TY - JOUR A1 - Wulff, Peter A1 - Buschhüter, David A1 - Westphal, Andrea A1 - Nowak, Anna A1 - Becker, Lisa A1 - Robalino, Hugo A1 - Stede, Manfred A1 - Borowski, Andreas T1 - Computer-based classification of preservice physics teachers’ written reflections JF - Journal of science education and technology N2 - Reflecting in written form on one's teaching enactments has been considered a facilitator for teachers' professional growth in university-based preservice teacher education. Writing a structured reflection can be facilitated through external feedback. However, researchers noted that feedback in preservice teacher education often relies on holistic, rather than more content-based, analytic feedback because educators oftentimes lack resources (e.g., time) to provide more analytic feedback. To overcome this impediment to feedback for written reflection, advances in computer technology can be of use. Hence, this study sought to utilize techniques of natural language processing and machine learning to train a computer-based classifier that classifies preservice physics teachers' written reflections on their teaching enactments in a German university teacher education program. To do so, a reflection model was adapted to physics education. It was then tested to what extent the computer-based classifier could accurately classify the elements of the reflection model in segments of preservice physics teachers' written reflections. Multinomial logistic regression using word count as a predictor was found to yield acceptable average human-computer agreement (F1-score on held-out test dataset of 0.56) so that it might fuel further development towards an automated feedback tool that supplements existing holistic feedback for written reflections with data-based, analytic feedback. KW - reflection KW - teacher professional development KW - hatural language KW - processing KW - machine learning Y1 - 2020 U6 - https://doi.org/10.1007/s10956-020-09865-1 SN - 1059-0145 SN - 1573-1839 VL - 30 IS - 1 SP - 1 EP - 15 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Kranjc Horvat, Anja A1 - Wiener, Jeff A1 - Schmeling, Sascha A1 - Borowski, Andreas T1 - Learning goals of professional development programs at science research institutions BT - a Delphi study with different stakeholder groups JF - Journal of science teacher education : the official journal of the Association for the Education of Teachers in Science N2 - Effective professional development programs (PDPs) rely on well-defined goals. However, recent studies on PDPs have not explored the goals from a multi-stakeholder perspective. This study identifies the most important learning goals of PDPs at science research institutions as perceived by four groups of stakeholders, namely teachers, education researchers, government representatives, and research scientists. Altogether, over 100 stakeholders from 42 countries involved in PDPs at science research institutions in Europe and North America participated in a three-round Delphi study. In the first round, the stakeholders provided their opinions on what they thought the learning goals of PDPs should be through an open-ended questionnaire. In the second and third rounds, the stakeholders assessed the importance of the learning goals that emerged from the first round by rating and ranking them, respectively. The outcome of the study is a hierarchical list of the ten most important learning goals of PDPs at particle physics laboratories. The stakeholders identified enhancing teachers' knowledge of scientific concepts and models and enhancing their knowledge of the curricula as the most important learning goals. Furthermore, the results show strong agreement between all the stakeholder groups regarding the defined learning goals. Indeed, all groups ranked the learning goals by their perceived importance almost identically. These outcomes could help policymakers establish more specific policies for PDPs. Additionally, they provide PDP practitioners at science research institutions with a solid base for future research and planning endeavors. KW - Teacher professional development KW - Delphi study KW - multi-stakeholder KW - analysis KW - pedagogical content knowledge Y1 - 2021 U6 - https://doi.org/10.1080/1046560X.2021.1905330 SN - 1046-560X SN - 1573-1847 VL - 33 IS - 1 SP - 32 EP - 54 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Mientus, Lukas A1 - Hume, Anne A1 - Wulff, Peter A1 - Meiners, Antoinette A1 - Borowski, Andreas T1 - Modelling STEM teachers’ pedagogical content knowledge in the framework of the refined consensus model BT - A systematic literature review JF - Education Sciences : open access journal N2 - Science education researchers have developed a refined understanding of the structure of science teachers’ pedagogical content knowledge (PCK), but how to develop applicable and situation-adequate PCK remains largely unclear. A potential problem lies in the diverse conceptualisations of the PCK used in PCK research. This study sought to systematize existing science education research on PCK through the lens of the recently proposed refined consensus model (RCM) of PCK. In this review, the studies’ approaches to investigating PCK and selected findings were characterised and synthesised as an overview comparing research before and after the publication of the RCM. We found that the studies largely employed a qualitative case-study methodology that included specific PCK models and tools. However, in recent years, the studies focused increasingly on quantitative aspects. Furthermore, results of the reviewed studies can mostly be integrated into the RCM. We argue that the RCM can function as a meaningful theoretical lens for conceptualizing links between teaching practice and PCK development by proposing pedagogical reasoning as a mechanism and/or explanation for PCK development in the context of teaching practice. KW - pedagogical content knowledge (PCK) KW - refined consensus model (RCM) KW - pedagogical reasoning KW - teaching practice KW - science teaching KW - literature review Y1 - 2022 U6 - https://doi.org/10.3390/educsci12060385 SN - 2227-7102 VL - 12 SP - 1 EP - 25 PB - MDPI CY - Basel, Schweiz ET - 6 ER - TY - GEN A1 - Mientus, Lukas A1 - Hume, Anne Christine A1 - Wulff, Peter A1 - Meiners, Antoinette A1 - Borowski, Andreas T1 - Modelling STEM Teachers’ Pedagogical Content Knowledge in the Framework of the Refined Consensus Model: A Systematic Literature Review T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Science education researchers have developed a refined understanding of the structure of science teachers’ pedagogical content knowledge (PCK), but how to develop applicable and situation-adequate PCK remains largely unclear. A potential problem lies in the diverse conceptualisations of the PCK used in PCK research. This study sought to systematize existing science education research on PCK through the lens of the recently proposed refined consensus model (RCM) of PCK. In this review, the studies’ approaches to investigating PCK and selected findings were characterised and synthesised as an overview comparing research before and after the publication of the RCM. We found that the studies largely employed a qualitative case-study methodology that included specific PCK models and tools. However, in recent years, the studies focused increasingly on quantitative aspects. Furthermore, results of the reviewed studies can mostly be integrated into the RCM. We argue that the RCM can function as a meaningful theoretical lens for conceptualizing links between teaching practice and PCK development by proposing pedagogical reasoning as a mechanism and/or explanation for PCK development in the context of teaching practice. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1273 KW - pedagogical content knowledge (PCK) KW - refined consensus model (RCM) KW - pedagogical reasoning KW - teaching practice KW - science teaching KW - literature review Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-569127 SN - 1866-8372 SP - 1 EP - 25 ER -