TY - JOUR A1 - Maes, Sybryn L. A1 - Perring, Michael P. A1 - Vanhellemont, Margot A1 - Depauw, Leen A1 - Van den Bulcke, Jan A1 - Brumelis, Guntis A1 - Brunet, Jorg A1 - Decocq, Guillaume A1 - den Ouden, Jan A1 - Härdtle, Werner A1 - Hedl, Radim A1 - Heinken, Thilo A1 - Heinrichs, Steffi A1 - Jaroszewicz, Bogdan A1 - Kopecký, Martin A1 - Malis, Frantisek A1 - Wulf, Monika A1 - Verheyen, Kris T1 - Environmental drivers interactively affect individual tree growth across temperate European forests JF - Global change biology N2 - Forecasting the growth of tree species to future environmental changes requires abetter understanding of its determinants. Tree growth is known to respond to global‐change drivers such as climate change or atmospheric deposition, as well as to localland‐use drivers such as forest management. Yet, large geographical scale studiesexamining interactive growth responses to multiple global‐change drivers are relativelyscarce and rarely consider management effects. Here, we assessed the interactiveeffects of three global‐change drivers (temperature, precipitation and nitrogen deposi-tion) on individual tree growth of three study species (Quercus robur/petraea, Fagus syl-vatica and Fraxinus excelsior). We sampled trees along spatial environmental gradientsacross Europe and accounted for the effects of management for Quercus. We collectedincrement cores from 267 trees distributed over 151 plots in 19 forest regions andcharacterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. Wedemonstrate that growth responds interactively to global‐change drivers, with species ‐specific sensitivities to the combined factors. Simultaneously high levels of precipita-tion and deposition benefited Fraxinus, but negatively affected Quercus’ growth, high-lighting species‐specific interactive tree growth responses to combined drivers. ForFagus, a stronger growth response to higher temperatures was found when precipita-tion was also higher, illustrating the potential negative effects of drought stress underwarming for this species. Furthermore, we show that past forest management canmodulate the effects of changing temperatures on Quercus’ growth; individuals in plotswith a coppicing history showed stronger growth responses to higher temperatures.Overall, our findings highlight how tree growth can be interactively determined by glo-bal‐change drivers, and how these growth responses might be modulated by past for-est management. By showing future growth changes for scenarios of environmentalchange, we stress the importance of considering multiple drivers, including past man-agement and their interactions, when predicting tree growth. KW - basal area increment KW - climate change KW - Fagus KW - Fraxinus KW - historical ecology KW - nitrogen deposition KW - Quercus KW - tree-ring analysis Y1 - 2018 U6 - https://doi.org/10.1111/gcb.14493 SN - 1354-1013 SN - 1365-2486 VL - 25 IS - 1 SP - 201 EP - 217 PB - Wiley CY - Hoboken ER - TY - THES A1 - Jing, Yue T1 - Characterization of Serine Carboxypeptidase-like (SCPL) gene family in Brassicaceae Y1 - 2020 ER - TY - JOUR A1 - Müller, Jörg A1 - Boch, Steffen A1 - Prati, Daniel A1 - Socher, Stephanie A. A1 - Pommer, Ulf A1 - Hessenmöller, Dominik A1 - Schall, Peter A1 - Schulze, Ernst Detlef A1 - Fischer, Markus T1 - Effects of forest management on bryophyte species richness in Central European forests JF - Forest ecology and management N2 - We studied the effect of three major forest management types (unmanaged beech, selection beech, and age class forests) and stand variables (SMId, soil pH, proportion of conifers, litter cover, deadwood cover, rock cover and cumulative cover of woody trees and shrubs) on bryophyte species richness in 1050 forest plots in three regions in Germany. In addition, we analysed the species richness of four ecological guilds of bryophytes according to their colonized substrates (deadwood, rock, soil, bark) and the number of woodland indicator bryophyte species. Beech selection forests turned out to be the most species rich management type, whereas unmanaged beech forests revealed even lower species numbers than age-class forests. Increasing conifer proportion increased bryophyte species richness but not the number of woodland indicator bryophyte species. The