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Singular analysis and coupled cluster theory

Heinz-Jürgen Flad,*a Gohar Harutyunyanb and Bert-Wolfgang Schulzec

The primary motivation for systematic bases in first principles electronic structure simulations is to

derive physical and chemical properties of molecules and solids with predetermined accuracy. This

requires a detailed understanding of the asymptotic behaviour of many-particle Coulomb systems near

coalescence points of particles. Singular analysis provides a convenient framework to study the

asymptotic behaviour of wavefunctions near these singularities. In the present work, we want to

introduce the mathematical framework of singular analysis and discuss a novel asymptotic parametrix

construction for Hamiltonians of many-particle Coulomb systems. This corresponds to the construction

of an approximate inverse of a Hamiltonian operator with remainder given by a so-called Green

operator. The Green operator encodes essential asymptotic information and we present as our main

result an explicit asymptotic formula for this operator. First applications to many-particle models in

quantum chemistry are presented in order to demonstrate the feasibility of our approach. The focus is

on the asymptotic behaviour of ladder diagrams, which provide the dominant contribution to short-

range correlation in coupled cluster theory. Furthermore, we discuss possible consequences of our

asymptotic analysis with respect to adaptive wavelet approximation.

1 Introduction

Schrödinger’s equation for many-particle systems interacting
via Coulomb potentials provides a common starting point for
computational models within the realm of ab initio electronic
structure theory. Recently, this field attracted considerable
interest from applied mathematics, in particular numerical
analysis. Let us just mention in this field, the work of Yserentant
and coworkers on the mixed Sobolev regularity of Schrödinger’s
equation1–5 and related work by others.6–8 Despite their tremendous
significance for numerical simulations, ab initio post Hartree–Fock
models, like coupled cluster (CC) theory, cf.9,10 and references
therein. are rarely considered in the mathematical literature.
Only recently, a first rigorous mathematical analysis of CC
models has been undertaken by Schneider and Rohwedder.11–13

It is obvious from the point of view of numerical analysis, that
apparent singularities of Coulomb potentials at coalescence
points of particles limit any appropriate notion of regularity
and represent a major bottleneck for ab initio computer simula-
tions. Therefore it is of great interest to get a detailed picture of
the asymptotic behaviour of solutions to Schrödinger’s equation

and related ab initio models, near coalescence points of particles.
Following the pioneering work by Kato,14 M. & T. Hoffmann-
Ostenhof and coworkers provided a fairly deep mathematical
analysis for Schrödinger’s equation.15–19 To the best of our
knowledge, however, no rigorous attempt has been devoted to
study the asymptotic behaviour of approximate ab initio models,
like coupled (independent) electron pair approximations (C(I)EPA)
or truncated models like coupled cluster singles and doubles
(CCSD) in CC theory. It is the purpose of our work to develop
mathematical techniques which enable a rather detailed insight
into the asymptotic behaviour of these models and to derive
actual consequences for computer simulations. For this, we first
explored possible connections of our problem with the abstract
mathematical framework of singular analysis, a branch of mathe-
matics which studies the properties of functions, operators etc. in
the presence of singularities. A particular pseudo-differential
operator calculus, cf. the monographs,20–22 drew our attention
because it provides the desired asymptotic information and
reflects the hierarchical structure of our singularities in a natural
manner. In the following we want to present a highly informal
discussion of some basic concepts and essential features of this
calculus, avoiding intricate notation, sophisticated mathematical
arguments as well as lengthy calculations. Instead we discuss
some first concrete applications which demonstrate the capabil-
ities of our approach. There are other approaches in singular
analysis which have been applied to electronic structure theory as
well, here we have to mention e.g. the work of Mazzeo, Nistor and
collaborators.23–25
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2 First encounter with singular analysis

The mathematical notion of a singularity of a function refers to
a point where the function is not defined or in a particular
sense not well-behaved. Its meaning is therefore more general
as in physics where it usually refers to points where the
function becomes infinite. Vice versa one can specify singula-
rities of a geometrical object by means of appropriate charac-
teristic functions. Examples are metric or curvature tensors
defined on a manifold, which might become degenerate or
divergent at singularities. Another example is the dimension-
ality of tangent space considered as a function on an algebraic
variety. Singularities may appear as isolated points or accumulate
to lower dimensional subspaces, imposing a characteristic geo-
metrical structure on the space which contains the domain of
the function. Beyond that, singular analysis deals with function
spaces defined on geometrical objects, like manifolds, with
singularities and operators acting on them. Here again, the
singular structure is represented by special weights in the defini-
tion of function spaces or by operators which become degenerate
in the neighbourhood of a singularity. In order to illustrate these
concepts let us consider the wavefunction of a single electron
defined on its configuration space R3. In Cartesian coordinates,
the quadratic differential form of the metric tensor

ds2 = dx2 + dy2 + dz2 (2.1)

is everywhere non degenerate. Instead taking spherical coordi-
nates, the quadratic differential form of the metric tensor

ds2 = dr2 + r2[d2y + sin2ydf2] (2.2)

becomes degenerate along the z-axes and in particular at the
origin. Obviously it is an artifact of this particular coordinate
system without any physical relevance. However, if we consider
the electron in a singular Coulomb potential of a point charge
centered at the origin, i.e., a hydrogen atom, the degeneracy
of the metric tensor perfectly reflects the singular behaviour of
the wavefunction, which is smooth except at the origin. This
approach can be generalized to many-electron systems, inter-
acting with each other and fixed nuclei via singular Coulomb
potentials. It is well known, that many-electron wavefunctions
are smooth except at coalescence points of electrons14 or where
electrons approach a nucleus. The basic idea is to find an
appropriate coordinate system whose metric tensor reflects
the singular structure of configuration space. The number of
electrons which join at a coalescence point imposes a natural
hierarchy on these singularities. Two electrons approaching

each other or an electron approaching a nucleus will be consid-
ered as an edge singularity in configuration space as long as the
pair stays away from the other particles. A corner singularity in the
configuration space appears if such a colliding pair approaches
another electron or nucleus. Along these lines it is possible to
define a sequence of higher order singularities which pervade
configuration space. We refer to this construction as an embed-
ding scheme for coalescence points of particles into configuration
space. By simply folding a sheet of paper, we give in Fig. 1 an
illustration of this embedding scheme for a system consisting of
two electrons and a nucleus. This simple picture exemplifies our
notion of edge and corner singularities in configuration space.

