TY - JOUR A1 - Solovyev, Nikolay A1 - Drobyshev, Evgenii A1 - Blume, Bastian A1 - Michalke, Bernhard T1 - Selenium at the neural barriers BT - a review JF - Frontiers in neuroscience / Frontiers Research Foundation N2 - Selenium (Se) is known to contribute to several vital physiological functions in mammals: antioxidant defense, fertility, thyroid hormone metabolism, and immune response. Growing evidence indicates the crucial role of Se and Se-containing selenoproteins in the brain and brain function. As for the other essential trace elements, dietary Se needs to reach effective concentrations in the central nervous system (CNS) to exert its functions. To do so, Se-species have to cross the blood-brain barrier (BBB) and/or blood-cerebrospinal fluid barrier (BCB) of the choroid plexus. The main interface between the general circulation of the body and the CNS is the BBB. Endothelial cells of brain capillaries forming the so-called tight junctions are the primary anatomic units of the BBB, mainly responsible for barrier function. The current review focuses on Se transport to the brain, primarily including selenoprotein P/low-density lipoprotein receptor-related protein 8 (LRP8, also known as apolipoprotein E receptor-2) dependent pathway, and supplementary transport routes of Se into the brain via low molecular weight Se-species. Additionally, the potential role of Se and selenoproteins in the BBB, BCB, and neurovascular unit (NVU) is discussed. Finally, the perspectives regarding investigating the role of Se and selenoproteins in the gut-brain axis are outlined. KW - selenium KW - selenoprotein P KW - low molecular weight selenium species KW - blood– cerebrospinal fluid barrier KW - blood– brain barrier KW - selenium transport KW - brain-gut axis KW - LRP8 Y1 - 2021 U6 - https://doi.org/10.3389/fnins.2021.630016 SN - 1662-453X VL - 15 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Barcena, Maria Luisa A1 - Aslam, Muhammad A1 - Pozdniakova, Sofya A1 - Norman, Kristina A1 - Ladilov, Yury T1 - Cardiovascular inflammaging: mechanisms and translational aspects JF - Cells N2 - Aging is one of the major non-reversible risk factors for several chronic diseases, including cancer, type 2 diabetes, dementia, and cardiovascular diseases (CVD), and it is a key cause of multimorbidity, disability, and frailty (decreased physical activity, fatigue, and weight loss). The underlying cellular mechanisms are complex and consist of multifactorial processes, such as telomere shortening, chronic low-grade inflammation, oxidative stress, mitochondrial dysfunction, accumulation of senescent cells, and reduced autophagy. In this review, we focused on the molecular mechanisms and translational aspects of cardiovascular aging-related inflammation, i.e., inflammaging. KW - cardiac inflammaging KW - vascular senescence KW - mitochondrial homeostasis KW - microbiome Y1 - 2022 U6 - https://doi.org/10.3390/cells11061010 SN - 2073-4409 VL - 11 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Li, Jian A1 - Shen, Jinhua A1 - Zhang, Xiaoli A1 - Peng, Yangqin A1 - Zhang, Qin A1 - Hu, Liang A1 - Reichetzeder, Christoph A1 - Zeng, Suimin A1 - Li, Jing A1 - Tian, Mei A1 - Gong, Fei A1 - Lin, Ge A1 - Hocher, Berthold T1 - Risk factors associated with preterm birth after IVF/ICSI JF - Scientific reports N2 - In vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) is associated with an increased risk of preterm (33rd-37th gestational week) and early preterm birth (20th-32nd gestational week). The underlying general and procedure related risk factors are not well understood so far. 4328 infertile women undergoing IVF/ICSI were entered into this study. The study population was divided into three groups: (a) early preterm birth group (n = 66), (b) preterm birth group (n = 675) and (c) full-term birth group (n = 3653). Odds for preterm birth were calculated by stepwise multivariate logistic regression analysis. We identified seven independent risk factors for preterm birth and four independent risk factors for early preterm birth. Older (> 39) or younger (< 25) maternal age (OR: 1.504, 95% CI 1.108-2.042, P = 0.009; OR: 2.125, 95% CI 1.049-4.304, P = 0.036, respectively), multiple