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Abstract

The human immunodeficiency virus (HIV) has resisted nearly three decades of efforts

targeting a cure. Sustained suppression of the virus has remained a challenge, mainly due

to the remarkable evolutionary adaptation that the virus exhibits by the accumulation of

drug-resistant mutations in its genome. Current therapeutic strategies aim at achieving

and maintaining a low viral burden and typically involve multiple drugs. The choice of

optimal combinations of these drugs is crucial, particularly in the background of treatment

failure having occurred previously with certain other drugs. An understanding of the

dynamics of viral mutant genotypes aids in the assessment of treatment failure with a

certain drug combination, and exploring potential salvage treatment regimens.

Mathematical models of viral dynamics have proved invaluable in understanding the

viral life cycle and the impact of antiretroviral drugs. However, such models typically

use simplified and coarse-grained mutation schemes, that curbs the extent of their ap-

plication to drug-specific clinical mutation data, in order to assess potential next-line

therapies. Statistical models of mutation accumulation have served well in dissecting

mechanisms of resistance evolution by reconstructing mutation pathways under different

drug-environments. While these models perform well in predicting treatment outcomes by

statistical learning, they do not incorporate drug effect mechanistically. Additionally, due

to an inherent lack of temporal features in such models, they are less informative on aspects

such as predicting mutational abundance at treatment failure. This limits their applica-

tion in analyzing the pharmacology of antiretroviral drugs, in particular, time-dependent

characteristics of HIV therapy such as pharmacokinetics and pharmacodynamics, and also

in understanding the impact of drug efficacy on mutation dynamics.

In this thesis, we develop an integrated model of in vivo viral dynamics incorporat-

ing drug-specific mutation schemes learned from clinical data. Our combined modelling

approach enables us to study the dynamics of different mutant genotypes and assess muta-

tional abundance at virological failure. As an application of our model, we estimate in vivo

fitness characteristics of viral mutants under different drug environments. Our approach

also extends naturally to multiple-drug therapies. Further, we demonstrate the versatil-

ity of our model by showing how it can be modified to incorporate recently elucidated

mechanisms of drug action including molecules that target host factors.

Additionally, we address another important aspect in the clinical management of HIV

disease, namely drug pharmacokinetics. It is clear that time-dependent changes in in vivo

drug concentration could have an impact on the antiviral effect, and also influence decisions

on dosing intervals. We present a framework that provides an integrated understanding

of key characteristics of multiple-dosing regimens including drug accumulation ratios and

half-lifes, and then explore the impact of drug pharmacokinetics on viral suppression.

Finally, parameter identifiability in such nonlinear models of viral dynamics is always

a concern, and we investigate techniques that alleviate this issue in our setting.
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Chapter 1

Introduction

After thirty years of its discovery, human immunodeficiency virus (HIV) infection leading

to Acquired Immunodeficiency Syndrome (AIDS) continues to be amongst the ten leading

causes of mortality globally [1]. Inspite of an increased understanding of the viral biology

and pathogenesis in recent years, a cure for the disease remains elusive. Promises of

continued viral suppression, observed in a few patients, have been belied with the virus

showing up, sometimes after a few years [2]. The pace of resistance development and

viral adaptation to therapeutic strategies is remarkably rapid and pose a major challenge

to clinical management of the disease. As its name suggests, HIV targets the human

immune system and markedly increases the body’s susceptibility to numerous infections,

that would otherwise not pose serious concern. AIDS manifests as a chronic disease, rather

than being acutely fatal, and displays a gradual and insidious course. Notwithstanding

this pessimistic picture, our understanding of the virus and the disease have not entirely

been in vain. Viral suppression can be achieved and maintained in patients, with right

and timely choices of treatment interventions.

Several anti-HIV drugs have been approved and are used to suppress viral replication.

The current standard therapeutic recommendations involve a combination of these drugs,

rather than a single drug. A principal conundrum in the context of clinical management

of HIV infection is the choice of optimal combinations of these drugs [3, 4], particularly

in a background of treatment failure having occurred previously with certain other drugs

(Figure 1.1). Viral load measurements and viral genotype sequences at the point of treat-

ment failure are generally two of the most common sources of information available to the

clinician, who then makes a decision on the next-line combination of drugs that would sal-

vage the situation. An understanding of the causes and mechanisms of treatment failure

is crucial in this process of deciding on potential next-line drug combinations.

To analyze failed drug combinations and evaluate a variety of salvage treatment op-

tions, one can utilize both experimental and theoretical resources. While experimental

assays are admittedly indispensable in assisting our understanding of drug resistance and

viral replication, they clearly do not suffice in the face of the multitude of viral genotypes

present in patient populations and the variety of drug combinations available. Math-

ematical models of HIV infection have advanced the understanding of viral replication

processes, drug effects, viral evolution and treatment outcomes. Mechanistic models of

viral dynamics [5–7] have afforded valuable insights on replication and infection processes.

In addition, they have enabled us to examine the impact of drugs on the complex viral life

cycle and dissect the mechanisms of action of different drug classes. However, such models

typically use simplified and coarse-grained mutation schemes, thereby rendering a direct

comparison of their predictions to clinical data on mutations and resistance difficult. This
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Figure 1.1. The clinical choice. Initial therapy in a HIV-infected person suppresses
viral load for a certain time before virological failure occurs with viral RNA being detected
(when present above 50 copies/ml) in blood. Viral load measurements and viral genotype
sequence at therapy failure are available to the clinician who then has to recommend a
potential next-line salvage therapy.

curbs their application in assessing treatment failure with a certain drug combination and

exploring different potential follow-up regimens in silico. Statistical models of mutation

development learned from clinical data [8–10], on the other hand, have helped in reveal-

ing evolutionary pathways that the virus adopts to overcome drug pressure. While these

models perform very well in predicting treatment outcomes by statistical learning, they

lack a mechanistic incorporation of drug effect. Such models also inherently lack temporal

features and hence are less informative on aspects such as predicting mutational abun-

dance at treatment failure. This limits their application in analyzing the pharmacology

of antiretroviral drugs, in particular, time-dependent characteristics of HIV therapy such

as pharmacokinetics and pharmacodynamics.

The evolutionary success of the primitive life-form that HIV is, has engaged the scien-

tific curiosity of researchers over the last couple of decades [11, 12]. The virus undergoes

several changes in its genomic sequence and continually adapts itself to changing envi-

ronments. Resistance to drugs is an emergent property owing to such adaptation. While

Darwinian principles remain the governing basis for HIV evolution, the complexities in

the different host-drug environments, and evolutionary constraints and bottlenecks present

challenges in terms of understanding how HIV adapts to different drugs. The fitness of the

virus is a quantifier of the evolutionary advantage that one viral variant has over another.

The knowledge of fitness characteristics of the viral population aids in assessing causes of

failure of certain drug combinations and helps understand viral evolutionary principles.

In this thesis, we analyze HIV treatment failure by developing mechanistic models of

the viral life cycle that incorporate drug-specific mutation schemes statistically learned

from clinical data. The combination of these two distinct modelling approaches provides a

better understanding of the dynamics of drug-resistant mutant genotypes and mutational

2



abundance at virological failure. As an application of our model, we estimate in vivo fitness

characteristics of different viral mutants in the absence and presence of drugs and are able

to better understand mechanisms involved in HIV evolution. Importantly, our approach

relies only on sparse clinical data, as opposed to detailed time-course measurements of viral

load. Additionally, our modelling approach easily generalizes to multiple-drug therapy and

we are able to analyze how individual drugs in a combination regimen impact treatment

outcome.
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Figure 1.2. Pharmacokinetics and pharmacodynamics interplay. The pharma-
cokinetics (PK) of a drug describes the variations in its concentration in the body over
time, while the pharmacodynamics (PD) of the drug relates its effect and concentration.
A combined PK-PD relationship characterizes the drug effect as a function of time.

Another important aspect in the clinical management of a disease is the pharmacoki-

netics (PK) of drugs adminstered for therapy. It is clear that when a patient infected with

HIV is administered a certain drug (or a combination of drugs), the drug concentration

changes with time owing to processes such as absorption, distribution, metabolism and

elimination of the drug. These factors determine the PK of the drug within the body (i.e,

what the body does to the drug) and influence decisions on dosing intervals, for example.

The time-dependent changes in drug concentration of an anti-HIV drug could also impact

its antiviral effect (Figure 1.2). Further, the long-term nature of therapy in HIV raises

questions concerning drug accumulation and half-life. Understanding drug PK associated

with multiple dosing thus plays an important role in the development of new antiviral

drug molecules, and to devise safe and efficacious dosage regimens.

Pharmacokinetic modelling of drugs has a long history [13,14]. However, most mecha-

nistic models of viral dynamics assume constant drug concentration, mainly for purposes

of simplicity [5–7]. In this thesis, to understand the PK of anti- HIV drugs under a

multiple dosing scenario, we first develop a framework that provides an integrated under-

3



standing of different measures of drug accumulation and half-lifes. In drugs displaying

a multi-phasic decline in their concentration, reporting only one half-life or measure of

accumulation could lead to apparent contradictions [15]. Our framework enables an easy

interpretation and a concise understanding of several summary measures of multiple dose

PK. We also explore the impact of PK on viral suppression by coupling PK models to

models of viral dynamics.

Finally, in the context of such complex nonlinear models of viral dynamics, parameter

estimation and identifiability always pose several challenges. We investigate techniques to

alleviate these issues in our setting.

This thesis is organized as follows. In Chapter 2, we briefly review the biological aspects

of HIV infection and disease and discuss different modelling approaches used to investigate

viral dynamics, mutations and antiviral drug action. In Chapter 3, we present a model

of in vivo viral dynamics that incorporates drug-specific mutation schemes and focus on

the estimation of various fitness characteristics of HIV mutants from clinical data. Next,

in Chapter 4, we describe how our model generalizes to drug combinations and present

simulation results from dual and triple-drug therapies. Further, we also demonstrate how

our model can be extended to incorporate the action of antiviral molecules with recently

elucidated mechanisms of action. In Chapter 5, we derive and interpret several PK-

related characteristics for simple, generic multi-compartment models under a multiple dose

setting, and then use them as guiding tools for developing our framework to understand

different measures of drug accumulation and half-lifes. We also explore the impact of

PK on the antiviral action of drugs used in HIV therapy. In Chapter 6, we discuss the

challenges in parameter identifiability in viral dynamic models and investigate techniques

that aim at addressing these concerns. Finally, in Chapter 7, we conclude with a summary

and outlook.

4



Chapter 2

Biological background and mathematical models

of HIV infection and therapy

This chapter briefly reviews some aspects of the biology of human immunodeficiency virus

(HIV) and different mathematical approaches that have been developed to model HIV in-

fection and therapy. We begin by discussing the pathology and epidemiology of acquired

immunodeficiency syndrome (AIDS) caused by HIV infection. Then, we present key fea-

tures of the viral life cycle, before elucidating methods of HIV therapy and the various

challenges therein. Subsequently, we describe mechanistic and statistical modelling ap-

proaches that have enabled a quantitative understanding of various phenomena concerned

with HIV infection and therapy.

2.1 HIV and AIDS: pathology and epidemiology

HIV is a lentivirus of the Retroviridae family. Its primary targets are the cells of the

human immune system, such as the cluster-differentiated (CD4)+ T-cells, macrophages

and dendritic cells. HIV infection leads to a gradual loss of cell-mediated immunity and

exposes the body to a slew of opportunistic infections [16]. The first clinical occurrence of

HIV was reported in 1981 in the United States (see Chapter 169 of [17]), with patients suc-

cumbing to mainly opportunistic infections such as pneumocystosis and Kaposi’s sarcoma.

These infections were generally known to occur in immuno-compromised individuals, and

thus led investigators to speculate on the targets and mechanisms of HIV infection. It was

from 1982 that the Center for Disease Control in the United States of America started

referring to the disease caused by HIV infection as AIDS. Considered to be the first post-

modern pandemic [18], AIDS has caused an estimated 36 million deaths worldwide, and

up to 35.3 million people are currently living with HIV, with about 10% of them being

children [19]. Additionally, the disease has taken its toll on the economy, education and

demographics of countries across the globe [20].

2.1.1 HIV infection and the course of AIDS

The CD4+ T-cell count is the primary clinical marker associated with the pathology of HIV

infection. A CD4+T-cell count below 200 per µL of blood in a HIV-infected individual is

taken to imply a diagnosis of AIDS [22]. The main routes of transmission of the virus are

sexual contact, contact with infected body fluids and vertical mother-to-child transmission

during pregnancy, delivery or breast-feeding [23–25].

In general, the disease progression subsequent to HIV infection (Figure 2.1) is divided

into an acute phase, a chronic pase and a final phase (see [26], for example). Upon
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Figure 2.1. The different phases in HIV infection. After an initial acute phase,
chronic infection sets in, which gradually progresses to AIDS. Figure modified from [21]
and used here for illustrative purposes.

infection, the virus can be detected in the early stages in local lymph nodes [27]. The acute

phase of infection has been characterized as the transient, symptomatic illness associated

with a high-titre viral replication [28]. However, the detection of disease during the acute

phase, referred to as ’closing the window’ [29], is a diagnostically challenging task. In the

few days after establishing infection in lymph nodes, the virus rapidly travels to other

tissues such as the gut-associated lymphoid tissue and attacks the T-cells, resulting in

peak viremia, inevitably followed by a massive destruction of T-cells [30]. After this

initial onslaught on the immune system, the infection settles down to a long, chronic

phase characterized by a gradual decline in T-cell levels. The viral load increases very

gradually during this phase. However, the fluctuations are small, relative to the early

phase. This phase is marked by its innocuous nature, as the apparent sluggishness in the

dynamics of the virus conceals an underlying rapid turn-over [31]. In fact, this interesting

observation marked the beginning of modelling host-virus dynamics (see Section 2.4). The

final phase of infection marks the progression to AIDS and is accompanied by a severe loss

in immune function, making the patient susceptible to numerous opportunistic infections

ranging from candidiasis to carcinomas [32].

2.1.2 Immune response

The virus initially establishes infection by penetrating through the genital mucosal layers,

and this, by itself, is a remarkably complex process [33]. The initial days of infection see

an increase in the levels of acute-phase proteins like serum amyloid A and cytokines like

interleukin (IL)-15, IL-18 and tumour necrosis factors (TNF) [34]. Natural killer (NK)

and natural killer T (NKT)-cells are also involved in this acute phase of infection [35].

HIV modulates the expression of ligands that are necessary to trigger NK-cell cytotoxic

responses [36]. This, along with other evidence led investigators to ascertain the involve-

ment of NK and NKT cells in the immune response mounted against the virus. All these

6



host cellular responses, in general, have antiviral roles. Subsequent to peak viremia and

during the decline of the viral load to the viral set-point (which is the viral load level during

chronic infection phase), the CD8+ T-cell responses manifest strongly [37]. A significant

event during this phase is the change in the viral founder sequence and the subsequent

selection of mutants [38]. The T-cell mediated immune responses are collectively termed

cytotoxic T-lymphocyte (CTL) responses and these exhibit antiviral effects by lysis, apop-

tosis of infected cells or IL-mediated impeding of viral replication. The CTL responses

to the viruses are believed to be the strongest form of defense by the host [39]. However,

they focus only on specific epitopes and this has enabled the virus to develop mechanisms

to evade them. Other intracellular immune responses involve host cellular proteins such

as APOBEC3G that reduce viral replication [40], and host-mediated clearance of viral

mRNA and proteins (see [41] for a review).

2.1.3 HIV subtypes and diversity

The genetic variability of HIV has been well-known since 1986, when it was observed in

some West-African patients, that AIDS was caused by a strain morphologically similar

to, but antigenically different from viruses that had been isolated earlier [42].

There are two major HIV strains currently recognized, namely HIV-1 and HIV-2 [44].
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2 Introduction

ALIGNMENT OF HIV-1/SIVCPZ GENOMES

This year many new full-length viral sequences have become available, originating from diverse
geographic origins and representing the spectrum of known HIV variation. We have decided to publish
only full length HIV-1/CPZ sequences in our printed nucleotide alignment section, as this set is now
becoming an adequate representation of the overall diversity of the virus.

As of December 1999 there were 161 complete or nearly complete (defined as greater than 8,000
consecutive basepairs of sequence) HIV-1 genomes in the database. Of these, some were not included
in the printed alignment, as they are very closely related to a sequence already included in the alignment,
and our intent is to print a hardcopy alignment representative of global diversity. The complete alignment
including all sequences is available at our web and ftp sites.

http://hiv-web.lanl.gov/ALIGN_CURRENT/ALIGN-INDEX.html

Ninety-nine HIV-1 sequences plus viral strains isolated from chimpanzees, CPZANT, CPZGAB, and
CPZUS comprise the printed alignment. In phylogenetic analyses, the CPZ sequences are the simian-
derived viruses most similar to HIV-1; in fact HIV-1 M, N and O group sequences are roughly as distant
from one another as they are from the CPZ sequences (see Figure 1 below, and caption next page).
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Figure 2.2. Phylogeny of HIV and SIV. A phylogenetic tree showing the origins of
HIV-1 and HIV-2 strains and the various groups therein. The graphic is adapted from [43].

HIV-1 is known to have had its origins in a certain simian immunodeficiency virus (SIV)

lineage SIVcpzPtt [45] that is observed in chimpanzees, while a sootey mangabey lineage

SIVsmm has been demonstrated to be the origin for HIV-2 [46] (Figure 2.2). HIV-1 is the

more prevalent of the two forms with HIV-2 being restricted mainly to Africa. HIV-2 is

also known to be less pathogenic causing lower average viral loads and having lower rates

of transmission [47]. Interestingly, it is also possible that a single individual can be infected

with both HIV-1 and HIV-2 [48]. This is referred to as a super-infection. Such diversity

in viral strains raise pertinent questions on the relevance of existing treatment strategies

that are largely devised for HIV-1. It is now recognized that resistance acquisition and

7



thereby, the selection of second-line treatment regimens depends on the subtype [49].

Phylogenetically, HIV-1 is further grouped into four groups—M, N, O and P. The group

M (for major) is the most common and accounts for about 90% of infections globally. The

M group is again further classified into sub-types that are each denoted by a letter (A,

B, C, ...). The HIV-1B is the dominant sub-type found in Western Europe and North

America. Resistance patterns and phenotypic attributes are known to vary amongst the

sub-types, necessitating further studies [50].

2.1.4 Epidemiology of AIDS

AIDS is classified as a pandemic disease [51]. The World Health Organization (WHO) re-

gards a pandemic to be a global outbreak (Figure 2.3), with the spread of a disease-causing

agent. According to the report of the UNAIDS committee in 2012, 68% of infections oc-

cur in sub-Saharan Africa, making it the worst-affected region [52]. The report places a

prevalence of 0.35% in east and south-east Asia, and owing to the highly dense population

in many countries of this region, it has the most infected individuals after sub-Saharan

Africa. North America has about 1.3 million infected individuals, while Western and Cen-

tral Europe account for close to 0.8 million patients. Amongst recent worrisome trends, is

a rise in incidence of AIDS in a few high-income countries [53]. Quantifying the spread of

the pandemic is a non-trivial task and there have been challenges in developing appropriate

measures of the spread of AIDS [54].

Figure 2.3. Global prevalence of HIV. A map depicting the global occurrence of
AIDS. The darker regions have a higher prevalence. The graphic is adapted from the
Global report: UNAIDS report on the global AIDS epidemic 2012 [52].

In summary, HIV infection is a complex and highly dynamic process that results in

a gradual progression to AIDS. The myriad immune responses mounted by the host are

insufficient to check viral proliferation. Phylogenetically, there are different HIV groups

and sub-types that compound problems in treatment. Although anti-HIV therapy (see
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section 2.3) has served to limit the disease, the global numbers are rising and challenges

in combating disease transmission lie ahead.

2.2 HIV-1 Infection cycle

Morphologically, HIV is roughly spherically shaped with a diameter of about 120 nm [55].

See [16], for example, for details on cellular and molecular aspects of the virus. Here,

we outline some key characteristics. The virus consists of two copies of positive, single-

stranded ribonucleic acid (RNA), that encode for nine genes gag, pol, env, tat, rev, nef, vif,

vpr and vpu. The viral RNA is enclosed within a protein capsid. The gag gene codes for a

pre-cursor Gag polyprotein that is later processed by the viral protease to form products

such as the viral matrix and capsid proteins, while pol is a gene coding for three key

proteins of the viral machinery—the reverse transcriptase, integrase and HIV protease.

The entry and binding mechanisms of the virus are mainly controlled by the surface

lipoproteins Gp120 and Gp41 that are encoded by env. The tat and rev genes encode

for proteins that play important roles in the reverse transcription and protein synthesis

of HIV. The nef, vif, vpr and vpu parts of the genome encode for accessory regulatory

protein products responsible for successful release and infectivity of new virions.

The replication cycle of HIV begins with the entry, binding and fusion of the virus to

target cells in the human immune system, followed by reverse transcription of the viral

RNA, the integration of the resulting viral DNA into the host genome, the synthesis of

viral proteins and finally culminates in the assembly and release of new, mature virions.

An understanding of the viral life cycle forms the basis for the design of various drugs

targeting different stages in the viral life cycle. The replication cycle is also centrally

involved in mathematical models describing within-host viral dynamics of HIV. Hence, we

briefly review these various stages in the replication cycle of HIV.

2.2.1 Entry and fusion of the virus

The Gp120 and Gp41 proteins encoded by the env gene of HIV are responsible for coor-

dinating the sequence of events leading to the entry, binding and fusion of the virus with

the target cells of the human immune system. The initial binding of the virus with the

CD4 receptor induces conformational changes in the Gp120 moiety, that is thought to

facilitate the engagement of co-receptors (Figure 2.4). Two very important co-receptors

are the C-C chemokine receptor type-5 (CCR5) and C-X-C chemokine receptor type-4

(CXCR4).

Upon binding of the Gp120 to these co-receptors, the Gp41 moiety is oriented parallel

to the viral and cellular membranes and a fusion-pore formation is induced by a cast-and-

fold mechanism [57] and finally virus internalization occurs. See [58] for a detailed review

of the cascade of events leading to the entry and fusion of HIV.
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Figure 2.4. Entry cascade in HIV. The sequence of events leading to the binding,
entry and fusion of HIV with a target cell. Figure adapted from [56] and used here for
purposes of illustration.

Reverse transcription of viral RNA and integration of viral DNA

The reverse transcriptase of HIV is a key enzyme responsible for generating a comple-

mentary DNA (cDNA) sequence from the viral RNA. This process is termed reverse

transcription, since it can be perceived as a counter-role of the conventional transcription

process—synthesis of messenger RNA from DNA, that forms part of the central dogma of

molecular biology. Howard Temin and David Baltimore were joint recipients of the Nobel

Prize for Physiology and Medicine in 1975 for their discovery of the reverse transcription

in viruses (see [59] for a joint chapter by Temin and Baltimore on RNA-directed DNA

synthesis in viruses).

A cellular transfer-RNA (tRNA) initiates the process of reverse transcription by bind-

ing to a primer-binding site on the viral RNA. The reverse transcriptase then copies the

long terminal region (LTR) of the RNA into a single stranded DNA. The RNase H part of

the RT enzyme degrades the RNA that has been copied. This enables the tRNA, RT and

the single stranded DNA fragment to move on to the other LTR end. The RNase thus

serves to eliminate the RNA fragments that have been copied and facilitates propagation

of the copying mechanism. A second strand of DNA is later generated that loops around

the first strand to form circular DNA, which is then clipped in the final stages, to yield

double stranded DNA. See [60] for a review of the reverse transcription process.

The process of reverse transcription is error-prone in the sense that misincorporation

of base pairs is highly common and the fidelity of the reverse transcriptase enzyme has

been a subject of investigation since the late 1980s [61]. The in vivo mutation rates of

HIV are higher than several other viruses, with an average of about 3.4× 10−5 mutations

per base pair per cycle of replication [62]. Upon completion of reverse transcription, the

synthesized DNA binds to a few viral and host cell proteins, forming a pre-integration
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complex (PIC). The formation, composition and kinetic features of PIC have also been

characterized [63].

The integration of the viral DNA into the host genome is performed by the integrase

enzyme. First, the enzyme prepares the viral DNA by processing the 3’-end of the LTR.

This is followed by the transport of the PIC across the nuclear membrane into the nucleus,

where integrase cleaves the host DNA at preferred sites to create ligation openings for the

viral DNA [64]. After ligation, DNA repair mechanisms operate to ’close gaps’ in the

DNA.

Once the viral DNA has been integrated into the host genome, it is free to exploit

the host cellular machinery for transcription and translation processes. The LTR re-

gion, along with Tat and Rev proteins, again plays a pivotal role in transcription of viral

DNA. Interestingly, the basal transcriptional activity of the LTR region is low. How-

ever, in the presence of Tat, transcription proceeds much faster [65]. This mechanism of

transcriptional control by Tat has generated interest, particularly after it became known

that positive transcription elongation factor b (P-TEFb) comprising of cyclin dependent

kinase-9 (CDK-9) and cyclin T1 plays a crucial role [66]. Tat binds to P-TEFb and this

forms a complex with nascent transcripts of the trans-activation response element (TAR)

region of HIV. CDKs are traditional targets in oncology [67] and this led to studies that

investigated the role of CDK inhibitors as antivirals (see Section 2.3.4). Some promising

results have been obtained [68,69], but one is yet to see clinical applications.

Subsequent to integration, the infected cell can also enter into latency, whereby post-

integration events are suppressed and the cell goes into hibernation. There are different

explanations for such behaviour including a defective Tat protein that lowers transcription

rates [70], a poorly functioning Rev that hinders export of transcribed RNA into the

cytoplasm for further processing [71] and restrictive chromatin structures being formed in

the LTR region [72].

2.2.2 Viral protein assembly and maturation

A.	
  

After transcription of viral DNA and translation of viral mRNA, the process of assem-

bling the proteins (Figure 2.5) and eventual maturation and release of new viral particles

begins. This is an extremely intricate sequence of events and we give only brief details.

See [73] for example, for a review on HIV protein assembly and maturation processes. The

viral protein assembly occurs at the plasma membrane of the host cell within specialized

microdomains. The Gag polyprotein coordinates all events leading to the assembly and

maturation of viral particles. At the amino-terminal of this polyprotein is the MA (matrix)

domain that controls proper targeting and binding of Gag to the plasma membrane and

engagement of the Env protein (Figure 2.5A). The central CA (capsid) domain regulates
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B.	
  

