s e l f ,N) :
132 i f abs ( s e l f . beta1 ∗ s e l f . beta2 )<exp(−10) :
133 re turn 0
134 return ( exp(−2∗ s e l f . z ∗∗2/ s e l f . t ) ) ∗∗(N+1)
135
136 de f IBR( s e l f , d ) :
137 i f abs ( s e l f . beta1 ∗ s e l f . beta2 )<exp(−10) :
138 re turn 0
139 return c e i l ( l og (d) /(−2∗ s e l f . z ∗∗2/ s e l f . t ) )

For sampling under the instrumental measure

This class contains the functions needed to compute the series in Proposition 3.4.2

Listing A.5: vTerm.py

1 from vTermElem import ∗
2
3 from math import c e i l
4 from math import s q r t
5 from math import l og
6 from math import exp
7 from math import p i
8
9 from numpy import s i gn

10 from numpy . random import normal
11
12 import matp lo t l i b . pyplot as p l t
13
14 from sc ipy . s t a t s import norm
15
16 from sc ipy . s p e c i a l import f a c t o r i a l
17 from sc ipy . s p e c i a l import f a c t o r i a l 2
18 from sc ipy . s p e c i a l import binom
19
20
21
22 # the term N of the s e r i e s in ( 3 . 4 . 6 ) , ( 3 . 4 . 8 )
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23 de f V(N, theta1 , theta2 , alpha , t , x , y , z ) :
24 # vecto r o f the c o e f f i c i e n t s c { j , h}=c [ j ] [ h ] in ( 3 . 4 . 6 )
25 c1 =[1 ,( theta1+theta2 ) , theta1 ∗ theta2 ]
26 c2 =[0 , −theta1 , theta1 ∗ theta2 ∗ s i gn (y−z ) ]
27 c3 =[0 , −theta2 , −theta1 ∗ theta2 ∗ s i gn ( y ) ]
28 c4 =[0 ,0 ,− s i gn ( y∗(y−z ) ) ∗ theta1 ∗ theta2 ]
29 c=[c1 , c2 , c3 , c4 ]
30
31 # vecto r o f the f u n c t i o n s in ( 3 . 4 . 7 )
32 C1=[c1 [ 0 ] , c1 [1 ]+2∗ alpha ∗ c1 [ 0 ] , c1 [2 ]+ alpha ∗ c1 [1 ]+( alpha ∗∗2) ∗ c1 [ 0 ] ]
33 C2=[c2 [ 0 ] , c2 [1 ]+2∗ alpha ∗ c2 [ 0 ] , c2 [2 ]+ alpha ∗ c2 [1 ]+( alpha ∗∗2) ∗ c2 [ 0 ] ]
34 C3=[c3 [ 0 ] , c3 [1 ]+2∗ alpha ∗ c3 [ 0 ] , c3 [2 ]+ alpha ∗ c3 [1 ]+( alpha ∗∗2) ∗ c3 [ 0 ] ]
35 C4=[c4 [ 0 ] , c4 [1 ]+2∗ alpha ∗ c4 [ 0 ] , c4 [2 ]+ alpha ∗ c4 [1 ]+( alpha ∗∗2) ∗ c4 [ 0 ] ]
36 C=[C1 , C2 , C3 , C4 ]
37
38 # vecto r in ( 2 . 3 . 1 )
39 a =[ ]
40 a . append (0)
41 a . append ( abs ( y )+abs ( x )−abs (y−x ) )
42 a . append ( abs (y−z )+abs (x−z )−abs (y−x ) )
43 a . append (2∗max( z−max(x , y , 0 ) ,0 ) + 2∗ max( min (x , y , z ) , 0 ) )
44
45 # vecto r o f the omega { j , k} in ( 2 . 3 . 1 2 )
46 omega =[ ]
47 f o r i in range (0 , 4 ) :
48 omega . append ( ( a [ i ]+2∗N∗z+abs (y−x ) ) / s q r t ( t ) )
49
50 i f abs ( theta1−theta2 )<exp(−10) :
51 Su=0
52 f o r i in range (0 , 4 ) :
53 f o r h in range (0 , 3 ) :
54 Su+=C[ i ] [2−h ]∗G(h , 0 , ( 2∗N+1) ,
55 omega [ i ] , alpha , theta1 )
56 re turn −exp ( ( y−x ) ∗∗2/(2∗ t ) ) ∗ ( ( theta1 ∗ theta2 ) ∗∗N) /\
57 ( f a c t o r i a l (2∗N+1,True ) ) ∗Su
58
59 Su=0
60 f o r n in range (0 ,N+1) :
61 f a c t o r 1=binom (2∗N−n ,N) /\
62 ( f a c t o r i a l (n , True ) ∗( theta1−theta2 ) ∗∗(2∗N−n+1) )
63 f o r i in range (0 , 4 ) :
64 f o r h in range (0 , 3 ) :
65 f a c t o r 2=C[ i ] [2−h ]∗ exp ( ( y−x ) ∗∗2/(2∗ t ) ) ∗\
66 F( theta1 , theta2 , h , 0 , n , omega [ i ] , a lpha )
67 Su+= f a c t o r 1 ∗ f a c t o r 2
68 re turn (−1)∗∗N ∗( theta1 ∗ theta2 ) ∗∗N ∗Su

