TY - JOUR A1 - Smirnova, Julia A1 - Fernie, Alisdair A1 - Spahn, Christian M. T. A1 - Steup, Martin T1 - Photometric assay of maltose and maltose-forming enzyme activity by using 4-alpha-glucanotransferase (DPE2) from higher plants JF - Analytical biochemistry : methods in the biological sciences N2 - Maltose frequently occurs as intermediate of the central carbon metabolism of prokaryotic and eukaryotic cells. Various mutants possess elevated maltose levels. Maltose exists as two anomers, (alpha- and beta-form) which are rapidly interconverted without requiring enzyme-mediated catalysis. As maltose is often abundant together with other oligoglucans, selective quantification is essential. In this communication, we present a photometric maltose assay using 4-alpha-glucanotransferase (AtDPE2) from Arabidopsis thaliana. Under in vitro conditions, AtDPE2 utilizes maltose as glucosyl donor and glycogen as acceptor releasing the other hexosyl unit as free glucose which is photometrically quantified following enzymatic phosphorylation and oxidation. Under the conditions used, DPE2 does not noticeably react with other di- or oligosaccharides. Selectivity compares favorably with that of maltase frequently used in maltose assays. Reducing end interconversion of the two maltose anomers is in rapid equilibrium and, therefore, the novel assay measures total maltose contents. Furthermore, an AtDPE2-based continuous photometric assay is presented which allows to quantify beta-amylase activity and was found to be superior to a conventional test. Finally, the AtDPE2-based maltose assay was used to quantify leaf maltose contents of both Arabidopsis wild type and AtDPE2-deficient plants throughout the light-dark cycle. These data are presented together with assimilatory starch levels. (C) 2017 Published by Elsevier Inc. KW - Arabidopsis thaliana KW - beta-amylase assay KW - Disproportionating isozyme 2 (DPE2) dpe2-deficient plants KW - Maltose assay KW - Leaf maltose content Y1 - 2017 U6 - https://doi.org/10.1016/j.ab.2017.05.026 SN - 0003-2697 SN - 1096-0309 VL - 532 SP - 72 EP - 82 PB - Elsevier CY - San Diego ER - TY - THES A1 - de Souza, Leonardo Perez T1 - Functional characterization of biosynthesis and regulation of plant secondary metabolism Y1 - 2017 ER - TY - THES A1 - de Souza, Laise Rosado T1 - Metabolic signalling between organelles Y1 - 2017 ER - TY - JOUR A1 - Janhunen, Tomi A1 - Kaminski, Roland A1 - Ostrowski, Max A1 - Schellhorn, Sebastian A1 - Wanko, Philipp A1 - Schaub, Torsten T1 - Clingo goes linear constraints over reals and integers JF - Theory and practice of logic programming N2 - The recent series 5 of the Answer Set Programming (ASP) system clingo provides generic means to enhance basic ASP with theory reasoning capabilities. We instantiate this framework with different forms of linear constraints and elaborate upon its formal properties. Given this, we discuss the respective implementations, and present techniques for using these constraints in a reactive context. More precisely, we introduce extensions to clingo with difference and linear constraints over integers and reals, respectively, and realize them in complementary ways. Finally, we empirically evaluate the resulting clingo derivatives clingo[dl] and clingo[lp] on common language fragments and contrast them to related ASP systems. KW - Constraint Answer Set Programming (CASP) KW - Answer Set Programming (ASP) KW - Constraint Processing (CP) KW - Theory Solving Y1 - 2017 U6 - https://doi.org/10.1017/S1471068417000242 SN - 1471-0684 SN - 1475-3081 VL - 17 SP - 872 EP - 888 PB - Cambridge Univ. Press CY - New York ER - TY - GEN A1 - Neubauer, Kai A1 - Wanko, Philipp A1 - Schaub, Torsten A1 - Haubelt, Christian T1 - Enhancing symbolic system synthesis through ASPmT with partial assignment evaluation T2 - Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017 N2 - The design of embedded systems is becoming continuously more complex such that efficient system-level design methods are becoming crucial. Recently, combined Answer Set Programming (ASP) and Quantifier Free Integer Difference Logic (QF-IDL) solving has been shown to be a promising approach in system synthesis. However, this approach still has several restrictions limiting its applicability. In the paper at hand, we propose a novel ASP modulo Theories (ASPmT) system synthesis approach, which (i) supports more sophisticated system models, (ii) tightly integrates the QF-IDL solving into the ASP solving, and (iii) makes use of partial assignment checking. As a result, more realistic systems are considered and an early exclusion of infeasible solutions improves the entire system synthesis. Y1 - 2017 SN - 978-3-9815370-9-3 U6 - https://doi.org/10.23919/DATE.2017.7927005 SN - 1530-1591 SP - 306 EP - 309 PB - IEEE CY - New York ER -