Figure 2.5. The Gag polyprotein and maturation of viral particles. Top: The
different domains of the Gag polyprotein. Bottom: The organization of proteins within
an immature (left) and mature (right) virus particle. Figure reproduced from [73] for
purposes of illustration.

protein-protein binding during maturation in immature viral particles and triggers mul-

timerization. The NC (nuceleocapsid) domain serves as a chaperoning agent facilitating

tRNA priming at the start of reverse transcription and is also responsible for packaging

of viral RNA. The carboxy domain of Gag mainly contains binding sites for viral acces-

sory proteins. The viral protease catalyzes its own cleavage, as well as cleavage of other

enzymes from the Gag polyprotein. Recently, a full kinetic model has been developed to

study events during assembly and maturation events [74]. For budding, the virus makes

extensive use of host-cell machinery.

2.3 HIV therapy

Equipped with the knowledge of the viral replication cycle, we now discuss the different

HIV therapeutic strategies.

2.3.1 History of antiretroviral treatment

The treatment of AIDS has a long history. In 1987, zidovudine (ZDV), became the first

antiretroviral drug to be developed [75]. It targeted the reverse transcription process in

the replication cycle of HIV. Almost foreshadowing the immense challenges ahead, high-

level resistance development against zidovudine with the acquisition of multiple mutations

was described as early as 1989 [76]. More drugs with similar mechanisms were developed

until 1995, with some success.

In 1995, there was a huge leap forward and much promise appeared to lie in store

with the advent of HIV protease inhibitors —saquinavir being the first such drug to be

approved [78]. More drugs like ritonavir and nelfinavir followed in 1996, but the hopes

from this family of drugs were belied to a certain extent, when resistance was detected

soon [79, 80]. The first decade of the new millenium saw the development and approval

of three drugs from novel drug classes. While enfuvirtide was the first anti-HIV drug

targeting the viral fusion with the host cell to be approved in 2002, maraviroc was the

first drug inhibiting the entry of HIV into host cells, to be approved in 2006. In 2007,
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Figure 2.6. A timeline of antiretroviral therapy. The development of different anti-
HIV drugs beginning in the 1980s continuing into the recent years. Adapted from [77].

raltegravir became the first drug inhibiting integration of HIV DNA with the host genome,

to be approved. In the following sub-section, we discuss these drug classes in more detail.

2.3.2 Major antiviral drug classes

The major anti-HIV drugs can be classified under different drug classes on the basis of

their targets and mechanism of action (see Figure 2.7).

Entry inhibitors: These bind to receptors or co-receptors on the target cells, thereby

preventing the virus from recruiting them. Maraviroc (MVC) is an approved entry in-

hibitor, that is a negative allosteric modulator of the CCR5 receptor [81]. It binds to the

CCR5 receptor and hence Gp120 does not effectively trigger the entry process. However,

the long-term safety of CCR5 blockage and escape mechanisms of HIV by recruitment of

other receptors are some concerns [82].

Fusion inhibitors: They interfere with the ability of HIV to fuse with the target

cell and release viral contents. Enfuvirtide (EFV) is a peptide drug that acts as a fusion

inhibitor [83]. It binds to Gp41 and prevents HIV from infecting the cell. Its inconvenient

administration via a sub-cutaneous injection is a drawback [84].

Reverse transcriptase inhibitors: As their name indicates, these drugs disrupt

the reverse transcription process during viral replication. This was the mechanism of the

earliest introduced anti-HIV drugs. Drugs of this class may be further classified into nu-

cleoside reverse transcriptase inhibitors (NRTIs) and non-nucleoside reverse transcriptase

inhibitors (NNRTIs). In general, the NRTIs are pro-drugs that are phosphorylated by

cellular kinases and then incorporated into the viral DNA during reverse transcription,

since they are analogs of natural nucleosides. This halts the reverse transcription process

by chain termination. Zidovudine (ZDV), lamivudine (3TC), didanosine (ddI), emtric-

itabine (ETC), abacavir (ABC), and tenofovir (TFV) are some of the common NRTI

drugs. On the other hand, NNRTIs inhibit the activity of the reverse transcriptase en-

zyme by binding to an allosteric site. Efavirenz (EFV) and nevirapine (NVP) are two

common NNRTIs. See [85] for a detailed survey of reverse transcriptase inhibitors in HIV

therapy. Mitochondrial toxicity induced by NRTIs and related lipodystrophy [86], and

heptotoxicity by NNRTIs such as nevirapine [87] are a few adverse effects of concern.

Integrase inhibitors: These target the viral integrase enzyme that is responsible

for integrating the reverse transcribed viral DNA into the host genome. Raltegravir

(RGV) [89] was the first integrase inhibitor (InI) to be approved. Recently, two other drugs

of this class have been approved—elvitegravir (EVG) [90] and dolutegravir (DTG) [91].
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Figure 2.7. HIV drug classes. The action of the different drug classes at different
stages in the HIV replication cycle. The graphic is reproduced from [88] for purposes of
illustration.

Integrase inhibitors appear to be well-tolerated, although long-term safety data is scarce.

Protease inhibitors: These are amongst the most potent drugs for HIV monother-

apy. They target the HIV protease and inhibit successful protein assembly and release of

new viral particles. Recently, their mechanism has been debated and a multi-step inhibi-

tion has been proposed [92]. Indinavir (IDV), lopinavir (LPV), ritonavir (RTV), nelfinavir

(NFV) and saquinavir (SQV) are some examples of HIV protease inhibitors (PI). RTV is

commonly used to boost the pharmacokinetics of other drugs in a treatment regimen as it

inhibits enzymes responsible for metabolism of many other protease inhibitors [93]. Risks

of elevated triglycerides and myocardial infarction have been reported [94].

Maturation inhibitors: These bind to the viral Gag protein and result in immature

virions being released that are incapable of further infection [95]. There are no approved

maturation inhibitors currently. Clinical trials with bevirimat were discontinued in 2010

owing to unsatisfactory response in a significant number of patients.

2.3.3 The HAART regimen

Countering HIV infection by a combination of drugs, rather than a single drug has been

the norm since the mid 1990s. Gulick and colleagues published a series of studies with

IDV-based combination regimens [96,97]. In 1996, Hammer et al [98] studied the efficacy

of monotherapy versus dual therapy for nucleoside inhibitors zidovudine, didanosine and

zalcitabine. Such use of multiple drugs to combat HIV infection and AIDS is termed

highly active antiretroviral therapy (HAART). In present times, first-line HAART regi-

mens recommended for treatment näıve patients usually consists of two NRTIs and an InI.

The recommended NRTI backbone consists of the drugs TFV and ETC, and the recom-

mended first-line InIs are RGV or DTG. In some instances, the InIs may be replaced by

RTV-boosted PIs. Currently, HAART cannot achieve eradication of HIV, primarily due

to the phenomenon of long-lived infection resulting from latently infected pools of target

cells. However, sustained viral suppression and recovery in CD4+ T-cell counts have been

reported in studies involving large patient cohorts [99,100].

2.3.4 Host-cell targeting, error catastrophe and vaccines

It is clear that HIV recruits host proteins at several points during its replication cycle. This

has triggered efforts in development of drug agents that target these host-proteins, rather

than the virus. For example, CCR5 antagonists like MRV have proven to be effective in

suppressing HIV replication [101]. Bioinformatic approaches like high-throughput genome-
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scale screens based on RNA interference have been used to identify host factors that are

attractive targets [102].

Another novel family of host targets are the cyclin dependent kinases (CDKs). Tra-

ditionally investigated in oncology, the antiviral effects of CDK inhibitors have generated

considerable interest. Flavopiridol, a CDK9 inhibitor that is in clinical trials for the treat-

ment of chronic lymphocytic leukemia, was shown to possess antiviral properties [103].

It inhibits transcription by RNA Polymerase II by blocking the elongation step. This is

controlled by the protein P-TEFb (CDK9 + Cyc T1). Notably, lower concentrations of

flavopiridol were needed for antiviral activity, as opposed to its role as an anti-cancer drug.

Roscovitine, another drug in clinical trials for non-small cell lung cancer and leukemia has

also demonstrated antiviral properties [69].

Vaccines have proven to be effective against numerous viral infections ranging from

influenza to small pox. The development of a vaccine against HIV would provide enormous

thrust in the battle against AIDS and in offering a potential cure. However, there are

immense challenges to be overcome. To start with, the development of a vaccine against

HIV encounters its first hurdle in meeting a fundamental tenet of vaccinology - to mimic

the infection and introduce responses similar to natural immunity. The natural immune

response against HIV infection is too weak to be useful [104]. Secondly, the epitopes of

the viral envelope are highly variable, in addition to HIV isolates themselves differing

in their sub-types and groups. High throughput screening of B-cell clones from infected

patients for broadly neutralizing antibodies [105], together with recent attempts at a

rational vaccine design [106] offer some possibilities. In 2012, a combination regimen of

ETC and TFV was approved by the Food and Drug Administration (FDA) as a preventive

measure for high risk populations [107]. There have been several clinical trials to explore

the success of different candidates. For example, the STEP study tested the possibility

of inducing cell-mediated immune responses to injected adenovirus-based HIV vaccines

and did not entirely succeed [108]. Worryingly, it also raised questions of higher risks

amongst vaccinated patients [109]. Some researchers hold the view that more fundamental

advances in understanding HIV biology are needed before anti-HIV vaccine efforts can bear

fruit [110].

2.4 Mechanistic models of HIV infection and treatment

The initial motivation for development of models describing viral dynamics within the

host lay in attempts to explain viral load measurements in patients chronically infected

with HIV. In a seminal article that established the relevance of measuring viral load

and forecasted its crucial role in monitoring HIV disease progression, Ho et al [31] used

simple mechanistic arguments to propose a dynamic equilibrium between the production

and clearance of virions. This balance in the dynamics results in a viral set-point that

characterizes infection in a patient. While the viral set-points themselves remained almost

constant in time in patients with chronic disease, the onset of antiretroviral treatment

caused a significant drop (∼2 orders of magnitude in about 2 weeks) in the viral load [111].

Such a behaviour on perturbation by drugs suggested a rapid viral turn-over and pointed
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to a frenzied underlying dynamics, in spite of almost constant viral loads during disease

progression. Mathematical models of infection dynamics, thus, had their origins in this

need to investigate the rates of viral production and decay, and their significance in disease

progression and drug action.

2.4.1 Basic models of viral dynamics
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Figure 2.8. A basic viral dynamics model. A single-stage infection model to describe
viral dynamics.

Early models of viral dynamics [111–115] sought to explain the rates of decay in viral

load upon antiretroviral treatment. For illustration, we describe one such model [114]

(Figure 2.8).

Uninfected target cells TU are infected by viruses V with a reaction rate constant

of β resulting in an infected-cell population T∗. These productively-infected cells can

then release new viruses with a rate constant N , which are either cleared with a rate

constant CL or re-infect the uninfected target cells, thereby propagating the cycle. The

infected-cells T∗ die at a constant rate, with the correponding rate constant specified by

δT∗ . Uninfected target cells are synthesized and degraded with rate constants λTU and

δTU respectively. Such models are generically classified as one-stage viral infection models

as they include a single stage of infected-cells in their scheme. The ordinary differential

equation (ODE) description of such a model can be written as

d

dt
TU = λTU − δTU − β ·V · TU

d

dt
T∗ = β ·V · TU− δT∗ · T∗

d

dt
V = N · T∗ − CL ·V − β ·V · TU (2.1)

The action of drugs is incorporated by inhibiting the appropriate reaction rate con-

stants in the model. For example, in the presence of a protease inhibitor, the production

of new viruses is blocked. A drug that blocks viral protease production by 100% would

imply N = 0. The parameters δT∗ and CL are estimated from viral load measurements

after administering a protease inhibitor [114]. In reality, drugs are not 100% effective and
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Figure 2.9. Phases of viral decay. The different phases of viral decay upon antiretro-
viral therapy. The first two phases occur over a time scale of weeks, while the third phase
occurs over months. A final fourth phase is also observed over years. Figure adapted
from [116].

to model drug-effect more explicitly, models motivated from pharmacodynamics can be

used (see Section 2.4.3). The action of a reverse transcriptase inhibitor can be modelled

by lowering the infection reaction rate constant β.

Note that this model assumes a reservoir of uninfected target cells that remains con-

stant during the course of infection. To be more realistic, later models included a density

dependent synthesis mechanism and a death process for the target cells [5, 117]. For

example,

d

dt
TU = λmax · TU ·

(
1− TU

TUmax

)
− δTU · TU− β ·V · TU

(2.2)

where, λmax is the maximum proliferation rate of the target cells and TUmax.

When more than one drug is used in a treatment regimen, the initial drop in the viral

load is much higher and a second phase of viral decay (see Figure 2.9 left) can be observed

experimentally. To account for this, a second pool of target cells MU was postulated

[115], that contributed to a longer-lived population of infected-target cells M∗. Biological

candidates for such a pool were postulated to be the macrophages, dendritic cells or other

such viral reservoirs. Additionally, to incorporate the existence of a latent reservoir of

infection attributed to resting CD4+ memory T-cells and explain further phases of viral

decay (see Figure 2.9 right), models have included a pool of latently infected cells, which

can be re-activated to productively infected-cells [118–120]. With the development of new

drug classes, the need for more detailed models capturing other stages in the viral cycle

was imperative to assess the differences between various drugs, their modes of action and

reasons for their success or failure.
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2.4.2 Two-stage viral dynamics model

In the early days following the development of the integrase inhibitor raltegravir, a puzzling

discrepancy was noted between its in vitro efficacy measured by phenotypic single-round

infectivity assays and in vivo efficacy assessed by viral load measurements [121]. Sedgahat

et al [6] used mathematical models to infer that the high apparent in vivo efficacy of

integrase inhibitors was owing to the stage inhibited in the viral life cycle and not due to

any innate superior efficacies of these drugs. A detailed mechanistic model of the viral

life cycle [7] revealed more details on the how the nature of the step inhibited in the viral

life cycle plays an important role in efficacy assessments and suggested a single measure

termed the reproductive capacity to translate in vitro efficacy measures into an in vivo

context. The authors in [7] also performed a model-reduction of their detailed model

to enable an easier parametrization and were able to validate their model with clinical

viral load data. This reduced model has also been extended to include latently infected

T-cells [122]. Here, we briefly discuss the features of this two-stage viral dynamics model.

Later in the thesis, we present a generalization of this model to incorporate drug-specific

mutation schemes (Chapter 3).

Figure 2.10. A two-stage viral dynamics model. A within-host model of viral
infection that allows for incorporation of all approved anti-HIV drug classes: EI/FI -
entry/fusion inhibitors, NRTI/NNRTI - nucleoside/non-nucleoside reverse transcriptase
inhibitors, InI - integrase inhibitors, PI/MI - protease/maturation inhibitors.

The model includes target cells TU (T-cells) and MU (macrophages), that can be

infected by infective viruses VI (with effective infection reaction rate constants βT and

βM), resulting in early stage infected cells T1 and M1, respectively. Infection can poten-

tially be unsuccessful after fusion of the virus, rendering the cell uninfected and thereby

eliminating the virus (CLT,CLM). The infected T1 and M1 cells can also possibly return

to uninfected states by destruction of essential viral proteins or DNA prior to integration

(δPIC,T, δPIC,M). The T1 cells can enter into a latent state TL (with a probability p) that
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can get re-activated with a rate constant α. Integration of viral DNA in the host genome

proceeds with a rate constant of kT in the T-cells and kM in the macrophages, result-

ing in late stage infected T-cells T2 and macrophages M2, respectively. The infected T2

cells release new infective (VI) and non-infective (VNI) viruses (with rate constants NTI

and NTNI, respectively) while the infected M2 cells release new infective and non-infective

viruses (with rate constants NMI and NMNI, respectively). Target cells TU and MU are

produced by the immune system at constant rates with reaction rate constants λTU and

λMU, respectively. All of TU, MU, T1, M1, T2 and M2 can be cleared by the immune

system with rate constants δTU, δMU, δT1, δM1, δT2 and δM2, respectively. Viruses are

cleared by the immune system with rate constant CLV. The system of ODEs describing

the model is given by:

d

dt
TU = λTU − δTU · TU + δPIC,T · T1 − βT ·VI · TU

d

dt
MU = λMU − δMU ·MU + δPIC,M ·M1 − βM ·VI ·MU

d

dt
T1 = βT ·VI · TU−

(
δT1 + δPIC,T + kT

)
·T1

d

dt
M1 = βM ·VI ·MU−

(
δM1 + δPIC,M + kM

)
·M1

d

dt
T2 = (1− p) · kT · T1 + α · TL − δT2 · T2 (2.3)

d

dt
M2 = kM ·M1 − δM2 ·M2

d

dt
TL = p · kT · T1 − α · TL − δTL · TL

d

dt
VI = NTI · T2 + NMI ·M2−

[
CLV+

(
CLT + βT

)
TU +(

CLM + βM

)
MU

]
·VI

d

dt
VNI = NTNI · T2 + NMNI ·M2 − CLV ·VNI

A primary feature characterizing the behaviour of viruses, that has been missing in the

description thus far, is the occurrence of mutations. Modelling mutations, their impact

on resistance to different drugs and fitness characteristics is an integral component in

predicting in vivo viral dynamics.

2.4.3 Modelling mutations, viral resistance and drug-action

Mutations in HIV occur to the absence of a proof-reading mechanism during reverse

transcription (see Section 2.2.2). In the two-stage model, mutations are modelled to

occur between early infected cells (first stage T1 and M1) and late infected cells (second

stage T2 and M2). Consider two mutant viral genotypes g and g′. The probability rg′→g

of a mutation that changes the genotype from g′ to g can be written as

rg′→g = µh · (1− µ)L−h, (2.4)
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where h = h(g, g′) is the Hamming distance between the genotypes g and g′ (i.e., the

number of positions at which the genotypes g and g′ differ), L is the number of positions

at which mutant genotypes are described, and µ is the probability of mutation per base-

pair per cycle of replication. Since mutations are primarily a result of error-prone reverse

transcription, both the forward and backward mutation processes are generally considered.

For example, with mutations modelled at two loci, Figure 2.11 shows a simple mutational

pathway with appropriate mutation rates between the different mutant genotypes. As

mentioned earlier (Section 2.2.2), the average error rate in viral reverse transcription

has been estimated to about about µ = 3.4 · 10−5 mutations per nucleotide per cycle of

replication. However, nucleotide-specific mutation rates have also been reported [123].
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Figure 2.11. A simple mutation scheme. The mutation scheme models mutations
at two loci. While {0,0} denotes the wild type, {1,1} denotes the mutant genotype with
mutations at both loci. The mutants {0,1} and {1,0} are intermediate genotypes.

The effect of an antiretroviral drug on a viral genotype g can be modelled by a fractional

reduction of the targeted process characterized by a drug efficacy parameter. For example,

ε = εg =
Cdrug/IC50g

1 + Cdrug/IC50g
, (2.5)

where IC50g denotes the drug concentration at which the fractional reduction is 50%.

The subscript g indicates that the IC50-value and thus the drug efficacy is assumed to be

genotype dependent (see below). Denoting by kε and k0 the rate constants of the targeted

process, in the presence and absence of the drug, respectively, drug action was modelled

by

kε = (1− ε)k0. (2.6)

As stated earlier, the two-stage model in [122] was derived from a more detailed viral

infection model by model reduction (see [7] for details). As a consequence, the processes

of infection of T-cells and macrophages (with rate constants βT and βM, respectively) and

production of new infectious and non-infectious viruses from infected T-cells (with rate

constants NTI and NTNI, respectively) and from infected macrophages (with rate constants

NMI and NMNI, respectively) are lumped processes, integrating several subprocesses. For

example, the infection process comprises the subprocesses of receptor binding, fusion and

reverse transcription. Hence, the consequences of model reduction have to be taken into
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account when modelling the actions of drugs targeting some of these subprocesses in the

two-stage model, resulting in an additional model reduction factor γε. For example, with

RTIs and PIs, eq. (2.6) becomes

kε =
(
1− γεε

)
k0 with γε =

1− ρ
1− ρε

, (2.7)

where ρ denotes the probability of successful reverse transcription (for RTIs) or the prob-

ability of successful viral maturation (for PIs). For more details on implementation of

other drug classes, we refer to the Supplementary Text of [7].

The advantage of the decreased drug-susceptibility of a mutant genotype g is typically

counter-balanced by a reduction in its fitness relative to the wild type [113]. This is usually

quantified in terms of the fitness costs sg (see Chapter 3 for details on fitness costs and

fitness). In general, it can be assumed that a mutation in one part of the viral genome

that is associated with a certain process of the viral replication cycle caused a drop in

the rate of only this process. For example, a mutation in the reverse transcriptase part

of the HIV-1 genome, resulting in a mutant genotype g, lowers only the rate of reverse

transcription. This is a reasonable assumption at least for HIV-1 [124], as most resistance

mutations occur in the region of the genome that codes for the drug target. Hence, any

cost due to a resistance mutation is also most likely to be incurred on the function of this

region.

The fitness costs and resistance factors of all mutant genotypes are parametrized with

reference to the wild type. Denoting the rate constant of the targeted process in the wild

type, in the absence of any drug, by kwt,0, the rate constant of the targeted process in a

genotype g with a drug efficacy εg, can be defined as

kg,εg = (1− γεgεg) · (1− sg) · kwt,0. (2.8)

The first factor accounts for the reduction in activity due to drug action. The genotype-

dependent drug efficacy εg is given by eq. (5.63), where

IC50g = RFg · IC50wt (2.9)

is defined in terms of the wild type IC50wt-value and the resistance factor RFg ≥ 1

accounting for the increase in drug-resistance. The second factor in eq. (2.8) accounts for

the reduction in activity due to loss in fitness of the mutant genotype.

2.5 Statistical models of mutation accumulation and viral

resistance

In the last section, we discussed a few examples of mechanistic models that seek to de-

scribe viral dynamics. Such models have been of great utility in the investigation of

drug-class effects and general features of antiretroviral therapy. However, the incorpora-

tion of realistic drug-specific mutation pathways in such models is needed to enable direct
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comparisons with clinical data. In the current thesis, we combined drug-specific mutation

models, learned statistically from clinical data, with mechanistic models to predict viral

load profiles under monotherapy and combination therapy, and to estimate fitness char-

acteristics of HIV mutant genotypes. In this section, we briefly review different statistical

models of mutations and resistance.

The analysis of mutation accumulation in the HIV genome has relevance in several

contexts. It enables the understanding of viral evolutionary pathways and mechanisms

and thus aids in the choice of treatment regimens by anticipating future resistance devel-

opment. Furthermore, statistical models predicting mutation accumulation have also led

to estimates of phenotypic attributes like resistance and fitness. By learning from viral se-

quencing data, these methods accomplish a quantitative translation of genotyping results

and enable more decisive treatment choices. There is a huge body of work in this regard,

aiming at estimating mutational pathways of HIV [125–129], predicting viral phenotype

from genotype data [8, 130, 131] and the prediction of treatment outcomes under differ-

ent antiretroviral therapies [132–135]. Here, we briefly describe a few of these modelling

approaches.

2.5.1 Mutagenetic trees

A mutagenetic tree is a directed tree (informally, a tree is a connected graph without

cycles) whose vertices represent mutations, and edges denote mutational transitions be-

tween the connected vertices. Each edge has a conditional probability associated with it

—the probability that a certain mutation occurs (until the time of data sampling by viral

genotyping), given that its predecessor mutation has already occurred. For example, in

the right most tree in Figure 2.12, the probability of mutation 210W occurring, given that

41L has already occurred is 0.40 (note the lack of an explicit time scale).

Figure 2.12. A mutagenetic tree. An example of a mutagenetic tree estimated from
cross-sectional genotype data after zidovudine therapy. Figure reproduced from [136] for
illustration.

Mutagenetic trees have been successfully used to model the accumulation of muta-

tions under antiretroviral therapy and to compute probabilities of escape from treatment
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regimens (commonly referred to as the genetic barrier) [126, 127]. Typically, the models

are not single trees, but rather weighted combinations of disjoint trees, known as mixture

mutagenetic trees. They are estimated by expectation-maximization (EM) algorithms,

followed by appropriate model selection procedures. For example, Figure 2.12 shows an

estimated mixture mutagenetic tree comprising of three weighted disjoint trees, that de-

scribes the accumulation of mutations under zidovudine therapy. See [126] and [136] for

details on mutagenetic trees, their estimation and application.

2.5.2 Conjunctive Bayesian networks

Bayesian networks [137] are probabilistic-graphical models used widely in bioinformatics

for the analysis of gene regulatory networks and gene expression [138]. A Bayesian network

is a directed acyclic graph together with a joint probability distribution over a set of

random variables X = (x1, ..., xn). The vertices of the graph are the random variables

xi, while the edges reflect conditional dependencies between them. Mutagenetic trees are

restrictive instances of Bayesian networks where the graph is a tree and this readily enables

an evolutionary phlogenetic interpretation. We refer to [137] for a detailed treatment on

Bayesian networks.

A conjunctive Bayesian network (CBN) [139] is a specialization of Bayesian networks

specified by a set E of events, a partial order � on the events and parameters θe for each

event e. The relation e1 � e2 between events e1 and e2 indicates that e1 has to occur

before e2. In this case, e1 is also referred to as a parent of e2. The parameter θe represents

the conditional probability of event e occurring, given that all its parents have occurred.
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Figure 2.13. Continuous-time conjunctive Bayesian networks. (A) A poset of
events 1, 2, 3 and 4, (B) Average statistical waiting times to the different events in (A),
and (C) The genotype lattice induced by (A)

Continuous-time analogues of the CBN, termed continuous-time conjunctive Bayesian

networks (CT-CBNs) were introduced and used to model HIV mutational pathways [140].

These are more flexible than mutagenetic trees. See Figure 2.13 for an illustration. As

their name indicates, they are generalizations of CBNs to a state space consisting of times

of mutation events. A CT-CBN consists of a set E of events, a partial order � and rates

of fixation λe of each event e ∈ E . The data needed for estimation of such a model would

include the time of occurrence of the different mutations. Owing to the fact that that this is

rarely known from experiments (sets of mutations are observed to have occurred at points

where genotyping is performed, for example, while the occurrence of each mutation cannot

be tracked), censored formulations of the CT-CBN have also been studied (censored in the

23



sense that exact times of occurrence of mutations are not necessarily available) in [140].

