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Abstract

Computer Security deals with the detection and mitigation of threats to computer networks,
data, and computing hardware. This thesis addresses the following two computer security
problems: email spam campaign and malware detection. Email spam campaigns can easily
be generated using popular dissemination tools by specifying simple grammars that serve
as message templates. A grammar is disseminated to nodes of a bot net, the nodes create
messages by instantiating the grammar at random. Email spam campaigns can encompass
huge data volumes and therefore pose a threat to the stability of the infrastructure of email
service providers that have to store them. Malware —software that serves a malicious
purpose— is affecting web servers, client computers via active content, and client computers
through executable files. Without the help of malware detection systems it would be easy
for malware creators to collect sensitive information or to infiltrate computers.

The detection of threats—such as email-spam messages, phishing messages, or malware—
is an adversarial and therefore intrinsically difficult problem. Threats vary greatly and
evolve over time. The detection of threats based on manually-designed rules is therefore
difficult and requires a constant engineering effort. Machine-learning is a research area that
revolves around the analysis of data and the discovery of patterns that describe aspects of
the data. Discriminative learning methods extract prediction models from data that are
optimized to predict a target attribute as accurately as possible. Machine-learning methods
hold the promise of automatically identifying patterns that robustly and accurately detect
threats. This thesis focuses on the design and analysis of discriminative learning methods
for the two computer-security problems under investigation: email-campaign and malware
detection.

The first part of this thesis addresses email-campaign detection. We focus on regular
expressions as a syntactic framework, because regular expressions are intuitively compre-
hensible by security engineers and administrators, and they can be applied as a detection
mechanism in an extremely efficient manner. In this setting, a prediction model is pro-
vided with exemplary messages from an email-spam campaign. The prediction model has
to generate a regular expression that reveals the syntactic pattern that underlies the entire
campaign, and that a security engineers finds comprehensible and feels confident enough to
use the expression to blacklist further messages at the email server. We model this problem
as two-stage learning problem with structured input and output spaces which can be solved
using standard cutting plane methods. Therefore we develop an appropriate loss function,
and derive a decoder for the resulting optimization problem.

The second part of this thesis deals with the problem of predicting whether a given
JavaScript or PHP file is malicious or benign. Recent malware analysis techniques use
static or dynamic features, or both. In fully dynamic analysis, the software or script is
executed and observed for malicious behavior in a sandbox environment. By contrast,
static analysis is based on features that can be extracted directly from the program file.
In order to bypass static detection mechanisms, code obfuscation techniques are used to
spread a malicious program file in many different syntactic variants. Deobfuscating the
code before applying a static classifier can be subjected to mostly static code analysis and
can overcome the problem of obfuscated malicious code, but on the other hand increases
the computational costs of malware detection by an order of magnitude. In this thesis we
present a cascaded architecture in which a classifier first performs a static analysis of the
original code and—based on the outcome of this first classification step—the code may be
deobfuscated and classified again. We explore several types of features including token n-
grams, orthogonal sparse bigrams, subroutine-hashings, and syntax-tree features and study
the robustness of detection methods and feature types against the evolution of malware
over time. The developed tool scans very large file collections quickly and accurately.



Each model is evaluated on real-world data and compared to reference methods. Our
approach of inferring regular expressions to filter emails belonging to an email spam cam-
paigns leads to models with a high true-positive rate at a very low false-positive rate that
is an order of magnitude lower than that of a commercial content-based filter. Our pre-
sented system —REx-SVMSET*— is being used by a commercial email service provider
and complements content-based and IP-address based filtering. Our cascaded malware de-
tection system is evaluated on a high-quality data set of almost 400,000 conspicuous PHP
files and a collection of more than 1,00,000 JavaScript files. From our case study we can
conclude that our system can quickly and accurately process large data collections at a low
false-positive rate.
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Zusammenfassung

Computer-Sicherheit beschéftigt sich mit der Erkennung und der Abwehr von Bedrohun-
gen fiir Computer-Netze, Daten und Computer-Hardware. In dieser Dissertation wird die
Leistungsfahigkeit von Modellen des maschinellen Lernens zur Erkennung von Bedrohun-
gen anhand von zwei konkreten Fallstudien analysiert. Im ersten Szenario wird die Leis-
tungsfahigkeit von Modellen zur Erkennung von Email Spam-Kampagnen untersucht. E-
Mail Spam-Kampagnen werden haufig von leicht zu bedienenden Tools erzeugt. Diese Tools
erlauben es dem Benutzer, mit Hilfe eines Templates (z.B. einer reguldren Grammatik) eine
Emailvorlage zu definieren. Ein solches Template kann z.B. auf die Knoten eines Botnetzes
verteilt werden. Dort werden Nachrichten mit diesem Template generiert und an ver-
schiedene Absender verschickt. Die damit entstandenen E-Mail Spam-Kampagnen kénnen
riesige Datenmengen produzieren und somit zu einer Gefahr fiir die Stabilitat der Infrastruk-
tur von E-Mail-Service-Providern werden. Im zweiten Szenario wird die Leistungsfahigkeit
von Modellen zur Erkennung von Malware untersucht. Malware bzw. Software, die schad-
haften Programmcode enthélt, kann Web-Server und Client-Computer iiber aktive Inhalte
und Client-Computer iiber ausfithrbare Dateien beeinflussen. Somit kann die die regulére
und legitime Nutzung von Diensten verhindert werden. Des Weiteren kann Malware genutzt
werden, um sensible Informationen zu sammeln oder Computer zu infiltrieren.

Die Erkennung von Bedrohungen, die von E-Mail-Spam-Mails, Phishing-E-Mails oder
Malware ausgehen, gestaltet sich schwierig. Zum einen veriandern sich Bedrohungen von
Zeit zu Zeit, zum anderen werden E-Mail-Spam-Mails oder Malware so modifiziert, dass sie
von aktuellen Erkennungssystemen nicht oder nur schwer zu erkennen sind. Erkennungssys-
teme, die auf manuell erstellten Regeln basieren, sind deshalb wenig effektiv, da sie standig
administriert werden miissen. Sie miissen kontinuierlich gewartet werden, um neue Regeln
(fiir veranderte oder neu auftretende Bedrohungen) zu erstellen und alte Regeln anzupassen
bzw. zu loéschen. Maschinelles Lernen ist ein Forschungsgebiet, das sich mit der Analyse
von Daten und der Erkennung von Mustern beschéftigt, um bestimmte Aspekte in Daten,
wie beispielsweise die Charakteristika von Malware, zu beschreiben. Mit Hilfe der Metho-
den des Maschinellen Lernens ist es moglich, automatisiert Muster in Daten zu erkennen.
Diese Muster kénnen genutzt werden, um Bedrohung gezielt und genau zu erkennen.

Im ersten Teil wird ein Modell zur automatischen Erkennung von E-Mail-Spam-Kampag-
nen vorgestellt. Wir verwenden regulare Ausdriicke als syntaktischen Rahmen, um E-
Mail-Spam-Kampagnen zu beschreiben und E-Mails die zu einer E-Mail-Spam-Kampagne
gehoren zu identifizieren. Reguldre Ausdriicke sind intuitiv verstdndlich und koénnen ein-
fach von Administratoren genutzt werden, um E-Mail-Spam-Kampagnen zu beschreiben.
Diese Arbeit stellt ein Modell vor, das fiir eine gegebene E-Mail-Spam-Kampagne einen
regulidren Ausdruck vorhersagt. In dieser Arbeit stellen wir ein Verfahren vor, um ein Mod-
ell zu bestimmen, das reguldre Ausdriicke vorhersagt, die zum Einen die Gesamtheit aller
E-Mails in einer Spam-Kampagne abbilden und zum Anderen so verstandlich aufgebaut
sind, dass ein Systemadministrator eines E-Mail Servers diesen verwendet. Diese Problem-
stellung wird als ein zweistufiges Lernproblem mit strukturierten Ein- und Ausgaberdumen
modelliert, welches mit Standardmethoden des Maschinellen Lernens gelost werden kann.
Hierzu werden eine geeignete Verlustfunktion, sowie ein Dekodierer fiir das resultierende
Optimierungsproblem hergeleitet.

Der zweite Teil behandelt die Analyse von Modellen zur Erkennung von Java-Script
oder PHP-Dateien mit schadhaften Code. Viele neu entwickelte Malwareanalyse-Tools
nutzen statische, dynamische oder eine Mischung beider Merkmalsarten als Eingabe, um
Modelle zur Erkennung von Malware zu bilden. Um dynamische Merkmale zu extrahieren,
wird eine Software oder ein Teil des Programmcodes in einer gesicherten Umgebung aus-
gefiihrt und das Verhalten (z.B. Speicherzugriffe oder Funktionsaufrufe) analysiert. Bei der
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statischen Analyse von Skripten und Software werden Merkmale direkt aus dem Program-
code extrahiert. Um Erkennungsmechanismen, die nur auf statischen Merkmalen basieren,
zu umgehen, wird der Programmcode oft maskiert. Die Maskierung von Programmcode
wird genutzt, um einen bestimmten schadhaften Programmcode in vielen syntaktisch unter-
schiedlichen Varianten zu erzeugen. Der originale schadhafte Programmcode wird dabei erst
zur Laufzeit generiert. Wird der Programmcode vor dem Anwenden eines Vorhersagemod-
ells demaskiert, spricht man von einer vorwiegend statischen Programmcodeanalyse. Diese
hat den Vorteil, dass enthaltener Schadcode einfacher zu erkennen ist. Grofler Nachteil
dieses Ansatzes ist die erhohte Laufzeit durch das Demaskieren der einzelnen Dateien vor
der Anwendung des Vorhersagemodells. In dieser Arbeit wird eine mehrstufige Architektur
prasentiert, in der ein Klassifikator zunachst eine Vorhersage auf Grundlage einer statis-
chen Analyse auf dem originalen Programmcode trifft. Basierend auf dieser Vorhersage
wird der Programcode in einem zweiten Schritt demaskiert und erneut ein Vorhersagemod-
ell angewendet. Wir betrachten dabei eine Vielzahl von moglichen Merkmalstypen, wie
n-gram Merkmale, orthogonal sparse bigrams, Funktions-Hashes und Syntaxbaum Merk-
male. Zudem wird in dieser Dissertation untersucht, wie robust die entwickelten Erken-
nungsmodelle gegeniiber Veranderungen von Malware iiber die Zeit sind. Das vorgestellte
Verfahren ermoglicht es, grole Datenmengen mit hoher Treffergenauigkeit nach Malware
zu durchsuchen.

Alle in dieser Dissertation vorgestellten Modelle wurden auf echten Daten evaluiert und
mit Referenzmethoden verglichen. Das vorgestellte Modell zur Erkennung von E-Mail-
Spam-Kampagnen hat eine hohe richtig-positive Rate und eine sehr kleine falsch-positiv
Rate die niedriger ist, als die eines kommerziellen E-Mail-Filters. Das Modell wird von
einem kommerziellen E-Mail Service Provider wahrend des operativen Geschéafts genutzt,
um eingehende und ausgehende E-Mails eines E-Mails-Servers zu {iberpriifen. Der Ansatz
zur Malwareerkennung wurde auf einem Datensatz mit rund 400.000 verdachtigen PHP
Dateien und einer Sammlung von mehr als 1.000.000 Java-Script Dateien evaluiert. Die
Fallstudie auf diesen Daten zeigt, dass das vorgestellte System schnell und mit hoher
Genauigkeit riesige Datenmengen mit wenigen Falsch-Alarmen nach Malware durchsuchen
kann.
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Chapter 1

Introduction

The manual design of patterns that detect computer security threats requires a con-
stant and substantial engineering effort. Machine-learning methods offer the poten-
tial to discover such patterns automatically, based on the analysis of data (Chan and
Lippmann, 2006). Example computer-security problems for which machine learning
has been applied include email spam classification that classifies ingoing emails as
spam or non-spam or malware detection that classifies executable or program files
as malicious or benign. In this thesis we investigate the predictive power of dis-
criminative models for two sample applications: email spam campaign and malware
detection.

1.1 Pattern Recognition for Computer Security

Recently, machine-learning techniques are used to develop computer security systems
for many different applications ranging from intrusion and network anomaly detec-
tion, email spam or malware detection to detecting of Denial-of-Service (DOS) or
Distributed DOS attacks (DDoS).

Intrusion detection systems using machine-learning techniques can be divided into
two categories: supervised (classification) and unsupervised (anomaly detection and
clustering) methods (Laskov et al., 2005). Intrusion detection systems try to detect
unauthorized use, misuse, and abuse of computer systems. In Laskov et al. (2005)
common supervised and unsupervised machine-learning algorithms are compared to
each other to detect network intrusions based on a fixed set of connection-based
features. In Lane and Brodley (1997) a user profile based on sequences of actions
(UNIX commands) is learned to detect the presence of an intruder masquerading
as the valid user. In Zanero and Savaresi (2004) a two-tier architecture to detect
network intrusions is proposed: the first tier is an unsupervised clustering algorithm
which reduces the network packets payload to a tractable size and the second tier
is a traditional anomaly detection algorithm, whose efficiency is improved by the
availability of data on the packet payload content. In Lee and Stolfo (1998) machine-
learning techniques are used to discover consistent and useful patterns of system
features that describe program and user behavior. The set of relevant system features
is being used to learn classifiers that can recognize anomalies and known intrusions.
In Lee and Stolfo (2000) a data mining framework for adaptively building intrusion
detection models is proposed.



Denial-of-Service (DoS) or Distributed Denial-of-Service (DDoS) attacks are a
serious problem for many web services. DDoS attacks aim that users are prevented
from using a web-based service by exhausting server or network resources. Known
defense mechanisms against DDoS attacks use features that aggregate behavioral
information about individual clients over time (Ranjan et al., 2006; Xie and Yu,
2009; Liu and Chang, 2011). In Xie and Yu (2009) the HTTP request sequences of
users are analyzed. Fitting a sequence of a user to the model of normal browsing
behavior, it is possible to detect malicious network patterns (users).

Email spam messages impose a substantial burden on network and storage ca-
pacities, and are frequently used to distribute viruses, obtain personal information,
and promote illegal businesses. Using textual features such as n-grams or orthogonal
sparse bigrams a statistical model can be learned to distinguish between legitimate
and spam emails at a high true-positive and a low false-positive rate. Email spam
campaigns can be observed using spam traps containing many spam emails. Haider
and Scheffer (2009) presented a Bayesian clustering approach that can be used to
cluster emails into sets of email spam campaigns. This method transforms emails
into a feature space of independent binary feature vectors that can reflect arbitrary
dependencies within emails in the input space. Using this clustering approach, en-
tire spam and phishing campaigns can be detected reliable. To detect future emails
belonging to a known email spam campaign a binary indicator vector (bag-of-words)
containing all words shared among all emails in the cluster can be used. This fea-
ture vector has a component for each word in the vocabulary and serves as cluster
description.

Malware is affecting web servers, client computers via active web content, and
client computers through executable files. Malware can be used to steal information
or spy on computer users for an extended period without their knowledge. Existing
malware detection algorithms use features extracted directly from the program code
of a software or script (static classifier) or features obtained in a sandbox environment
(dynamic classifier) (Kolter and Maloof, 2006; Canali et al., 2012; Curtsinger et al.,
2011; Anderson et al., 2012; Christodorescu et al., 2005; Kong and Yan, 2013). Where
the dynamic classifiers suffer from a high execution time the purely static classifiers
suffer from a lower predictive power compared to dynamic classification approaches.
Malicious software can also be detected using algorithms that analyze the network
traffic a software causes (Franc et al., 2015; Bartos and Sofka, 2015). This approach
addresses the problem of learning a detector for malicious network traffic. The mali-
cious behavior is detected based on the analysis of network proxy logs that capture
malware communication between client and server computers.

All computer security applications mentioned above use training data to model
the relationship between an instance and the target label. Most models assume
that the given training data consists of representative samples which do not differ
from the test data which the model is applied to during application time. For some
applications this assumption is not fulfilled which can be the case when the test data
depends on the predictive model trained on prior training data, which is referred to
as adversarial prediction problem. Briickner et al. (2012) formulated this problem as
a prediction game with two players: the learner and the data generator. The learner
infers a predictive model from the training data and the data generator controls the
data generation process. The goal is to find the optimal model of the learner which
is most robust to all expected actions of the data generator. The distribution of the



training and test data can also differ from each other when they are sampled from
different time periods. So typically malware and email spam evolve over time and
sampling the training and test data according to the time they firstly appeared would
lead to a difference between the training and test distribution. This is especially the
case, when a predictive model is trained in the past and evaluated into the future.

1.2 Discriminative Models for Email Spam Cam-
paign Detection

Methods for email spam detection typically model the problem setting as follows:
Given the input x which is the content of an email, we want to find a mapping
for all possible emails x € X to the binary target label y € {41, —1}, representing
spam and non-spam. Most previously presented works use a statistical model learned
on a feature representation of emails . Textual patterns are commonly extracted
using n-grams or orthogonal sparse bigrams which are transformed into a vector
which contains the frequency of each pattern for the resulting vocabulary of known
patterns. In the application of email spam filtering a very low false-positive rate must
be achieved so that a model can be deployed.

Popular spam dissemination tools are extensively used to spread mailing cam-
paigns by specifying simple grammars that serve as message templates. The grammar
is disseminated to nodes of a bot net, where the nodes create messages by instanti-
ating the grammar at random. Samples of such mailing campaigns can be collected
by an email service provider using a previously trained spam filter on their ingoing
emails. Typically messages from multiple campaigns are collected jointly using a
spam filter applied to all ingoing emails. Clustering tools can be used to separate
the campaigns reliably (Haider and Scheffer, 2009). Using a probabilistic cluster de-
scription it is possible to assign new incoming emails to a known email campaign.
Such a probabilistic cluster description can consist of a bag-of-word representation of
tokens shared among all emails of a campaign and a threshold determining how many
words an email assigned to this cluster have to share with the cluster. Unfortunately,
such a probabilistic cluster description can cause false-positives and the bag-of-word
representation makes it sometimes very hard to figure out what kind of emails would
be assigned to a specific cluster. To tackle this problem postmasters of an email
service provider (ESP) write specific, comprehensible regular expressions which cover
the observed instances and are used to blacklist the bulk of emails of that campaign
at virtually no risk of covering other messages. Syntactically, a regular expression
y € Vs is either a character from an alphabet X, or it is an expression in which an op-
erator is applied to one or several argument expressions. Every regular expression y
defines a regular language L(y) containing all strings € ¥* which can be generated
using expression y.

In this thesis a two-staged learning problem with structured output spaces and
an appropriat loss functions is presented. In a first step we learn a mapping from a
given set of strings (an email campaign) to a regular expression. In a second step we
infer a mapping from a regular expression (inferred by the first stage) to a substring
of the initially given regular expression which is most informative.



1.3 Predicting Regular Expressions for Message
Campaigns

The first paper presented in this thesis addresses the problem of inferring a regular
expression from a given set of strings that resemble the regular expression that a
human expert would have written to identify the language, as closely as possible. We
are given a set of emails z € x belonging to the same spam campaign x. The goal is
to infer a regular expression y that identifies the campaign template and is similar to
a regular expression a human postmaster would use to blacklist this specific campaign
x. More formally, we want to generate a regular expression y so that all emails x € x
are elements of the language L(y). To model this task we assume that an unknown
distribution p(x,y) generates regular expressions y for sets of strings = € x that are
elements of the language L(y). We formulate this problem as a learning problem
with structured output spaces, a joint feature representation, and an appropriate
loss function. The goal is to learn a w-parametrized discriminative predictive model
fwy that accepts a set of strings x and infers a regular expression y. To measure
the quality of an inferred regular expression we defined a loss function A(y,y,x)
that captures the deviation of the predicted expression y from y for campaign x by
comparing each of the accepting parse trees for y and x when generating the strings
from x. This loss function is formulated in a way that syntactically more similar
regular expressions would gain a lower loss than syntactically more dissimilar regular
expressions. This is motivated by the use-case of a human postmaster that would
only use regular expressions that are written comprehensibly and neatly.

Formally, given the loss function, our goal is to find the model f,, with minimal
risk:

RIf] = / / AW, ful(x), x)p(x, ¥)dxdy,

where the training data D = {(x;,y;)}/, consists of pairs of batches x; and gener-
ating regular expressions y,, drawn according to p(x,y).

This approach is first presented and discussed by Prasse, Sawade, Landwehr, and
Scheffer (Prasse et al., 2012). That paper presents a learning framework which can
be used to infer regular expressions to describe batches of strings by learning a model
which captures the preferences in writing regular expressions from a training data set
consisting of pairs of batches and their corresponding regular expressions.

1.4 Extracting Concise Regular Expressions

The second paper presented in the thesis addresses the problem of inferring a concise
substring of a given regular expression which is most informative and can be used
to blacklist email spam campaigns (Prasse et al., 2015). This results in shorter,
easier to interpret, and more general regular expressions which are more similar to
regular expressions a human postmaster would write. The model presented in Prasse
et al. (2012) generates regular expressions that tend to be very specific because they
match all the parts of the strings in a campaign x. Human postmasters, by contrast,
prefer to focus on only a characteristic part of the messages for which they would
write a concise regular expression. So we are interested in a model f, that selects a
substring from its input regular expression. In Prasse et al. (2015) we model f, as a
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linear discriminant function with a joint feature representation of the input regular
expression and the output regular expression. Training data to train this model f,
consists of pairs (¥;,y;), whereas y; is a concise substring of the regular expression
Vi

This approach is first presented and discussed by Prasse et al. (2015). The paper
Prasse et al. (2015) extends the conference paper Prasse et al. (2012) that addresses
the problem of inferring a regular expression for a given set of strings. In this paper
an approach to infer the most informative and concise subexpression for a previously
mostly long regular expression is presented.

1.5 Detecting Malware

In the application of malware detection the inputs x are JavaScript, PHP, PDF,
or executable files. The label that is to be inferred is a binary target variable,
y € {+1,—1}, representing malicious or benign content. Most malware analysis
techniques are using static or dynamic features or both to decide whether a given file
contains malicious content or not.

In a fully dynamic analysis the software or the script is executed and analyzed
for malicious patterns in a sandbox environment. This thesis addresses the problem
of malware detection that have to scan large file collections in a quick and accurate
way. Setting up a virtual operating environment and running the software or script
for every instance would be impractical because this requires minutes of CPU time
and computer resources for each file to inspect. By contrast, static analysis is based
on features that can be extracted directly from the program file. Regarding binary
files, byte n-gram features, DLLs, and system calls can be extracted. Furthermore,
a Gabor-filter representation of a gray scale visualization can be used to represent a
binary file (Nataraj et al., 2011). Regarding script files all kinds of textual patterns
like n-gram features (Kolter and Maloof, 2006), bag of tuples (Canali et al., 2012),
syntax-tree features (Curtsinger et al., 2011), control-flow graph features (Anderson
et al., 2012; Christodorescu et al., 2005), and function-call graph features (Kong and
Yan, 2013) can be used. Such analysis tools can be real-time capable and be trained
on collections of malware and benign files. Static and dynamic program analysis can
also be combined to use all kinds of features to improve the predictive power.

In order to bypass static detection mechanisms code obfuscation techniques are
used heavily. Code obfuscation techniques allow malware engineers to package ma-
licious content into patterns that may not have previously occurred in malware. To
overcome code obfuscation, deobfuscation tools were designed to allow partial code
execution to the point where all dynamically generated code have been generated.
Deobfuscating all files before performing the static malware analysis may still be im-
practical when billions of files should be managed in a quickly way. To deal with
large file collections we study a cascaded malware detection framework that bases
its malware detections on static code features whenever this decision can be made
with near certainty. Otherwise the code is being deobfuscated and a decision is being
made based on static features of the unpacked code.

This approach is first detailed and discussed by Prasse and Scheffer (2016). This
paper presents a fast and robust cascaded malware detection framework.



1.6 Contributions

In this thesis, we present new machine-learning techniques for two computer security
applications: email spam campaign and malware detection. In this section, a list of
all presented papers together with general and own contributions is provided.

Prasse et al. (2012) Prasse, P., Sawade, C., Landwehr, N., Scheffer, T.:
Learning to Identify Regular Expressions that De-
scribe Email Campaigns. In: Proceedings of the

29th International Conference on Machine Learn-
ing (2012)

That paper contributes a learning framework with structured output spaces to
learn the mapping from a set of strings to a target regular expression. Fur-
thermore, it presents a loss function to syntactically compare different regular
expressions and a joint feature representation for sets of strings and regular ex-
pressions. To evaluate the performance of the proposed model and its baselines
we conducted a case study with training and test data from an email service
provider.

For that paper, I formulated the problem setting and the formal definitions, de-
signed the joint feature representation and the loss function, derived the decoder,
implemented the algorithm and its baselines, and conducted the experiments.

Prasse et al. (2015) Prasse, P., Sawade, C., Landwehr, N., Scheffer, T.:
Learning to Identify Concise Regular Expressions
that Describe Email Campaigns. In: Journal of
Machine Learning Research 16 (2015)

That paper extends the conference paper Prasse et al. (2012), includes a more
detailed analysis and contributes a two-staged learning problem for inferring
concise regular expressions with structured output spaces and appropriate loss
functions. In this paper we derive decoders, joint feature representations and
loss functions for the resulting optimization problems which can be solved using
standard cutting plane methods. To evaluate the performance of the proposed
model we conducted a case study on real world data collected by an email service
provider.