pregnancy (OR: 9.780, 95% CI 8.014-11.935, P < 0.001; OR: 8.588, 95% CI 4.866-15.157, P < 0.001, respectively), placenta previa (OR: 14.954, 95% CI 8.053-27.767, P < 0.001; OR: 16.479, 95% CI 4.381-61.976, P < 0.001, respectively), and embryo reduction (OR: 3.547, 95% CI 1.736-7.249, P = 0.001; OR: 7.145, 95% CI 1.990-25.663, P = 0.003, respectively) were associated with preterm birth and early preterm birth, whereas gestational hypertension (OR: 2.494, 95% CI 1.770-3.514, P < 0.001), elevated triglycerides (OR: 1.120, 95% CI 1.011-1.240, P = 0.030) and shorter activated partial thromboplastin time (OR: 0.967, 95% CI 0.949-0.985, P < 0.001) were associated only with preterm birth. In conclusion, preterm and early preterm birth risk factors in patients undergoing assisted IVF/ICSI are in general similar to those in natural pregnancy. The lack of some associations in the early preterm group was most likely due to the lower number of early preterm birth cases. Only embryo reduction represents an IVF/ICSI specific risk factor. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-12149-w SN - 2045-2322 VL - 12 IS - 1 PB - Nature Research CY - Berlin ER - TY - JOUR A1 - Döll, Stefanie A1 - Djalali Farahani-Kofoet, Roxana A1 - Zrenner, Rita A1 - Henze, Andrea A1 - Witzel, Katja T1 - Tissue-specific signatures of metabolites and proteins in asparagus roots and exudates JF - Horticulture research N2 - Comprehensive untargeted and targeted analysis of root exudate composition has advanced our understanding of rhizosphere processes. However, little is known about exudate spatial distribution and regulation. We studied the specific metabolite signatures of asparagus root exudates, root outer (epidermis and exodermis), and root inner tissues (cortex and vasculature). The greatest differences were found between exudates and root tissues. In total, 263 non-redundant metabolites were identified as significantly differentially abundant between the three root fractions, with the majority being enriched in the root exudate and/or outer tissue and annotated as 'lipids and lipid-like molecules' or 'phenylpropanoids and polyketides'. Spatial distribution was verified for three selected compounds using MALDI-TOF mass spectrometry imaging. Tissue-specific proteome analysis related root tissue-specific metabolite distributions and rhizodeposition with underlying biosynthetic pathways and transport mechanisms. The proteomes of root outer and inner tissues were spatially very distinct, in agreement with the fundamental differences between their functions and structures. According to KEGG pathway analysis, the outer tissue proteome was characterized by a high abundance of proteins related to 'lipid metabolism', 'biosynthesis of other secondary metabolites' and 'transport and catabolism', reflecting its main functions of providing a hydrophobic barrier, secreting secondary metabolites, and mediating water and nutrient uptake. Proteins more abundant in the inner tissue related to 'transcription', 'translation' and 'folding, sorting and degradation', in accord with the high activity of cortical and vasculature cell layers in growth- and development-related processes. In summary, asparagus root fractions accumulate specific metabolites. This expands our knowledge of tissue-specific plant cell function. Y1 - 2021 U6 - https://doi.org/10.1038/s41438-021-00510-5 SN - 2052-7276 SN - 2662-6810 VL - 8 IS - 1 PB - Nanjing Agricultural Univ. CY - Nanjing ER - TY - JOUR A1 - Xiong, Yingquan A1 - Delic, Denis A1 - Zeng, Shufei A1 - Chen, Xin A1 - Chu, Chang A1 - Hasan, Ahmed A. A1 - Krämer, Bernhard K. A1 - Klein, Thomas A1 - Yin, Lianghong A1 - Hocher, Berthold T1 - Regulation of SARS CoV-2 host factors in the kidney and heart in rats with 5/6 nephrectomy-effects of salt, ARB, DPP4 inhibitor and SGLT2 blocker JF - BMC nephrology N2 - Background Host factors such as angiotensin-converting enzyme 2 (ACE2) and the transmembrane protease, serine-subtype-2 (TMPRSS2) are important factors for SARS-CoV-2 infection. Clinical and pre-clinical studies demonstrated that RAAS-blocking agents can be safely used during a SARS-CoV-2 infection but it is unknown if DPP-4 inhibitors or SGLT2-blockers may promote