A subset g ⊆ E of mutations is called a genotype. The genotype lattice, denoted by G
consists of all genotypes that are compatible with the order constraints of E . It defines the

subset of possible mutational pathways (see Figure 2.13 for illustration). Algebraically,

a genotype lattice is the distributive lattice of order ideals induced by the poset E (note

that, as is generally done, we slightly abuse notation here by subsuming both the set

and its partial order in E). The occurrence times of mutations is usually assumed to

follow independent exponential distributions. Further, the exponential waiting process

for a mutation is considered to start only after occurrence of all of its parent mutations

in the poset. Formally, for each mutation e ∈ E , a random variable Ze ∼ Exp(λe) can be

defined. This leads to a definition of the statistical waiting times Te,stat recursively as the

random variables

Te,stat = max
j∈pa(e)

Tj,stat + Ze, (2.10)

for each mutation e ∈ E . Here, pa(e) denotes the set of mutations that are parent to

mutation e in the poset E .

The parameters λe of the CT-CBN are estimated by EM-based algorithms and as

mentioned earlier, the censored nature of observations presents challenges. In the context

of HIV, genotyping is typically performed only after therapy failure and this precludes

the observation of the occurrence of each individual mutation. The sampling time Ts

is assumed to be exponentially distributed with Ts ∼ Exp(λs), and independent from

the poset. In this setting, if genotype g is observed, then Te,stat ≤ Ts for all e ∈ g and

Te,stat > Ts for all e /∈ g. Typically, one does not have access to λs and hence, in our work,

we considered only the relative time scales of appearance of the different mutations. This

was done by normalizing the statistical waiting times by the time to the fastest occurring

mutation.

2.5.3 Prediction of genotype-phenotype relationships

Current guidelines for HIV therapy clearly recommend resistance testing in both treatment

näıve patients and in patients with virological failure, regardless of the planned time for

initiation or change of therapy [141]. Resistance testing prior to treatment initiation is

also known to significantly improve the response to antiretroviral therapy [142]. The

resistance of HIV mutant genotypes can be quantified by measurements from phenotypic

replication assays or by empirical susceptibility scores assigned to results from genotyping

assays. While the former is a direct quantification, the latter is subject to interpretation.

Statistical learning techniques ranging from neural networks to decision trees have been

extensively used to predict genotype-phenotype maps [8, 143]. Some of these approaches

rely on classification of resistance levels into different drug-specific thresholds and predict

ranges of resistance. Owing to the inherent difficulty in determining such appropriate

cut-offs, support-vector machine based strategies and other regression techniques have

also been developed to enable direct quantitative prediction of phenotypic attributes like

resistance factors [144,145].

Isotonic regression techniques have recently been proposed to predict resistance factors
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from genotype-phenotype data [146]. Isotonic regression can be regarded as approximating

a series of observations by a non-decreasing function. Given a = (a1, ..., an) ∈ Rn and

associated positive weights w = (w1, ..., wn) ∈ Rn+, the task is to approximate a by y =

(y1, ..., yn) ∈ Rn subject to certain monotonic constraints of the form yi ≥ yj . Formally,

suppose E ⊂ {1, ..., n}2 is a set of all ordered pairs (i, j) corresponding to each constraint

yi ≥ yj , then the optimization problem

min
y

∑
i

wi · (yi − ai)2 w.r.t. y ∈ Rn

such that

yi ≥ yj , ∀ (i, j) ∈ E,

is referred to as isotonic regression. Here, E denotes the collection of constraints (if

E is empty, the problem reduces to ordinary regression). This is a convex quadratic

programming problem, and is tractable by standard numerical tools such as active-set

algorithms. The existence of a unique global minimum can also be demonstrated (see [147]

for example).

To amalgamate the prediction of resistance factors of the mutant genotypes into a

Bayesian network model, the notion of an isotonic conjunctive Bayesian network (I-CBN)

has been introduced [146]. For a fixed poset (E ,�) with an induced genotype lattice G,

the joint distribution of genotype-phenotype pairs (X, Y) is defined by the hierarchical

model

X ∼ CBN(E ,�, θ)

Y |{X = g} ∼ N (µg, σ
2), g ∈ G, (2.11)

where µg refers to the mean resistance factor of genotype g and σ2 is a constant variance in

the model. Here, Y |{X = g} are the conditional phenotypes (say Y = (yg) for a genotype

g) and these are assumed to be independent and normally distributed random variables.

Given the genotype lattice G of mutations represented by the CT-CBN, a resistance

factor RFg = µg is assigned to each genotype g. The estimation of the statistical models is

performed in two steps. For example, to model resistance accumulation under ZDV ther-

apy, in the first step, an I-CBN model is estimated using in vitro cross-sectional genotype–

phenotype observations (from the Stanford HIV Drug Resistance Database [148]) for treat-

ment regimens containing ZDV. The genotype–phenotype observations (1392, in number)

were restricted to the PhenosenseTM [149] or the AntivirogramTM [150] assays. The I-

CBN model includes a poset of mutations and the estimated resistance factors. In the

second step, based on the estimated poset, the fixation rate parameters λe of the CT-CBN

model are estimated from the cross-sectional genotype observations of the Stanford HIV

Drug Resistance Database by an EM-algorithm.

In practice, resistance factors are available for some genotypes from in vitro exper-

iments, but not necessarily for all genotypes of interest. Note that in the model, it is

assumed that resistance factors are non-decreasing over the genotype lattice in the di-
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rection of evolution. Due to this monotonicity assumption, the regression problem is

constrained, which serves as a means of regularization.

2.5.4 Prediction of treatment outcomes

The ultimate clinical goal is to identify an optimal salvage therapeutic regimen of drugs

to a patient who has failed treatment. This necessitates the ability to predict treatment

outcomes with different drug combinations, given information on phenotypic resistance,

data on viral load, CD4+ T-cells, past treatment history and other such measurable disease

markers. However, the multitude of drug combinations available makes the task of therapy

assessment by in vitro assays impossible.

To aid in quantifying genotypic resistance at failure and exploring salvage therapy

options, rule-based systems [132,151] have been devised, resulting in measures such as the

genotypic susceptibility score (GSS) [152]. The principle of GSS involves certain scores

being assigned to different resistance mutations present, and a net score is then calculated

for potential salvage therapy options, based on the current genotypic status of the patient.

Hence, this approach is based on the current genotype in the patient. Recent studies

have proposed the computation of a simplified individualized genetic barrier (IGB) that

additionally takes into account the risk to acquire additional mutations via viral escape

mechanisms [135]. The simplified IGB can also be computed for drug combinations and

performs statistically well in the prediction of treatment outcomes. There are several other

approaches that predict treatment outcomes by learning directly from large cohort data,

and a detailed overview is beyond our current scope. We refer to [153] for a discussion on

the benefits of such approaches, in general.

In summary, statistical models of mutation accumulation enable the understanding

of viral evolutionary pathways and have applications in predicting phenotypic attributes

of HIV such as resistance factors. They have also been profitably exploited to predict

treatment outcomes. Current interests focus on efficient means to tackle problems of

high dimensional data, and dealing with the combinatorial complexity in treatment pos-

sibilities. Studies on larger patient populations would strengthen the case of eventually

integrating these methods into clinical practice.
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Chapter 3

Fitness landscapes and evolution of HIV

In this chapter, we begin by briefly reviewing different notions of viral fitness, its the-

oretical and experimental measures and clinical relevance. We discuss some previous

work from literature towards quantifying viral fitness using mathematical and statistical

models. We then present an in vivo viral dynamics model, incorporating drug-specific

mutation schemes that have been learned statistically from clinical data. Our aim is to

estimate fitness characteristics from common cross-sectional clinical data by combining

statistical methods designed for such data with a mechanistic model of virus dynamics,

which explicitly accounts for viral fitness. This integration is achieved by (i) learning

drug-specific mutational pathways from cross-sectional in vivo data and modelling viral

infection dynamics on these genotype lattices, and (ii) by coupling the resistance factor, a

readily accessible in vitro measure of drug resistance, to drug efficacy and rate constants

of the virus-host dynamics in vivo.

Our model allows us to leverage sparse clinical data for the estimation of in vivo fitness

characteristics, which is a first step towards analyzing and ultimately predicting clinical

outcomes of drug combinations and assessing causes of therapy failure. To illustrate our

modelling approach, we estimate fitness characteristics of HIV mutant genotypes that

arise under treatment with two anti-retroviral drugs —zidovudine (a nucleoside reverse

transcriptase inhibitor) and indinavir (a protease inhibitor). We also examine the utilities

and limitations of such combined modelling approaches.

3.1 Viral fitness and its clinical relevance

3.1.1 Definitions of viral fitness and its quantifiers

From the perspective of evolutionary genetics, the fitness of an organism refers to its ability

to survive and reproduce in a biological environment [154]. The quasispecies theory [155]

of HIV postulates the existence of an ensemble of viral mutant genotypes at all times.

The fitness of a certain mutant may be quantified in different ways.

One widely used measure of viral fitness is the reproductive ratio R0 [118]. This

is defined as the expected number of newly infected cells arising from a single infected

cell in one cycle of replication. The notion of reproductive ratio has its origins in the

study of demographics [156] and has been widely used in epidemiology to quantify the

spread of diseases. For an infection to spread in a population of susceptible individuals,

it is necessary that R0 > 1. See [157] for a survey on the estimation, interpretation and

applications of the reproductive ratio.

In the context of HIV infection models, the reproductive ratio is a measure of whether
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the virus can establish an infection or not. For example, in the one-stage infection model

(Eq. 2.1, Chapter 2), the reproductive ratio can be derived [158], and is given by

R0 =
λTU · β ·N
δTU · δT∗ · CL

(3.1)

Recent studies have estimated an average reproductive ratio of 8.0 in the early expo-

nential infection phase of HIV-1 [158]. In a multi-strain infection model, the reproductive

ratio of a certain mutant serves as a quantifier of its fitness [159, 160]. Note that in

the context of such within-host models, R0 reflects the infection process within a single

individual, which is different from its role in characterizing epidemic spread [161].

Generalizations of the reproductive ratio, such as the reproductive capacity Rcap,

have also been used to characterize the fitness of a certain state of infection [7]. The

reproductive capacity Rcap(g) of a mutant genotype g can be interpreted as the total

number of infectious offsprings of genotype g produced in a cycle of replication, given the

current state of infection. Thus, it accounts for the contributions of different stages in

the viral life cycle towards the production of pathogenic offsprings. For example, in the

two-stage viral dynamics model (Eq. 2.3, Chapter 2), we have

Rcap,g =
∑
i

[
VI,g ·RV,g + T1,g ·RT1,g + M1,g ·RM1,g (3.2)

+T2,g ·RT2,g + M2,g ·RM2,g + TL,g ·RTL,g

]
.

Here, RT1,g, RT2,g, RM1,g, RM2,g, RTL,g and RVI,g are the reproductive ratios for the

species T1, T2, M1, M2, TL and VI respectively. See [7] for a derivation of the reproductive

capacity for the two-stage infection model. The reproductive number and reproductive

capacities can be very difficult to determine in vivo, but in vitro replication capacity

measurements are generally considered to be approximations to such quantities [162].

Another quantifier of viral fitness is the fitness cost, that was introduced earlier (see Eq.

2.8, Chapter 2). The fitness cost of a mutant genotype reflects the cost incurred by it in a

certain step of the viral life cycle, relative to the wild type. In this sense, it is a measure of

fitness at a more mechanistic level than the reproductive ratio or the reproductive capacity,

which can be regarded as downstream read-outs in the viral life cycle. Fitness costs at

such mechanistic levels have been measured by enzyme processivity assays [163,164].

3.1.2 Experimental techniques to quantify viral fitness

There are numerous in vitro assays and some in vivo techniques to assess viral replication

and fitness (see [165] for a review). This diversity in experimental techniques also implies

differences amongst the assay set-ups, and a debate on the interpretation of fitness read-

outs from such assays is still ongoing. Here, we list some of the common techniques and

present details of one specific assay that has been used extensively to measure replication

capacities in the data that we utilize.

Assays for viral fitness always compare the replication of a test strain (say, a mu-
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tant genotype) to that of a reference strain (for example, the wild type). Two types

of replication assays are well-known—parallel infection assays and growth competition

assays. Parallel infection assays [166, 167] employ different pools of susceptible cells to

assess replication of the test and reference strains, while growth competition assays [168]

involve infection of a single culture of susceptible cells by two competing strains. Growth

competition assays are generally preferred, in particular, when assessing small fitness dif-

ferences [169]. They also reduce the impact of environment variations and experimental

artifacts as the two strains are compared in the same culture. Fitness assays can also

be classified on the basis of whether replication is allowed for one or multiple cycles of

infection. Single cycle assays are shorter and less sensitive. The widely used commercial

Monogram Biosciences RC assay [149, 170] involves a single cycle of replication and gen-

erally employs an env -deleted HIV vector, resulting in viral progeny that are incapable of

further infection. Further variation amongst assays can arise from the type of susceptible

cells used for infection ranging from cell-lines to human peripheral blood mononuclear

cells and the impact of this has also been studied (see [171], for example). In growth-

competition assays, several methods are available to distinguish the reference and test

strains, including heteroduplex tracking assays [172] and real-time polymerase chain re-

action (RT-PCR) based assays [170,173].

The Monogram Biosciences RC assay, a modification of the PhenoSense resistance as-

say has been widely used to determine replication capacity of HIV mutant strains isolated

from patients. We briefly outline its features here, since the fitness data that we compare

our results to, are either determined directly using this assay, or some modification of it.

We refer to [149] for a detailed description of the assay.

First, the viral RNA is purified from the patient plasma sample and then the protease,

reverse-transcriptase (first 313 codons) and 3’-end of gag region are isolated and ampli-

fied using RT-PCR. The patient-derived sequence is cloned into a vector that contains a

luciferase (luc) reporter gene, and then transfected into a mammalian cell-line, together

with a plasmid that contains a gene coding for an amphotropic-murine leukemia virus

envelope (A-MLV env). This results in the production of a pool of infectious patient-

derived recombinant viruses. The pool of viruses is then used to infect a cell-line and

viral replication is quantified by assaying for expression of luc. Only a single round of

infection is possible, since the recombinant viruses lack an envelope protein. The assay

does suffer from limitations. The use of an A-MLV envelope instead of that of HIV-1

could potentially influence replication rates. Additionally, recent studies on protease in-

hibitor resistant mutations have pointed out consequences of the inability of this assay to

assess the impact of mutations in the env region [92]. Nevertheless, the assay has been in

widespread use owing to its commercial availability.

Other techniques, such as the rapid cell turnover assay [174], are also used in practice

to assess viral replication. Though a detailed discussion on the different assay techniques

is not the focus here, we note the impact of variability present in literature, as regards

fitness estimates.

29



3.1.3 Clinical relevance

While replication capacity measurements from in vitro assays approximately reflect fitness

characteristics of mutant genotypes, their in vivo relevance is not well-understood. Recent

theoretical studies have indicated that predicted replicative capacities have a significant

correlation with the viral load, a known surrogate marker of disease progression [175].

Clinical investigations [176,177] have demonstrated inverse correlations of baseline CD4+

T-cell count with replication capacities. Disease progression monitoring in patient cohorts

has also suggested a correlation between viral load and replication capacities [178]. An

analysis of viral load data from the Study of the Consequences of the Protease Inhibitor

Era (SCOPE) in patients undergoing antiretroviral therapy showed that viral isolates

from individuals with suppressed viral loads had reduced replicative capacities [179]. In

the context of selection of treatment options, certain mutations such as the lamivudine re-

sistant 184V are known to increase susceptibility to other nucleoside reverse transcriptase

inhibitors and the benefits of taking advantage of this fact have been acknowledged [180].

Alternatives proposed for virological control have included the intentional use of sub-

optimal drug regimens to maintain a low-fitness variant [181], although the escape of such

a variant to a fitter genotype is a constant threat.

Using mutagenic molecules to drive HIV mutation rates beyond a certain error thresh-

old has been a topic of interest, and the antiviral potential of such agents has been

demonstrated [182]. The postulation of an error catastrophe had its beginnings in the

concept of viral quasispecies [183], wherein the viral replication mechanism is destroyed

when the mutation rates are increased beyond a certain threshold. Recent simulation-

based studies have also provided estimates of the error threshold to be within 2-6 times of

the natural mutation rate, suggesting a high susceptibility of the virus to such mutagenic

drugs [184]. Conceptually, exploiting the idea of an error catastrophe relies on trapping

the viral quasispecies ensemble in a fitness valley. Better characterizations of evolutionary

trajectories and fitness landscapes of HIV may thus aid in investigating the mechanisms

of such novel therapeutic strategies.

Another realm where HIV fitness comes into play is the transmission of drug-resistance

mutations. The transmission of HIV is a complex process and its success depends on

several factors including the abundance of mutations in blood and/or genital secretions.

However, it was earlier observed that only about 8-10% of known drug resistant mutations

were identified in treatment näıve patients. This, along with other evidence from surveil-

lance studies of newly-infected patients, led to the hypothesis that a reduced fitness of

drug-resistant mutations lowered their rates of transmission. However, some recent stud-

ies have suggested a hidden epidemic of transmitted resistance—drug resistant mutations

with low fitness costs, such as the thymidine analog mutation 70R can reach self-sustaining

levels in certain communities [185].

In summary, replicative capacities and other measures of fitness have shown clinical

significance and more studies are needed to dissect the complex and confounding factors

affecting in vivo fitness of HIV.
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3.2 Viral fitness in mathematical models

3.2.1 Statistical models to predict fitness characteristics

Early work characterizing fitness of HIV mutant genotypes using experimental techniques

[168, 186] resorted to simple methods of quantifying fitness differences. Typically, the

ratio of two mutant genotypes of interest was plotted logarithmically against time and the

fitness was read off from the slope. That is, if WT(t) and M(t) represented the wild type

and mutant population over time t, then

log
M(t)

WT(t)
= log

M(0)

WT(0)
+ t · logF (3.3)

where, F denotes the fitness difference between the mutant and the wild type. Clearly, this

yields only the absolute fitness difference between the two variants, and not the relative

fitness ratio. A major assumption underlying the derivation of Eq. (3.3) is that the rates

of replication of the competing strains are constant in time. This is often violated both

in vitro and in vivo. Consequently, Marée et al [187], and later Bonhöffer et al [188]

developed a growth-corrected method to estimate relative fitness ratios from time-course

data. The growth-corrected method also circumvents the need for an estimate of the

generation time in vitro. This method has since been also used in in vivo estimations of

fitness measures from experimental data [189,190].

Recent work has enabled prediction of replication capacities from large-scale in vitro

data. Hinkely et al [162] used a generalized kernel ridge regression approach to fit data

from 70,081 virus sample measurements of replication capacities. Briefly, the fitness func-

tion used accounted for main effects due to mutations and two-point epistatic interactions.

logWs = I +
∑
ij

Mij · sij +
∑
ijkl

Eij,kl · sij · skl, (3.4)

where Ws denotes the replication capacity of viral sequence s, I denotes the intercept, i.e,

the replication capacity of the reference strain, Mij is the main effect on fitness of allele j

at position i, Eij,kl is the epistatic effect on fitness that allele l at position k has on allele

j at position i and sij denotes the presence (sij = 1) or absence (sij = 0) of allele j at

position i. Strong epistatic interactions, particularly intragenic epistasis, were found to

exist in the HIV-1 protease and reverse transcriptase fitness landscapes. This work also

led to the observation that predicted replicative capacities correlated well with viral load

measurements and thus have a clinical significance [175].

Statistical models utilizing information-theoretic techniques and decision trees [8] have

been used to establish genotype-phenotype correlations and to estimate phenotypic at-

tributes such as resistance factors from genotype data and partially observed phenotypes.

More recently, isotonic regression methods have also been used to predict resistance fac-

tors [146].
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3.2.2 Estimating in vivo fitness parameters

Most experiments measuring viral fitness characteristics are performed in vitro. Clearly,

the complex within-host environment that the virus is exposed to, is different from labora-

tory cell-cultures. The fitness of a HIV-1 variant within the host is subject to a multitude

of selection pressures and depends on the genetic background, immune control [191], fluc-

tuating drug concentrations [192] and target cell availability [193] amongst others, that

cannot be wholly mimicked in vitro.

Although less numerous, there are studies using viral dynamics models that have es-

timated fitness costs in vivo of HIV mutant genotypes. Goudsmit et al [194] deduced a

broad spectrum of in vivo fitness costs for mutations at codons 41 and 215 in the RT

region of HIV-1. Devereux et al [195] monitored genotypic evolution of the viral popu-

lation in eleven patients undergoing treatment interruption after NRTI and PI therapy,

and estimated fitness costs of different mutations based on their rates of disappearance.

The mutations 184I and 184V confer resistance to lamivudine and Frost et al [193] used

viral load data from lamivudine monotherapy in conjunction with a simple mathematical

model to estimate relative fitness costs of the two mutant genotypes. More recently, [196],

while investigating increasing CD4+ T-cell levels with almost constant viral load after

therapeutic failure, estimated in vivo fitness cost of 38A, a mutation in the Gp41 region

of HIV-1, that leads to resistance to the fusion inhibitor enfuvirtide.

Investigations of large scale in vivo fitness landscapes have also been performed [197].

These rely on sequence information derived from patient cohorts and first predict the

evolutionary paths of mutations. Next, they assume a fitness function and estimate its

parameters from the cross-sectional sequence data.

In summary, while mathematical models have been developed to predict replicative

capacities from in vitro data, and at times to also estimate in vivo fitness measures from

detailed viral load measurements, there is a lack of knowledge on fitness costs of mutations,

resistance and the complex interplay between the two in an in vivo context. Further, the

sparsity of cross-sectional clinical data is a severe limitation to more detailed models.

3.3 Development of a viral dynamics model with in vivo

drug-specific mutation schemes

Motivation

As discussed in Chapter 2, mathematical models of in vivo viral infection dynamics and

statistical mutation models have both provided critical insights into HIV-1 disease and

therapy. However, the utility of the former in studying the emergence of drug-specific

mutations and resistance, is limited by the availability of realistic mutation landscapes.

Existing approaches typically use mutation schemes that are unspecific for the drug or

coarse-grained [198–200]. On the other hand, statistical models of mutational pathways

do not integrate details of the viral infection dynamics and the specific actions of different

drug classes. In viral mutational landscapes, the path to resistant mutants that fixate
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and eventually cause therapy failure typically consists of several intermediate mutants.

Understanding the accumulation of mutations and associated genotypic and phenotypic

changes is critical for prediction of treatment failure and selection of optimal patient-

specific treatments [201]. Additionally, it has been observed that models incorporating

quasispecies distributions of HIV-1 mutants can lead to a different qualitative behaviour

than what would be expected from simplified mutation models [202].

Attempts to estimate fitness parameters in an in vivo setting [193, 196] have relied

mainly on detailed time course measurements of different mutant strains, which is a severe

limitation in the most common situation of sparse data collected during routine clinical

diagnostics. Thus, there is a definite need for an approach that combines the merits of the

mechanistic and statistical approaches, to estimate viral fitness characteristics, and better

understand the dynamics of mutation accumulation during anti-retroviral treatment.

Model description

We described in vivo viral infection dynamics by extending the two-stage model (Eq. 2.3,

Chapter 2 and presented in detail in [203]) for multiple mutant genotypes. The model

allowed for integrating drug-specific mutation schemes and the actions of all approved

antiretroviral drug classes including reverse transcriptase inhibitors, protease inhibitors

and integrase inhibitors. Since mutations are primarily a result of error-prone reverse

transcription [62], both forward and backward mutations were considered. The average

error rate in viral reverse transcription is about µ = 3 · 10−5 mutations per nucleotide per

cycle of replication; and two-thirds of these mutations are known to be base-pair substi-

tutions [62]. In agreement with [200], we used the following nucleotide-specific mutation

rates: for a G → A nucleotide change, we set a mutation rate of µ1 = 1 · 10−5 (because

about half of the base-pair mutations are of this type [62]), for mutations involving nu-

cleotide changes A → G, we used a lower rate of µ2 = µ1/2, and for transversion and

other mutations (involving a change from a purine to a pyrimidine or vice-versa), we set

µ3 = µ1/10.

The system of ODEs governing the viral dynamics model with the integrated mutation

scheme was given by:
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d

dt
TU = λTU − δTU · TU +

∑
g∈G

δPIC,T · T1,g −
∑
g∈G

βT,g ·VI,g · TU

d

dt
MU = λMU − δMU ·MU +

∑
g∈G

δPIC,M ·M1,g −
∑
g∈G

βM,g ·VI,g ·MU

d

dt
T1,g = βT,g ·VI,g · TU−

(
δT1 + δPIC,T + kT,g

)
·T1,g

d

dt
M1,g = βM,g ·VI,g ·MU−

(
δM1 + δPIC,M + kM,g

)
·M1,g

d

dt
T2,g =

∑
g′∈G

(1− p) · kT,g′ · T1,g′ · rg′→g + α · TL,g − δT2 · T2,g

d

dt
M2,g =

∑
g′∈G

kM,g′ ·M1,g′ · rg′→g − δM2 ·M2,g

d

dt
TL,g =

∑
g′∈G

p · kT,g′ · T1,g′ · rg′→g − α · TL,g − δTL · TL,g

d

dt
VI,g = NTI,g · T2,g + NMI,g ·M2,g−

[
CLV+

(
CLT,g + βT,g

)
TU +(

CLM,g + βM,g

)
MU

]
·VI,g

d

dt
VNI,g = NTNI,g · T2,g + NMNI,g ·M2,g − CLV ·VNI,g

where the subscript g refers to a mutant genotype g from the genotype lattice G. The

poset genotype lattice G and the underlying poset E and resistance factors used were

were obtained from continuous-time conjunctive Bayesian network and isotonic regression

models, as described in Chapter 2. This statistical component of the model was imple-

mented in collaboration with co-authors of [203]. We modelled mutations as occurring

between stages T1 and T2 of the infection cycle. We embedded the genotype lattice G
into the system of ODEs and enabled mutation reactions compatible with G. In line with

the genotype lattice, we only considered mutation events between genotypes g′ and g that

differed by a single amino acid. The probability rg′→g of such a single amino acid mutation

to occur per replication cycle was classified into amino acid mutations requiring a single

underlying base pair mutation and those requiring two underlying base pair mutations:

rg′→g =

µ ; single underlying base pair mutation

1
2µ ; double underlying base pair mutation

(3.5)

For a background on this assumption and for further details on parameterization,

we refer the interested reader to [203]. For the drug action, we assumed that reverse

transcriptase inhibitors such as ZDV inhibit the infection rates βT, βM and the rates of

clearance due to unsuccessful infection CLT and CLM, while protease inhibitors such as

IDV inhibit the viral production rates NTI and NMI.