2.1 Stratified spaces and degenerate operators

In mathematics such an embedding scheme corresponds to
a stratified space26,27 where strata are classified according to
the number of merging particles. To be more precise, let us
consider a Coulomb system consisting of N electrons and
several nuclei in the Born–Oppenheimer approximation where
nuclei are kept fixed and the configuration space restricts to
electronic degrees of freedom. First of all, the physical configu-
ration spaceM of N electrons† can be identified with R3N. Let
us define the subsetM0 �M of all possible coalescence points
of particles including any number of electrons and nuclei. With
it, MnM0 can be considered as an open smooth manifold‡ or
more general as the inner part of an open smooth manifold
with boundary. Next let us consider the subsetM1 �M0 of all
coalescence points of more than two particles. The stratum
M0nM1 is an open smooth manifold representing edges of
M. Correspondingly, we denoteMnM1 as a singular manifold
with edges. Higher order strata can be constructed along the
same lines, e.g., let the subset M2 �M1 denote the set of
coalescence points of more than three particles. Again the
stratum M1nM2 is an open smooth manifold representing
the lowest order type of corners in M. Therefore MnM2 is a
singular manifold with edges and corners. In this way the
configuration space can be decomposed into its strata, i.e.,

M¼MnM0 [M0nM1 [M1nM2 . . . : (2.3)

In Fig. 2, we illustrate this stratification process by cutting the
three times folded sheet of paper from Fig. 1 into its strata and

Fig. 1 Schematic illustration of the embedding scheme for a system consisting of two electrons and a nucleus. Once folding a sheet of paper represents
the coalescence points of two electrons. Two more wrinkles correspond to coalescence points of electrons and the nucleus. All three wrinkles merge in
a single point where both electrons are located at the nucleus.

† We do not consider spin degrees of freedom or equivalent permutational
symmetries of the electron coordinates in our discussion.
‡ The manifold MnM0 actually corresponds to the mathematical notion of a
configuration space of N ordered particles in R3.
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do a reconstruction by adding successively singularities of
increasing order.

In order to do any meaningful analysis on stratified spaces it
is necessary to demand existence of a control function for each
stratum. This function is defined in an appropriate tubular
neighbourhood of the stratum and provides on the neigbouring
strata of higher codimension a measure of the distance to the
stratum. A control function g of a stratum S has to be positive
semidefinite, with nonvanishing gradient and S = {x A M:g(x) = 0},
cf. ref. 27. In our simple example, depicted in Fig. 3, control
functions r and t are associated with edge and corner strata,
respectively.

The next step is to define appropriate differential operators
on a singular manifoldM. These differential operators are defined
on M0 and possess certain characteristic type of degenerate
behaviour near lower dimensional strata. In order to make this
degenerate behaviour more precise, let us consider some generic
model spaces which locally represent the nonsingular part of
configuration spaceM0 in a neighbourhood of a stratum.

The simplest case is a conical singularity, where the stratum
corresponds to a single point. This happens, e.g., at the location
of a nucleus in the configuration space of a single electron.
Near a conical singularity, M0 can be represented by an open
stretched cone: X4: = R+ � X with base X. In our specific
example, X is given by the two sphere S2. On the stretched cone
X4 let us define a class of degenerate m’th order differential
operators Diffm

deg(X4) which are of the form

A ¼ r�m
X
j�m

ajaðrÞ �r@rð Þ j : (2.4)

Here coefficients aja(r) represent m � j’th order differential
operators on the base X and are smooth up to r = 0. In the
following, this class of differential operators is denoted by
Diffm�j(X). A simple example where these conditions are obviously

satisfied is the shifted Hamiltonian of the hydrogen atom in
spherical polar coordinates

H � E ¼ �1

r2
1

2
�r @
@r

� �2
�1
2
�r @
@r

� �
þ 1

2
DS2 þ rZ þ r2E

" #
;

(2.5)

which belongs to the operator class Diff2
deg(X4). The next higher

singularities, we have to deal with are of edge type and correspond
to coalescence points of two particles. Locally M0 can be repre-
sented by an open stretched edge (wedge): W: = X4 � Y, Y is an
open subset of Rn where n depends on the dimension of the edge.
On a wedge let us define a class of edge degenerate m’th order
differential operators Diffm

deg(W) which are of the form

A ¼ r�m
X

jþjaj�m
ajaðr; yÞ �r@rð Þ j rDy

� �a (2.6)

with coefficients aja(r,y) A Diff m�j�|a|(X) smooth in r, y up to r = 0.
Finally, we consider corner type singularities which corre-

spond to coalescence points of three particles. Near such a
corner, M0 can be locally represented by an open stretched
corner M = R+ � X4 � Y. The class of corner degenerate m’th
order differential operators requires two independent distance
parameters r and t. Like before r controls the distance to the
nearest edge stratum and t controls the distance to the corner
stratum itself. The class Diffm

deg(M) consists of all m’th order
differential operators of the form

A ¼ t�mr�m
X

kþjþjaj�m
akjaðt; r; yÞ �r@rð Þ j rDy

� �a �rt@tð Þk (2.7)

with coefficients akja(t,r,y) A Diffm�j�|a|(X) smooth up to r, t = 0.

2.2 The Hamiltonian as an edge/corner degenerate operator

In the previous section, a general ansatz for degenerate differen-
tial operators on conical, edge and corner spaces has been given.

Fig. 2 Stratification of the singular configuration space of two electrons and a nucleus depicted in Fig. 1. Removing all coalescence points of particles
yields the open smooth manifold MnM0 and various strata. Reconstruction of the singular manifold by first adding the edge strata gives MnM1 and
finally M after adding the corner singularity M1.

