TY - GEN A1 - Granacher, Urs A1 - Muehlbauer, Thomas A1 - Göstemeyer, Gerd A1 - Gruber, Stefanie A1 - Gruber, Markus T1 - The performance of balance exercises during daily tooth brushing is not sufficient to improve balance and muscle strength in healthy older adults T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background High prevalence rates have been reported for physical inactivity, mobility limitations, and falls in older adults. Home-based exercise might be an adequate means to increase physical activity by improving health- (i.e., muscle strength) and skill-related components of physical fitness (i.e., balance), particularly in times of restricted physical activity due to pandemics. Objective The objective of this study was to examine the effects of home-based balance exercises conducted during daily tooth brushing on measures of balance and muscle strength in healthy older adults. Methods Fifty-one older adults were randomly assigned to a balance exercise group (n = 27; age: 65.1 ± 1.1 years) or a passive control group (n = 24; age: 66.2 ± 3.3 years). The intervention group conducted balance exercises over a period of eight weeks twice daily for three minutes each during their daily tooth brushing routine. Pre- and post-intervention, tests were included for the assessment of static steady-state balance (i.e., Romberg test), dynamic steady-state balance (i.e., 10-m single and dual-task walk test using a cognitive and motor interference task), proactive balance (i.e., Timed-Up-and-Go Test [TUG], Functional-Reach-Test [FRT]), and muscle strength (i.e., Chair-Rise-Test [CRT]). Results Irrespective of group, the statistical analysis revealed significant main effects for time (pre vs. post) for dual-task gait speed (p < .001, 1.12 ≤ d ≤ 2.65), TUG (p < .001, d = 1.17), FRT (p = .002, d = 0.92), and CRT (p = .002, d = 0.94) but not for single-task gait speed and for the Romberg-Test. No significant group × time interactions were found for any of the investigated variables. Conclusions The applied lifestyle balance training program conducted twice daily during tooth brushing routines appears not to be sufficient in terms of exercise dosage and difficulty level to enhance balance and muscle strength in healthy adults aged 60–72 years. Consequently, structured balance training programs using higher exercise dosages and/or more difficult balance tasks are recommended for older adults to improve balance and muscle strength. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 733 KW - Balance KW - Daily life KW - Exercise KW - Healthy aging KW - Mobility Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-529379 SN - 1866-8364 ER - TY - JOUR A1 - Granacher, Urs A1 - Muehlbauer, Thomas A1 - Göstemeyer, Gerd A1 - Gruber, Stefanie A1 - Gruber, Markus T1 - The performance of balance exercises during daily tooth brushing is not sufficient to improve balance and muscle strength in healthy older adults JF - BMC Geriatrics N2 - Background High prevalence rates have been reported for physical inactivity, mobility limitations, and falls in older adults. Home-based exercise might be an adequate means to increase physical activity by improving health- (i.e., muscle strength) and skill-related components of physical fitness (i.e., balance), particularly in times of restricted physical activity due to pandemics. Objective The objective of this study was to examine the effects of home-based balance exercises conducted during daily tooth brushing on measures of balance and muscle strength in healthy older adults. Methods Fifty-one older adults were randomly assigned to a balance exercise group (n = 27; age: 65.1 ± 1.1 years) or a passive control group (n = 24; age: 66.2 ± 3.3 years). The intervention group conducted balance exercises over a period of eight weeks twice daily for three minutes each during their daily tooth brushing routine. Pre- and post-intervention, tests were included for the assessment of static steady-state balance (i.e., Romberg test), dynamic steady-state balance (i.e., 10-m single and dual-task walk test using a cognitive and motor interference task), proactive balance (i.e., Timed-Up-and-Go Test [TUG], Functional-Reach-Test [FRT]), and muscle strength (i.e., Chair-Rise-Test [CRT]). Results Irrespective of group, the statistical analysis revealed significant main effects for time (pre vs. post) for dual-task gait speed (p < .001, 1.12 ≤ d ≤ 2.65), TUG (p < .001, d = 1.17), FRT (p = .002, d = 0.92), and CRT (p = .002, d = 0.94) but not for single-task gait speed and for the Romberg-Test. No significant group × time interactions were found for any of the investigated variables. Conclusions The applied lifestyle balance training program conducted twice daily during tooth brushing routines appears not to be sufficient in terms of exercise dosage and difficulty level to enhance balance and muscle strength in healthy adults aged 60–72 years. Consequently, structured balance training programs using higher exercise dosages and/or more difficult balance tasks are recommended for older adults to improve balance and muscle strength. KW - Balance KW - Daily life KW - Exercise KW - Healthy aging KW - Mobility Y1 - 2021 U6 - https://doi.org/10.1186/s12877-021-02206-w SN - 1471-2318 VL - 21 PB - BioMed Central CY - London ER - TY - JOUR A1 - Mohammadi, Vahid A1 - Hilfiker, Roger A1 - Jafarnezhadgero, Amir Ali A1 - Jamialahmadi, Shima A1 - Ardakani, Mohammad Karimizadeh A1 - Granacher, Urs T1 - Relationship between training-induced changes