ANEIsyz.
NS

= I Mathematisch-Naturwissenschaftliche
* “%am Fakultit

Paul Prasse, Gerrit Gruben, Lukas Machlika, Tomas
Pevny, Michal Sofka, Tobias Scheffer

Malware Detection by
HTTPS Traffic Analysis

Preprint published at the Institutional Repository of the Potsdam University:
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100942

Universitit Potsdam

Malware Detection by HTTPS Traffic Analysis

Paul Prasse!, Gerrit Gruben!, Jan Kohout?, Lukas Machlika?,
Tomas Pevny?, Michal Sofka®3, and Tobias Scheffer!
University of Potsdam, Germany, scheffer@cs.uni-potsdam.de
2Cisco R&D Prague, Czech Republic, tpevny @cisco.com
3now at 4Catalyzer, New York, NY, USA

Abstract—In order to evade detection by network-traffic anal-
ysis, a growing proportion of malware uses the encrypted HTTPS
protocol. We explore the problem of detecting malware on client
computers based on HTTPS traffic analysis. In this setting,
malware has to be detected based on the host IP address, ports,
timestamp, and data volume information of TCP/IP packets that
are sent and received by all the applications on the client. We
develop a scalable protocol that allows us to collect network
flows of known malicious and benign applications as training
data and derive a malware-detection method based on a neural
networks and sequence classification. We study the method’s
ability to detect known and new, unknown malware in a large-
scale empirical study.

I. INTRODUCTION

Malware violates users’ privacy, harvests access to online-
shopping and payment accounts, is used to commit click-fraud,
and can encrypt users’ files for ransom. Several different types
of analysis are being used to detect malware, and because
of the adversarial nature of the problem, robust detection
requires that the problem is simultaneously attacked from
different angles. Signature-based detectors employ a look-up
table of software hashes, which requires individual files to first
become known to be malicious through some form of analysis.
Signature-based detection can be evaded by polymorphic mal-
ware that comes in an abundance of minor variations and often
continues to modify its executable files after deployment [1].

Static code analysis is based on features that can be ex-
tracted from the program file. Parameters of the decision
criteria are often optimized using machine-learning techniques
on collections of malware and benign files [2], [3]. Static code
analysis can be counteracted by code-obfuscation techniques.
Here, the code that is executed is generated at execution time.
Obfuscated code can be deobfuscated by partially executing it;
the deobfuscated code can be subjected to static code analy-
sis [4]. However, deobfuscation can be evaded by loading code
at runtime, and by performing arbitrary complex calculations
within the expressions that generate code.

In fully dynamic code analysis, the software is executed and
observed for malicious behavior in a sandbox environment.
Setting up a virtual operating environment, and running and
observing the software is an expensive process that has to
be carried out for each executable file [5]. Furthermore, the
malicious behavior has to be triggered to become observable.
Infected versions of standard tools may only deviate from their
expected behavior in certain operating environments, or at a
particular time of the day.

Malware can also be detected by analyzing network com-
munications. TCP/IP traffic can be analyzed by network
equipment without direct access to the client computer that
is executing malware. This approach allows the encapsulation
of malware detection into specialized network devices and
and helps to protect an entire organization even if users of
individual computers do not run antivirus software. Analysis
of TCP/IP traffic may aim at finding specific types of mal-
ware [6], [7], or at identifying malicious servers of malware
on client computers [8].

The deployment of network-traffic analysis systems has
triggered evasion strategies. An analysis of the HTTP payload
of the network traffic can easily be prevented by using the
encrypted HTTPS protocol. Currently, over 40% of the most
popular websites support HTTPS [9]. Under the HTTPS
(HTTP over TLS/SSL) protocol, the client computer estab-
lishes a TCP/IP connection to (usually) port 443 of the host.
On the application layer, HTTPS uses the standard HTTP
protocol, but all messages are encrypted via the Transport
Layer Security (TLS) protocol or its predecessor, the Secure
Socket Layer (SSL) protocol. An observer can only see the
client and host IP addresses and ports, and the timestamps
and data volume of all packets. The HTTP payload, including
the header fields and URL, are encrypted.

In this paper, we will develop a machine-learning method
that detects malware on client computers based on the ob-
servable information of HTTPS communication. The effec-
tiveness of machine-learning approaches crucially depends on
the availability of large amounts of labeled training data.
However, obtaining ground-truth class labels for HTTPS traffic
is a difficult problem—when the HTTP payload is encrypted,
one generally cannot determine whether it originates from
malware by analyzing the network traffic in isolation. We
develop an approach to collecting training data based on a
VPN client that is able to observe the associations between
executable files and TCP/IP packets on a large number of client
computers. One of the few observable features of HTTPS
traffic is the host IP address and, if a DNS entry exists for that
address, the domain name. In order to extract features from the
domain name, we explore neural language models [10] which
use neural networks to derive a low-dimensional, continuous-
state representations of a text. As a baseline, we also study
manually-engineered domain features [11].

The rest of this paper is organized as follows. Section II
discusses related work. Section III discusses the network

architecture that constitutes the application environment for
the malware detector and its operating modes. Section IV
derives our method for malware detection based on HTTPS-
traffic analysis. We present our empirical study in Section V.
Section VI concludes.

II. RELATED WORK

Prior work on the analysis of HTTP logs has addressed
the problems of identifying command-and-control servers [12],
unsupervised detection of malware [13], and supervised detec-
tion of malware using domain blacklists as labels [8], [11].

Besides the timing and volume information, HTTP log files
contain the full URL string, from which a wide array of
informative features can be extracted [11]. In addition, each
HTTP log file entry corresponds to a single HTTP request
which also makes the timing and data volume information
more informative than in the case of HTTPS, where the
networking equipment cannot identify the boundaries between
requests and log file entries may aggregate widely varying
numbers of requests.