Drug-effects and fitness costs were incorporated into the appropriate reaction rates as

explained in Chapter 2. In the absence of drug (i.e., ε = 0), resistance plays no role and
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it is clear that the wild type would eventually outcompete the mutant. In the presence of

drug, the fitness of a mutant genotype g depends on the dynamic interplay between the

two factors: the fitness cost sg and the resistance factor RFg. We quantified the overall

fitness of a mutant genotype g relative to the wild type by the selective advantage (similar

to [204]) as

SAg =
(1− sg) · (1− γεgεg)

(1− swt) · (1− γεwtεwt)
(3.6)

with swt = 0 by definition. We refer to Eqs. (2.4)–(2.8), Chapter 2 for descriptions of

γεg , γεwt , εg and εwt. If SAg > 1, the mutant g has a replicative advantage over the wildtype

in the presence of drug.

To quantify epistatic interactions between mutations, we defined an epistatic coefficient

Eij,D between mutations i and j in an environment with drug D (D = Φ denotes the

absence of drug), as follows.

Eij,D = SAavg,ij · SAwt − SAavg,i · SAavg,j (3.7)

where, SAavg,ij denotes the average selective advantage of all mutant genotypes contain-

ing both mutations i and j, SAavg,i denotes the average selective advantage of mutant

genotypes containing mutation i, but not mutation j, and SAavg,j denotes the average

selective advantage of mutant genotypes containing mutation j, but not mutation i.

Estimation of fitness characteristics

Having specified the parameters of the two-stage dynamical model of viral infection, a

mutation landscape of genotypes, resistance factors and drug efficacies, the only unknown

parameters of the model were the fitness costs of the different genotypes. These unknown

parameters were estimated by comparison of predicted mechanistic waiting times (based

on the mechanistic model of viral infection dynamics) to the statistical waiting times (Eq.

2.10, Chapter 2). We linked the statistical point of view in terms of mutations and the

mechanistic point of view in terms of mutant genotypes as follows.

A given mutant genotype g ∈ G ⊂ 2E was defined as the set of all mutations e ∈ E that

are manifested in g. We defined the mechanistic waiting time Te,mech for each mutation

e ∈ E , as the earliest time, at which the following two criteria were satisfied: (i) all the

mutant genotypes containing the mutation e together constituted at least 20% of the total

viral population Vtot; the 20% detection threshold reflects the limitations of the genotyping

assay [205]; and (ii) the total viral load was greater than a typical detection limit L =

500 copies/ml of viral RNA, that enables genotyping [206]. This resulted in the following

definition of the mechanistic waiting time of mutation e:

Te,mech = inf

t ≥ 0 :
∑

g∈G;e∈g
Vg(t) > 0.2 · Vtot(t) and Vtot(t) > L

 . (3.8)

As discussed in Chapter 2, the average waiting times computed from the statisti-

cal model Te,stat are dependent on the sampling rate λs, to which we typically do not
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have access. As a solution to this problem, we compared only the relative time scales

of appearance of the different mutations. This was done by normalizing the statistical

waiting times by the time to the fastest occurring mutation, and then comparing these to

correspondingly normalized mechanistic waiting times.

For simulations of the mechanistic viral dynamics model under therapy, we first per-

formed a pre-treatment steady state computation to estimate levels of different mutants at

the onset of therapy. All model simulations were performed with MATLABTM R2010b.

For estimation of fitness costs, we used the MATLABTM optimization function fmin-

searchbnd that is based on the Nelder-Mead simplex direct search algorithm [207] to

perform the constrained least-squares estimation

min
s∈[0,1]|G|

∑
e∈E

(E[Te,stat]− Te,mech)2, (3.9)

where Te,mech depends on the fitness costs s = (sg)g∈G via the system of ODEs specifying

the viral dynamics. Fitness costs sg with g ∈ G were then defined as the solution of

eq. (3.9). Note that in addition to the constraints on fitness costs, the mechanistic waiting

times are also subject to the order constraints imposed by the structure of the mutation

poset. Further refinement of the optimization was carried out by simulated annealing. To

examine the relevance of parameter identifiability, we performed 500 rounds of estimation

and analyzed our results on an ensemble of fits instead of one best fit. The robustness of

parameter estimation and techniques to alleviate this issue in our setting are detailed in

Chapter 6 of this thesis.

3.4 Estimation of fitness landscapes of HIV mutants under

zidovudine therapy

We used the partially ordered set (poset) of mutations (Figure 3.1A) associated with

resistance to zidovudine (ZDV) and the corresponding genotype lattice (Figure 3.1B) that

were estimated from the Stanford HIV Drug Resistance Database [148]. The poset and

the rates of fixation λe (Table 3.2) for each mutation were estimated by a continuous-time

conjunctive Bayesian network (CT-CBN). The resistance factors of the mutant genotypes

were learned using isotonic conjunctive Bayesian network (I-CBN) models. The poset of

mutations reflected clustering along the well-known thymidine analog mutations (TAM)-1

and -2 mutation pathways.

3.4.1 Fitness costs, resistance factors and selective advantages

We focussed on the key thymidine-analog mutations (TAMs) that arise under ZDV monother-

apy: 41L, 67N, 70R, 210W, 215Y and 219Q. The mutations are classified intoTAM-1 (41L,

215Y, 210W) and TAM-2 (67N, 70R, 219Q) mutants [208, 209] and two mixed mutants

(with cross-TAM profiles). Mixed mutants are observed to generally occur with a lower

frequency [210]. We used a drug efficacy of εwt = 0.75 on the wild type (corresponding

to a drug concentration of 3 times the IC50wt) to illustrate our results. This value was
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Figure 3.1. Partially ordered set (poset) and induced genotype lattice for
mutations associated with resistance to ZDV. A. Poset of resistance development
to ZDV. Vertices represent mutations and directed edges represent the order constraints
of mutation accumulation. We observe the clustering of thymidine analog mutations
(TAMs) along the two classical TAM-1 and TAM-2 pathways that is well-known under
ZDV therapy [208, 209]. The left arm of the poset (mutations 41L, 215Y and 210W) is
the TAM-1 pathway, while the right arm (mutations 67N, 70R and 219Q) is the TAM-2
pathway. B. Genotype lattice of mutants induced by the poset of mutations in A. The
vertices represent the genotypes that are compatible with the poset in A. Predicted levels
of phenotypic resistance are color-coded (green, fully susceptible; red, highly resistant).

chosen to match average nadir values in viral load after ZDV monotherapy (a drop of ∼1

log unit from baseline, within 7–10 days of therapy and a nadir at ∼3 weeks) [211].

The estimated fitness costs and selective advantages (Table 3.1 and Figure 3.2) were

in excellent agreement with established knowledge from several in vitro assays and some

in vivo observations. The mechanistic predicted waiting times also had a high and sta-

tistically significant correlation (r=0.995, p<0.05) with the statistical waiting times (Ta-

ble 3.2). Our estimates of fitness costs were within general reported ranges of (0.1− 0.4)

[159, 186, 196, 212]. Additionally, we also agreed with observations on fitness characteris-

tics of specific mutant genotypes. For example, it is well known that the addition of the

210W mutation into a {41L, 215Y} backbone has opposing effects on fitness depending on

the presence or absence of ZDV. In the absence of ZDV, the triple mutant {41L, 210W,

215Y} has been observed to be less fit than {41L, 215Y}, while the introduction of ZDV

causes a reversal, i.e., the triple mutant becomes fitter than the double mutant [213,214].

This was well-reflected in our estimates (Table 3.1). We observed that this reversal in

fitness upon adding ZDV is because of the higher fitness cost of the triple mutant being

more than offset by the resistance acquired in the presence of drug. This can be seen

by comparing the selective advantages and fitness costs for the corresponding double and
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Figure 3.2. Fitness costs, resistance factors, and selective advantages of mu-
tants arising under ZDV therapy. A. Estimated fitness costs (normalized by setting
fitness cost of wild type to 0), B. Resistance factors (normalized by setting resistance
factor of wild type to 1), on a logarithmic scale, and C. Estimated selective advantages
(normalized by setting selective advantage of wild type to 1) of ZDV mutants . In A,
B and C, the x-axis depicts the number of mutations. The TAM-1 mutants (joined by
blue solid lines) are to the left and TAM-2 mutants (joined by red solid lines) are to the
right of the wild type. The mixed mutants (joined by black solid lines) are to the left of
the TAM-1 mutants. The TAM-1, TAM-2 and mixed mutants are separated by vertical
dashed lines.

triple mutants in the TAM-1 pathway (Figure 3.2).

TAM-1 mutations are known to occur at almost double the frequency of TAM-2 mu-

tations [215]. This difference was reflected in our results by mutants containing TAM-1

mutations having lower fitness costs than those containing TAM-2 mutations. Addi-

tionally, we also observed that the selective advantages of TAM-1 mutants is higher, on

average, than their TAM-2 counterparts. This is also in concordance with observations

that TAM-2 mutations accumulate only after much longer durations of monotherapy with

ZDV [210].

The presence of 41L together with 215Y is a strong predictor of virological failure

in patients on ZDV monotherapy [216]. We estimated a low fitness cost for this TAM-1

double mutant and also observed the presence of these two mutations in mutant genotypes

contributing to therapy failure.

Our estimated fitness costs are also supported by other in vitro investigations on the

order of fitness values, such as the TAM-1 triple mutant {41L, 210W, 215Y} being fitter

than its TAM-2 counterpart [186] and the TAM-2 double mutant {67N, 70R} being less fit

than the single mutant {67N} [217]. Notably, we concurred with the observation in [217]

that the occurrence of 70R in a 67N or {67N, 219Q} backbone has a significant cost.

Further, our model also allowed us to quantify epistatic interactions (Eq. (3.7)) be-

tween different mutations. We observed predominantly positive epistatic interactions in

fitnesses, with the absence of drug, while the introduction of ZDV resulted in small, but

negative epistatic coefficients (Table 3.3). Epistasis in HIV fitness landscapes has been

a topic of considerable debate [218–220]. There is evidence of positive epistasis at least

in vitro, especially in a drug-free environment [218]. Recent work, however, has shown
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Table 3.1. Estimated fitness costs for ZDV mutants.

Mutant log RF Fitness cost Comment

WT 0 0 Wild type
{67N} 0.28 (0.15, 0.49) 0.17 (0.14, 0.24) TAM-2
{67N, 70R} 0.79 (0.59, 0.99) 0.29 (0.27, 0.36) TAM-2
{67N, 70R, 219Q} 1.03 (0.95, 1.11) 0.23 (0.18, 0.30) TAM-2
{41L} 0.32 (0.18, 0.52) 0.25 (0.17, 0.34) TAM-1
{41L, 215Y} 0.60 (0.53, 0.65) 0.08 (0.07, 0.11) TAM-1
{41L, 210W, 215Y} 1.04 (0.95, 1.09) 0.20 (0.16, 0.26) TAM-1
{41L, 67N, 210W, 215Y} 1.35 (1.30, 1.42) 0.07 (0.05, 0.08) Mixed
{41L, 67N, 70R, 210W, 215Y, 219Q} 2.40 (1.73, 2.79) 0.06 (0.04, 0.07) Mixed

Estimated resistance factors (on a logarithmic scale, log RF, column 2) and fitness costs
(column 3) of TAM-1 and TAM-2 mutants and two mixed mutants arising during ZDV
therapy. In parentheses, are the 95% confidence intervals for the estimates obtained from
200 bootstrap samples.

that the buffering effect of such epistasis on acquisition of mutations, is only minimal, and

moreover, in the presence of drug, epistasis changes in sign to being mildly negative [171].

The importance of the fitness ranking of different mutant genotypes on epistasis and its

relevance is also stressed. More large-scale studies are needed to better assess the magni-

tude and relevance of epistasis. Though for a small subset of mutations, our results are a

step in this direction.

3.4.2 Mutational abundance, competition and rebound

In addition to estimated fitness characteristics, the viral load time courses predicted by

our model gave insights into the dynamics of different mutations. In the TAM-2 pathway,

we observed a transient disappearance of mutations 70R and 219Q before their eventual

fixation. Interestingly, such behaviour has been reported earlier [221] for the mutation

70R. This phenomenon is attributed to the competition between TAM-1 and TAM-2

mutations: the mutation 70R appears initially and is then outcompeted by 215Y. 70R

later fixates in the population after being associated with 67N and other TAM-1 mutations

(Figure 3.3C).

Further to this observation, since our model included the different mutant genotypes,

we could readily resort to dissecting their contribution to the appearance and disappear-

ance of underlying mutations. Interestingly, unlike 70R, the TAM-1 mutations desist from

exhibiting such behaviour and have a more direct route to fixation (Figure 3.4). This is

due to the longer persistence of ‘pure’ TAM-1 containing mutant genotypes, partly owing

to their low finess costs.

Our results were also in agreement with an earlier study [200] where a mechanistic

modelling approach was used to fit drug efficacy and fitness parameters to clinically ob-

served mutant data under zidovudine and lamivudine therapy. As observed in this study,

the lack of adequate suppression of the wild type strain contributes significantly to the

initial rebound in the viral load. In this scenario, the wild type strain initially rebounds
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Table 3.2. Statistical and mechanistic waiting times to observe mutations
under ZDV therapy.

Mutation
(e)

Normalized statistical
mutation rates (λe/λs)

Statistical average
waiting times

Mechanistic wait-
ing times

41L 0.81 (0.73, 0.88) 1.00 1.00
67N 0.73 (0.68, 0.82) 1.10 1.10
70R 0.75 (0.63, 0.87) 2.18 2.26
210W 4.11 (3.29, 4.96) 1.28 1.29
215Y 9.19 (6.50, 17.17) 1.08 1.01
219Q 5.14 (3.77, 8.80) 2.34 2.26

The statistically estimated rates of occurrence of different mutations (column 2) with
95% confidence intervals in parentheses, the average statistical waiting times (column 3)
and the corresponding mechanistic waiting times (column 4) to observe mutations at the
different positions under ZDV therapy. The average statistical and mechanistic waiting
times are calculated as described in Sections 2.5.2 (Chapter 2) and in the previous
section of the current chapter. Both waiting times are expressed relative to the time to
the fastest occurring mutation.

Table 3.3. Estimated epistatic coefficients for mutations under ZDV therapy.

Mutations (i,j) Epistatic coefficient
in the absence of
drug(Eij,Φ)

Epistatic coefficient
in the presence of
ZDV(Eij,ZDV)

(41L, 67N) 0.30 0.001
(41L, 70R) 0.31 -0.07
(41L, 219Q) 0.28 -0.1
(67N, 210W) 0.32 -0.06
(67N, 215Y) 0.27 -0.04
(70R, 210W) 0.30 -0.15
(70R, 215Y) 0.28 -0.12
(210W, 219Q) 0.27 -0.19
(215Y, 219Q) -0.63 -0.71

Estimated epistatic coefficients of fitness amongst mutations in the absence and presence
of ZDV.

leading to virological failure and then later declines after being out-competed by the mu-

tants (Figure 3.5A). In comparison to [200], our model incorporates detailed drug-specific

mutation pathways. Furthermore, it relies only on sparse clinical data, as opposed to

extensive viral load measurements.

To study how the fitness of the viral population changes over time during the course of

treatment, we computed the total replicative fitness Frel(t) of HIV-1 under ZDV monother-

apy as follows.

Frel(t) =

∑
g

Vg(t) · SAg∑
g

Vg(t = 0)
(3.10)
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Figure 3.3. Abundance of the 70R mutation and mutant genotypes with 70R
under ZDV therapy. A. Absolute abundance (in numbers) of the 70R mutation. B.
Relative abundance of the 70R mutation in the viral population. The transient appearance
and eventual fixation of the mutation 70R can be seen. C. Absolute abundance (in
numbers) of mutant genotypes containing the mutation 70R. The absolute abundance of
a certain mutation is calculated by adding all mutant genotypes containing the mutation.
The mutant genotypes shown are the TAM-2 double (red) and triple (green) mutants, and
the mixed and sextuple (black) mutants.
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Figure 3.4. Abundance of the 215Y mutation and mutant genotypes with
215Y under ZDV therapy. A. Absolute abundance (in numbers) of the 215Y muta-
tion. B. Relative abundance of the 215Y mutation in the viral population. C. Absolute
abundance (in numbers) of mutant genotypes containing the mutation 215Y. The absolute
abundance of a certain mutation is calculated by adding all mutant genotypes contain-
ing the mutation. The mutant genotypes shown are the TAM-1 double (red) and triple
(black) mutants, and the mixed quadruple (green) and sextuple (blue) mutants.

The viral population has two means of increasing its total fitness—by increasing the

viral load or by selecting mutant genotypes with a higher selective advantage. Figure 3.5B

captures both these influences. We noted that in spite of the early rebound and a rather

poor antiviral effect, the initial ‘hit’ phase lasting until about 3 weeks succeeds in reducing

the fitness of the population to ∼10% of the pre-treatment value (Figure 3.5B). We also

observed how the viral population continues to evolve even well after the total viral load

has attained its set-point level upon failure (after ∼ 150 days. This also re-iterates the

importance of treatment changes being effected at the right time after (or even before!)

the detection of failure [122].
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Figure 3.5. Total viral load and total relative fitness under ZDV therapy. A.
The total viral load (solid blue line) and the wild type population (dashed blue line)
are plotted against time in days. B. The total relative fitness of the viral population
(calculated from Eq. (3.10)).

3.5 Estimation of fitness landscapes of HIV mutants under

indinavir therapy

We again used the the poset (Figure 3.6A) and genotype lattice (Figure 3.6B) of mutations

associated with resistance to indinavir (IDV), a protease inhibitor estimated from the

Stanford HIV Drug Resistance Database [148], and the corresponding resistance factors

of IDV mutants predicted by isotonic regression. We focussed on the five mutations

46I, 54V, 71V, 82A, and 90M. Four of these (46I, 54V, 82A and 90M) are among the

most frequent primary (major) mutations reported in the Stanford HIV Drug Resistance

Database under IDV therapy [148].

We chose 71V to represent a common secondary (minor) mutation to study possible

compensatory fitness effects. We used a drug efficacy εwt = 0.90 on the wild type to

illustrate our results. This value was chosen to match average nadir values in viral load

after IDV monotherapy (a drop of ∼1–1.5 log units within 3–4 weeks of therapy) [97,222].

The estimated fitness costs, resistance factors and selective advantages (Table 3.4 and

Figure 3.7) agreed well with reported experimental findings. As with ZDV, the mechanistic

predicted waiting times also had a high and statistically significant correlation (r=0.9995,

p<0.05) with the statistical waiting times (Table 3.5). In general, we observed that early

mutations have a high fitness cost, while the accumulation of further mutations succeeds

in compensating almost entirely for this loss in fitness (Figure 3.7A). This is in agreement

with clinical observations that mutations selected early during therapy with protease in-

hibitors cause impaired protease function and that subsequent accumulation of mutations
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Figure 3.6. Partially ordered set and induced genotype lattice for mutations
associated with resistance to IDV. A. Poset of the continuous time conjunctive
Bayesian network for resistance development to IDV. B. The genotype lattice of mutants
induced by the poset in A. The vertices represent the genotypes that are compatible with
the poset in A. The predicted levels of phenotypic resistance are color-coded (green= fully
susceptible, red = highly resistant).

Table 3.4. Estimated fitness costs for IDV mutants.

Mutant log RF Fitness cost Type

WT 0 0 Wild type
{90M} 0.59 (0.56, 0.72) 0.36 (0.33, 0.38) Single point (M)
{71V} 0.32 (0.26, 0.48) 0.45 (0.38, 0.50) Single point (m)
{46I, 90M} 1.28 (1.26, 1.37) 0.66 (0.56, 0.70) Double (MM)
{71V, 90M} 1.08 (1.04, 1.18) 0.31 (0.29, 0.34) Double (mM)
{54V, 71V} 1.29 (1.26, 1.37) 0.49 (0.47, 0.54) Double (Mm)
{71V, 82A} 1.29 (1.26, 1.37) 0.42 (0.39, 0.44) Double (mM)
{54V, 71V, 82A} 1.29 (1.26, 1.34) 0.58 (0.53, 0.71) Triple (MmM)
{54V, 71V, 90M} 1.52 (1.35, 1.64) 0.28 (0.26, 0.34) Triple (MmM)
{71V, 82A, 90M} 1.52 (1.45, 1.64) 0.39 (0.32, 0.42) Triple (mMM)
{46I, 71V, 90M} 1.28 (1.26, 1.34) 0.44 (0.41, 0.47) Triple (MmM)
{54V, 71V, 82A, 90M} 1.52 (1.45, 1.64) 0.28 (0.22, 0.32) Quadruple (MmMM)
{46I, 71V, 82A, 90M} 1.67 (1.57, 1.74) 0.31 (0.28, 0.33) Quadruple (MmMM)
{46I, 54V, 71V, 90M} 1.67 (1.65, 1.74) 0.15 (0.12, 0.17) Quadruple (MMmM)
{46I, 54V, 71V, 82A, 90M} 1.67 (1.65, 1.74) 0.04 (0.03, 0.05) Quintuple (MMmMM)

Estimated resistance factors (on a logarithmic scale, log RF, column 2) and fitness costs
(column 3) of mutants arising during IDV therapy. In parentheses, are the 95%
confidence intervals for the estimates obtained from 200 bootstrap samples. Mutant
types (column 4) are encoded by one ’M’ for each major mutation and one ’m’ for each
minor mutation in the genotype.
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Figure 3.7. Fitness costs, resistance factors and selective advantages of mu-
tants arising under IDV therapy. A. Estimated fitness costs (normalized by setting
fitness cost of wild type to 0), B. Resistance factors, on a logarithmic scale (normalized
by setting resistance factor of wild type to 1), and C. Estimated selective advantages
(normalized by setting selective advantage of wild type to 1) of IDV mutants. In A, B
and C, the x-axis depicts the number of mutations. Black crosses represent the values for
the different mutant genotypes, while the blue solid line represents the average of fitness
costs, resistance factors and selective advantages across all mutant genotypes with a given
number of mutations.
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Figure 3.8. Total viral load and total relative fitness under IDV therapy. A.
The total viral load (solid blue line) and the wild type population (dashed blue line)
are plotted against time in days. B. The total relative fitness of the viral population
(calculated from Eq. (3.10)).

compensates for this fitness cost [223, 224]. A striking behaviour that we noted is the

presence of staircases in the fitness landscape, which has also been described earlier [225].

We observed a monotonic increase of the average selective advantages of the mutants with

increasing number of mutations (Figure 3.7C). This observation provides additional rea-
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soning for the accumulation of mutations during IDV therapy. Notably, the high fitness

costs for the double and triple mutants (Figure 3.7A) are not sufficient to deter their oc-

currence, as their fitness costs are well-offset by resistance (Figure 3.7B), which facilitates

further climbing of the fitness landscape by accumulating mutations (Figure 3.7C).

Table 3.5. Statistical and mechanistic waiting times to observe mutations
under IDV therapy.

Mutation
(e)

Normalized statistical
mutation rates (λe/λs)

Statistical average
waiting times

Mechanistic wait-
ing times

46I 1.49 (1.20, 1.84) 1.47 1.53
54V 2.03 (1.68, 2.61) 1.36 1.44
71V 0.69 (0.62, 0.76) 1.02 1.00
82A 1.13 (0.92, 1.44) 1.64 1.71
90M 0.70 (0.62, 0.76) 1.00 1.00

The statistically estimated rates of occurrence of different mutations (column 2) with
95% confidence intervals in parentheses, the average statistical waiting times (column 3)
and the corresponding mechanistic waiting times (column 4) to observe mutations at the
different positions under IDV therapy. The average statistical and mechanistic waiting
times are calculated as described in Sections 2.5.2 (Chapter 2) and in the previous
section of the current chapter. Both waiting times are expressed relative to the time to
the fastest occurring mutation.

In addition to these general fitness trends, specific characteristics of particular mu-

tations were also in line with prior findings. The minor mutation 71V is known to play

a compensatory role [226]. In our estimates, this was observed by a partial recovery in

fitness of the triple mutant {46I, 71V, 90M} compared to the double mutant {46I, 90M}
from 0.66 to 0.44 (Table 3.4). In the presence of IDV, the addition of 54V to a {71V, 82A}
backbone is known to not confer a significant advantage [227], and this was reflected by

a ratio of approximately 1.3 for the selective advantages of this pair of mutants. Further-

more, as in [228], we noted a higher fitness cost for the single mutant 71V as compared to

90M.

Table 3.6. Estimated epistatic coefficients for mutations under IDV therapy.

Mutations (i,j) Epistatic coefficient
in the absence of
drug(Eij,φ)

Epistatic coefficient
in the presence of
IDV(Eij,IDV)

(46I, 54V) 0.59 -0.04
(46I, 71V) 0.56 0.03
(46I, 82A) 0.48 -0.08
(54V, 82A) 0.26 -0.20
(54V, 90M) 0.52 -0.02
(71V, 90M) 0.47 0.03
(82A, 90M) 0.43 -0.05

Estimated epistatic coefficients of fitness amongst mutations in the absence and presence
of IDV.

45



Maarseveen et al observed the persistence of protease resistant mutants for long peri-

ods of time even after the cessation of therapy [226]. They argue that the reversal of the

underlying mutations might not be feasible due to lower replication capacities of interme-

diate mutants upon reversion. Our results support this hypothesis by showing that the

most resistant strain that develops after therapy failure is very unlikely to reverse back

in the mutational landscape, owing to a fitness barrier encountered in its reversion to the

wild type (Figure 3.7A).

Further, in spite of eventual viral rebound (Figure 3.8A), an inspection of the total

relative fitness of the viral population under IDV therapy (Figure 3.8B) revealed that the

drug succeeds in maintaining the population at a fitness of <10% for ∼5 weeks of therapy.

This again points to the role that a timely treatment intervention can play, even in the

face of modestly effective therapies. We again computed epistatic coefficients both in the

presence and absence of IDV (Table 3.6) and observed a similar trend (as with ZDV) of

positive epistasis in a drug-free environment and predominantly negative coefficients in

the presence of IDV.

3.6 Sensitivity analysis

Since the viral turn-over parameters are subject to uncertainty, a sensitivity analysis of the

predictions of mechanistic waiting times with respect to these parameters was performed.

We use the example of ZDV therapy to illustrate this. To this end, we chose each turn-

over parameter (the death rates of the different stages, the infection rates, the rates

of integration of viral DNA and clearance of the infectious and non-infectious viruses)

from a uniform distribution with a range of up-to ±50% of their original value. This

is a sufficiently large range of perturbation compared to a 20-25% range reported for

viral clearance and death rates of infected cells in [114], 5-10% standard errors reported

in [229] or 2-12% standard errors estimated in [230]. The mean predicted waiting times

(Figure 3.9) retained an excellent correlation (r = 0.98, p<0.05) with the average statistical

waiting times. This showed our predictions to be robust with respect to variations in the

parameters of the virus dynamics model.