This class contains the implementation of the functions in (3.4.18), which allow to sample from the
reference measure Q as in Section 3.4.4.

Listing A.6: TDFh.py

1 ’ ’ ’ This f i l e conta in s the c l a s s o f the dens i ty h nece s sa ry f o r GRS
2 in order to sample from the f i n i t e d imens iona l d i s t r i b u t i o n s
3 o f the r e f e r e n c e measure Q de f ined in the RRS method . ’ ’ ’
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4
5
6 # The c l a s s in which to f i n d the f u n c t i o n s f o r the GRS
7 from GRS import GRSVariable
8 from vTermElem import ∗
9 from vTerm import V

10
11 from math import c e i l
12 from math import s q r t
13 from math import l og
14 from math import exp
15 from math import p i
16
17 from numpy import s i gn
18 from numpy . random import normal
19
20 import matp lo t l i b . pyplot as p l t
21
22 from sc ipy . s t a t s import norm
23
24 from sc ipy . s p e c i a l import f a c t o r i a l
25 from sc ipy . s p e c i a l import f a c t o r i a l 2
26 from sc ipy . s p e c i a l import binom
27
28
29
30 #The dens i ty h o f X i t s t a r t i n g at x0
31 c l a s s EDh( GRSVariable ) :
32
33 de f i n i t ( s e l f ,
34 boundb=None ,
35 p r i m i t i v e=None ,
36 theta1=None ,
37 theta2=None ,
38 i t=None ,
39 x0=None ,
40 z=None ,
41 factorbound=None ,
42 d e l t a =0.5) :
43 i f boundb i s None or p r i m i t i v e i s None or theta1 i s None or \
44 theta2 i s None or i t i s None or x0 i s None or z i s None :
45 p r i n t ( ””” Please i n s e r t : the bound f o r the d r i f t , i t s p r imi t ive ,
46 the jumps h a l f he ights , t , the s t a r t i n g po int
47 and the second b a r r i e r $z$ . ””” )
48 theta1=0
49 theta2=0
50 i f factorbound i s None :
51 # bound M b in formula ( 3 . 4 . 1 8 )
52 s e l f . Bbound=exp ( ( boundb∗∗2) ∗ i t /(2∗ d e l t a ) )
53 e l s e :
54 s e l f . Bbound=factorbound ( x0 )
55 s e l f . boundb=boundb
56 s e l f . p r i m i t i v e=p r i m i t i v e
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57 s e l f . d e l t a=de l t a # parameter that improves the e f f i c i e n c y
58 s e l f . theta1=theta1 ∗ s q r t ( i t ) # h a l f o f the jump in 0 o f the d r i f t
59 s e l f . theta2=theta2 ∗ s q r t ( i t ) # h a l f o f the jump in z o f the d r i f t
60 s e l f . t=i t # time increment
61 s e l f . x=x0 # s t a r t i n g po int at the s t a r t i n g time
62 s e l f . z=z
63
64 # Functions f o r GRS
65
66 de f IDS( s e l f ) :
67 re turn normal ( s e l f . x , s q r t ( s e l f . t /(1− s e l f . d e l t a ) ) )
68
69 de f IDF( s e l f , y ) :
70 re turn norm . pdf (y , s e l f . x , s q r t ( s e l f . t /(1− s e l f . d e l t a ) ) )
71
72 ’ ’ ’ Introduce some f u n c t i o n s f o r each case ’ ’ ’
73 de f Boundv( s e l f ) :
74 re turn s e l f . Bbound ∗ Bound v ( s e l f . theta1 , s e l f . theta2 , s e l f . t , s e l f . z )
75
76 de f Term( s e l f , y ,N) :
77 i f abs ( s e l f . theta1 ∗ s e l f . theta2 )<exp(−10) and N >0:
78 re turn 0
79
80 # The parameter a in Propos i t i on 3 . 4 . 2
81 alpha=max(0 ,−2∗ s e l f . theta1 ,−2∗ s e l f . theta2 )
82 Prim=exp ( s e l f . p r i m i t i v e ( y )− s e l f . p r i m i t i v e ( s e l f . x )− s e l f . d e l t a ∗(y−s e l f . x )