Prior work on the analysis of HTTPS logs aims at iden-
tifying the corresponding application layer protocol [14],
[15], [16], identifying applications that are hosted by web
servers [17], and identifying servers that are contacted by
malware [18]. Some of these methods process the complete se-
quence of TCP packets which is not usually recorded by avail-
able network devices. LokocC et al. [18] use similar features to
the ones that we use—features that can easily recorded for
HTTPS traffic—and a similar method for generating labeled
data based on a multitude of antivirus tools. However they
focus on a different problem: they aim at identifying servers
that are contacted by malware.

III. THREAT-ANALYSIS ARCHITECTURE

This section describes the network architecture that consti-
tutes the application environment for the malware detector—
it is visualized in Figure 1. We distinguish between the
regular operating environment and the environment in which
we record training data.

A. Operating Environment

The network configuration consists of client computers, web
hosts, a firewall, and a threat analysis server. All TCP/IP traf-
fic from the client computer is routed through the firewall that
blocks, transmits, or reroutes TCP/IP traffic that is addressed to
certain IP address ranges and ports according to its configured
security policy; it receives incoming traffic and forwards it
via the TLS/SSL to the client computer. The firewall acts as
a man in the middle for all TLS/SSL connections from the
client computers to any external host. The firewall aggregates
the network flow of all TCP/IP packets between a single client
computer, client port, host IP address, and host port that result
from a single HTTP request into an aggregated packet. This
information is available for network devices that support the
IPFIX [19] and NetFlow [20] formats. For each aggregated
packet, a line is written into the log file that includes data

S NS
0 0
N NS
Web host Web host Web host
TCP/IP
Application hashes
for training data Firewall and — Threat analysis
""""""" VPN server server
TCP/IP |
] /\ /\
VPN client VPN client VPN client
), Y],

Client computer Client computer Client computer

Fig. 1. System architecture

volume, timestamp, domain name, and duration information.
For unencrypted HTTP traffic, this line also contains the full
URL string; for HTTPS traffic, it includes the domain name,
but not the URL string. This information is also passed to the
threat analysis server. The threat analysis server processes the
sequence of aggregated packets and may at any point in time
issue an alarm, indicating that a particular client computer may
be affected by malware.

B. Operating Environment with Application Visibility

In the operating mode described in Section III-A, network
flows of packets exchanged between a client computer and
the web can generally originate from multiple applications,
some of which may be malicious. We collect labeled training
and evaluation data in an operating environment in which the
firewall simultaneously acts as a VPN server and all client
computers have VPN client software installed through which
they access the network.

The VPN client software runs on each client computer and
naturally has access to the processes which use the network
interface. The VPN client identifies applications by means of
a SHA hash code of their executable file, and communicates
the association between TCP/IP packets and applications to the
VPN server via a back channel. The VPN server can pass this
information on to the threat-analysis server. For each packet,
this hash code is stored in the log file. Hence, we can index
the log file by the IP address of each client computer, the VPN
user name of its user, and the hash key of the application that
sent or received the packet.

TABLE I
NUMBER OF LABELED FLOWS AND PACKETS FOR EACH DATA SET

Dataset | flows | pos. flows | neg. flows | packets | pos. packets | neg. packets
current data [579,064 [1,625 [577,439 [23,043,756 [98,376 [22,945,380
future data | 460402 | 954 | 450448 | 12,026463 | 24465 | 12,001,098
TABLE II are associated with a hash key of the application that caused

MALWARE TYPES.

Data Set | Malware Type | Flows | Packets
current data | Adware 497 50,708
current data | Trojans 967 43,398
current data | Potentially unwanted software 164 4,269
current data | Worms 1 1
future data Adware 173 2,599
future data Trojans 742 20,717
future data Potentially unwanted software 38 1,143
future data Worms 5 6

TABLE III
MOST FREQUENT APPLICATION NAMES OF MALWARE

Application [Flows [Packets
Browser extensions 767 14,055
Window drive manager 387 8,936
Ultrasurf 164 37,835
Client.exe 144 4,874
Premier opinion 114 5,926
UmmyVideoDownloader | 12 3,275
Chrome 11 328
Sputnik FlashPlayer 8 321

C. Data Collection

We collect two different HTTPS data sets; we will refer
to them as current data and future data, based on the roles
which these data sets will play in our experiments. The current
data contains the complete HTTPS traffic of 11 small to large
computer networks that use the Cisco AnyConnect Secure
Mobility Solution for a period of 7 days in February 2016.
This data set contains 579,064 aggregated packets of 4,140
clients. We observe a total of 17,096 hashes.

The future data contains the complete HTTPS traffic of 10
small to large different computer networks that use the Cisco
AnyConnect Secure Mobility Solution for a period of 7 days in
April 2016. The data set contains 460,402 aggregated packets
of 4,078 clients. Table I shows the number of total, positive
(malicious) and negative (benign) network flows (sequences
of aggregated packets) and packets for each data set. Table
IT enumerates the types and frequency of different types of
malware, according to Virustotal.com. Table III enumerates
the most frequent file names of applications that are classified
as malicious by Virustotal.com.

D. Ground-Truth Labeling of HTTPS Traffic

The operating environment describes in Section III-B gen-
erates log files that contain, for each client IP address and
VPN user name, sequences of aggregated TCP/IP packets that

the network traffic. If we can obtain the malware status of
an application that is identified by its hash key, we can label
packets by whether their associated applications are malicious.
Mapping signatures of executable files to a malware status
indicator is the main functionality that virus scanning software
provides.

