TY - JOUR A1 - Mattern, M. A1 - Pudell, Jan-Etienne A1 - Laskin, G. A1 - von Reppert, A. A1 - Bargheer, Matias T1 - Analysis of the temperature- and fluence-dependent magnetic stress in laser-excited SrRuO3 JF - Structural Dynamics N2 - We use ultrafast x-ray diffraction to investigate the effect of expansive phononic and contractive magnetic stress driving the picosecond strain response of a metallic perovskite SrRuO3 thin film upon femtosecond laser excitation. We exemplify how the anisotropic bulk equilibrium thermal expansion can be used to predict the response of the thin film to ultrafast deposition of energy. It is key to consider that the laterally homogeneous laser excitation changes the strain response compared to the near-equilibrium thermal expansion because the balanced in-plane stresses suppress the Poisson stress on the picosecond timescale. We find a very large negative Grüneisen constant describing the large contractive stress imposed by a small amount of energy in the spin system. The temperature and fluence dependence of the strain response for a double-pulse excitation scheme demonstrates the saturation of the magnetic stress in the high-fluence regime. KW - Thin films KW - Thermodynamic properties KW - Bragg peak KW - Ultrafast X-ray diffraction KW - Thermal effects KW - Phonons KW - Magnetism KW - Lattice dynamics KW - Lasers KW - Perovskites Y1 - 2020 U6 - https://doi.org/10.1063/4.0000072 SN - 2329-7778 ER - TY - JOUR A1 - von Reppert, Alexander A1 - Puddell, J. A1 - Koc, A. A1 - Reinhardt, M. A1 - Leitenberger, Wolfram A1 - Dumesnil, K. A1 - Zamponi, Flavio A1 - Bargheer, Matias T1 - Persistent nonequilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet JF - Structural dynamics N2 - We present a temperature and fluence dependent Ultrafast X-Ray Diffraction study of a laser-heated antiferromagnetic dysprosium thin film. The loss of antiferromagnetic order is evidenced by a pronounced lattice contraction. We devise a method to determine the energy flow between the phonon and spin system from calibrated Bragg peak positions in thermal equilibrium. Reestablishing the magnetic order is much slower than the cooling of the lattice, especially around the Néel temperature. Despite the pronounced magnetostriction, the transfer of energy from the spin system to the phonons in Dy is slow after the spin-order is lost. Y1 - 2016 U6 - https://doi.org/10.1063/1.4961253 SN - 2329-7778 VL - 3 PB - AIP Publishing LLC CY - Melville, NY ER - TY - GEN A1 - von Reppert, Alexander A1 - Puddell, J. A1 - Koc, A. A1 - Reinhardt, M. A1 - Leitenberger, Wolfram A1 - Dumesnil, K. A1 - Zamponi, Flavio A1 - Bargheer, Matias T1 - Persistent nonequilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet N2 - We present a temperature and fluence dependent Ultrafast X-Ray Diffraction study of a laser-heated antiferromagnetic dysprosium thin film. The loss of antiferromagnetic order is evidenced by a pronounced lattice contraction. We devise a method to determine the energy flow between the phonon and spin system from calibrated Bragg peak positions in thermal equilibrium. Reestablishing the magnetic order is much slower than the cooling of the lattice, especially around the Néel temperature. Despite the pronounced magnetostriction, the transfer of energy from the spin system to the phonons in Dy is slow after the spin-order is lost. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 272 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-98710 ER - TY - JOUR A1 - Zeuschner, S. P. A1 - Mattern, M. A1 - Pudell, Jan-Etienne A1 - von Reppert, A. A1 - Rössle, M. A1 - Leitenberger, Wolfram A1 - Schwarzkopf, J. A1 - Boschker, J. E. A1 - Herzog, Marc A1 - Bargheer, Matias T1 - Reciprocal space slicing BT - a time-efficient approach to femtosecond x-ray diffraction JF - Structural Dynamics N2 - An experimental technique that allows faster assessment of out-of-plane strain dynamics of thin film heterostructures via x-ray diffraction is presented. In contrast to conventional high-speed reciprocal space-mapping setups, our approach reduces the measurement time drastically due to a fixed measurement geometry with a position-sensitive detector. This means that neither the incident (ω) nor the exit (2θ) diffraction angle is scanned during the strain assessment via x-ray diffraction. Shifts of diffraction peaks on the fixed x-ray area detector originate from an out-of-plane strain within the sample. Quantitative strain assessment requires the determination of a factor relating the observed shift to the change in the reciprocal lattice vector. The factor depends only on the widths of the peak along certain directions in reciprocal space, the diffraction angle of the studied reflection, and the resolution of the instrumental setup. We provide a full theoretical explanation and exemplify the concept with picosecond strain dynamics of a thin layer of NbO2. Y1 - 0202 U6 - https://doi.org/10.1063/4.0000040 SN - 2329-7778 VL - 8 PB - AIP Publishing LLC CY - Melville, NY ER - TY - GEN A1 - Pudell, Jan-Etienne A1 - Maznev, Alexei A1 - Herzog, Marc A1 - Kronseder, M. A1 - Back, Christian A1 - Malinowski, Gregory A1 - von