Fig. 3 Control functions associated to the strata of singular configuration spaces of one and two electrons and a nucleus. (a) One electron case:
r controls the distance to the conical singularity. (b, c) Two electron case: r and t control the distance to edge and corner strata.
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It is the purpose of this section to show that the Hamiltonian of
a many-particle Coulomb system, represented in appropriate
coordinates, actually fits into this scheme. Our focus will be on
two-electron Hamiltonians, it is however possible to extend the
following considerations to any number of electrons. First of all,
we want to discuss the helium atom, a paradigm for electron-
pair correlation, but also effective Hamiltonians, derived from
coupled or independent electron-pair models, are considered.
The Hamiltonian of the helium atom, here given in Cartesian
coordinates,

H ¼ �1
2
D1 þ D2ð Þ � 2

x1j j
� 2

x2j j
þ 1

x1 � x2j j; (2.8)

has been the subject of numerous analytical studies28–31 and
represents one of the favourite benchmark problems for numerical
methods aiming for very high accuracies.32

Various coordinate systems have been discussed in the
literature in order to represent the singular structure of the
helium wavefunction, among them are Fock’s hyperspherical
coordinates33–36 and Hylleraas coordinates37–40 which have
been widely used for numerical simulations of two-electron
systems. Although these coordinate systems contain appropri-
ate coordinates to control the distance to singular strata, the
corresponding Hamiltonians, however, fail to satisfy the crucial
requirement having coefficients which are smooth up to the
stratum. Nevertheless, at least one particular coordinate system
exists, see e.g.,41,42 which satisfies all of our requirements. It
represents a special kind of hyperspherical coordinates where

R6 corresponds to a conical manifold �Rþ � S5
� ��

f0g � S5
� �

with embedded edge singularities Y1, Y2, Y3 on the hypersphere
S5, see Fig. 4. Explicitly, the edges Y1, Y2 represent coalescence
points of an electron and the nucleus, whereas Y3, corresponds
to coalescence points of the two electrons. The embedded two
dimensional edges Yi, i = 1, 2, 3, themselves are homeomorphic
to the two sphere S2. A detailed mathematical discussion of this
coordinate system and its generalization to N electrons is

presented in ref. 43. Because of its significance and in order
to make the paper reasonably self contained, we present some
particularly relevant features of these coordinates in some
detail below, cf. also our related discussion in ref. 44.

Explicit relations to Cartesian coordinates in R6 are given by

x1 = t sin r sin y1 cosf1, x2 = t sin r sin y1 sinf1,

x3 = t sin r cos y1,

x4 = t cos r sin y2 cosf2, x5 = t cos r sin y2 sinf2,

x6 = t cos r cos y2, (2.9)

with hyperspherical radius

t :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x12 þ x22 þ x32 þ x42 þ x52 þ x62

p
; (2.10)

which controls the distance to the corner singularity and radial
variable 0 o r r p/2, where radial ‘‘distances’’ r = 0, r = p/4,
r = p/2 correspond to e1–n, e1–e2, e2–n edge singularities,
respectively. The remaining variables (y1,f1) and (y2,f2) are
spherical variables on X and Yi, respectively. Instead of a single
global coordinate system, it is more convenient to take an atlas
of three local coordinate systems, each assigned to a particular
edge, such that the radial variable r vanishes for this edge.
In the case of the e–e edge it is therefore convenient to define
hypersherical coordinates with respect to center of mass coordinates

zi ¼
1ffiffiffi
2
p xi � xiþ3ð Þ;

ziþ3 ¼
1ffiffiffi
2
p xi þ xiþ3ð Þ for i ¼ 1; 2; 3:

(2.11)

In order to comprehend the singular structure imposed by
these coordinates, it is helpful to consider the corresponding
quadratic differential form of the metric tensor

ds2 = dt2 + t2[dr2 + sin2 r(dy1
2 + sin2 y1df1

2)

+ cos2 r1(dy2
2 + sin2 y2df2

2)] (2.12)

Fig. 4 Schematic representation of hypershperical coordinates for the helium atom. On the five sphere S5, embedded two dimensional edges are
symbolized by Feynman diagrams.
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It can be seen that the metric is degenerate with respect to both
distance variables r and t. The part in square brackets repre-
sents the metric on the five sphere S5 and becomes degenerate
at the corner singularity. On S5, the metric becomes degenerate
at the edge to which the coordinates refer.

With respect these coordinates, the Hamiltonian of the
helium atom becomes edge degenerate

H ¼ r�2
X

jþjaj�2
ajaðr; yÞ �r

@

@r

� �j
rDy

� �aþr
t
ve�eðnÞ

0
@

1
A; (2.13)

with coefficients aj;k;a 2 C1 �Rþ � Yi; Diff2�j�jajðXÞ
� �

and even-
tually corner degenerate

H ¼ t�2r�2

�
X

jþkþjaj�2
aj;k;aðt; r; yÞ �rt

@

@t

� �j
�r @
@r

� �k

rDy

� �aþrtve�eðnÞ
0
@

1
A

(2.14)

with coefficients aj;k;a 2 C1 �Rþ � �Rþ � Yi; Diff2�j�jajðXÞ
� �

. The

potential functions ve–e(n) belong to C1 �Rþ � S1
2 � S2

2
� �

with
explicit expressions in the corresponding coordinates given by

ve�n r; y1;f1; y2;f2ð Þ :¼ � Zr

sin r
� Zr

cos r

þ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sinð2rÞa y1;f1; y2;f2ð Þ

p
(2.15)

and

ve�e r; y1;f1; y2;f2ð Þ :¼ �
ffiffiffi
2
p

Zrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinð2rÞa y1;f1; y2;f2ð Þ

p

�
ffiffiffi
2
p

Zrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sinð2rÞa y1;f1; y2;f2ð Þ

p
þ rffiffiffi

2
p

sin r
;

(2.16)

respectively. Here, the angular dependence is represented by
the function

a(y1,f1,y2,f2):= cos y1cos y2 + sin y1sin y2cos(f1 � f2).
(2.17)

2.3 Algebra of pseudo-differential operators on stratified
spaces

In the previous sections we have shown that the configuration
space and Hamiltonian of an interacting Coulomb system
matches the requirements imposed by an abstract theory of
singular analysis. Once this has been established, the whole
machinery of this sophisticated theory is at our disposal cf.
ref. 20–22. It is the purpose of this section to give a rather
informal account of the most significant gains.