Our model of dynamics is deterministic. However, the evolution of viral mutant geno-

types is dictated by random events. We expect the impact of stochasticity to be dependent

on the so-called genetic barrier, i.e., the number of mutations needed to confer high level

resistance (larger than 10-fold increase). Drugs with a high genetic barrier are expected to

result in lower viral load levels, such that fluctuations become (relatively) more important.

The drugs we considered in our analysis, however, have a low genetic barrier (approxi-

mately 2 mutations needed for 10-fold increase in resistance levels). Nevertheless, to assess

the impact of stochasticity quantitatively, we performed hybrid deterministic-stochastic

simulations of our model, where rare mutation events were modelled stochastically, while

e.g., the viral infection dynamics of abundant genotypes was modelled deterministically

(a fully stochastic simulation would hardly be feasible even on supercomputers). The

employed hybrid algorithm is discussed in [231], where the mathematical basis and the

implementation details are given. For illustration of our results here, we chose IDV, since it
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Figure 3.9. Distribution of mechanistic waiting times from 1000 simulations
of the virus dynamics model. The turn-over parameters of the virus dynamics model
for ZDV therapy were perturbed by up to ±50% and 1000 simulations were performed
by choosing parameters from a uniform distribution on this range. The distribution of
the waiting times to different mutations with their mean and standard deviation (SD) are
shown.

is a more effective drug than ZDV in that it drives the viral load to lower levels. We chose

a reaction propensity threshold of 10−3 and performed 500 realizations. The predicted

mechanistic waiting times continued to agree well (Table 3.7, Figure 3.10) with the aver-

age statistical waiting times (r=0.98, p< 0.05). We observed a delay in the appearance of

certain mutations, in particular the later mutations. This is in line with similar observa-

tions made earlier [232]. A hybrid estimation procedure is also possible, in principle, but

suffers from increased computation times. Our model utilizes a deterministic framework

and thus is an approximation. However, for the examples we considered, the model-based

fitness costs, resistance factors, selective advantages and other features of viral dynamics

agree well with experiments. The design of more efficient hybrid stochastic-deterministic

approaches or alternative stochastic estimation methods could aid in more robust and

realistic models, with the deterministic predictions as the starting point for a subsequent

hybrid approach.

3.7 Model limitations

The presented viral infection dynamics model incorporating drug-specific in vivo mutation

landscapes aimed at capturing the complex competition dynamics between the different

mutant strains. It was based on a simplified representation of drug efficacies. In Chapter 5,

we analyze how varying drug concentrations affect the time of emergence of mutant geno-

types. If detailed data on drug pharmacokinetics and patient-specific viral load dynamics

and baseline characteristics are available, a population-pharmacokinetic/pharmacodynamic

analysis would be the appropriate approach to account for inter-individual variations [233].
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Table 3.7. Median of mechanistic waiting times predicted from 500 hybrid
deterministic-stochastic simulations of the model for IDV therapy.

Mutation
(e)

Statistical average
waiting times

Median of mechanistic
waiting times

46I 1.47 2.69
54V 1.36 2.42
71V 1.02 1.01
82A 1.64 4.01
90M 1.00 1.00

The statistical and median mechanistic waiting times (derived from 500 hybrid
deterministic- stochastic realizations) of the model for IDV therapy. The predicted
mechanistic waiting times continue to correlate well with the statistical waiting times (r
= 0.98, p-value = 0.0006).
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Figure 3.10. Predicted mutational abundance from 500 hybrid deterministic-
stochastic simulations of IDV therapy. The model for IDV therapy is simulated
using a hybrid deterministic-stochastic model to compute 500 realizations. The predicted
fractional abundance of different mutations is shown.

Without such detailed data, as in our setting, constant drug concentrations and effects is

a reasonable assumption, which was used in most prior analyses [5]. Further, while deter-

ministic simulations represent the average dynamical behaviour of the system, stochastic

effects would need to be incorporated using numerical hybrid algorithms [231] to explain

the variability in clinical data.

There are several mechanisms of resistance in HIV-1 infection. In addition to the

mechanisms included in the two-stage virus dynamics model, features such as the com-

pensatory Gag mutations [234] and other compensatory mechanisms adopted by HIV-1

have also been described, including frame-shifts in the Gag region that increase viral pro-

tease expression levels [235]. These effects can be integrated by including information on
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the Gag region into the mutational scheme and this extended model may then partially

account for higher observed fitness levels of some mutants.

3.8 Summary

We presented an HIV-1 infection dynamics model with statistically learned drug-specific

in vivo mutational landscapes. Our approach relied on typical and frequently available

clinical data, which consists of censored observations, as opposed to scarce extensive time

course measurements of different mutant genotypes. Mutations were detected through

their appearance in specific mutant genotypes and our model described how their dy-

namics is coupled. For both ZDV and IDV, our estimated fitness characteristics showed

excellent agreement with experimental knowledge. Our model also extends to multiple-

drug regimens, and this would be examined next in Chapter 4.
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Chapter 4

Understanding HIV dynamics under combination

therapy

In the last chapter, we presented a virus dynamics model incorporated with drug-specific

mutation schemes learned from clinical data. As an application, we estimated fitness

characteristics of HIV mutant genotypes in the presence and absence of drugs, and illus-

trated this using monotherapy with two standard antiretroviral drugs - zidovudine (ZDV)

and indinavir (IDV). However, the current standards in antiretroviral therapy involve the

administration of a combination of several drugs, for example in the HAART. Recently,

there has been great interest in using mathematical models of antiretroviral therapy to

perform clinical trial simulations [160]. The identification of reasons contributing to the

failure of certain treatment regimens and the evaluation of optimal salvage options consti-

tute the main objectives behind these studies. While simulations based on monotherapy

can yield valuable insights on viral dynamics, implementing multiple-drug therapy with

drug-specific mutational pathways is a step towards analyzing realistic current therapy

regimens.

In this chapter, we discuss how our virus dynamics model extends to multiple drugs.

We illustrate our results using therapies comprising of two and three drugs. We also assess

the impact of variability in parameters of the virus dynamics model (that could reflect

underlying inter-individual variability in the immune system, for example). Next we

present a modification of our model for the incorporation of a new class of anti-HIV drugs

under development, namely molecules that target host cellular factors. Our model helps in

understanding two conflicting mechanisms of drug action—the inhibition and promotion

of transcription rates in HIV-infected cells. Inhibiting transcription (by targeting host

transcription factors, for example) has the impact of lowering viral replication ratess [236].

We extend our model to incorporate the action of such antiviral molecules and parametrize

our model using in vitro data from literature. We then examine the impact of such

molecules in an in vivo setting using our model. Finally, we conclude with a brief discussion

on the perspectives of modelling approaches in antiretroviral therapy and the challenges

that lie ahead.

4.1 Extension of viral dynamics model to combinations of

drugs

To simulate a combination therapy with multiple drugs using our viral dynamics model,

we require a poset of mutations (see Section 2.3.5, Chapter 2). This is constructed by

combining the posets of the individual drugs. For example, if EDi denotes the poset of
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mutations under monotherapy with drug Di, then the poset ED1+...+Dn under a combi-

nation therapy with the n drugs—D1, ...Dn, can be written as the disjoint union of the

individual posets EDi . That is,

ED1+...+Dn = ∪· EDi , (4.1)

with the partial order relation in the poset ED1+...+Dn being the disjoint union of the

partial orders in each of the individual posets EDi .

Next, the two characteristics associated with mutant genotypes, namely fitness costs

and resistance factors, have to be computed. Here, we illustrate this with an example

of a dual therapy with drugs D1 and D2 from two different drug-classes. For clarity in

illustration, we use simplified mutation schemes (Figure 4.1).

Φ 

{2} {1} 

{1,2} 

Φ 

{4} {3} 

{3,4} 

Drug D1 Drug D2 

Φ 

{2} {1} {3} {4} 

{1,2} {2,4} {1,4} {3,4} 

{1,2,3} {2,3,4} {1,3,4} {1,2,4} 

{1,2,3,4} 

{1,3} {2,3} 

Drugs D1 + D2 

+ 

Figure 4.1. Dual therapy with drugs D1 and D2. The genotype lattices of mutations
under monotherapy with drugs D1 and D2, and with their combination. A simplified
mutation scheme with only two mutations 1 and 2 for drug D1 and two mutations 3 and
4 for drug D2 is used. The directed edges representing transitions between genotypes in
the lattice G1+2 are omitted for clarity.

If GD1+D2 is the combined genotype lattice induced by the combined poset ED1+D2 of

mutations under the dual therapy, then a mutant genotype g ∈ GD1+D2 has contributions

from two sources towards both its fitness cost sg and resistance factor RFg—one, from the

underlying mutations in g to drug D1 and the other due to the mutations in g to drug D2.

As before, the drug influence manifests as changes in the reaction rates of appropriate

target steps of our viral dynamics model, the only difference being that there are two

target steps, instead of one in monotherapy. We assumed mutations in two different

genomic regions (corresponding to the two different target processes in the viral life cycle)

to be free from fitness and resistance epistasis. This is a reasonable assumption in view

of studies indicating that intragenic epistatic effects are more significant than intergenic
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epistatic effects [162].

Consider a mutant genotype g = g1 ∪ g2, resistant to the dual therapy with drugs D1

and D2 from different drug classes, with g1 ∈ GD1 and g2 ∈ GD2 . If kD1
wt,0 and kD2

wt,0 are the

reaction rate constants of the corresponding target steps in the wild type in the absence

of any drug, we write

kD1
g,εg1

= (1− γεg1 εg1) · (1− sg1) · kD1
wt,0. (4.2)

and

kD2
g,εg2

= (1− γεg2 εg2) · (1− sg2) · kD2
wt,0. (4.3)

Here, εg1 and εg2 are the efficacies of drugs D1 and D2 on the mutant genotypes g1 and

g2 (defined as in Eq. 2.5, Chapter 2), while sg1 and sg2 are the associated fitness costs. If

D1 and D2 are from the same drug class, we require additional assumptions on intragenic

epistatic effects. Two notions of drug-interactions are commonly used to model net drug

efficacy of jointly acting drugs —Bliss independence [237] and Löwe additivity [238].

Briefly, if C1 and C2 are the (averaged) concentrations of the two drugs D1 and D2 with

50% inhibitory concentration values of IC501 and IC502 respectively (for the wild type),

the net drug efficacy under the Bliss-independence model (εBI) on a mutant genotype

g ∈ G that has a resistance factor RF1 to drug D1 and a resistance factor RF2 to drug D2

can be written as

εBI = 1− 1

1 + C1/(RF1 · IC501)
· 1

1 + C2/(RF2 · IC502)
, (4.4)

On the other hand, the Löwe additivity model implies a net drug efficacy (εLA) of

εLA = 1− 1

1 + C1/(RF1 · IC501) + C2/(RF2 · IC502)
. (4.5)

Jilek et al [239] showed that neither of these two models precisely predicts drug-

interactions for common anti-HIV drugs, and that the net drug efficacies are often char-

acterized by synergistic or antagonistic effects, which they quantified using the notion of

a degree of independence (see [239] for details on the computation of this quantity). We

used their approach to predict net drug efficacies in our triple drug example (Section 4.4),

where we have two drugs from the same drug class.

For all simulations of combination therapies in our studies, we used the adaptive ODE-

solver ode15s in MATLABTM R2010b with relative and absolute tolerances of 10−3, and

a non-negativity constraint. To study the effects of changing drug-efficacy parameters on

treatment outcomes, we performed simulations of the dual therapy with different individ-

ual drug-efficacies for 300 days. To classify therapy outcomes, we monitored total viral

load and detected failure when the viral RNA exceed 500 copies/ml [206]. Again, we chose

this threshold to correspond with limits of genotyping assays. We reported no detection

of failure if the viral load does not exceed this threshold within our simulation time.
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4.2 Dual therapy simulation

To illustrate the application of our viral dynamics model in the setting of multiple drugs,

we first performed simulations of a dual antiretroviral therapy with the reverse transcrip-

tase inhibitor ZDV and the protease inhibitor IDV. We used the posets of mutations for

ZDV and IDV that we estimated earlier (Figures 3.1 and 3.6), together with the resistance

factors and fitness costs of the different mutant genotypes (computed as explained in Sec-

tion 4.1). Our main goal was to assess the treatment outcomes with different individual

drug efficacies and ascertain the reasons for failure of the dual regimen. To this end, we

used a range of εwt values for ZDV and IDV to account for differential drug effects and ad-

herence patterns, and studied the treatment outcome by monitoring the total viral load.

Our simulations enabled us to predict the dominant mutant genotypes at the point of

failure. Based on this, we classified failure as being due to wild type, mutations resistant

to ZDV, mutations resistant to IDV or mutations resistant to both drugs used.

Figure 4.2. Treatment outcome with ZDV+IDV dual therapy. A. Genotypic
reasons of treatment failure were assessed in terms of mutations present at point of virolog-
ical failure. For different combinations of drug efficacies εwt,ZDV and εwt,IDV, the different
genotypic reasons of failure are shown in different colours. The treatment outcome could
be failure with mutations resistant to both ZDV and IDV (red), failure with mutations
resistant only to ZDV (light blue), failure with mutations resistant only to IDV (green),
failure with wild type (blue), or no detection of failure (black). B. Viral load (in copies
RNA/ml) under ZDV+IDV therapy with εwt,ZDV = 0.75 and εwt,IDV = 0.90. The blue line
shows the total viral load, while the red dashed line depicts the wild type. The horizontal
black dashed line represents the detection threshold used (500 copies/ml).

We observed that there are different regimes of the individual drug efficacies (εwt,ZDV

and εwt,IDV) that result in varying causes of failure (Figure 4.2A). With εwt,ZDV = 0.75

and εwt,IDV = 0.90 (the corresponding values used in our monotherapy simulations with

each of the two drugs, see Chapter 3), for example, we observed virological failure after

∼3 months (Figure 4.2B) due to mutations resistant to both drugs. In this case, the wild
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type was sufficiently suppressed and monotonically declines during the treatment period.

However, we also identified regions in the εwt,ZDV-εwt,IDV plane, where treatment failure

occurred due to insufficient suppression of the wild type. We classified the treatment

as having failed owing to the wild type, if the wild type was the dominant genotype at

the point of virological failure (note that, in the presence of drug, the wild type would

eventually be out-competed by resistant mutants in all situations).

Figure 4.3. Time to viral rebound with ZDV+IDV dual therapy. Left. The
time to virological rebound (as defined in Section 4.2) TZDV+IDV, under dual therapy with
ZDV and IDV, was computed for a range of εwt,ZDV and εwt,IDV values. Right. The time
to virological rebound TZDV+IDV under the dual therapy was compared to the sum of
the viral rebound times under ZDV and IDV monotherapies. It is seen that over realistic
values of drug-efficacies, the drugs behave significantly synergistically.

Such situations of failure with the wild type could indicate insufficient drug pharma-

cokinetics, a low drug efficacy or poor adherence. Additionally, we also observed that

there are combinations of (εwt,ZDV, εwt,IDV), for which failure occurred due to mutations

to one of the two drugs (Figure 4.2A). Our model, thus, enabled the prediction of viral

evolution and ascertained the genotypic causes of treatment failure under a dual treatment

scenario.

Further, we computed the time to virological rebound and observed that the time to

failure with the combination is not a simple linear function of the time to failure with the

individual drugs (Figure 4.3). In general predictors of treatment outcome under multiple

drug therapy (for example, the genetic barriers to resistance, see [135]) are often assumed

to be simple functions of the corresponding outcomes with monotherapy. Our results serve

as partial evidence for the limitations of such assumptions.

We noted that predicting the treatment outcome from monotherapy with a certain

drug might lead to qualitatively different results, as opposed to using a model with multi-

drug therapy, even when predicting effects of the same drug. It is easy to see that the

εwt,ZDV value below which failure with wild type is detected is a function of εwt,IDV as

well. This reiterates the value of implementing multi-drug treatment regimens in in silico
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simulations.

We further emphasize that in order to simulate a certain drug combination, our ap-

proach needs only clinical data from treatment regimens in which the individual drugs

are a part. For instance, in the current example of dual therapy with ZDV and IDV, the

estimation of resistance factors and fitness characteristics relied on sparse cross-sectional

clinical data from treatment regimens that included ZDV and/or IDV (not necessarily

both). Subsequent to this, we were able to simulate the dual therapy and assess genotypic

reasons of therapy failure.

4.3 Triple therapy simulation

We next illustrate the application of our model to the antiretroviral triple therapy com-

prising of lamivudine (3TC), ZDV and IDV. Of these, the first two are NRTIs, while IDV

is a PI. This combination was amongst the first multi-drug regimens that were extensively

characterized in the late 1990s [96,222].

The posets of mutations for ZDV and IDV remained the same, while for 3TC, almost

complete resistance is conferred by the mutation M184V. This mutation has occupied

center-place in many debates regarding viral fitness and treatment interruptions [240,241].

As detailed in Section 4.1, we then constructed the combined genotype lattice of mutations

and proceeded to compute the fitness costs and resistance factors of different mutant

genotypes. For 184V, we used a resistance factor of 50 and a fitness cost of 0.35 sourced

from literature [242]. As before, we assumed no epistasis between the RT and PR regions

of the genome. For the two NRTIs, we computed a net drug efficacy. Under an assumption

ofεwt,ZDV = 0.75 and εwt,3TC = 0.80 (chosen as before, to reflect experimental nadir viral

loads under monotherapy (see Sections 3.4 and 3.5, Chapter 3), we calculated the combined

drug efficacy of ZDV and 3TC using the Bliss-independence model (Eq. (4.4)), εBI,g and

Löwe additivity model (Eq. (4.5)), εLA,g for the different mutant genotypes g ∈ G, where

G is the combined genotype lattice of mutations. Jilek et al [239] defined a degree of

independence (DI) for a drug combination as follows.

DI =
FE − FLA

FBI − FLA
, (4.6)

where FE, FLA and FBI denote the logarithmic measures of inhibition
(

i.e., F = log ε
1−ε

)
for the experimental data, Löwe additivity and Bliss-independence predictions, respec-

tively. Note that we drop the index g for mutant genotypes here, for clarity. Since all

quantities except FE in Eq. (4.6) are known, we then calculated FE, and hence εE, i.e.,

the combined drug efficacy of ZDV and 3TC, for different mutants.

Our results indicated a sharp decline in viral RNA to levels less than the detection

threshold of 50 copies/ml in about 2 months (Figure 4.4C). This level of viral suppression

is maintained for ∼32 weeks when the viral load rebounds with mutations resistant to

all three drugs. The wild type virus monotonically declines, but is not wholly eradicated

(Figure 4.4B). Such archiving of wild type virus is of concern, when treatment interventions

such as structured treatment interruptions or induction-maintenance changes are planned.
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Figure 4.4. Triple therapy with ZDV, 3TC and IDV. The uninfected target cell
(TU) levels, the wild type virus levels and the total viral load (all in numbers). The
horizontal dashed black lines denote the detection threshold of 50 copies/ml of viral RNA.

4.4 Inter-individual variability

So far, in all our models of viral dynamics, we assumed identical immune system function,

drug efficacy and viral fitness parameters across patient populations. In other words, we

modelled only the ’average’ patient. Of these, viral fitness is the least variable quantity,

since, by definition, it depends on the viral mutant genotype, and not the host. By

contrast, drug efficacy and immune function are expected to vary considerably within a

patient population. In fact, strictly speaking, drug efficacy is a time-dependent quantity

since it depends on the pharmacokinetic-pharmacodynamic interplay. We discuss more

about this in the next chapter. There are two primary features that have to be remembered

when using models such as ours, in predicting treatment response. Firstly, even amongst

patients expected to respond identically (a practical impossibility), stochastic effects are

presently not captured in our model. These become relevant, especially at low levels

of viral load, as in HAART. This would be a potential line of investigation for future

work. Secondly, it is well-known that the viral load at the onset of therapy, or the

maximal viral load prior to a treatment change is a significant predictor of treatment

outcomes (see [135], for example), and this varies widely between patients. At least in

treatment näıve patients, one major cause of this variability is the differences in immune

function amongst individuals (note the feedback implied here—qualitatively speaking, a

poor immune response increases the viral load and lowers the CD4+ T-cell count, thereby

affecting the immune system).

We examined the second feature by studying the impact of immune function on our

model simulations. To this end, we varied all immune-related parameters in our model

(death rates of infected cells and clearance of virions) by a fixed constant k and noted their

impact on both the pre-treatment viral load levels and treatment outcome. We illustrate

this using IDV monotherapy. With a two-fold (k = 2) increase in the clearance rates,

we observed viral suppression up to 25 weeks, which is much longer than when k = 1

(Figure 4.5). Unless more detailed immune system models are integrated, together with

experimental knowledge, it is difficult to make speculations on the realistic range of k.

In [203], we have also examined the impact of variability of other model parameters on
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Figure 4.5. Variability in immune function. All immune-system related parameters
in the viral dynamics model are varied by a constant factor k. The left panel shows
the establishment of viral infection and pre-treatment steady state, while the right panel
shows viral dynamics under IDV therapy (εIDV = 0.90)

our predictions.

4.5 Host-cell targeting

Conventional antiretroviral therapy has aimed at targeting different processes in the vi-

ral life cycle. While therapeutic strategies such as the HAART with carefully chosen

combinations of drugs, succeed in checking viral proliferation, resistant mutants leading

to treatment failure and latently infected cells are recurring threats. To circumvent this

menace, recent studies have proposed targeting host-specific factors (see [243] for a detailed

review). One particular line of investigation includes the inhibition of host transcription

factors like the cyclin dependent kinases (CDKs) [244] using small molecules, thereby

preventing the expression of viral proteins. For example, flavopiridol, a drug currently

in clinical trials as a chemotherapeutic agent against chronic lymphocytic leukemia, has

been shown to possess antiviral properties [68,103].

In this section, we first briefly review the biology involved in the action of these

molecules and then extend our virus dynamics model to accommodate these new drug-

types. The calibration of the extended model is then achieved by estimating unknown

parameters from in vitro data from literature. We then discuss simulation studies per-

formed to mechanistically understand how these molecules act as anti-HIV drugs.

4.5.1 The biology of HIV transcription

The transcription of a gene resulting in mRNA transcripts is a highly complex and tightly

regulated process [245]. RNA Polymerase II (RNA Pol II) plays the driving role and HIV

makes extensive use of the transcription machinery of the host cell for its replication.

Recent studies have resulted in the acknowledgement that the pausing of the RNA Pol

II after the initiation of transcription is an important regulatory feature in many cells

[246, 247]. After clearing the promoter sequence, the RNA Pol II pauses for a variable
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length of time and is assisted by different transcription factors to overcome this block.

Amongst them, the positive transcription elongation factor-b (P-TEFb) plays a vital role.

We refer to [248] for an excellent, recent review of the detailed mechanisms. In short, P-

TEFb is recruited to overcome the hurdle to elongation. Of particular note is the fact that

P-TEFb is also an important co-factor for HIV-1. The P-TEFb moiety infact comprises

of two proteins, namely CDK9 and CyclinT1 (CycT1). The CDK-Cyc protein complexes

have occupied a central role in oncology for the last two decades [249].

Figure 4.6. The P-TEFb-Tat interaction. P-TEFb (CDK9+Cyc T1) is found com-
plexed with other regulatory molecules such as HEX1M1 and 7SK RNA. Tat recruits
P-TEFb to promote transcriptional elongation. The P-TEFb-Tat complex can contain
other transcription elongation factors (some of which, like EAF1 and ELL are shown).
The above graphic is reproduced from [250] for illustrating the interplay between the viral
and host proteins at the transcription stage.

P-TEFb phosphorylates the carboxy-terminal domain of RNA Pol II, and releases it

from stalling along the gene to be transcribed. The key to targeting P-TEFb in virology

is the Tat-TAR-P-TEFb interplay. Infact, P-TEFb is an attractive target for other viral

infections, as it has been implicated in the Epstein-Barr virus associated with Hodgkin’s

lymphoma and certain other cancers [251]. The Tat protein of HIV recruits P-TEFb,

which is normally sequestered via complexing with other factors, of which HEX1M1 is

an important member. HEX1M1 is a protein that has been known to limit replication of

lentiviruses [252]. Tat binds to the TAR RNA that is nascently formed during transcrip-

tion initiation and also to P-TEFb. This relieves the pause in elongation.

CDK inhibitors have been attractive molecules to inhibit P-TEFb for two main rea-

sons—a) they have been extensively characterized in anti-cancer therapy, and b) the IC50

for antiviral effects of many CDKIs is much lower than levels safely tolerated in pa-

tients [243]. Amongst the first molecules to be characterized in this regards was flavopiri-

dol. Now under clinical trials (as Alvocidib), flavopiridol (FVP) is a broad-spectrum CDKI

inhibiting CDK1, 2 and 4 [253]. In 2000, Price and colleagues demonstrated that FVP

inhibits P-TEFb and blocks RNA Pol II mediated transcription in vitro [103]. Interest-

ingly, the IC50 of FVP for antiviral action (measured by an infectivity assay) was about

10 nM, much lower than the maximally tolerated 200-400 nM in cancer patients [254].

This study set in motion several others. In 2004, Chiu et al [255] used RNA interference

techniques to knock down P-TEFb in HeLa cells and remarkably reported non-lethality

in addition to antiviral effects. This observation further strengthened the attractiveness

of P-TEFb inhibitors. Another molecule, roscovitine (CYC202) that targets CDK2-CycE

by contrast, was also shown to possess anti-HIV properties [69]. The Kashanchi lab has
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also performed a virtual screening of 24 CDKIs and identified alsterpaullone as the most

potent and selective candidate for antiviral effects, amongst those examined [256]. Most

recently, Heredia et al established the in vivo efficacy of indirubin 3’-monoxime, a P-TEFb

inhibitor, against resistant HIV strains, using humanized mice [257]. However, they also

noted the lack of persistent viral suppression with indirubin 3’-monoxime alone as an

antiretroviral agent.

To summarize, by checking the clearance of paused RNA Pol II by P-TEFb, the CDKIs

represent a promising target for inhibiting HIV replication.

As discussed in Chapter 2, the latent reservoirs of viral infection pose a significant

hurdle to the eradication of HIV by evading ART. While in principle, latency is possible

prior to integration of the viral DNA into the host genome, the major part of latency

in HIV occurs in resting CD4+ T-cells post-integration [258, 259]. To dissect the whole

molecular machinery behind the establishment and maintenance of latent reservoirs is a

challenging task (see [260] for an overview). Briefly, transcription silencing is known to

occur in cells that transit to latency and this is mediated by a host of repressor complexes

such as HDACs and histonemethyl transferases. Low levels of Tat also contribute to a

cell entering latency [72], and this suggests blocks even during transcription initiation. P-

TEFb is also thought to influence latency, since molecules such as hexamethylbisacetamide

(HMBA) that activate P-TEFb have shown promise as latency activators [261]. Currently,

different classes of molecules are being examined for their roles as latency disrupters,

including NFκB inducing agents (anti-CD3/CD28 [262]) and HDAC inhibitors (vorinostat

[263]).