richness of the four ecological guilds mainly responded to the abundance of their respective substrate. We conclude that the permanent availability of suitable substrates is most important for bryophyte species richness in forests, which is not stringently linked to management type. Therefore, managed age-class forests and selection forests may even exceed unmanaged forests in bryophyte species richness due to higher substrate supply and therefore represent important habitats for bryophytes. Typical woodland indicator bryophytes and their species richness were negatively affected by SMId (management intensity) and therefore better indicate forest integrity than the species richness of all bryophytes. Nature conservation efforts should focus on the reduction of management intensity. Moreover, maintaining and increasing a variability of substrates and habitats, such as coarse woody debris, increasing structural heterogeneity by retaining patches with groups of old, mature to over-mature trees in managed forests, maintaining forest climate conditions by silvicultural methods that assure stand continuity, e.g. by selection cutting rather than clear cutting and shelterwood logging might promote bryophyte diversity and in particular the one of woodland indicator bryophytes. KW - Beech forests KW - Conifer plantations KW - Cryptogams KW - Ecological guilds KW - Forest management KW - Temperate forests KW - Selection vs. age-class forests KW - Unmanaged vs. managed forests KW - Woodland indicator species Y1 - 2018 U6 - https://doi.org/10.1016/j.foreco.2018.10.019 SN - 0378-1127 SN - 1872-7042 VL - 432 SP - 850 EP - 859 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Kubis, Armin T1 - Synthetic carbon neutral photorespiration bypasses BT - implementation and testing in Escherichia coli N2 - With populations growing worldwide and climate change threatening food production there is an urgent need to find ways to ensure food security. Increasing carbon fixation rate in plants is a promising approach to boost crop yields. The carbon-fixing enzyme Rubisco catalyzes, beside the carboxylation reaction, also an oxygenation reaction that generates glycolate-2P, which needs to be recycled via a metabolic route termed photorespiration. Photorespiration dissipates energy and most importantly releases previously fixed CO2, thus significantly lowering carbon fixation rate and yield. Engineering plants to omit photorespiratory CO2 release is the goal of the FutureAgriculture consortium and this thesis is part of this collaboration. The consortium aims to establish alternative glycolate-2P recycling routes that do not release CO2. Ultimately, they are expected to increase carbon fixation rates and crop yields. Natural and novel reactions, which require enzyme engineering, were considered in the pathway design process. Here I describe the engineering of two pathways, the arabinose-5P and the erythrulose shunt. They were designed to recycle glycolate-2P via glycolaldehyde into a sugar phosphate and thereby reassimilate glycolate-2P to the Calvin cycle. I used Escherichia coli gene deletion strains to validate and characterize the activity of both synthetic shunts. The strains’ auxotrophies can be alleviated by the activity of the synthetic route, thus providing a direct way to select for pathway activity. I introduced all pathway components to these dedicated selection strains and discovered inhibitions, limitations and metabolic cross talk interfering with pathway activity. After resolving these issues, I was able to show the in vivo activity of all pathway components and combine them into functional modules.. Specifically, I demonstrate the activity of a new-to-nature module of glycolate reduction to glycolaldehyde. Also, I successfully show a new glycolaldehyde assimilation route via arabinose-5P to ribulose-5P. In addition, all necessary enzymes for glycolaldehyde assimilation via L-erythrulose were shown to be active and an L-threitol assimilation route via L-erythrulose was established in E. coli. On their own, these findings demonstrate the power of using an easily engineerable microbe to test novel pathways; combined, they will form the basis for implementing photorespiration bypasses in plants. KW - Synthetic Biology KW - Photorespiration