In the following, we restrict our discussion to Hamiltonian
operators for electron-pairs, interacting via a Coulomb potential,

with external potentials which are either of Coulomb type or
represent effective local potentials due to the presence of other
electrons not explicitly taken into account. In particular it will be
assumed that the exchange part is local, e.g., given in terms of
an optimized effective potential. Concerning these effective
potentials, we will always assume that the required regularity
properties are satisfied. A rigorous proof for Hartree potentials
has been given in ref. 45.

The general approach to extract asymptotic information is
based on the concept of a parametrix of the shifted Hamiltonian
operator A(l): = H � l where l A R might be an eigenvalue. In a
certain sense, a parametrix can be considered as an approximate
inverse of a Hamiltonian. To make this concept more precise, let
us suppose that the shifted Hamiltonian and its parametrix are
bounded operators between appropriate function spaces, i.e.,

A : F 1 ! F 2; P : F 2 ! F 1: (2.18)

According to its definition, a parametrix satisfies the equations

PA = I + Gl and AP = I + Gr, (2.19)

i.e., P is the left(right) inverse of A modulo the Green operators
Gl(Gr). Here the basic idea is that the Green operator Gl(Gr) maps
F 1ðF 2Þ into a particularly nice subspace S1 � F 1 S2 � F 2ð Þ. It is
clear from the definition, that a parametrix of a differential
operator in DiffmdegðMÞmust belong to a wider class of operators,

which are the so-called pseudo-differential operators. These
operators are grouped into classes LsðMÞ, with s A R, such that
DiffmdegðMÞ � LmðMÞ, with m A N, and a parametrix P for A 2
DiffmdegðMÞ belongs to L�mðMÞ. For further reference, let us

denote the whole class of Green operators by LGðMÞ. In order to
guarantee the existence of a parametrix, the corresponding
differential operator must be elliptic in an appropriate sense.
A general discussion of the concept of ellipticity has been given in
the monograph22 and a detailed proof of ellipticity for Hamiltonian
operators in ref. 44.

In the classical pseudo-differential operator calculus, the
nice subspace S corresponds to the space of smooth functions.
However, due to the singular nature of our problem this cannot
be the case here, instead Green operators map into function
spaces with specific asymptotic behaviour. Let us consider e.g.
an edge singularity, where the space S1 � F 1 can be written as a
direct sum

S1 ¼ EN1 � FN
1 (2.20)

with asymptotic subspace

EN1 :¼ span oðrÞ
X
j

Xmj

k¼0
cjk f1; y1ð Þvjk t;f2; y2ð Þr�pj lnk r

( )

(2.21)

and flattened space FN
1 . Here, o denotes an appropriate cut-off

function for r c 0 and the asymptotic behaviour near the edge
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is characterized by a finite number of discrete parameters pj

which are located in a strip of the complex plane, i.e.,

pj 2
3

2
� g�No<zo 3

2
� g

� 	
; (2.22)

with weight g depending on the specific application, cf. ref. 44
for further details. In this expansion, asymptotic coefficients
correspond to smooth functions cjk and vjk on the basis of the

cone and edge stratum, respectively. The flattened space FN
1

consists of functions u such that r�N+eu still belongs to F 1 for
any e 4 0. Operators which belong to a class LsðMÞ provide
maps between asymptotic subspaces, i.e., they preserve asymp-
totic information.

With our particular application in mind, it might seem
unnecessary complicated to consider asymptotic subspaces
(2.21) with complex exponents pj. In the pseudo-differential
calculus, however, the values of the exponents have to be
calculated and actually correspond to poles of meromorphic
functions. Therefore it is rather natural to assume complex
exponents in the general setting. In this respect our approach
differs from the Fock expansion where a specific asymptotic
behaviour, i.e., integer exponents, has been assumed from the
very beginning. We want to emphasize, that any ad hoc ansatz
for an expansion requires a proof, that it actually converges to a
solution. A question which is still not fully settled in the case of
the Fock expansion, cf. ref. 28–31.

With this background information at hand, it is easy to see
how the parametrix and associated Green operator provides a
tool to study the asymptotic behaviour of solutions of linear
equations of type

A(l)u = f, (2.23)

where f itself has a well defined asymptotic behaviour. Let us
first consider an eigenvalue problem A(l)u = 0 where l corre-
sponds to an eigenvalue. Application of the parametrix from the
left yields

P(l)A(l)u = (I + Gl(l))u = 0, - u = �Gl(l)u, (2.24)

which means that the asymptotic behaviour of an eigenfunc-
tion is completely determined by the left Green operator Gl.
Similarly, for any solution u of the linear eqn (2.23) one gets

P(l)A(l)u = (I + Gl(l))u = P(l) f - u = P(l) f � Gl(l)u,
(2.25)

which means that the parametrix and associated Green opera-
tor determine its asymptotic behaviour.

2.4 Asymptotic parametrices for Hamiltonian operators

The construction of a parametrix for a Hamiltonian operator
and its corresponding Green operator can be done in a systematic
manner. Within the present work, the whole purpose of this
procedure is to get asymptotic properties of wavefunctions near
singularities. This can be most easily achieved by introducing the
concept of an asymptotic parametrix which can be evaluated order

by order via a recurrence scheme. Let us first note that every
operator O 2 LsðMÞ can be written in the form

O ¼
XN
i¼0

riOi mod LGðMÞ (2.26)

for any N A N, with suitable Oi 2 LsðMÞ; in particular, riOi is
flat of order i, with i = 0,. . .,N, in the pseudo-differential
algebra. This statement is trivial for the subclass of differen-
tial operators where the expansion can be easily obtained from
a Taylor expansion of the coefficients. We refer to ref. 46
concerning the extension of this concept to the whole class of
pseudo-differential operators.