COVID-19 by increasing the host viral entry enzymes ACE2 and TMPRSS2. Methods We investigated telmisartan, linagliptin and empagliflozin induced effects on renal and cardiac expression of ACE2, TMPRSS2 and key enzymes involved in RAAS (REN, AGTR2, AGT) under high-salt conditions in a non-diabetic experimental 5/6 nephrectomy (5/6 Nx) model. In the present study, the gene expression of Ace2, Tmprss2, Ren, Agtr2 and Agt was assessed with qRT-PCR and the protein expression of ACE2 and TMPRSS2 with immunohistochemistry in the following experimental groups: Sham + normal diet (ND) + placebo (PBO); 5/6Nx + ND + PBO; 5/6Nx + high salt-diet (HSD) + PBO; 5/6Nx + HSD + telmisartan; 5/6Nx + HSD + linagliptin; 5/6Nx + HSD + empagliflozin. Results In the kidney, the expression of Ace2 was not altered on mRNA level under disease and treatment conditions. The renal TMPRSS2 levels (mRNA and protein) were not affected, whereas the cardiac level was significantly increased in 5/6Nx rats. Intriguingly, the elevated TMPRSS2 protein expression in the heart was significantly normalized after treatment with telmisartan, linagliptin and empagliflozin. Conclusions Our study indicated that there is no upregulation regarding host factors potentially promoting SARS-CoV-2 virus entry into host cells when the SGLT2-blocker empagliflozin, telmisartan and the DPP4-inhibitor blocker linagliptin are used. The results obtained in a preclinical, experimental non-diabetic kidney failure model need confirmation in ongoing interventional clinical trials. KW - SARS CoV-2 host factors KW - 5/6 nephrectomy KW - High-salt diet KW - ARB KW - DPP4 inhibitor KW - SGLT2 blocker Y1 - 2022 U6 - https://doi.org/10.1186/s12882-022-02747-1 SN - 1471-2369 VL - 23 IS - 1 PB - Springer Nature CY - London ER - TY - JOUR A1 - Gisch, Ulrike Alexandra A1 - Robert, Margaux A1 - Berlin, Noemi A1 - Nebout, Antoine A1 - Etile, Fabrice A1 - Teyssier, Sabrina A1 - Andreeva, Valentina A. A1 - Hercberg, Serge A1 - Touvier, Mathilde A1 - Peneau, Sandrine T1 - Mastery is associated with weight status, food intake, snacking, and eating disorder symptoms in the NutriNet-Sante cohort study JF - Frontiers in Nutrition N2 - Mastery is a psychological resource that is defined as the extent to which individuals perceive having control over important circumstances of their lives. Although mastery has been associated with various physical and psychological health outcomes, studies assessing its relationship with weight status and dietary behavior are lacking. The aim of this cross-sectional study was to assess the relationship between mastery and weight status, food intake, snacking, and eating disorder (ED) symptoms in the NutriNet-Sante cohort study. Mastery was measured with the Pearlin Mastery Scale (PMS) in 32,588 adults (77.45% female), the mean age was 50.04 (14.53) years. Height and weight were self-reported. Overall diet quality and food group consumption were evaluated with >= 3 self-reported 24-h dietary records (range: 3-27). Snacking was assessed with an ad-hoc question. ED symptoms were assessed with the Sick-Control-One-Fat-Food Questionnaire (SCOFF). Linear and logistic regression analyses were conducted to assess the relationship between mastery and weight status, food intake, snacking, and ED symptoms, controlling for sociodemographic and lifestyle characteristics. Females with a higher level of mastery were less likely to be underweight (OR: 0.88; 95%CI: 0.84, 0.93), overweight [OR: 0.94 (0.91, 0.97)], or obese [class I: OR: 0.86 (0.82, 0.90); class II: OR: 0.76 (0.71, 0.82); class III: OR: 0.77 (0.69, 0.86)]. Males with a higher level of mastery were less likely to be obese [class III: OR: 0.75 (0.57, 0.99)]. Mastery was associated with better diet quality overall, a higher consumption of fruit and vegetables, seafood, wholegrain foods, legumes, non-salted oleaginous fruits, and alcoholic beverages and with a lower consumption of meat and poultry, dairy products, sugary and fatty products, milk-based desserts, and sweetened beverages. Mastery was also associated with lower snacking frequency [OR: 0.89 (0.86, 0.91)] and less ED symptoms [OR: 0.73 (0.71, 0.75)]. As mastery was associated with favorable dietary