KW - Metabolic Engineering KW - Escherichia coli Y1 - 2020 ER - TY - JOUR A1 - Xu, Ying T1 - Study on transport mechanism of m5C-edited mRNAs Y1 - 2022 ER - TY - JOUR A1 - Börnke, Frederik A1 - Rocksch, Thorsten T1 - Thigmomorphogenesis BT - Control of plant growth by mechanical stimulation JF - Scientia horticulturae : an international journal sponsored by the International Society for Horticultural Science N2 - Controlled regulation of plant growth is a general prerequisite for the production of marketable ornamental plants. Consumers as well as retailers prefer stronger, more compact plants with greener leaves as these not only better meet a certain desired visual quality but also allow for a maximization of production per unit area as well as facilitation of packaging and transport. The same applies for the production of young vegetable plants. Special attention is paid to solid, compact and resilient plants that survive transport and planting without any problems. During the last decades plant growth control has mainly been achieved through the application of chemical plant growth regulators that generally interfere with the function of growth regulating hormones. However, there is an increasing demand to replace chemical treatments by other means such as the modulation of growth conditions, including temperature, light and fertilization. Alternatively, the application of mechanical stimulation has been shown to induce plant responses that yield some of the commercially relevant phenotypes including increased compactness, higher girth, darker leaves and a delay in flowering. The ability of plants to sense and respond to mechanical stimuli is an adaptive trait associated with increased fitness in many environmental settings. Mechanical stimulation in nature occurs e.g. through wind, rain, neighboring plants or predatory animals and induces a range of morphogenic responses that have been summarized under the term thigmomorphogenesis. We are only just about to begin to understand the molecular mechanisms underlying mechanosensing and the associated morphogenic changes in plants. However, a number of examples suggest that mechanical stimulation applied in a greenhouse setting can be used to alter plant growth in order to produce marketable plants. In this review will briefly summarize the current knowledge concerning the biological principles of thigmomorphogenesis and discuss the potential of mechanical growth regulation in commercial plant production especially with respect to organic horticulture. KW - Alternative growth regulators KW - Ornamental plants KW - Vegetable KW - Plant growth regulation KW - Mechanical stimulation KW - Mechanically-induced stress KW - Mechanosensing KW - Mechanoperception Y1 - 2018 U6 - https://doi.org/10.1016/j.scienta.2018.02.059 SN - 0304-4238 SN - 1879-1018 VL - 234 SP - 344 EP - 353 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Nakamura, Moritaka A1 - Grebe, Markus T1 - Outer, inner and planar polarity in the Arabidopsis root JF - Current opinion in plant biology N2 - Plant roots control uptake of water and nutrients and cope with environmental challenges. The root epidermis provides the first selective interface for nutrient absorption, while the endodermis produces the main apoplastic diffusion barrier in the form of a structure called the Casparian strip. The positioning of root hairs on epidermal cells, and of the Casparian strip around endodermal cells, requires asymmetries along cellular axes (cell polarity). Cell polarity is termed planar polarity, when coordinated within the plane of a given tissue layer. Here, we review recent molecular advances towards understanding both the polar positioning of the proteo-lipid membrane domain instructing root hair initiation, and the cytoskeletal, trafficking and polar tethering requirements of proteins at outer or inner plasma membrane domains. Finally, we highlight progress towards understanding mechanisms of Casparian strip formation and underlying endodermal cell polarity. Y1 - 2017 U6 - https://doi.org/10.1016/j.pbi.2017.08.002 SN - 1369-5266 SN - 1879-0356 VL - 41 SP - 46 EP - 53 PB - Elsevier CY - London ER - TY - JOUR A1 - Sprenger, Heike A1 - Erban, Alexander A1 - Seddig, Sylvia A1 - Rudack, Katharina A1 - Thalhammer, Anja