The recurrence scheme is based on the asymptotic expan-
sion of the shifted Hamiltonian and its parametrix.

XN
i¼0

riPi

 ! XN
i¼0

riAi

 !
�I mod LGðMÞ;

XN
i¼0

riAi

 ! XN
i¼0

riPi

 !
�I mod LGðMÞ

(2.27)

As already mentioned before, differential operators Ai can be
easily obtained via Taylor expansions. In an initial step, we
construct P0 from the zero’th order equation

P0A0 ¼ I mod LGðMÞ: (2.28)

With this term at hand P1 can be obtained from the first order
recursion equation

P0r
1A1 þ r1P1A0 ¼ 0 mod LGðMÞ: (2.29)

In general O 2 LsðMÞ satisfies a commutator relation

Orb � rbOb ¼ 0 mod LGðMÞ with Ob 2 LsðMÞ: (2.30)

With this relation and P0 applied from the right, we get

r1P1 ¼ � P0r
1A1P0 mod LGðMÞ

¼ � r1P0;1A1P0 mod LGðMÞ:
(2.31)

which gives an explicit expression for P1 in terms of known
quantities. In principal, the recurrence scheme can be extended
to arbitrarily high order, e.g. in second order, one gets the
equation

r1P1r
1A1 þ r2P2A0 þ P0r

2A2 ¼ 0 mod LGðMÞ; (2.32)

which becomes

r2P2 ¼ �r1P1r
1A1P0 � P0r

2A2P0 mod LGðMÞ

¼ r2 P0;1;1A1;1P0;1A1P0 � P0;2A2P0

� �
mod LGðMÞ:

In order to extract asymptotic information it is essential to
keep track of all Green operators which have been accumulated
in the course of the recurrence scheme.
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3 Parametrix and Green operator of
the helium atom

After a brief and fairly dense discussion of basic prerequisites
and some necessary mathematical backgound of our approach
in the previous section, we are ready to state our main result
and discuss some of its implications. The recurrence scheme,
outlined in Section 2.4, provides a constructive approach in
order to derive explicit asymptotic expressions for parametrices
and corresponding Green operators. An illustrative example for
such a construction is the hydrogen atom which has been
studied in ref. 47.

The helium atom can be considered as a paradigm for
electron correlation, in particular of electron-pairs, and pro-
vides the setting for the study of effective electron-pair models,
which will be the subject of the following section. Therefore it
represents a natural starting point for the asymptotic analysis
of electron correlation. According to our previous discussion, it
is the main outcome of our approach to derive an explizit
expression for the Green operator, which encodes essential
asymptotic information, cf. eqn (2.24) and (2.25). In the follow-
ing, we want to discuss the Green operator corresponding to a
shifted Hamiltonian of the helium atom (2.13), and extract
some well known asymptotic properties, commonly known as
Kato’s cusp condition, from it. The technical details of the
corresponding calculations are rather involved and therefore
we refrain here from a detailed exposition. Instead, the inter-
ested reader is referred to a forthcoming publication,48 which
contains all the relevant calculations and proofs in full length.

For the helium atom, the Green operator Gl near an e–e or
e–n edge has a leading order asymptotic expansion of the form

Glu r;j1; y1; yð Þ

� 2t2 1þ rtZ1 þ r2 �2þ 1

3
tZ1ð Þ2þ1

3
tZ2

� �� �
P0Q0;1ðuÞðyÞ




þ 1

6
r2P0Q0;2ðuÞðyÞ þ

1

3
rþ 1

6
tZ1r

2

� �
P1Q1;1ðuÞðyÞ

þ 1

5
r2P2Q2;1ðuÞðyÞ �

1

30
r2P2Q2;2ðuÞðyÞ

�
þOðr3Þ

(3.1)

with parameters

Z1 :¼
1ffiffiffi
2
p for ve�e

�Z for ve�n

8><
>: ;

Z2 :¼ � tlþ
�2

ffiffiffi
2
p

Z for ve�e

1� Z for ve�n

8<
:

(3.2)

where l might correspond to an eigenvalue and Pl , l = 0, 1,
2,. . ., denote projection operators on subspaces which belong
to eigenvalues �l(l + 1) of the Laplace–Beltrami operator on S2,
i.e. relative angular momenta of the electron-pair (e–e edge) or
of an electron with respect to a nucleus (e–n edge). The linear

operators Ql;j map u(r,j1,y1,t,j2,y2) into a function
Ql; jðuÞ j1; y1; t;j2; y2ð Þ which does not depend on r anymore.
Explicit expressions of the operatorsQl;j are rather involved and
will be given in a forthcoming publication.48 By the projection
operators Pl , l = 0, 1, 2,. . ., the function Ql;jðuÞ is furthermore
projected with respect to the angular variables y1, j1 on
subspaces of relative angular momentum eigenvalues, i.e.,

PlQl;jðuÞ j1; y1; t;j2; y2ð Þ ¼
Xl
m¼�l

Ylm y1;j1ð Þvlmj t; y2;j2ð Þ

(3.3)

with

vlmj t; y2;j2ð Þ :¼
ð
S2

�Yl;m y1;j1ð ÞQl;jðuÞ j1; y1; t;j2; y2ð Þdy1dj1;

(3.4)

where Ylm, �l r m r l, denote the corresponding spherical
harmonics.