Signature-based malware detectors can only detect malware
after a particular file has become known to be malicious by
some form of analysis. Since our goal is to obtain labels for
the purposes of training and evaluating models for network
traffic analysis, we can therefore record hashes and associated
HTTPS traffic, and label the traffic in retrospect, after the
malware status of most of the executable files has been
established.

Virustotal.com is a web service that allows users to upload
either executable files or MDS5, SHA1, or SHA256 hashes of
executable files. The files are run through a collection of 60
antivirus solutions, and the results of this analysis are returned.
We upload the hash keys of all executable files that have
generated HTTPS traffic to Virustotal; we label files as benign
when the hash is known—that is, when the file has been run
through the scanning tools—and none of the 60 scanning tools
recognize the file as malicious. When three or mode tools
recognize the file as malicious, we label it as malicious. When
only one or two virus scanners recognize the file as a virus, or
when the hash key is unknown to Virustotal, we consider the
malware status of the file unknown. We then label all traffic
that has been generated by malicious executables as malicious,
and all traffic of benign files as benign.

E. Client Malware Detection Problem

We will now establish the classification problem that the
malware-detection model has to solve.

Our overall goal is to flag client computers that are hosting
malware. Client computers are identified by a (local) IP
address and a VPN user name, which allows us to distinguish
between multiple devices that are used by a single user. For
each client computer and each five-minute interval, the detec-
tion model receives a network flow—a sequence of aggregated
TCP/IP packets z1,...,z7. In addition to the client’s IP
address, each packet x; has an observable host IP address,
client and host ports, timestamp, duration (i.e., the interval
between the timestamps of first and last aggregated TCP/IP
packet), and inbound and outbound data volume.

For each client computer and each five-minute interval,
malware detection model f has to decide whether to raise
an alarm. The model raises an alarm if the malware-detection
score f(x1,...,x7) exceeds some threshold 7. In each five-

minute interval, model f with threshold 7 will detect some
proportion of malware-infected clients, and may raise false
alarms for clients that do not actually host malware. The trade-
off between the number of detections and false alarms can be
controlled by increasing or decreasing threshold 7. Besides
five-minute periods, we will also study long-term detections
and false alarms. To this end, we will measure the number of
infected and benign clients for which f with decision threshold
T raises an alarm over a period of seven days. We will measure
the following performance metrics, both for an average 5-
minute and an average 7-day period.

1) The following definitions depend on the concepts of
true positives, false positives, and false negatives. The
number nyp of true positives is the number of malicious
clients which are flagged by f > 7 as malicious, the
number npp is the number of benign clients that are
flagged as malicious by f > 7, and the number npy of
false negatives is the number of malicious clients that
are not flagged as malicious (f < 7).

2) The recall R = % is the proportion of malicious

TP FN
applications that have created at least one packet in the
reference period of five minutes or seven days and have
been detected by f > 7, relative to all (detected and
undetected) malicious applications that have created at
least one packet in the reference period.

3) The precision P = TLT}ZTTZFP is the proportion of
malicious applications that have created at least one
packet in the reference period of five minutes or seven
days and have been detected by f > 7, relative to
all (malicious and benign) applications that have been
flagged (f > 7). Raising an alarm generally invokes
some manual intervention by IT staff. The proportion of
alarms that are false alarms is 1 — R.

4) The recall at a specific precision, RQz% P quantifies the
recall (proportion of malware that is detected) when the
decision threshold is adjusted such that at most 1 — 2%
of all alarms are false alarms.

5) The precision-recall curve of a decision function f
shows the possible trade-offs that can be achieved by
varying the decision threshold 7; decreasing 7 tends to
result in a higher recall and lower precision, increasing 7
increases precision and decreases recall. The area under
the precision-recall curve is an aggregate measure of the
precision-recall curve; a higher area is better.

Training data for model f consists of labeled sequences S =
U {((@i1,yi1), - - -, (@i, yir,)} in which each aggregated
packet z;; is labeled by whether it has been sent or received
by a malicious (y;; = +1) or benign (y;; = —1) application.

IV. HTTPS NETWORK-FLOW ANALYSIS

This section derives our method that flags malware-infected
client computers based on the analysis of their HTTPS network
traffic. We will start by developing features on which the
detection can be based, and then proceed to design a sequence
classification model.

= ~
\/> () ¢ ("example.com™)
7N 7N N

g (exa’) () eCeomn

Fig. 2. Neural language model network architecture

O -0 -0
% N)
aal z
4) & ¢ ("mple.com”)
N (N oo N N\ g o
) npl")) .. (__)é("com”)

Fig. 3. Language model training

A. Packet Features

Our goal is to classify client computers as malware-infected
or benign. Therefore, the detection model processes network
flows of aggregated TCP/IP packets x1,...,xp sent to or
received by one particular client computer. Each aggregated
packet consists of client and host IP address, client and host
ports, a timestamp, inbound and outbound data volume, and a
duration. From each packet z;, we extract a vector ¢(z) that
includes the one-hot encoded port value, duration, time gap
from the preceding packet, the nnumbers of sent and received
bytes, and the domain-name features that we will describe in
Section IV-B.

B. Domain-Name Features

We explore several types of features that can be extracted
from the host domain name.

1) Engineered Features: Franc et al. [8] develop a compre-
hensive set of 60 features of URL strings that can be used to
detect malware by classifying HTTP traffic—for (unencrypted)
HTTP traffic, the entire URL is visible to third parties.
Their features include ratio of vowel changes, the maximum
occurrence ratio of individual characters for the domain and
subdomain, the maximum length of substrings without vowels,
the presence of non-base-64 characters, the ratio of non-letter
characters, and many other characteristics of the string. We
extract the vector of these engineered domain-name features
for all domains.