A1 - Le, Mai Q. A1 - Walther, Dirk A1 - Zuther, Ellen A1 - Koehl, Karin I. A1 - Kopka, Joachim A1 - Hincha, Dirk K. T1 - Metabolite and transcript markers for the prediction of potato drought tolerance JF - Plant Biotechnology Journal N2 - Potato (Solanum tuberosum L.) is one of the most important food crops worldwide. Current potato varieties are highly susceptible to drought stress. In view of global climate change, selection of cultivars with improved drought tolerance and high yield potential is of paramount importance. Drought tolerance breeding of potato is currently based on direct selection according to yield and phenotypic traits and requires multiple trials under drought conditions. Marker-assisted selection (MAS) is cheaper, faster and reduces classification errors caused by noncontrolled environmental effects. We analysed 31 potato cultivars grown under optimal and reduced water supply in six independent field trials. Drought tolerance was determined as tuber starch yield. Leaf samples from young plants were screened for preselected transcript and nontargeted metabolite abundance using qRT-PCR and GC-MS profiling, respectively. Transcript marker candidates were selected from a published RNA-Seq data set. A Random Forest machine learning approach extracted metabolite and transcript markers for drought tolerance prediction with low error rates of 6% and 9%, respectively. Moreover, by combining transcript and metabolite markers, the prediction error was reduced to 4.3%. Feature selection from Random Forest models allowed model minimization, yielding a minimal combination of only 20 metabolite and transcript markers that were successfully tested for their reproducibility in 16 independent agronomic field trials. We demonstrate that a minimum combination of transcript and metabolite markers sampled at early cultivation stages predicts potato yield stability under drought largely independent of seasonal and regional agronomic conditions. KW - drought tolerance KW - machine learning KW - metabolite markers KW - potato (Solanum tuberosum) KW - prediction models KW - transcript markers Y1 - 2017 U6 - https://doi.org/10.1111/pbi.12840 SN - 1467-7644 SN - 1467-7652 VL - 16 IS - 4 SP - 939 EP - 950 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Scharf, Uwe A1 - Burkart, Michael T1 - Sansevieria pfennigii (Ruscaceae, Asparagales) BT - Confirmation of existence, emendation of description, and tentative threat assessment JF - Phytotaxa : a rapid international journal for accelerating the publication of botanical taxonomy N2 - Sansevieria pfennigii, which to date has been a doubtful species, is confirmed as extant by a recent collection from the Lindi Region in southern Tanzania. The original description of the species, which is based on herbarium material only, is here emended based on additional observations recorded from living plants, including fruits that were previously unknown. Sansevieria pfennigii distinguishes from S. canaliculata, to which it was repeatedly assigned, by its capitate instead of elongate inflorescence, rough rather than smooth leaves, non-pungent instead of pungent leaf tips, dull green leaf colour, more delicate overall appearance, alongside other traits. The difference in inflorescence architecture indicates that these species belong to different groups within Sansevieria and are not closely related; the closest relatives of S. pfennigii are probably S. fischeri and S. stuckyi. Sansevieria pfennigii occurs on well-drained soil in forests, close to S. canaliculata populations. According to the extent of the population seen and the species' overall rarity, it is tentatively assessed as critically endangered. KW - Ruscaceae KW - Asparagales KW - Monocots Y1 - 2021 U6 - https://doi.org/10.11646/phytotaxa.483.1.1 SN - 1179-3155 SN - 1179-3163 VL - 483 IS - 1 SP - 1 EP - 8 PB - Magnolia Press CY - Auckland ER - TY - JOUR A1 - García-Camacho, Raúl A1 - Metz, Johannes A1 - Bilton, Mark C. A1 - Tielboerger, Katja T1 - Phylogenetic structure of annual plant communities along an aridity gradient BT - Interacting effects of habitat filtering and shifting plant-plant interactions JF - Israel Journal of Plant Sciences N2 - The phylogenetic structure of communities (PSC) reveals how evolutionary history