For this paper I formulated the problem setting and the formal definitions, proved
the observation and the theorem, designed the loss function, derived the decoders,
implemented the algorithm and its baselines, and conducted the experiments.




Prasse and Scheffer (2016) Prasse, P., Scheffer, T.: Cascaded Malware Detec-
tion at Scale. In: unpublished manuscript (2016)

This paper addresses the problem of detecting malicious JavaScript and PHP
scripts and makes the following contributions: Firstly, we presented a cascaded
malware detection framework in which most decisions are made based on fully
static analysis and only a limited fraction of files are singled out for deobfuscation.
Secondly, we explored this approach in a large-scale empirical study including
about 400,000 PHP files and 1,000,000 JavaScript files. Furthermore, we made
our JavaScript data set publicly available to other researches so that they could
compare their methods with our approach. In our empirical study we investi-
gated the effectiveness of several feature types used for malware classification.
Feature types we analyzed included n-grams, orthogonal sparse bigrams, syntax-
tree features, and function-hashing features. To the best of our knowledge, we
presented the first empirical study of the robustness of malware detection mod-
els over time. Finally, we presented a fast and robust cascaded malware-filtering
system that attains highest accuracies for JavaScript and PHP files at a very low
false-positive rate.

For the paper I collected the training data, designed the cascaded malware de-
tection model, defined the set of features used in the model, implemented the
algorithms and its baselines, and conducted the experiments on the data sets.
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Abstract

This paper addresses the problem of infer-
ring a regular expression from a given set of
strings that resembles, as closely as possible,
the regular expression that a human expert
would have written to identify the language.
This is motivated by our goal of automating
the task of postmasters of an email service
who use regular expressions to describe and
blacklist email spam campaigns. Training
data contains batches of messages and corre-
sponding regular expressions that an expert
postmaster feels confident to blacklist. We
model this task as a learning problem with
structured output spaces and an appropriate
loss function, derive a decoder and the result-
ing optimization problem, and a report on a
case study conducted with an email service.

1. Introduction

Popular spam dissemination tools allow users to imple-
ment mailing campaigns by specifying simple gram-
mars that serve as message templates. A grammar
is disseminated to nodes of a bot net, the nodes cre-
ate messages by instantiating the grammar at random.
Email service providers can easily sample elements of
new mailing campaigns by collecting messages in spam
traps or by tapping into known bot nets. When mes-
sages from multiple campaigns are collected in a joint
spam trap, clustering tools can separate the campaigns
reliably (Haider & Scheffer, 2009). However, prob-
abilistic cluster descriptions that use a bag-of-words
representation incur the risk of false positives, and it
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I'm a cute rus-
sian lady. I'm 21
years old, weigh
55 kilograms
and am 172
centimeters tall.

I'm a lonely rus-
sian lady. I'm 23
years old, weigh
47 kilograms
and am 165
centimeters tall.

I'm a sweet rus-
sian girl. I'm 22
years old, weigh
58 kilograms
and am 171
centimeters tall.

1

y = I'm a [a-z]T russian (girl|/lady). | am 2[123] years old, weigh
\d* kilograms and am 1\d{2} centimeters tall.

Figure 1. Elements of a message campaign and a regular
expression created by a postmaster.

is difficult for a human to decide whether they in fact
characterize the correct set of messages.

Regular expressions are a standard tool for specify-
ing simple grammars. Widely available tools match
strings against regular expressions efficiently and can
be used conveniently from scripting languages. A reg-
ular expression can be translated into a finite state
machine that accepts the language and has an execu-
tion time linear in the length of the input string. A
specific, comprehensible regular expression which cov-
ers the observed instances and has been written by an
expert postmaster can be used to blacklist the bulk of
emails of that campaign at virtually no risk of covering
any other messages.

Language identification has a rich history in the al-
gorithmic learning theory community (see Section 6).
Our problem setting differs from the problem of lan-
guage identification in the learner’s exact goal, and in
the available training data. Batches of strings and cor-
responding regular expressions are observable in the
training data. The learner’s goal is to produce a pre-
dictive model that maps batches of strings to regu-
lar expressions that resemble as closely as possible the
regular expressions which the postmaster would have
written and feels confident to blacklist (see Figure 1).
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syn
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rgyn(m) =b ngn(m) =0-9 ngn(zxg) =aa Y, (v11) =b
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(a) Syntax tree T3,

I35 (v) = [b0-9]{2}c(aalb)”

IYn(n) = 00-91{2}  TYS(vp) =c Y (vg) = (aalb)”
Iy (v3) = [b0-9] F%&’i(véi = [b0-9] Iy (vg) =€
I35 (v3) = 0-9 Iy (vg) =b

Iy (i) =1
(b) Parse tree T,r

Figure 2. Syntax tree 2(a) and a parse tree 2(b) for the regular expression y = [b0-9]{2}c(aa|b)* and the string z = 1bc.

The rest of this paper is structured as follows. Sec-
tion 2 reviews regular expressions before Section 3
states the problem setting. Section 4 introduces the
feature representation and derives the decoder and the
optimization problem. In Section 5, we discuss our
findings from a case study with an email service. Sec-
tion 6 discusses related work; Section 7 concludes.

2. Regular Expressions

Syntactically, a regular expression y € )y is either
a character from an alphabet X, or it is an expres-
sion in which an operator is applied to one or several
argument expressions. Basic operators are the con-
catenation (e.g., “abc”), disjunction (e.g., “alb”), and
the Kleene star (“*”), written in postfix notation, that
accepts any number of repetitions of its preceding ar-
gument expression. Parentheses define the syntactic
structure of the expression. Several shorthands im-
prove the readability of regular expressions and can
be defined in terms of the basic operators. For in-
stance, the any character symbol (“.”) abbreviates the
disjunction of all characters in ¥, square brackets ac-
cept the disjunction of all characters (e.g., “[abc]”) or
ranges (e.g., “[a-z0-9]”) that are included. The postfix
operator “T” accepts an arbitrary, positive number of
reiterations of the preceding expression, while “{l,u}”
accepts between | and wu reiterations, where [ < u. We
include a set of popular macros—for instance “\d” for
any digit. A formal definition of the set of regular
expressions can be found in the online appendix.

The syntactic structure of a regular expres-
sion is represented by its syntar tree T3, =
(Vs Edyns Tyns <¥%n).  Definition 3 in the online
appendix assigns one such tree to each regular ex-
pression. A node v € V¥ of this tree is tagged by
labeling function I'Y, : VY — Vs with a subex-
(v) = y;. Edges (v,v') € EY,, indicate

syn syn
i y
pression Fsyn Yun

that node v’ represents an argument expression of v.

Relation <Y, C V¥ x V¥  defines an ordering on

the nodes and identifies the root node.

A regular expression y defines a regular language L(y).
Given the regular expression, a deterministic finite
state machine can decide whether a string x is in
L(y) in time linear in |x| (Dubé & Feeley, 2000). The
trace of verification is typically represented as a parse
tree T30 = (Vur, BYir, Tyar, <3i7), describing how
the string x can be derived from the regular expres-
sion y. At least one parse tree exists if and only if the
string is an element of the language L(y); in this case,
y is said to generate . Nodes v € V) , of the syntax
tree generate the nodes of the parse tree v € VY,7; a
node of the syntax tree may spawn none (alternatives
which are not used to generate a string), one, or several
(“loopy” syntactic elements such as “*” or “*”) nodes
in the parse tree. In analogy to the syntax trees, the la-
beling function Fg,’;f; : Vp{'“i” — Vs assigns a subexpres-
sion to each node, and the relation <Y,7.C VY7 x VX7
defines the ordering of sibling nodes. The set of all
parse trees for a regular expression y and a string z is
denoted by 7;”. A formal definition can be found in

the online appendix.

Leaf nodes of a parse tree T, are labeled with ele-
ments of ¥ U {e}, where € denotes the empty symbol;
reading them from left to right gives the generated
string . Non-terminal nodes correspond to subex-
pressions y; of y which generate substrings of z. To
compare different regular expressions with respect to
a given string x, we define the set Tg’a’fli of labels of
nodes which are visited on the path from the root to

the the i-th character of = in the parse tree T37.

Figure 2 shows an example of a syntax tree T3,
and a parse tree T3 for the regular expression

y = [b0-9]{2}c(aalb)* and the string = = 1bc.

Finally, we introduce the concept of a matching list.
When a regular expression y generates a set x of

strings, and v € V¥, is an arbitrary node of the syn-



tax tree of y, then the matching list MY*(v) charac-
terizes which substrings of the strings in x are gen-
erated by the node v of the syntax tree. A node v
of the syntax tree generates a substring =’ of z € x,
if v generates a node v’ in the parse tree 3.7 of z,
and there is a path from v’ in that parse tree to every
character in the substring z’. In the above example,
for the set of strings x = {12c, b4ca}, the matching list
for node vy that represents subexpression [b0-9]{2} is
MY*(vg) = {12,b4}. Definition 4 in the online ap-
pendix introduces matching lists formally.

3. Problem Setting

Having established the syntax and semantics of regular
expressions, we now turn towards the problem setting.
An unknown distribution p(x,y) generates regular ex-
pressions y € Vs and batches x of strings x € x that
are elements of the language L(y). In our motivating
application, the strings x are emails sampled from a
bot net, and the y are regular expressions which an
expert postmaster believes to identify the campaign
template, and feels confident to blacklist.

A w-parameterized predictive model fy : x — y ac-
cepts a batch of strings and conjectures a regular ex-
pression y. We now define the loss A(y,y,x) that
captures the deviation of the conjecture y from y for
batch x. In our application, postmasters will not use
an expression to blacklist the campaign unless they
consider it to be comprehensibly and neatly written,
and believe it to accurately identify the campaign.

Loss function A(y,y,x) compares each of the accept-
ing parse trees in ’7;3('1;”, for each string x € x, with the
most similar tree in 7;}(’w ; if no such parse tree exists,
the summand is defined as | | (Equation 1). Similarly
to a loss function for hierarchical classification (Cesa-
Bianchi et al., 2006), the difference of two parse trees
for string x is quantified by a comparison of the paths
that lead to the characters of the string; paths are
compared by means of the intersection of their nodes
(Equation 2). By its definition, this loss function is
bounded between zero and one; it attains zero if and
only if the expressions y and y are equal.

Atree y ya ) lf.’IJEL(y)
Aly,¥,x) ‘ Z { otherwise (1)
With Atree (Ya Yy, J)) (2)
|z
1 |t|] ﬂt |
=1— max
| Tpar teTye TS |£U| Z maX{|t|]| |tlj|‘JL
par

We will also explore the zero-one loss, Ag/1(y,y,x) =
[y # 3], where [.] is the indicator function of its
boolean argument. The zero-one loss serves as an al-
ternative, conceptually simpler reference model.

Our goal is to find the model fy, with minimal risk

Rlful = / Ay, fu(x),0p(0 y)dxdy.  (3)

Training data D = {(x;,y;)}/, consists of pairs
of batches x; and generating regular expressions y;,
drawn according to p(x,y).

Since the true distribution p(x,y) is unknown, the
risk R[fw] cannot be calculated. We state the learn-
ing problem as the problem of minimizing the regular-
ized empirical counterpart of the risk over the param-
eters w and the regularizer Q(w):

ST Al fw(x),%) +Qw). (@)

(x,y)eD

4. Identifying Regular Expressions

We model f,, as a linear discriminant function
w!U(x,y) for a joint feature representation of the in-
put x and output y (Tsochantaridis et al., 2005):

fw(x) = arg max wiU(x,y). (5)

4.1. Joint Feature Representation

The joint feature representation W(x,y) captures
structural properties of an expression y and joint prop-
erties of input batch x and regular expression y.

Structural properties of a regular expression y are cap-
tured by features that indicate a specific nesting of
regular expression operators—for instance, whether a
concatenation occurs within a disjunction. More for-
mally, we first define a binary vector

[[y =Yyi... Yk]]
[[y = Y1|~“Ykﬂ
Iy =1ly1.-.yll
ly = vil
[y =y17]
i
y=y1
Iy = 31 {0, u}] (©)

[y =ml

[y = 1]
[y € X]
[y =«

encoding the top-level operator used in the regular ex-
pression y. In Equation 6, y1,...,yr € Vs are regular
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expressions, [, u € N, and {ry,...,7} is a set of ranges
and popular macros; for our application, we use the
set {0-9,a-f,a-z, A-F,A-Z,\S, \e,\w, \d, “.”}. For any
two nodes v’ and v” in the syntax tree of y that are
connected by an edge—indicating that y” = I'Y,, (v")
is an argument subexpression of y' = I'Y , (v')—the
tensor product A(y’) ® A(y”) defines a binary vector
that encodes the specific nesting of operators at node
v'. Feature vector ¥(x,y) will aggregate these vectors
over all pairs of adjacent nodes in the syntax tree of y.

Joint properties of an input batch x and a regular ex-
pression y are encoded as follows. Recall that for any
node v’ in the syntax tree, MY*(v’) denotes the set of
substrings in x that are generated by the subexpres-
sion y’ = T'Y,,,(v') that v is labeled with. We define
a vector ®(MY*(v")) of attributes of this set. Any
property may be accounted for; for our application,
we include the average string length, the inclusion of
the empty string, the proportion of capital letters, and
many other attributes. The full list of attributes used
in our experiments is included in the online appendix.
A joint encoding of properties of the subexpression y’
and the set of substrings generated by y’ is given by
the tensor product ®(MY*(v)) ® A(y’).

The joint feature vector ¥(x,y) is obtained by ag-
gregating operator-nesting information over all edges
in the syntax tree, and joint properties of subexpres-
sions y’ and the set of substrings they generate over
all nodes in the syntax tree:

U(x,y) (7)

| Zwremeny,, AT () @ AT, ()
Zv’EVsb;n (I)(My’x(v/)) ® A(F%,yn (U/)) .

4.2. Decoding

At application time, the highest-scoring regular ex-
pression fw(x) = argmaxycy, W' ¥(x,y) has to be
identified. This maximization is over the infinite space
of all regular expressions )s. To alleviate the in-
tractability of this problem, we approximate this maxi-
mum by the maximum over a constrained, finite search
space which can be found efficiently.

The constrained search space initially contains an
alignment of all strings in x. An alignment is a regular
expression that contains only constants—which have
to occur in all strings of the batch—and the wildcard
symbol “(.*)”. The initial alignment ay of x can be
thought of as the most-general bound of this space.

Definition 1 (Alignment). The set of alignments Ax
of a batch of strings x contains all concatenations in
which strings from ¥ and the wildcard symbol “(.*)”
alternate, and that generate all elements of x.

An alignment is maximal if no other alignment in Ay
contains more constant symbols. A maximal align-
ment of two strings can be determined efficiently us-
ing Hirschberg’s algorithm (Hirschberg, 1975) which
is an instance of dynamic programming. By contrast,
finding the maximal alignment of a set of strings is
NP-hard (Wang & Jiang, 1994); known algorithms are
exponential in the number |x| of strings in x. Progres-
sive alignment heuristics find an alignment of a set of
strings by incrementally aligning pairs of strings.

Given an alignment ay = ao(.*)a;...(.*)a, of all
strings in x, the constrained search space

Vep = {aoy1a1 ... ynanly; € Yo} (8)

contains all specializations of ax in which the j-th
wildcard symbol is replaced by any element of a set
JAJII:\,/[J' . The sets j}ﬁfi are constructed by Algorithm 1.
The algorithm starts with p which we define to be
the set of all subexpressions that occur anywhere in
the training data D. From this set, it takes a subset
such that each regular expression in :)A),g D generates all
strings in x, and adds a number of syntactic variants
and subexpressions in which constants have been re-
placed to match the elements of M}, where Mj; is the
matching list of the node which belongs to the j-th
wildcard symbol. Each of the lines 7, 9, 10, 11, and
12 of Algorithm 1 adds at most one element to )A)g[j—
hence, the search space of possible substitutions for
each of the n wildcard symbols is linear in the number
of subexpressions that occur in the training sample.

We now turn towards the problem of determining the
highest-scoring regular expression fy(x). Maximiza-
tion over all regular expressions is approximated by
maximization over the space defined by Equation 8:

arg max w' ¥(x,y) ~arg maxw' ¥(x,y). (9)
YEYs y
YEYVx,D

We will now argue that this maximization problem can
be decomposed into independent maximization prob-
lems for each of the y; that replaces the j-th wildcard
in the alignment ax due to the simple syntactic struc-
ture of the alignment and the definition of .

Feature vector ¥(x,y) decomposes linearly into a sum
over the nodes and a sum over pairs of adjacent nodes
(see Equation 7). The syntax tree of an instantia-
tion y = agy1aj - ..Ynay of the alignment ay consists
of a root node labeled as an alternating concatenation
of constant strings a; and subexpressions y; (see Fig-
ure 3). This root node is connected to a layer on which
constant strings a; = a;1 ... @j |a | and subtrees Tijn
alternate (blue area in Figure 3). However, the terms
in Equation 10 that correspond to the root node y and
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Algorithm 1 Constructing the decoding space

Input: Subexpressions Yp and alignment a, =

ag(*)ay ... (*)ay, of the strings in x.
1: let T;;‘n be the syntax tree of the alignment and
V1, ..., U, be the nodes labeled ISz, (v;) = “(.*)”.
.n do

2: forj = 1

3: let Mj = Max’x(’l)j).

4:  Initialize Yp7 to {y € Yp|M; C L(y)}

5:  let zy,...,z, be the elements of M;; add
(1] .. 2m) to Vp.

6: let u be the length of the longest string and [
be the length of the shortest string in M;.

7. if [By1...yk] € 51};4]', where 8 € ¥* and
Y1...Yk are ranges or special macros (e.g.,
a-z, \e), then add [ay;...yx] to )A/é/[j, where
a € X* is the longest string that satisfies
M; C L(lay: ...yx]), if such an « exists.
for all [y] € yD] do

add [y]* and [y]{l,u} to V"

10: if | = u, then add [y]{{} to )}gjj.
11: if u < 1, then add [y]? to Vb,
12: if [ > 0, then add [y]* to Y’
13:  end for

14: end for

Return: )A)gl, . ,)A)f:\,/[".

the a; are constant for all values of the y; (red area
in Figure 3). Since no edges connect multiple wild-
cards, the feature representation of these subtrees can
be decomposed into n independent summands as in
Equation 11.

Ynln) (10)

3 AG) @ AG) + ; AY)  Alas)

U(x,a0y1a1 - .-

i MSS gM:

@({x}) @ A(y) + ; @({a;}) @ Aay)

Zl > AT () @ ATSn(0"))
I=1 (v ,U”)GE;{“
Z > oM

j=l1 Veyn

:< il ®A )+Z§( v) ® Aajq) )

22 (a((anah Al
+Z( (y5, M. (A(Y)%A(Yj)» (11)

M; (v/)) X A(FZ@%L(U/))

Since the top-level operator of an alignment is a con-
catenation for any y € )y p, we can write A(y) as

aop,1 - - - a0’|a0|y1 e YnQna -

a“ul“n'

Figure 3. Structure of a syntax tree for an element of JA)x,D.

a constant A,, defined as the output feature vector
(Equation 6) of a concatenation.

Thus, the maximization over all y = agyia1...ynan
can be decomposed into n maximization problems over

y; = arg maxw' (\I/(yj,Mj) + <A° ®$(Yj)>)
¥; 6)}1\4]

which can be solved in O(n x |Ypl).

4.3. Optimization Problem

We will now address the process of minimizing the reg-
ularized empirical risk R, defined in Equation 4, for
the ¢5 regularizer Q(w) = 55 ||w|[>. Loss function A,
defined in Equation 1, is not convex. To obtain a con-
vex optimization problem, we upper-bound the loss by
its hinged version, following the margin-rescaling ap-
proach (Tsochantaridis et al., 2005):

g maX{W (\P<Xiayi)_\ll<xi7y)> + A(yiaY>X)}' (12>

Y#Yi
The maximum in Equation 12 is over ally € Vs \{y;}
When the risk is rephrased as a constrained optimiza-
tion problem, the maximum produces one constraint
per element of y € Y5 \ {y;}. However, since the de-
coder searches only the set JA)xi, D, it is sufficient to
enforce the constraints on this subset.

When the loss is replaced by its upper bound—the
slack variable &—and for Q(w) = 5&||w||?, the min-
imization of the regularized empirical risk (Equation
4) is reduced to Optimization Problem 1.

Optimization Problem 1. Ouver parameters w, find

. in = jwl|?
W = argmin —||'w
gw,§ 2

C m
— i h that 13
—l—m;f such tha (13)

Vi, ¥y € Ve, p\yi} : W (U (x5, y:) U (x;,9)) (14)
2 A(yi’yax) - fia
Vi:& > 0. (15)

This optimization problem is convex, since the ob-
jective (Equation 13) is convex and the constraints
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(Equation 14 and 15) are affine in w. Hence, the so-
lution is unique and can be found efficiently by cut-
ting plane methods as Pegasos (Shalev-Shwartz et al.,
2011) or SVM#'r“ct (Tsochantaridis et al., 2005).

Algorithm 2 Most strongly violated constraint
Input: batch x, model fy,, correct output y.
1: Infer alignment ay = ag(.*)ay ... (.*)a, for x.
2: Let T3, be the syntax tree of ay and let vy, ...
be the nodes labeled T3, (v;) = “(.*)”.
3: forall j=1...ndo
4:  Let M; = M®<*(v;) and calculate the jig/[j us-
ing Algorithm 1.

. ’.
v y; = arg maxw' <\I/(y;’ M;)+ <A.®(I)\(yj)>> N

¥y, evy?
A(y,ao(.*)al. . .(.*)aj_ly;aj(.*)aﬁ_l. . .(.*)an, X)
6: end for
7: Let y abbreviate agyia1 ...¥nan
8: if y =y then
9:  Assign a value of y) € )Aigj to one of the
variables y; such that the smallest decrease of
fw(X,¥) + Atree(y, ) is obtained but the con-
straint ¥ # y is enforced.
10: end if
Return: y

7’U’I’L

During the optimization procedure, the regular expres-
sion that incurs the highest slack &; for a given x;,

arg max W' U(x;,y) + Alys, ¥, X),
Y€V, 0\ {yi}

y =

has to be identified repeatedly. Algorithm 1 con-
structs the constrained search space :)A/x p such that
z € L(y) for each 2 € x; and y € Dy, p. Hence, the
“otherwise”-case in Equation 1 never applies within
our search space. Without this case, Equations 1 and
2 decompose linearly over the nodes of the parse tree,
and therefore the wildcards. Hence, y can be identified
by maximizing over the variables y; independently in
Step 5 of Algorithm 2. Algorithm 2 finds the constraint
that is violated most strongly within the constrained
search space in O(n x |Yp|). This ensures a polyno-
mial execution time of the optimization algorithm. We
refer to this learning procedure as REx-SVM.

5. Case Study

We investigate whether postmasters accept the output
of REx-SVM to blacklist mailing campaigns during
regular operations of a commercial email service. We
also evaluate how accurately REx-SVM and reference
methods identify the extensions of mailing campaigns.

Campaign 1 Campaign 2 Campaign 3
& | First name: [\S]* The trans(fer|action) http://(LOVEGAME
% | Surname: \S* ID: \d™... [S0-9]*|lovegame
£ | Height: 1\d" cm. ID:()*\dT()*... [s0-9]*).(com|net)
£ | Weights: \d{2} ke. report_\d*.doc
= | First name: [ \S|* The trans(fer|action) http://\e™.(com|net)
% | Surname: \S+ ID: \d™...
& | Height: 1\d* cm. ID:[0-9]"...
& | Weights: \d{2} kg. report_\d™.doc
E First name: [ \S]™ The trans[a-z]™ http://\e".[a-Z]"
A | Surname: [a-zA-Z]* ID: \d™...
S| Height: 1\d* cm. ID:[ a-20-9]{2,6} ...
Lé‘ Weights: [1467]" kg. report_(2|...|73).doc

Figure 4. Regular expressions created by a postmaster and
corresponding output of REx-SVM and RExq,;-SVM.

5.1. Evaluation by Postmasters

REx-SVM is trained on the ESP data set that contains
158 batches with a total of 12,763 emails and corre-
sponding regular expressions, collected from the email
service provider. The model is deployed; the user in-
terface presents newly detected batches of spam emails
together with the regular expression conjectured by
REx-SVM to a postmaster during regular operations
of the service. The postmaster is charged with black-
listing the campaigns by suitable regular expressions.
Over the study, the postmasters created 188 regular
expressions. Of these, they created 169 expressions
(89%) by copying a substring of the automatically gen-
erated expression. We observe that postmasters prefer
to describe only a part of the message which they feel
is characteristic for the campaign whereas REx-SVM
describes the entirety of the messages. In 12 cases,
the postmasters edited the string, and in 7 cases they
wrote an expression from scratch.

To illustrate different cases, Figure 4 compares ex-
cerpts of expressions created by REx- and RExy/-
SVM (a variant of REx-SVM that uses the zero-one
loss instead of A defined in Equation 1) to expressions
of a postmaster. The first example shows a perfect
agreement between REx-SVM and postmaster. In the
second example, the expressions are close but distinct.
In the third example, the SVMs produce expressions
that generate an overly general set of URLs and lead
to false positives (“\e” stands for characters that can
occur in a URL). In all three cases, REx-SVM is more
similar to the postmaster than RExq ;.