2) Character n-gram features: Character n-gram features
decompose the domain string into sets of overlapping sub-
strings; for instance, “example.com” is composed of the 3-
grams “exa”, “xam”, “amp”, ..., “.co”, and “com”. The num-
ber of n-grams that occur in URLs grows almost exponentially
in n; in our data, 1,583 character 2-grams, 54,436 character 3-
grams, and 1,243,285 character 4-grams occur. If we added all
character 3-gram features to the feature representation ¢(x;) of
a packet, then the total number of features of an entire network
flow of T packets would be prohibitively large; it would
impose a heavy computational burden, and cause overfitting of
the malware-detection model. In our experiments, we therefore
explore character 2-gram features.

3) Neural Domain-Name Features: We condense the set
of character n-grams which a domain string is composed of
into a low-dimensional representation by means of a neural
language model. Neural language models [10] derive low-
dimensional, continuous-state representations of words which
have the property that words which tend to appear in a similar
context have a similar representation. Here, “words” are the
overlapping character n-grams that constitute a domain name.
We apply neural language models with the goal of finding
a representation such that substrings that tend to co-occur in
URL strings have a similar vector representation.

We use the following neural-network architecture, illustrated
in Figure 2. The input to the network consists of character
n-grams that are one-hot coded as a binary vector in which
each dimension represents an n-gram; Figure 2 illustrates the
case of n = 3. The input layer is fully connected to a hidden
layer with weight matrix ©; we vary the number k of hidden
units in our experiments. The same weight matrix is applied
to all input character n-grams. The activation of the hidden
units is the vector-space representation of the input n-gram
of characters. In order to infer the vector-space representation
of an entire domain-name, an “averaging layer” averages the
hidden-unit activations of all its character n-grams.

Neural language models are trained to be able to complete
an initial part of a sentence, which forces the network to find
a vector-space representation of words that allows to “guess”
a word’s context from its vector-space representation. The
“natural” reading order of a domain string is from the right
to the left, because the domain ends with the most general
part—the top-level domain—and starts with the most specific
subdomain. While, in most cases, language models are trained
to predict the next word given a window of preceding words,
here we reverse this processing order. During training, the
network processes a sliding window of m overlapping n-grams
in parallel, and averages the m resulting activation vectors of
hidden units; Figure 3 illustrates the case of m = 6, n = 3,
and an input window of “mpl”, ..., “com”. The hidden layer
is connected to a soft-max output layer that again has one
dimension for each possible character n-gram in a URL string.
The output units infer a probability distribution over character
n-grams. The output target for the output layer during training
is the character n-gram in the URL string that immediately
precedes the input window of m overlapping n-grams; in the

‘ Network flow for client IP address ..., VPN user ... 7:00 am — 7:05 am

‘ Network flow for client IP address ...2, VPN user ...2 7:00 am — 7:05 am

Network flow for client IP address ...1, VPN user ...1 7:00 am — 7:05 am

‘ TCP/IP packet xl‘ ‘ TCP/IP packet xQ‘ ‘ TCP/IP packet xa‘ ‘ TCP/IP packet x,

[3 4 4
G (x1) B (x2) $(x3) b (xa)
0 [y, xz,23,x4) = tTlaXAft(q)z(xlvxZ»x}vxél))
D1 (x,%2,x3,24) =| 0
$(x1)
0
D, (x1, %7, %3, %) = |$(x1)
$(xz)
¢ (x1)
D3 (21, %2, %3, X4) = |P(x2)
$(xs)
$(xz)
Dy (31, %2, %3, %4) = | P (x3)
$(xa)

Fig. 4. Client classifier

example of Figure 3, the target value is “amp”.

We train the neural language model using all URLs that
occur in our data. In addition, we add the 500,000 domains
that have the highest web traffic according to alexa.com to
the training data. For each URL and each position of the
sliding window, we perform a back-propagation update step
for which the character that immediately precedes the input
window serves as prediction target. We use the word2vec
software package [21]. The neural language model generates
a set of k£ host-URL features per aggregated packet.

C. Client Classifier

The client classifier is visualized in Figure 4. At applica-
tion time, the client classifier processes a client computer’s
network flow by moving a sliding window of width w over
the sequence of packets. For each position ¢, feature vector
O (21,...,27) = [¢(Tt—wi1) .. d(xs)]" stacks the feature
vectors of the w aggregate packets x;_,4+1 to x;; feature
vectors with zero or negative index are filled with zeros.
Feature vector ®(z1,...,27) serves as input to decision
function f;. The decision-function value is maximized over
all window positions:

flas,.. or) = max (@i, oor), (D

and the client from which the network flow originates is
classified as malware-infected if its decision-function value
exceeds the decision threshold:

N +1 if f(zq,...
y:{l [z

otherwise
Function f; is a standard decision function of a classification
problem with vector-valued input.
Training data S = (J;— , {((zs1,¥i1), - - -, (xizy, yir,) } labels
each packet by whether it has been sent or received by a

,TT) > T

)

malicious (y;s = +1) or benign (y; = —1) application.
In order to train a model f;, the data is transformed as
follows. For each network flow ¢ in the training data and each
window position ¢, a training example (®¢(zi1, ..., Zir), Yit)
is created, where y; = Inaxgzt_w 11 Yij> that is, the feature
representation of network flow 7 and window position ¢
is +1 if any packet in this window position is associated
with a malicious application. This process creates a sample
S = U Ul A(@e(win, .. 2im), Gie)) that is of size n
times the average sequence length. Sample S serves as input
to a standard classification learning procedure.