affects community assembly processes. However, there are important knowledge gaps on PSC patterns for annual communities and there is a need for studies along environmental gradients in dry ecosystems where several processes shape PSC. Here, we investigated the PSC of annual plants along an aridity gradient in Israel, including eight years, two spatial scales, the effects of shrubs on understory, and the phylogenetic signal of important traits. Increasing drought stress led to overdispersed PSC at the drier end of the gradient, indicating that species were less related than expected by chance. This was supported at a smaller spatial scale, where within the drier sites, communities in open- more arid- habitats were more overdispersed than those under nurse shrubs. Interestingly, some key traits related to drought resistance were not conserved in the phylogeny. Together, our findings suggested that while habitat filtering selected for drought resistance strategies, these strategies evolved independently along multiple contrasting evolutionary lineages. Our comprehensive PSC study provides strong evidence for the interacting effects of habitat filtering and plant- plant interactions, particularly highlighting that the conservative evolution of traits should not be assumed in future interpretations of PSC patterns. KW - Annuals KW - aridity gradient KW - community assembly rules KW - community phylogenetics KW - stress-gradient hypothesis KW - trait phylogenetic conservatism Y1 - 2017 U6 - https://doi.org/10.1080/07929978.2017.1288477 SN - 0792-9978 SN - 2223-8980 VL - 64 IS - 1-2 SP - 122 EP - 134 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Trindade, Inês T1 - License to flower BT - LEAFY has pioneer activity JF - Molecular plant Y1 - 2021 U6 - https://doi.org/10.1016/j.molp.2021.04.007 SN - 1674-2052 SN - 1752-9867 VL - 14 IS - 5 SP - 719 EP - 720 PB - Oxford Univ. Press CY - Oxford ER - TY - THES A1 - Heinze, Johannes T1 - The impact of soil microbiota on plant species performance and diversity in semi-natural grasslands Y1 - 2016 ER - TY - GEN A1 - Köchy, Martin A1 - Tielbörger, Katja T1 - Hydrothermal time model of germination : parameters for 36 Mediterranean annual species based on a simplified approach N2 - Germination rates and germination fractions of seeds can be predicted well by the hydrothermal time (HTT) model. Its four parameters hydrothermal time, minimum soil temperature, minimum soil moisture, and variation of minimum soil moisture, however, must be determined by lengthy germination experiments at combinations of several levels of soil temperature and moisture. For some applications of the HTT model it is more important to have approximate estimates for many species rather than exact values for only a few species. We suggest that minimum temperature and variation of minimum moisture can be estimated from literature data and expert knowledge. This allows to derive hydrothermal time and minimum moisture from existing data from germination experiments with one level of temperature and moisture. We applied our approach to a germination experiment comparing germination fractions of wild annual species along an aridity gradient in Israel. Using this simplified approach we estimated hydrothermal time and minimum moisture of 36 species. Comparison with exact data for three species shows that our method is a simple but effective method for obtaining parameters for the HTT model. Hydrothermal time and minimum moisture supposedly indicate climate related germination strategies. We tested whether these two parameters varied with the climate at the site where the seeds had been collected. We found no consistent variation with climate across species, suggesting that variation is more strongly controlled by site-specific factors. N2 - Keimungsgeschwindigkeit und Anteil gekeimter Samen lassen sich gut mit dem Hydrothermalzeit-Modell bestimmen. Dessen vier Parameter Hydrothermalzeit, Mindesttemperatur, Mindestbodenfeuchte und Streuung der Mindestbodenfeuchte müssen jedoch durch aufwendige Keimungsversuche bei Kombinationen von mehreren Temperatur- und Feuchtigkeitsstufen bestimmt werden. Für manche Anwendungen des Hydrothermalzeit-Modells sind aber ungefähre Werte für viele Arten wichtiger als genaue Werte für