The top right diagram of Figure 5 shows the average
loss A of REx- and RExq,;-SVM, measured by cross
validation with one batch held out. While postmas-
ters show the tendency to write expressions that only
characterize about 10% of the message, the REx-SVM
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Figure 5. Empirical results on public and ESP data sets. Error bars indicate standard errors.

variants describe the entirety of the message. This
leads to relatively high values of the loss function.

5.2. Spam Filtering Performance

We evaluate the ability of REx-SVM and baselines to
identify the exact extension of email campaigns. We
use the alignment of the strings in x as a baseline. In
addition, ReLIE (Li et al., 2008) searches for a regular
expression that matches the emails in the input batch
and does not match any of the additional negative ex-
amples by applying a set of transformation rules; we
use the alignment of the input batch as starting point.
ReLIE receives an additional 10,000 emails that are
not part of any batch as negative data. An additional
content-based filter employed by the provider has been
trained on several million spam and non-spam emails.

In order to be able to measure false-positive rates (the
rate at which emails that are not part of a campaign
are erroneously included), we combine the ESP data
set with an additional 135,000 non-spam emails, also
from the provider. Additionally, we use a public data
set that consists of 100 batches of emails extracted
from the Bruce Guenther archive', containing a total
of 63,512 emails. To measure false-positive rates, we
combine this collection of spam batches with 17,419

"http://untroubled.org/spam/

emails from the Enron corpus® of non-spam emails and
76,466 non-spam emails of the TREC corpus®. The
public data set is available to researchers.

In an outer loop of leave-one-out cross validation, one
batch is held back to evaluate the true-positive rate
(the proportion of the campaign that is correctly rec-
ognized). In an inner loop of 10-fold cross validation,
regularization parameter C is tuned.

Figure 5 shows the true and false positive rates for
all methods and both data sets. The horizontal axis
displays the number of emails in the input batch x.
Error bars indicate the standard error. The alignment
exhibits the highest true-positive rate and a high false-
positive rate because it is the most-general bound of
the decoder’s search space. ReLIE needs only very
few or zero replacement steps until no negative exam-
ples are covered. Consequently, it has similarly high
true- and false-positive rates. REx-SVM attains a
slightly lower true positive rate, and a substantially
lower false-positive rate. The false-positive rates of
REx and RExg,; lie more than an order of magni-
tude below the rate of the commercial content-based
spam filter employed by the email service provider.
The zero-one loss leads to comparable false-positive
but lower true-positive rates, rendering the loss func-

*http://www.cs.cmu.edu/~enron/
3http://trec.nist.gov/data/spam.html
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tion of Equation 1 preferable to the zero-one loss.

The execution time to learn a model (bottom right)
is consistent with prior findings of between linear and
quadratic for the SVM optimization process.

6. Related Work

Gold (1967) shows that it is impossible to exactly
identify any regular language from finitely many pos-
itive examples. Our notion of minimizing an ex-
pected difference between conjecture and target lan-
guage over a distribution of input strings reflects a
more statistically-inspired notion of learning. Also, in
our problem setting the learner has access to pairs of
sets of strings and corresponding regular expressions.

Most work of identification of regular languages fo-
cuses on learning automata (Denis, 2001; Clark &
Thollard, 2004). While these problems are identical
in theory, transforming generated automata into reg-
ular expressions can lead to lengthy terms that do
not lend themselves to human comprehension (Fernau,
2009). Some work focuses on restricted classes, such
as expressions in which each symbol occurs at most
k times (Bex et al., 2008), disjunction-free expres-
sions (Brazma, 1993), and disjunctions of left-aligned
disjunction-free expressions (Fernau, 2009).

Xie et al. (2008) use regular expressions to detect
URLSs in spam batches and develop a spam filter with
low false positive rate. The ReLIE-algorithm (Li et al.,
2008) (used as a reference method in our experiments)
learns regular expressions from positive and negative
examples given an initial expression by applying a set
of transformation rules as long as this improves the
separation of positive and negative examples.

7. Conclusions

Complementing the language-identification paradigm,
we pose the problem of learning to map a set of strings
to a target regular expression. Training data consists
of batches of strings and corresponding expressions.
We phrase this problem as a learning problem with
structured output spaces and engineer an appropri-
ately loss function. We derive the resulting optimiza-
tion problem, and devise a decoder that searches a
space of specializations of a maximal alignment.

From our case study we conclude that REx-SVM gives
a high true positive rate at a false positive rate that is
more than an order of magnitude lower than that of a
commercial content-based filter. The system is being
used by a commercial email service provider and com-
plements content-based and IP-address based filtering.
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A. Definitions

Definition 2 (Regular Expressions). The set Vs of
regular expressions over an ordered alphabet ¥ is re-
cursively defined as follows.

e Every y; € X U {¢,,\S,\e,\w,\d}, every
range ¥; = lminlmaz, Where lpin, lmee € 3 and
lmin < lmaz, and their disjunction [y ...yy| are
regular expressions.

o If yi,...,yx € Vs are regular expressions, so
are the concatenation y = y; ...y, the disjunc-
tion y = yi|...lyk, ¥y = v1?, ¥y = (y1), and
the repetitions y = yi, y = y1+7 y = yi{l},
and y =y 1{l,u}, where [,u € N and [ < u.

We now define the syntax tree, the parse tree, and the
matching lists for a regular expression y and a string
x € ¥*. The shorthand (y — T1,...,T)) denotes the
tree T = (V, E,T', <) with root node vy € V labeled
with T'(vg) = y and subtrees T1,...,Tk. The order <
maintains the subtree orderings <; and defines the root
node as the minimum over the set V and v’ < v” for
all v" € V; and v"” € V}, where ¢ < j.

Definition 3 (Syntax Tree). The abstract syntax tree
13, for a regular expression y is recursively defined
as follows. Let Togn = (Vagn, Exin, [aim, <3in) be the
syntax tree of the subexpression y;.

o Ify € XU{e, ., \S, \e, \w, \d}, or if
Yy = lminflmaacv
where Lnin, lmae € X, we define
7%, =y —0).

o If y= (}’1),
where y; € Vs, we define
T3, = T3,

o lfy =y, y=y1,
vy =yi{l,u}, orif y = y1{l},
where y1 € Vs, l,bu € N, and there exist
no y',y” € Vs such that y; = y'|ly” or y; =
y'y”, we define
T3y = (y = T0)-
e lfy=yi...yk,
where y; € Vs, and there exist no y',y” € Vs
such that y; = y'|y” ory; =y'y”, we define
TS, = (y = T2 TY).
e lfy=y1|...|yx,
where y; € Vs, and there exist no y’,y” € Vs,
such that y; = y'|y”, or if
Yy = [y1...yx] and there exist noy’, y” € Vs such
that y; = y'y”, we define
TY = (y =T ... T%).

syn syn» syn

Definition 4 (Parse Tree and Matching List). Given
a syntax tree 73, = (V3 ., EY,,,, 1Y, <¥,) of a reg-

ular expression y with nodes v € V¥ and a string x €

L(y), a parse tree T3 and the matching lists MY (v)
for each v € V), are recursively defined as follows.
Let 773" = (Vpar", Epar s Toar' s <par ) be the parse
tree and Tg;jn = (%%Jﬁ,Egjn,Fggn,gzjn) the syntax
tree of the subexpression y;.

e If y =2 and z € ¥ U {e}, we define
MY*(vg) = {z} and
T%r = (y — 0).

par

o Ify=.and z €3
y= lmin—tmaz and Iy <o < lma.’ra or if
y € {\S,\w,\e,\d} and =z is either a non-
whitespace character (everything but spaces,
tabs, and line breaks), a word character
(letters, digits, and underscores), a character
in {.,—,#,+} or a word character, or a digit,
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respectively, we define
MY*(v) = {x} for all v € Vg, and
T2 = (y — T5%).

par par

o If y = (y1) and x € ¥*, we define
MY-#(v) = M¥-*(v) for all v € V¥ and
Tyt = T
e fy=yl,z=21...2, and k > 0, or if
y =y, and k > 0, or if
v =yi{l,u}, and | <k <, or if
y=yi{l}, and k =,
where z; € ¥, and there exist no y’,y” € Vs,

)

such that y1 = y'|y” or y1 = y'y”, we define

o
myey =t ir=e

Uici MY5i(v) L ifv e VY,
T30 = (y — T3, TYL),

e lfy=y1...y5, x=271... 2k,

where z; € X*, and there exist no y',y"” € Vs
)

such that y; = y'|ly” ory; =y'y”, we define

T yifv=w
MY*(v) = ¢ }. _ . %, > and
MYi®i(v) |, if v € Vijn
Ty = (v = Tam T,
e Ify=y1|...|yx, x €X*

and there exist no y',y” € Yg such
thaty; = y'|y”, orif

y=I[yi1.-..yk, z€XT
and there exist no y',y” € J)x such

that y; = y’ y”, we define

{:L-} s lf vV =19
My,:b(,v) — MYJ'vw(U) s ifve Vvs)g’;]na and
0 , otherwise
Tgaj?:f = (y — Tg’aj’l"y)

If z & L(y), that is, no parse tree can be derived by
the specification above, the empty sets MY*(v) = 0

for allv € V¥ and T};* = () are returned. Otherwise,

we denote the set of all parse trees and the unions of
all matching lists for each v € V, satisfying Defini-
tion 4 by T,%7 and MY *(v), respectively. Finally, the
matching list MY *(v) for a set of strings x for node

ve VY, is defined as MY*(v) = J,c,e M¥*(v).

syn

B. Used Features

Let M be a matching list and My, be the set of char-
acters in ¥ which appear in the matching list M. The
list of binary and continuous features, used to train
REx-SVM is shown in Table 1.
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Table 1. Important features used to train REx-SVM.

Feature

|

Description

[e € M]

Matching list contains the empty string?

[vx € Mx| = 1]

All elements of the matching list have the length one?

[Fi € NVx € M|x| = i]

All elements of the matching list have the same length?

M= A, Z]]

Portion of characters A-Z in the matching list

26
|J\Igﬂ{a,...,z}|

Portion of characters a—z in the matching list

26
[M=r10,.,97]

Portion of characters 0-9 in the matching list

10
[MsniA, L FT]

Portion of characters A—F in the matching list

Portion of characters a—f in the matching list

Portion of characters G—Z in the matching list

W Portion of characters g—z in the matching list
Ve e Msx ¢ {A,...,Z} ] No characters of A-Z in the matching list?
Vo € Myx ¢ {a,...,z} No characters of a-z in the matching list?

Ve € Msz ¢ {0,...,9} No characters of 0-9 in the matching list?

[V € My & {a,. ., f} |

No characters of a—f in the matching list?

[Ve € Mgz ¢ {A,...,F}]

No characters of A—F in the matching list?

[IMsn{-,/,7,=,.@Q:} >0]

Matching list contains URL/Email characters?

[Vx € M|x| > 1A x| <5]

Length of strings in the matching list is between 1 and 57

[Vx € M|x| > 6 A |x| < 10]

Length of strings in the matching list is between 5 and 107

[Vx € M|x| > 11 A |x] < 20]

Length of strings in the matching list is between 10 and 207

[Vx € Mx| > 20]

Length of strings in the matching list is higher than 207

[[M] = 0]

Matching list is empty?
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Abstract

This paper addresses the problem of inferring a regular expression from a given set of strings

that resembles, as closely as possible, the regular expression that a human expert would
have written to identify the language. This is motivated by our goal of automating the task
of postmasters who use regular expressions to describe and blacklist email spam campaigns.
Training data contains batches of messages and corresponding regular expressions that an
expert postmaster feels confident to blacklist. We model this task as a two-stage learning
problem with structured output spaces and appropriate loss functions. We derive decoders
and the resulting optimization problems which can be solved using standard cutting plane
methods. We report on a case study conducted with an email service provider.

Keywords: applications of machine learning, learning with structured output spaces,
supervised learning, regular expressions, email campaigns

1. Introduction

The problem setting introduced in this paper is motivated by the intuition of automatically
reverse engineering email spam campaigns. Email-spam generation tools allow users to im-
plement mailing campaigns by specifying simple grammars that serve as message templates.
A grammar is disseminated to nodes of a bot net; the nodes create messages by instantiating
the grammar at random. Email service providers can easily sample elements of new mailing
campaigns by collecting messages in spam traps or by tapping into known bot nets. When
messages from multiple campaigns are collected in a joint spam trap, clustering tools can
separate the campaigns reliably (Haider and Scheffer, 2009). However, probabilistic cluster
descriptions that use a bag-of-words representation incur the risk of false positives, and it is
difficult for a human to decide whether they in fact characterize the correct set of messages.

19



PRASSE, SAWADE, LANDWEHR AND SCHEFFER

Typically, mailing campaigns are quite specific. A specific, comprehensible regular ex-
pression written by an expert postmaster can be used to blacklist the bulk of emails of that
campaign at virtually no risk of covering any other messages. This, however, requires the

continuous involvement of a human postmaster.

From: alice@google.com
Date: 16.08.2013

I'm a cute russian lady.
I'm 21 years old, weigh 55
kilograms and am 172
centimeters tall.

Yours sincerely,

Alice Wright

From: king@yahoo.com
Date: 16.08.2013

I'm a lonely russian lady.
TI'm 23 years old, weigh 47
kilograms and am 165
centimeters tall.

Yours sincerely,

Brigitte King

From: claire@gmail.com
Date: 16.08.2013

I'm a sweet russian girl.
I'm 22 years old, weigh 58
kilograms and am 171
centimeters tall.

Yours sincerely,

Claire Doe

|
regular expression that describes entire messages

v
y = From: [a-z]TQ[a-z]*.com Date: 16.08.2013 I'm a [a-z]T russian
(girl|lady). | am 2[123] years old, weigh \d" kilograms and am
1\d{2} centimeters tall. Yours sincerely, [A-Z][a-z]" [A-Z][a-Z]"
|
concise substring

v
y = I'm a [a-z]" russian (girl|lady). | am 2[123] years old, weigh
\d™" kilograms and am 1\d{2} centimeters tall.

Figure 1: Elements of a message spam campaign, a regular expression that describes the
entirety of the messages, and a concise regular expression that describes a char-
acteristic substring of the messages.

Regular expressions are a standard tool for specifying simple grammars. Widely avail-
able tools match strings against regular expressions efficiently and can be used conveniently
from scripting languages. A regular expression can be translated into a deterministic finite
automaton that accepts the language and has an execution time linear in the length of the
input string.

Language identification has a rich history in the algorithmic learning theory community,
see Section 6 for a brief review. Our problem setting reflects the process that we seek to
automate; it differs from the classical problem of language identification in the learner’s
exact goal, and in the available training data. Batches of strings and corresponding reg-
ular expressions are observable in the training data. These regular expressions have been
written by postmasters to blacklist mailing campaigns. The learner’s goal is to produce
a predictive model that maps batches of strings to regular expressions that resemble, as
closely as possible, the regular expressions which the postmaster would have written and
feels confident to blacklist. As an illustration of this problem, Figure 1 shows three messages
of a mailing campaign, a regular expression that describes the entirety of the messages, and
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a more concise regular expression that characterizes a characteristic substring, and that a
postmaster has selected to blacklist the corresponding email campaign.

This paper extends a conference publication (Prasse et al., 2012) that addresses this
problem setting with linear models and structured output spaces. In the decoding step,
a set of strings is given and the space of all regular expressions has to be searched for an
element that maximizes the decision function. Since this space is very large and difficult
to search, the approach of Prasse et al. (2012) is constrained to finding specializations of
an approximate maximal alignment of all strings. The maximal alignment is a regular
expression that contains all character sequences which occur in each of the strings, and uses
wildcards wherever there are differences between the strings.

The maximal alignment is extremely specific. By constraining the output to special-
izations of the alignment, the method keeps the risk that any message which is not part
of the same campaign is accidentally matched at a minimum. However, since all special-
izations of this alignment describe the entire length of the strings, the method produces
regular expressions that tend to be much longer than the more concise expressions that
postmasters prefer. Also, as a consequence of their greater length, the finite state automata
which correspond to these expressions tend to have more states, which limits the number of
regular expressions that can be matched in parallel against incoming new messages. This
paper therefore extends the method by including a mechanism which learns to select ex-
pressions that describe only the most characteristic part of the mailing campaign, using
regular expressions written by an expert postmaster as training data.

The rest of this paper is structured as follows. Section 2 reviews regular expressions
before Section 3 states the problem setting. Section 4 introduces the feature representations
and derives the decoders and the optimization problems. In Section 5, we discuss our
findings from a case study with an email service. Section 6 discusses related work and
Section 7 concludes.

2. Regular Expressions

Before we formulate the problem setting, let us briefly revisit the syntax and semantics
of regular expressions. Regular expressions are a popular syntactic convention for the
definition of regular languages. Syntactically, a regular expression y € Yy is either a
character from an alphabet X, or it is an expression in which an operator is applied to
one or several argument expressions. Basic operators are the concatenation (e.g., “abc”),
disjunction (e.g., “alb”), and the Kleene star (“*”), written in postfix notation (“(abc)*”),
that accepts any number of repetitions of its preceding argument expression. Parentheses
define the syntactic structure of the expression. For better readability, several shorthands
are used, which can be defined in terms of the basic operators. For instance, the any
character symbol (“.”) abbreviates the disjunction of all characters in ¥, square brackets
accept the disjunction of all characters (e.g., “[abc]”) or ranges (e.g., “[a-z0-9]”) that are
included. For instance, the regular expression [a-z0-9] accepts all lower-case letters and
digits. The postfix operator “*” accepts an arbitrary, positive number of reiterations of the
preceding expression, while “{l,u}” accepts between [ and u reiterations, where | < u. We
include a set of popular macros—for instance “\d” for any digit or the macro “\e” for all
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characters, which can occur in a URL. A formal definition of the set of regular expressions
can be found in Definition 3 in the appendix.

The set of all regular expressions can be described by a context-free language. The
syntactic structure of a regular expression y is typically represented by its syntax tree Ty, =
(Vayn, EYyny T¥yn, <¥yn). Definition 4 in the appendix assigns one such tree to each regular
expression. Each node v € V3, of this syntax tree is tagged by a labeling function 'Yy, :
Voyn — Vs, with a subexpression 'Yy, (v) = y;. The edges (v,v’) € EJ, indicate that node
v’ represents an argument expression of v. Relation §§'yn§ Vs‘?q;n X Vsyn defines an ordering
on the nodes and identifies the root node. Note that the root node is labeled with the entire
regular expression y.

A regular expression y defines a regular language L(y). Given the regular expression,
a deterministic finite state machine can decide whether a string x is in L(y) in time linear
in |z| (Dubé and Feeley, 2000). The trace of verification is typically represented as a parse
tree Tpar = (Vpur s Eyars Uvars <yar), describing how the string x can be derived from the
regular expression y. At least one parse tree exists if and only if the string is an element
of the language L(y); in this case, y is said to generate x. Multiple parse trees can exist
for one regular expression y and a string z. Nodes v € V3, of the syntax tree generate
the nodes of the parse tree v/ € V', where nodes of the syntax tree may spawn none
(alternatives which are not used to generate a string), one, or several (“loopy” syntactic
elements such as “*” or “t”) nodes in the parse tree. In analogy to the syntax trees, the
labeling function F%’(’M me« — Yy assigns a subexpression to each node, and the relation
<DarC Viur X Vpar defines the ordering of sibling nodes. The set of all parse trees for a
regular expression y and a string z is denoted by Tpsr . When multiple parse trees exist for
a regular expression and a string, a canonical parse tree can be selected by choosing the
left-most parse. Standard tools for regular expressions typically follow this convention and
generate the left-most parse tree. Definition 5 in the appendix gives a formal definition.

IY  (vo) = [b0-9]{2}c(aalb)* F%aﬁ(”{]) = [b0-9]{2}c(aalb)*

syn

Y, (v1) = [b0-9]{2} l"?g'yn(1;5) =c Fg’yn(vﬁ) = (aa|b)* F;);,af(h) = [b0-9]{2} FZ;(U) =c F%m( %) = (aalb)*
1, (v2) = [60-9] I, (v7) = aalb TYar(va) = [00-9] T35 (v5) = [b0-9] Tyar(vp) =€
T3, (05) =b  TY(05) = 0-9 D (s) =22 T, () =b  Dhi(vs) =09 Thar(ve) =
Iy, (v)=2a  TY,(v0) =2 Fa(y) =1
(a) Syntax tree T3, (b) Parse tree T3,

Figure 2: Syntax tree (a) and a parse tree (b) for the regular expression y =
[b0-9]{2}c(aalb)* and the string x = 1bc.

Leaf nodes of a parse tree Tpgr are labeled with elements of ¥ U{e}, where € denotes the
empty symbol; reading them from left to right gives the generated string x. Non-terminal
nodes correspond to subexpressions y; of y which generate substrings of x. To compare
different regular expressions with respect to a given string x, we define the set T, ‘“"Il of
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labels of nodes which are visited on the path from the root to the the i-th character of x in
the parse tree Tpar -

Figure 2 (left) shows an example of a syntax tree T3, for the regular expression y =
[b0-9]{2}c(aalb)*. One corresponding parse tree Ty, for the string = 1bc is illustrated in
Figure 2 (right). The set Tpar 2 contains nodes v}, v}, v, and v.

Finally, we introduce the concept of a matching list. When a regular expression y
generates a set x of strings, and v € V), is an arbitrary node of the syntax tree of y, then
the matching list MY*(v) characterizes which substrings of the strings in x are generated
by the node v of the syntax tree, and thus generated by the subexpression '}, (v). A node
v of the syntax tree generates a substring 2’ of x € x, if v generates a node v’ in the parse
tree Tpar of z, and there is a path from o' in that parse tree to every character in the
substring z’. In the above example, for the set of strings x = {12c,bdca}, the matching
list for node v; that represents subexpression 'y, (v1) = [b0-9]{2} is MY*(vy) = {12, b4}.
Definition 5 in the appendix introduces matching lists more formally.

3. Problem Setting

Having established the syntax and semantics of regular expressions, we now define our
problem setting. An unknown distribution p(x,y) generates regular expressions y € Vs
from the alphabet ¥ and batches x of strings « € x that are elements of the language L(y).
In our motivating application, the strings x are messages that belong to one particular
mailing campaign and have been sampled from a bot net, and the y are regular expressions
which an expert postmaster believes to identify the campaign template, and feels highly
confident to blacklist.

A w-parameterized predictive model fy : x X y — R maps a batch of strings and a
regular expression ¥ to a value of the decision function. We refer to the process of inferring
the y that attains the highest score fw(x,y) for a given batch of strings x as decoding; in
this step, a decision function is maximized over y which generally involves a search over the
space of all regular expressions.

A loss function A(y,y,x) quantifies the difference between the true and predicted ex-
pressions. While it would, in principle, be possible to use the zero-one loss A /1(y, V,X) =
[y = ¥], this loss function would treat nearly-identical expressions and very dissimilar ex-
pressions alike. We will later engineer a loss function whose gradient will guide the learner
towards expressions y that are more similar to the correct expression y.

In the learning step, the ultimate goal is to identify parameters that minimize the risk—
the expected loss—under the unknown distribution p(x,y):

VEYs

Rlfu] = / / A <y,arg max fw<x,y>,x> p(x, y)dx dy.

The underlying distribution p(x,y) is not known, and therefore this goal is unattain-
able. We resort to training data D = {(x;,y;)}/~; that consists of pairs of batches x;
and corresponding regular expressions y;, drawn according to p(x,y). In order to obtain
a convex optimization problem that can be evaluated using the training data, we approx-
imate the risk by the hinged upper bound of its maximum-likelihood estimate, following
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the margin-rescaling approach (Tsochantaridis et al., 2005), with added regularization term
Q(w):

R[fw] = % ngx {fw(Xz’,}_’) - fw(xi’Yi) + A(y,y,xi),O} + Q(W) (1)
=1

This problem setting differs fundamentally from traditional language identification settings.
In our setting, the actual identification of a language from example strings takes place in
the decoding step. In this step, the decoder searches the space of regular expressions. But
instead of retrieving an expression that generates all strings in x, it searches for an ex-
pression that maximizes the value of a w-parameterized decision function that receives the
strings and the candidate expression as arguments. In a separate learning step, the param-
eters w are optimized using batches of strings and corresponding regular expressions. The
training process has to optimize the model parameters w such that the expected deviation
between the decoder’s output and a regular expression written by a human postmaster is
minimized. Training data of this form, and an optimization criterion that measures the
expected discrepancy between the conjectured regular expressions and regular expressions
written by a human labeler, are not part of traditional language identification settings.

4. Identifying Regular Expressions

This section details our approach to identifying regular expressions based on generalized
linear models and structured output spaces.

4.1 Problem Decomposition

Without any approximations, the decoding problem—the problem of identifying the regular
expression y that maximizes the parametric decision function—is insurmountable. For any
string, an exponential number of matching regular expressions of up to the same length
can be constructed by substituting constant symbols for wildcards. In addition, constant
symbols can be replaced by disjunctions and “loopy” syntactic elements can be added to
create infinitely many longer regular expressions that also match the original string. Because
the space of regular expressions is discrete, it also does not lend itself well to approaches
based on gradient descent.