4.5.2 Extended viral dynamics model incorporating host-targeting molecules
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Figure 4.7. Extended viral dynamics model. An extended virus dynamics model
to capture the transcription-related events that occur after integration. We included an
additional stage (labelled TInt) in our model before the productively infected stage T2.
At this stage, the viral DNA is integrated into the host genome, but is yet to undergo
transcription, splicing and extranuclear mRNA export.

We extended our model of viral dynamics to include drugs that inhibit transcription

and those that activate latently infected cells. This was achieved by introducing an ad-

ditional stage in the model TInt (Figure 4.7) where the integration of viral DNA into

the host genome is complete, but transcription and further events have not begun. For
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simplicity, we first focussed only on the T-cells. The infected cells TInt with integrated

viral DNA undergo transcription, appropriate splicing processes of the generated mRNA,

followed by their export from the nucleus to the cytoplasmic space. These processes that

occur post-integration were lumped and represented by a reaction rate constant kPI. This

resulted in the productively infected stage T2, that is on the cusp of translation, protein

assembly and viral release. Note that such extensions of the two-stage infection models

have been discussed earlier in [6], although only for qualitative analyses and comparisons

with two-stage models.
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Figure 4.8. Parametrization and validation of extended viral dynamics model.
A. The extended model in Figure 4.7 was used to estimate the parameter kPI from in
vitro data based on viral infectivity assays in the presence of FVP (IC50 = 8 nM), B. The
extended model also performs well in an in vivo setting. The data shown are from [114]
and represent viral decay under therapy with a PI (a drug efficacy of ε = 1 was used.)

We estimated the parameter kPI from in vitro data [103]. A strong benefit of our

model is it can readily be adapted to an in vitro setting after appropriate parametrizations.

Owing to the absence of a primary immune system in such an environment, we set all death

rates and viral clearances to zero. We fixed the initial number of target cells to be 104 and

the number of infecting viruses to be 100 (in accordance with the the inoculation protocols

used in [103]). The single-cycle replication assay used in [103] measures the number of

infected target cells (using a β-galactosidase florescence read-out) after 41 hours. Our

equivalent prediction was the number of late-stage infected cells (T2) after the same time.

We performed a least-squares minimization procedure to estimate an optimal kPI of 0.97

day−1. The optimization was straightforward and robust with respect to initial estimates

and convergence was noted. The model predictions compared well with experimental data

(Figure 4.8A).

As a further test on the validity of the modified model, we simulated the in vivo decay

in viral load after administration of a protease inhibitor with 100% efficacy, and compared

the results to experimental data [114] (Figure 4.8B). Again, our model predictions agreed

with data.
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4.5.3 Treatment simulations with transcription inhibitors

Having parametrized and validated the model, we next aimed at understanding the action

of the transcription inhibitors on the viral replication cycle in vivo. We used our extended

model, included macrophages (as before) and simulated monotherapy with FVP. We ob-

served that transcription inhibitors like FVP have a rather low impact on nadir levels of

viral load (Figure 4.9). In particular, even at high values of drug-efficacy (εFVP ∼ 0.95),

the viral load drops by only 1-log unit. This raises questions about in vivo efficacies of

such drugs.
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Figure 4.9. Efficacy of flavopiridol in vivo. The left panel shows the impact of FVP
efficacy (εFVP) on the maximal drop in viral load, while the left panel shows viral load
decay with PI monotherapy (blue) and PI together with FVP (black). Drug efficacies of
εPI) = 0.9 and εFVP = 0.88 (corresponding to ∼8-fold, compared to its IC50 concentration
of FVP, in agreement with tolerated doses in clinical trials [254] were used.

A very recent study by Heredia et al [257] noted a drop of 2-log units with another

CDK inhibitor drug indirubin 3’-monoxime in humanized mice. To our knowledge, this is

the first in vivo investigation of the antiviral activity of CDK inhibitors. The authors also

note the poor efficacy and remark that such drugs have to be used necessarily with more

potent anti-HIV drugs. Nevertheless, a major benefit of such drug classes is the lack of

emergence of resistance mechanisms, at least thus far.

4.6 Summary

Multiple drug regimens are the current standard-of-care in the management of HIV infec-

tion and disease. Mathematical and statistical models of viral dynamics and mutations

are in the process of adapting to clinical requirements in this context. They have a re-

markable potential to offer insights into reasons for failure of certain treatment regimens

and aid in the rationale choice of potential salvage therapies. Our model of viral dy-

namics with drug-specific mutation schemes is a first step in this direction. It extends

naturally to drug combinations and needs only commonly available sparse data. The

generality of the modelling approach also permits the integration of novel drug classes
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targeting host-specific factors that are under development. We extended the model to

include the action of such molecules and parameterize the model using in vitro data. The

model performed well in predicting in vivo viral load profiles. The analysis of variability

amongst infected individuals, the diversity in their immune responses and the need for

hybrid deterministic-stochastic simulations present future lines of investigation.

62



Chapter 5

Pharmacokinetic-pharmacodynamic interplay in

HIV therapy

5.1 Introduction

In this chapter, we focus on a key aspect of antiretroviral drug development and clini-

cal therapy, namely drug pharmacokinetics. Pharmacokinetics refers to the relationship

between drug input (with its associated features such as dose, dosing interval, dosage

form etc) and the concentration attained in the body with time [264]. Loosely speaking,

pharmacokinetics (PK) has been characterized as the study of what the body does to the

drug (as opposed to pharmacodynamics, which can be viewed as what the drug does to

the body). In the context of HIV therapy, time-dependent changes in drug concentration

may impact viral suppression and hence influence clinical outcome. The long-term nature

of HIV therapy also raises questions concerning drug accumulation. Understanding drug

PK associated with multiple dosing is thus vital for the design and development of new

drug candidates, and to devise safe and efficacious dosage regimens. It is not uncommon

in literature to report one or the other of several possible measures of accumulation or

half-life. We illustrate how this can be misleading when such measures are taken in iso-

lation, especially with drugs exhbiting multi-phasic pharmacokinetic behaviour, and can

sometimes result in seemingly unrelated or even conflicting statements.

We begin with a short introduction to compartment PK models and define various

notions of drug accumulation and half life. We then present a concise framework that

links key PK characteristics of multiple dosing to the parameters of the underlying com-

partment models. Our framework provides an integrated understanding of different drug

accumulation and half-life measures. We illustrate its utility by reconciling two apparently

conflicting remarks in literature on the pharmacokinetics of the HIV integrase inhibitor

raltegravir.

We explore the impact of PK on viral suppression by coupling PK models to simple

models of viral dynamics. We then incorporate the PK of ZDV in our viral dynamics model

with drug-specific mutation schemes to examine the impact of fluctuating concentrations

of ZDV on its antiviral effect. Finally, we conclude with an outlook for further work in

these directions.

5.2 Compartment PK models

Pharmacokinetic data can be modelled using several approaches and compartmental PK

analysis is both standard and ubiquitous. We refer to [265] for an extensive treatment
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Figure 5.1. A two-compartment PK model.

of compartment-based PK modelling approaches. Here, we only state the mathematical

framework for such models that enables us to define and derive key PK characteristics.

A one-compartment PK model describes the decrease in concentration of drug after

its administration by a linear first-order ordinary differential equation (ODE).

V · d

dt
C = −CL · C. (5.1)

Here, C denotes the drug-concentration, while V is the volume of the compartment.

CL is the linear clearance of the drug.

A biphasic decline in drug concentration is frequently seen in PK studies, which can

be described by a two-compartment model (Figure 5.1). This is mathematically specified

by a linear system of coupled ODEs.

V1 ·
d

dt
C1 = Q · (C2 − C1)− CL · C1

V2 ·
d

dt
C2 = Q · (C1 − C2). (5.2)

Here, C1 and C2 are the drug concentrations in the two compartments (frequently referred

to as the central and peripheral compartments). The parameter Q refers to the inter-

compartmental clearance, while V1 and V2 are the compartmental volumes.

A generalization to multi-compartment models is readily conceivable. In this case,

the mathematical specification would still be a system of linear ODEs, as long as the

clearance (and absorption, where this is modelled) mechanisms remain linear. Non-linear

clearances (for example, saturable) are possible, especially for monoclonal antibodies [266].

In this chapter, we concern ourselves only with linear PK models. We next present some

nomenclature and definitions of key PK characteristics.
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5.2.1 Volume of distribution

The volume of distribution is a standard parameter used in characterizing the pharmacoki-

netic behaviour of drugs. It was originally defined by Dominguez [267] as the hypothetical

volume of body fluids dissolving the drug substance at the same concentration as that in

the plasma. As the kinetics of drug disposition in the body is a dynamic process and the

plasma concentration itself is time varying, there are different ways of formulating this

volume. The steady state volume of distribution [268] Vss is defined as the ratio of the

amount of drug Ass in the body and the drug concentration in plasma Css at steady state

conditions.

Vss =
Ass

Css
. (5.3)

Another quantity of frequent interest in the study of the pharmacokinetic behaviour

of a drug is its terminal volume of distribution Vz. This is defined as the ratio of the

amount of drug in the body Az and its plasma concentration Cz during the final phase of

elimination.

Vz =
Az
Cz
. (5.4)

5.2.2 Accumulation factors

A drug can be administered by different routes, for example, as intravenous (i.v.) bolus

rally. Drug PK after a single dose is extensively characterized in the early stages of

drug development. In the later stages of development and naturally in the clinical setting,

multiple dosing (at certain dosing intervals) is a norm (at least in HIV therapy). Defining,

computing and understanding measures of drug accumulation and half-lifes, therefore

becomes relevant in such situations. We refer to [269] and references therein for many of

the following definitions.

The AUC accumulation factor RAUC represents the increase in exposure after multiple

dosing. It is defined as

RAUC =
AUCss,0→τ
AUC0→τ

, (5.5)

where AUC0→τ denotes the area under the plasma concentration-time curve from time

t = 0 to t = τ after the first dose, and AUCss,0→τ , the corresponding area over one dosing

interval in the steady state regime.

The peak accumulation factor Rpeak is defined as

Rpeak =
Css,peak

Cpeak
, (5.6)

where Css,peak and Cpeak denote the peak plasma concentrations at steady state and after

the first dose, respectively. The steady state and single dose peak concentrations are

attained at times tss,peak and tpeak, respectively, after the previous dose. Hence, Css,peak =

Css(tss,peak) and Cpeak = C(tpeak), with Css(t) and C(t) being the concentration-time
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profiles at steady state and after first dose, respectively. For i.v. bolus administration,

tss,peak = tpeak = 0, while for oral administration, 0 < tss,peak < tpeak (see Section 5.3.3.).

Analogously, the trough accumulation factor Rtrough can be defined as

Rtrough =
Css,trough

Ctrough
, (5.7)

where Css,trough and Ctrough denote the trough concentrations at steady state and after

the first dose, respectively. Note that, we have, by definition, Css,trough = Css(τ) and

Ctrough = C(τ).

Together with AUC, peak and trough concentrations at steady-state are commonly

used as summary measures of exposures (and to compare exposures across different popu-

lations), and the accumulation factors provide an easy means of quantifying how exposures

change in a multiple-dose setting, relative to a single dose.

The peak-to-trough ratio PTss at steady state conditions is defined as

PTss =
Css,peak

Css,trough
. (5.8)

5.2.3 Half-lifes

The terminal half life, a measure of how long the drug takes to leave the body via its

slowest process of elimination, can be written as

t1/2 =
ln 2

λz
, (5.9)

where λz is the slope of the terminal phase of elimination. The (plasma) terminal half-life

of a drug can then be regarded as the time to reduce the plasma concentration by a factor

1/2 after reaching pseudo-equilibrium. It has been observed that the terminal half life is

the most reported, yet commonly misinterpreted pharmacokinetic parameter [270]. The

clinical utility of this quantity, for example, lies in selecting appropriate dosing intervals

for drugs, as it dictates the degree of drug accumulation and time to reach equilibrium in

multiple dosing regimens.

Other kinds of half-lifes have also been defined and characterized in literature. The

effective half-life teff [271] is defined in terms of the AUC accumulation factor RAUC as

teff =
log(2)

keff
, (5.10)

where the effective rate constant keff is implicitly defined by

1

1− exp(−keffτ)
= RAUC. (5.11)

Unlike the terminal half life t1/2, the effective half-life teff depends on the dosing

interval τ , i.e., teff = teff(τ).
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The effective non-compartmental analysis (NCA) half-life t1/2,NCA is defined as

t1/2,NCA = log(2) ·MRT, (5.12)

where MRT is the mean residence time, defined as MRT = AUC/AUMC with AUMC

being the area under the first moment curve (see section 2.4.2 in [272]).

The operational half-life t1/2,op [269] is defined on the basis of the peak accumulation

ratio Rpeak. It is equal to that dosing interval where the peak concentration at steady-state

is twice the peak concentration after the first dose and where the fall-off to the trough

from this peak steady-state concentration is consistent with this half-life. In addition, the

authors in [269] also observe graphically that when the dosing interval τ = t1/2,op, the peak

concentration at steady-state is twice the trough-concentration. We later demonstrate this

to be a corollary of the definition of operational half-life.

5.2.4 The interplay of accumulation factors, half-lifes and dosing inter-
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Figure 5.2. Key characteristics of compartment models differ amongst them-
selves and with dosing interval. Top: Models A (blue) and B (red) are one and two-
compartment models with i.v. bolus administration. Model A has parameters Vss = 14 L
and CL = 0.28 L/hr, while model B has V1 = 2 L ,V2 = 10 L, Q = 1.1 L/hr and CL = 0.2
L/hr. The AUC accumulation factor RAUC is identical for both models when the dosing
interval τ = 24 hr (once-daily dosing). However, the peak-to-trough ratio at steady state
PTss for the models are markedly different. Further, the equality in RAUC itself ceases to
hold when τ is varied. Bottom: The concentration-time profiles for the models clearly
shows the difference in PK behaviour, in spite of identical AUC accumulation factors at
a certain dosing interval.
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For a general multi-compartment model, the accumulation factors, in general, depend

on the dosing interval, in addition to the model parameters. Although, each of these fac-

tors, individually, can be computed explicitly once the model is completely specified, the

complicated functional dependence (for example, mathematically, the computation of ter-

minal half-life in a linear multi-compartment model is an eigenvalue problem and a closed

form of eigenvalues for the linear system of ODEs can rapidly become complex!) makes

any interpretation or prediction of relationships difficult. For illustration, in Figure 5.2,

we show how two models with identical AUC accumulation factors can have remarkably

different steady-state peak-to-trough ratios. Further, the initial degeneracy in the AUC

accumulation ratios itself lifts, when the dosing interval is varied. This clearly illustrates

the inadequacy of using or reporting one accumulation parameter to analyze different

features in PK models.

There are several examples of anti-retroviral drugs where an isolated examination of

one or the other accumulation factor or half-life could potentially be misleading. For

example, the authors in [269] point out how Iwamoto et al [15] report little accumulation

of raltegravir (with AUC and peak accumulation factors determined to be 1.06 and 1.0

respectively) in a twice-daily multiple dose study, but simultaneously calculate a long

terminal half-life of 10-12 hours (that is suggestive of accumulation). Interestingly, for

a different integrase inhibitor S/GSK1349572, a comparable terminal half-life of 13-15

hours is reported, but with moderate accumulation factors of up to 1.5 [273]. Therefore,

to reconcile such unrelated results and to establish unequivocal relationships (or a lack

of them!) between different measures of half-lifes and accumulation, there is a need to

examine these quantities in an integrated framework.

Additionally, a linear 1-compartment PK model with i.v. bolus administration is typi-

cally used to illustrate the concepts of multiple dosing and to introduce key characteristics

like half-lifes, accumulation indices, peak-to-trough ratio etc, see, e.g., [264]. However, the

ability to translate the 1-compartment i.v. bolus case PK model to more common 2- or

multi-compartment PK models with i.v. or extravascular drug administration, is limited,

and these attempts can be very misleading. Brocks et al [274] recognize this need and

provide some characterizations of accumulation factors and half-lifes for 1-compartment

oral administration and for a 2-compartment model with i.b. bolus administration.

In the next section, we develop a framework that shows how key characteristics of

multiple dosing in multi-compartment models are linked to the different model parame-

ters. Our framework enables us to integrate seemingly unrelated previous results —e.g.,

on effective and operational half-lifes, or the relationship between the terminal volume

of distribution and the steady state volume of distribution into this framework. We ac-

complish this by linking the solution of multi-compartment PK to sums of solutions of

1-compartment PK. This allows us to state key characteristics of multiple dosing of multi-

compartment models as weighted sums of the key characteristics of multiple dosing of

associated 1-compartment models with i.v. bolus administration.
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5.3 An integrated framework to derive characteristics of

multiple dosing regimens

We focus on key accumulation characteristics and half-lifes derived from the plasma con-

centration profiles after single dose C(t) and steady-state profiles during multiple dose

Css(t). We review the results of 1-compartment model with i.v. bolus administration,

and use this to establish notation. We then present results for 2-compartment model

with i.v.bolus administration, where we observe the possibility of decomposition of all

characteristics into associated weighted one-compartment models. We then extend the

framework for oral administration.

5.3.1 1-compartment PK model with i.v. bolus administration revisited

Given the volume of distribution Vss and the total plasma clearance CL, the rate of change

of the plasma (central) concentration C after a first i.v. bolus dose D is governed by the

ODE

Vss
d

dt
C = −CL · C. (5.13)

with initial condition C(0) = D/Vss. The analytical solution of the plasma concentration

is given as

C(t) = L · exp(−λt), (5.14)

with initial concentration L = D/Vss and rate constant λ = CL/Vss. In multiple dosing,

under steady-state conditions with dosing interval τ , the analytical solution at time t

(relative to the last dose) can be given as

C(t) = RλL · exp(−λt), (5.15)

where Rλ = 1/(1− exp(−λτ)) denotes an index of accumulation. Note that Rλ = Rλ(τ)

is a function of the dosing interval τ . Thus, the plasma concentration in the steady state

multiple dosing regime is just a multiple of the single dosing plasma concentration, with

a scaling factor equal to the accumulation index Rλ.

From eqs. (5.14) and (5.15), several key characteristics of multiple dosing can be

determined. The terminal half-life is given by

t1/2 =
log(2)

λ
. (5.16)

The AUC, peak and trough accumulation factors are all identical and given by

RAUC = Rpeak = Rtrough =
1

1− exp(−λτ)
, (5.17)

where all three accumulation ratios are functions of the dosing interval τ . Combining

eqs. (5.16)-(5.17) and the definition of the accumulation index, we obtain Rλ = 1/(1 −
exp(− log(2)τ/t1/2)) so that Rλ = 2 for τ = t1/2. In other words, from a graphic of Rλ

versus τ , we may easily read off the half-life: it is that value of τ , for which Rλ equals 2
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(i.e., the value of the abscissa when the ordinate equals 2). Finally, the peak-to-trough

ratio under steady state is given by

PTss = exp(λτ). (5.18)

Note that none of the key characteristics introduced above depend on the dose (since the

factor L cancels out)! We highlight three unique features of the 1-compartment model

with i.v. bolus administration:

1. half-life, accumulation factors and peak-to-trough ratio are all expressed in terms of

a single, model-specific quantity λ;

2. all three accumulation factors are identical;

3. knowing one of the above key characteristics of multiple dosing allows one to deter-

mine λ and therefore all other key characteristics.

None of the three features continue to hold for multi-compartment models.

5.3.2 2-compartment PK model with i.v. bolus administration

Given the central and peripheral volumes V1 and V2, and the distribution and total plasma

clearances Q and CL, the rate of change of the plasma (central) and peripheral concen-

trations C1 and C2 after a single i.v. bolus dose D is governed by the system of ODEs

(5.2) with initial conditions C1(0) = D/Vss and C2(0) = 0. The analytical solution of the

plasma concentration is given by

C1(t) = A · L exp(−αt) +B · L exp(−βt), (5.19)

with L = D/Vss, coefficients A = (α−Q/V2)/(α− β); B = (Q/V2 − β)/(α− β); and rate

constants β = CL/Vz and α · β = (Q/V2)(CL/V1), where Vz denotes the terminal volume

of distribution. By definition, α > Q/V2 > β.

We make the following simple, but key observation (Figure 5.3 top): one may interpret

the plasma concentration C1 in eq. (5.19) as the weighted sum of the solutions of two 1-

compartment PK models:

(a) with initial concentration L, rate constant α and weighting factor A; and

(b) with initial concentration L, rate constant β and weighting factor B.

This simple observation enables us to leverage on the 1-compartment theory. We refer

to these models as the 1-compartment models associated with the 2-compartment model.

For each of the 1-compartment models, we determine the key characteristics as follows.

(a) t1/2,α = log(2)/α, RAUC,α = Rpeak,α = Rtrough,α = Rα, and PTss,α = exp(ατ), where

Rα = 1/(1− exp(−ατ)) denotes the accumulation index;

(b) t1/2,β = log(2)/β, RAUC,β = Rpeak,β = Rtrough,β = Rβ and PTss,β = exp(βτ), where

Rβ = 1/(1− exp(−βτ)) denotes the accumulation index.
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Figure 5.3. Decomposition of multi-compartment PK profiles into associated
one-compartment profiles in multiple dosing settings. Top: A two-compartment
PK profile after the first dose can be decomposed into associated one-compartment profiles.
Bottom: A similar decomposition can also be carried out for the PK profile at steady-
state conditions during multiple dosing. Notably, the associated one-compartment profiles
are scaled versions of the corresponding single-dose profiles.

Under steady state multiple dosing conditions with dosing interval τ , the plasma con-

centration of the 2-compartment PK model at time t (relative to the last dose) can be

given by

C1(t) = A ·RαL exp(−αt) +B ·RβL exp(−βt), (5.20)

with accumulation indicesRα andRβ defined above. In this case, the plasma concentration

in the steady state multiple dosing regime is not just a scaled version of the single dosing

plasma concentration. Notably, however, the associated one-compartment profiles reveal

scaling by the corresponding accumulation ratios (Figure 5.3 bottom).

From eqs. (5.19) and (5.20), the following key characteristics of multiple dosing can

be determined. The terminal half-life is t1/2 = log(2)/β and can thus be written as

t1/2 = 0 · t1/2,α + 1 · t1/2,β. (5.21)

Based on eqs. (5.5), (5.19) and (5.20), we obtain the AUC accumulation factor RAUC
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as follows.

RAUC =
AUCss,0→τ
AUC0→τ

=
A ·AUCss,0→τ,α +B ·AUCss,0→τ,β
A ·AUC0→τ,α +B ·AUC0→τ,β

=
A ·RαAUC0→τ,α +B ·RβAUC0→τ,β
A ·AUC0→τ,α +B ·AUC0→τ,β

=
A ·RαL/αR−1

α +B ·RβL/αR−1
β

A · L/αR−1
α +B · L/αR−1

β

=
A/α+B/β

A/α ·R−1
α +B/α ·R−1

β

,

where the subscripts α and β indicate that the AUC is determined with respect to the

corresponding 1-compartment model. Taking the inverse of the above relation results in

R−1
AUC =

A/α

A/α+B/β
R−1
α +

B/β

A/α+B/β
R−1
β . (5.22)

Calculating on similar lines, the peak and trough accumulation factors are determined

as

Rpeak =
A

A+B
·Rα +

B

A+B
·Rβ, (5.23)

and

Rtrough =
A exp(−ατ)

A exp(−ατ) +B exp(−βτ)
Rα +

B exp(−βτ)

A exp(−ατ) +B exp(−βτ)
Rβ. (5.24)

Interestingly, under the usual condition of A > B > 0, it can be shown that

Rpeak < Rtrough, (5.25)

To prove the above inequality, we note that under the assumption of A > B > 0:

B

A+B
<

B

A exp(−(α− β)τ) +B
=

B exp(−βτ)

A exp(−ατ) +B exp(−βτ)
,

since by definition α > β, implying exp(−(α − β)τ) < 1. As Rpeak,α = Rtrough,α = Rα <

Rβ = Rpeak,β = Rtrough,β, the inequality (5.25) follows.

The peak-to-trough ratio under steady state multiple dosing conditions is determined

as

PT−1
ss =

ARα
ARα +BRβ

PT−1
ss,α +

BRβ
ARα +BRβ

PT−1
ss,β. (5.26)

We emphasize that the peak accumulation factor and the peak-to-trough ratio are

derived under the implicit assumption that the time at which the peak is attained satisfies

tpeak = 0. This is the case for i.v. bolus administration, while it does not hold for the case

of oral administration (details follow in the next sub-section). Again, we note that none
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of the key characteristics depend on the dose.

We highlight the following features of the 2-compartment PK model with i.v. bolus

administration:

1. the key characteristics of multiple dosing for a 2-compartment model depend on the

key characteristics of the two associated 1-compartment models;

2. the relative impact of each of these two 1-compartment key characteristics depends

on weighting factors; these differ between the key characteristics;

3. in general, knowledge of one of the above key characteristics of multiple dosing does

not allow one to predict some other key characteristics.

These observations are not restricted to the 2-compartment model and naturally generalize

to multi-compartment PK models. This also includes the case of a 1-compartment PK

model with oral administration, since it can be formulated as a 2-compartment PK model.

5.3.3 1-compartment PK model with p.o. administration

Oral administration of a drug is a popular dosage route and is referred to as p.o. admin-

istration. Here, the absorption kinetics of a drug after ingestion is generally described

by two parameters, a gastro-intestinal (GI) rate constant kp.o. and bioavailability Fbio

(interpretation of these parameters follows later). Given a volume of distribution Vss, a

total plasma clearance CL, the rate of change of the plasma (central) concentration C1

and the amount in the GI tract A2 after a single p.o. dose D is described by the system

of ODEs

Vss
d

dt
C1 = −CL · C + Fbiokp.o. ·A2 (5.27)

d

dt
A2 = −kp.o. ·A2, (5.28)

with initial conditions C1(0) = 0 and A2(0) = D. The analytical solution can be written

down as

C1(t) = L
kp.o.

kp.o. − λ
(

exp(−λt)− exp(−kp.o.t)
)
, (5.29)

with L = FbioD/Vss and rate constant λ = CL/Vss. We assume kp.o. 6= λ (otherwise

see [275]).