In our empirical study, we have tens of millions of training
instances in S. We can therefore rule out kernel methods,
because the kernel matrix would require in the order of
104 floating-point values that have to be stored in memory.
Based on preliminary experimentation, we implement decision
function f; as a random-forest classifier. We also include a
linear classification model in the experiments as a baseline.

V. EXPERIMENTS
A. Classification of Host Domains

In our first experiment, we investigate the type of domain-
name features—engineered, neural, and character 2-grams—
with respect to their ability to distinguish between domains
that are contacted by benign versus malicious applications,
and we tune the hyper-parameters of the neural domain-
name language model. In this experiment, domains serve as
classification instances; all domains that are contacted more
often by malicious than by benign software are positive
instances, and all other domains are negative instances. In our
data, there are 860,268 negative (benign) and 1,927 positive
(malicious) domains. A total of 3,490 domains are contacted
by both malware and benign applications; many of them
are likely used for malicious purposes (e.g., “https://r8—sn-
4g57km7e.googlevideo.com/”, “https://s.xpl.ru4.com”), while
others are standard services (“maps.google.com”, “public-
api.wordpress.com”). For 90,445 of the domains, only the IP
address string is available because the client request contained
the IP address instead of a domain name.

We infer engineered domain-name features, character 2-
grams, and the vector-space representation of each domain
string using the neural language model, as described in Sec-
tion IV-B. We use 75% of the domains for training and 25% of
the domains for testing; no domain is in both the training and
the test data. We train a random forest classifier to discriminate
positive from negative instances. Table IV shows the area
under the precision-recall curve for the different set of feature
types. We find that a parameter combination of n = 6 (input
character 6-grams), m = 4 (during training, the vector-space
representation of 4 adjacent character 6-grams is averaged)
and k£ = 100 (the vector-space representation of a domain
name has 100 dimensions) works best. We vary the parameters
individually; Table IV shows the resulting area under the
precision-recall curve. We compare a version of the neural
language model which is trained to predict the preceding
window of n-grams—as described in Section IV-B—and a

TABLE IV
DOMAIN CLASSIFICATION USING VARIOUS DOMAIN-NAME FEATURES

Area under
Feature type parameters PR curve
neural n=4 0.37
neural n=2>5 0.38
neural n==06 0.39
neural n="17 0.38
neural k=50 0.38
neural k =100 0.39
neural k = 200 0.38
neural m=3 0.35
neural m =4 0.39
neural m =5 0.33
neural left to right 0.23
neural right to left 0.39
char 2-grams 0.24
engineered 0.32
neural+engineered 0.36

version that is trained “from left to right”, to predict the
succeeding n-gram. Training the neural network in the natural
reading order for domain strings—from right to left—works
best. Comparing the neural domain features to the raw char-
acter 2-gram end the 60 engineered features, we find that the
neural features outperform both baselines. A combination of
neural and engineered features performs worse than the neural
features alone, which indicates that the engineered features
inflate the feature space while not adding a substantial amount
of additional information.

In order to analyze the domain-name classifier in depth,
we look at domain-names that achieve the highest and lowest
score from the random-forest classifier that uses the neural
domain features. We find that a wide range of domains
receive a decision-function value of 0 (confidently benign).
These lowest-scoring domains include small and mid-size
enterprises, blogs on various topics, university department
homepages, games websites, a number of Google subdomains,
governmental agencies; sites that can perhaps best be described
as “random web sites”. Table V shows the highest-scoring
domains. They include IP addresses without DNS entries,
cloud services, subdomains of the YouTube and Facebook
content delivery networks, and domains that do not host visible
content and have most likely been registered for malicious
purposes.

B. Detection of Current Malware

This section reports on experiments in which training and
test data are sampled from the current data set. We explore
the contribution of several feature types. We split the client
computers—identified by a pair of a local IP address and a
VPN user name—into 4 partitions, and conduct 4-fold cross
validation over these partitions. This ensures that each user
and client computer is either in the training part, or else in
the evaluation part of the data. As a side note, when we
allow client computers into the test set for which earlier
network flows are included in the training set, we can classify

TABLE V
DOMAIN-NAMES MOST CONFIDENTLY CLASSIFIED AS MALICIOUS

Domain

https://52.84.0.111/

https://139.150.3.78/

https://uswj208.appspot.com/
https://ci-e2f452ealb-50fe9b43.http.atlas.cdn.yimg.com/
https://pub47.bravenet.com

https://service6.vb-xl.net/
https://sp-autoupdate.conduit-services.com
https://external-yyz1-1.xx.fbcdn.net/
https://doc-14-28-apps-viewer.googleusercontent.com/
https://239-trouter-weu-c.drip.trouter.io

TABLE VI
SLIDING-WINDOW WIDTH w OF THE CLIENT CLASSIFIER

Width w | R@70%P | R@80%P | R@90%P

] 0.291 £ 0.162 | 0.228 £ 0.164 | 0.159 £ 0.161
2 0352 £ 0.151 | 0.227 £ 0211 | 0.129 £ 0.129
3 0396 £ 0.126 | 0.305 £ 0.147 | 0.182 & 0.105
3 0411 £ 0.115 | 0.349 £ 0.092 | 0.237 £ 0.038
5 0.380 £ 0.098 | 0.325 £ 0.051 | 0.223 & 0.050
6 0.358 £ 0.083 | 0.281 £ 0.053 | 0.214 £ 0.067
7 0377 £ 0.09 | 0.299 £ 0.054 | 0.206 £ 0.065
8 0355 £ 0.071 | 0.262 £ 0.089 | 0.204 £ 0.078
8 0367 £ 0.081 | 0.272 £ 0.095 | 0.170 + 0.084

these clients nearly perfectly. We run a nested inner loop of
twofold cross validation in which we tune the parameters of
the random forest classifier and the regularization parameter
of the linear model by grid search. The grid spans over a
maximum tree depth of 3 or unlimited depth, and a maximum
number of features, minimum number of instances for a split,
and minimum number of instances in a leaf of 1, 3, and 10. We
find the optimal combination in the inner cross-validation loop,
then train a model using these settings on the entire training
portion and evaluate that model in the outer cross-validation
layer. We use a fixed number of 1,000 trees.