↪→ ∗∗2/(2∗ s e l f . t ) )
83 re turn V(N, s e l f . theta1 , s e l f . theta2 , alpha , s e l f . t , s e l f . x , y , s e l f . z ) ∗Prim/

↪→ s e l f . Boundv ( )
84
85
86 de f BRS( s e l f ,N) : # Bound remainder s e r i e s
87 i f s e l f . theta1 ∗ s e l f . theta2==0:
88 re turn 0
89 return ( exp(−2∗ s e l f . z ∗∗2/ s e l f . t ) ) ∗∗(N+1)
90
91
92 de f IBR( s e l f , d ) : # Inve r s e o f BRS
93 i f s e l f . theta1 ∗ s e l f . theta2==0:
94 re turn 0
95 return c e i l ( l og (d) /(−2∗ s e l f . z ∗∗2/ s e l f . t ) )

This class contains the implementation of the functions needed to simulate the reference measure Q,
see formula 3.4.17.

Listing A.7: TDFq.py

1 from GRS import GRSVariable
2 from vTermElem import ∗
3 from vTerm import V
4
5
6 from math import c e i l
7 from math import s q r t
8 from math import l og
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9 from math import exp
10
11 from numpy . random import normal
12
13 import matp lo t l i b . pyplot as p l t
14
15 from sc ipy . s t a t s import norm
16
17 from sc ipy . s p e c i a l import f a c t o r i a l
18 from sc ipy . s p e c i a l import f a c t o r i a l 2
19 from sc ipy . s p e c i a l import binom
20
21 ’ ’ ’ The dens i ty q f o r sampling at time t knowing that ( t1 , x1 ) and ( t2 , x2 )
22 that i s the l i m i t o f the b r idge s dens i ty o f the skew BM
23 with p a t i c u l a r d r i f t and semipermeab i l i ty c o e f f i c i e n t s beta1 , beta2
24 such that beta1 ∗mu and beta2 ∗mu converge to theta1 and theta2 ’ ’ ’
25
26 c l a s s EDbridge ( GRSVariable ) :
27
28 de f i n i t ( s e l f ,
29 t=None ,
30 t1=None ,
31 t2=None ,
32 x1=None ,
33 x2=None ,
34 theta1=None ,
35 theta2=None ,
36 z=None ) :
37 i f t i s None or t1 i s None or t2 i s None or x1 i s None or \
38 x2 i s None or theta1 i s None or theta2 i s None or z i s None :
39 p r i n t ( ””” Please i n s e r t the parameters t , s t a r t i n g time ,
40 ending time , s t a r t i n g point , ending point ,
41 jumps h a l f he ights , second b a r r i e r ””” )
42 s e l f . t=t # time t between t1 and t2
43 s e l f . t1=t1
44 s e l f . t2=t2
45 s e l f . x1=x1 # X ( t1 )