Under steady state multiple dosing conditions with dosing interval τ , the analytical

solution at time t (relative to the last dose) is given by

C1(t) = L
kp.o.

kp.o. − λ
(
Rλ exp(−λt)−Rkp.o. exp(−kp.o.t)

)
, (5.30)

with accumulation indices Rkp.o. = 1/(1− exp(−kp.o.τ)) and Rλ = 1/(1− exp(−λτ)).

Depending on the magnitudes of kp.o. and λ, we distinguish two scenarios:

(i) Common case: kp.o. > λ. We defined α = kp.o., A = −kp.o./(kp.o.− λ), B = −A and

β = λ;
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(ii) Flip-flop case: kp.o. < λ. We defined α = λ, A = −kp.o./(λ − kp.o.), B = −A and

β = kp.o..

Note that in both scenarios, A < 0 and B > 0. Again, we associate with eqs. (5.29) and

(5.30), two 1-compartment models: (a) with initial concentration L, rate constant α and

weighting factor A; and (b) with initial concentration L, rate constant β and weighting

factor B. This formal analogy allows us again to write key characteristics of multiple

dosing for the 1-compartment model with p.o. administration as weighted sums of the

corresponding key characteristics of the two associated 1-compartment models. The only

difference being, that the times of peak concentration tss,peak and tpeak are different from

zero. For explicit calculation of these times, we refer to [276]. They are given by

tpeak =
log(kp.o.)− log(λ)

kp.o. − λ
(5.31)

and, defining the shift in steady state

∆ss,peak =
log(Rkp.o.)− log(Rλ)

kp.o. − λ
, (5.32)

we have tss,peak = tpeak + ∆ss,peak.

Note that for both the common and the flip-flop scenario, the shift is negative, such

that tss,peak < tpeak, i.e., the peak concentration is reached earlier under steady state

multiple dosing condition compared to the first dose (in both cases, the time is relative to

last dose).

Exploiting the association between the 1-compartment PK model with p.o. dosing

and two 1-compartment models (as discussed above), one can easily determine the key

characteristics of multiple p.o. dosing from eqs. (5.21)-(5.26), taking into account the

differences in peak times at steady state dosing tss,peak and at single dose tpeak. This

nicely illustrates the usefulness of our proposed framework. For the common scenario

(kp.o. > λ), we explicitly state the resulting key characteristics below, where we further

simplify the equations by exploiting B = −A.

The AUC accumulation factor is given by

RAUC =
kp.o. − λ

kp.o.(1− exp(−λτ))− λ(1− exp(−kp.o.τ))
. (5.33)

The trough and peak accumulation factors can also be derived as

Rtrough =

exp(−λτ)
1−exp(−λτ) −

exp(−kp.o.τ)
1−exp(−kp.o.τ)

exp(−λτ)− exp(−kp.o.τ)
. (5.34)

Rpeak =

exp(−λ(tss,peak))
1−exp(−λτ) − exp(−kp.o.(tss,peak))

1−exp(−kp.o.τ)

exp(−λtpeak)− exp(−kp.o.tpeak)
. (5.35)

These accumulation factors are identical to the formulae given in eq. A-9 in [274].

Finally, the peak-to-trough ratio PTss in steady state can be determined from eqs. (5.29)-
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(5.30) as

PTss =
ARλ exp(−λ(tss,peak)) +BRkp.o. exp(−kp.o.(tss,peak))

ARλ exp(−λτ) +BRkp.o. exp(−kp.o.τ)
. (5.36)

For the flip-flop scenario, the corresponding equations can be similarly derived.

As in [270], we emphasize that kp.o. includes the processes of GI transition, absorption,

and metabolism in the gut as well as in the liver. It quantifies the rate of loss of the drug

that can potentially be absorbted into the systemic circulation. In terms of the fraction

excreted unchanged in feces Efeces, the metabolic extraction of the gut Egut and the hepatic

extraction ratio Ehep, we may quantify the different processes as follows: (1−Efeces)kp.o.

characterizes the rate of absorption into the gut wall; Egut(1−Efeces)kp.o. characterizes the

rate of gut wall metabolism, while (1−Egut)(1−Efeces)kp.o. characterizes the absorption

into the portal vein. Finally, (1 − Ehep)(1 − Egut)(1 − Efeces)kp.o. characterizes the rate

of absorption into the systemic circulation. Note that the latter is identical to Fbiokp.o.,

since by definition Fbio = (1− Ehep)(1− Egut)(1− Efeces).

In many models, an absorption rate constant defined as ka = Fbio · kp.o. is used,

resulting in kp.o. = ka/Fbio. It is important to realize that while ka could in principle be

very small, kp.o. will normally not be, since it is limited by e.g., the natural GI transit time.

It is, however, kp.o. (and not ka) that determines whether absorption is characterized by

a flip-flop scenario.

5.3.4 2-compartment PK model with p.o. administration and beyond

The case of 2-compartment PK models with p.o. administration and other multi-compartment

models can be treated analogously as in the 2-compartment i.v. bolus case. The common

property of all these models is that their analytical solution is a sum of two or more expo-

nentials with different rate constants (e.g., α and β; or λ and kp.o. etc). Each exponential

term can be formally associated with a 1-compartment model with i.v. bolus adminis-

tration. Therefore, we may determine the half-life, accumulation factors, peak-to-trough

ratio for each of those exponential terms. Then, the key characteristics of the multi-

compartment PK model can again be written as weighted sums of the key characteristics

of the associated 1-compartment models.

5.3.5 Half-lifes in the integrated framework

Effective (accumulation) half-life

For a 1-compartment model with i.v. bolus administration, it is clear that keff = λ, and

thus teff = t1/2. For a 2-compartment model with i.v. bolus administration, RAUC depends

on both accumulation factors RAUC,α = Rα and RAUC,β = Rβ according to eq. (5.22).

Rearranging terms yields

exp(−keffτ) =
A/α

A/α+B/β
· exp(−ατ) (5.37)

+
B/β

A/α+B/β
· exp(−βτ).
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Consequently, keff = keff(τ) is a weighted sum of both rate constants, α and β.

Effective (NCA) half-life

For a 2-compartment model with i.v. bolus administration, AUMC = A/α2 + B/β2,

resulting in

t1/2,NCA =
A/α

A/α+B/β
· t1/2,α +

B/β

A/α+B/β
· t1/2,β. (5.38)

Although the similarity to eq. (5.22) is striking, in general, RAUC is not linked to the half-

life t1/2,NCA. Furthermore, in general t1/2,NCA 6= log(2)/keff with keff defined in eq. (5.11).

Operational half-life

Our framework enables us to precisely formulate the complex definition of operational

half-life. We use a two-compartment model with i.v. bolus administration for illustration.

When Rpeak = 2, from eq. (5.23), we have

ARα +BRβ = 2. (5.39)

On computing the peak-to-trough concentration ratio at steady-state from eq. (5.26),

we see

PTss
−1 = (ARαe

−ατ +BRβe
−βτ )/2. (5.40)

Using the definitions of the accumulation factors Rα and Rβ of the associated one-

compartment models, and exploiting the fact that A + B = 1, it is clear that PTss = 2.

It can be shown that this relation holds for any multi-compartment model for i.v. bolus

administration. Thus, we note that the operational half life is completely characterized

by Rpeak(τ = t1/2,op) = 2.

5.3.6 Approximation of the terminal volume of distribution

We also derive a new approximation to the terminal volume of distribution Vz for multi-

compartment models, that allows for an understanding of the difference between the

steady-state and terminal volume of distribution in terms of relevant PK processes and

quantities.

Exploiting the definition of λz and t1/2, we write the terminal half-life as

t1/2 = log(2)
Vz

CL
, (5.41)

where Vz denoted the volume of distribution at terminal phase. In the absence of knowl-

edge of the inter-compartmental clearance Q, the terminal volume of distribution is some-

times approximated by the steady-state volume of distribution Vss, resulting in the ap-

proximative half-life

t1/2,Vss = log(2)
Vss

CL
. (5.42)

For 1-compartment PK models, we have t1/2,Vss = t1/2 by definition. For multi-

compartment PK models, the approximation quality, however, can be very different.

To present our approximation of the terminal volume of distribution, we first consider

a 2-compartment PK model parameterized in terms of V1, V2, Q and CL (as in (5.2)). We
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define the approximate terminal volume of distribution

V̂z = (1− Ez) · V1 +
1

1− Ez
· V2, (5.43)

where Ez denotes the terminal extraction ratio given by

Ez =
CL

CL +Q
. (5.44)

In what follows, we derive an error bound on the approximation quality of V̂z for the

2-compartment PK model and observe that when V1 < V2, the error in approximation is

only about 5%. For our analysis, we introduce the dimensionless quantities r = Q/CL and

s = V1/V2. A rigorous mathematical justification of such non-dimensionalizing methods

and their utility in the analysis of compartmental systems can be found in [277], where

the authors discuss physiologically relevant bounds for the dimensionless quantities in a

pharmacokinetic context and suggest that s < 0.5 for several known drugs.

We define the relative error of approximation as

errrel =
|V̂z − Vz|

Vz
= 1− V̂z

Vz
. (5.45)

To derive explicit bounds on the relative error, it is advantageous to rewrite errrel as a

function of r and s. To this end, we exploit the following relationships: Vz = CL/λz with

λz =
−1

2
· (Tr(M) +

√
(Tr(M))2 − 4 · det(M)), (5.46)

where M =

(
−Q+CL

V1
Q
V1

Q
V2

−Q
V2

)
, and Tr(M) and det(M) denote the trace and determinant

of the matrix M, respectively.

Using the non-dimensional parameters r and s, we then write

Ez =
CL

CL +Q
=

1

1 + r
(5.47)

and

Vz =
1

−1
2

[
−(r+1)
sV2

− r
V2

+
√

r2

V 2
2
− 2r2

V 2
2
− 2r

sV 2
2

+ (r+1)2

s2V 2
2

] . (5.48)

Inserting these relationships into eq. (5.45), and exploiting the definition of Vz yields

errrel(r, s) = 1− 1

2s

(
rs

r + 1
+
r + 1

r

)
(5.49)(

(rs+ r + 1)−
√

(rs+ r + 1)2 − 4rs)
)
.

In Fig. 5.4 (left), the function gs(r) = errrel(r, s) is shown for different values of s =

0.1, . . . , 0.9. We infer that the function gs(r) has a unique maximum at some point rmax =
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rmax(s), which is characterized by

∂gs
∂r

(rmax) = 0 and
∂2gs
∂r2

(rmax) < 0. (5.50)

We solved eq. (5.50) using MathematicaTM 8. The maximal relative error maxerrrel(s) =

gs(rmax(s)) as a function of s is shown in Fig. 5.4 (right). From the function maxerrrel we

determine:

maxerrrel < 5.08% if s < 1 (5.51)

and

maxerrrel < 18.7% if s < 3 (5.52)

This shows that for the most common situation of V1 < V2, the relative approximation

error is less than about 5%. Further, weakening the condition to V1 < 3 · V2 still results

in a relative approximation error of less than 20%.

r = Q/CL
0 5 10 15 20

g
s(r

) 
= 

er
r re

l(r
,s

)

0.05

0.1

0.15

0.2

s = 0.5

s = 3

0 0.5 1 1.5 2 2.5 3 3.5

0.05

0.1

0.15

0.2

s = V1/V2

m
ax

er
r re

l(s
) =

 g
s(r m

ax
(s

))

Figure 5.4. Left: Error function gs(r) = errrel(r, s) for different values of s =
0.5, . . . , 3. We observed that gs always attained a unique maximum at some
value rmax = rmax(s). Right: Maxima gs(rmax(s)) as a function of s. We note
that the maximal error incurred by the approximation is bounded by ∼ 5%
when s < 1 and by ∼ 18% when s < 3.

Our approximation can be generalized to multi-compartment models with central vol-

ume V1, plasma clearance CL and peripheral compartments with volumes and distribution

clearances Vi and Qi, respectively, for i = 2, . . . , k, where k ≥ 2 denotes the number of

compartments. We define the slowest compartment ’slow’ as the compartment with the

smallest Qi/Vi ratio, i.e.,

Qslow

Vslow
<
Qi
Vi

for i = 2, . . . , k. (5.53)
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In this case, we define the approximate terminal volume of distribution

V̂z = (1− Eslow) · (Vss − Vslow) +
1

1− Eslow
· Vslow, (5.54)

where the terminal extraction ratio Ez is defined as

Ez =
CL

CL +Qslow
. (5.55)

We illustrate the performance of our approximation by comparing terminal volumes of

distribution computed from pharmacokinetic parameters for five different drugs exhibiting

a three-compartment PK behaviour to our approximate terminal volume of distribution

(Table 5.1). In all instances, the error in approximation is limited to less than 20%.

The approximate terminal volume of distribution allows us to understand a potential

difference between Vss and Vz in terms of relevant PK processes. Under the condition of

V1 < V2, it is

Vz/Vss ≈ (1− Ez) · (1− V2/Vss) +
1

1− Ez
· V2/Vss. (5.56)

Hence, for given volumes V1 and V2, the ratio growth is monotonous with Ez, i.e., with

increasing ratio CL/Q. For given clearances CL and Q and fixed Vss, the ratio growth

is monotonous with V2/V1, i.e., when the peripheral constitutes a larger fraction of the

steady-state volume of distribution.

Table 5.1. Comparison of exact and approximate terminal volumes of distri-
bution for five different anaesthetic drugs exhibiting a three compartment PK
behavior.

Drug V1 V2 V3 Q2 Q3 CL Ez s Vss Vz V̂z errrel

Propofol 16 35 250 1800 650 1900 0.75 0.2 301 994.7 993.8 0.1
Thiopental 6 34 150 2750 590 215 0.27 0.3 190 235.7 234 0.7
Remifentanil 5 10 6 2050 770 2600 0.77 2.5 21 35 29.7 15.1
Alfentanil 10 12.0 15 810 130 300 0.7 1.5 37 59.1 56.3 4.9
Fentanyl 15 35.0 250 3460 1650 1000 0.38 0.2 300 434.6 432.6 0.5

Volume in L, clearances in mL/min, errrel in %. The parameters of the three
compartment are PK model are all taken from [278].

5.3.7 Understanding the accumulation and half-life of raltegravir

We now return to the raltegravir example. The authors in [15] assess the PK of 400 mg

raltegravir administered twice a day and report AUC and peak accumulation factors of

close to 1.0, while determining a long terminal half-life of 9-12 hours (depending on the

dose-group studied) which is suggestive of accumulation. Benet et al [269] reconcile this

apparent contradiction by computing an effective half-life, that unsurprisingly turns out to

be lower (∼2 hours). On the other hand, Min et al [273] report comparable terminal half-

lifes but moderate accumulation with a different integrase inhibitor. We now dissect the

key characteristics using our framework to better understand such seeming discrepancies.
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Iwamoto et al [15] use a bi-exponential of the form C(t) = A·exp(−αt)+B ·exp(−βt) to

fit multiple dose PK data. They report determining the parameter A by visual inspection

and estimate parameters t1/2,α and t1/2,β, the half-lifes corresponding to a first and second

phase of the decaying PK profile. They also report times to peak concentration after single

dose and multiple doses to be 1 hour (although, theoretically, the latter is always lesser,

see eqs. (5.31) and (5.32)). Since the drug is orally administered and shows a biphasic

decline, we derive the AUC accumulation ratio (motivated by eqs. (5.22) and (5.33)) as

RAUC =
A/α+B/β − (A+B)/kp.o

A/α ·R−1
α +B/β ·R−1

β − (A+B)/kp.o ·R−1
kp.o

. (5.57)

Now, setting RAUC = 1.05 (as determined in [15]) and using an absoprtion rate con-

stant of raltegravir of kp.o = 0.60 (estimated in [279]), we obtain

A ≈ −1230 ·B. (5.58)

We next derive the peak accumulation ratio as

Rpeak =
A·Rα·exp(−α·tss,peak)+B·Rβ ·exp(−β·tss,peak)−(A+B)·Rkp.o ·exp(−kp.o·tss,peak)

A·exp(−α·tsd,peak)+B·exp(−β·tsd,peak)−(A+B)·exp(−kp.o·tsd,peak) (5.59)

Substituting eq. (5.58) above and using tss,peak = tsd,peak = 1 hour, we obtain

Rpeak ≈ 1 (5.60)

Having reproduced the observations in [15], we analyze why the accumulation factors

are close to 1. As can be inferred from eq. (5.58), we have |A| � |B|. In this example, we

have Rα ≈ 1. Additionally, when kp.o = 0.60, we have Rkp.o = 1. Under these conditions,

we have RAUC reducing to

RAUC =
A/α+B/β −A/kp.o

A/α+B/β ·R−1
β −A/kp.o

. (5.61)

Since α ≈ 10 · β, and |A| ≈ 1000 · |B|, we have |A/α| � |B/β|, and it is clear that

RAUC ≈ 1. A similar approximation analysis yields a jusifcation for Rpeak ≈ 1.

Hence, we note the ratios A/B and α/β determine the dominance of one or the other

phase and terminal half-life (which is a measure of the rate of decline in the final phase) is

independent of accumulation ratios (which are weighted composite measures of all phases

of drug decline).

Thus, our framework enables us to isolate key characteristics of the system, analyze

their dependence on the underlying pharmacokinetic parameters, and interpret them ap-

propriately.

5.4 Impact of PK on viral dynamics

In this section, we examine the impact of PK fluctuations on viral dynamics. We first use

a simple time-dependent concentration profile of an antiviral and study how this affects
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the behaviour of a simplified viral dynamics model. After discussing such an incorporation

of PK into a viral dynamics model, we show how fluctuations in drug concentrations could

result in both qualitative and quantitative differences in virological outcomes, compared

to a constant-drug effect scenario. We then assess the impact of PK on our viral dynamics

model with drug-specific mutation schemes using ZDV as an example.

Monoexponential PK and simplified viral dynamics model

Consider a monoexponentially decaying drug concentration (or equivalently, a one-compartment

PK model) described by

Cdrug(t) =
Dose

V
· exp

(
−CL

V
· t
)
, (5.62)

where ’Dose’ refers to the administered amount of drug, and CL and V are the clearance

and volume of distribution of the drug, respectively. For simplicity of illustration of

different parameter scenarios, we assume an i.v. bolus administration. Note that while

the above equation describes the concentration-time profile after a single dose, a multiple

dose generalization (as is required for our example) is straightforward to realize. For our

example, we set CL = 1 L/hr and V = 50 L.

A two-stage viral dynamics model with three mutant genotypes —two single point

mutants and one double point mutant (refer Figure 2.10 and Figure 2.11 of Chapter 2) is

used. The fitness costs of the single mutants were assumed to be 0.05, while that of the

double mutant is assumed to be 0.1, and the resistance factors are assumed to be 10 and

100, respectively. We note that these parameters were chosen only to illustrate the impact

of fluctuating drug concentrations on viral dynamics, and are arbitrary, in that sense.

The drug concentration Cdrug drives the efficacy, and hence the drug efficacy εg (eq.

2.4 of Chapter 2) becomes a function of time, εg(t).

ε(t) = εg(t) =
Cdrug(t)/IC50g

1 + Cdrug(t)/IC50g
. (5.63)

For our illustration here, we chose an integrase inhibitor administered at a dose of 100

mg with a dosing interval τ of 1 day. Again, this choice of parameters does not impact our

foregoing discussions. We chose an average (over time) drug efficacy of 90% for the wild

type, i.e., εavg,WT(t) = 0.90, which is realized through a time-averaged drug concentration

(over a dosing interval). Over a certain dosing interval τ , we defined the average drug

concentration Cavg(t) as

Cavg(t) =
1

τ

∫ τ

0
Cdrug(t) dt, (5.64)

where the integration is over one dosing interval. The drug efficacies for the different

mutant genotypes are obtained as earlier (Chapter 3) using their corresponding fitness

costs and resistance factors.

We observed both qualitative and quantitative differences in viral dynamics depending

on the underlying PK fluctuations. A key parameter that influences the dynamics of mu-

tant genotypes is the stead-state peak-to-trough ratio PTss of the drug. In our simplified
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Figure 5.5. Impact of PK fluctuations on viral dynamics. Steady-state peak-to-
trough ratios are varied as (A) PTss = 1.6, (B) PTss = 121, and (C) PTss ∼ 1. In (D),
we show the dynamics with no PK fluctuations, for comparison.

PK model, this is easily calculated (eq. 5.18). For example, when CL = 1 L/hr and V = 50

L, therapy failure was due to mutations, as was the case when there are no PK fluctuations

incorporated (panels A and D, respectively, in Figure 4). Interestingly, between these two

situations, we noticed minor differences in the time to mutations, with the mutations

taking up to 5 days longer to appear at detectable levels, when PK is incorporated. The

peak-to-trough ratio PTss for Panel A is about 1.6. When the fluctuations were decreased

to PTss ∼ 1 (Panel C), by decreasing the clearance 10 times, the failure was again due to

mutations with mutant genotypes appearing later (∼35 days). This difference in the time

to appearance of different mutations can be attributed to the finite non-zero time for the

drug concentration (and thereby the drug efficacy εg) to attain steady-state (as opposed

to the constant drug-effect situation). With an increase in fluctuations realized by setting

CL = 10L/hr and V = 50 L (resulting in PTss = 121), we noted failure due to wild type

(Panel B). Here, viral load rebounds within 10 days, while mutant genotypes take up to

60 days or longer to be detected. With such large fluctuations in drug concentrations and

increased time spent at low concentrations, the selection pressure on mutant genotypes is

not very high, leading to their delayed appearance.

Impact of ZDV PK on emergence of mutant genotypes

In Chapters 3 and 4, we assumed a constant drug effect (εwt)—as is commonly done in

viral dynamics models [6, 7, 115]. As discussed in the previous section, the integration of

pharmacokinetic drug profiles can also be realized in our viral dynamics model with drug-

specific in vivo mutation schemes. For illustration, we consider a two-compartment PK

model of ZDV with parameters from literature [280,281]) (a clearance CL = 1.6 L/h/kg,

central and peripheral volumes V1 = 1.6 L/kg and V2 = 3.2 L/kg respectively, and an
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inter-compartmental clearance Q = 3.2 L/h/kg). Here, Q and V2 are chosen to obtain a

steady-state peak-to-trough ratio in the peripheral (effect) compartment of about 2-3, in

line with previous observations for NRTIs [280, 282]. More detailed physiologically-based

PK models have been proposed [280], but this is beyond our current scope.

Table 5.2. Statistical and mechanistic waiting times to observe mutations
under ZDV therapy with ZDV concentration described by a two-compartment
pharmacokinetic model.

Mutation Statistical average
waiting times

Mechanistic waiting
times

41L 1.00 1.00
67N 1.10 1.06
70R 2.18 1.81
210W 1.28 1.10
215Y 1.08 1.02
219Q 2.34 1.81

The average statistical waiting times and the corresponding mechanistic waiting times to
observe mutations at the different positions under ZDV therapy. ZDV concentration is
assumed to be described by a two-compartment PK model. The average statistical and
mechanistic waiting times are calculated as described in Chapter 3. Both waiting times
are expressed relative to the time to the fastest occurring mutation. The predicted
mechanistic waiting times has a high and significant correlation (r = 0.99, p-value =
0.0001) with the statistical waiting times.

Our simulations are scaled for an individual with body weight of 70 kg, administered a

dose of 300 mg twice daily, in accordance with clinical recommendations The concentration

in the peripheral (effect) compartment is coupled to the virus dynamics model similar

to the example in the previous section. ZDV is an NRTI, and as a consequence, the

parameters βT, CLT, βM and CLM, influenced by ZDV, are now functions of the drug

concentration and therefore, of time. We observed that the predicted mechanistic waiting

times did not vary significantly (Table 5.2) from the constant drug-concentration case.

The mechanistic waiting times retained a high correlation with the average statistical

waiting times (r = 0.99, p-value = 0.0001). The order of appearance of mutations was

also preserved.

5.5 Summary

Viral suppression by an anti-HIV drug depends on time-dependent pharmacokinetic fluc-

tuations in drug concentrations. Drug accumulation ratios and half-lifes play an important

role in drug development and therapeutics. In this chapter, we reviewed various measures

of accumulation and half-lifes. We then presented an integrated framework to derive and

interpret key PK characteristics and illustrated the utility of such an approach using ral-

tegravir as an example. Our framework afforded a consistent understanding of multiple

dosing phenomena, and can be readily generalized to multi-compartment models. Im-

portantly, it also lends itself to an intuitive understanding and interpretation of different
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measures of drug accumulation. We also study the impact of PK on antiviral effect and

noted the possibility of qualitative and quantitiave differences in virological outcome, com-

pared to constant drug-effect models. Finally, we assessed the impact of incorporating PK

on the dynamics of mutant genotypes under ZDV therapy using our viral dynamics model

with detailed mutation schemes. With combination therapy and drug-drug interactions,

the behaviour is expected to be more complex. Different models for the coupling of con-

centration to effect can also be explored. Recent work by Rosenbloom et al [160] proposes

the existence of mutant selection windows and studies the impact of drug concentrations

on mutant selection. However, this work relies on mono-exponential PK profiles combined

with in vitro IC50 measurements. More detailed investigations into the influence of PK

on mutant selection are certainly warranted.
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Chapter 6

Parameter estimation and identifiability in viral

dynamics models

6.1 Introduction

Parameter estimation is an ubiquitous task in systems biology where detailed models with

several parameters are used to adequately reflect the biological system of interest [283,284].

The uncertainties in the estimated parameters is a crucial feature when the model is sub-

sequently used to simulate biological behaviour, in particular when experimental data

is either unavailable or scanty. Owing to both the unavoidable complexities (such as

nonlinearities) in the model and the paucity of experimental data, parameter identifia-

bility and sloppiness (sloppiness refers to high sensitivity of models to certain parameter

combinations, and not others) [285] are frequent concerns in such settings.

There are several techniques based on diverse approaches that have been devised to

assess parameter identifiability, to address sloppiness, and to infer meaningful estimates

of parameters [286–289]. Occasionally, statistical regularization techniques have also been

used—see [290] for an excellent review of how formal statistical methods designed for

ill-posed inverse problems find applications in systems biology.

In this chapter, we focus on parameter identifiability problems encountered in our

settings of viral dynamics models. We begin by presenting a technique that we adapt

from literature to alleviate issues of parameter identifiability in the estimation of fitness

characteristics of HIV mutant genotypes. Next, we briefly review a few theoretical aspects

of regularization as applied to linear models and examine the utilitzation of such regu-

larization methods in nonlinear models. In general, regularization methods in parameter

estimation with nonlinear models are far less studied in comparison to linear models, and

some of our numerical results represent a promising step towards utilizing such methods

for parameter estimation in virus dynamics models.