Reppert, Alexander A1 - Bargheer, Matias T1 - Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond X-ray diffraction T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Ultrafast heat transport in nanoscale metal multilayers is of great interest in the context of optically induced demagnetization, remagnetization and switching. If the penetration depth of light exceeds the bilayer thickness, layer-specific information is unavailable from optical probes. Femtosecond diffraction experiments provide unique experimental access to heat transport over single digit nanometer distances. Here, we investigate the structural response and the energy flow in the ultrathin double-layer system: gold on ferromagnetic nickel. Even though the excitation pulse is incident from the Au side, we observe a very rapid heating of the Ni lattice, whereas the Au lattice initially remains cold. The subsequent heat transfer from Ni to the Au lattice is found to be two orders of magnitude slower than predicted by the conventional heat equation and much slower than electron-phonon coupling times in Au. We present a simplified model calculation highlighting the relevant thermophysical quantities. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 797 KW - thin magnetic layers KW - optical-excitation KW - heat-capacity KW - electron KW - gold KW - dynamics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426233 SN - 1866-8372 IS - 797 ER - TY - JOUR A1 - Sarhan, Radwan Mohamed A1 - Koopman, Wouter-Willem Adriaan A1 - Schuetz, Roman A1 - Schmid, Thomas A1 - Liebig, Ferenc A1 - Koetz, Joachim A1 - Bargheer, Matias T1 - The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol JF - Scientific Reports N2 - Metal nanoparticles form potent nanoreactors, driven by the optical generation of energetic electrons and nanoscale heat. The relative influence of these two factors on nanoscale chemistry is strongly debated. This article discusses the temperature dependence of the dimerization of 4-nitrothiophenol (4-NTP) into 4,4′-dimercaptoazobenzene (DMAB) adsorbed on gold nanoflowers by Surface-Enhanced Raman Scattering (SERS). Raman thermometry shows a significant optical heating of the particles. The ratio of the Stokes and the anti-Stokes Raman signal moreover demonstrates that the molecular temperature during the reaction rises beyond the average crystal lattice temperature of the plasmonic particles. The product bands have an even higher temperature than reactant bands, which suggests that the reaction proceeds preferentially at thermal hot spots. In addition, kinetic measurements of the reaction during external heating of the reaction environment yield a considerable rise of the reaction rate with temperature. Despite this significant heating effects, a comparison of SERS spectra recorded after heating the sample by an external heater to spectra recorded after prolonged illumination shows that the reaction is strictly photo-driven. While in both cases the temperature increase is comparable, the dimerization occurs only in the presence of light. Intensity dependent measurements at fixed temperatures confirm this finding. KW - enhanced raman-scattering KW - charge-transfer KW - metal KW - nanoparticles KW - catalysis KW - AU KW - 4-nitrobenzenethiol KW - aminothiophenol KW - photocatalysis KW - wavelength Y1 - 2019 U6 - https://doi.org/10.1038/s41598-019-38627-2 SN - 2045-2322 VL - 9 PB - Macmillan Publishers Limited CY - London ER - TY - GEN A1 - Sarhan, Radwan Mohamed A1 - Koopman, Wouter-Willem Adriaan A1 - Schuetz, Roman A1 - Schmid, Thomas A1 - Liebig, Ferenc A1 - Koetz, Joachim A1 - Bargheer, Matias T1 - The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Metal nanoparticles form potent nanoreactors, driven by the optical generation of energetic electrons and nanoscale heat. The relative influence of these two factors on nanoscale chemistry is strongly debated. This article discusses the temperature dependence of the dimerization of 4-nitrothiophenol (4-NTP) into 4,4′-dimercaptoazobenzene (DMAB) adsorbed on gold nanoflowers by Surface-Enhanced Raman Scattering (SERS). Raman thermometry shows a significant optical heating of the particles. The ratio of the Stokes and the anti-Stokes Raman signal moreover demonstrates that the molecular temperature during the reaction rises beyond the average crystal lattice temperature of the plasmonic particles. The product bands have an even higher temperature than reactant bands, which suggests that the reaction proceeds preferentially at thermal hot spots. In addition, kinetic measurements of the reaction during external heating of the reaction environment yield a considerable rise of the reaction rate with temperature. Despite this significant heating effects, a comparison of SERS spectra recorded after heating the sample by an external heater to spectra recorded after prolonged illumination shows that the reaction is strictly photo-driven. While in both cases the temperature increase is comparable, the dimerization occurs only in the presence of light. Intensity dependent measurements at fixed temperatures confirm this finding. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 698 KW - enhanced raman-scattering KW - charge-transfer KW - metal KW - nanoparticles KW - catalysis KW - AU KW - 4-nitrobenzenethiol KW - aminothiophenol KW - photocatalysis KW - wavelength Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427197 SN - 1866-8372 IS - 698 ER - TY - GEN A1 - Mattern, M. A1 - Pudell, Jan-Etienne A1 - Laskin, G. A1 - von Reppert, A. A1 - Bargheer, Matias T1 - Analysis of the temperature- and fluence-dependent magnetic stress in laser-excited SrRuO3 T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We use ultrafast x-ray diffraction to investigate the effect of expansive phononic and contractive magnetic stress driving the picosecond strain response of a metallic perovskite SrRuO3 thin film upon femtosecond laser excitation. We exemplify how the anisotropic bulk equilibrium thermal expansion can be used to predict the response of the thin film to ultrafast deposition of energy. It is key to consider that the laterally homogeneous laser excitation changes the strain response compared to the near-equilibrium thermal expansion because the balanced in-plane stresses suppress the Poisson stress on the picosecond timescale. We find a very large negative Grüneisen constant describing the large contractive stress imposed by a small amount of energy in the spin system. The temperature and fluence dependence of the strain response for a double-pulse excitation scheme demonstrates the saturation of the magnetic stress in the high-fluence regime. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1144 KW - Thin films KW - Thermodynamic properties KW - Bragg peak KW - Ultrafast X-ray diffraction KW - Thermal effects KW - Phonons KW - Magnetism KW - Lattice dynamics KW - Lasers KW - Perovskites Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515718 SN - 1866-8372 ER - TY - GEN A1 - Zeuschner, S. P. A1 - Mattern, M. A1 - Pudell, Jan-Etienne A1 - von Reppert, A. A1 - Rössle, M. A1 - Leitenberger, Wolfram A1 - Schwarzkopf, J. A1 - Boschker, J. E. A1 - Herzog, Marc A1 - Bargheer, Matias T1 - Reciprocal space slicing BT - a time-efficient approach to femtosecond x-ray diffraction T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - An experimental technique that allows faster assessment of out-of-plane strain dynamics of thin film heterostructures via x-ray diffraction is presented. In contrast to conventional high-speed reciprocal space-mapping setups, our approach reduces the measurement time drastically due to a fixed measurement geometry with a position-sensitive detector. This means that neither the incident (ω) nor the exit (2θ) diffraction angle is scanned during the strain assessment via x-ray diffraction. Shifts of diffraction peaks on the fixed x-ray area detector originate from an out-of-plane strain within the sample. Quantitative strain assessment requires the determination of a factor relating the observed shift to the change in the reciprocal lattice vector. The factor depends only on the widths of the peak along certain directions in reciprocal space, the diffraction angle of the studied reflection, and the resolution of the instrumental setup. We provide a full theoretical explanation and exemplify the concept with picosecond strain dynamics of a thin layer of NbO2. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1137 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-499761 SN - 1866-8372 IS - 1137 ER - TY - JOUR A1 - von Reppert, Alexander A1 - Mattern, Maximilian A1 - Pudell, Jan-Etienne A1 - Zeuschner, Steffen Peer A1 - Dumesnil, Karine A1 - Bargheer, Matias T1 - Unconventional picosecond strain pulses resulting from the saturation of magnetic stress within a photoexcited rare earth layer JF - Structural Dynamics N2 - Optical excitation of spin-ordered rare earth metals triggers a complex response of the crystal lattice since expansive stresses from electron and phonon excitations compete with a contractive stress induced by spin disorder. Using ultrafast x-ray diffraction experiments, we study the layer specific strain response of a dysprosium film within a metallic heterostructure upon femtosecond laser-excitation. The elastic and diffusive transport of energy to an adjacent, non-excited detection layer clearly separates the contributions of strain pulses and thermal excitations in the time domain. We find that energy transfer processes to magnetic excitations significantly modify the observed conventional bipolar strain wave into a unipolar pulse. By modeling the spin system as a saturable energy reservoir that generates substantial contractive stress on ultrafast timescales, we can reproduce the observed strain response and estimate the time- and space dependent magnetic stress. The saturation of the magnetic stress contribution yields a non-monotonous total stress within the nanolayer, which leads to unconventional picosecond strain pulses. KW - Strain measurement KW - Photoexcitations KW - Crystal lattices KW - Femtosecond lasers KW - Thermal effects KW - Heterostructures KW - Ultrafast X-rays KW - Phonons Y1 - 2020 U6 - https://doi.org/10.1063/1.5145315 SN - 2329-7778 VL - 7 IS - 024303 PB - AIP Publishing LLC CY - Melville, NY ER -