46 s e l f . x2=x2 # X ( t2 )
47 s e l f . theta1=theta1
48 s e l f . theta2=theta2
49 s e l f . z=z
50
51 de f IDS( s e l f ) :
52 re turn normal ( s e l f . x1+( s e l f . x2−s e l f . x1 ) ∗\
53 ( s e l f . t−s e l f . t1 ) /( s e l f . t2−s e l f . t1 ) ,
54 s q r t ( ( s e l f . t2−s e l f . t ) ∗( s e l f . t−s e l f . t1 ) /\
55 ( s e l f . t2−s e l f . t1 ) ) )
56
57 de f IDF( s e l f , y ) :
58 m=s e l f . x1+( s e l f . x2−s e l f . x1 ) ∗( s e l f . t−s e l f . t1 ) /( s e l f . t2−s e l f . t1 )
59 sigma=( s e l f . t2−s e l f . t ) ∗( s e l f . t−s e l f . t1 ) /( s e l f . t2−s e l f . t1 )
60 re turn norm . pdf (y ,m, s q r t ( sigma ) )
61
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62
63 de f Boundv( s e l f ) :
64 B1=Bound v ( s e l f . theta1 ∗ s q r t ( s e l f . t−s e l f . t1 ) ,
65 s e l f . theta2 ∗ s q r t ( s e l f . t−s e l f . t1 ) ,
66 s e l f . t−s e l f . t1 , s e l f . z )
67 B2=Bound v ( s e l f . theta1 ∗ s q r t ( s e l f . t2−s e l f . t ) ,
68 s e l f . theta2 ∗ s q r t ( s e l f . t2−s e l f . t ) ,
69 s e l f . t2−s e l f . t , s e l f . z )
70 re turn B1∗B2
71
72
73 de f Term( s e l f , y ,N) :
74
75 i f abs ( s e l f . theta1 ∗ s e l f . theta2 )<exp(−10) and N >0:
76 re turn 0
77
78 # The parameter a in Propos i t i on 3 . 4 . 2
79 alpha=max(0 ,−2∗ s e l f . theta1 ,−2∗ s e l f . theta2 )
80 alpha1=s q r t ( s e l f . t−s e l f . t1 ) ∗ alpha
81 alpha2=s q r t ( s e l f . t2−s e l f . t ) ∗ alpha
82 theta11=s e l f . theta1 ∗ s q r t ( s e l f . t−s e l f . t1 )
83 theta21=s e l f . theta2 ∗ s q r t ( s e l f . t−s e l f . t1 )
84 theta12=s e l f . theta1 ∗ s q r t ( s e l f . t2−s e l f . t )
85 theta22=s e l f . theta2 ∗ s q r t ( s e l f . t2−s e l f . t )
86
87 CompleteSu1=V(N, theta11 , theta21 , alpha1 , s e l f . t−s e l f . t1 , s e l f . x1 , y , s e l f . z )
88 CompleteSu2=V(N, theta12 , theta22 , alpha2 , s e l f . t2−s e l f . t , y , s e l f . x2 , s e l f . z )
89 S=CompleteSu1∗CompleteSu2
90 f o r j in range (0 ,N) :
91 S+=CompleteSu1∗V( j ,
92 theta12 ,
93 theta22 ,
94 alpha2 ,
95 s e l f . t2−s e l f . t ,
96 y ,
97 s e l f . x2 ,
98 s e l f . z )
99 S+=CompleteSu2∗V( j ,