We then split all training and test sequences into blocks
of five minutes. The client classifier that we described in
Section IV-C processes a sliding window of w packets in each
step. In our first experiment, we explore different values of w.
Table VI shows that using packet features, a window width of
w = 4 performs best. In additional experiments, we observe
that the optimal width lies between 2 and 5 for any set of
features. We fix w = 4 for all subsequent experiments.

We will now study the accuracy of the client classifier
and the contributions of the various domain-name and packet
features. We train a random-forest sequence classifier with a
sliding-window width of 4 on all five-minute blocks of the
training-part of the data and apply the model to each five-
minute block of the test data.

Table VII shows the recall rates for various precision values
of the random-forest classifier. The numerical packet features
allow to detect 40% of malware-infected clients at a precision
of 70% or 25% at a precision of 90%. Domain-name character
2-gram features do not improve the detection performance

compared to just flow features. Using character n-gram fea-
tures for higher values of n is computationally not feasible. By
contrast, a combination of packet features and neural domain-
name features leads to a substantial improvement over just
packet features; over a 5-minute interval, it detects 58% of
malware-infected clients at a precision of 70%. That is, 30%
of all alarms are false alarms. At a higher decision threshold,
it detects 44% of infected clients at a precision of 90% (with
10% of the alarms being false alarms).

We compare the random-forest classifier to a linear classi-
fication baseline. Using the packet and neural domain-name
features, an ¢5-regularized logistic regression classifier attains
a recall of 17.73% at a precision of 70%, a recall of 16.20%
at a precision of 80%, or a recall of 11.51% at a recall of
90%. We conclude that the random-forest classifier substan-
tially outperforms the linear baseline and exclude the logistic
regression model from all further experiments.

We measure the random-forest classifier’s ability to identify
malware-infected clients over a period of seven days. We have
the model produce an output for every client and every 5-
minutes interval over a period of seven days. In this setting, a
true positive is a malicious client that is flagged by f at least
once, a false positive is a benign client that is flagged by f
at least once, and a false negative is a malicious client that is
not flagged over the entire observation period of seven days.
Table VIII shows the recall at various precision values. The
relative merit of neural domain features, packet features, and
domain-name character n-gram features is the same, but the
overall recognition rates are higher. Using a combination of
numeric packet features and neural domain-name features the
client classifier detects 78% of all malware-infected clients
at a precision of 70% or 60% malware-infected clients at a
precision of 90% within seven days.

C. Detection of Future Malware

In Section V-B, the training and test data are governed
by identical distributions. In practice, however, a malware
detection model is deployed and used while new emerges. This
section studies the robustness of the client classifier on future
TCP/IP traffic.

We use the entire current data set as training data and the
future data set as test data. We run twofold cross validation
on the training data to we tune the parameters of the random
forest classifier by grid search, as in Section V-B. We train a
model with tuned parameters on the entire training data and
evaluate that model on the more recent test data.

We first measure the performance over 5-minute intervals.
Table IX shows the resulting recall rates for various precision
values. Most noticably, the performance of the packet features
has deteriorated sharply. The combination of numeric packet
features and neural domain-name features still performs best
and still detects 44% of all malware at a precision of 70% or
38% at a precision of 90%. Table X shows the recall at various
precision values over the entire test period of seven days.
Again, the packet features have deteriorated substantially. But
the combination of packet features and neural domain-name

TABLE VII

CLIENT CLASSIFIERS ON 5-MINUTE INTERVALS OF CURRENT TRAFFIC

Feature | R@70%P | R@80%P | R@90%P | Area under PR curve

packet 39.88 £ 5.684 | 36.18 & 5.444 | 24.84 £+ 2.315 0.461 £ 0.040

neural 20.49 + 4.146 13.63 £ 2.764 | 6.806 + 1.388 0.317 £ 0.044

packet + neural 58.00 + 3.527 | 52.15 £ 5.156 | 44.06 + 7.900 0.606 + 0.029

packet + engineered | 48.37 £ 6.551 4221 £+ 7.231 24.97 £+ 4.383 0.526 £ 0.032

packet + 2-gram 36.36 + 8.012 | 32.80 &+ 7.878 | 20.14 £ 5.127 0.431 £ 0.054
TABLE VIII

CLIENT CLASSIFIERS ON 7 DAYS OF CURRENT TRAFFIC

Feature | R@70%P | R@80%P | R@90%P | Area under PR curve

packet 47.82 4+ 8.421 | 34.58 £ 12.15 | 23.27 4+ 9.570 0.590 £ 0.049

neural 29.92 £+ 1.359 19.94 £ 0.890 | 9.959 4+ 0.453 0.505 £+ 0.019

packet + neural 7775 + 1.198 | 66.01 £+ 3.991 | 37.56 + 3.770 0.765 + 0.015

packet + engineered | 55.00 4+ 8.288 | 38.41 £ 6.987 | 19.16 &+ 3.503 0.650 £ 0.038

packet + 2-gram 41.79 &+ 5.113 | 27.82 £ 3.408 | 13.88 £ 1.715 0.581 £ 0.036
TABLE IX