At this point it seems to be appropriate to discuss our main
result (3.1) in less technical terms and to clarify its relation to
previous work, in particular with respect to various higher-order
cusp conditions mentioned in the quantum chemistry literature.
First of all, (3.1) together with the corresponding parametrix
represents an approximate inverse of a shifted Hamiltonian
(2.13), here considered as an operator acting between appropriate
function spaces, where the shift parameter might be an eigenvalue
or not. In conventional quantum chemistry, only the inverse of a
shifted noninteracting Hamiltonian, acting on the virtual part of
Hilbert space, seems to be a valid option and provides e.g. the basis
of the CC iteration scheme. It is a subject of our future work to
study possible local modifications of standard iteration schemes
using interacting Green operators and parametrices in order to
improve convergence near the e–e edge. This seems to be possible,
because the Green operator (3.1) maps any function u into a
function with this specific asymptotic behaviour.

In the case of a linear electron-pair model of the general type
(2.23), it is possible to determine the asymptotic behaviour of its
solution from eqn (2.24) or (2.25) using the corresponding asymp-
totic Green operator and parametrix. It should be mentioned, that
the electron-pair models discussed below require only trivial
modifications of the Green operator (3.1) and corresponding
parametrix. Once again, we want to emphasize that the asymptotic
recurrence scheme of Section 2.4 is constructive and can in
principle be extended to any order in the e–e distance. Therefore
it is possible to calculate the asymptotic expansion (3.1) to any
order in a systematic way and determine the asymptotic behaviour
well beyond Kato’s cusp condition. Here we want to mentioned
that various generalizations of Kato’s cusp condition have been
already discussed in the literature, cf. ref. 49–52. Let us point to an
important difference with respect to the present work. It is a
common assumption in these papers that the most general under-
lying asymptotic expansion of a wavefunction is of the general form

uðr; y;f; sÞ �
X
0�l

X
0�n

rlþn
Xl
m¼�l

ulmnðsÞYlmðy;fÞ; (3.5)
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where r, y, f denotes spherical coordinates with respect to the e–e
distance and s refers to the center of mass of an electron pair.
However, an asymptotic expansion of the form (3.5) cannot be
taken for granted. It might happen, e.g., that logarithmic terms like
rk ln r show up. Actually, logarithmic terms are well known from
the Fock expansion of the helium atom near the corner singularity
where both electrons approach the nucleus. The absence of
logarithms and noninteger exponents in the asymptotic expansion
at the e–e edge requires a proof. Only recently, Fournais et al.19

proved rigorously the existence of an asymptotic expansion (3.5)
near an e–e edge for eigenfunctions of many-electron Hamiltonians.
Their proof is rather sophisticated and should be considered as a
subsequent justification of the work done in quantum chemistry.
Because it restricts to eigenfunctions, ref. 19 applies to (2.23) in the
case f = 0 and l an eigenvalue, but not for general right hand sides f
and arbitrary values of the shift parameter l, which is of relevance
for approximate linear many-particle models, to be discussed below.
In contrast to this, our approach does not make any a priori
assumptions concerning the asymptotic behaviour. It only requires
that the right hand side f has an asymptotic expansion of the
general type (2.21), cf. ref. 20. Therefore, integer exponents and the
absence of logarithms in the asymptotic expansion of the Green
operator (3.1) are an outcome of our calculation and not the
consequence of any assumption. In particular, this is of significance
for approximate models, derived from CC theory, where the proof of
ref. 19 does not immediately apply.

3.1 Kato’s cusp condition revisited

With the asymptotic Green operator at hand, it is straight-
forward to derive Kato’s cusp condition14 from the leading
order terms. Let us first consider the asymptotic behaviour of
wavefunctions near the e–e edge. With respect to the euclidean
distance between both electrons

x12 :¼ x1 � x2j j ¼
ffiffiffi
2
p

t sin r ¼
ffiffiffi
2
p

t rþO r3
� �� �

; (3.6)

the asymptotic expansion for a symmetric (singlet) state Cs of
the electron-pair

GlCs � 1þ 1

2
x12

� �
1ffiffiffi
p
p t2v001 t; y2;j2ð Þ þ O x12

2
� �

; (3.7)

is perfectly equivalent to Kato’s ‘‘cusp’’ condition, x2 a 0,

1

4p
@
Ð
S2Cs x12;o12; x2ð Þdo12

@x12

����
x12¼0
¼ 1

2
Cs 0; �; x2ð Þ; (3.8)

where o12 denotes the corresponding angular coordinates of
the e–e distance. For an antisymmetric (triplet) state Ct of the
electron-pair, we get

GlCt �
ffiffiffi
2
p

tr 1þ 1

4

ffiffiffi
2
p

tr

� � X1
m¼�1

Y1m y1;j1ð Þ
ffiffiffi
2
p

3
tv1mj t; y2;j2ð Þ

(3.9)

� x12 1þ 1

4
x12

� � X1
m¼�1

Ylm y1;j1ð Þ
ffiffiffi
2
p

3
tv1mj t; y2;j2ð Þ þ � � �:

(3.10)

At next, we want to discuss the asymptotic behaviour of
wavefunctions near an e–n edge. Let us first consider states with
P0Ca0, the asymptotic expansion for such states yields

GlC � 1� Z x1j jð Þ 1ffiffiffi
p
p t2v001 t; y2;j2ð Þ þ O x1j j2


 �
; (3.11)

with respect to the euclidean distance between an electron and
a nucleus. Again this is perfectly equivalent to Kato’s cusp
condition, x1: = |x1| and x2 a 0,

1

4p
@
Ð
S2C x1;o1; x2ð Þdo1

@x1

����
x1¼0
¼ �ZC 0; �; x2ð Þ; (3.12)

where o1 denotes the corresponding angular coordinates of the
e–n distance. For states with P0C ¼ 0 and P0Ca0, e.g. highly
excited Rydberg states, the asymptotic expansion

GlC � x1j j 1� 1

2
Z x1j j

� � X1
m¼�1

Ylm y1;j1ð Þ2
3
tv1mj t; y2;j2ð Þ:

(3.13)

resembles to the 2p state of a He+ion.