100 theta11 ,
101 theta21 ,
102 alpha1 ,
103 s e l f . t−s e l f . t1 ,
104 s e l f . x1 ,
105 y ,
106 s e l f . z )
107 re turn S/ s e l f . Boundv ( )
108
109 de f BRS( s e l f ,N) :
110 i f s e l f . theta1 ∗ s e l f . theta2==0:
111 re turn 0
112 R1=exp(−2∗ s e l f . z ∗∗2 /( s e l f . t−s e l f . t1 ) )
113 R2=exp(−2∗ s e l f . z ∗∗2 /( s e l f . t2−s e l f . t ) )
114 re turn R1∗∗(N+1)+R2∗∗(N+1)−(R1∗R2) ∗∗(N+1)
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115
116
117 de f IBR( s e l f , d ) :
118 ’ ’ ’ s i n c e we don ’ t have an exact inve r s e , f o r the remainder
119 we cons id e r as i f the re was only the product o f the remainder .
120 We l o s t e f f i c i e n c y ’ ’ ’
121 i f s e l f . theta1 ∗ s e l f . theta2==0:
122 re turn 0
123 # s i n c e BRS(N)<= 2∗max(R1 , R2) ∗∗(N+1) we have g iven i t ’ s i n v e r s e
124 re turn c e i l ( −l og (d/2) /(2∗ ( s e l f . z ∗∗2) /\
125 max( ( s e l f . t−s e l f . t1 ) , ( s e l f . t2−s e l f . t ) ) ) )

Retrospective rejection sampling scheme

The following class implements Algorithm 2 and Algorithm 3 explained in Section 3.5.2.

Listing A.8: RetroRS.py

1 from math import s q r t
2 from math import c e i l
3 from math import f l o o r
4 from math import p i
5
6 import matp lo t l i b . pyplot as p l t
7
8 from numpy . random import normal
9 from numpy import arange

10 from numpy import newaxis
11 from numpy import l i n s p a c e
12 from numpy import exp
13 from numpy import asar ray
14 from numpy import s i gn
15
16 import p i c k l e
17
18 from random import expovar ia te
19 from random import uniform
20
21 from sc ipy . s t a t s import norm
22
23 from TDFh import EDh
24 from TDFq import EDbridge
25
26
27 c l a s s SimBDDriftDisc :
28 # Simulate Brownian D i f f u s i o n with Discont inuous D r i f t
29
30 de f x0 ( s e l f ) :
31 r a i s e NotImplementedError
32 de f t0 ( s e l f ) :
33 r a i s e NotImplementedError
34 de f theta ( s e l f ) :
35 r a i s e NotImplementedError
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36 de f IT ( s e l f ) :
37 r a i s e NotImplementedError
38 de f T( s e l f ) :
39 r a i s e NotImplementedError
40 de f z ( s e l f ) :
41 r a i s e NotImplementedError
42 de f b( s e l f , x ) :
43 r a i s e NotImplementedError
44 de f phi b ( s e l f , x ) :
45 r a i s e NotImplementedError
46 de f B( s e l f , x ) :
47 r a i s e NotImplementedError
48 de f Bound b ( s e l f ) :
49 r a i s e NotImplementedError
50 de f Bound phi ( s e l f ) :
51 r a i s e NotImplementedError
52 de f d e l t a ( s e l f ) :
53 r a i s e NotImplementedError
54 de f CleverBound ( s e l f , x ) :
55 r a i s e NotImplementedError
56
57
58 ’ ’ ’ The r e t r o s p e c t i v e r e j e c t i o n sampling
59 prov ide s the s imu la t i on o f ( 1 . 1 )=BM+b∗ t
60 at the time s e l f . t0+s e l f . IT
61 INPUT:
62 ∗) T: l ength o f i n t e r v a l
63 ∗) x0 : s t a r t i n g po int o f the s imu la t i on
64 ∗) CB: i f True uses the c l e v e r bound
65 OUTPUTS
66 ∗) The func t i on r e tu rn s the s k e l e t o n X T :
67 the proce s s at time t0+T ’ ’ ’
68 de f RRS( s e l f ,T=None , x0=None ,CB=True ) :
69 i f T i s None :
70 T=s e l f . IT ( )
71 # i n i t i a l c o n d i t i o n s
72 i f x0 i s None :
73 x0=s e l f . x0 ( )
74
75 r e j e c t=True
76 whi l e r e j e c t i s True :
77
78 # s imu la t i on o f X T=X {T+t0 } with the GRS f o r the dens i ty h
79 i f CB==True :
80 P=EDh( s e l f . Bound b ( ) ,
81 s e l f .B, s e l f . theta ( ) [ 0 ] ,
82 s e l f . theta ( ) [ 1 ] ,
83 i t=T,
84 x0=x0 ,
85 z=s e l f . z ( ) ,
86 factorbound=s e l f . CleverBound ,
87 d e l t a=s e l f . d e l t a ( ) )
88 e l s e :
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89 P=EDh( s e l f . Bound b ( ) ,
90 s e l f .B,
91 s e l f . theta ( ) [ 0 ] ,
92 s e l f . theta ( ) [ 1 ] ,
93 i t=T,
94 x0=x0 ,
95 z=s e l f . z ( ) ,
96 d e l t a=s e l f . d e l t a ( ) )
97 [ X T , ex ]=P. Genera l i zedReject ionSampl ing ( )
98 i f ex i s Fa l se :
99 p r i n t ( ’h i s not exact ’ )