We decompose the problem into two more strongly constrained learning problems. We
decompose the parameters w = (u v)T and the loss function A = A, + A, into parts
that are minimized sequentially. In the first step, u-parameterized model fy,, produces a
regular expression y that is constrained to being a specialization of the maximal alignment
of the strings in x. Specializations of maximal alignments of the strings in x tend to be
long regular expressions that characterize the entirety of the strings in x. In a second step,
v-parameterized model f, therefore produces a concise substring y of y.

Definition 1 (Alignment, Maximal Alignment) The set of alignments Ax of a batch
of strings X contains all concatenations in which strings from X7 and the wildcard sym-
bol “(.*)” alternate, and that generates all elements of x.The set of maximal alignments
Ay C Ay contains all alignments of the strings in x which share the property that no other
alignment in Ax has more constant symbols.
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A specialization of an alignment is a string that has been derived from an alignment by
replacing one or several wildcard symbols by another regular expression. Figure 3 illustrates
the process of generating a maximal alignment, and the subsequent step of specializing it.

I'm a cute russian lady. I'm 21 years old.

I'm a lonely russian lady. I'm 23 years old.
. elements of message campaign

I’'m a sweet russian girl. I'm 22 years old.

|

I'm a (.*) russian (.*). I'm 2(.*) years old. maximal alignment

|

I'm a [a-z]{4,6} russian (girl|lady). I'm 2[123] years old.
I'm a [a-z] T russian [a-z]*. I'm 2[0-9] years old.
. specializations of maximal alignment

I'm a [a-z]* russian [adgilry]T. I'm 2[0-9]* years old.

Figure 3: Examples of regular expressions, which are specializations of a maximal alignment
of strings.

The loss function for this step should measure the semantic and syntactic deviation
between the conjecture y and the manually written y for batch x. We define a loss function
Ay(y,y,x) that compares the set of parse trees in Ty , for each string = € x to the most
similar tree in 7;,6”« ; if no such parse tree exists, the summand is defined as ﬁ (Equation
2). Similarly to a loss function for hierarchical classification (Cesa-Bianchi et al., 2006),
the difference of two parse trees for a given string x is quantified by a comparison of the
paths that lead to the characters of the string. Two paths are compared by means of the
intersection of their nodes (Equation 3). This loss is bounded between zero and one; it is
zero if and only if the two regular expressions y and y are equal:

Atree y Yv ) lf S L(}N’)
Ay, y,x) = ’ ;{{ otherwise ®
||
. ~ 1 |tlj n t|J
th A ree ) ) = 1 3
b S5 =1 ¥ > ey ©

te

Figure 4 illustrates how the tree loss is calculated for a single string: for each symbol,
the corresponding paths of the syntax trees spawned by y and y are compared. Each pair
of corresponding paths incurs a loss according to the proportion of nodes that are labeled
with differing subexpressions.

Because the regular expression created in this step is a specialization of a mazimal align-
ment, it is not generally concise. In the second step, v-parameterized model fy, produces
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y =ab(1]2)(13]|4)*cd(e|f|g)* y =ab(1|3]4)*cd(e|f|g) ™ z =abl3cdef
y =ab(1]2)(1[3(4)"cd(elf[g)"
b 12 1134 ¢ d  (elflg)* z
| v T
: 1 1/3/4 L ellg elflg
: 3 5 boe f
Loss: & é % 3 é é % % Atree(yvywr): 17(#%):%

: : 1 3 : e £
A 13 ells  elflg
| N/ € T

¢ b\\(lw* /Cd elfle)” p

y =ab(1[3[4)"cd(e|flg) "

Figure 4: Calculation of the tree loss Ayee(y,y,z) for a given string x and two regular
expressions y and y.

a regular expression y € )y that is a subexpression of y; that is, y = ypreyysur with
Ypres Ysuf € V. Loss function Ay (y,y) is based on the length of the longest common sub-
string les(y,y) of y and y. The loss—defined in Equation 4—is zero, if the longest common
substring of y and y is equal to both y and y. In this case, y = y. Otherwise, it increases
as the longest common substring of y and y decreases:

Mlr3) =L [<|y| - |1cs<y,y>|> . <|.</| - |1cAs<y,y>|>] | @

[¥] ly|

In the following subsections, we derive decoders and optimization problems for these
two subproblems.

4.2 Learning to Generate Regular Expressions

We model fy as a linear discriminant function u' Wy (x,y) for a joint feature representation
of the input x and output y (Tsochantaridis et al., 2005):

- T
= arg max fu(x,y) =argmaxu V,(X,y).
y = arg max fu(x,y) = arg max u ¥y (x,y)
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4.2.1 JOINT FEATURE REPRESENTATION FOR GENERATING REGULAR EXPRESSIONS

The joint feature representation Wy (x,y) captures structural properties of an expression y
and joint properties of input batch x and regular expression y.

It captures structural properties of a regular expression y by features that indicate
a specific nesting of regular expression operators—for instance, whether a concatenation
occurs within a disjunction. More formally, we first define a binary vector

[y =y1...y%]

[y =yil--lv«]

Iy =1lyi---yll
Iy = yil
Iy =y17]

[[[[y:yﬂ]]

Auy = y:yll 5

( ) [[y:yl{l?u}]] ()
[y =m]

Iy = ]
[y € ¥]
[y = €]

that encodes the top-level operator used in the regular expression y, where [-] is the
indicator function of its Boolean argument. In Equation 5, yi,...,yr € Vs are regular
expressions, [,u € N, and {ry,...,r;} is a set of ranges and popular macros. For our ap-
plication, we use the set {0-9, a-f,a-z, A-F,A-Z,\S, \e, \d, “.”} (see Table 6 in the appendix)
because these are frequently used by postmasters.

For any two nodes v’ and v” in the syntax tree of y that are connected by an edge—
indicating that y” = I'Y,,(v”) is an argument subexpression of y’ = I'},,(v')—the tensor
product Ay(y")®Au(y”) defines a binary vector that encodes the specific nesting of operators
at node v'. Feature vector Wy(x,y) will aggregate these vectors over all pairs of adjacent
nodes in the syntax tree of y.

Joint properties of an input batch x and a regular expression y are encoded in a similar
way as follows. Recall that for any node v’ in the syntax tree, MY *(v') denotes the set
of substrings in x that are generated by the subexpression y’ = '}, (v’) that v’ is labeled
with. We define a vector @, (MY *(v')) of attributes of this set. Any property may be
accounted for; for our application, we include the average string length, the inclusion of
the empty string, the proportion of capital letters, and many other attributes. The list of
attributes used in our experiments is included in the appendix in Table 3. A joint encoding
of properties of the subexpression y’ and the set of substrings generated by y’ is given by
the tensor product @, (MY *(v")) @ Au(y’).

The joint feature vector ¥y (x,y) is obtained by aggregating operator-nesting informa-
tion over all edges in the syntax tree, and joint properties of subexpressions y’ and the set
of substrings which they generate over all nodes in the syntax tree:

o1 [ 2w amert,, AaEm(V) @ Au(lyn (0")
W ,y)—< Svevy, Pu(MY*X(W)) © Aa(TYn () | (6)
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4.2.2 DECODING SPECIALIZATIONS OF THE MAXIMAL ALIGNMENT

At application time, the highest-scoring regular expression y according to model fy has to
be decoded. Model f, is constrained to producing specializations of the maximal alignment;
however, searching the space of all possible specializations of the maximal alignment is still
not feasible. The following observation illustrates that f,;, may not even have a maximum,
because there may always be a longer expression that attains a higher score.

Observation 1 Given a string a that contains at least one wildcard symbol “(.*)”, let Va
be the set of all specializations that replace wildcards in a by any regular expression in ).
Then, there are parameters u such that for each'y there is a y’ € Ya with fu(y’) > fu(y).

Proof Joint feature vector ¥ from Equation 6 contains two parts. The first part contains
operator-nesting information over all edges in the syntax tree and the second part contains
joint properties of subexpressions and the set of substrings which they generate over all
nodes in the syntax tree. We construct u as follows: Let all weights in u be zero, except for
the entry which weights the count of alternatives within an alternative; this entry receives
any positive weight. For any string a that contains a wildcard symbol, by substituting the
wildcard for an alternative of a wildcard and arbitrarily many other subexpressions, one
can create a string a’ that contains a wildcard within an additional alternative. Repeated
application of this substitution creates arbitrarily many alternatives within alternatives
and the inner product of u and ¥, can therefore become arbitrarily large. |

Observation 1 implies that exact decoding of arbitrary decision functions fy is not
possible. However, we can follow the under-generating principle (Finley and Joachims, 2008)
and employ a decoder that maximizes f,, over a constrained subspace that has a maximum.
Observation 1 implies that the decision-function value of that maximum over the constrained
space may be arbitrarily much lower than the decision-function value of some elements of
the unconstrained space. But when it comes to formulating the optimization problem
in Subsection 4.2.3, we will require that, for each training example, the training regular
expression shall have a higher decision function value (by some margin) than the highest-
scoring incorrect regular expression that is actually found by the decoder. Hence, despite
Observation 1, the learning problem may produce parameters which let the constrained
decoder produce the desired output.

The search space is first constrained to specializations of a maximal alignment of the
input set of strings x; see Definition 1. A maximal alignment of two strings can be deter-
mined efficiently using Hirschberg’s algorithm (Hirschberg, 1975) which is an instance of
dynamic programming. By contrast, finding the maximal alignment of a set of strings is
NP-hard (Wang and Jiang, 1994); known algorithms are exponential in the number |x| of
strings in x. However, progressive alignment heuristics find an alignment of a set of strings
by incrementally aligning pairs of strings. Note that the set of specializations of a maximal
alignment is still generally infinitely large: each wildcard symbol can be replaced by every
possible regular expression Vs. Therefore, our decoding algorithm starts by finding an ap-
proximately maximal alignment using the Hirschberg algorithm, and proceeds to construct
a more constrained search space in which each wildcard symbol can be replaced only by
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regular expressions over constant symbols that occur in the strings in x at the corresponding
positions.

The definition of the constrained search space is guided by an analysis of the syntactic
variants and maximum nesting depth observed in expressions written by postmasters—a
detailed record can be found in the appendix; see Tables 6, 7, and 8. The space contains
all specializations of the maximal alignment in which the j-th wildcard is replaced by any
element from )A)ll\)/[j , which is constructed as follows. Firstly, j}ff]‘ contains any subexpression
that occurs within any training regular expression, and that matches the substrings of
input x which the alignment procedure has substituted for the j-th wildcard. In addition,
the alternative of all substring aligned at the j-th wildcard symbol is added. For each
character-alternative expression in that set—e.g., [abc]—all possible iterators and range
generalizations used by postmasters are added.

Given an alignment ax = ag(.*)a; ... (.*)ay of all strings in x, the constrained search
space

)AJX,D = {aoyia1 ... ynanlfor all j :y; € ﬁg/lj} (7)

contains all specializations of ay in which the j-th wildcard symbol is replaced by any
element of a set yffj , where M is the matching list of the j-th node in T2x, that is labeled

syn
with the wildcard symbol “(.*)”. The sets yé/lj are constructed using Algorithm 1. Each
of the lines 7, 9, 10, 11, and 12 of Algorithm 1 adds at most one element to 371”341 and
thus Algorithm 1 generates a finite set of possible regular expressions—hence, the search
space of possible substitutions for each of the n wildcard symbols is linear in the number of
subexpressions that occur in the training sample.

We now turn towards the problem of determining the highest-scoring regular expres-
sion fw(x). Maximization over all regular expressions is approximated by maximization
over the space defined by Equation 7:

arg max u' Wy (x,y) ~arg maxu' ¥y (x,y).
yeyz ye)}x,D

Due to the simple syntactic structure of the alignment and the definition of ¥y, we can
state the following theorem:

Theorem 2 The mazimization problem of finding the highest-scoring reqular expres-
sion fu(x) can be decomposed into independent mazimization problems for each of the y;
that replaces the j-th wildcard in the alignment ax, given the alignment and the definition
of Uy:

* *
arg max fu(X, aoy1a1 . ..YnGn) = GoY101 - . Ypan

Yi5--¥n
with y; = arg maxu' (Wy(y;, M;) + cy,) .
Proof By its definition, fu(X,aoy1a1...yna,) = u' Uy(X,aoy1as...yna,). Decision

function Feature vector Wy(x,y) decomposes linearly into a sum over the nodes and a
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Algorithm 1 Constructing the decoding space

1: Input: Subexpressions Vp and alignment ay = ag(.*)a; ... (.*)a, of the strings in x.

2: let T3, be the syntax tree of the alignment and vi,...,v, be the nodes labeled
IS (v) = “(7)7

3: forj=1...ndo

4: let Mj = Max,x(vj).

5. Initialize yg/lj to {y € Yp|M; C L(y)}

6: let xq,...,z, be the elements of M;; add (z1]...|znm) to j}fff.

7 let u be the length of the longest string and [ be the length of the shortest string in
Mj.

8  if [By1...yx| € j%dj, where 8 € ¥* and y; ...y are ranges or special macros (e.g.,

a-z, \e), then add [ayy ... yx] to j)j‘ff, where o € ¥* is the longest string that satisfies
M; C L([ay1 ... yk]), if such an « exists.

9: for all [y] € yﬁ‘fj do

10: add [y]* and [y]{l,u} to 37,%4]'.
11:  if I = u, then add [y]{l} to Y},
12: if w <1, then add [y]? to yg/[j.
13: if { > 0, then add [y]* to )A)gj.
14:  end for

15: end for

16: Output YM1 ..., J>D”.
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- YnOna.-. an,|an|

a'na|an|

Figure 5: Structure of a syntax tree for an element of )A/,g D-

sum over pairs of adjacent nodes (see Equation 6). The syntax tree of an instantia-
tion y = agy1a1 - - - ynan, of the alignment ay consists of a root node labeled as an alternating
concatenation of constant strings a; and subexpressions y; (see Figure 5). This root node
is connected to a layer on which constant strings a; = a;,1...a; 4, and subtrees > syn alter-
nate (blue area in Figure 5). However, the terms in Equation 8 that correspond to the root
node y and the a; are constant for all values of the y; (red area in Figure 5). Since no edges
connect multiple wildcards, the feature representation of these subtrees can be decomposed
into n independent summands as in Equation 9.

\IJU(X, apyiai - .. Ynan) (8)

n lajl

> Maly) @ Aa(y) + 32 57 Auly) @ Auleia)
=" o il

Pu({x}) ® Acly) + X2 D2 Pul{ajq}) ® Aulajg)

J=0¢=1

> AT (v) © AT ("))

=1
SN Su(M¥ () © Ag(TYa(0))

= (ou(o & Auts)) * ZZ'( e )

=0 ¢=1
N Z < (v;, Mj) + <Au()’) %Au(yj‘)>) 9)

Since the top-level operator of an alignment is a concatenation for any y € )A),g D, We
can write Ay(y) as a constant A,, defined as the output feature vector (Equation 5) of a
concatenation.

Thus, the maximization over all y = agyiai...yna, can be decomposed into n maxi-
mization problems over

* A. A .
y; = arg maxu’ <\I/u(yj’Mj) + < ® Ou(yJ)>)
y]Ej}g[j

which can be solved in O(n x |Ypl). [ ]
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4.2.3 OPTIMIZATION PROBLEM FOR SPECIALIZATIONS OF A MAXIMAL ALIGNMENT

We will now address the process of minimizing the portion of the regularized empirical
risk R|[fw], defined in Equation 1, that depends on u for the ¢5 regularizer Q¢(u) = 5 |[ul]?.
The decision function fy, decomposes into f, and fy; loss function Ay, decomposes into Ay
and Ay. While loss function Ay defined in Equation 2 is not convex itself, the hinged upper
bound used in Equation 1 is. Approximating a loss function by its hinged upper bound in
such a way is referred to as margin-rescaling (Tsochantaridis et al., 2005). We define slack
term &; as this hinged loss for instance :

& = max {;I;éay:f{u-r(\lfu(Xi7 V) — Yu(xi,yi)) + Au(yi, ¥, %)}, 0} . (10)
The maximum in Equation 10 is over all y € Vs \ {y;}. When the risk is rephrased as a
constrained optimization problem, the maximum produces one constraint per element of
v € Vs \ {yi}. However, since the decoder searches only the set 5)}(“ D, it is sufficient to
enforce the constraints on this subset which leads to a finite search space.

When the loss is replaced by its upper bound—the slack variable {—and for Qy(u) =
ﬁ“uHQ, the minimization of the regularized empirical risk (Equation 1) is reduced to
Optimization Problem 1.

Optimization Problem 1 Owver parameters u, find

1 4 e
u* = argn&ign §Hu||2 + % ;fl, such that (11)
vz7vy S j}x“D\{y’L} : uT(\I]u(Xiayi) - \I/u(xluy)) (12)

> Ay y,x) — &,

This optimization problem is convex, since the objective (Equation 11) is convex and
the constraints (Equation 12) are affine in u. Hence, the solution is unique and can be
found efficiently by cutting plane methods as Pegasos (Shalev-Shwartz et al., 2011) or
SVMstruet (Tsochantaridis et al., 2005).

These algorithms require to identify the constraint with highest slack variable &; for a
given x;,

y = arg max uT\I'u(xi,y) + Au(yi, ¥, %),
YE€Yx,;,p\{yi}

in the optimization procedure, repeatedly.

Algorithm 1 constructs the constrained search space j}x% p such that x € L(y) for each
rex;andy € )A)xi, p. Hence, the “otherwise”-case in Equation 2 never applies within our
search space. Without this case, Equations 2 and 3 decompose linearly over the nodes of
the parse tree, and therefore the wildcards. Hence, y can be identified by maximizing over
the variables y; independently in Step 5 of Algorithm 2. Algorithm 2 finds the constraint
that is violated most strongly within the constrained search space in O(n x |Yp|). This
ensures a polynomial execution time of the optimization algorithm. We refer to this learning
procedure as REx-SVM.
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Algorithm 2 Most strongly violated constraint

1: Inout: batch x, model f,, correct output y.
2: Infer alignment ax = ag(.*)a; ... (.*)a, for x.
3: Let Tgx, be the syntax tree of ax and let v1,...,v, be the nodes labeled I'§x (vj) =
L(( *)77
4: for all j=1...ndo
Let M; = M®*(v;) and calculate the jig/[j using Algorithm 1.

/
y; = arg maxu' <\I/u(Y_Ij7 M;j) + (A. ® gu(yj)>> +
y}eﬁg[j

Au(y, ao(.*)a1 ce (.*)aj_lyéaj(.*)ajﬂ Ce (.*)an, X)

7. end for

8: Let y abbreviate agyiai...¥nan

9: if y =y then
10:  Assign a value of Sf} € 5)?)41 to one of the variables y; such that the smallest decrease

of fu(X,¥) + Atree(y,y) is obtained but the constraint y # y is enforced.

11: end if
12: Output: y

4.3 Learning to Extract Concise Substrings

Model f, generates regular expressions that tend to be very specific because they are spe-
cializations of a maximal alignment of all strings in the input set x. Human postmasters,
by contrast, prefer to focus on only a characteristic part of the message for which they write
a specific regular expression. In order to allow the overall model fy, to produce expressions
that characterize only a part of the strings, this section focuses on a second model, f, that
selects a substring from its input string y. We model f, as a linear discriminant function
with a joint feature representation W, of the input regular expression y and the output
regular expression y; decision function fy is maximized over the set II(y) of all substrings
of y that are themselves regular expressions:

y = arg max fv(y y) =arg max v Ty v(¥,¥), (13)
yelI(y) yeIl(y)

with H(y) = {Yin S yE‘y = YpreYinYsuf and Ypre;, Ysuf € yZ}

4.3.1 JOINT FEATURE REPRESENTATION FOR CONCISE SUBSTRINGS

The joint feature representation W, (y,y) captures structural and semantic features
®ipput (¥) of the input regular expression y, features ®ouiput(y) of the output regular ex-
pression y and all combinations of properties of the input and output expression.

Vector ®input(y) of features of the input regular expression y includes features that
indicates whether y special mail specific content like a a subject line, a “From” line, or a
“Reply-To” line. A range of features test whether particular special characters are included
in y; other features refer to the number of subexpressions that are entailed in y. The list
of used features in our experiments is shown in Table 4 in the appendix.
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Feature vector ®ouiput(y) of the output regular expression y stacks up features which
indicate how many subexpressions and how many words are included in the regular expres-
sion. In addition it contains features that test for special phrases that frequently occur in
email batches and features that test whether words with a high spam score are included
in the subject line. We identify this list of suspicious words by training a linear classifier
that separates spam from non-spam emails; the list contains the 150 words which have the
highest weights for the spam class. The list of features that we used in the experiments can
be found in Table 5 in the appendix.

The final joint feature representation Wy (y,y) is defined as vector that includes the
input features ®input(¥) , the output features ®oyiput(y), and all products of an input and
an output feature:

) Dinpu (7)
vy (y, Y) = (I)output (y) . (14)
(I)input (S’) ® (I)output (Y)

4.3.2 DECODING A CONCISE REGULAR EXPRESSION

At application time, the highest-scoring regular expression y according to Equation 13 has
to be identified. The search space II(y) contains all substrings of y; since ¥ is typically a very
long string and calculating all features is an expensive operation, evaluating the decision
function for all substrings is infeasible. Again, we follow the under-generating principle
(Finley and Joachims, 2008) and constrain the search to the space Il4(y) contains regular
expressions whose string length is at most s. Within this set, the decoder conducts an
exhaustive search. One can easily observe that when the highest-scoring regular expression’s
string length exceeds s, then the highest-scoring regular expression of size at most s can
have an arbitrarily much lower decision function value.

Observation 2 Let y = argmaxycryy) fv(y,y) and ¥s = argmaxycr(y),|y|<s fv(¥,¥)-
If |y| > s, then for each number d, there is a parameter vector v such that fy(y,y) >

S (. 3s) +d.

Proof The output features of vector ¥y (Equation 14) include the number of constant
symbols and the number of non-constant subexpressions in output expression y. Let
v be all zero except for these two weights which we set to d + 1. Then fy(y,y) is
maximized by output y = y. If |ys| < |y|, then y, is missing at least one initial or
trailing constant or non-constant symbol. By the definition of v, decision function
fH(3,¥) = VT\I’V(S”Y) > VT\I’V(S’aYs) +d=f(¥,¥s) +d. u

Choosing too small a constant s can therefore lead to poor decoding results. In our
experiments, we choose s to be greater than the longest regular expressions seen in the
training data.

4.3.3 OPTIMIZATION PROBLEM FOR CONCISE EXPRESSIONS

Training data D = {((x;,y;)}/%, for the overall learning problem consist of pairs of sets x;
of strings and corresponding regular expressions y;. Model f,—discussed in Section 4.2—
produces intermediate expressions y; that are specializations of a maximal alignment, before
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model fy(¥;) gives the final predictions y;. Hence, training data for model f, naturally
consists of the pairs {(y;,yi)}/~;.

We will now derive an optimization problem from the portions of Equation 1 that depend
on v. Decision function fy, decomposes into fy + fv; loss function Ay into Ay and As.
The regularizer decomposes, and we use the (5 regularizer for v as well, Qs(v) = 5= ||v||%.
This leads to Optimization Problem 2.

Optimization Problem 2 Owver parameters v, find

1 v —
v = argrg}gn §HVH2 + % ;&, such that
Vi, vy € o(yi)\{yi} : vV (Uo(Fi,¥:) — Us(3i,¥))
2 Av(y7yl) - fiv
Vi:& > 0.

Optimization Problem 2 minimizes the regularized empirical risk under the assumption
that the decoder uses the restricted search space II4(y) for some fixed value of the maximal
string length s. We refer to the complete model

y = arg max VT\IIV(y,y),
yEI(y)

with ¥ = apyjai ...y, an

and y; = arg mascuT (Valy;, ) + (A © Au(y,)))

for predicting concise regular expressions as REx-SVMshtort,

5. Case Study

We investigate whether postmasters accept the output of REx-SVM and REx-SVM®S2ort for
blacklisting mailing campaigns during regular operations of a commercial email service. We
also evaluate how accurately REx-SVM and REx-SVM52Tt and their reference methods
identify the extensions of mailing campaigns.

In order to obtain training data for the model f, that generates a regular expression
from an input batch of strings, we apply the Bayesian clustering technique of Haider and
Scheffer (2009) to the stream of messages that arrive at an email service during its regular
operations; the method identifies 158 mailing campaigns with a total of 12,763 messages.
Postmasters of the email service write regular expressions for each batch in order to blacklist
the mailing campaign; these expressions serve as labels. We will refer to this data collection
as the ESP data set.

In order to obtain additional training data for the model f, that selects a concise
substring of a regular expression that is a specialization of the maximal alignment, we
observe another 478 pairs of regular expressions with their concise subexpressions that
postmasters write in order to blacklist mailing campaigns. We collected this data by using
the predicted regular expression ¥ = fy,(x) for each batch of emails x as training observation
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and the postmaster-written expression y as the label. We train a first-stage model f,; on the
158 labeled batches after tuning regularization parameter Cy with 10-fold cross validation.
We tune the regularization parameter C\ using leave-one-out cross validation and train a
global model f,, that is used in the following experiments.