4 Effective electron-pair models
derived from CC theory

In quantum chemistry a multitude of electron-pair models are
known, among the most popular are CCSD and various variants
of CEPA. It is not our intention to make extensive comments on
these models or to discuss how these models are related to each
other. CC theory, however, seems to provide a unified frame-
work, cf.,53 and is a good starting point to establish a hierarchy
among these models. The models are based on an effective
single particle model, like Hartree–Fock, and assign to each
pair of occupied orbitals a wavefunction C(2)

i, j which represents
an electron-pair embedded in an effective mean-field generated
by the remaining electrons. Let us assume the canonical decom-
position of the effective electron-pair wavefunction

C(2)
i, j(�x1,�x2) = C(1)

i, j(�x1,�x2) + ti, j(�x1,�x2) (4.1)

into a noninteracting part C(1)
i, j and the pair-amplitude ti, j. In

any effective electron-pair model, pair-amplitudes rely on the
constraint

Qti, j(�x1,�x2) = ti, j(�x1,�x2), (4.2)

imposed by the projection operator, commonly known as
strong orthogonality operator55

Q :¼ 1� q1ð Þ 1� q2ð Þ with q :¼
XN
i¼1

fij i fih j; (4.3)

where fi, with i = 1, 2,. . .,N, represent occupied orbitals. The
physical reason behind is Pauli’s principle which excludes the
subspace assigned to the remaining N � 2 particles from the
Hilbert space of the pair and an orthogonality constraint
between the two parts C(1)

i,j and ti,j of the pair wavefunction.
In the present work our focus is on the behaviour of wave-

functions near the e–e edge. It is well known from quantum
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many-body theory, that the so-called ladder diagrams give
the dominant contribution to short-range correlation. A simple
model where ladder diagrams are summed to infinite order
is the Bethe–Goldstone (BG) equation, which can be easily
derived from CCSD by neglecting all interactions among dif-
ferent electron-pairs. The BG equation can be written in the
following form

Q �1
2
D1 þ v1 �

1

2
D2 þ v2 � Ei; j

� �
ti; j x1; x2ð Þ

¼ �Q
1

x1 � x2j jC
ð1Þ
i; j x1; x2ð Þ �QV

ðijÞ
fluc x1; x2ð Þti; j x1; x2ð Þ;

(4.4)

with coefficient matrix

Eij :¼ fi; �
1

2
Dþ v

� �
fi

� �
þ fj ; �

1

2
Dþ v

� �
fj

� �

þ 1

2
Cð1Þi; j ;

1

x1 � x2j jti; j
� �

;

(4.5)

and fluctuation potential

V
ðijÞ
fluc x1; x2ð Þ :¼ 1

x1 � x2j j � v
ði; jÞ
Hx ðx1Þ � v

ði; jÞ
Hx ðx2Þ

þ 1

2
Cð1Þi; j ;

1

x1 � x2j jC
ð1Þ
i; j

� � (4.6)

in which

v
ði;jÞ
Hx :¼ v

ðiÞ
H þ v

ð jÞ
H þ vðiÞx þ vð jÞx (4.7)

represents the contribution of orbitals i, j to the Hartree and
exchange potential, respectively. The BG eqn (4.4) is still non-
linear due to the last term of the coefficient matrix Eij which
depends on ti,j. In the following, we skip this term and consider
a simplified linear BG equation with coefficient matrix

E
ð0Þ
ij :¼ fi; �

1

2
Dþ v

� �
fi

� �
þ fj ; �

1

2
Dþ v

� �
fj

� �
¼ ei þ ej :

(4.8)

The BG equation can be further simplified by neglecting all
second order terms. This yields the equation for Rayleigh–
Schrödinger (RS) 1’st order perturbation theory

�1
2
D1 þ v1 �

1

2
D2 þ v2 � ei � ej

� �
ti; j x1; x2ð Þ

¼ �Q
1

x1 � x2j jC
ð1Þ
i; j x1; x2ð Þ;

(4.9)

which provides the starting point for an iterative solution of the
BG equation.

4.1 Kato’s cusp condition for effective electron-pair models

The BG and 1’st order RS models are linear equations of the
general form (2.23), where the asymptotic behaviour can be

obtained from the parametrix and Green operator according to
eqn (2.25). An explicit calculation yields

P0ti; j � ti; j
��
r¼0þ

1

2
ð
ffiffiffi
2
p

rtÞ Cð1Þi; j þ ti; j

 ����

r¼0
þ Oðr2Þ: (4.10)

or the equivalent expression

P0C
ð2Þ
i; j � Cð2Þi; j

���
r¼0
þ1
2
ð
ffiffiffi
2
p

rtÞCð2Þi; j

���
r¼0
þ Oðr2Þ: (4.11)

The latter in turn is equivalent to Kato’s cusp condition

@x12P0C
ð2Þ
i; j

���
r¼0
¼ 1

2
Cð2Þi; j

���
r¼0
: (4.12)

For comparison, 1’st order RS perturbation theory yields

P0C
ð2Þ
i; j � Cð2Þi; j

���
r¼0
þ1
2
ð
ffiffiffi
2
p

rtÞCð1Þi; j

���
r¼0
þ Oðr2Þ; (4.13)

or equivalently

@x12P0C
ð2Þ
i; j

���
r¼0
¼ 1

2
Cð1Þi; j

���
r¼0
; (4.14)

which can be considered as a 1’st order approximation of Kato’s
cusp condition, cf. the discussion in ref. 54.

4.2 Asymptotic singular analysis of iteration schemes

Usually, the BG equation is solved via the fixed-point iteration
scheme

�1
2
D1 þ v1 �

1

2
D2 þ v2 � E

ð0Þ
i;j

� �
tðnþ1Þi; j x1; x2ð Þ

¼ �Q
1

x1 � x2j jC
ð1Þ
i; j x1; x2ð Þ �QV

ði; jÞ
fluc x1; x2ð ÞtðnÞi; j x1; x2ð Þ

(4.15)

with initial guess t(0)
i, j = 0, i.e., starting from first-order RS

perturbation theory. The corresponding diagrammatic repre-
sentation of (4.15), via Goldstone ladder diagrams, is shown in
Fig. 5. In every single iteration step the asymptotic expansion
becomes

P0t
ðnþ1Þ
i; j � tðnþ1Þi; j

���
r¼0
þ1
2
ð
ffiffiffi
2
p

rtÞ Cð1Þi; j þ tðnÞi; j


 ����
r¼0
þ O r2

� �
:

(4.16)

From this it can be seen, how the fixed-point iteration scheme
eventually converges towards Kato’s cusp condition. Let us define

Dtð1Þi; j :¼ tð1Þi; j

Dtð2Þi; j :¼ tð2Þi; j � tð1Þi; j

..