100
101 # Sta r t i ng c r e a t i n g the Poisson po in t s on the r e c t a n g l e
102 AreaRectangle=T∗ s e l f . Bound phi ( )
103 i f AreaRectangle < exp(−10) :
104 re turn X T
105
106 ’ ’ ’ Re t ro spec t i v e r e j e c t i o n f o r the Poisson t imes tau :
107 sample X tau from q with GRS between the prev ious known point
108 and the f i n a l (T+t0 , X T) ’ ’ ’
109 r e j e c t=False
110 former tau=0
111 x tau=x0
112 covered area=expovar ia te ( AreaRectangle )
113 whi l e ( covered area<AreaRectangle ) :
114 tau=covered area / s e l f . Bound phi ( )
115 y tau=uniform (0 , s e l f . Bound phi ( ) )
116 P=EDbridge (
117 tau ,
118 former tau ,
119 T,
120 x tau ,
121 X T ,
122 s e l f . theta ( ) [ 0 ] ,
123 s e l f . theta ( ) [ 1 ] ,
124 z=s e l f . z ( ) )
125 ( x tau , ex )=P. Genera l i zedReject ionSampl ing ( )
126 # Condit ion f o r the r e j e c t i o n−acceptance
127 i f s e l f . phi b ( x tau )>y tau :
128 r e j e c t=True
129 break
130 e l i f ex i s Fa l se :
131 p r i n t ( ’ Not exact q ’ )
132 former tau=tau
133 covered area+=expovar ia te ( AreaRectangle )
134 re turn X T
135
136
137 ’ ’ ’ The s p l i t r e t r o s p e c t i v e r e j e c t i o n sampling f o r X IT ,
138 that s p l i t s the time i n t e r v a l o f l ength s e l f . IT in to sma l l e r i n t e r v a l s
139 o f l ength sma l l e r than s e l f .T to whom RRS i s app l i ed
140 and pas t e s the s k e l e t o n s ’ ’ ’
141 de f SRRS( s e l f , Ti=None ) :
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142
143 i f Ti i s None :
144 Ti=s e l f . IT ( )
145
146 i f Ti<=s e l f .T( ) :
147 X T= s e l f .RRS( Ti , s e l f . x0 ( ) )
148 re turn X T
149
150 # we s imulate at i n t e r v a l s o f l ength sma l l e r than s e l f .T( )
151 k=c e i l ( Ti/ s e l f .T( ) )
152
153 # the l ength o f the smal l i n t e r v a l s
154 deltaT=Ti/k
155
156 # the s t a r t i n g p o s i t i o n s
157 X T=s e l f . x0 ( )
158 f o r h in range (0 , k ) :
159 X T=s e l f .RRS( deltaT , X T)
160
161 return X T

The next functions contain the informations about the drifts (3.5.1).