wenige Arten. Wenn die Mindesttemperatur und die Streuung der Mindestfeuchte aus Veröffentlichungen und Expertenwissen geschätzt würde, können die Hydrothermalzeit und Mindestbodenfeuchte aus vorhandenen Daten von Keimungsversuchen mit nur einer Temperatur- und Feuchtigkeitsstufe berechnet werden. Wir haben unseren Ansatz auf einen Keimungsversuch zum Vergleich der Keimungsquote wilder einjähriger Arten entlang eines Trockenheitsgradienten in Israel angewendet. Mit diesem Ansatz bestimmten wir die Hydrothermalzeit und Mindestfeuchtigkeit von 36 Arten. Der Vergleich mit genauen Werten für drei Arten zeigt, dass mit unserem Ansatz Hydrothermalzeit-Parameter einfach und effektiv bestimmt werden können. Hydrothermalzeit und Mindestfeuchtigkeit sollten auch bestimmte klimabedingte Keimungsstrategien anzeigen. Deshalb testeten wir, ob diese zwei Parameter mit dem Klima am Ursprungsort der Samen zusammenhängen. Wir fanden jedoch keinen für alle Arten übereinstimmenden Zusammenhang, so dass die Unterschiede vermutlich stärker durch standörtliche als durch klimatische Ursachen hervorgerufen werden. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 022 KW - Keimungsrate KW - Dormanz KW - Hydrothermalzeit-Modell KW - einjährige Pflanzen KW - Mittelmeerraum KW - germination rate KW - dormancy KW - hydrothermal time model KW - annual plant species KW - Mediterranean Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-12406 ER - TY - GEN A1 - Köchy, Martin T1 - Photodegradation of grass litter in semi-arid grasslands : a global perspective N2 - In a recent contribution in Nature (vol. 442, pp. 555-558) Austin & Vivanco showed that sunlight is the dominant factor for decomposition of grass litter in a semi-arid grassland in Argentine. The quantification of this effect was portrayed as a novel finding. I put this result in the context of three other publications from as early as 1980 that quantified photodegradation. My synopsis shows that photodegradation is an important process in semi-arid grasslands in South America, North America and eastern Europe. KW - Laubstreu KW - semi-arides Grasland KW - abiotische Zersetzung KW - UV-Licht KW - Schatten KW - leaf litter KW - semi-arid grassland KW - abiotic decomposition KW - UV radiation KW - shade Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-12006 ER - TY - JOUR A1 - Oberkofler, Vicky A1 - Bäurle, Isabel T1 - Inducible epigenome editing probes for the role of histone H3K4 methylation in Arabidopsis heat stress memory JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - A temperature-inducible epigenome editing system to knock down histone methylation can be used to study the role of histone H3K4 methylation during heat stress memory in Arabidopsis.
Histone modifications play a crucial role in the integration of environmental signals to mediate gene expression outcomes. However, genetic and pharmacological interference often causes pleiotropic effects, creating the urgent need for methods that allow locus-specific manipulation of histone modifications, preferably in an inducible manner. Here, we report an inducible system for epigenome editing in Arabidopsis (Arabidopsis thaliana) using a heat-inducible dCas9 to target a JUMONJI (JMJ) histone H3 lysine 4 (H3K4) demethylase domain to a locus of interest. As a model locus, we target the ASCORBATE PEROXIDASE2 (APX2) gene that shows transcriptional memory after heat stress (HS), correlating with H3K4 hyper-methylation. We show that dCas9-JMJ is targeted in a HS-dependent manner to APX2 and that the HS-induced overaccumulation of H3K4 trimethylation (H3K4me3) decreases when dCas9-JMJ binds to the locus. This results in reduced HS-mediated transcriptional memory at the APX2 locus. Targeting an enzymatically inactive JMJ protein in an analogous manner affected transcriptional memory less than the active JMJ protein; however, we still observed a decrease in H3K4 methylation levels. Thus, the inducible targeting of dCas9-JMJ to APX2 was effective in reducing H3K4 methylation levels. As the effect was not fully dependent on enzyme activity of the eraser domain, the dCas9-JMJ fusion protein may act in part independently of its demethylase activity. This underlines the need for caution in the design and interpretation of epigenome editing