6.2 Family of model fits

In general, the procedure of parameter estimation for a given model can have different

outcomes (see [291] for a review) —A) a single, unique solution set of parameter estimates

(the solution set of parameter estimates refers to the set of estimates obtained for each of

the model parameters by an optimization procedure) rendering the model globally identi-

fiable, B) a countable number of solution sets of parameter estimates rendering the model

locally identifiable, C) an uncountably infinite number of solution sets of parameters ren-

dering the model unidentifiable, D) no parameter solution set. Of these, many estimation
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problems in systems biology fall under Scenarios B and C, mainly due to model nonlinear-

ities necessary to effectively reflect biological phenomena. Chen et al [288] rightly observe

that while parameter identifiability has received extensive attention in fields as diverse as

climate change and nuclear reaction modelling, it has largely been ignored in biology.

In complex models riddled with nonlinearities, the authors in [288] suggest estimat-

ing not one parameter solution set, but a family of solutions (due to the underlying

non-identifiability common in such models, the parameter solutions comprising the fam-

ily would not be expected to be all identical) using Monte Carlo based approaches like

simulated annealing [292]. A selected subset of such solutions (for example, based on a

root-mean-squared deviation (RMSD)) can then be examined and useful features relevant

to the biological situation at hand, can be extracted.

We investigated the validity of this approach in alleviating parameter identifiability is-

sues while estimating fitness costs of HIV mutant genotypes. To understand this approach

and demonstrate its utility, we first illustrate its performance using a viral dynamics model

with a simple mutation scheme.

6.2.1 A simple example

We consider the two-stage virus dynamics model (Figure 2.10, Chapter 2). In the follow-

ing, the uninfected target cells comprise of only T-cells; we drop macrophages and latently

infected cells from the model for purposes of simplicity. Apart from altering the dynamics

in a limited manner, incorporating these features would not alter our conclusions, espe-

cially regarding features of parameter estimation. We modelled the action of an integrase

inhibitor and assumed a simple mutation scheme (Figure 6.1), wherein the wild type virus

firstly acquires one mutation and subsquently accumulates another mutation. This results

in two possible mutant genotypes: a single mutant and a double mutant. Note that this

corresponds to a CBN model of mutations with a poset such that mutation at position 1

occurs from the wild type, followed by a further accumulation of mutation at position 2.

The mutation rate µ was fixed to be 3.4 · 10−5, as before. We first simulated this model

using certain fixed fitness costs (s({1, 0}) = 0.2, s({1, 1}) = 0.1) and resistance factors

for the two mutant genotypes and compute (mechanistic) waiting times for the two mu-

tations. We then examined if these ‘true’ fitness costs and/or key features of the model

can be recovered via parameter estimation using the waiting times ‘data’. The drug-effect

and other parameters used in this study are summarized in Table 6.1.

Table 6.1. Drug effect and resistance parameters used in the simulation-
estimation procedure.

Parameter Value

Resistance factor of single mutant {1,0} 10
Resistance factor of double mutant {1,1} 100
Drug-effect (εwt) on wild type 0.90

We perfomed 50 rounds of estimation starting from different initial estimates using the

simplex-search based algorithm fminsearchbnd in MATLABTM . Here, the waiting times
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Figure 6.1. A simple mutation scheme wherein the wild type virus accumulates
two mutations in sequence.

used to estimate the fitness costs come from simulations (as opposed to being learned

statistically from experimental data) and so are known to arbitrary precision. Hence, we

used all 50 estimated sets of fitness costs for analysis. As would be expected, the estimated

fitness costs were not all identical and depended on the initial estimates. Statistical

measures of dispersion of the distributions of estimates such as the standard deviations

also revealed unidentifiability (Table 6.2). However, we noted several features of utility

in the obtained family of fits. Firstly, the ‘true’ fitness costs (and selective advantages)

were recovered and corresponded to the best fit in the family (the fit with the lowest

objective function value in the estimation). Secondly, each round of estimation yielded a

set of fitness costs (and selective advantages) that was highly rank correlated (Spearman

rank correlation ρ = 1) to the set of the true fitness costs (and selective advantages).

This suggests that despite the lack of global identifiability in the estimation, the family of

fitness estimates possess a certain robustness as regards their order (we give a plausible

qualitative reasoning later).

Table 6.2. Original (simulated) and estimated fitness characteristics

Fitness characteristic Original
(simulated)

Estimated
best fit

Mean (SD)
from family
of fits

Fitness cost of single mutant {1,0} 0.2 0.2 0.29 (0.1)
Fitness cost of double mutant {1,1} 0.1 0.1 0.22 (0.13)
Selective advantage of single mutant
{1,0}

7.3 7.3 6.4 (0.96)

Selective advantage of double mutant
{1,1}

8.9 8.9 7.1 (1.2)

When the ‘true’ fitness costs were fixed to be sufficiently close (within 0.02) to each

other, their recovery with parameter estimation was not robust. However, we observed

that in these situations, the estimated fitness costs were also very close to each other.

Alternate optimization procedures may be investigated. In general, we caution against

making conclusions on the order of fitness costs in such instances.

To further systematically assess the utility of this approach, we repeated the above
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simulation-estimation procedure with 50 different samples of randomly generated ‘true’

fitness costs (instead of one, as above) ensuring that the single and double mutant geno-

types had sufficiently different (apart by greater than 0.02) fitness costs. For each sample

of these ‘true’ fitness costs, we computed associated mechanistic waiting times and used

these to perform parameter estimation. 50 rounds of estimation were performed for each

sample. We observed that in 28 out of the 50 samples (56%), the ‘true’ fitness costs were

recovered. However, more remarkably, for each of the 50 samples, the true fitness costs and

all sets of estimated fitness costs were rank correlated (Spearman rank correlation ρ = 1).

This indicates that parameter estimation of fitness costs, in this example, yields solutions

that are rank correlated with the underlying ‘true’ fitness costs. A semi-quantitative rea-

soning for such a correlation would involve the structure of the poset and goes as follows.

The poset, by itself, imposes a certain regularization on the estimation problem. In our

current simple example, the only way to detect the second mutation at position 2 would

be via the the double mutant genotype. This genotype can reach detectable levels and

fixate in the viral population only if its selective advantage exceeds that of the single

mutant genotype. Using the definition of selective advantage (eq. (3.6) in Chapter 3), and

substituting for resistance factors and εwt with values used above, we obtained

s({1, 1}) < 0.082 + 0.918 · s({1, 0}). (6.1)

Such regularizations are imposed even in more complex posets as those for ZDV or

IDV therapy. Analytical calculations of these regularizing conditions and the degree of

redundancy therein, may be dissuadingly involved mainly due to multiple escape pathways

available to the virus from any given genotype. Nevertheless, such constraints that are

automatically imposed by the poset assist in enhancing correlations between the estimated

sets of fitness characteristics.
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Figure 6.2. True and estimated fitness costs. A plot of ‘true’ and estimated fitness
costs for single and double mutant genotypes induced by the poset shown in Figure 6.1

Additionally, many of the estimated fitness costs are over-predicted (rather than un-
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derpredicted) as seen in Figure 6.2. This suggests that further regularization on the

magnitude of fitness costs by statistical techniques such as ridge regression may be useful

and this serves as a motivation for Section 6.3.

6.2.2 Estimation of fitness costs of ZDV and IDV mutant genotypes

To study the robustness of our estimated fitness characteristics of HIV mutant genotypes

arising during ZDV and IDV monotherapies (Sections 3.4 and 3.5, Chapter 3), we per-

formed 500 rounds of repeated estimation by randomly choosing different initial estimates.

We also subsequently performed simulated annealing with the function simulannealbnd in

MATLABTM to test for convergence of our estimates. We did not explicitly observe non-

identifiability (indicated by a flat cost function surface in multiple dimensions near the

best estimate). However, as in [288], we noted that several rounds of simulated annealing

converge to different estimates indicating a rugged search landscape and a possible lack

of a well-defined minimum. Following the approach in [288], we considered all fits with an

RMSD of less than 0.1 between the mechanistic and statistical waiting times as equally

valid (since we estimated the average error in the normalized statistical waiting times data

to be ±10%). All fits with an RMSD less than the error incurred in the data used for

estimating fitness costs cannot essentially be distinguished. The RMSD for a fit f was

defined as follows:

RMSDf =

√
1

n
·
∑
e∈E

(E[Te,stat]− Te,mech)2, (6.2)

where e denotes a mutation occurring in the corresponding poset E and n denotes the total

number of mutations considered. We investigated all our results on fitness characteristics

based on this ensemble of fits.
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Figure 6.3. Cumulative histograms of correlations of fitnesses between valid
fits and best fit. Cumulative histograms of Spearman rank correlation of estimated
fitnesses of mutants (quantified by selective advantages) between the best fit and every
other valid fit for ZDV mutants (left) and IDV mutants (right). The vertical dashed line
shows the mean correlation.

Of the N = 500 fits, we recovered 35 valid fits for ZDV and 72 valid fits for IDV. For
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ZDV mutants, we noted a strong and significant Spearman rank correlation (ρmean = 0.80,

p-value = 0.01) of selective advantages between the best fit and all other valid fits (Fig-

ure 6.3A). Similarly for IDV mutants (Figure 6.3B), the correlation was 0.64 (p-value =

0.01). This indicated that the order of fitness characteristics that we estimated is strongly

preserved across all the considered fits and enabled us to make valid inferences from our

fitness estimates. We also examined specific observations on fitness characteristics for

their behavior across valid fits and observed that they are strongly conserved.

Table 6.3. Conservation of estimated fitness characteristics of ZDV and IDV
mutants amongst valid fits.

Drug Observation % of valid fits
where conserved

ZDV

Average fitness cost of TAM-1 mutants < Average fit-
ness cost of TAM-2 mutants

90

Average SA of TAM-1 mutants > Average SA of
TAM-2 mutants

100

s({41L, 210W, 215Y}) > s({41L, 215Y}) 92
s({67N,70R}) > s({67N}) 80
s({41L, 210W, 215Y}) < s({67N, 70R, 219Q}) 81
SA({41L, 210W, 215Y}) > SA({41L, 215Y}) 64

IDV
s({90M}) < s({71V}) 65
71V compensates fitness 77
SA({71V, 82A}) ≈ SA({54V, 71V, 82A}) 71

For ZDV mutant genotypes, in about 90% of the valid fits, we found that the average

fitness cost of TAM-1 mutants is less than that of TAM-2 mutants, while in approximately

92% of valid fits, the deleterious effect of 210W inserted in a {41L, 215Y} backbone

in the absence of ZDV was preserved. Similarly, we examined the validity of each of

our conclusions (in Sections 3.4 and 3.5 of Chapter 3) and found that they are all well-

conserved across the valid fits (Table 6.2). For IDV mutant genotypes, we again found

the average fitness estimates (Figure 3.7C, Chapter 3) to be very strongly conserved

(ρmean = 0.90, p = 0.02).

6.3 Regularization

Regularized methods of parameter estimation are standard techniques employed routinely

in statistics, at least since the seminal paper by Tibshirani in 1996 [293]. A strong moti-

vation behind the use of regularized estimators is that they result in a marked reduction

in prediction error, in spite of introducing a bias. We refer to [294] for a concise review

of regularization approaches and do not delve into all underlying details in this thesis.

Informally, a bias of an estimator is the difference between its expected value and the

’true’ value, thereby a biased estimator of a parameter suffers from an inability to yield a

’correct’ value of the parameter, on average, even with precise and unlimited data. The

most commonly used least squares estimator is an unbiased estimator. While a bias in

an estimator appears to be an undesirable property, in most practical problems we are
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concerned about consistency in parameter estimation, rather than an asymptotic conver-

gence to the true underlying parameter value (in fact, given the uncertainty and paucity

in data, the recovery of ’true’ parameters cannot be guaranteed in practice, even with an

unbiased estimator). As the authors in [294] argue, consistency or predictive behaviour

of the model is of more direct relevance. Thus, sacrificing unbiasedness in favour of en-

hanced precision (in what is commonly referred to as the bias-variance trade-off) would

be valuable in many practical problems, including in biology.

Two of the most common methods of regularization employed are the lasso (short for

Least Absolute Shrinkage and Selection Operator) [293] and ridge regression [295]. In

this section, we first formally define the regularization methods and illustrate them with

a linear model. We then explore the utility of implementing regularization in nonlinear

models using a viral dynamics model.

6.3.1 Linear models

We first state the problem of least squares based parameter estimation in a linear model

and then introduce the additional regularization terms. Consider a linear regression model

for a response variable Y= (y1, ..., yn) in terms of X = (xij), with p parameters β =

(β1, ..., βp), where i = 1, ..., n and j = 1, ..., p. We write

Y = X · β + ε. (6.3)

Here, β = (β1, ..., βp) is a vector of p regression parameters and X is the design matrix.

The regression problem is then to estimate β from n observations of the response variable

Y and n observations of each of the p regressors in X. One common estimation procedure

is to minimize the squared errors of model predictions compared to the data i.e.,

β̂ = arg min
β


n∑
i=1

yi − p∑
j=1

xijβj

2 . (6.4)

This is the ordinary least squares (OLS) estimation and is known to be the best linear

unbiased estimator (BLUE) under the assumptions of the Gauss-Markov theorem. How-

ever, owing to its particular susceptibility for over-fitting in ill-conditioned problems and

to enhance predictability, regularization terms may be introduced in the above estimator.

Regularization terms can be viewed as penalty terms on the magnitude of parameters and

popular choices include the L1 or L2 norm of the parameters. Accordingly, we have the

lasso and ridge regression approaches. We do not go into the details, merits, drawbacks

and extensions of each of those, and merely illustrate their application with a simple

example. With ridge regression, the minimization problem can be written as

β̂ = arg min
β


n∑
i=1

yi − p∑
j=1

xijβj

2

+ λ ·
p∑

k=1

β2
k

 . (6.5)

Here, λ is the ridge parameter that dictates the extent of penalty (when λ = 0, the

estimation reduces to ordinary least squares, while for large values of λ, all parameters
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Figure 6.4. Performance of OLS fitting versus ridge regression. A bi-quadratic
polynomial is fitted to (approximately) linear data by OLS and ridge regression based
fitting. For a certain λ > 0, the mean predictive error drops lower than that from an OLS
fit (panel A). The inset in (A) is a magnified view, that illustrates a minimum predictive
error at λ = 0.5. While OLS fits the observed data better (panel B), ridge regression
clearly benefits from a higher predictive power. The inset in (B) illustrates the poor
behaviour of OLS (blue) when used for predictive purposes, compared to more robust
performance of ridge regression (black). Here, x is the predictor in the regression model,
while ypred is the predicted response variable. The observed data are indicated by red
circles.

shrink close to zero). The ridge parameter is generally calculated by computing the mean

predictive error (typically by cross validation) for a range of values of λ and choosing that

value which minimizes the error (for detailed discussions, see [294]).

Table 6.4. (Approximately) linear data fitted to a bi-quadratic polynomial
model by OLS and ridge regression.

Parameter True value OLS Ridge regres-
sion

A0 0 1.01 · 106 0.01
A1 1 −1.84 · 106 0.94
A2 0 1.02 · 106 0.03
A3 0 2.02 · 105 0
A4 0 1.26 · 104 0
MSE of estimates - 5.5 · 1012 0.005
OFV - 3 · 10−6 0.07

For an illustration of the utility of ridge regression, we study the following ’toy’ prob-

lem. Consider a response variable Y and a dependent variable X with a ’true’ underlying

linear model Y = X. Note that one does not have any knowledge of this true model

during the model building and parameter estimation process. We have data consisting of

measurements Xobs of X and Yobs of Y . Since Yobs is typically measured by experiments,
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we may expect it to be different from its ’true’ value of Ytrue = Xobs. In fact, Yobs would

almost never exactly be Ytrue in practice. Hence, we randomly perturb Ytrue by up to

10% and consider this to be Yobs used for estimation. To illustrate the benefit of ridge

regression in an illconditioned/over-fitting scenario, we fit the data to the bi-quadratic

polynomial model M given by

M :

4∑
i=0

Ai · xi. (6.6)

We would now certainly desire a solution closest to our ’true’ values of parameters,

but would also like the model to have good predictive power. Predictability is assessed

via cross-validation by the leave-one-out approach, where one observation is left-out in

turn from the data, the model is fit and the prediction compared to the observed value

at the left-out point. Cross validation error can then be computed as the mean of such

predictive errors. We observe that while OLS fitting suffers from poor predictive abilities,

ridge regression overcomes this to a large extent (Table 6.4). Moreover, the mean squared

errors of the parameter estimates is also smaller. As seen in Figure 6.4A, we note the

existence of a certain λ, for which the mean predictive error is less than that of OLS.

The existence of such a ridge parameter that lowers the prediction error can infact be

theoretically proved for linear models in general (see [294] for example). Further, while

OLS performs better in explaining the observed data, the ridge regression is far less

susceptible to overfitting (Figure 6.4B).

6.3.2 Regularized estimation of fitness costs of HIV mutant genotypes

We now examined if such regularizing approaches are useful in the context of estimation of

fitness costs of HIV mutant genotypes. There are several challenges involved, the main one

being the nonlinearity of the model. Very few investigations have been performed on the

application of methods like ridge regression in nonlinear problems. While the theoretical

foundations are much harder, there are some examples in literature of employing ridge

regression in nonlinear parameter estimation [296]. However, there is still a marked need

to further explore the benefits of such approaches. We first used a virus dynamics model

with a simplified mutation scheme (Figure 6.5) and estimated fitness costs of mutant

genotypes from (simulated) waiting times of mutations. We compared the performance

of ordinary least squares approach with the ridge regression based estimation. We then

explored the utility of ridge regression in estimating fitness costs using our integrated

model for ZDV monotherapy with the full mutation scheme

With the simplified mutation scheme, we modelled three mutations (and the five geno-

types induced by them, in accordance with the poset in Figure 6.5). OLS estimation was

carried out, as usual and its predictive performance was assessed via cross validation, as

before. Ridge regression was performed with different values of the ridge parameter. The

true fitness costs and other estimation characteristics are presented in Table 6.5. Firstly,

we observed that for a certain λ > 0, ridge regression resulted in a lower mean predictive

error compared to the OLS estimation (Figure 6.6). Note that unlike in linear models,

93



1 2 

3 

WT 

Figure 6.5. A mutation poset with three mutations modelled. Mutations are
modelled at three positions with mutation at the third position requiring a parent mutation
at position 1 to occur. The poset will induce a genotype lattice comprising of two single
mutant genotypes, two double mutant genotypes and one triple mutant.

this is not guaranteed, and in fact, a formal proof of the existence of such a λ cannot

be found in literature. Moreover, estimation via ridge regression also resulted in a lower

mean squared error for the fitness costs.

Using such approaches in virus dynamics models enforces a further degree of regular-

ization apart from the natural constraints imposed by the structure of the poset. The

resultant estimates, thus represent some kind of a ’minimal’ set of fitness costs explaining

the observed waiting times and make predictions in line with the poset constraints.
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Figure 6.6. Mean prediction error of ridge regression in the estimation of
fitness costs. The mean prediction errors in waiting times is computed for different
values of the ridge parameter λ. For λ = 10−5, ridge regression out-performs OLS by
displaying a lower mean prediction error.

We also explored the possibility of application of ridge regression to our integrated

model with the complete genotype lattice for ZDV monotherapy (Figure 3.1 , Chapter

3). At this stage, we point out a complication of using this approach in our setting. An

important step in using ridge regression is the determination of a suitable ridge parameter

λ. As discussed, this is usually accomplished by calculating mean prediction errors for a

range of λ values via the leave-one out approach. However, cross validation in our model
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Table 6.5. (Simulated) waiting times fitted to a virus dynamics model with
three mutations (and five mutant genotypes) by ordinary least squares (OLS)
and ridge regression.

Parameter True value OLS Ridge regres-
sion

s(1) 0.1 0.06 0.006
s(2) 0.2 0.14 0.14
s(1, 2) 0.3 0.36 0.34
s(1, 3) 0.3 0.29 0.29
s(1, 2, 3) 0.1 0.05 0.06
MSE of estimates - 3.7 · 10−7 2.6 · 10−7

has limited meaning, if any. This is because, if one drops an observation of waiting time,

this implies that the associated mutation in the poset also needs to be dropped. In turn,

this would warrant re-learning of the poset, leading to some kind of cross-validation at the

poset level. In our preceding example with the simplified mutation scheme, we ignored

this complication by assuming that dropping an observed waiting time for purposes of

cross validation does not require dropping the associated mutation, i.e., we know that a

mutation has occurred and retain it in the poset, but for some reason, we do not have a

waiting time.

An alternative approach to determining the ridge parameter involves a graphical aid,

the ridge trace [297]. This is based on the premise that parameter estimates stabilize

around the region when λ = λcrit (λcrit is the critical value of the ridge parameter where

the prediction error drops below that of the OLS fit). A ridge plot implemented for

our ZDV example suggested such a behaviour (Figure 6.7). However, we caution that a

rigorous mathematical justification is sketchy, at best for linear models.

Another remark on the ridge parameter is not out of place here. In the current work,

we concerned ourselves only with exploring the effects of regularization on the robustness

of estimated fitness costs. To this end, we are satisfied when we locate a certain value

of the ridge parameter that results in a better predictive performance compared to the

OLS approach. A finer discretization of the ridge parameter space would be required if

we desire to find an optimum value resulting in a truly minimal prediction error.

6.4 Summary

Parameter estimation and identifiability is an ever-present challenge in complex models

used in systems biology. In the context of virus dynamics models, we explored two tech-

niques to alleviate this issue. Firstly, estimating a family of fitness parameters instead

of one optimal set enabled us to analyze fitness characteristics that are better conserved

and more robust to the vagaries of fitting. We also demonstrated how posets of mutations

impose natural constraints and aided in the estimation process. Secondly, regularization

approaches such as ridge regression are extremely common in linear models, while the

theoretical complexity inherent in nonlinear problems has limited investigations on their
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Figure 6.7. Ridge trace for the ZDV example The mean prediction error in waiting
times is assessed for a range of the ridge parameter λ values for the virus dynamics model
under ZDV therapy with the full genotype lattice (Figure 3.1, Chapter 3). The fitness costs
of the sixteen mutant genotypes (shown in different colours) stabilizes around λ = 0.05.

utility in such settings. We demonstrated their better predictive performance in nonlinear

models of viral dynamics and our results show promise for more detailed further work in

this direction.
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Chapter 7

Summary and conclusion

Since its discovery in 1983, there has been a significant increase in our understanding of

the biology of human immunodeficiency virus. Numerous therapeutic options in the form

of more than 25 antiretroviral drugs and several of their combinations have been made

available to patients. Nevertheless, a cure as evinced by viral eradication has remained

elusive, mainly owing to the evolutionary adaptation that HIV exhibits by acquiring drug

resistant mutations. Given such inevitable resistance development and the multitude of

drug combinations available to the physician, a major challenge confronting the clinical

community has been the choice of optimal drugs to treat a patient, particularly in the

background of previous treatment failure with other drugs. Hence, an analysis of the

causes and mechanisms of treatment failure becomes crucial in the quest to decide on

potential next-line drug combinations.

Mathematical models of viral dynamics and statistical models of mutation accumu-

lation pathways have both been invaluable in enhancing our understanding of the viral

life cycle, mechanisms of action of different drug classes, treatment outcomes and other

aspects of viral evolution. However, the mechanistic models of virus dynamics typically

lack realistic and drug-specific mutation or resistance information, that makes a direct

comparison of model predictions to clinical data difficult. This imposes a limitation on

their utility in assessing treatment failure with a certain drug combination. On the other

hand, statistical models do not incorporate drug effects or account for temporal features

explicitly, thereby disabling an analysis of time-dependent characteristics of HIV therapy

such as pharmacokinetics and pharmacodynamics.

In this thesis, we developed a mechanistic model of the viral life cycle that incorporates

drug-specific mutation schemes statistically learned from clinical data. Such an integrated

approach is beneficial in several ways. Firstly, even structurally, it represents a unified

approach of modelling the viral life cycle and drug effects, together with clinically observed

mutations and resistance. Thus, it bridges the two worlds of statistical and dynamical

modelling. Secondly, it provides a better understanding of the dynamics of drug-resistant

mutant genotypes, the underlying competition and viral abundance at treatment failure,

that would aid in assessing potential salvage therapies. We are able to estimate in vivo

fitness characteristics of different viral mutants in the absence and presence of drugs,

and examine epistatic effects between mutations. Importantly, our approach relies only

on sparse clinical data, as opposed to detailed time-course measurements of viral load.

Thirdly, our modelling approach easily generalizes to multiple-drug therapy and we are

able to analyze how individual drugs in a combination regimen impact treatment outcome,

while retaining a mechanistic framework.

Another important aspect of HIV therapy is the pharmacokinetics of antiretroviral
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drugs, particularly under the multiple dosing scenario. The pharmacokinetics of a mul-

tiple dosing regimen has its challenges in terms of appropriate representation of different

accumulation and half-life measures. As part of this thesis, we developed a framework

that provides an integrated understanding of such different measures and enables their

easy interpretation. We also coupled pharmacokinetic models to models of viral dynamics

to assess the impact of changing drug concentrations.

Finally, parameter estimation and identifiability in complex nonlinear models is always

a challenge. We investigated techniques to alleviate these issues in our setting. Adapting

a technique from literature, we find that estimating a family of fits, instead of a single fit,

and making biologically relevant inferences from the entire family leads to more robust

conclusions. We also explored if well-known statistical regularization approaches such as

ridge regression aid in more reliable estimates of fitness costs in virus dynamics models.

While regularization methods are well-established in linear models, to the best of our

knowledge, this is a first attempt at adapting them to such nonlinear models of virus

dynamics. Our results show a marked improvement in predictive power of the model

when such regularizers are used.

As systems biology of HIV continues to be as relevant as before, there still remain

several directions of research to be inveesigated. The incorporation of stochastic or hybrid

deterministic-stochastic approaches to better model low levels of mutants and the inte-

gration of virus dynamics models with drug-specific mutation schemes with patient-level

models of pharmacokinetics and pharmacogenomics can greatly enhance current model

predictive capabilities. The role of parameter identifiabilty in such complex models can

hardly be over-stated, and an analysis of more robust methods of parameter estimation

would remain a highly relevant and interesting question.

In conclusion, the work presented in this thesis contributes to bridging two distinct

approaches of modelling HIV dynamics and mutations, and in doing so, enables realistic

predictions of mutant dynamics during antiretroviral therapy. Our work marks another

small step in the quest of using mathematical models to aid informed and individualized

HIV therapy.
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