Listing A.9: Drifts.py, first part

1 c l a s s Step ( SimBDDriftDisc ) :
2 # Piecewi se constant d r i f t
3 de f i n i t ( s e l f ,T=1,z=1) :
4 s e l f . fT=T
5 s e l f . dz=z # the second b a r r i e r , the f i r s t i s in zero
6 p r i n t ( ””””The time %s has been chosen , we cons id e r
7 time i n t e r v a l s sma l l e r than %s ””” % ( s e l f . fT , s e l f .T( ) ) )
8
9 # i n i t i a l c o n d i t i o n s

10 de f x0 ( s e l f ) :
11 re turn 0 .5
12 de f t0 ( s e l f ) :
13 re turn 0
14
15 # time i n t e r v a l
16 de f IT ( s e l f ) :
17 re turn s e l f . fT
18 # elementary time i n t e r v a l
19 de f T( s e l f ) :
20 re turn 0 .55 #<(1/ s e l f . Bound phi ( ) )
21 # d i s t anc e between the b a r r i e r s
22 de f z ( s e l f ) :
23 re turn s e l f . dz
24
25 # Jumps ’ i n t e n s i t i e s and d r i f t
26 de f theta ( s e l f ) :
27 re turn (0 .5 , −0 .5)
28
29 # The d r i f t
30 de f b( s e l f , x ) :



94 APPENDIX A. CODES

31 i f (x<=0) :
32 re turn 0
33 e l i f (x<=s e l f . z ( ) ) :
34 re turn s e l f . theta ( ) [0]− s e l f . theta ( ) [ 1 ]
35 e l s e :
36 re turn 0
37
38 # The non negat ive func t i on phi b = (b∗∗2+der b−i n f (b∗∗2+ der b ) ) /2
39 de f phi b ( s e l f , x ) :
40 i f (x<=0) :
41 re turn 0
42 e l i f (x<=s e l f . z ( ) ) :
43 re turn ( s e l f . b ( x ) ∗∗2) /2
44 e l s e :
45 re turn 0
46
47 # The p r i m i t i v e o f the d r i f t b
48 de f B( s e l f , x ) :
49 i f (x<=0) :
50 re turn 0
51 e l i f (x<=s e l f . z ( ) ) :
52 re turn s e l f . b ( x ) ∗x
53 e l s e :
54 re turn s e l f . b ( s e l f . z ( ) ) ∗ s e l f . z ( )
55
56 # The upper bounds
57 de f Bound b ( s e l f ) :
58 re turn s e l f . theta ( ) [0]− s e l f . theta ( ) [ 1 ]
59 de f Bound phi ( s e l f ) :
60 re turn 1/2
61
62 de f d e l t a ( s e l f ) :
63 re turn 0 .75
64
65 de f CleverBound ( s e l f , x ) :
66 re turn exp ( ( min ( s e l f . IT ( ) , s e l f .T( ) ) ∗ s e l f . Bound b ( ) ∗∗2) /(2∗ s e l f . d e l t a ( ) ) )

Listing A.10: Drifts.py, second part

1 c l a s s DiscD ( SimBDDriftDisc ) :
2
3 de f i n i t ( s e l f ,T=1,z=1) :
4 s e l f . fT=T
5 s e l f . dz=z # the second b a r r i e r , the f i r s t i s in zero
6 p r i n t ( ”””The time %s has been chosen , we cons id e r time i n t e r v a l s
7 sma l l e r than %s ””” % ( s e l f . fT , s e l f .T( ) ) )
8
9 # i n i t i a l c o n d i t i o n s

10 de f x0 ( s e l f ) :
11 re turn 0 .5
12 de f t0 ( s e l f ) :
13 re turn 0
14
15 # time i n t e r v a l