5.1 Evaluation by Postmasters

Campaign 1 Campaign 2 Campaign 3
B
< | Please send the request to my email || Email:wester_(payin|pay)@yahoo.com (Reply-To|From):(mosk®@aven|sevid@donald).com
g (simon|george)@(gmaillyahoo).com Yours sincerely, Subject: GET YOUR MONEY
z Mr [A-Z][a-Z]* [A-Z][a-Z]*
[
... This work takes [0-9-]" hours per || ... agreed that the sum of US$[0-9,]+ -(lﬁeply—To\From):(mosk@aven\sevid@donald)Acom
week and requires absolutely no in- should be transferred to you out of the Subject: GET YOUR MONEY
vestment. The essence of this work || funds that Federal Government of Nigeria
= | for incoming.client reqL_lests in your c_i; has set aside as a compensation to eve- I am Mr. Sopha Chum, An Auditing and accoun-
% ty. The starting salary is about [0-9] ryone who have by one way or th'e other ting section staff in National Bank of Cambodia.
w | EUR per month + bonuses. sent money to fraudsters in Nigeria.
=
Please send the request to my email Email:wester_(payin|pay)@yahoo.com
[a-z] T @(gmaillyahoo).com and | will || Yours sincerely,
answer you personally as soon as pos- Mr [A-Za-z]" [A-Za-z]T ...
. | sible ...
S
= | Please send the request to my email || Email:wester_(payin|pay)@yahoo.com (Reply-To|From):(mosk®@aven|sevid@donald).com
= | [a-z]* @(gmaillyahoo).com and I will || Yours sincerely, Mr [A-Za-z]* [A-Za-z]* Subject: GET YOUR MONEY
% | answer you personally as soon as pos-
£ [ sible

Figure 6: Regular expressions created by a postmaster and corresponding output of REx-
SVM and REx-SVMskort,

The trained model f, is deployed; the user interface presents newly detected batches
together with the regular expressions fy(x) generated by REx-SVM and expressions fyw (X)
generated by REx-SVM®2°t to the postmasters during regular operations of the email
service. The postmasters are charged with blacklisting the campaigns with a suitable regular
expression. We measure how frequently the postmasters copy the output of REx-SVMshert,
copy a substring from the output of REx-SVM, copy but edit an output, and how frequently
they choose to write an expression from scratch.

Over the course of this study, the postmasters write 153 regular expressions. They copy
the exact regular expressions generated by REx-SVM?5ETt in 64.7% of the cases. Another
14.4% of the time, they copy a substring from the output of REx-SVM and use it without
changes. In 7.8% of the cases, the postmasters copy and edit a substring from REx-SVM,
and in 13.1% of the cases they write an expression from scratch. Hence, tasked with
producing a regular expression that will block the mailing campaign during live operations,
the postmasters prefer working with the automatically generated output to writing an
expression from scratch 86.9% of the time.

To illustrate different cases, Figure 6 compares regular expressions selected by a post-
master to excerpts of regular expressions generated by REx-SVM, and regular expressions
generated by REx-SVM5Tt | respectively. In the first example, REx-SVM over-generalizes
the contact email address, and REx-SVM5Tt predicts a slightly longer expression than
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the postmaster prefers to select. Nevertheless, all three regular expressions characterize
the extension of the mailing campaign accurately. In the second example, REx-SVM finds
a slightly shorter but slightly more general expression for the closing signature (the term
“[A-Za-z]"” would allow for capital letters within the name while the term “[A-Z][a-z]"”
does not). The second-stage model f, has selected the same substring that the postmaster
prefers. In the third example, postmaster and REx-SVMSETt agree perfectly.

The fact that postmasters are content to accept generated regular expression does not
imply that they would have written the exact same rules. We now want to explore how
frequently REx-SVM3E°Tt ig able to produce the same regular expression that postmasters
would have written. We execute leave-one-out cross validation over the regular expressions
in the ESP data set. In each iteration, a new model fy is trained on all but one regular
expressions (model fy is only trained once on different data).

We compare the output of REx-SVM3°Tt to the held-out expression. We find that in
59.49% (94) of the cases, REx-SVM?52°T generates the exact regular expression written by
the postmaster; in 11.39% (18) of the cases the held-out expression is a substring of the
regular expression created by REx-SVM but distinct to the extracted expression found by
REx-SVM#tort Tn 8.86% (14) of the cases the held-out regular expression can be obtained
by modifying a substring of the string created by REx-SVM. In 20.25% (32) of the cases,
generated and manually-written regular expression are distinct. These rates are consistent
with the acceptance rates of the postmasters. When manually written and automatically
generated regular expressions differ from each other, both expressions may still serve their
purpose of filtering a particular batch of emails. We will explore to which extent this is the
case in the next subsection.

5.2 Spam Filtering Performance

We evaluate the ability of REx-SVM, REx-SVM?®°Tt  and reference methods to identify the
exact extension of email spam campaigns. We use the approximately maximal alignment of
the strings determined by sequential alignment in a batch x as a reference method. Here,
the ReLIE method (Li et al., 2008) serves as an additional reference. ReLIE takes the
alignment as starting point of its search for a regular expression that matches the emails in
the input batch and does not match any of the additional negative examples by applying a
set of transformation rules. ReLIE receives an additional 10,000 emails that are not part
of any batch as negative data, which gives it a small data advantage over REx-SVM and
REx-SVM®t°rt REx, ,1-SVM is a variant of the REx-SVM that uses the zero-one loss
instead of the loss function A, defined in Equation 2. An additional content-based filter
employed by the provider has been trained on several million spam and non-spam emails.

Our experiments are based on two evaluation data sets. The ESP data set consists of
the 158 batches of 12,763 emails and postmaster-written regular expressions; it is described
in Section 5. In addition, we collect another 42 large spam batches with a total of 17,197
emails for which we do not have postmaster-written regular expressions. In order to be able
to measure false-positive rates (the rate at which emails that are not part of a campaign
are erroneously included), we use an additional 135,000 non-spam emails, also from the
provider.
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Additionally, we use a public data set that consists of 100 batches of emails extracted
from the Bruce Guenther archive!, containing a total of 63,512 emails. To measure false-
positive rates on this public data set, we use 17,419 non-spam emails from the Enron corpus®
and 76,466 non-spam emails of the TREC corpus®. The public data set is available to other
researchers.

Experiments on the ESP data set are conducted as follows. We employ a constant model
of fy, trained on 478 pairs of predicted expressions y and postmaster-written expressions
y. We first carry out a “leave-one-batch-out” cross-validation loop over the 158 labeled
batches of the ESP data set. In each iteration, 157 batches are reserved for training of
fu. On this training portion of the data, regularization parameter Cy is tuned in a nested
10-fold cross validation loop, then a model is trained on all 157 training batches. An inner
loop then iterates over the size of the input batch. For each size |x|, messages from the
held-out batch are drawn into x at random and a regular expression y = fy (x) is generated.
The remaining elements of the held-out batch are used to to measure the true-positive rate
of y, and the 135,000 non-spam emails are used to determine its false-positive rate. After
that, a model is trained on all 158 labeled batches, and the evaluation iterates over the
remaining 42 batches that are not labeled with a postmaster-written regular expression.
For each value of |x|, an input x is drawn, a prediction y is generated, its true-positive rate
is measured on the remaining elements of the current batch and its false-positive rate on the
135,000 non-spam messages. Standard errors are computed based on all 200 observations.

For evaluation on the public data set, parameter Cy, is tuned with 10-fold cross validation
and then a model is trained on all 158 labeled batches of the ESP data set. The evaluation
iterates over all 100 batches of the public data set and, in an inner loop, over values of
|x|. An input set x is drawn at random from the current batch, the true-positive rate of
¥ = fw(x) is measured on the remaining elements of the current batch and the false-positive
rate of ¥ is measured on the Enron and TREC emails.

Figure 7 shows the true- and false-positive rates for all methods on both data sets. The
horizontal axis displays the number of emails in the input batch x. Error bars indicate the
standard error. The true-positive rate measures the proportion of a batch that is recognized
while the false-positive rate counts emails that match a regular expression although they are
not an element of the corresponding campaign. The alignment has the highest true-positive
rate and a high false-positive rate because it is the most general bound of the decoder’s
search space. ReLIE only has to carry out very few transformation steps until no negative
examples are covered—in some cases none at all. Consequently, it has similarly high true-
and false-positive rates. REx-SVM and REx-SVM?®2°%t attain a slightly lower true-positive
rate, and a substantially lower false-positive rate. The false-positive rates of REx-SVM,
RExy,1-SVM, and REx-SVM?®°*t lie more than an order of magnitude below the rate of
the commercial content-based spam filter employed by the email service provider. The
zero-one loss leads to comparable false-positive but lower true-positive rates, rendering the
loss function A, preferable to the zero-one loss. The true-positive rate of REx-SVMshort
is significantly higher than the true-positive rate of REx-SVM for small sizes of the input
batch; it requires only very few input strings in order to generate regular expressions which

1. http://untroubled.org/spam/
2. http://www.cs.cmu.edu/~enron/
3. http://trec.nist.gov/data/spam.html
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(a) True—positive rate, public data set (b) False—positive rate, public data set
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Figure 7: True-positive and false-positive rates over the number of used emails in the input
batch x for the public and ESP data sets.

can be used to describe nearly the entire extension of a batch at a very low false-positive
rate.

Finally, we determine the risk of the studied methods producing a regular expression
that causes at least one false-positive match of an email which does not belong to the
batch. REx-SVM'’s risk of producing a regular expression that incurs at least one false-
positive match is 2.5%; for REx-SVM®P°rt this risk is 3.7%; for alignment, the risk is 6.3%,
and for ReLIE, it is 5.1%.

5.3 Learning Curves, Execution Time

We study learning curves of the loss functions of REx-SVM and REx-SVM?3Tt . Figure 8
(a) shows the average loss Ay, based on cross validation with one batch held out, as a
function of the number of training batches. The “minimum loss” baseline shows the smallest
possible loss within the constrained search space; it visualizes how much constraining the
search space contributes to the overall loss. This value is obtained by an altered search
procedure that minimizes the loss function between prediction and the postmaster-written
regular expression instead of the decision function. This loss-minimizing expression has a
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lower decision function value than the predicted regular expression; the difference between
minimum loss and the loss of REx-SVM and REx;,,-SVM, respectively, can be attributed
to imperfections of the model. Figure 8 (a) also shows the loss of the alignment. This loss
serves as an upper bound and visualizes how much the parameterized models contribute
to minimizing the error. For completeness, Figure 10 in the appendix shows the learning
curves on the training data.

Figure 8 (b) shows the average loss A, based on 10 fold cross validation and the average
loss on the training data. The impact of the regularization parameters Cy and CY is shown
in Figure 11 in the appendix.

(a) Loss on test data (b) Loss on test and training data
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Figure 8: (a) Loss Ay of model fy on the test data (left Figure). (b) Loss A, of model f
on the training and test data. Error bars indicate standard errors.

Table 5.3 measures how much REx-SVM5Tt reduces the length of the expressions
produced by REx-SVM. We can conclude that REx-SVM38T® reduces the length of the
output of REx-SVM by an average of 92%.

’ Method ‘ mean ‘ standard error
REx-SVM 2141 2063
REx-SVMshort 95 92

Table 1: Number of characters in automatically-generated regular expressions.

The execution time for learning is consistent with prior findings of between linear and
quadratic for the SVM optimization process—see Figure 9(a). Figure 9 (b) shows the
execution time of the decoder that generates a regular expression for input batch x at
application time. ReLIE does not require training.

In order to use regular expressions to blacklist email spam, the email service provider’s
infrastructure has to continuously match all active regular expressions against the stream
of incoming emails. This acceptor is implemented as a deterministic finite-state automaton.
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(a) Execution time for training (b) Execution time for decoding
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Figure 9: Execution time for training a model (a) and decoding a regular expression at
application time (b).

The automaton has to be kept in main memory, and therefore the number of states deter-
mines the number of regular expressions that can be searched for in parallel. Table 2 shows
the average number of states of an acceptor, generated by the method of Dubé and Feeley
(2000) from the regular expressions of REx-SVM and REx-SVM®"°**, The average number
of states of regular expressions by REx-SVM?s2°Tt is close to the average number of states
of expressions written by a human postmaster, while alignment, ReLIE, and REx-SVM
require impractically large accepting automata.

’ Method \ mean \ median \ standard error ‘
alignment 5709 4059 389.1
REx-SVM 5473 2995 520.8
ReLIE 5632 3587 465.9
REx-SVMshort 72 69 1.8
postmaster 68 48 4.6

Table 2: Number of states of an accepting finite-state automaton.

6. Related Work

Gold (1967) shows that it is impossible to exactly identify any regular language from finitely
many positive examples. In his framework, a learner makes a conjecture after each new
positive example; only finitely many initial conjectures may be incorrect. Our notion of
minimizing an expected difference between conjecture and target language over a distribu-
tion of input strings reflects a more statistically-inspired notion of learning. Also, in our
problem setting the learner has access to pairs of sets of strings and corresponding regular
expressions.

Most work of identification of regular languages focuses on learning automata (Denis,
2001; Parekh and Honavar, 2001; Clark and Thollard, 2004). Since regular languages are
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accepted by finite automata, the problems of learning regular languages and learning finite
automata are tightly coupled. However, a compact regular language may have an accepting
automaton with a large number of states and, analogously, transforming compact automata
into regular expressions can lead to lengthy terms that do not lend themselves to human
comprehension (Fernau, 2009).

Positive learnability results can be obtained for restricted classes of deterministic finite
automata with positive examples (Angluin, 1978; Abe and Warmuth, 1990); for instance
expressions in which each symbol occurs at most & times (Bex et al., 2008), disjunction-free
expressions (Brazma, 1993), and disjunctions of left-aligned disjunction-free expressions
(Fernau, 2009) have been studied. These approaches aim only at the identification of a
target language. By contrast, here the structural resemblance of the conjecture to a target
regular expression is integral part of the problem setting. This also makes it necessary to
account for the broader syntactic spectrum of regular expressions.

Xie et al. (2008) use regular expressions to detect URLs in spam batches and develop
a spam filter with low false-positive rate. The ReLIE-algorithm (Li et al., 2008) (used
as a reference method in our experiments) learns regular expressions from positive and
negative examples given an initial expression by applying a set of transformation rules
as long as this improves the separation of positive and negative examples. Brauer et al.
(2011) develop an algorithm that builds a data structure of commonalities of several aligned
strings and transforms these strings into a specific regular expression. Because of a high
data overhead, their algorithm works best for short strings, such as telephone numbers and
names of software products.

Structured output spaces are a flexible tool for a wide array of problem settings, includ-
ing sequence labeling, sequence alignment, and natural language parsing (Tsochantaridis
et al., 2005). In our problem setting we are interested in predicting a structured object, i.e. a
regular expression. To solve problems with structured output spaces an extension of the sup-
port vector machines (SVMs, Vapnik, 1998) can be used. Such structural SVMs were used
to solve a several number of prediction tasks ranging from classification with taxonomies,
label sequence learning, sequence alignment to natural language parsing (Tsochantaridis
et al., 2005). The problem of detecting message campaigns in the stream of emails has
been addressed with structured output spaces based on manually grouped training mes-
sages (Haider et al., 2007), and with graphical models without the need for labeled training
data (Haider and Scheffer, 2009).

Our problem setting and method differ from all prior work on learning regular expres-
sions in their objective criterion and training data. Unlike in prior work, the learner in our
setting has access to additional labeled data in the form of pairs of a set of strings and a
corresponding regular expressions. At the same time, the learner’s goal is not just to find
an expression that identifies an extension of strings, but to find the expression which the
process that has labeled the training data would most likely generate. This implies that
the learner has to model the labeler’s preference of using specific syntactic constructs in a
specific syntactic context and for specific matching substrings.
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7. Conclusions

Complementing the language-identification paradigm, we address the problem of learning
to map a set of strings to a concise regular expression that resembles an expression which
a human would have written. Training data consists of batches of strings and correspond-
ing regular expressions. We phrase this problem as a two-staged learning problem with
structured output spaces and engineer appropriate loss functions. We devise a first-stage
decoder that searches a space of specializations of a maximal alignment of the input strings.
We devise a second-stage decoder that searches for a substring of the first-stage result. We
derive optimization problems for both stages.

From our case study, we conclude that REx-SVM5ETt frequently predicts the exact
regular expression that a postmaster would have written. In other cases, it generates an
expression that postmasters accept without or with small modifications. Regarding their
accuracy for the problem of filtering email spam, we conclude that REx-SVM and REx-
SVM®EoTt give a high true-positive rate at a false-positive rate that is an order of magni-
tude lower than that of a commercial content-based filter. REx-SVM?S2°Tt attains a higher
true-positive rate, in particular for small input batches. REx-SVM®2°Tt generates regular
expressions that can be accepted by a finite-state automaton that has just slightly more
states than an accepting automaton for regular expressions written by a human postmaster.
REx-SVM and all reference methods, by contrast, can only be accepted by impractically
large finite-state automata. REx-SVM32°Tt is being used by a commercial email service
provider and complements content-based and IP-address based filtering.
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Appendix A

A.1 Syntax and Semantics of Regular Expressions

Definition 3 (Regular Expressions) The set Vs, of regular expressions over an ordered
alphabet ¥ is recursively defined as follows.

o Every y; € YU {e, ., \S, \e, \w, \d}, every range y; = lpmin—lmaz, Where lyin, lmae €
and lnin < lnag, and their disjunction [y ...y] are regular expressions.

e If yi,...,yr € Vx are regular expressions, so are the concatenation y = y1...yg,
the disjunction y = yi|...|yx, ¥y = y17?, ¥ = (y1), and the repetitions y = yj, y =
v,y =y1{l}, and y = y1{l,u}, where [,u € N and | < u.

We now define the syntax tree, the parse tree, and the matching lists for a regular
expression y and a string « € ¥*. The shorthand (y — T1,...,T)) denotes the tree T' =
(V, E,T', <) with root node vy € V labeled with I'(vg) = y and subtrees T1,...,T;. The
order < maintains the subtree orderings <; and defines the root node as the minimum over
the set V and v/ <" for all v’ € V; and v" € V}, where ¢ < j.

Definition 4 (Syntax Tree) The abstract syntax tree T3, for a regular expression y is
recursively defined as follows. Let Ts);jn = (VS}LJn, nggjn, F?g'gjn, §§'§n) be the syntax tree of the
subexpression y;.

o Ify e ¥U{e, ., \S,\e, \w, \d}, or if
y= lmin*lmam
where lnin, linas € 2, we define
Tn = (y — 0).

o Ify = (y1),
where y1 € Vs, we define
Tsyyn = Tsyyln

o fy=yi,y=y1,
y = yi{l,u}, or if y = y1{l},
where y1 € Vs, l,u € N, and there exist no y’,y” € Vs such that y; = y’'|y” or
1<

y1= Y'y”, we define
Toyn = (y — T3yn)-

e lfy=y1...yk
where y; € Vs, and there exist noy’,y” € Vs, such that y; = y'|ly” ory; =y'y”,
we define
T =y = T, -, Tok).

o Ify=yi|... |y
where y; € Vs, and there exist no y’,y” € Y such that y; = y'|y”, or if
y = [y1...yx] and there exist no y’,y” € Vs such  that y; = y'y”, we define
T =y = T, ..., ToR).
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Definition 5 (Parse Tree and Matching List) Given a syntax tree T3, =
(Van, Edyn, TYyn, <¥yn) of a regular expression y with nodes v € Vg, and a string z € L(y),
a parse tree Tpar and the matching lists MY®(v) for each v € Vg, are recursively de-
fined as follows. Let T,{.{,:”” = ( p);%«’x,Ezé;x,Fgé}x,ggé}x) be the parse tree and T. syyjn =
(Varins Exin, Thin, <¥n) the syntax tree of the subexpression ;-

o If y=x and z € ¥ U {e}, we define
MY*(vg) = {z} and
Toar = (y = 0).

e fy=.andzeX,
Y = lmin—lmaz and lpin < @ < lLpag, or if
y € {\S,\w, \e, \d} and z is either a non-whitespace character (everything but spaces,
tabs, and line breaks), a word character (letters, digits, and underscores), a character
in {.,—,#,+} or a word character, or a digit, respectively, we define
MY*(v) = {z} for all v € V3, and
T = (v — Tpar)-

o If y = (y1) and z € ¥*, we define
MY*(v) = MY1®(v) for all v € V3, and
Tpar = Tpar”

o lfy=yj,z=x1...25, and k >0, or if
y =y, and k > 0, or if
y =yi1{l,u}, and | < k < u, or if

y =yi{l}, and k =1,
where z; € X7, and there exist no y’,y” € J»  such that y; = y'ly” ory; = y'y”,

we define
oy —
MY (y) = {:Ek} | ) 1 v UOyl _and
Uizl MY (U) ) ifve V:eyn
Tar = (y = Tpar™, ., Tpa™).

L Ify:y1--~}’k,$:l‘1...$k,
where z; € ¥*, and there exist no y’,y” € . such that y; = y'ly” ory; =y'y”,

we define
T ifv=w
aray = {0 Te=e
MYi*i(v) L ifv e Vgn
Toar = (y = Tpar™, ..., Tpa™™).

o Ify=yi|...|yx, z€X*
and there exist no y’,y” € Ys; such  thaty; = y' |y”, orif

y=I[y1...yx,z€XT
and there exist no y’,y” € Vs; such  thaty; = y’ y”, we define

{z} ,if v =19
MY®(v) = ¢ MYi*(v) | ifve %};%7 and
0 , otherwise

T = (y — Tha").
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If x ¢ L(y), that is, no parse tree can be derived by the specification above, the empty
sets MY*(v) = for all v € V3, and T}35; = () are returned. Otherwise, we denote the set
of all parse trees and the unions of all matching lists for each v € V3},, satisfying Definition 5
by Tpir and MY>*(v), respectively. Finally, the matching list MY *(v) for a set of strings x
for node v € V), is defined as MY*(v) = (J, e, MY"(v).

A.2 Joint Feature Representations

The list of binary and continuous features ¥y used to train model fy is shown in Table 3.
The input and output features ¥y, for model fy, are shown in Table 4 and 5, respectively. The
set Sspam is defined as follows: We train a linear classifier that separates spam emails from
non-spam emails on the ESP data set, using a bag of words representation. We construct
the set Sspam as the 150 words that have the highest weights for the class spam.

’ Feature ‘ Description
[e € M] Matching list contains the empty string?
[vx € M :|x| =1] All elements of the matching list have the length one?
[Fi e N,vx € M : |x| = 1] All elements of the matching list have the same length?
Evn{A,.. Z]]

Portion of characters A—Z in the matching list

26
Eunia,..2}] Portion of characters a—z in the matching list

26
[Eu010.... 03] Portion of characters 0-9 in the matching list

10
Eynid.... ] Portion of characters A-F in the matching list

6
w Portion of characters a—f in the matching list
w Portion of characters G-Z in the matching list
W Portion of characters g—z in the matching list
[VxeXp:x ¢ {A,...,Z}] No characters of A-Z in the matching list?
[Vxe Xy :xé¢{a,...,z}] No characters of a—z in the matching list?
[Vx e Xp:ax¢{0,...,9} ] No characters of 0-9 in the matching list?
VxeXy:xéd{a,...,f}] No characters of a—f in the matching list?

VeeXy:x¢{A . ....,F}] No characters of A-F in the matching list?

Ean{-,/,7,=,.,Q:} > 0] | Matching list contains URL/Email characters?

[Vx e M :|x| > 1A x| < 5] Length of strings in the matching list is between 1 and 57

[Vx € M :|x| >6A|x| <10] | Length of strings in the matching list is between 5 and 107

[Vx € M :|x| > 11 A |x| <20] | Length of strings in the matching list is between 10 and 207

[Vx € M : |x| > 20] Length of strings in the matching list is higher than 207

[IM]| = 0] Matching list is empty?

Table 3: Features for model f.

A.3 Additional Experimental Results

Figure 10 shows the average loss A, on the training data as a function of the sample size.
The corresponding loss on the test data can be seen in Figure 8 (a).
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’ Feature

Description

[0 < constant symbols in y < 568]

Number of constant symbols that are arguments
of the top-most concatenation is less than 568

[568 < constant symbols in y < 1032]

... between 568 and 1031

1032 < constant symbols in y < 1724

...between 1032 and 1723

1724 < constant symbols in y < 2748

...between 1724 and 2747

2748 < constant symbols in y]

... 2748 or higher

0 < non-constant arguments in y < 48]

Number of non-constant arguments of the
top-level concatenation is less than 48

[48 < non-constant arguments in y < 77]

.. between 48 and 76

[77 < non-constant arguments in y < 133]

.. between 77 and 132

[133 < non-constant arguments in y < 246]

.. between 133 and 245

[246 < non-constant arguments in y]

.. 246 or higher

[¥ contains Latin characters]

y contains Greek characters]

y contains Russian characters]

y contains Asian characters]

y contains “subject:”] Expression refers to a subject line
¥ contains “from:”] Refers to a sender address

y contains “to:”] Refers to recipient address

[y contains “reply-to:”] Refers to a reply-to address

[y contains attachment]

Expression refers to an attachment

Table 4: Input features that refer to properties of y for model fy.