CLIENT CLASSIFIERS ON 5-MINUTE INTERVALS OF FUTURE TRAFFIC

Feature type

| R@70%P | R@80%P | R@90%P | Area under PR curve

packet 11.01 0.900 0.400 0.194

neural 15.71 10.41 5.205 0.251

packet + neural 43.54 41.84 37.83 0.459

packet + engineered 39.33 32.13 15.81 0.399

packet + 2-gram 29.42 26.22 15.51 0.340
TABLE X

Feature type

CLIENT CLASSIFIERS ON 7 DAYS OF FUTURE TRAFFIC

| R@70%P | R@80%P | R@90%P | Area under PR curve

packet 22.82 7.507 3.703 0.435
neural 32.83 21.92 10.91 0.524
packet + neural 79.47 74.27 70.47 0.806
packet + engineered 73.47 59.45 29.72 0.713
packet + 2-gram 54.35 36.23 18.11 0.631

features have maintained their predictive power and actually
perform better on future data than they did on current data.
In this experiment, the classifier has been trained with slightly
more training data because none of the clients in the current
data set has to be held back for evaluation. This explains how
the model can perform better then the model that is evaluated
on current data.

We investigate the sharp deterioration of the effectiveness
of the numerical packet features. We find that the average
duration of aggregated malicious packets is much lower in the
future than in the current data set. Also, the proportion of
malicious packets with low outgoing data volume is higher
in the future data set, conversely, the proportion of high-
volume incoming benign packets is higher in the future than
in the current data set. We cannot identify particular types of
malware or individual benign applications as being the source
of this distributional shift. We have to conclude that as the

availability and overall use of software changes, distributional
properties of TCP/IP traffic are nonstationaty.

D. Detection of Previously Unknown Malware

Finally, we specifically study the performance on novel
malware hashes that did not occur in the training data. For
these experiments, we train the models on the current data
set as in Section V-C. We evaluate the models on the future
data set, but we measure the recall only on client computers
that host malicious applications whose hash does not occur
in the training period. That is, any non-infected client that
is flagged counts as a false positive, but only clients that host
malware whose application hashes do not occur in the training
data counts as true positive.

Again, we first measure the performance over 5-minute
intervals. Table XI shows the recall rates for various precision
values. In this setting, the packet features in isolation are not
sufficient to identify any malware at a precision of 70% or

higher. However, the packet features still carry information
about the malware status, because the combination of packet
and neural domain-name features performs substantially better
than the neural domain-name features in isolation. Again,
neural domain-name features outperform engineered and 2-
gram domain-name features. Based on packet and neural
domain-name features, the client classifier is able to detect
29% or all previously unknown malware at a precision of 70%
or 31% at a precision of 90%.

We next study the performance over periods of seven days.
Table XII shows that based on the combination of packet and
neural domain-name features, the client classifier detects 62%
of all malware at 70% precision or 44% malware at 90%
precision within seven days. We would like to stress that the
evaluation is performed only on new, unknown malware that
has first been observed after the classifier has been trained. A
signature-based detection method cannot detect any of these
malware instances.

We analyze the classifier’s ability to detect previously
unknown malware applications in depth. We find that of
the overlap between domains that are contacted by unknown
malware applications in the future data set and domains that
are contacted by malware in the current data set is only 37%.
We next focus on the restricted set of client computers in the
future data set that only host malware that is unknown (file
hash does not occur in the current data) and does not contact
any known domain (which occurs in the current data). That
is, we focus on malware for which neither the application
hash nor any contacted domain occurs in the training data.
We find that the client classifier still flags 40% of these 27
clients as malicious at a precision of 70%. This shows that
the client classification model is able to identify even unknown
malware based on characteristics of the TCP/IP packets and
generalized features of the domain name, rather than relying
on specific TCP/IP traffic patterns of known malware and
contact to known malicious domains.

VI. CONCLUSION

We have studied malware detection in client computers by
HTTPS traffic analysis. In order to collect labeled training
data, we have designed an environment in which a VPN client
associates all network flows with the executable file that has
caused the traffic. We query the file hashes to Virustotal.com
in order to obtain TCP/IP network flows which are associ-
ated to known malicious and benign software. HTTPS traffic
offers very little information, because the entire payload—
including the URL—is encrypted. In order to extract as much
information as possible from the host IP address, we employ a
neural language model that transforms the domain-name string
into a continuous-space representation. We devise a classifier
that processes packet and domain-name features of a sliding
window of TCP/IP packets.

We can draw a number of conclusions from our experi-
ments. Neural domain-name features consistently outperform
engineered domain-name features and character n-grams. In
all settings, the combination of numerical packet features

(timestamps, incoming and outgoing data volumes) and neural
domain-name features gives the best performance. We find
empirically that the client classifier that processes a sliding
window of packet and neural domain-name features can iden-
tify malware with a high precision (e.g., with 80% recall at
90% precision) both on current network traffic and on network
traffic that has been observed two months after the classifier
has been trained. Perhaps most notably, the model is able to
identify more than 60% of new, unknown malware whose
executable file has first been observed after the model has
been trained at 70% precision, and more than 40% at 90%
precision.

In our operating environment, the traffic analysis is per-
formed within dedicated network equipment rather than on
the client computer. In this setting, the threat-analysis system
protects all clients in the network, independent of any antivirus
software which they may additionally be running. Therefore,
the executable file is not accessible by the analysis tool
and neither static nor dynamic code analysis can be carried
out. However, our experiments highlight the importance of
network-traffic analysis an orthogonal approach: based on the
analysis of HTTPS traffic, the majority of malware with new,
previously unknown executable files can still be detected.