95

16 de f IT ( s e l f ) :
17 re turn s e l f . fT
18 # elementary time i n t e r v a l
19 de f T( s e l f ) :
20 re turn 0 .2 #<(1/ s e l f . Bound phi ( ) )
21 # d i s t anc e between the b a r r i e r s
22 de f z ( s e l f ) :
23 re turn s e l f . dz
24
25 # Parameters and d r i f t
26 # jumps ’ i n t e n s i t i e s
27 de f theta ( s e l f ) :
28 re turn ( 1 , 0 . 5 )
29
30 # The d r i f t
31 de f b( s e l f , x ) :
32 i f (x<0) :
33 re turn −2∗ s e l f . theta ( ) [ 0 ] ∗ cos ( x )
34 e l i f ( x==0) :
35 re turn − s e l f . theta ( ) [ 0 ]
36 e l i f ( x==s e l f . z ( ) ) :
37 re turn s i n ( s e l f . z ( ) )+s e l f . theta ( ) [ 1 ]
38 e l i f (x<=s e l f . z ( ) ) :
39 re turn s i n ( x )
40 e l s e :
41 re turn 2∗ s e l f . theta ( ) [ 1 ] ∗ \
42 cos (x−s e l f . z ( ) )+s i n ( s e l f . z ( ) )
43
44 # The non negat ive func t i on phi b = (b∗∗2+der b−i n f (b∗∗2−der b ) ) /2
45 de f phi b ( s e l f , x ) :
46 m=−max(2∗ s e l f . theta ( ) [ 0 ] , 2 ∗ s e l f . theta ( ) [ 1 ] , 1 )
47 i f (x<=0) :
48 re turn ((−2∗ s e l f . theta ( ) [ 0 ] ∗ cos ( x ) )∗∗2+\
49 2∗ s e l f . theta ( ) [ 0 ] ∗ s i n ( x )−m) /2
50 e l i f (x<=s e l f . z ( ) ) :
51 re turn ( s i n ( x )∗∗2+ cos ( x )−m) /2
52 e l s e :
53 re turn ((2∗ s e l f . theta ( ) [ 1 ] ∗ cos (x−s e l f . z ( ) )+s i n ( s e l f . z ( ) ) )∗∗2−\
54 2∗ s e l f . theta ( ) [ 1 ] ∗ s i n (x−s e l f . z ( ) )−m) /2
55
56 # The p r i m i t i v e o f the d r i f t b
57 de f B( s e l f , x ) :
58 i f (x<=0) :
59 re turn −2∗ s e l f . theta ( ) [ 0 ] ∗ s i n ( x )
60 e l i f (x<=s e l f . z ( ) ) :
61 re turn 1−cos ( x )
62 e l s e :
63 re turn 1−cos ( s e l f . z ( ) )+s i n ( s e l f . z ( ) ) ∗(x−s e l f . z ( ) )+\
64 2∗ s e l f . theta ( ) [ 1 ] ∗ s i n (x−s e l f . z ( ) )
65
66 # The upper bounds
67 de f Bound b ( s e l f ) :
68 re turn max( abs ( s i n ( s e l f . z ( ) ) )+2∗abs ( s e l f . theta ( ) [ 1 ] ) ,
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69 1 ,
70 2∗ abs ( s e l f . theta ( ) [ 0 ] ) )
71
72 de f Bound phi ( s e l f ) :
73 m=−max(2∗ s e l f . theta ( ) [ 0 ] ,
74 2∗ s e l f . theta ( ) [ 1 ] ,
75 1)
76 M=max(5/4 ,
77 2∗ s e l f . theta ( ) [ 0 ] ,
78 (2∗ s e l f . theta ( ) [ 0 ] ) ∗∗2+1/4 ,
79 1 ,
80 2∗ s e l f . theta ( ) [ 1 ]+( abs ( s i n ( s e l f . z ( ) ) )+2∗ s e l f . theta ( ) [ 1 ] ) ∗∗2)
81 re turn (M−m) /2
82
83 de f d e l t a ( s e l f ) :
84 re turn 0 .6 #>=2∗ s e l f .T( )
85
86 de f CleverBound ( s e l f , x ) :
87 re turn exp ( min ( s e l f . IT ( ) , s e l f .T( ) ) ∗ s e l f . Bound b ( ) ∗∗2/(2∗ s e l f . d e l t a ( ) ) )
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