Loss on training data

0.95 [

loss

0.8 r

0.75

REx-SVM -]
Alignment
REXxq1-SVM

10 20 30 40 50 60 70 80 90 100

number of batches used to train

Figure 10: Average loss Ay on training data for a varying number of training batches. Error

bars indicate standard errors.

Figure 11 shows how the loss on the test data set changes when we varying the regular-

ization parameters Cy and Cy.
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Feature \ Description

Constant symbols in y Number of constant symbols in the
top-most concatenation

Non-constant subexpressions in ¥ Number of non-constant arguments of

the top-most concatenation

[y contains Latin characters]

[y contains Greek characters]

[y contains Russian characters]

¥ contains Asian characters]

¥ contains “subject:”] Expression refers to subject line

¥ contains “from:”] Expression contains a sender address

¥ contains “to:”] Contains a recipient address

¥ contains “reply-to:”] Contains a reply-to address

¥ contains attachment] Expression refers to attachment

[y starts with “subject:” and ends with \n] Expression only refers to subject line
[y starts with “from:” and ends with \n] Expression only refers to sender address
[y starts with “to:” and ends with \n] Expression only refers to recipient address
[y starts with “reply-to:” and ends with \n] Only refers to reply-to address

[y starts with “attachment:” and ends with \n] | Contains only refers to attachment

[y starts with “subject:”] Expression starts with a subject line

[y starts with “from:”] Starts with a sender address

[y starts with “to:”] Starts with a recipient address

[y starts with “reply-to:”] Starts with a reply-to address

[y starts with “attachment:”] Starts with a subject line

[¥ ends with “subject:”] Ends with a subject line

[y ends with “from:”] Ends with a sender address

[¥ ends with “to:”] Ends with a recipient address

¥ ends with “reply-to:”] Ends with a reply-to address

¥ ends with “attachment:”] Ends with reference to attachment
number of newlines in y Number of line breaks in the expression

[¥ contains a URL]

¥ is only a URL]

¥ contains an email address]|

[y is only an email address]

[y contains a phone number]

[y is only a phone number]

[y contains an IP address]

[y contains an attachment of type .exe]

[y contains an attachment of type .jpg]

[¥ contains an attachment of type .zip]

[y contains an attachment of type .html]

[¥ contains an attachment of type .doc]

[¥ contains substring € Sspam] Contains terms from the highest-scoring
bag-of-words features for spam

Table 5: Output features that refer to properties of y for model f.
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(a) Loss on test data (b) Loss on test data
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Figure 11: Average loss on test data for a varying regularization parameters Cy and C\ to
train a model f, (a) and a model fy, respectively. Error bars indicate standard
errors.

A.4 Syntax of Postmasters’ Regular Expressions

This section summarizes the syntactic constructs used by postmasters and their frequency.
These observations provide the rationale behind the definition of the constrained search
space of Algorithm 1. Table 6 shows the frequency at which macros occur in the ESP data
set. Table 7 shows which iterators (*, *, ?, {z}, {z,y} for x,y € N) postmasters use as a
suffix of the disjunction of characters (e.g., [abc]* or [0-9]1). Table 8 counts the frequency
of iterators in conjunction with an alternative of regular expressions (e.g., (girljwoman)?).

’ Macro ‘ Frequency ‘

\d 97
\S 71
\e 16
A-Z 25
a-z 86
A-F 28
a-f 17
0-9 65

Table 6: Macros used in the postmasters’ expressions.

We measure the maximum nesting depth of alternatives of regular expression in the ESP
data set: We find that 95.6% have a nesting depth of at most one—that is, they contain
no layer of alternatives within the top-most alternative, such as aa-z]*. Only 4.4% have
a greater nesting depth (e.g. a([a-z]T|01), having a nesting depth of two). Algorithm 1
constructs the set of possible specializations of the j-th wildcard, starting with all subex-
pressions of all expressions in the training data. Hence, the nesting depth of alternatives
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’ Iterator ‘ Frequency
[-.] 21
I* 2
T 73

[{z} 49
He, v} 39

[
[
[]7 0
[
[

Table 7: Iterators used in conjunction with a character disjunction—e.g., [abc0-9]*.

’Iterator ‘Frequency
(conf-r) 166
(..]..)" 0
(con].2n)? 2

Table 8: Iterators used in conjunction with alternatives—e.g., (viagra|cialis)™.

in the constrained search space is at least the nesting depth of the training data. In line 6,
the alternative of constant strings aligned at the j-th wildcard symbol is added; hence, the
constrained search space has a nesting depth of at least one, even if the training data have
a nesting depth of zero. For all character alternatives in the set of possible specializations,
all macros from Table 6 and all iterators shown in Tables 7 and 8 are added.
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ABSTRACT

Code obfuscation techniques are an obstacle for static mal-
ware detection by statistical classifiers. Deobfuscation by
partial code execution can overcome this problem, but in-
creases the computational costs of malware detection by an
order of magnitude. We study a cascaded architecture in
which a classifier first performs a static analysis of the orig-
inal code and—based on the outcome of this first classifi-
cation step—the code may be deobfuscated and classified
again. We conduct a large-scale empirical study of PHP
and JavaScript malware detection in which we compare the
cascaded method to static detection and to deobfuscation
followed by classification. The study is based on a high-
quality data set of almost 400,000 conspicuous PHP files
and a collection of more than 1,000,000 JavaScript files. We
explore several types of features and study the robustness of
detection methods and feature types against the evolution of
malware over time and develop a tool that scans very large
file collections quickly and accurately.

1. INTRODUCTION

Malware—software that serves a malicious purpose—is af-
fecting web servers, client computers via active web content,
and client computers through executable files. Decisions
whether files are deemed safe and allowed to be executed
have to be made under somewhat differing requirements.
Our primary motivation is the problem that web hosting
services face: when a user creates a new file on a server,
the hosting service has to decide whether the software is
allowed to be executed on its server or distributed to con-
necting clients in the form of active content. Because of this
main motivation, we focus on the two types of malware that
are prevalent in hosting environments: PHP and JavaScript.

The execution of PHP malware on web servers is not only
an abuse of valuable computational resources. The dissem-
ination of malware via drive-by downloads as well as email
spam campaigns, DDoS attacks, and click fraud initiated
by server-based malware causes servers to become black-
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listed and legitimate services to become unavailable. When
a hosting service manages billions of files, the false-positive
rate is naturally required to be extremely low. After each
false-positive decision, a user account is blocked unneces-
sarily; the account then has to be scrutinized and unlocked
again. Decisions have to be made in real time and, because
of the high throughput of files, efficiently. In an environment
with a high throughput of files, the CPU time spent on each
decision is a crucial economic factor.

Browser-based malware detection in active content (such
as JavaScript or JavaScript-bearing PDF files [14]) is a sec-
ond application scenario in which JavaScript plays a domi-
nant role and the efficiency of decision making is crucial.

Malware analysis techniques use static or dynamic fea-
tures, or both. In fully dynamic analysis, the software is
executed and observed for malicious behavior in a sandbox
environment. Setting up a virtual operating environment,
running, and observing the software typically requires min-
utes of CPU time. This would be impractical for our fo-
cused application environment as well as for our experimen-
tal study; we therefore exclude fully dynamic analysis from
our investigation. By contrast, static analysis is based on
features that can be extracted from the program file. Pa-
rameters of the decision criteria are often optimized using
machine-learning techniques on collections of malware and
non-malware files [12, 8]. Static analysis tools can be real-
time capable.

In order to bypass detection mechanisms, polymorphic
malware comes in an abundance of minor variations [10].
Consider that on average around 300,000 unique files per
day that are uploaded to the virustotal.com malware scan-
ning service, classify as malware by at least one of the scan-
ners that the service employs!. Code obfuscation techniques
that revolve around the evaluation of dynamically generated
strings allow malware engineers to package malicious con-
tent into patterns that may not have previously occurred in
known malware. Such patterns may therefore be absent in
data collections that are used to train statistical classifiers.
Code obfuscation itself is not generally evidence of mali-
cious intent—we find that over 35% of benign JavaScript
and over 40% of benign PHP programs employ obfuscation,
often as makeshift protection from code piracy. By evalu-
ating the arguments of “eval”’, “document.write”, “unescape”
and similar statements until no such statements remain, the
code can be deobfuscated; the deobfuscated code can be
subjected to static code analysis [7]. However, malware en-
gineers can make the deobfuscation arbitrarily complex by

"https://www.virustotal.com/en/statistics/



nesting “eval” expressions and performing expensive calcula-
tions within these expressions. We find that even the fastest
available deobfuscation tools still require an order of mag-
nitude more CPU time than static code analysis. Deobfus-
cation followed by static analysis covers a middle ground
between fully dynamic and fully static code analysis.

Our paper makes the following contributions. (a) We de-
velop a fast and robust cascaded malware-filtering method
that uses fully static analysis for most decision and singles
out a limited fraction of files for deobfuscation. However,
whether this approach has any merit depends on whether
fully static analysis will be able to make most decisions
with near certainty. (b) We explore this method in a large-
scale empirical study with hundreds of thousands of PHP
and more than a million JavaScript files. We describe our
methodology for obtaining a large collection of files with
known malware status, survey the types of malware that are
included, and make our data set available. We present an
in-depth analysis of the most informative features and of the
limitations of static and deobfuscated code analysis. (c) We
investigate the effectiveness of linear classification models,
of nonlinear random forest classifiers, and of several types
of features for cascaded malware detection. Besides n-gram
features [12], our study includes orthogonal-sparse-bigrams
[19], syntax-tree features [7, 20], and subroutine-hashing fea-
tures. We find that the combination of all feature types gives
the best detection performance. (d) We present the first em-
pirical study of the robustness of malware detection models
over time. We study the rate at which various models dete-
riorate as malware evolves over time.

The rest of this paper is organized as follows. Section 2
describes the background of our work. Section 3 elaborates
on the detection mechanisms and types of features that we
study. Our empirical study is described in Section 4. Sec-
tion 5 provides an in-depth analysis of the models, their
abilities and limitations. Section 6 concludes.

2. BACKGROUND

This section briefly reviews the background; Gandotra
et. al [8] give a more complete survey of malware detection.

Static analysis techniques extract features from the file
under investigation. For script files—such as PHP and
JavaScript—a disassembling step is not necessary for fea-
ture extracation. Given the script files, n-gram features [12],
bag of tuples [4], syntax-tree features [7], or features of the
control-flow graph [1, 5] or function-call graph [13] can be
extracted. For active web content, URL and host features
are additionally available [3].

Code obfuscation techniques pose a challenge for static
analysis [15]; dynamic analysis techniques [2, 11] offer a
potential remedy because they observe the software as it
is evaluated in a controlled environment. In scripting lan-
guages, eval unfolding—executing code that is generated at
runtime—is a common obfuscation technique and even a lim-
ited dynamic analysis can reveal informative features [7]. In
order to perform a full dynamic analysis, a sandbox virtual
environment has to be set up, system and registry changes,
and networking behavior have to be monitored. An intrin-
sic limitation of dynamic analysis lies in the high costs of
preparing the sandbox environment and observing the soft-
ware’s behavior; the analysis cannot be carried out in real
time, and is less easily scalable. The adversarial nature of
the problem poses challenges for dynamic analysis, too. Ma-
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licious behavior may only be triggered at a specific time, un-
der specific conditions, or via a remote command, and may
therefore not be observed in the controlled environment.

Static and dynamic program analysis can be combined [1].
A wide range of supervised machine learning techniques has
been studied for the task of combining the extracted fea-
tures into a decision rule [18, 12]. Semi-supervised learning
methods that exploit unlabeled data in addition to labeled
training data [17] and unsupervised data analysis techniques
that discover relationships between malware files have been
studied. For instance, BitShred employs a feature hashing
scheme and co-clustering based on the Jacard similarity met-
ric to uncover relationships between malware samples [9].

Empirical investigations of malware detection have so far
been made on a small to medium-sized scale, using hundreds
[3, 7, 1] or thousands [18, 16, 12, 7] of malware files, often of
a specific type of malware. The largest empirical malware
study that we are aware of was carried out on 65,000 PDF
files, some 16,000 of which have JavaScript embedded [14].
Most empirical investigations report accuracies of between
95 and 98%.

3. MALWARE DETECTION

This section introduces the malware detection cascade as
well as the baselines that perform fully static analysis and
deobfuscation followed by static analysis. This section also
describes the types of features that we will investigate in the
following study.

3.1 Malware Detection Cascade

fo(()) < Toy fo(@() Ztsn Afo(P) S50 f(0(x)) > 765

|

>

for(@(x)) < For(d()) =7

e =

Figure 3: Cascaded malware detection architecture

Figure 3 shows an abstract overview of the detection cas-
cade. In a first step, a high-dimensional vector of static
code features ®(x) is extracted from file z—the following
sections will elaborate on these features. A statistical classi-
fier fo determines a malware detection score fo(®(x)) based
on this vector. This score is compared against two thresh-
olds: if fo(®(z)) < 7sn, then the file is considered to be
a “safe negative” and receives the label benign. Threshold
Tsn has to be adjusted on a test data collection such that
the fraction of malware for which the detection score of the
static detection model fo(P(x)) does not exceed Tsn stays
below a false-negative rate that is deemed acceptable. If



function show ()

function tiny () (
" alert(“Hello World”);

extract }
JavaScript document .write (out);

unction t . .
document.write (out) ; extract string containing only
) instructions from JavaScript reference
</script>

[function, for, <=, +=, document, write]

function show () {
alert (“Hello World”);

! sort tokens
. lexicographically

[function, alert]

[+=, <=, document, for, function, write] [alert, function]

create MDS checksums.

Features: [29e065d83efe8b9068dd40ebc82d132b, Features: [acac880e2fe39e635f48652eaab185fc,
25bea7a000c80a7b018531af5d8ffe16] c5ec7f16f03112845e57214732292f13]

Figure 1: Extraction of function-hashing features

function tiny(){
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Source Code:

SCRIPT
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EXPR_VOID EXPR_VOID ASSIGN LE INC  BLOCK CALL
\ /\.
ASSIGN ASSIGN c NUMBER ¢ NUMBER c EXPR_VOID GETPROP out
out STRING  two  STRING ASSIGN_ADD document write
out  two

Paths: SCRIPT ——» FUNCTION —» tiny

SCRIPT — FUNCTION — EXPR_VOID —> CALL —> out

EXPR_VOID

Figure 2: Extraction of parse-tree features

fo(®(x)) > Tsp, the file is immediately classified as mali-
cious. Threshold 7sp has to be adjusted such that the rate
of benign files for which fo(®(z)) exceeds Tsp stays below
an acceptable false-positive rate.

If the score falls into the interval of 7sy and 7sp, the
code is deobfuscated. The unfolded code—the code that re-
sults from evaluating the arguments of “eval” and “unescape”
statements—is appended to the original code which results
in a deobfuscated file 2’. The partial code evaluation can be
arbitrarily complex or time consuming. Therefore, we ter-
minate the unfolding process when a hard limit of 10 CPU
seconds is reached. The same set of features ®(z') is ex-
tracted from the deobfuscated file; a second classification
model fy processes the feature vector, and the final classi-
fication result is obtained by comparing for(®(2’)) against
a decision threshold 7. We define the aggregate score of the
cascaded model as fo(P(x)) if x is classified on the first level,
and fg/(®(x')) if it is classified on the second level.

The malware detection cascade can be employed as an au-
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tomatic blacklisting mechanism, as an automatic whitelist-
ing mechanism, or as an interactive tool. A blacklisting
mechanism identifies malware that can be disabled auto-
matically; here, the false-positive rate has to be extremely
low, and therefore the aggregate score has to be compared
against a high threshold. A whitelisting mechanism iden-
tifies benign files that require no further attention. Here,
the false-negative rate has to be very low and therefore the
aggregate score has to be compared against a low thresh-
old. When the model is applied as an interactive tool, it
automatically disables files whose aggregate score exceeds a
blacklisting threshold, marks files whose aggregate score lies
below a whitelisting threshold as safe, and tags files whose
score lies between the whitelisting and blacklisting thresh-
olds as requiring manual inspection.

For PHP, we use a deobfuscation tool that has been cre-
ated and is used by an engineer who is in charge of malware
detection for a web hosting service. In order to deobfuscate
JavaScript files, we use the SpiderMonkey package by Didier



Table 1: Number of features
Feature type PHP | JavaScript
n-grams 815,866 1,174,378
OSB 2,786,283 1,751,993
Function hashes 34,743 125,810
Parse-tree features 125,436 724,557

Stevens? which is a modified version of Mozilla’s C imple-
mentation of JavaScript®. We use this version because it is
the fastest implementation that also exhibits the best abil-
ity to unpack and deobfuscate JavaScript on our data set.
Other tools are for example Creme Brulee?, JSDebug® and
SpiderMonkey + V8°.

3.2 Reference Methods

In addition to the cascaded model, our experimental study
will include a static model fg(®(z)) in which the decision is
always based on static features as well as a deobfuscation-
based model in which the code is always deobfuscated first
and the decision function fo/ (®(z")) is always based on static
features of the deobfuscated file z’.

3.3 C(lassification Methods

In our study, we explore a logistic regression classifier and
a random forest classifier.

Logistic regression is a linear classifier that computes the
product of an input feature vector and its parameter vector
0; it uses a logistic function to squash the result of the vector
prodluct into a normalized output probability fo(®(z)) =

1+59Ti’(“’3) ’

We use the Liblinear” implementation of logistic regres-
sion that conducts a stochastic gradient search for model
parameters 6 that minimize the ¢2-regularized logistic loss
on the training set. We train the static model fy on a train-
ing set that contains the static feature vectors ®(z) and
the class label (benign or malware) for all files in the PHP
or JavaScript collection, respectively. Deobfuscated model
for is trained using features ®(x’) extracted from the deob-
fuscated versions x’ of all files from the PHP or Javascript
collections.

The random forest classifier is a nonlinear model that uses
an ensemble of decision trees to determine the class label.
Each of the trees is trained on a bootstrapped sample of
the training data using only a randomly drawn subset of the
static features in @(x) or the features ®(x’) of the deobfus-
cated file, respectively. The proportion of trees that vote for
the positive class serves as decision-function value fo(®(z)).
We use the random forest implementation of the scikit-learn
library with an ensemble of 1,000 trees.

3.4 N-Gram Features

Token n-grams are overlapping sequences of n subsequent
tokens. The n-gram feature representation of a file is a
sparse, high-dimensional vector that has an entry for any

2https://didierstevens.com/files/software/js-1.7.0-mod-
b.zip

Shttp://www.mozilla.org/js/spidermonkey/
“http://code.google.com /p/cremebrulee/
®http://codeproject.com /KB /scripting/hostilejsdebug.aspx
Shttp://code.google.com/p/v8/
"http://www.csie.ntu.edu.tw/ " cjlin/liblinear/
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1- to n-gram that occurs at least twice in the training set
of files. In order to extract n-gram features, the file is first
tokenized; all characters that are not a letter or a digit act
as separators. Then, sliding windows of size 1 to n pass over
the token sequence, and the vector element that corresponds
to the n-grams under the windows is incremented. In our
experiments, we limit n to 5; this results in 815,866 non-
unique features on the PHP data set and 1,174,378 features
on the JavaScript data set that occur in the data in at least
two different instances (see Table 1). An excerpt of features
extracted from the PHP and JavaScript data sets is shown
in Table 8, respectively.

3.5 Orthogonal Sparse Bigrams

Orthogonal sparse bigrams (OSB) can be thought of as
n-grams with a wildcard symbol; they have proven to be ef-
fective for email spam classification [19]. A generalization of
this approach has been investigated for malware detection
[4]. An orthogonal sparse bigram is an n-gram in which the
first and the n-th token are fixed, and n — 2 tokens in be-
tween are replaced by wildcards. In order to extract these
features, windows of sizes 1 through n slide over the tok-
enized file. For each window position, the vector entry that
corresponds to the 1- to n-grams in which the n — 2 central
tokens are replaced by a wildcard symbol are incremented.
Again, we limit n to 5; this results in 2,786,283 non-unique
features for the PHP and 1,751,993 non-unique features for
the JavaScript data sets (see Table 1). An excerpt of fea-
tures extracted from the PHP and JavaScript data sets is
shown in Table 8, respectively.

3.6 Function Hashes

Function and subroutine-hashing features can be thought
of as robust signatures of individual functions. Figure 1
shows the feature extraction process. All PHP functions
are directly extracted from the file; JavaScript functions
are extracted from the HTML code. A sequence of tokens
is extracted from each function, but only those tokens are
kept that occur in a language reference. We use a PHP
reference® and the a JavaScript reference® to extract the se-
quence of tokens for PHP and JavaScript files, respectively.
The resulting token sequence contains reserved words and li-
brary functions, but since it does not contain any identifiers,
the resulting function-hashing features are invariant with re-
spect to the naming of variables. An MD5 hash is calculated
for this token sequence; in addition, the sequence is sorted
alphabetically and a second MD5 hash is calculated. Each
function is therefore represented by two hashing features.

The function-hashing feature vector contains an entry for
each MDb5 hash that occurs at least twice in the training
data. Each file is represented as a sparse vector that is
summed over all containing functions and their associated
MD5 hashs. This procedure results in 125,810 non-unique
features for the JavaScript data set and 34,743 non-unique
features for the PHP data set (see Table 1).

3.7 Parse-Tree Features

Parse-tree features are calculated as illustrated in Fig-
ure 2. We use the PHP deobfuscation tool to parse PHP

8http:/ /www.phpbox.de/php_befehle/
“http://wiki.selfhtml.org/wiki/Referenz:JavaScript



Table 2: Prevalence of types of malaware in the
JavaScript collection

Malware type | occurrences | percentage
HideLink 188,104 37%
Iframe 88,835 17%
Includer 54,237 10%
Dropper 40,657 8%
Redirector 35,129 7%
Clickjack 30,124 6%
Agent 21,733 4%
Autolike 15,668 3%
Decode 12,737 2%
Script 5,317 1%

and the Spidermonkey!® parser to create the parse tree for
JavaScript. We treat all paths in the syntax tree to any
leaf node as a sequence of tokens, and extract all n-gram
features of these sequences. Each n-gram of non-terminal
and terminal symbols in a branch of the parse tree that oc-
curs at least twice in the training data is represented by
an element of the feature vector. Again, we limit n to 5;
this results in 125,436 non-unique features for the PHP and
724,557 non-unique features for the JavaScript data set data
set (see Table 1).

4. EMPIRICAL STUDY

This section describes the data sets that we collect, per-
formance metrics, and the feature subset selection method
that we employ. We then report on the malware detection
performance of all methods and types of features under in-
vestigation, and explore the robustness of all models against
the evolution of malware over time.

4.1 Data Collections

The PHP data set contains 397,395 conspicuous PHP files
that have come under scrutiny of administrators of a web
hosting service. These difficult cases are found by hand-
crafted rules and signatures that were created to detect files
which shows suspicious behavior (such as a high volume of
outgoing CGI emails or HTTP requests), or because the
script has some detectable connection to known software vul-
nerabilities. Of these conspicuous cases, 392,276 are in fact
malware and 5,119 turn out to be benign after detailed anal-
ysis. PHP malware includes, for instance, email spam dis-
semination tools, and software that dynamically generates
JavaScript malware which is then used for drive-by down-
load attacks. The PHP collection contains relatively few
benign files, and since only suspicious files are scrutinzied,
all negative examples are difficult cases. Therefore, it is dif-
ficult to infer a meaningful and accurate false-positive rate
on this collection. For this reason, we additionally collect
an auxiliary PHP collection of 23,735 benign PHP files by
downloading 17 popular content-management systems im-
plemented in PHP.

We determine the proportion of obfuscated files among
benign and malicious PHP scripts. Obfuscation is even more
prevalent for PHP; we find that 42% of all benign and 99%
of all malicious PHP files execute code which is constructed

https://developer.mozilla.org/en-
US/docs/Morzilla/Projects/SpiderMonkey
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Table 3: Number of obfuscated files
Class label PHP JavaScript
benign 161,392 (35%)
malicious 435,833 (80%)

12,219 (42%)
388,353 (99%)

at runtime (see Table 3).

We create a JavaScript data set as follows. The virus-
total.com website provides a malware scanning service; up-
loaded files are scanned with 57 virus and malware tools.
We collect 544,792 JavaScript files that have been classified
as malware by at least 5 of the 57 scanning tools. In order
to collect benign JavaScript files, we identify the one million
most popular websites using traffic data from alexa.com. We
crawl these websites and use virustotal.com to check all files
that contain JavaScript for possible malware. This results
in 457,333 files that are not recognized as malware by any
of 57 virus scanners. A Python script that recreates this
JavaScript data set is included in the supplementary mate-
rial and will be uploaded to GitHub.

We determine the proportion of obfuscated files among
benign an malicious JavaScript files. We find that 35% of
all benign and 80% of all malicious files execute code which
is constructed at runtime (see Table 3). Table 2 shows the
prevalence of different types of malware. The types corre-
spond to the malware classification of antivirus tools; mal-
warefixes.com provides a detailed explanation of these types.
We can conclude that the JavaScript collection reflects the
full range of malware types that are in circulation on the
internet.