in the star excursion balance test and the Y balance test in young male athletes JF - Annals of applied sport science N2 - Background. Dynamic balance is often assessed in athletes using either the Star Excursion Balance Test (SEBT) or the Y Balance Test (YBT). There is evidence that the results for the three common directions are not comparable. Thus, the question is open to debate as to which instrument is better suited to measure training-induced changes over time. Objectives. The aim of this study is to compare the changes in the SEBT and the YBT, measured before and after six weeks of balance and strength exercise programmes in young and healthy athletes. Methods. A total of 30 young male athletes aged 15-17 years participated in this study and were involved in a six-week combined training, including balance and strength exercise. During pre-and post-training periods, the SEBT and YBT were conducted in random order. Results. The comparison between the changes in the SEBT and YBT with a paired sample T-test showed a significant increase in PM (p=0.001) and PL reach directions (p=0.000). No differences were observed in the A reach direction (p=0.38). Conclusion. the responsiveness levels of the SEBT and YBT are similar is valid. Also, because of higher effect size value in the anterior direction in YBT compared with SEBT, this balance test could possibly be preferred in this direction for postural control evaluation. KW - Exercise KW - Postural Control KW - Balance Tests Y1 - 2017 U6 - https://doi.org/10.29252/acadpub.aassjournal.5.3.31 SN - 2322-4479 VL - 5 IS - 3 SP - 31 EP - 38 PB - Annals applied sport science CY - Tehran ER - TY - JOUR A1 - Beijersbergen, Chantal M. I. A1 - Granacher, Urs A1 - Gaebler, Martijn A1 - DeVita, Paul A1 - Hortobagyi, Tibor T1 - Hip mechanics underlie lower extremity power training-induced increase in old adults’ fast gait velocity BT - the Potsdam Gait Study (POGS) JF - Gait & posture N2 - Methods: As part of the Potsdam Gait Study (POGS), healthy old adults completed a no-intervention control period (69.1 +/- 4A yrs, n =14) or a power training program followed by detraining (72.9 +/- 5.4 yrs, n = 15).We measured isokinetic knee extensor and plantarflexor power and measured hip, knee and ankle kinetics at habitual, fast and standardized walking speeds. Results: Power training significantly increased isokinetic knee extensor power (25%), plantarflexor power (43%), and fast gait velocity (5.9%). Gait mechanics underlying the improved fast gait velocity included increases in hip angular impulse (29%) and H1 work (37%) and no changes in positive knee (K2) and A2 work. Detraining further improved fast gait velocity (4.7%) with reductions in H1(-35%), and increases in K2 (36%) and A2 (7%). Conclusion: Power training increased fast gait velocity in healthy old adults by increasing the reliance on hip muscle function and thus further strengthened the age-related distal-to-proximal shift in muscle function. (C) 2016 Elsevier B.V. All rights reserved. KW - Walking KW - Biomechanics KW - Detraining KW - Muscle KW - Exercise Y1 - 2017 U6 - https://doi.org/10.1016/j.gaitpost.2016.12.024 SN - 0966-6362 SN - 1879-2219 VL - 52 SP - 338 EP - 344 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Hortobágyi, Tibor A1 - Vetrovsky, Tomas A1 - Balbim, Guilherme Moraes A1 - Sorte Silva, Narlon Cassio Boa A1 - Manca, Andrea A1 - Deriu, Franca A1 - Kolmos, Mia A1 - Kruuse, Christina A1 - Liu-Ambrose, Teresa A1 - Radak, Zsolt A1 - Vaczi, Mark A1 - Johansson, Hanna A1 - Rocha dos Santos, Paulo Cezar A1 - Franzen, Erika A1 - Granacher, Urs T1 - The impact of aerobic and resistance training intensity on markers of neuroplasticity in health and disease JF - Ageing research reviews : ARR N2 - Objective: To determine the effects of low- vs. high-intensity aerobic and resistance training on motor and cognitive function, brain activation, brain structure, and neurochemical markers of neuroplasticity and the association thereof in healthy young and older adults and in patients with multiple sclerosis, Parkinson's disease, and stroke. Design: Systematic review and robust variance estimation meta-analysis with meta-regression. Data sources: Systematic search of MEDLINE, Web of Science, and CINAHL databases. Results: Fifty studies with 60 intervention arms and 2283 in-analyses participants were included. Due to the low number of studies, the three patient groups were combined and analyzed as a single group. Overall, low- (g=0.19, p = 0.024) and high-intensity exercise (g=0.40, p = 0.001) improved neuroplasticity. Exercise intensity scaled with neuroplasticity only in healthy young adults but not in healthy older adults or patient groups. Exercise-induced improvements in neuroplasticity were associated with changes in motor but not cognitive outcomes. Conclusion: Exercise intensity is an important variable to dose and individualize the exercise stimulus for healthy young individuals but not necessarily for healthy older adults and neurological patients. This conclusion warrants caution because studies are needed that directly compare the effects of low- vs. high-intensity exercise on neuroplasticity to determine if such changes are mechanistically and incrementally linked to improved cognition and motor function. KW - Aging KW - Exercise KW - Intensity Dose -response relationship KW - Cognition motor KW - function Y1 - 2022 U6 - https://doi.org/10.1016/j.arr.2022.101698 SN - 1568-1637 SN - 1872-9649 VL - 80 PB - Elsevier CY - Clare ER -