studies. We expect our versatile inducible epigenome editing system to be especially useful for studying temporal dynamics of chromatin modifications. Y1 - 2022 U6 - https://doi.org/10.1093/plphys/kiac113 SN - 0032-0889 SN - 1532-2548 VL - 189 IS - 2 SP - 703 EP - 714 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Oberkofler, Vicky A1 - Pratx, Loris A1 - Bäurle, Isabel T1 - Epigenetic regulation of abiotic stress memory BT - maintaining the good things while they last JF - Current opinion in plant biology N2 - As sessile organisms, plants have evolved sophisticated ways to constantly gauge and adapt to changing environmental conditions including extremes that may be harmful to their growth and development and are thus perceived as stress. In nature, stressful events are often chronic or recurring and thus an initial stress may prime a plant to respond more efficiently to a subsequent stress event. An epigenetic basis of such stress memory was long postulated and in recent years it has been shown that this is indeed the case. High temperature stress has proven an excellent system to unpick the molecular basis of somatic stress memory, which includes histone modifications and nucleosome occupancy. This review discusses recent findings and pinpoints open questions in the field. Y1 - 2021 U6 - https://doi.org/10.1016/j.pbi.2021.102007 SN - 1369-5266 SN - 1879-0356 VL - 61 PB - Elsevier CY - London ER - TY - GEN A1 - Mao, Hailiang A1 - Nakamura, Moritaka A1 - Viotti, Corrado A1 - Grebe, Markus T1 - A framework for lateral membrane trafficking and polar tethering of the PEN3 ATP-Binding cassette transporter T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - The outermost cell layer of plants, the epidermis, and its outer (lateral) membrane domain facing the environment are continuously challenged by biotic and abiotic stresses. Therefore, the epidermis and the outer membrane domain provide important selective and protective barriers. However, only a small number of specifically outer membrane-localized proteins are known. Similarly, molecular mechanisms underlying the trafficking and the polar placement of outer membrane domain proteins require further exploration. Here, we demonstrate that ACTIN7 (ACT7) mediates trafficking of the PENETRATION3 (PEN3) outer membrane protein from the trans-Golgi network (TGN) to the plasma membrane in the root epidermis of Arabidopsis (Arabidopsis thaliana) and that actin function contributes to PEN3 endocytic recycling. In contrast to such generic ACT7-dependent trafficking from the TGN, the EXOCYST84b (EXO84b) tethering factor mediates PEN3 outer-membrane polarity. Moreover, precise EXO84b placement at the outer membrane domain itself requires ACT7 function. Hence, our results uncover spatially and mechanistically distinct requirements for ACT7 function during outer lateral membrane cargo trafficking and polarity establishment. They further identify an exocyst tethering complex mediator of outer lateral membrane cargo polarity. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 909 KW - precursor indole-3-butyric acid KW - GNOM ARF-GEF KW - plasma-membrane KW - exocyst complex KW - auxin transport KW - planar polarity KW - Arabidopsis-thaliana KW - fluorescent protein KW - soil interface KW - cell polarity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441302 SN - 1866-8372 IS - 909 SP - 2245 EP - 2260 ER - TY - GEN A1 - Rajasundaram, Dhivyaa A1 - Selbig, Joachim T1 - More effort — more results BT - recent advances in integrative ‘omics’ data analysis T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The development of 'omics' technologies has progressed to address complex biological questions that underlie various plant functions thereby producing copious amounts of data. The need to assimilate large amounts of data into biologically meaningful interpretations has necessitated the development of statistical methods to integrate multidimensional information. Throughout this review, we provide examples of recent outcomes of 'omics' data integration together with an overview of available statistical methods and tools. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 923 KW - principal component KW - plant biology KW - package Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-442639 SN - 1866-8372 IS - 923 SP - 57 EP - 61 ER - TY - JOUR A1 - Heinze, Johannes T1 - Herbivory by aboveground insects impacts plant root morphological traits JF - Plant ecology : an international journal N2 - Aboveground herbivory induces physiological responses, like the release of belowground chemical defense and storage of secondary metabolites, as well as physical responses in plants, like increased root biomass production. However, studies on effects of aboveground herbivory on root morphology are scarce and until now no study tested herbivory effects under natural conditions for a large set of plant species. Therefore, in a field experiment on plant-soil interactions, I investigated the effect of aboveground insect herbivory on root morphological traits of 20 grassland plant species. For 9 of the 20 species, all individuals showed shoot damage in the presence of insect herbivores, but no damage in insect herbivore exclusions. In these 9 species root biomass increased and root morphological traits changed under herbivory towards thinner roots with increased specific root surface. In contrast, the remaining species did not differ in the number of individuals damaged, root biomass nor morphological traits with herbivores present vs. absent. The fact that aboveground herbivory resulted in thinner roots with increased specific root surface area for all species in which the herbivore exclusion manipulation altered shoot damage might indicate that plants increase nutrient uptake in response to herbivory. However, more importantly, results provide empirical evidence that aboveground herbivory impacts root morphological traits of plants. As these traits are important for the occupation of soil space, uptake processes, decomposition and interactions with soil biota, results suggest that herbivory-induced changes in root morphology might be of importance for plant-soil feedbacks and plant-plant competition. KW - herbivory KW - root traits KW - specific root length KW - specific root surface KW - area KW - plant-soil feedback KW - competition Y1 - 2020 U6 - https://doi.org/10.1007/s11258-020-01045-w SN - 1385-0237 SN - 1573-5052 VL - 221 IS - 8 SP - 725 EP - 732 PB - Springer CY - Dordrecht ER - TY - GEN A1 - Nakamura, Moritaka A1 - Claes, Andrea R. A1 - Grebe, Tobias A1 - Hermkes, Rebecca A1 - Viotti, Corrado A1 - Ikeda, Yoshihisa A1 - Grebe, Markus T1 - Auxin and ROP GTPase signaling of polar nuclear migration in root epidermal hair cells T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Polar nuclear migration is crucial during the development of diverse eukaryotes. In plants, root hair growth requires polar nuclear migration into the outgrowing hair. However, knowledge about the dynamics and the regulatory mechanisms underlying nuclear movements in root epidermal cells remains limited. Here, we show that both auxin and Rho-of-Plant (ROP) signaling modulate polar nuclear position at the inner epidermal plasma membrane domain oriented to the cortical cells during cell elongation as well as subsequent polar nuclear movement to the outer domain into the emerging hair bulge in Arabidopsis (Arabidopsis thaliana). Auxin signaling via the nuclear AUXIN RESPONSE FACTOR7 (ARF7)/ARF19 and INDOLE ACETIC ACID7 pathway ensures correct nuclear placement toward the inner membrane domain. Moreover, precise inner nuclear placement relies on SPIKE1 Rho-GEF, SUPERCENTIPEDE1 Rho-GDI, and ACTIN7 (ACT7) function and to a lesser extent on VTI11 vacuolar SNARE activity. Strikingly, the directionality and/or velocity of outer polar nuclear migration into the hair outgrowth along actin strands also are ACT7 dependent, auxin sensitive, and regulated by ROP signaling. Thus, our findings provide a founding framework revealing auxin and ROP signaling of inner polar nuclear position with some contribution by vacuolar morphology and of actin-dependent outer polar nuclear migration in root epidermal hair cells. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 992 KW - Arabidopsis-thaliana KW - planar polarity KW - tip growth KW - morphogenesis KW - gene KW - proteins KW - dynamics KW - transformation KW - activation KW - initiation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441278 SN - 1866-8372 IS - 992 SP - 378 EP - 391 ER -