4.2 Performance Metrics

In the following experiments, we will quantify the accu-
racy of various models with a number of performance met-
rics. First, we measure the classification accuracy of the
classifiers with the default classification threshold of 7 = %
The true-positive rate—also called recall—is the proportion
of malware that is recognized as malicious. The false-positive
rate is the proportion of benign files among those files that
are classified as malware. Conversely, the true-negative rate
is the proportion of benign software that is recognized as be-
nign, and the false-negative rate is the proportion of malware
that is not detected by a classifier.

In order to evaluate the performance of a model as a
blacklisting mechanism, we will determine the recall at a
given false-positive rate. To this end, we adjust the classi-
fication threshold 7 such that the desired false-positive rate
is obtained on the test data, and measure the recall (true-
positive rate, rate of malicious files that are blacklisted) of
the classifier with this classification threshold. In order to
evaluate the performance of a model as a whitelisting mech-
anism we measure the true-negative rate at false-negative
rate zero. Here, we set the classification threshold below
the lowest score of any malware example (i.e., no malware
is whitelisted) and measure the resulting true-negative rate
(the rate of benign files that are whitelisted).

We will determine ROC curves and the area under the
ROC curve. ROC curves detail the possible trade-offs be-
tween the false-positive rate and the true positive rate that
can be attained by varying the classification threshold 7.
Each point on a ROC curve corresponds to a classifier with
a fixed classification threshold. By increasing the threshold,
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Figure 5: Histogram of scores of the static detection
model for PHP

one moves down and to the left (lower false-positive and
true-positive rates), by decreasing it one moves up and to
the right (higher false-positive and true-positive rates). The
area under the ROC curve (AUC) is an aggregate perfor-
mance measure of the decision function, independent of the
classification threshold. It is equal to the probability that
a randomly drawn positive instance (malware) will have a
higher decision-function value than a randomly drawn neg-
ative instance (benign file).

4.3 Learning Methods and Feature Selection

Table 1 show the total number of features that the ex-
traction process creates for the two data collections. These
features are most likely not equally discriminative. Since the
sample size is still relativerly small compared to the num-
ber of features, the overall accuracy of the final classifier
may be higher when only a subset of the features is used.
This section reports on experiments that aim at determining
the optimal subset of features of each type, and the optimal
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subset of the joint set of all features.

We increment the number of features k in steps of 5,000.
For each number k, we run an outer 2-fold cross-validation
loop. In each iteration, first a logistic regression model is
trained on the training part of the data; the model coeffi-
cients provide a ranking of all features. We then use the &
features with highest model coefficients. In order to train a
model using these k features, the regularization parameter
C of the logistic regression has to be tuned. To this end, we
run an inner loop of 2-fold cross validation on the training
data of the outer cross-validation loop. We set C' to 10° for 4
from -4 to 4, train a model on the inner training set, evaluate
the model on the inner test set, then set C' to the optimal
value and train a model on the entire training portion of the
outer loop. This model is evaluated on the test portion of
the outer cross-validation loop. We repeat this experiment
for each type of features, and for the entirety of all features.

Figure 4 shows that the optimal number of features lies
between 10,000 and 45,000, depending on the data set and
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feature type. For each feature type and data set, we use
these numbers of features for our subsequent experiments.
Increasing the number of features further deteriorates the
classification performance slowly.

Figure 4 also compares the performance of the logistic re-
gression to the performance of the random forest classifier.
The hyperparameters of the learning algorithm are tuned
using the same nested 2-fold cross-validation protocol. The
random forest performs slightly worse than logistic regres-
sion. Here, the feature space is sufficiently large, so that
a non-linear random forest has no advantage over a linear
classification model. We therefore exclude the random forest
from subsequent experiments.

4.4 Thresholds for Cascaded Detector

This section discusses the choice of thresholds 75y and
Tsp which determine whether an instance x, after classifi-
cation based on static features ®(z), is either immediately
classified as benign or malicious, or else is classified again
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after deobfuscation.

For PHP, we have a relatively small number of benign files
in the collection of conspicuous files that have come under
scrutiny of an administrator, which makes it more difficult
to estimate small false-positive rates accurately. Therefore,
we adjust Tsny such that the false-positive rate on the diffi-
cult cases is 1073, and the false-positive rate on the auxil-
iary PHP collection that contains files of standard content-
management systems is zero. We adjust 7sp to a false-
negative rate of 10~*. Figure 5 shows the histogram of scores
of the static classifier for PHP in which the resulting thresh-
old values are highlighted. We observe a strongly bimodal
distribution for the static classifier; less than 5% of all files
have to be passed on the the deobfuscation and subsequent
analysis stage.

For JavaScript, we adjust 7sn such that the static model
fo(®(x)) attains a false-positive rate of 107*, and adjust
Tsp such that it attains a false-negative rate of 10™%. Fig-
ure 6 shows the histogram of scores of the static classifier



Table 4: PHP: Accuracy, AUC with 95% confidence intervals; malware recall at a false-positive rate of 0.1%,
false-positive rate on the auxiliary PHP data, and true-negative rate at a false-negative rate of 0

Feature type | Accuracy | AUC

| RecallaFPR 10~° | FPR (aux) | TNR@FNRO

n-grams (static) 0.9949 £ 0.07198 0.9935 + 0.00276 0.8794 £ 0.01567 | 0.00007 0.8359
OSB (static) 0.9957 £ 0.00045 0.9955 £ 0.00173 0.8967 £ 0.01678 | 0.00003 0.8605
Function hashes (static) 0.9665 £ 0.00103 0.9913 + 0.00090 0.8590 £ 0.03633 | 0.00011 0.7435
All features (static) [20 ms] | 0.9996 + 0.00004 0.9999 + 0.00004 0.9825 £ 0.0337 0 0.9833
All (deobfuscated) [181 ms] | 0.9998 + 0.00003 | 0.9999 + 0.00001 | 0.9996 + 0.0002 | O 0.9895
All (cascade) [29 ms] 0.9998 £ 0.00003 | 0.99997 £ 0.00001 | 0.9983 £ 0.0033 0 0.9986

Table 5: JavaScript: Accuracy, AUC, malware recall rate at a false-positive rate of 10~*

Feature type

| Accuracy | AUC

| Recall @ FPR 10~*

n-grams 0.9923 0.9981 | 0.8734
OSB 0.99596 0.9989 | 0.9023
Function hashes 0.88852 0.8968 | 0.4579
Parse-tree features 0.94068 0.9852 | 0.4949
All features (static) [63 ms] 0.99592 0.9998 | 0.9423
All features (deobfuscated) [691 ms] | 0.99607 0.9998 | 0.9525
All features (cascade) [99 ms] 0.9961 0.9998 | 0.95

for JavaScript in which the resulting threshold values are
highlighted. As for PHP we observe a strongly bimodal dis-
tribution for the static classifier; less than 5% of all files
have to be passed on the the deobfuscation and subsequent
analysis stage.

We keep 7sny and Tgp fixed and vary the classification
threshold 7 of the second stage in the following experiments.
The baselines have only one threshold which we vary accord-
ingly in the following experiments.

4.5 Malware Detection Performance

This section explores the accuracy, false-positive, and
false-negative rates that can be attained using different types
of features.

4.5.1 PHP Collection

For this data set, we run an outer loop of 20-fold cross
validation. In each iteration, we run an inner loop of 2-fold
cross validation on the training portion of the outer loop in
order to tune the regularization parameter C. When C' is
set, we train a model on the training portion of the outer
cross-validation loop, evaluate the model on the test portion
of the cross-validation loop, and reiterate.

Figure 7 shows a zoomed-in view of the ROC curve of all
models; the second and third columns of Table 4 show the
accuracy (for a classification threshold of 7 = ) and the
area under the ROC curve (AUC) for for all models and fea-
ture types. The columns also specify 95%-confidence inter-
vals based on a two-sided t-test. Here, the cascaded model
and the baseline that deobfuscates all files perform equally
well in terms of accuracy. The deobfuscated model has
a marginally (but statistically insignificantly) higher AUC.
The static model performs (insignificantly) worse both in
terms of accuracy and AUC. Notably, the cascaded model
has an average execution time of 29 ms, compared to 20 ms
for the static model and 181 ms for the model that deobfus-
cates all files.

In terms of the feature sets, OSB features are the single
best type, followed by n-gram features; the combination of
all features leads to a significantly higher accuracy, AUC,
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and recall at a false-positive rate of 1073, based on a paired
t test with p < 0.05.

We measure the performance of the models as an au-
tomatic blacklisting mechanism. We set the classification
threshold value such that the false-positive rate for the PHP
collection of hard, conspicuous cases is 1072. We observe
that the cascaded model has a significantly (p < 0.05) higher
recall than the static model; the deobfuscated model has a
marginally (statistically insignificantly) higher recall than
the cascaded model. Column 5 of Table 4 measures the
false-positive rate on the auxiliary PHP collection that con-
tains PHP files of standard content-management systems,
using the same classification threshold. For the combined
feature set, we observe a false-positive rate of zero for the
static, cascaded, and deobfuscated models.

We now measure the performance of the model as a
whitelisting mechanism. We set the classification thresh-
old such that all malware files are recognized as malicious.
Column 6 of Table 4 measures the resulting true-negative
rate. The cascaded model with combined feature set has a
significantly (p < 0.05) higher true-negative rate than the
static and the deobfuscated models; it can whitelist 99.86%
of the conspicuous PHP files without missing any malware
files. When the cascaded model is applied as both a black-
listing and a whitelisting mechanism, it blacklists 99.83% of
all malware in real-time, whitelists 99.86% of all benign files
in real-time, marks the remaining files for manual inspec-
tion.

4.5.2  JavaScript Collection

Here, we use a single training-and-test split with half of
the data a training and the other half as test data. We run a
10-fold cross-validation loop on the training part of the data
to tune regularization parameter C'. We then train a model
on the entire training data and evaluate it on the test data.

Figure 9 shows a zoomed-in view of the ROC curve for
small false-positive rates; we see that the deobfuscation
model performs marginally better for small false-positive
values; however, Column 3 of Table 5 shows that the cascade



Table 6: Execution time of feature extraction and
classification with 95% confidence intervals in ms

Feature Type JavaScript
n-grams 8 £ 2.15 26 + 1.26
OSB 9 4+ 231 32 £+ 1.15
Function hashes 6 £ 3.650 34 + 2.64
Parse-tree features 5+ 0.98 22 + 1.11
Deobfuscation 166 + 16.00 | 639 £ 40.65
All features (static) 20 £+ 4.392 63 + 7.32
All features (deobfuscated) | 181 + 18.45 | 691 + 37.17
All features (cascade) 29 + 5.07 99 + 9.10

and the deobfuscation model have identical AUC values and
the cascaded model has an insignificantly higher accuracy.
The static model has a lower accuracy than the other mod-
els but an identical AUC. Notably, the cascaded model has
an execution time of 99 ms compared to 63 ms for the static
and 691 ms for the deobfuscated model.

For JavaScript, orthogonal sparse bigrams are the best
single feature type. They perform strictly better than n-
gram features. However, the combination of all features
offers a significantly (p < 0.05) higher AUC and recall at
a false-positive rate of 107%, and an insignificantly higher
accuracy. We evaluate the malware detector as a blacklist-
ing mechanism. Table 5 shows that the deobfuscaded model
has an insignificantly higher recall at a false-positive rate
of 10™* than the cascaded model; the static model has a
significantly (p < 0.05) lower recall.

The classification accuracy of 0.9961 exceeds values that
have been reported in prior work [8]. For Zozzle, a false-
negative rate of 91% at a false-positive rate of 3 x 107°
has been reported. However, two factors should be noted.
Firstly, for this data set, we classify all files as benign that
are not recognized as malware by any of 57 commercial mal-
ware detection tools. The set of false-positives contains an
unknown proportion of actual malware that is not yet recog-
nized by any malware tool. Secondly, it should be noted that
Zozzle has been trained and evaluated on a focused set of
919 malicious JavaScript files that attempt a heap-spraying
attack, whether our JavaScript collection contains hundreds
of thousands of malware files that cover a wider range of at-
tack mechanisms (see table 2). Other related systems have
been trained and evaluated on 823 [6] malicious JavaScript
files or on 15,331 malicious and 908 benign JavaScript files
(which makes it impossible to measure false-positive rates
below 0.1%) [14].

4.6 Number of Training Instances

This section studies the impact that the number of train-
ing instances has on the performance of the static, cascaded,
and deobfuscated models. Figure 8 shows the learning curve
for PHP; Figure 10 shows the learning curves for JavaScript.
We conclude that all models can benefit from additional
training data. With growing sample size, the difference
between static, cascaded, and deobfuscated detection de-
creases.

4.7 Comparison to Antivirus Products

Classifiers fo and fp, has been trained to recognize files
that at least 5 of 57 antivirus products recognize as malware,
respectively. Figure 11 compares the recall of the fully static,
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Figure 11: Comparison with antivirus products for
JavaScript: recall at a false-positve-rate of 0.01%

cascaded, and deobfuscation model at a false-positive rate of
0.01% to the recall of the 20 best (in terms of recall) of these
antivirus products. We cannot draw definitive conclusions
from this comparison because we cannot precisely determine
the false-positive rate of these products. For PHP, the high-
est recall of our tested antivirus tools is 17%.

4.8 Robustness against Malware Evolution

This section explores the robustness of the various models
and types of features against the evolution of malware over
time. In order to visualize the evolution of malware, we
perform a principal component analysis on the static fea-
tures ®(z) of files  and map the JavaScript data into a
10-dimensional space. We train a malware classifier in this
space, and take the two dimensions that have the highest
model coefficients trained on all 10 principal components.
This gives us a two-dimensional space that is highly relevant
for the classification of JavaScript files as malware. Figure
12 visualizes malware that has been submitted in two differ-
ent time periods in different colors. The nonstationarity of
the distribution is clearly visible; this observation calls into
question whether a classifier that has been trained at some
point can maintain a high level of accuracy for a long time.

To investigate this question, we use 167,870 malware
JavaScript files that have been submitted to virustotal.com
before February 1, 2014, as positive examples. We use
equally many randomly drawn benign files as negative
examples—we assume that the distribution of benign files
does not change substantially. We stratify 376,922 malware
files that have been submitted from February 2015 to August
2015 into intervals of one month. Figure 13 shows the devel-
opment of the recall rate of the static, cascaded, and deob-
fuscated model from February 2015 to August 2015. Table
7 summarizes the decay rates. Most notably, the static clas-
sifier deteriorates sharply in February and March, caused by
a wave of new malware which it fails to recognize. Overall,
the recall of the static classifier deteriorates to 99% of the
initial value over the course of seven months, whereas the
cascaded classifier deteriorates only to 99.71% of its initial
recall and the model that deobfuscates all files deteriorates
to 99.75%. We can conclude that the deterioration of the
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Figure 12: Evolution of JavaScript malware over
time

cascaded and deobfuscation models over time is very mild
whereas the fully static model behaves less robustly.

4.9 Execution Time

This section studies the computational costs of extracting
the various types of features, the costs of deobfuscation, and
the resulting execution time of all studied models.

Table 6 shows the detailed execution times on an i7 CPU
at 2 GHz. The logistic regression classifier only calculates
an inner product of feature and parameter vector; the exe-
cution time of the static classifier (20 ms for PHP and 63 ms
for JavaScript) is therefore dominated by the costs of feature
extraction. Note that the cost of calculating all features is
lower than the sum of costs for individual feature types be-
cause multiple executions of some calculations can be saved
when all features are calculated at the same time. Deobfus-
cation takes 166 ms for PHP and 639 ms for JavaScript and
on average. The execution time of the deobfuscated model
(166 ms for PHP and 691 ms for JavaScript) is therefore
dominated by the costs of partial code execution. For the
cascaded model, the execution time of 29 ms for PHP and 99
ms for JavaScript is 45% higher for PHP and 57% higher for
JavaScript than the execution time of the fully static model,
whereas the execution time of the model that deobfuscates
all files is 9 times and 11 times higher, respectively.

S. DETAILED ANALYSIS OF MODELS

This section provides a detailed analysis of the features
that have the highest influence on the classification result,
and of the limitations of the models.

5.1 Most Influential Features

We analyze which types of features (n-gram, OSB, parse-
tree, function hashes) are present in the 1% of features that
have the highest coefficients §; and 6; in the static and deob-
fuscated models. We observe that for the static model and
the JavaScript data set, text features are most important;
the top 1% consists of 45% OSB-, 43% n-gram-, 9% parse-
tree- and 3% function hash features. We observe a similar
result for the deobfuscated model #’; here, the top 1% fea-
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Figure 13: JavaScript malware recall evaluated into
the future

tures include 47% OSB-, 44% n-gram-, 8% parse-tree- and
1% function hash features.

For the PHP data set we observe that the proportion
of OSB-features within the 1% most influential features is
much higher. In the static model, 92% of the top features are
OSB features; only 6% of the features are n-grams and both
parse-tree and function hash features are insignificant (1%).
For the deobfuscated model, the most influential features
consist of OSB-features (91%) followed by n-gram features
(7%). Once more, the function hash and parse-tree features
have the smallest impact (1% each).

Table 8 enumerates the features that have the highest
model coefficients for the static and deobfuscated models
and for JavaScript and PHP data set. We observe that
the tokens “fromcharcode”, “eval”, and “unescape” provide
the strongest evidence for malware, and yet they occur re-
markably frequentlly in benign files—code obfuscation is no
evidence for malicious intent. We also see that iframes—
in particular “iframe” tokens that become visible only af-
ter deobfuscation—are evidence for malicious intent. Most
malicious tokens fall into the categories masking (“base64”,
“decode”, “valueexporter”, “htmlspecialchars”), email (“mail-
boxes”), and system (“directories”, “sql_refresh”). Tokens
with the most negative coefficients provide evidence that
a file is benign. The features with the lowest coefficients do
in fact look harmless but heterogeneous.

5.2 Limitations of the Models

This section analyzes the models’ malware-detection abil-
ities and their limitations.

The static model is primarily constrained by its inability
to observe token sequences that are generated dynamically
and executed. Given the high prevalence of obfuscated code,
it is rather surprising that the static model recognizes 98% of
all PHP and 94% of all JavaScript malware. We investigate
the model parameters and feature vectors of a number of ob-
fuscated malware files to understand how the static model
can recognize obfuscated files as malware. We find that n-
grams of hexadecimal numbers that encode known malicious
URLs have a (low) positive weight in the model parameter
vector. For instance, the n-gram “%70%68%70” that en-



Table 7: Recall over time and recall decay rates

Feature type | Jul - Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | decay rate
All features (static) [63 ms 0.9958 | 0.9690 | 0.8956 | 0.9864 | 0.9800 | 0.9832 | 0.9830 | 0.9858 0.9900
All (deobfuscated) [692 ms 0.9990 | 0.9987 0.9978 | 0.9969 | 0.9973 | 0.9974 | 0.9965 0.9975
All (cascade) [99 ms] 0.9990 | 0.9984 | 0.9995 | 0.9975 | 0.9957 | 0.9952 | 0.9971 | 0.9961 0.9971

Table 8: Most significant OSB and n-gram features of the static and deobfuscated models. Pg is the proportion

of benign files, Py; the proportion of malware files that contain each token

PHP data set JavaScript data set
token Pgp P token Pp P
0 OSB array <> mailboxes 1% | 36% n-gram eval 1% | 43%
3 OSB collection <> <> <> <> public 1% | 18% n-gram string 9% | 49%
© OSB valueexporter <> <> get_class 1% | 9% n-gram fromcharcode 2% | 4%
o e OSB get_site_name <> <> <> 0 1% | ™% n-gram unescape 15% [ 15%
= = OSB count <> emptyfields 1% | 11% n-gram iframe %37 | %41
3 OSB cookiejar <> <> <> <> getcookiejar | 72% | 6% n-gram html 97% | 95%
- OSB please <> <> <> <> zip 2% | 6% OSB img <> <> http 54% | 51%
a OSB module <> <> <> jump 3% | 1% n-gram google 75% | 44%
2 OSB echo <> <> onmousedown 11% | 1% n-gram png 7% | 58%
OSB valuedump <> <> return 9% | 1% n-gram support 21% | 10%
0 OSB ev_m 4% | 34% OSB id <> <> script 2% | ™%
3 OSB return <> <> <> directories 1% | 14% n-gram php id 9% | 13%
v 8 OSB visits 4% | 14% || OSB body <> <> script % | 13%
= I OSB p4 <> htmlspecialchars 3% | 1% n-gram fromcharcode 2% | 4%
4 & OSB developers <> <> <> function 1% | 68% || OSB javascript <> <> http | 43% | 49%
2 OSB cookiejar <> <> <> <> getcookiejar | 72% | ™% OSB img <> <> http 54% | 51%
2 & OSB array <> associations 3% | 1% OSB href <> <> php 16% | 21%
- OSB regex <> <> pathvariables 8% | 1% n-gram google 75% | 44%
2 OSB convertto <> array 69% | 1% n-gram png 7% | 58%
OSB checkformat <> <> return 3% | 1% n-gram support 21% | 10%

codes the file ending “php” has a low positive score. However,
it should be noted that each of these individual features is
not robust by itself, because malware scripts frequently per-
form arithmetic operations on strings before “unescaping”
them. We also find that function hashes of standard word-
press functions have a negative weight (they indicate benign
code) whereas variations of these functions that include an
additional “unescape” or “eval” token have positive weights.

Static analysis of deobfuscated code suffers from two main
limitations. First, the deobfuscation can be nested and made
arbitrarily computationally expensive. This may result in
the deobfuscation tool being unable to complete unfold all
“eval” statements, which in our data happens in a number of
cases. When malware succeeds at this, the subsequent fea-
ture extraction will be constrained by the same limitations
as static code analysis. Secondly, content that is loaded
from the web at runtime and then executed as code is not
analyzed. This limitation could in principle be overcome
by executing statements that load new content without exe-
cuting the subsequent statements that execute that content
as code. This technique is used frequently, and we there-
fore analyze how the model can still detect 99.96% of all
PHP and 95% of all JavaScript malware. We find positive
weights for several OSB and parse-tree features that match
statements in which an invisible iframe is created, its con-
tent is generated dynamically on a server by a PHP script,
and the loaded content is then evaluated as JavaScript code.
This combination is such strong evidence of malicious intent
that an analysis of the actual loaded content appears to be
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unnecessary. Even just loading content that is generated by
a PHP script into an invisible iframe is strong evidence of
malware.

Zero-day exploits that are directly embedded in an HTML
page (without being loaded dynamically into a new iframe)
pose a challenge to both the static model and the de-
obfuscated model—and in fact to all malware detection
mechanisms—because they cannot be present in the training
data. The models that we investigate can only detect such
malware if it shares some syntactic resemblance to known
malware.

6. CONCLUSIONS

The costs of fully dynamic code analysis lie in the order
of CPU minutes, because an execution environment has to
be set up for each file. In an application environment with a
high throuput of files—such as a web hosting environment—
it is impractical to subject all files to such an analysis. Code
deobfuscation—partial execution to the point where all dy-
namically generated code has been generated—followed by
a static analysis analysis of the resulting code can in most
cases be executed in under a CPU second. While this is a
great improvement, it is still a critical economic factor or
may be impractical when billions of files are managed. The
costs of static code analysis, on the other hand, are dom-
inated by a step of feature extraction from the file which
lies in the order of milliseconds which is feasible even in
high-throuput environments. However, code obfuscation
makes it relatively easy to conceal malicious code. There-



fore, we studied cascaded malware detection; here, malware-
detection decisions are made based on static code features
whenever this decision can be made with near certainty.
Otherwise, the code is deobfuscated and a decision is made
based on static features of the deobfuscated code.

From our empirical study that involved around 400,000
difficult PHP files and 1,000,000 JavaScript files we can
conclude that (a) cascaded malware detection is about or
nearly as accurate as static analysis of the deobfuscated
code for PHP and JavaScript, (b) cascaded detection in-
curs around 50% higher computational costs than static code
analysis whereas deobfuscation followed by static analysis
incurs roughly an order of magnitude higher costs, (c) fully
static code analysis is consistently less accurate than cas-
caded detection, (d) OSB features perform better than n-
gram and all other features, (e) the combination of OSB,
n-gram, parse-tree and function-hash features performs bet-
ter still, (f) logistic regression is more accurate than a ran-
dom forest classifier for this problem, and (g) both cascaded
detection and deobfuscation followed by detection are more
robust against the evolution of malware over time than static
code analysis. Cascaded malware detection is computation-
ally feasible in high-throuput environments and allows to
make detection decisions with low false-positive rates (10™*
for JavaScript, 1072 for hard, conspicuous PHP files, and 0
for standard PHP files) and high true-positive rates (such
as 95% for JavaScript and 99.83% for PHP). The cascaded
model deobfuscates less than 5% of all files, which implies
that many obfuscated files can safely be classified as benign
based on static features only.
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Chapter 5

Discussion

All presented papers improve the state of the art in their specific domain of computer
security applications. The algorithm presented in Prasse et al. (2012, 2015) to infer
regular expressions for given sets of emails is fast and accurate enough that it is used
during regular operation of an email service to blacklist ingoing spam campaigns
reliable. Furthermore the presented learning framework leads to models that attain
higher recalls for recognizing emails within an email spam campaigns compared to
previous work. Furthermore, our approach attains an extremely low false-positive
rate of detecting non-spam emails. In Prasse and Scheffer (2016) a fast and accurate
cascaded malware detection mechanism which attains state of the art classification
results, but scans files more quickly compared to previous publications is presented.