.

DtðnÞi; j :¼ tðnÞi; j � tðn�1Þi; j ;

(4.17)

i.e., Dt(n)
i, j corresponds to the contribution of the n’th order

ladder diagram, cf. Fig. 5, and the asymptotic expansion of such
diagrams for n 4 1 is given by

P0Dt
ðnÞ
i; j � DtðnÞi; j

���
r¼0
þ1
2
ð
ffiffiffi
2
p

rtÞDtðn�1Þi; j

���
r¼0
þOðr2Þ: (4.18)
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This behaviour can be subsumed by the following formal
perturbation scheme. Let us take

Ci; jðlÞ ¼ Cð1Þi; j þ
X
0�n

lnDtðnÞi; j ; (4.19)

with (4.18), the cusp condition becomes

@x12P0Ci; jðlÞ
��
r¼0¼

1

2
lCi; jðlÞ

��
r¼0: (4.20)

Formal perturbation theory yields

@x12P0C
ð1Þ
i; j

���
r¼0
¼ 0

@x12P0Dt
ð1Þ
i; j

���
r¼0
¼ 1

2
Cð1Þi; j

���
r¼0

@x12P0Dt
ð2Þ
i; j

���
r¼0
¼ 1

2
Dtð1Þi; j

���
r¼0

..

.

(4.21)

which means that (4.20) reproduces order by order our asymp-
totic result.

4.3 Beyond ladder diagrams

The BG equation represents a rather crude approximation and in
order to deal with state of the art models like CCSD or CEPA, it is
essential to take further classes of diagrams into account. In
particular it becomes necessary to consider nonlinear couplings
between pair amplitudes, like in ring diagrams. This is the subject
of our present work where we want to study the effect of various
classes of diagrams on the asymptotic behaviour. It is rather obvious
from our analysis that such diagrams mainly affect higher-order
terms in the asymptotic expansion of pair amplitudes. Nevertheless,
it seems to be premature to make any precise statement. In order to
get a rough idea which steps are required for nonlinear models, we
want to refer to ref. 45, where an asymptotic singular analysis has
been performed for the nonlinear Hartree-Fock model.

5 Adaptive wavelet approximation of
pair-amplitudes

The asymptotic analysis of the pair-amplitudes permits a
rigorous statement concerning their adaptive approximation
by tensor product wavelet bases. Given a three dimensional
isotropic wavelet basis {ga,aAL} with index set L, we consider
the tensor product wavelet expansion of pair-amplitudes

ti; j x1; x2ð Þ ¼
X
a;b2L

cab ga x1ð Þgb x2ð Þ þ gb x1ð Þga x2ð Þ
� �

: (5.1)

For computer simulations one has to restrict the expansion to a
finite number of wavelets. Obviously it is desirable to select
wavelets in an adaptive manner according to their significance.
The underlying mathematical concept is best N-term approxi-
mation which belongs to the realm of nonlinear approximation
theory. For a detailed exposition of this subject we refer to
ref. 56. Loosely speaking, we consider for a given basis, the best
possible approximation of a function in the nonlinear subset
SN which consists of all possible linear combinations of at most
N basis functions, i.e.,

SN :¼
X
ða;bÞ2D

cab ga 	 gb þ gb 	 ga
� �

: D � L; #D � N

8<
:

9=
;

(5.2)

Here, the approximation error

sNðuÞ :¼ inf
fN2SN

u� uNj jj jH (5.3)

is given with respect to the norm of an appropriate Hilbert
space H. A best N-term approximation space Aa(H) for a Hilbert
space H contains all functions for which the error has conver-
gence rate sN(u) B N�a. Actually, the function spaces Aa(H)
correspond to certain Besov spaces where wavelets provide
stable Riesz bases. This property enables a direct estimate of
the approximation error from wavelet coefficients.

In order to study N-term approximation rates for pair-
amplitudes, it is important to establish the following growth
estimates

|qaxq
b
yti,j(x1,x2)| r ca,b|x1 � x2|1�|a|�|b|, for x1 a x2

and |a| + |b| Z 1, (5.4)

with respect to their partial derivatives near the e–e edge.
Such estimates are a simple corollary of our asymptotic
analysis. It is an immediate consequence of previous work,
cf.,57 that with respect to the Sobolev space H1 the following
error estimate

t� tNk kH1� CN�
1
2
þe; (5.5)

for any e 4 0, can be achieved. Therefore, the error in energy
converges with O(N�1+e), for any e 4 0, which might be

compared with the empirical convergence rate of O N�
1
2

� �
for

correlation consistent basis sets given in ref. 58.

Fig. 5 Iterative solution of the BG equation.
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6 Conclusions

We presented a general approach to study the asymptotic beha-
viour of wavefunctions near coalescence points of particles. It can
be applied to the original many-electron Schrödinger equation, as
well as to approximate models in the realm of CC theory. Singular
analysis provides the abstract mathematical framework and it
was our task to show that electronic structure theory actually fits
into it. In this respect, we followed a top down approach, with an
abstract mathematical theory at the beginning and explicit
calculations of asymptotic parametrices and Green operators at
the end. Much remains to be done, in particular the extension of
our analysis to higher order terms and the asymptotic analysis of
nonlinear couplings between pair-amplitudes, which appear in
CC theory. Another important aspect of our present work is the
incorporation of asymptotic parametrices and Green operators
into numerical methods using systematic bases like wavelets.
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