behavior and weight status, targeting mastery might be a promising approach in promoting healthy behaviors. KW - mastery KW - locus of control KW - weight status KW - diet quality KW - food group consumption KW - snacking KW - eating disorder symptoms KW - large population Y1 - 2022 U6 - https://doi.org/10.3389/fnut.2022.871669 SN - 2296-861X VL - 9 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Wilhelmi, Ilka A1 - Neumann, Alexander A1 - Jähnert, Markus A1 - Ouni, Meriem A1 - Schürmann, Annette T1 - Enriched alternative splicing in islets of diabetes-susceptible mice JF - International journal of molecular sciences N2 - Dysfunctional islets of Langerhans are a hallmark of type 2 diabetes (T2D). We hypothesize that differences in islet gene expression alternative splicing which can contribute to altered protein function also participate in islet dysfunction. RNA sequencing (RNAseq) data from islets of obese diabetes-resistant and diabetes-susceptible mice were analyzed for alternative splicing and its putative genetic and epigenetic modulators. We focused on the expression levels of chromatin modifiers and SNPs in regulatory sequences. We identified alternative splicing events in islets of diabetes-susceptible mice amongst others in genes linked to insulin secretion, endocytosis or ubiquitin-mediated proteolysis pathways. The expression pattern of 54 histones and chromatin modifiers, which may modulate splicing, were markedly downregulated in islets of diabetic animals. Furthermore, diabetes-susceptible mice carry SNPs in RNA-binding protein motifs and in splice sites potentially responsible for alternative splicing events. They also exhibit a larger exon skipping rate, e.g., in the diabetes gene Abcc8, which might affect protein function. Expression of the neuronal splicing factor Srrm4 which mediates inclusion of microexons in mRNA transcripts was markedly lower in islets of diabetes-prone compared to diabetes-resistant mice, correlating with a preferential skipping of SRRM4 target exons. The repression of Srrm4 expression is presumably mediated via a higher expression of miR-326-3p and miR-3547-3p in islets of diabetic mice. Thus, our study suggests that an altered splicing pattern in islets of diabetes-susceptible mice may contribute to an elevated T2D risk. KW - alternative splicing KW - epigenetic KW - MicroRNA KW - RNAseq KW - diabetes KW - beta-cell KW - failure Y1 - 2021 U6 - https://doi.org/10.3390/ijms22168597 SN - 1422-0067 VL - 22 IS - 16 PB - Molecular Diversity Preservation International CY - Basel ER - TY - JOUR A1 - Wittenbecher, Clemens A1 - Cuadrat, Rafael A1 - Johnston, Luke A1 - Eichelmann, Fabian A1 - Jäger, Susanne A1 - Kuxhaus, Olga A1 - Prada, Marcela A1 - Del Greco, Fabiola M. A1 - Hicks, Andrew A. A1 - Hoffman, Per A1 - Krumsiek, Jan A1 - Hu, Frank B. A1 - Schulze, Matthias B. T1 - Dihydroceramide- and ceramide-profiling provides insights into human cardiometabolic disease etiology JF - Nature communications N2 - Metabolic alterations precede cardiometabolic disease onset. Here we present ceramide- and dihydroceramide-profiling data from a nested case-cohort (type 2 diabetes [T2D, n = 775]; cardiovascular disease [CVD, n = 551]; random subcohort [n = 1137]) in the prospective EPIC-Potsdam study. We apply the novel NetCoupler-algorithm to link a data-driven (dihydro)ceramide network to T2D and CVD risk. Controlling for confounding by other (dihydro)ceramides, ceramides C18:0 and C22:0 and dihydroceramides C20:0 and C22:2 are associated with higher and ceramide C20:0 and dihydroceramide C26:1 with lower T2D risk. Ceramide C16:0 and dihydroceramide C22:2 are associated with higher CVD risk. Genome-wide association studies and Mendelian randomization analyses support a role of ceramide C22:0 in T2D etiology. Our results also suggest that (dh)ceramides partly mediate the putative adverse effect of high red meat consumption and benefits of coffee consumption on T2D risk. Thus, (dihydro)ceramides may play a critical role in linking genetic predisposition and dietary habits to cardiometabolic disease risk. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-022-28496-1 SN - 2041-1723 VL - 13 PB - Nature Research CY - Berlin ER -