The following chapter discusses the overall improvements of the presented papers
to previous work. This chapter is organized as follows: Firstly, we discuss the existing
approaches for detecting email spam campaigns, spam emails, and malicious malware
and highlight the differences to our presented approaches. In Section 5.2 we describe
how we modeled the different computer security applications. In Section 5.3 we
discuss the improvements of the presented methods in terms of the performance to
classify new unseen instances (e.g., emails, JavaScript or PHP files). Section 5.4
discusses the general improvements over previous works and the limitations of the
presented methods.

5.1 Prior Work

The problem of detecting message campaigns in a stream of emails can be modeled
as a clustering of the emails, whereas all emails belonging to one cluster are similar
to each other. Such clusters can be found using standard clustering mechanisms on a
bag-of-word representation of all emails like K-Means. Other more sophisticated ap-
proaches include agglomerative methods (Griffiths et al., 1984) and Bayesian models
as proposed by Haider and Scheffer (2009).

Using a probabilistic cluster description, we can classify emails as being spam if
they belong to a cluster of spam emails. Such a cluster description could use a bag-
of-word representation of all tokens shared by the emails within an email campaign.
This representation can be used to identify emails belonging to a specific cluster by
checking if they share a certain amount of tokens with each other. However, this
representation could lead to false positives and it is difficult for a human to de-
cide whether a bag-of-word representation correctly characterizes the set of messages
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within a spam campaign. That’s why postmasters decided to use regular expressions
to describe email campaigns reliable. Regular expressions have the advantage of being
easily interpretable and the risk of covering email outside a specific spam campaign
can be reduced.

In Prasse et al. (2012) we presented a model that maps a set of strings x —an
email campaign— to a regular expression y —a campaign description— such that
every string x € x belongs to the regular language L(y) defined by the regular
expression y. Identification of regular languages has a rich history in the learning
theory community. Gold (1967) shows that it is impossible to exactly identify any
regular language from finitely many positive examples.

Our method differ from all prior work on learning regular expressions in their
specific objective criterion and the training data. Unlike in prior work, in our problem
setting the learner has access to pairs of strings and their corresponding regular
expressions. At the same time, the learners goals is not just to find an expression
that can generate all strings from a given batch, but to find the expression a human
postmaster would write. Our idea of minimizing the expected difference between the
predicted regular expression and target regular expression over a distribution of input
strings reflects a statistically-inspired notion of learning.

Existing work to identify regular languages ranges from learning automata that ac-
cept a regular language (Denis, 2001; Clark and Thollard, 2004; Parekh and Honavar,
2001) or restricted classes of deterministic finite automata (Angluin, 1978; Angluin,
1980; Abe and Warmuth, 1990). Other papers address the task of inferring a reg-
ular expressions in which each symbol occurs at most k times (Bex et al., 2008),
disjunction-free expressions (Brazma, 1993) , and disjunctions of left-aligned disjunction-
free expressions (Fernau, 2009).

Regular expressions are used in computer security applications to specify pat-
terns. Xie et al. (2008) use regular expressions to detect and describe malicious
URLSs obtained in spam batches. The ReLIE algorithm learns regular expressions
from positive and negative examples given an initial expression by applying a set of
transformation rules as long as this improves the separation of positive and negative
examples (Li et al., 2008). The problem setting of this paper is closest related to
our task of infering a regular expression from a set of strings and is used as base-
line for our presented approach (see Chapter 2 Section 2.5 and Chapter 3.1 Section
3.5). Another method introduced in Brauer et al. (2011) builds a data structure of
commonalities of aligned strings and transforms these strings into a specific regular
expression and is best used for short strings, such as telephone numbers and names
of software products. Because of the high complexity of this algorithm we did not
use this approach as a baseline.

We modeled the problem of learning a mapping from a set of strings to a regu-
lar expression as a learning problem with structured output spaces (see Chapter 2
Section 2.3). Structured output spaces are used in many machine-learning applica-
tions, including sequence labeling (Tsochantaridis et al., 2004), and natural language
parsing (Tsochantaridis et al., 2005). Problems with structured output spaces can
be solved by an extension of the support vector machines (Vapnik, 1998). Tsochan-
taridis et al. (2005) gives an overview how problems ranging from classification with
taxonomies, label sequence learning, sequence alignment to natural language parsing
can be solved using structural support vector machines. In the papers Prasse et al.
(2012, 2015) we use the concept of structured output spaces to solve the problem of
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inferring regular expressions for a given set of strings.

The third paper Prasse and Scheffer (2016) of this thesis addresses the problem
of accurately and quickly detecting malware that is contained in JavaScript or PHP
files. A complete overview of malware detection mechanisms is given by Gandotra
et al. (2014). Prior work mostly uses either static or dynamic analysis techniques to
extract features and patterns that can be used to recognize malware.

Several feature types were analyzed in prior work, including n-gram features
(Kolter and Maloof, 2006), bag of tuples (Canali et al., 2012), syntax-tree fea-
tures (Curtsinger et al., 2011), control-flow graph features (Anderson et al., 2012;
Christodorescu et al., 2005), and function-call graph features (Kong and Yan, 2013).
Some approaches also use URL and host features (Canali et al., 2011). In Prasse
and Scheffer (2016) we use a similar set of features including n-gram and syntax-tree
features which can be extracted from the program code. Furthermore, we use or-
thogonal sparse bigrams which are a specialization of the bag of tuples method and
function-hashing features that can be seen as a signature over a small fraction of the
program code.

The classification performance of fully static malware detection methods typically
drops with the presents of code obfuscation (see Chapter 4 Section 4.4). Dynamic
analysis techniques offer a potential remedy because they observe the program code
as it is evaluated in a controlled environment (Bayer et al., 2009; Kolbitsch et al.,
2009). In JavaScript and PHP files code that is executed and unpacked at runtime
can be observed using deobfuscation tools. Sample tools for deobfuscating JavaScript
Code are the SpiderMonkey package by Didier Stevens! which is a modified version of
Mozilla’s C implementation of JavaScript ? and is used in our paper. Other tools are
Creme Brulee?®, JSDebug?* and SpiderMonkey + V8. With the help of such tools it is
possible to reveal informative features (Curtsinger et al., 2011). Static and dynamic
analysis can be combined to improve the classification performance (Anderson et al.,
2012).

Many supervised machine-learning methods has been studied to combine the ex-
tracted features into a detection mechanism (Schultz et al., 2001; Kolter and Maloof,
2006). Most empirical investigations of malware detection have so far been made on
relatively small sized data sets, using hundreds (Canali et al., 2011; Curtsinger et al.,
2011; Anderson et al., 2012) or thousands (Schultz et al., 2001; Nataraj et al., 2011;
Kolter and Maloof, 2006) of malware files. These investigations are done on com-
pletely different data sets containing malware files from different malware families,
which makes it difficult to compare the results to each other. We contribute a new
publicly available data set containing more than one million JavaScript files. This
data set can be used by researches to compare different methods with each other.

Thttps://didierstevens.com /files /software/js-1.7.0-mod-b.zip
http:/ /www.mozilla.org/js/spidermonkey /
3http://code.google.com/p/cremebrulee/

4http:/ /www.codeproject.com /KB /scripting /hostilejsdebug.aspx

Shttp://code.google.com/p/v8/
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5.2 Modeling

In our applications we are faced with the goal of learning a model to find the rela-
tionship between given input data and a target label. This section describes our new
approaches of modeling the two sample applications covered in this thesis: detecting
email spam campaigns and malware.

In Chapter 2 (Prasse et al., 2012) and Chapter 3.1 (Prasse et al., 2015) we extend
the structured output prediction framework to handle sets of strings as input and
regular expressions as output. Therefore, we define a joint feature representation
and a appropriate specific loss function to compare different regular expressions with
respect to a set of strings. In the learning phase of our model we have to identify the
most violated constrained —a regular expression— and during classification we have
to find the highest scoring regular expression for a given model and a set of strings
which are emails of a spam campaign in our sample application.

To find such a regular expression in an efficient way we follow the under-generating
approach presented by Finley and Joachims (2008) by restricting the class of possible
regular expressions to a subset defined in Chapter 2 in Sectin 2.4.2 in Algorithm
1. Furthermore, we present an efficient way to identify the highest scoring regular
expression in this restricted search space. Therefore, we decompose the maximization
over all regular expressions within the search space into independent maximization
problems (see Theorem 2 in Chapter 3.1 in Section 3.4.2) which can be solved easily.
Thus the paper Prasse et al. (2012) extends the application scope of structured output
prediction by presenting a proper formulation for set of strings as input and regular
expressions as output and an efficient inference algorithm.

The paper Prasse et al. (2015) extends the approach of Chapter 2 (Prasse et al.,
2015) to infer a regular sub-expressions for a given input regular expression that only
describe the characteristic part of a given email spam campaign. We model this by
extending the structured output prediction framework. We define a joint feature
representation for input regular expressions and output regular expressions and a
joint feature representation consisting of features extracted for the input and output
regular expression and all products of an input and an output feature (see Chapter
3.1 Section 3.4.3).

To find the most violated constrained and the highest scoring regular expression
we restrict the search to the space of all regular sub-expressions of the input regular
expression with a maximal length of s. Within this set, the decoder performs an
exhaustive search. Combining the two models of firstly inferring a regular expression
from a set of strings and secondly extracting a concise sub-expression we present a
system that can efficiently and accurately recognize emails belonging to a specific
email campaign.

In Chapter 4 (Prasse and Scheffer, 2016) we address the problem of detecting ma-
licious JavaScript and PHP files. We present a cascaded model which combines the
execution time advantages of purely static analysis with the advantages of higher ac-
curacies for a partially dynamic analysis using deobfuscation techniques. We present
a framework were most classification is done only on statically obtained features from
the program code. Only a very small fraction has to be deobfuscated and classified
with a second model. Thus this paper contributes a new model for malware classi-
fication with state-of-the-art classification results and execution times that makes it
possible to scan huge file collection in a quick way.
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5.3 Classification Performance

In this section we discuss the classification performances of the presented methods
and compare them to prior work.

In Chapter 2 and Chapter 3.1 (Prasse et al., 2012, 2015) we evaluate the spam
filtering performance of the regular expressions inferred for a set of strings belonging
to one email spam campaign. We found that the ability of detecting emails that
belong to a specific spam campaign improves over prior work tested on two real world
data sets. Furthermore we evaluate the false-positive rates of our models compared
to the false-positive rates of baselines. From this experiment, we conclude that our
models obtain a significant lower false-positive rates compared to baselines. This
false-positive rates are such good that our approach is being used by an email service
during regular operation to complement content-based IP-address based filtering.
Thus, the presented papers Prasse et al. (2012, 2015) improve the state-of-the-art in
terms of email spam campaign classification performance.

In Chapter 4 (Prasse and Scheffer, 2016) we presented a method to detect ma-
licious JavaScript and PHP files. Because of the absence of publicly available data
sets for this application a fair comparison to baselines is not possible. Instead, we
compared several performance metrics such as the area under a ROC curve, accuracy,
recall at a specific false-positive rate, and true-negative rate at a specific false-negative
rate with reported values in prior work on different data sets.

From our experimental results we can conclude that our method gains state-of-
the-art results by saving execution time compared to methods using dynamic analysis
techniques. Furthermore, our paper contributes a evaluation of the malware detection
methods over time that is more natural than the evaluation on training and test sets
with overlapping times of the first occurrences. Hence, we want to apply a trained
model on new unknown future input files and thus the evaluation into the future bet-
ter reflects the application case. We can conclude, that the presented cascaded model
is much more robust than the model using only features extracted from the original
program code known as purely static malware detection. Furthermore their is no big
difference in terms of recall comparing the fully mostly static —using deobfuscation
techniques— and the cascaded approach.

In an other experimental setup we compared the recall of the 20 best commercial
antivirus vendors with the recall of our presented models at a false-positive rate of
0.01%. From this experiment we can conclude, that the recall of our models is slightly
higher than the recall for commercial antivirus vendors.

5.4 Contributions and Comparison to Prior Work

In this section we discuss the overall contributions and improvements of the presented
papers compared to prior work. Furthermore, this section discusses the limitations
of the presented methods.

The main advantage of the approach presented in Chapter 2 (Prasse et al., 2012)
and Chapter 3.1 (Prasse et al., 2015) is the ability of learning the preferences of
a human postmaster in writing regular expressions for email spam campaigns from
training samples. Our experimental evaluation shows that this approach leads to
models that infer well understandable regular expressions which a postmaster could
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easily check and use to blacklist email campaigns at virtually no risk of matching
emails outside a spam campaign. Furthermore, the models are good enough that
they are used during regular operations of an email service.

Like every learning method our model can only capture preferences of writing
regular expressions which are reflected in the training data and thus new or unseen
patterns of an human postmaster can not be learned. Because the regular expressions
are specializations of an alignment of all strings within a spam campaign the method
only conjectures useful regular expressions if the emails within a campaign have words
together and ideally at similar positions within each email. If this is not the case,
it could happen, that to general regular expressions causing false-positives would be
inferred (see Figure 4 in Chapter 2 Section 2.5). To obtain a fast inference algorithm
we restricted the search space of regular expressions which can be inferred in such a
way that we limit the maximum nesting depth within a regular expression. Therefore
our approach is not able to infer regular expressions which exceeds this maximum
nesting depth.

In Chapter 4 (Prasse and Scheffer, 2016) we presented a cascade malware de-
tection framework for JavaScript and PHP files. This approach improves over prior
work by achieving state-of-the-art detection results by saving processing time using a
cascaded architecture. This approach uses the advantages of the low time to classify
of fully static malware detection algorithms on the one hand and the high classifica-
tion accuracy of a system based on static features extracted from the deobfuscated
program code on the other hand.

This results in a system that is able to quickly scan huge file collection with
state-of-the-art classification performance. Our paper is the first paper reporting an
a case study based on two very large data collections where the JavaScript collection
is being published for comparison.

A limitation of our presented model is the inability of detecting zero-day exploits
never seen in the training data, because the presented models can only detect malware
which shares syntactic resemblance to known malware. In some cases malicious files
are marked as malicious only because a link contained in the program file leads to a
server listed on an IP blacklist.

Our model is only able to label such files as malicious if some other features
suggests this. To detect such malicious links, it would be necessary to visit all links
in a safe environment and try to detect malicious behavior from system calls, and
upstream or downstream information. Such an analysis is known as dynamic malware
detection and is very time consuming and therefore not suitable for our use case of
quickly scanning large file collections.

71



Bibliography

N. Abe and M. K. Warmuth, “On the computational complexity of approximat-
ing distributions by probabilistic automata,” in Proceedings of the Conference on
Learning Theory, 1990, pp. 52-66.

B. Anderson, C. Storlie, and T. Lane, “Improving malware classification: Bridging
the static/dynamic gap,” in Proceedings of 5th ACM Workshop on Security and
Artificial Intelligence, 2012.

D. Angluin, “Inductive inference of formal languages from positive data,” Information
and Control, vol. 45, no. 2, pp. 117-135, 1980.

D. Angluin, “On the complexity of minimum inference of regular sets,” Information
and Control, vol. 39, no. 3, pp. 337-350, 1978.

K. Bartos and M. Sofka, “Robust representation for domain adaptation in network
security,” in Machine Learning and Knowledge Discovery in Databases. Springer
International Publishing, 2015, vol. 9286, pp. 116-132.

U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda, “Scalable,
behavior-based malware clustering,” in Proceedings of the Network and Distributed
System Security Symposium, 2009.

G. Bex, W. Gelade, F. Neven, and S. Vansummeren, “Learning deterministic regular
expressions for the inference of schemas from XML data,” in Proceeding of the
International World Wide Web Conference, 2008, pp. 825—-834.

F. Brauer, R. Rieger, A. Mocan, and W. Barczynski, “Enabling information extrac-
tion by inference of regular expressions from sample entities,” in Proceedings of
the Conference on Information and Knowledge Management. ACM, 2011, pp.
1285-1294.

A. Brazma, “Efficient identification of regular expressions from representative exam-

ples,” in Proceedings of the Annual Conference on Computational Learning Theory,
1993, pp. 236-242.

M. Briickner, C. Kanzow, and T. Scheffer, “Static prediction games for adversarial
learning problems,” Journal of Machine Learning Research, vol. 13, no. 1, pp.
26172654, 2012.

D. Canali, M. Cova, G. Vigna, and C. Kruegel, “Prophiler: A fast filter for the large-
scale detection of malicious web pages,” in Proceedings of the 20th International
World Wide Web Conference, 2011.

72



D. Canali, A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda,
“A quantitative study of accuracy in system call-based malware detection,” in
Proceedings of the 2012 International Symposium on Software Testing and Analysis,
ser. ISSTA 2012, 2012, pp. 122-132.

P. K. Chan and R. P. Lippmann, “Machine learning for computer security,” Journal
of Machine Learning Research, vol. 7, pp. 2669-2672, 2006.

M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant, “Semantics-aware
malware detection,” in Proceedings of the 2005 IEEE Symposium on Security and
Privacy, 2005.

A. Clark and F. Thollard, “PAC-learnability of probabilistic deterministic finite state
automata,” Journal of Machine Learning Research, vol. 5, pp. 473-497, 2004.

C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert, “Zozzle: Fast and precise in-
browser javascript malware detection,” in Proceedings of the 20th USENIX Con-
ference on Security, 2011.

F. Denis, “Learning regular languages from simple positive examples,” Machine
Learning, vol. 44, pp. 27-66, 2001.

H. Fernau, “Algorithms for learning regular expressions from positive data,” Infor-
mation and Computation, vol. 207, no. 4, pp. 521-541, 2009.

T. Finley and T. Joachims, “Training structural SVMs when exact inference is in-
tractable,” in Proceedings of the International Conference on Machine Learning,
2008.

V. Franc, M. Sofka, and K. Bartos, “Learning detector of malicious network traffic
from weak labels,” in Machine Learning and Knowledge Discovery in Databases.
Springer International Publishing, 2015, vol. 9286, pp. 85-99.

E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and classification: A sur-
vey,” Journal of Information Security, vol. 5, pp. 5664, 2014.

E. M. Gold, “Language identification in the limit,” Information and Control, vol. 10,
pp. 447474, 1967.

A. Griffiths, L. A. Robinson, and P. Willett, “Hierarchic agglomerative cluster-
ing methods for automatic document classification,” Journal of Documentation,
vol. 40, no. 3, pp. 175-205, 1984.

P. Haider and T. Scheffer, “Bayesian clustering for email campaign detection,” in
Proceedings of the International Conference on Machine Learning, 2009.

C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zhou, and X. Wang,
“Effective and efficient malware detection at the end host,” in Proceedings of the
18th Conference on USENIX Security Symposium, 2009.

J. Z. Kolter and M. A. Maloof, “Learning to detect and classify malicious executables
in the wild,” Journal of Machine Learning Research, vol. 7, p. 2006, 2006.

73



D. Kong and G. Yan, “Discriminant malware distance learning on structural informa-
tion for automated malware classification,” in Proceedings of the ACM SIGMET-
RICS Conference on Measurement and Modeling of Computer Systems, 2013.

T. Lane and C. E. Brodley, “Detecting the abnormal: Machine learning in computer
security,” Tech. Rep., 1997.

P. Laskov, P. Diissel, C. Schafer, and K. Rieck, “Learning intrusion detection: Su-
pervised or unsupervised?” Image Analysis and Processing ICIAP, vol. 3617, pp.
50—-57, 2005.

W. Lee and S. J. Stolfo, “A framework for constructing features and models for intru-
sion detection systems,” ACM Transactions on Information and System Security,
vol. 3, no. 4, pp. 227-261, Nov. 2000.

W. Lee and S. J. Stolfo, “Data mining approaches for intrusion detection,” in Pro-
ceedings of the 7th Conference on USENIX Security Symposium - Volume 7, ser.
SSYM’98. USENIX Association, 1998, pp. 6-6.

Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and H. V. Jagadish, “Regu-
lar expression learning for information extraction,” in Proceedings of the Conference
on Empirical Methods in Natural Language Processing, 2008, pp. 21-30.

H. Liu and K. Chang, “Defending systems against tilt DDoS attacks,” in Proceed-
ings of the International Conference on Telecommunication Systems, Services, and
Applications, 2011.

L. Nataraj, S. Karthikeyan, G. Jacob, and B. Manjunath, “Malware images: vi-
sualization and automatic classification,” in Proceedings of the 8th International
Symposium on Visualization for Cyber Security, 2011, p. 4.

R. Parekh and V. Honavar, “Learning DFA from simple examples,” Machine Learn-
ing, vol. 44, pp. 9-35, 2001.

P. Prasse, C. Sawade, N. Landwehr, and T. Scheffer, “Learning to identify regular
expressions that describe email campaigns,” in Proceedings of the International
Conference on Machine Learning, 2012.

P. Prasse and T. Scheffer, “Cascaded malware detection at scale,” vol. xx, no. xx,
2016, pp. xx—XX.

P. Prasse, C. Sawade, N. Landwehr, and T. Scheffer, “Learning to identify concise
regular expressions that describe email campaigns,” Journal of Machine Learning
Research, vol. 16, pp. 3687-3720, 2015.

S. Ranjan, R. Swaminathan, M. Uysal, and E. Knightley, “DDoS-resilient scheduling
to counter application layer attacks under imperfect detection,” in Proceedings of
IEEE INFOCOM, 2006.

M. Schultz, E. Eskin, F. Zadok, and S. Stolfo, “Data mining methods for detection
of new malicious executables,” in Proceedings of the IEEE Symposium on Security
and Privacy, 2001.

74



I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large margin methods
for structured and interdependent output variables,” Journal of Machine Learning
Research, vol. 6, pp. 1453—-1484, 2005.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, “Support vector machine
learning for interdependent and structured output spaces,” in Proceedings of the
International Conference on Machine Learning. ACM, 2004, p. 104.

V. Vapnik, Statistical Learning Theory. Wiley, 1998.

Y. Xie and S. Z. Yu, “A large-scale hidden semi-markov model for anomaly detection
on user browsing behaviors,” IEEE/ACM Transactions on Networking, vol. 17,
no. 1, pp. 54-65, 2009.

Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten, and I. Osipkov, “Spamming
botnets: signatures and characteristics,” in Proceedings of the ACM SIGCOMM
Conference, 2008, pp. 171-182.

S. Zanero and S. M. Savaresi, “Unsupervised learning techniques for an intrusion
detection system,” in Proceedings of the 2004 ACM Symposium on Applied Com-
puting, ser. SAC 04, 2004, pp. 412-419.

75



	Title
	Imprint

	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Pattern Recognition for Computer Security
	1.2 Discriminative Models for Email Spam Campaign Detection
	1.3 Predicting Regular Expressions for Message Campaigns
	1.4 Extracting Concise Regular Expressions
	1.5 Detecting Malware
	1.6 Contributions

	2 Learning to Identify Regular Expressions that Describe Email Campaigns
	2.1 Introduction
	2.2 Regular Expressions
	2.3 Problem Setting
	2.4 Identifying Regular Expressions
	2.4.1 Joint Feature Representation
	2.4.2 Decoding
	2.4.3 Optimization Problem

	2.5 Case Study
	2.5.1 Evaluation by Postmasters
	2.5.2 Spam Filtering Performance

	2.6 Related Work
	2.7 Conclusions
	2.8 Acknowledgments
	2.9 References
	2.10 Learning to Identify Regular Expressions that Describe Email Campaigns (Online Appendix)
	2.10.1 Definitions
	2.10.2 Used Features


	3 Learning to Identify Concise Regular Expressions that Describe Email Campaigns
	3.1 Introduction
	3.2 Regular Expressions
	3.3 Problem Setting
	3.4 Identifying Regular Expressions
	3.4.1 Problem Decomposition
	3.4.2 Learning to Generate Regular Expressions
	3.4.3 Learning to Extract Concise Substrings

	3.5 Case Study
	3.5.1 Evaluation by Postmasters
	3.5.2 Spam Filtering Performance
	3.5.3 Learning Curves, Execution Time

	3.6 Related Work
	3.7 Conclusions
	3.8 Acknowledgments
	3.9 References
	3.10 Appendix

	4 Cascaded Malware Detection at Scale
	4.1 Introduction
	4.2 Background
	4.3 Malware Detection
	4.3.1 Malware Detection Cascade
	4.3.2 Reference Methods
	4.3.3 Classification Method
	4.3.4 N-Gram Features
	4.3.5 Orthogonal Sparse Bigrams
	4.3.6 Function Hashes
	4.3.7 Parse-Tree Features

	4.4 Empirical Study
	4.4.1 Data Collections
	4.4.2 Performance Metrics
	4.4.3 Learning Methods and Feature Selection
	4.4.4 Thresholds for Cascaded Detector
	4.4.5 Malware Detection Performance
	4.4.6 Number of Training Instances
	4.4.7 Comparison to Antivirus Products
	4.4.8 Robustness against Malware Evolution
	4.4.9 Execution Time

	4.5 Detailed Analysis of the Models
	4.5.1 Most Inuential Features
	4.5.2 Limitations of the Models

	4.6 Conclusion
	4.7 References

	5 Discussion
	5.1 Prior Work
	5.2 Modeling
	5.3 Classification Performance
	5.4 Contributions and Comparison to Prior Work

	Bibliography