ACKNOWLEDGMENT

We would like to thank Virustotal.com for their support.

REFERENCES

[1] M. E. Karim, A. Walenstein, A. Lakhotia, and L. Parida, “Malware
phylogeny generation using permutations of code,” Journal in Computer
Virology, vol. 1, no. 1-2, pp. 13-23, 2005.

[2] J.Z. Kolter and M. A. Maloof, “Learning to detect and classify malicious
executables in the wild,” Journal of Machine Learning Research, vol. 7,
p- 2006, 2006.

[3] E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and classifi-
cation: A survey,” Journal of Information Security, vol. 5, pp. 56-64,
2014.

[4] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert, “Zozzle: Fast and
precise in-browser javascript malware detection,” in Proceedings of
the 20th USENIX Conference on Security, 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2028067.2028070

[5] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic
malware analysis using CWSandbox,” in Proceedings of the IEEE
Conference on Security and Privacy, vol. 5, 2007, pp. 32-39.

[6] G. Gu, J. Zhang, and W. Lee, “Botsniffer: Detecting botnet command
and control channels in network traffic,” in Proceedings of the Annual
Network and Distributed System Security Symposium, 2008.

[7]1 R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering of HTTP-
based malware and signature generation using malicious network traces,”
in Proceedings of the USENIX Conference on Networked Systems Design
and Implementation, 2010.

[8] V. Franc, M. Sofka, and K. Bartos, “Learning detector of malicious
network traffic from weak labels,” in Machine Learning and Knowledge
Discovery in Databases. Springer, 2015, pp. 85-99.

9] T. I Movement, “SSL Pulse,”

https://www.trustworthyinternet.org/ssl-pulse/.

Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural proba-

bilistic language model,” Journal of Machine Learning Research, vol. 3,

pp- 1137-1155, 2003.

K. Bartos and M. Sofka, “Robust representation for domain adaptation

in network security,” in Proceedings of the European conference on

Machine Learning and Knowledge Discovery in Databases. Springer,

2015, pp. 116-132.

T. Nelms, R. Perdisci, and M. Ahamad, “Execscent: Mining for new c&c

domains in live networks with adaptive control protocol templates.” in

Proceedings of the USENIX Security Symposium, 2013, pp. 589-604.

2016,

[10]

(11]

[12]

TABLE XI
CLIENT CLASSIFIERS ON 5-MINUTE INTERVALS OF TRAFFIC FROM UNKNOWN HASHES

Feature type | R@70%P | R@80%P | R@90%P | Area under PR curve
packet 0.0 0.0 0.0 0.045
neural 6.906 4.604 2.302 0.133
packet + neural 28.92 25.52 23.32 0.313
packet + engineered 14.71 9.609 4.804 0.244
packet + 2-gram 9.009 6.006 3.003 0.168
TABLE XII

CLIENT CLASSIFIERS CLASSIFIERS ON 7 DAYS OF TRAFFIC FROM UNKNOWN HASHES

Feature type | R@70%P | R@80%P | R@90%P | Area under PR curve
packet 0.700 0.500 0.200 0.143
neural 27.42 18.31 9.109 0.456
packet + neural 61.56 58.25 43.54 0.686
packet + engineered 44.34 29.52 14.71 0.563
packet + n-gram 28.12 18.71 9.309 0.484

[13] J. Kohout and T. Pevny, “Unsupervised detection of malware in persis-
tent web traffic,” in Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing. 1EEE, 2015, pp. 1757-
1761.

[14] C. V. Wright, F. Monrose, and G. M. Masson, “On inferring application
protocol behaviors in encrypted network traffic,” Journal of Machine
Learning Research, vol. 7, pp. 2745-2769, 2006.

[15] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli, “Traffic classification
through simple statistical fingerprinting,” ACM SIGCOMM Computer
Communication Review, vol. 37, no. 1, pp. 5-16, 2007.

[16] M. Dusi, M. Crotti, F. Gringoli, and L. Salgarelli, “Tunnel hunter:
Detecting application-layer tunnels with statistical fingerprinting,” Com-
puter Networks, vol. 53, no. 1, pp. 81-97, 2009.

[17] J. Kohout and T. Pevny, “Automatic discovery of web servers hosting
similar applications,” in Proceedings of the IFIP/IEEE International
Symposium on Integrated Network Management. 1EEE, 2015, pp. 1310-
1315.

[18] J. Loko¢, J. Kohout, P. éech, T. Skopal, and T. Pevny, “k-nn classifi-
cation of malware in https traffic using the metric space approach,” in
Intelligence and Security Informatics. Springer, 2016, pp. 131-145.

[19] B. Claise, B. Trammell, and P. Aitken, “Specification of the ip flow in-
formation export (ipfix) protocol for the exchange of flow information,”
2013, https://tools.ietf.org/html/rfc7011.

[20] Cisco Systems, “Cisco ios netflow,
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-
netflow/index.html,” 2016.

[21] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in Neural Information Processing Systems, 2013,
pp. 3111-3119.

	Abstract
	I. Introduction
	II. Related Work
	III. Threat-Analysis Architecture
	A. Operating Environment
	B. Operating Environment with Application Visibility
	C. Data Collection
	D. Ground-Truth Labeling of HTTPS Traffic
	E. Client Malware Detection Problem

	IV. HTTPS Network-Flow Analysis
	A. Packet Features
	B. Domain-Name Features
	C. Client Classifier

	V. Experiments
	A. Classification of Host Domains
	B. Detection of Current Malware
	C. Detection of Future Malware
	D. Detection of Previously Unknown Malware

	VI. Conclusion
	References

